2 * AMD Cryptographic Coprocessor (CCP) driver
4 * Copyright (C) 2016 Advanced Micro Devices, Inc.
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/pci.h>
16 #include <linux/kthread.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/interrupt.h>
19 #include <linux/compiler.h>
20 #include <linux/ccp.h>
24 /* Allocate the requested number of contiguous LSB slots
25 * from the LSB bitmap. Look in the private range for this
26 * queue first; failing that, check the public area.
27 * If no space is available, wait around.
28 * Return: first slot number
30 static u32 ccp_lsb_alloc(struct ccp_cmd_queue *cmd_q, unsigned int count)
32 struct ccp_device *ccp;
35 /* First look at the map for the queue */
36 if (cmd_q->lsb >= 0) {
37 start = (u32)bitmap_find_next_zero_area(cmd_q->lsbmap,
40 if (start < LSB_SIZE) {
41 bitmap_set(cmd_q->lsbmap, start, count);
42 return start + cmd_q->lsb * LSB_SIZE;
46 /* No joy; try to get an entry from the shared blocks */
49 mutex_lock(&ccp->sb_mutex);
51 start = (u32)bitmap_find_next_zero_area(ccp->lsbmap,
52 MAX_LSB_CNT * LSB_SIZE,
55 if (start <= MAX_LSB_CNT * LSB_SIZE) {
56 bitmap_set(ccp->lsbmap, start, count);
58 mutex_unlock(&ccp->sb_mutex);
64 mutex_unlock(&ccp->sb_mutex);
66 /* Wait for KSB entries to become available */
67 if (wait_event_interruptible(ccp->sb_queue, ccp->sb_avail))
72 /* Free a number of LSB slots from the bitmap, starting at
73 * the indicated starting slot number.
75 static void ccp_lsb_free(struct ccp_cmd_queue *cmd_q, unsigned int start,
81 if (cmd_q->lsb == start) {
82 /* An entry from the private LSB */
83 bitmap_clear(cmd_q->lsbmap, start, count);
85 /* From the shared LSBs */
86 struct ccp_device *ccp = cmd_q->ccp;
88 mutex_lock(&ccp->sb_mutex);
89 bitmap_clear(ccp->lsbmap, start, count);
91 mutex_unlock(&ccp->sb_mutex);
92 wake_up_interruptible_all(&ccp->sb_queue);
96 /* CCP version 5: Union to define the function field (cmd_reg1/dword0) */
136 #define CCP_AES_SIZE(p) ((p)->aes.size)
137 #define CCP_AES_ENCRYPT(p) ((p)->aes.encrypt)
138 #define CCP_AES_MODE(p) ((p)->aes.mode)
139 #define CCP_AES_TYPE(p) ((p)->aes.type)
140 #define CCP_XTS_SIZE(p) ((p)->aes_xts.size)
141 #define CCP_XTS_ENCRYPT(p) ((p)->aes_xts.encrypt)
142 #define CCP_SHA_TYPE(p) ((p)->sha.type)
143 #define CCP_RSA_SIZE(p) ((p)->rsa.size)
144 #define CCP_PT_BYTESWAP(p) ((p)->pt.byteswap)
145 #define CCP_PT_BITWISE(p) ((p)->pt.bitwise)
146 #define CCP_ECC_MODE(p) ((p)->ecc.mode)
147 #define CCP_ECC_AFFINE(p) ((p)->ecc.one)
150 #define CCP5_CMD_DW0(p) ((p)->dw0)
151 #define CCP5_CMD_SOC(p) (CCP5_CMD_DW0(p).soc)
152 #define CCP5_CMD_IOC(p) (CCP5_CMD_DW0(p).ioc)
153 #define CCP5_CMD_INIT(p) (CCP5_CMD_DW0(p).init)
154 #define CCP5_CMD_EOM(p) (CCP5_CMD_DW0(p).eom)
155 #define CCP5_CMD_FUNCTION(p) (CCP5_CMD_DW0(p).function)
156 #define CCP5_CMD_ENGINE(p) (CCP5_CMD_DW0(p).engine)
157 #define CCP5_CMD_PROT(p) (CCP5_CMD_DW0(p).prot)
160 #define CCP5_CMD_DW1(p) ((p)->length)
161 #define CCP5_CMD_LEN(p) (CCP5_CMD_DW1(p))
164 #define CCP5_CMD_DW2(p) ((p)->src_lo)
165 #define CCP5_CMD_SRC_LO(p) (CCP5_CMD_DW2(p))
168 #define CCP5_CMD_DW3(p) ((p)->dw3)
169 #define CCP5_CMD_SRC_MEM(p) ((p)->dw3.src_mem)
170 #define CCP5_CMD_SRC_HI(p) ((p)->dw3.src_hi)
171 #define CCP5_CMD_LSB_ID(p) ((p)->dw3.lsb_cxt_id)
172 #define CCP5_CMD_FIX_SRC(p) ((p)->dw3.fixed)
175 #define CCP5_CMD_DW4(p) ((p)->dw4)
176 #define CCP5_CMD_DST_LO(p) (CCP5_CMD_DW4(p).dst_lo)
177 #define CCP5_CMD_DW5(p) ((p)->dw5.fields.dst_hi)
178 #define CCP5_CMD_DST_HI(p) (CCP5_CMD_DW5(p))
179 #define CCP5_CMD_DST_MEM(p) ((p)->dw5.fields.dst_mem)
180 #define CCP5_CMD_FIX_DST(p) ((p)->dw5.fields.fixed)
181 #define CCP5_CMD_SHA_LO(p) ((p)->dw4.sha_len_lo)
182 #define CCP5_CMD_SHA_HI(p) ((p)->dw5.sha_len_hi)
185 #define CCP5_CMD_DW6(p) ((p)->key_lo)
186 #define CCP5_CMD_KEY_LO(p) (CCP5_CMD_DW6(p))
187 #define CCP5_CMD_DW7(p) ((p)->dw7)
188 #define CCP5_CMD_KEY_HI(p) ((p)->dw7.key_hi)
189 #define CCP5_CMD_KEY_MEM(p) ((p)->dw7.key_mem)
191 static inline u32 low_address(unsigned long addr)
193 return (u64)addr & 0x0ffffffff;
196 static inline u32 high_address(unsigned long addr)
198 return ((u64)addr >> 32) & 0x00000ffff;
201 static unsigned int ccp5_get_free_slots(struct ccp_cmd_queue *cmd_q)
203 unsigned int head_idx, n;
204 u32 head_lo, queue_start;
206 queue_start = low_address(cmd_q->qdma_tail);
207 head_lo = ioread32(cmd_q->reg_head_lo);
208 head_idx = (head_lo - queue_start) / sizeof(struct ccp5_desc);
210 n = head_idx + COMMANDS_PER_QUEUE - cmd_q->qidx - 1;
212 return n % COMMANDS_PER_QUEUE; /* Always one unused spot */
215 static int ccp5_do_cmd(struct ccp5_desc *desc,
216 struct ccp_cmd_queue *cmd_q)
224 if (CCP5_CMD_SOC(desc)) {
225 CCP5_CMD_IOC(desc) = 1;
226 CCP5_CMD_SOC(desc) = 0;
228 mutex_lock(&cmd_q->q_mutex);
230 mP = (u32 *) &cmd_q->qbase[cmd_q->qidx];
231 dP = (__le32 *) desc;
232 for (i = 0; i < 8; i++)
233 mP[i] = cpu_to_le32(dP[i]); /* handle endianness */
235 cmd_q->qidx = (cmd_q->qidx + 1) % COMMANDS_PER_QUEUE;
237 /* The data used by this command must be flushed to memory */
240 /* Write the new tail address back to the queue register */
241 tail = low_address(cmd_q->qdma_tail + cmd_q->qidx * Q_DESC_SIZE);
242 iowrite32(tail, cmd_q->reg_tail_lo);
244 /* Turn the queue back on using our cached control register */
245 iowrite32(cmd_q->qcontrol | CMD5_Q_RUN, cmd_q->reg_control);
246 mutex_unlock(&cmd_q->q_mutex);
248 if (CCP5_CMD_IOC(desc)) {
249 /* Wait for the job to complete */
250 ret = wait_event_interruptible(cmd_q->int_queue,
252 if (ret || cmd_q->cmd_error) {
253 /* Log the error and flush the queue by
254 * moving the head pointer
256 if (cmd_q->cmd_error)
257 ccp_log_error(cmd_q->ccp,
259 iowrite32(tail, cmd_q->reg_head_lo);
269 static int ccp5_perform_aes(struct ccp_op *op)
271 struct ccp5_desc desc;
272 union ccp_function function;
273 u32 key_addr = op->sb_key * LSB_ITEM_SIZE;
275 /* Zero out all the fields of the command desc */
276 memset(&desc, 0, Q_DESC_SIZE);
278 CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_AES;
280 CCP5_CMD_SOC(&desc) = op->soc;
281 CCP5_CMD_IOC(&desc) = 1;
282 CCP5_CMD_INIT(&desc) = op->init;
283 CCP5_CMD_EOM(&desc) = op->eom;
284 CCP5_CMD_PROT(&desc) = 0;
287 CCP_AES_ENCRYPT(&function) = op->u.aes.action;
288 CCP_AES_MODE(&function) = op->u.aes.mode;
289 CCP_AES_TYPE(&function) = op->u.aes.type;
290 CCP_AES_SIZE(&function) = op->u.aes.size;
292 CCP5_CMD_FUNCTION(&desc) = function.raw;
294 CCP5_CMD_LEN(&desc) = op->src.u.dma.length;
296 CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
297 CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
298 CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
300 CCP5_CMD_DST_LO(&desc) = ccp_addr_lo(&op->dst.u.dma);
301 CCP5_CMD_DST_HI(&desc) = ccp_addr_hi(&op->dst.u.dma);
302 CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
304 CCP5_CMD_KEY_LO(&desc) = lower_32_bits(key_addr);
305 CCP5_CMD_KEY_HI(&desc) = 0;
306 CCP5_CMD_KEY_MEM(&desc) = CCP_MEMTYPE_SB;
307 CCP5_CMD_LSB_ID(&desc) = op->sb_ctx;
309 return ccp5_do_cmd(&desc, op->cmd_q);
312 static int ccp5_perform_xts_aes(struct ccp_op *op)
314 struct ccp5_desc desc;
315 union ccp_function function;
316 u32 key_addr = op->sb_key * LSB_ITEM_SIZE;
318 /* Zero out all the fields of the command desc */
319 memset(&desc, 0, Q_DESC_SIZE);
321 CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_XTS_AES_128;
323 CCP5_CMD_SOC(&desc) = op->soc;
324 CCP5_CMD_IOC(&desc) = 1;
325 CCP5_CMD_INIT(&desc) = op->init;
326 CCP5_CMD_EOM(&desc) = op->eom;
327 CCP5_CMD_PROT(&desc) = 0;
330 CCP_XTS_ENCRYPT(&function) = op->u.xts.action;
331 CCP_XTS_SIZE(&function) = op->u.xts.unit_size;
332 CCP5_CMD_FUNCTION(&desc) = function.raw;
334 CCP5_CMD_LEN(&desc) = op->src.u.dma.length;
336 CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
337 CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
338 CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
340 CCP5_CMD_DST_LO(&desc) = ccp_addr_lo(&op->dst.u.dma);
341 CCP5_CMD_DST_HI(&desc) = ccp_addr_hi(&op->dst.u.dma);
342 CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
344 CCP5_CMD_KEY_LO(&desc) = lower_32_bits(key_addr);
345 CCP5_CMD_KEY_HI(&desc) = 0;
346 CCP5_CMD_KEY_MEM(&desc) = CCP_MEMTYPE_SB;
347 CCP5_CMD_LSB_ID(&desc) = op->sb_ctx;
349 return ccp5_do_cmd(&desc, op->cmd_q);
352 static int ccp5_perform_sha(struct ccp_op *op)
354 struct ccp5_desc desc;
355 union ccp_function function;
357 /* Zero out all the fields of the command desc */
358 memset(&desc, 0, Q_DESC_SIZE);
360 CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_SHA;
362 CCP5_CMD_SOC(&desc) = op->soc;
363 CCP5_CMD_IOC(&desc) = 1;
364 CCP5_CMD_INIT(&desc) = 1;
365 CCP5_CMD_EOM(&desc) = op->eom;
366 CCP5_CMD_PROT(&desc) = 0;
369 CCP_SHA_TYPE(&function) = op->u.sha.type;
370 CCP5_CMD_FUNCTION(&desc) = function.raw;
372 CCP5_CMD_LEN(&desc) = op->src.u.dma.length;
374 CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
375 CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
376 CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
378 CCP5_CMD_LSB_ID(&desc) = op->sb_ctx;
381 CCP5_CMD_SHA_LO(&desc) = lower_32_bits(op->u.sha.msg_bits);
382 CCP5_CMD_SHA_HI(&desc) = upper_32_bits(op->u.sha.msg_bits);
384 CCP5_CMD_SHA_LO(&desc) = 0;
385 CCP5_CMD_SHA_HI(&desc) = 0;
388 return ccp5_do_cmd(&desc, op->cmd_q);
391 static int ccp5_perform_rsa(struct ccp_op *op)
393 struct ccp5_desc desc;
394 union ccp_function function;
396 /* Zero out all the fields of the command desc */
397 memset(&desc, 0, Q_DESC_SIZE);
399 CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_RSA;
401 CCP5_CMD_SOC(&desc) = op->soc;
402 CCP5_CMD_IOC(&desc) = 1;
403 CCP5_CMD_INIT(&desc) = 0;
404 CCP5_CMD_EOM(&desc) = 1;
405 CCP5_CMD_PROT(&desc) = 0;
408 CCP_RSA_SIZE(&function) = op->u.rsa.mod_size >> 3;
409 CCP5_CMD_FUNCTION(&desc) = function.raw;
411 CCP5_CMD_LEN(&desc) = op->u.rsa.input_len;
413 /* Source is from external memory */
414 CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
415 CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
416 CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
418 /* Destination is in external memory */
419 CCP5_CMD_DST_LO(&desc) = ccp_addr_lo(&op->dst.u.dma);
420 CCP5_CMD_DST_HI(&desc) = ccp_addr_hi(&op->dst.u.dma);
421 CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
423 /* Exponent is in LSB memory */
424 CCP5_CMD_KEY_LO(&desc) = op->sb_key * LSB_ITEM_SIZE;
425 CCP5_CMD_KEY_HI(&desc) = 0;
426 CCP5_CMD_KEY_MEM(&desc) = CCP_MEMTYPE_SB;
428 return ccp5_do_cmd(&desc, op->cmd_q);
431 static int ccp5_perform_passthru(struct ccp_op *op)
433 struct ccp5_desc desc;
434 union ccp_function function;
435 struct ccp_dma_info *saddr = &op->src.u.dma;
436 struct ccp_dma_info *daddr = &op->dst.u.dma;
438 memset(&desc, 0, Q_DESC_SIZE);
440 CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_PASSTHRU;
442 CCP5_CMD_SOC(&desc) = 0;
443 CCP5_CMD_IOC(&desc) = 1;
444 CCP5_CMD_INIT(&desc) = 0;
445 CCP5_CMD_EOM(&desc) = op->eom;
446 CCP5_CMD_PROT(&desc) = 0;
449 CCP_PT_BYTESWAP(&function) = op->u.passthru.byte_swap;
450 CCP_PT_BITWISE(&function) = op->u.passthru.bit_mod;
451 CCP5_CMD_FUNCTION(&desc) = function.raw;
453 /* Length of source data is always 256 bytes */
454 if (op->src.type == CCP_MEMTYPE_SYSTEM)
455 CCP5_CMD_LEN(&desc) = saddr->length;
457 CCP5_CMD_LEN(&desc) = daddr->length;
459 if (op->src.type == CCP_MEMTYPE_SYSTEM) {
460 CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
461 CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
462 CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
464 if (op->u.passthru.bit_mod != CCP_PASSTHRU_BITWISE_NOOP)
465 CCP5_CMD_LSB_ID(&desc) = op->sb_key;
467 u32 key_addr = op->src.u.sb * CCP_SB_BYTES;
469 CCP5_CMD_SRC_LO(&desc) = lower_32_bits(key_addr);
470 CCP5_CMD_SRC_HI(&desc) = 0;
471 CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SB;
474 if (op->dst.type == CCP_MEMTYPE_SYSTEM) {
475 CCP5_CMD_DST_LO(&desc) = ccp_addr_lo(&op->dst.u.dma);
476 CCP5_CMD_DST_HI(&desc) = ccp_addr_hi(&op->dst.u.dma);
477 CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
479 u32 key_addr = op->dst.u.sb * CCP_SB_BYTES;
481 CCP5_CMD_DST_LO(&desc) = lower_32_bits(key_addr);
482 CCP5_CMD_DST_HI(&desc) = 0;
483 CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SB;
486 return ccp5_do_cmd(&desc, op->cmd_q);
489 static int ccp5_perform_ecc(struct ccp_op *op)
491 struct ccp5_desc desc;
492 union ccp_function function;
494 /* Zero out all the fields of the command desc */
495 memset(&desc, 0, Q_DESC_SIZE);
497 CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_ECC;
499 CCP5_CMD_SOC(&desc) = 0;
500 CCP5_CMD_IOC(&desc) = 1;
501 CCP5_CMD_INIT(&desc) = 0;
502 CCP5_CMD_EOM(&desc) = 1;
503 CCP5_CMD_PROT(&desc) = 0;
506 function.ecc.mode = op->u.ecc.function;
507 CCP5_CMD_FUNCTION(&desc) = function.raw;
509 CCP5_CMD_LEN(&desc) = op->src.u.dma.length;
511 CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
512 CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
513 CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
515 CCP5_CMD_DST_LO(&desc) = ccp_addr_lo(&op->dst.u.dma);
516 CCP5_CMD_DST_HI(&desc) = ccp_addr_hi(&op->dst.u.dma);
517 CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
519 return ccp5_do_cmd(&desc, op->cmd_q);
522 static int ccp_find_lsb_regions(struct ccp_cmd_queue *cmd_q, u64 status)
524 int q_mask = 1 << cmd_q->id;
528 /* Build a bit mask to know which LSBs this queue has access to.
529 * Don't bother with segment 0 as it has special privileges.
531 for (j = 1; j < MAX_LSB_CNT; j++) {
533 bitmap_set(cmd_q->lsbmask, j, 1);
534 status >>= LSB_REGION_WIDTH;
536 queues = bitmap_weight(cmd_q->lsbmask, MAX_LSB_CNT);
537 dev_dbg(cmd_q->ccp->dev, "Queue %d can access %d LSB regions\n",
540 return queues ? 0 : -EINVAL;
544 static int ccp_find_and_assign_lsb_to_q(struct ccp_device *ccp,
545 int lsb_cnt, int n_lsbs,
546 unsigned long *lsb_pub)
548 DECLARE_BITMAP(qlsb, MAX_LSB_CNT);
554 * If the count of potential LSBs available to a queue matches the
555 * ordinal given to us in lsb_cnt:
556 * Copy the mask of possible LSBs for this queue into "qlsb";
557 * For each bit in qlsb, see if the corresponding bit in the
558 * aggregation mask is set; if so, we have a match.
559 * If we have a match, clear the bit in the aggregation to
560 * mark it as no longer available.
561 * If there is no match, clear the bit in qlsb and keep looking.
563 for (i = 0; i < ccp->cmd_q_count; i++) {
564 struct ccp_cmd_queue *cmd_q = &ccp->cmd_q[i];
566 qlsb_wgt = bitmap_weight(cmd_q->lsbmask, MAX_LSB_CNT);
568 if (qlsb_wgt == lsb_cnt) {
569 bitmap_copy(qlsb, cmd_q->lsbmask, MAX_LSB_CNT);
571 bitno = find_first_bit(qlsb, MAX_LSB_CNT);
572 while (bitno < MAX_LSB_CNT) {
573 if (test_bit(bitno, lsb_pub)) {
574 /* We found an available LSB
575 * that this queue can access
578 bitmap_clear(lsb_pub, bitno, 1);
580 "Queue %d gets LSB %d\n",
584 bitmap_clear(qlsb, bitno, 1);
585 bitno = find_first_bit(qlsb, MAX_LSB_CNT);
587 if (bitno >= MAX_LSB_CNT)
595 /* For each queue, from the most- to least-constrained:
596 * find an LSB that can be assigned to the queue. If there are N queues that
597 * can only use M LSBs, where N > M, fail; otherwise, every queue will get a
598 * dedicated LSB. Remaining LSB regions become a shared resource.
599 * If we have fewer LSBs than queues, all LSB regions become shared resources.
601 static int ccp_assign_lsbs(struct ccp_device *ccp)
603 DECLARE_BITMAP(lsb_pub, MAX_LSB_CNT);
604 DECLARE_BITMAP(qlsb, MAX_LSB_CNT);
610 bitmap_zero(lsb_pub, MAX_LSB_CNT);
612 /* Create an aggregate bitmap to get a total count of available LSBs */
613 for (i = 0; i < ccp->cmd_q_count; i++)
615 lsb_pub, ccp->cmd_q[i].lsbmask,
618 n_lsbs = bitmap_weight(lsb_pub, MAX_LSB_CNT);
620 if (n_lsbs >= ccp->cmd_q_count) {
621 /* We have enough LSBS to give every queue a private LSB.
622 * Brute force search to start with the queues that are more
623 * constrained in LSB choice. When an LSB is privately
624 * assigned, it is removed from the public mask.
625 * This is an ugly N squared algorithm with some optimization.
628 n_lsbs && (lsb_cnt <= MAX_LSB_CNT);
630 rc = ccp_find_and_assign_lsb_to_q(ccp, lsb_cnt, n_lsbs,
639 /* What's left of the LSBs, according to the public mask, now become
640 * shared. Any zero bits in the lsb_pub mask represent an LSB region
641 * that can't be used as a shared resource, so mark the LSB slots for
644 bitmap_copy(qlsb, lsb_pub, MAX_LSB_CNT);
646 bitno = find_first_zero_bit(qlsb, MAX_LSB_CNT);
647 while (bitno < MAX_LSB_CNT) {
648 bitmap_set(ccp->lsbmap, bitno * LSB_SIZE, LSB_SIZE);
649 bitmap_set(qlsb, bitno, 1);
650 bitno = find_first_zero_bit(qlsb, MAX_LSB_CNT);
656 static int ccp5_init(struct ccp_device *ccp)
658 struct device *dev = ccp->dev;
659 struct ccp_cmd_queue *cmd_q;
660 struct dma_pool *dma_pool;
661 char dma_pool_name[MAX_DMAPOOL_NAME_LEN];
662 unsigned int qmr, qim, i;
664 u32 status_lo, status_hi;
667 /* Find available queues */
669 qmr = ioread32(ccp->io_regs + Q_MASK_REG);
670 for (i = 0; i < MAX_HW_QUEUES; i++) {
672 if (!(qmr & (1 << i)))
675 /* Allocate a dma pool for this queue */
676 snprintf(dma_pool_name, sizeof(dma_pool_name), "%s_q%d",
678 dma_pool = dma_pool_create(dma_pool_name, dev,
679 CCP_DMAPOOL_MAX_SIZE,
680 CCP_DMAPOOL_ALIGN, 0);
682 dev_err(dev, "unable to allocate dma pool\n");
686 cmd_q = &ccp->cmd_q[ccp->cmd_q_count];
691 cmd_q->dma_pool = dma_pool;
692 mutex_init(&cmd_q->q_mutex);
694 /* Page alignment satisfies our needs for N <= 128 */
695 BUILD_BUG_ON(COMMANDS_PER_QUEUE > 128);
696 cmd_q->qsize = Q_SIZE(Q_DESC_SIZE);
697 cmd_q->qbase = dma_zalloc_coherent(dev, cmd_q->qsize,
701 dev_err(dev, "unable to allocate command queue\n");
707 /* Preset some register values and masks that are queue
710 cmd_q->reg_control = ccp->io_regs +
711 CMD5_Q_STATUS_INCR * (i + 1);
712 cmd_q->reg_tail_lo = cmd_q->reg_control + CMD5_Q_TAIL_LO_BASE;
713 cmd_q->reg_head_lo = cmd_q->reg_control + CMD5_Q_HEAD_LO_BASE;
714 cmd_q->reg_int_enable = cmd_q->reg_control +
715 CMD5_Q_INT_ENABLE_BASE;
716 cmd_q->reg_interrupt_status = cmd_q->reg_control +
717 CMD5_Q_INTERRUPT_STATUS_BASE;
718 cmd_q->reg_status = cmd_q->reg_control + CMD5_Q_STATUS_BASE;
719 cmd_q->reg_int_status = cmd_q->reg_control +
720 CMD5_Q_INT_STATUS_BASE;
721 cmd_q->reg_dma_status = cmd_q->reg_control +
722 CMD5_Q_DMA_STATUS_BASE;
723 cmd_q->reg_dma_read_status = cmd_q->reg_control +
724 CMD5_Q_DMA_READ_STATUS_BASE;
725 cmd_q->reg_dma_write_status = cmd_q->reg_control +
726 CMD5_Q_DMA_WRITE_STATUS_BASE;
728 init_waitqueue_head(&cmd_q->int_queue);
730 dev_dbg(dev, "queue #%u available\n", i);
732 if (ccp->cmd_q_count == 0) {
733 dev_notice(dev, "no command queues available\n");
738 /* Turn off the queues and disable interrupts until ready */
739 for (i = 0; i < ccp->cmd_q_count; i++) {
740 cmd_q = &ccp->cmd_q[i];
742 cmd_q->qcontrol = 0; /* Start with nothing */
743 iowrite32(cmd_q->qcontrol, cmd_q->reg_control);
745 /* Disable the interrupts */
746 iowrite32(0x00, cmd_q->reg_int_enable);
747 ioread32(cmd_q->reg_int_status);
748 ioread32(cmd_q->reg_status);
750 /* Clear the interrupts */
751 iowrite32(ALL_INTERRUPTS, cmd_q->reg_interrupt_status);
754 dev_dbg(dev, "Requesting an IRQ...\n");
756 ret = ccp->get_irq(ccp);
758 dev_err(dev, "unable to allocate an IRQ\n");
762 dev_dbg(dev, "Loading LSB map...\n");
763 /* Copy the private LSB mask to the public registers */
764 status_lo = ioread32(ccp->io_regs + LSB_PRIVATE_MASK_LO_OFFSET);
765 status_hi = ioread32(ccp->io_regs + LSB_PRIVATE_MASK_HI_OFFSET);
766 iowrite32(status_lo, ccp->io_regs + LSB_PUBLIC_MASK_LO_OFFSET);
767 iowrite32(status_hi, ccp->io_regs + LSB_PUBLIC_MASK_HI_OFFSET);
768 status = ((u64)status_hi<<30) | (u64)status_lo;
770 dev_dbg(dev, "Configuring virtual queues...\n");
771 /* Configure size of each virtual queue accessible to host */
772 for (i = 0; i < ccp->cmd_q_count; i++) {
776 cmd_q = &ccp->cmd_q[i];
778 cmd_q->qcontrol &= ~(CMD5_Q_SIZE << CMD5_Q_SHIFT);
779 cmd_q->qcontrol |= QUEUE_SIZE_VAL << CMD5_Q_SHIFT;
781 cmd_q->qdma_tail = cmd_q->qbase_dma;
782 dma_addr_lo = low_address(cmd_q->qdma_tail);
783 iowrite32((u32)dma_addr_lo, cmd_q->reg_tail_lo);
784 iowrite32((u32)dma_addr_lo, cmd_q->reg_head_lo);
786 dma_addr_hi = high_address(cmd_q->qdma_tail);
787 cmd_q->qcontrol |= (dma_addr_hi << 16);
788 iowrite32(cmd_q->qcontrol, cmd_q->reg_control);
790 /* Find the LSB regions accessible to the queue */
791 ccp_find_lsb_regions(cmd_q, status);
792 cmd_q->lsb = -1; /* Unassigned value */
795 dev_dbg(dev, "Assigning LSBs...\n");
796 ret = ccp_assign_lsbs(ccp);
798 dev_err(dev, "Unable to assign LSBs (%d)\n", ret);
802 /* Optimization: pre-allocate LSB slots for each queue */
803 for (i = 0; i < ccp->cmd_q_count; i++) {
804 ccp->cmd_q[i].sb_key = ccp_lsb_alloc(&ccp->cmd_q[i], 2);
805 ccp->cmd_q[i].sb_ctx = ccp_lsb_alloc(&ccp->cmd_q[i], 2);
808 dev_dbg(dev, "Starting threads...\n");
809 /* Create a kthread for each queue */
810 for (i = 0; i < ccp->cmd_q_count; i++) {
811 struct task_struct *kthread;
813 cmd_q = &ccp->cmd_q[i];
815 kthread = kthread_create(ccp_cmd_queue_thread, cmd_q,
816 "%s-q%u", ccp->name, cmd_q->id);
817 if (IS_ERR(kthread)) {
818 dev_err(dev, "error creating queue thread (%ld)\n",
820 ret = PTR_ERR(kthread);
824 cmd_q->kthread = kthread;
825 wake_up_process(kthread);
828 dev_dbg(dev, "Enabling interrupts...\n");
829 /* Enable interrupts */
830 for (i = 0; i < ccp->cmd_q_count; i++) {
831 cmd_q = &ccp->cmd_q[i];
832 iowrite32(ALL_INTERRUPTS, cmd_q->reg_int_enable);
835 dev_dbg(dev, "Registering device...\n");
836 /* Put this on the unit list to make it available */
839 ret = ccp_register_rng(ccp);
843 /* Register the DMA engine support */
844 ret = ccp_dmaengine_register(ccp);
851 ccp_unregister_rng(ccp);
854 for (i = 0; i < ccp->cmd_q_count; i++)
855 if (ccp->cmd_q[i].kthread)
856 kthread_stop(ccp->cmd_q[i].kthread);
862 for (i = 0; i < ccp->cmd_q_count; i++)
863 dma_pool_destroy(ccp->cmd_q[i].dma_pool);
868 static void ccp5_destroy(struct ccp_device *ccp)
870 struct device *dev = ccp->dev;
871 struct ccp_cmd_queue *cmd_q;
875 /* Unregister the DMA engine */
876 ccp_dmaengine_unregister(ccp);
878 /* Unregister the RNG */
879 ccp_unregister_rng(ccp);
881 /* Remove this device from the list of available units first */
884 /* Disable and clear interrupts */
885 for (i = 0; i < ccp->cmd_q_count; i++) {
886 cmd_q = &ccp->cmd_q[i];
888 /* Turn off the run bit */
889 iowrite32(cmd_q->qcontrol & ~CMD5_Q_RUN, cmd_q->reg_control);
891 /* Disable the interrupts */
892 iowrite32(ALL_INTERRUPTS, cmd_q->reg_interrupt_status);
894 /* Clear the interrupt status */
895 iowrite32(0x00, cmd_q->reg_int_enable);
896 ioread32(cmd_q->reg_int_status);
897 ioread32(cmd_q->reg_status);
900 /* Stop the queue kthreads */
901 for (i = 0; i < ccp->cmd_q_count; i++)
902 if (ccp->cmd_q[i].kthread)
903 kthread_stop(ccp->cmd_q[i].kthread);
907 for (i = 0; i < ccp->cmd_q_count; i++) {
908 cmd_q = &ccp->cmd_q[i];
909 dma_free_coherent(dev, cmd_q->qsize, cmd_q->qbase,
913 /* Flush the cmd and backlog queue */
914 while (!list_empty(&ccp->cmd)) {
915 /* Invoke the callback directly with an error code */
916 cmd = list_first_entry(&ccp->cmd, struct ccp_cmd, entry);
917 list_del(&cmd->entry);
918 cmd->callback(cmd->data, -ENODEV);
920 while (!list_empty(&ccp->backlog)) {
921 /* Invoke the callback directly with an error code */
922 cmd = list_first_entry(&ccp->backlog, struct ccp_cmd, entry);
923 list_del(&cmd->entry);
924 cmd->callback(cmd->data, -ENODEV);
928 static irqreturn_t ccp5_irq_handler(int irq, void *data)
930 struct device *dev = data;
931 struct ccp_device *ccp = dev_get_drvdata(dev);
935 for (i = 0; i < ccp->cmd_q_count; i++) {
936 struct ccp_cmd_queue *cmd_q = &ccp->cmd_q[i];
938 status = ioread32(cmd_q->reg_interrupt_status);
941 cmd_q->int_status = status;
942 cmd_q->q_status = ioread32(cmd_q->reg_status);
943 cmd_q->q_int_status = ioread32(cmd_q->reg_int_status);
945 /* On error, only save the first error value */
946 if ((status & INT_ERROR) && !cmd_q->cmd_error)
947 cmd_q->cmd_error = CMD_Q_ERROR(cmd_q->q_status);
951 /* Acknowledge the interrupt and wake the kthread */
952 iowrite32(ALL_INTERRUPTS, cmd_q->reg_interrupt_status);
953 wake_up_interruptible(&cmd_q->int_queue);
960 static void ccp5_config(struct ccp_device *ccp)
963 iowrite32(0x0, ccp->io_regs + CMD5_REQID_CONFIG_OFFSET);
966 static void ccp5other_config(struct ccp_device *ccp)
971 /* We own all of the queues on the NTB CCP */
973 iowrite32(0x00012D57, ccp->io_regs + CMD5_TRNG_CTL_OFFSET);
974 iowrite32(0x00000003, ccp->io_regs + CMD5_CONFIG_0_OFFSET);
975 for (i = 0; i < 12; i++) {
976 rnd = ioread32(ccp->io_regs + TRNG_OUT_REG);
977 iowrite32(rnd, ccp->io_regs + CMD5_AES_MASK_OFFSET);
980 iowrite32(0x0000001F, ccp->io_regs + CMD5_QUEUE_MASK_OFFSET);
981 iowrite32(0x00005B6D, ccp->io_regs + CMD5_QUEUE_PRIO_OFFSET);
982 iowrite32(0x00000000, ccp->io_regs + CMD5_CMD_TIMEOUT_OFFSET);
984 iowrite32(0x3FFFFFFF, ccp->io_regs + LSB_PRIVATE_MASK_LO_OFFSET);
985 iowrite32(0x000003FF, ccp->io_regs + LSB_PRIVATE_MASK_HI_OFFSET);
987 iowrite32(0x00108823, ccp->io_regs + CMD5_CLK_GATE_CTL_OFFSET);
992 /* Version 5 adds some function, but is essentially the same as v5 */
993 static const struct ccp_actions ccp5_actions = {
994 .aes = ccp5_perform_aes,
995 .xts_aes = ccp5_perform_xts_aes,
996 .sha = ccp5_perform_sha,
997 .rsa = ccp5_perform_rsa,
998 .passthru = ccp5_perform_passthru,
999 .ecc = ccp5_perform_ecc,
1000 .sballoc = ccp_lsb_alloc,
1001 .sbfree = ccp_lsb_free,
1003 .destroy = ccp5_destroy,
1004 .get_free_slots = ccp5_get_free_slots,
1005 .irqhandler = ccp5_irq_handler,
1008 const struct ccp_vdata ccpv5a = {
1009 .version = CCP_VERSION(5, 0),
1010 .setup = ccp5_config,
1011 .perform = &ccp5_actions,
1016 const struct ccp_vdata ccpv5b = {
1017 .version = CCP_VERSION(5, 0),
1018 .setup = ccp5other_config,
1019 .perform = &ccp5_actions,