4 * Copyright (C) 1991, 1992, 1999 Linus Torvalds
8 #include <linux/file.h>
9 #include <linux/poll.h>
10 #include <linux/slab.h>
11 #include <linux/module.h>
12 #include <linux/init.h>
14 #include <linux/log2.h>
15 #include <linux/mount.h>
16 #include <linux/magic.h>
17 #include <linux/pipe_fs_i.h>
18 #include <linux/uio.h>
19 #include <linux/highmem.h>
20 #include <linux/pagemap.h>
21 #include <linux/audit.h>
22 #include <linux/syscalls.h>
23 #include <linux/fcntl.h>
25 #include <asm/uaccess.h>
26 #include <asm/ioctls.h>
29 * The max size that a non-root user is allowed to grow the pipe. Can
30 * be set by root in /proc/sys/fs/pipe-max-size
32 unsigned int pipe_max_size = 1048576;
35 * Minimum pipe size, as required by POSIX
37 unsigned int pipe_min_size = PAGE_SIZE;
40 * We use a start+len construction, which provides full use of the
42 * -- Florian Coosmann (FGC)
44 * Reads with count = 0 should always return 0.
45 * -- Julian Bradfield 1999-06-07.
47 * FIFOs and Pipes now generate SIGIO for both readers and writers.
50 * pipe_read & write cleanup
54 static void pipe_lock_nested(struct pipe_inode_info *pipe, int subclass)
57 mutex_lock_nested(&pipe->inode->i_mutex, subclass);
60 void pipe_lock(struct pipe_inode_info *pipe)
63 * pipe_lock() nests non-pipe inode locks (for writing to a file)
65 pipe_lock_nested(pipe, I_MUTEX_PARENT);
67 EXPORT_SYMBOL(pipe_lock);
69 void pipe_unlock(struct pipe_inode_info *pipe)
72 mutex_unlock(&pipe->inode->i_mutex);
74 EXPORT_SYMBOL(pipe_unlock);
76 void pipe_double_lock(struct pipe_inode_info *pipe1,
77 struct pipe_inode_info *pipe2)
79 BUG_ON(pipe1 == pipe2);
82 pipe_lock_nested(pipe1, I_MUTEX_PARENT);
83 pipe_lock_nested(pipe2, I_MUTEX_CHILD);
85 pipe_lock_nested(pipe2, I_MUTEX_PARENT);
86 pipe_lock_nested(pipe1, I_MUTEX_CHILD);
90 /* Drop the inode semaphore and wait for a pipe event, atomically */
91 void pipe_wait(struct pipe_inode_info *pipe)
96 * Pipes are system-local resources, so sleeping on them
97 * is considered a noninteractive wait:
99 prepare_to_wait(&pipe->wait, &wait, TASK_INTERRUPTIBLE);
102 finish_wait(&pipe->wait, &wait);
107 pipe_iov_copy_from_user(void *to, struct iovec *iov, unsigned long len,
113 while (!iov->iov_len)
115 copy = min_t(unsigned long, len, iov->iov_len);
118 if (__copy_from_user_inatomic(to, iov->iov_base, copy))
121 if (copy_from_user(to, iov->iov_base, copy))
126 iov->iov_base += copy;
127 iov->iov_len -= copy;
133 pipe_iov_copy_to_user(struct iovec *iov, const void *from, unsigned long len,
139 while (!iov->iov_len)
141 copy = min_t(unsigned long, len, iov->iov_len);
144 if (__copy_to_user_inatomic(iov->iov_base, from, copy))
147 if (copy_to_user(iov->iov_base, from, copy))
152 iov->iov_base += copy;
153 iov->iov_len -= copy;
159 * Attempt to pre-fault in the user memory, so we can use atomic copies.
160 * Returns the number of bytes not faulted in.
162 static int iov_fault_in_pages_write(struct iovec *iov, unsigned long len)
164 while (!iov->iov_len)
168 unsigned long this_len;
170 this_len = min_t(unsigned long, len, iov->iov_len);
171 if (fault_in_pages_writeable(iov->iov_base, this_len))
182 * Pre-fault in the user memory, so we can use atomic copies.
184 static void iov_fault_in_pages_read(struct iovec *iov, unsigned long len)
186 while (!iov->iov_len)
190 unsigned long this_len;
192 this_len = min_t(unsigned long, len, iov->iov_len);
193 fault_in_pages_readable(iov->iov_base, this_len);
199 static void anon_pipe_buf_release(struct pipe_inode_info *pipe,
200 struct pipe_buffer *buf)
202 struct page *page = buf->page;
205 * If nobody else uses this page, and we don't already have a
206 * temporary page, let's keep track of it as a one-deep
207 * allocation cache. (Otherwise just release our reference to it)
209 if (page_count(page) == 1 && !pipe->tmp_page)
210 pipe->tmp_page = page;
212 page_cache_release(page);
216 * generic_pipe_buf_map - virtually map a pipe buffer
217 * @pipe: the pipe that the buffer belongs to
218 * @buf: the buffer that should be mapped
219 * @atomic: whether to use an atomic map
222 * This function returns a kernel virtual address mapping for the
223 * pipe_buffer passed in @buf. If @atomic is set, an atomic map is provided
224 * and the caller has to be careful not to fault before calling
225 * the unmap function.
227 * Note that this function occupies KM_USER0 if @atomic != 0.
229 void *generic_pipe_buf_map(struct pipe_inode_info *pipe,
230 struct pipe_buffer *buf, int atomic)
233 buf->flags |= PIPE_BUF_FLAG_ATOMIC;
234 return kmap_atomic(buf->page);
237 return kmap(buf->page);
239 EXPORT_SYMBOL(generic_pipe_buf_map);
242 * generic_pipe_buf_unmap - unmap a previously mapped pipe buffer
243 * @pipe: the pipe that the buffer belongs to
244 * @buf: the buffer that should be unmapped
245 * @map_data: the data that the mapping function returned
248 * This function undoes the mapping that ->map() provided.
250 void generic_pipe_buf_unmap(struct pipe_inode_info *pipe,
251 struct pipe_buffer *buf, void *map_data)
253 if (buf->flags & PIPE_BUF_FLAG_ATOMIC) {
254 buf->flags &= ~PIPE_BUF_FLAG_ATOMIC;
255 kunmap_atomic(map_data);
259 EXPORT_SYMBOL(generic_pipe_buf_unmap);
262 * generic_pipe_buf_steal - attempt to take ownership of a &pipe_buffer
263 * @pipe: the pipe that the buffer belongs to
264 * @buf: the buffer to attempt to steal
267 * This function attempts to steal the &struct page attached to
268 * @buf. If successful, this function returns 0 and returns with
269 * the page locked. The caller may then reuse the page for whatever
270 * he wishes; the typical use is insertion into a different file
273 int generic_pipe_buf_steal(struct pipe_inode_info *pipe,
274 struct pipe_buffer *buf)
276 struct page *page = buf->page;
279 * A reference of one is golden, that means that the owner of this
280 * page is the only one holding a reference to it. lock the page
283 if (page_count(page) == 1) {
290 EXPORT_SYMBOL(generic_pipe_buf_steal);
293 * generic_pipe_buf_get - get a reference to a &struct pipe_buffer
294 * @pipe: the pipe that the buffer belongs to
295 * @buf: the buffer to get a reference to
298 * This function grabs an extra reference to @buf. It's used in
299 * in the tee() system call, when we duplicate the buffers in one
302 void generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
304 page_cache_get(buf->page);
306 EXPORT_SYMBOL(generic_pipe_buf_get);
309 * generic_pipe_buf_confirm - verify contents of the pipe buffer
310 * @info: the pipe that the buffer belongs to
311 * @buf: the buffer to confirm
314 * This function does nothing, because the generic pipe code uses
315 * pages that are always good when inserted into the pipe.
317 int generic_pipe_buf_confirm(struct pipe_inode_info *info,
318 struct pipe_buffer *buf)
322 EXPORT_SYMBOL(generic_pipe_buf_confirm);
325 * generic_pipe_buf_release - put a reference to a &struct pipe_buffer
326 * @pipe: the pipe that the buffer belongs to
327 * @buf: the buffer to put a reference to
330 * This function releases a reference to @buf.
332 void generic_pipe_buf_release(struct pipe_inode_info *pipe,
333 struct pipe_buffer *buf)
335 page_cache_release(buf->page);
337 EXPORT_SYMBOL(generic_pipe_buf_release);
339 static const struct pipe_buf_operations anon_pipe_buf_ops = {
341 .map = generic_pipe_buf_map,
342 .unmap = generic_pipe_buf_unmap,
343 .confirm = generic_pipe_buf_confirm,
344 .release = anon_pipe_buf_release,
345 .steal = generic_pipe_buf_steal,
346 .get = generic_pipe_buf_get,
350 pipe_read(struct kiocb *iocb, const struct iovec *_iov,
351 unsigned long nr_segs, loff_t pos)
353 struct file *filp = iocb->ki_filp;
354 struct inode *inode = filp->f_path.dentry->d_inode;
355 struct pipe_inode_info *pipe;
358 struct iovec *iov = (struct iovec *)_iov;
361 total_len = iov_length(iov, nr_segs);
362 /* Null read succeeds. */
363 if (unlikely(total_len == 0))
368 mutex_lock(&inode->i_mutex);
369 pipe = inode->i_pipe;
371 int bufs = pipe->nrbufs;
373 int curbuf = pipe->curbuf;
374 struct pipe_buffer *buf = pipe->bufs + curbuf;
375 const struct pipe_buf_operations *ops = buf->ops;
377 size_t chars = buf->len;
380 if (chars > total_len)
383 error = ops->confirm(pipe, buf);
390 atomic = !iov_fault_in_pages_write(iov, chars);
392 addr = ops->map(pipe, buf, atomic);
393 error = pipe_iov_copy_to_user(iov, addr + buf->offset, chars, atomic);
394 ops->unmap(pipe, buf, addr);
395 if (unlikely(error)) {
397 * Just retry with the slow path if we failed.
408 buf->offset += chars;
412 ops->release(pipe, buf);
413 curbuf = (curbuf + 1) & (pipe->buffers - 1);
414 pipe->curbuf = curbuf;
415 pipe->nrbufs = --bufs;
420 break; /* common path: read succeeded */
422 if (bufs) /* More to do? */
426 if (!pipe->waiting_writers) {
427 /* syscall merging: Usually we must not sleep
428 * if O_NONBLOCK is set, or if we got some data.
429 * But if a writer sleeps in kernel space, then
430 * we can wait for that data without violating POSIX.
434 if (filp->f_flags & O_NONBLOCK) {
439 if (signal_pending(current)) {
445 wake_up_interruptible_sync_poll(&pipe->wait, POLLOUT | POLLWRNORM);
446 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
450 mutex_unlock(&inode->i_mutex);
452 /* Signal writers asynchronously that there is more room. */
454 wake_up_interruptible_sync_poll(&pipe->wait, POLLOUT | POLLWRNORM);
455 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
463 pipe_write(struct kiocb *iocb, const struct iovec *_iov,
464 unsigned long nr_segs, loff_t ppos)
466 struct file *filp = iocb->ki_filp;
467 struct inode *inode = filp->f_path.dentry->d_inode;
468 struct pipe_inode_info *pipe;
471 struct iovec *iov = (struct iovec *)_iov;
475 total_len = iov_length(iov, nr_segs);
476 /* Null write succeeds. */
477 if (unlikely(total_len == 0))
482 mutex_lock(&inode->i_mutex);
483 pipe = inode->i_pipe;
485 if (!pipe->readers) {
486 send_sig(SIGPIPE, current, 0);
491 /* We try to merge small writes */
492 chars = total_len & (PAGE_SIZE-1); /* size of the last buffer */
493 if (pipe->nrbufs && chars != 0) {
494 int lastbuf = (pipe->curbuf + pipe->nrbufs - 1) &
496 struct pipe_buffer *buf = pipe->bufs + lastbuf;
497 const struct pipe_buf_operations *ops = buf->ops;
498 int offset = buf->offset + buf->len;
500 if (ops->can_merge && offset + chars <= PAGE_SIZE) {
501 int error, atomic = 1;
504 error = ops->confirm(pipe, buf);
508 iov_fault_in_pages_read(iov, chars);
510 addr = ops->map(pipe, buf, atomic);
511 error = pipe_iov_copy_from_user(offset + addr, iov,
513 ops->unmap(pipe, buf, addr);
534 if (!pipe->readers) {
535 send_sig(SIGPIPE, current, 0);
541 if (bufs < pipe->buffers) {
542 int newbuf = (pipe->curbuf + bufs) & (pipe->buffers-1);
543 struct pipe_buffer *buf = pipe->bufs + newbuf;
544 struct page *page = pipe->tmp_page;
546 int error, atomic = 1;
549 page = alloc_page(GFP_HIGHUSER);
550 if (unlikely(!page)) {
551 ret = ret ? : -ENOMEM;
554 pipe->tmp_page = page;
556 /* Always wake up, even if the copy fails. Otherwise
557 * we lock up (O_NONBLOCK-)readers that sleep due to
559 * FIXME! Is this really true?
563 if (chars > total_len)
566 iov_fault_in_pages_read(iov, chars);
569 src = kmap_atomic(page);
573 error = pipe_iov_copy_from_user(src, iov, chars,
580 if (unlikely(error)) {
591 /* Insert it into the buffer array */
593 buf->ops = &anon_pipe_buf_ops;
596 pipe->nrbufs = ++bufs;
597 pipe->tmp_page = NULL;
603 if (bufs < pipe->buffers)
605 if (filp->f_flags & O_NONBLOCK) {
610 if (signal_pending(current)) {
616 wake_up_interruptible_sync_poll(&pipe->wait, POLLIN | POLLRDNORM);
617 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
620 pipe->waiting_writers++;
622 pipe->waiting_writers--;
625 mutex_unlock(&inode->i_mutex);
627 wake_up_interruptible_sync_poll(&pipe->wait, POLLIN | POLLRDNORM);
628 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
631 file_update_time(filp);
636 bad_pipe_r(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
642 bad_pipe_w(struct file *filp, const char __user *buf, size_t count,
648 static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
650 struct inode *inode = filp->f_path.dentry->d_inode;
651 struct pipe_inode_info *pipe;
652 int count, buf, nrbufs;
656 mutex_lock(&inode->i_mutex);
657 pipe = inode->i_pipe;
660 nrbufs = pipe->nrbufs;
661 while (--nrbufs >= 0) {
662 count += pipe->bufs[buf].len;
663 buf = (buf+1) & (pipe->buffers - 1);
665 mutex_unlock(&inode->i_mutex);
667 return put_user(count, (int __user *)arg);
673 /* No kernel lock held - fine */
675 pipe_poll(struct file *filp, poll_table *wait)
678 struct inode *inode = filp->f_path.dentry->d_inode;
679 struct pipe_inode_info *pipe = inode->i_pipe;
682 poll_wait(filp, &pipe->wait, wait);
684 /* Reading only -- no need for acquiring the semaphore. */
685 nrbufs = pipe->nrbufs;
687 if (filp->f_mode & FMODE_READ) {
688 mask = (nrbufs > 0) ? POLLIN | POLLRDNORM : 0;
689 if (!pipe->writers && filp->f_version != pipe->w_counter)
693 if (filp->f_mode & FMODE_WRITE) {
694 mask |= (nrbufs < pipe->buffers) ? POLLOUT | POLLWRNORM : 0;
696 * Most Unices do not set POLLERR for FIFOs but on Linux they
697 * behave exactly like pipes for poll().
707 pipe_release(struct inode *inode, int decr, int decw)
709 struct pipe_inode_info *pipe;
711 mutex_lock(&inode->i_mutex);
712 pipe = inode->i_pipe;
713 pipe->readers -= decr;
714 pipe->writers -= decw;
716 if (!pipe->readers && !pipe->writers) {
717 free_pipe_info(inode);
719 wake_up_interruptible_sync_poll(&pipe->wait, POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM | POLLERR | POLLHUP);
720 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
721 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
723 mutex_unlock(&inode->i_mutex);
729 pipe_read_fasync(int fd, struct file *filp, int on)
731 struct inode *inode = filp->f_path.dentry->d_inode;
734 mutex_lock(&inode->i_mutex);
735 retval = fasync_helper(fd, filp, on, &inode->i_pipe->fasync_readers);
736 mutex_unlock(&inode->i_mutex);
743 pipe_write_fasync(int fd, struct file *filp, int on)
745 struct inode *inode = filp->f_path.dentry->d_inode;
748 mutex_lock(&inode->i_mutex);
749 retval = fasync_helper(fd, filp, on, &inode->i_pipe->fasync_writers);
750 mutex_unlock(&inode->i_mutex);
757 pipe_rdwr_fasync(int fd, struct file *filp, int on)
759 struct inode *inode = filp->f_path.dentry->d_inode;
760 struct pipe_inode_info *pipe = inode->i_pipe;
763 mutex_lock(&inode->i_mutex);
764 retval = fasync_helper(fd, filp, on, &pipe->fasync_readers);
766 retval = fasync_helper(fd, filp, on, &pipe->fasync_writers);
767 if (retval < 0) /* this can happen only if on == T */
768 fasync_helper(-1, filp, 0, &pipe->fasync_readers);
770 mutex_unlock(&inode->i_mutex);
776 pipe_read_release(struct inode *inode, struct file *filp)
778 return pipe_release(inode, 1, 0);
782 pipe_write_release(struct inode *inode, struct file *filp)
784 return pipe_release(inode, 0, 1);
788 pipe_rdwr_release(struct inode *inode, struct file *filp)
792 decr = (filp->f_mode & FMODE_READ) != 0;
793 decw = (filp->f_mode & FMODE_WRITE) != 0;
794 return pipe_release(inode, decr, decw);
798 pipe_read_open(struct inode *inode, struct file *filp)
802 mutex_lock(&inode->i_mutex);
806 inode->i_pipe->readers++;
809 mutex_unlock(&inode->i_mutex);
815 pipe_write_open(struct inode *inode, struct file *filp)
819 mutex_lock(&inode->i_mutex);
823 inode->i_pipe->writers++;
826 mutex_unlock(&inode->i_mutex);
832 pipe_rdwr_open(struct inode *inode, struct file *filp)
836 mutex_lock(&inode->i_mutex);
840 if (filp->f_mode & FMODE_READ)
841 inode->i_pipe->readers++;
842 if (filp->f_mode & FMODE_WRITE)
843 inode->i_pipe->writers++;
846 mutex_unlock(&inode->i_mutex);
852 * The file_operations structs are not static because they
853 * are also used in linux/fs/fifo.c to do operations on FIFOs.
855 * Pipes reuse fifos' file_operations structs.
857 const struct file_operations read_pipefifo_fops = {
859 .read = do_sync_read,
860 .aio_read = pipe_read,
863 .unlocked_ioctl = pipe_ioctl,
864 .open = pipe_read_open,
865 .release = pipe_read_release,
866 .fasync = pipe_read_fasync,
869 const struct file_operations write_pipefifo_fops = {
872 .write = do_sync_write,
873 .aio_write = pipe_write,
875 .unlocked_ioctl = pipe_ioctl,
876 .open = pipe_write_open,
877 .release = pipe_write_release,
878 .fasync = pipe_write_fasync,
881 const struct file_operations rdwr_pipefifo_fops = {
883 .read = do_sync_read,
884 .aio_read = pipe_read,
885 .write = do_sync_write,
886 .aio_write = pipe_write,
888 .unlocked_ioctl = pipe_ioctl,
889 .open = pipe_rdwr_open,
890 .release = pipe_rdwr_release,
891 .fasync = pipe_rdwr_fasync,
894 struct pipe_inode_info * alloc_pipe_info(struct inode *inode)
896 struct pipe_inode_info *pipe;
898 pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL);
900 pipe->bufs = kzalloc(sizeof(struct pipe_buffer) * PIPE_DEF_BUFFERS, GFP_KERNEL);
902 init_waitqueue_head(&pipe->wait);
903 pipe->r_counter = pipe->w_counter = 1;
905 pipe->buffers = PIPE_DEF_BUFFERS;
914 void __free_pipe_info(struct pipe_inode_info *pipe)
918 for (i = 0; i < pipe->buffers; i++) {
919 struct pipe_buffer *buf = pipe->bufs + i;
921 buf->ops->release(pipe, buf);
924 __free_page(pipe->tmp_page);
929 void free_pipe_info(struct inode *inode)
931 __free_pipe_info(inode->i_pipe);
932 inode->i_pipe = NULL;
935 static struct vfsmount *pipe_mnt __read_mostly;
938 * pipefs_dname() is called from d_path().
940 static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen)
942 return dynamic_dname(dentry, buffer, buflen, "pipe:[%lu]",
943 dentry->d_inode->i_ino);
946 static const struct dentry_operations pipefs_dentry_operations = {
947 .d_dname = pipefs_dname,
950 static struct inode * get_pipe_inode(void)
952 struct inode *inode = new_inode_pseudo(pipe_mnt->mnt_sb);
953 struct pipe_inode_info *pipe;
958 inode->i_ino = get_next_ino();
960 pipe = alloc_pipe_info(inode);
963 inode->i_pipe = pipe;
965 pipe->readers = pipe->writers = 1;
966 inode->i_fop = &rdwr_pipefifo_fops;
969 * Mark the inode dirty from the very beginning,
970 * that way it will never be moved to the dirty
971 * list because "mark_inode_dirty()" will think
972 * that it already _is_ on the dirty list.
974 inode->i_state = I_DIRTY;
975 inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR;
976 inode->i_uid = current_fsuid();
977 inode->i_gid = current_fsgid();
978 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
989 struct file *create_write_pipe(int flags)
995 struct qstr name = { .name = "" };
998 inode = get_pipe_inode();
1003 path.dentry = d_alloc_pseudo(pipe_mnt->mnt_sb, &name);
1006 path.mnt = mntget(pipe_mnt);
1008 d_instantiate(path.dentry, inode);
1011 f = alloc_file(&path, FMODE_WRITE, &write_pipefifo_fops);
1014 f->f_mapping = inode->i_mapping;
1016 f->f_flags = O_WRONLY | (flags & O_NONBLOCK);
1022 free_pipe_info(inode);
1024 return ERR_PTR(err);
1027 free_pipe_info(inode);
1030 return ERR_PTR(err);
1033 void free_write_pipe(struct file *f)
1035 free_pipe_info(f->f_dentry->d_inode);
1036 path_put(&f->f_path);
1040 struct file *create_read_pipe(struct file *wrf, int flags)
1042 /* Grab pipe from the writer */
1043 struct file *f = alloc_file(&wrf->f_path, FMODE_READ,
1044 &read_pipefifo_fops);
1046 return ERR_PTR(-ENFILE);
1048 path_get(&wrf->f_path);
1049 f->f_flags = O_RDONLY | (flags & O_NONBLOCK);
1054 int do_pipe_flags(int *fd, int flags)
1056 struct file *fw, *fr;
1060 if (flags & ~(O_CLOEXEC | O_NONBLOCK))
1063 fw = create_write_pipe(flags);
1066 fr = create_read_pipe(fw, flags);
1067 error = PTR_ERR(fr);
1069 goto err_write_pipe;
1071 error = get_unused_fd_flags(flags);
1076 error = get_unused_fd_flags(flags);
1081 audit_fd_pair(fdr, fdw);
1082 fd_install(fdr, fr);
1083 fd_install(fdw, fw);
1092 path_put(&fr->f_path);
1095 free_write_pipe(fw);
1100 * sys_pipe() is the normal C calling standard for creating
1101 * a pipe. It's not the way Unix traditionally does this, though.
1103 SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags)
1108 error = do_pipe_flags(fd, flags);
1110 if (copy_to_user(fildes, fd, sizeof(fd))) {
1119 SYSCALL_DEFINE1(pipe, int __user *, fildes)
1121 return sys_pipe2(fildes, 0);
1125 * Allocate a new array of pipe buffers and copy the info over. Returns the
1126 * pipe size if successful, or return -ERROR on error.
1128 static long pipe_set_size(struct pipe_inode_info *pipe, unsigned long nr_pages)
1130 struct pipe_buffer *bufs;
1133 * We can shrink the pipe, if arg >= pipe->nrbufs. Since we don't
1134 * expect a lot of shrink+grow operations, just free and allocate
1135 * again like we would do for growing. If the pipe currently
1136 * contains more buffers than arg, then return busy.
1138 if (nr_pages < pipe->nrbufs)
1141 bufs = kcalloc(nr_pages, sizeof(*bufs), GFP_KERNEL | __GFP_NOWARN);
1142 if (unlikely(!bufs))
1146 * The pipe array wraps around, so just start the new one at zero
1147 * and adjust the indexes.
1153 tail = pipe->curbuf + pipe->nrbufs;
1154 if (tail < pipe->buffers)
1157 tail &= (pipe->buffers - 1);
1159 head = pipe->nrbufs - tail;
1161 memcpy(bufs, pipe->bufs + pipe->curbuf, head * sizeof(struct pipe_buffer));
1163 memcpy(bufs + head, pipe->bufs, tail * sizeof(struct pipe_buffer));
1169 pipe->buffers = nr_pages;
1170 return nr_pages * PAGE_SIZE;
1174 * Currently we rely on the pipe array holding a power-of-2 number
1177 static inline unsigned int round_pipe_size(unsigned int size)
1179 unsigned long nr_pages;
1181 nr_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1182 return roundup_pow_of_two(nr_pages) << PAGE_SHIFT;
1186 * This should work even if CONFIG_PROC_FS isn't set, as proc_dointvec_minmax
1187 * will return an error.
1189 int pipe_proc_fn(struct ctl_table *table, int write, void __user *buf,
1190 size_t *lenp, loff_t *ppos)
1194 ret = proc_dointvec_minmax(table, write, buf, lenp, ppos);
1195 if (ret < 0 || !write)
1198 pipe_max_size = round_pipe_size(pipe_max_size);
1203 * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1204 * location, so checking ->i_pipe is not enough to verify that this is a
1207 struct pipe_inode_info *get_pipe_info(struct file *file)
1209 struct inode *i = file->f_path.dentry->d_inode;
1211 return S_ISFIFO(i->i_mode) ? i->i_pipe : NULL;
1214 long pipe_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1216 struct pipe_inode_info *pipe;
1219 pipe = get_pipe_info(file);
1223 mutex_lock(&pipe->inode->i_mutex);
1226 case F_SETPIPE_SZ: {
1227 unsigned int size, nr_pages;
1229 size = round_pipe_size(arg);
1230 nr_pages = size >> PAGE_SHIFT;
1236 if (!capable(CAP_SYS_RESOURCE) && size > pipe_max_size) {
1240 ret = pipe_set_size(pipe, nr_pages);
1244 ret = pipe->buffers * PAGE_SIZE;
1252 mutex_unlock(&pipe->inode->i_mutex);
1256 static const struct super_operations pipefs_ops = {
1257 .destroy_inode = free_inode_nonrcu,
1258 .statfs = simple_statfs,
1262 * pipefs should _never_ be mounted by userland - too much of security hassle,
1263 * no real gain from having the whole whorehouse mounted. So we don't need
1264 * any operations on the root directory. However, we need a non-trivial
1265 * d_name - pipe: will go nicely and kill the special-casing in procfs.
1267 static struct dentry *pipefs_mount(struct file_system_type *fs_type,
1268 int flags, const char *dev_name, void *data)
1270 return mount_pseudo(fs_type, "pipe:", &pipefs_ops,
1271 &pipefs_dentry_operations, PIPEFS_MAGIC);
1274 static struct file_system_type pipe_fs_type = {
1276 .mount = pipefs_mount,
1277 .kill_sb = kill_anon_super,
1280 static int __init init_pipe_fs(void)
1282 int err = register_filesystem(&pipe_fs_type);
1285 pipe_mnt = kern_mount(&pipe_fs_type);
1286 if (IS_ERR(pipe_mnt)) {
1287 err = PTR_ERR(pipe_mnt);
1288 unregister_filesystem(&pipe_fs_type);
1294 fs_initcall(init_pipe_fs);