2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
10 #include "dm-uevent.h"
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/sched/signal.h>
16 #include <linux/blkpg.h>
17 #include <linux/bio.h>
18 #include <linux/mempool.h>
19 #include <linux/dax.h>
20 #include <linux/slab.h>
21 #include <linux/idr.h>
22 #include <linux/uio.h>
23 #include <linux/hdreg.h>
24 #include <linux/delay.h>
25 #include <linux/wait.h>
27 #include <linux/refcount.h>
29 #define DM_MSG_PREFIX "core"
32 * Cookies are numeric values sent with CHANGE and REMOVE
33 * uevents while resuming, removing or renaming the device.
35 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
36 #define DM_COOKIE_LENGTH 24
38 static const char *_name = DM_NAME;
40 static unsigned int major = 0;
41 static unsigned int _major = 0;
43 static DEFINE_IDR(_minor_idr);
45 static DEFINE_SPINLOCK(_minor_lock);
47 static void do_deferred_remove(struct work_struct *w);
49 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
51 static struct workqueue_struct *deferred_remove_workqueue;
53 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
54 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
56 void dm_issue_global_event(void)
58 atomic_inc(&dm_global_event_nr);
59 wake_up(&dm_global_eventq);
63 * One of these is allocated (on-stack) per original bio.
70 unsigned sector_count;
74 * One of these is allocated per clone bio.
76 #define DM_TIO_MAGIC 7282014
81 unsigned target_bio_nr;
88 * One of these is allocated per original bio.
89 * It contains the first clone used for that original.
91 #define DM_IO_MAGIC 5191977
94 struct mapped_device *md;
98 unsigned long start_time;
99 spinlock_t endio_lock;
100 struct dm_stats_aux stats_aux;
101 /* last member of dm_target_io is 'struct bio' */
102 struct dm_target_io tio;
105 void *dm_per_bio_data(struct bio *bio, size_t data_size)
107 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
108 if (!tio->inside_dm_io)
109 return (char *)bio - offsetof(struct dm_target_io, clone) - data_size;
110 return (char *)bio - offsetof(struct dm_target_io, clone) - offsetof(struct dm_io, tio) - data_size;
112 EXPORT_SYMBOL_GPL(dm_per_bio_data);
114 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
116 struct dm_io *io = (struct dm_io *)((char *)data + data_size);
117 if (io->magic == DM_IO_MAGIC)
118 return (struct bio *)((char *)io + offsetof(struct dm_io, tio) + offsetof(struct dm_target_io, clone));
119 BUG_ON(io->magic != DM_TIO_MAGIC);
120 return (struct bio *)((char *)io + offsetof(struct dm_target_io, clone));
122 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
124 unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
126 return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
128 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
130 #define MINOR_ALLOCED ((void *)-1)
133 * Bits for the md->flags field.
135 #define DMF_BLOCK_IO_FOR_SUSPEND 0
136 #define DMF_SUSPENDED 1
138 #define DMF_FREEING 3
139 #define DMF_DELETING 4
140 #define DMF_NOFLUSH_SUSPENDING 5
141 #define DMF_DEFERRED_REMOVE 6
142 #define DMF_SUSPENDED_INTERNALLY 7
144 #define DM_NUMA_NODE NUMA_NO_NODE
145 static int dm_numa_node = DM_NUMA_NODE;
148 * For mempools pre-allocation at the table loading time.
150 struct dm_md_mempools {
152 struct bio_set *io_bs;
155 struct table_device {
156 struct list_head list;
158 struct dm_dev dm_dev;
161 static struct kmem_cache *_rq_tio_cache;
162 static struct kmem_cache *_rq_cache;
165 * Bio-based DM's mempools' reserved IOs set by the user.
167 #define RESERVED_BIO_BASED_IOS 16
168 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
170 static int __dm_get_module_param_int(int *module_param, int min, int max)
172 int param = READ_ONCE(*module_param);
173 int modified_param = 0;
174 bool modified = true;
177 modified_param = min;
178 else if (param > max)
179 modified_param = max;
184 (void)cmpxchg(module_param, param, modified_param);
185 param = modified_param;
191 unsigned __dm_get_module_param(unsigned *module_param,
192 unsigned def, unsigned max)
194 unsigned param = READ_ONCE(*module_param);
195 unsigned modified_param = 0;
198 modified_param = def;
199 else if (param > max)
200 modified_param = max;
202 if (modified_param) {
203 (void)cmpxchg(module_param, param, modified_param);
204 param = modified_param;
210 unsigned dm_get_reserved_bio_based_ios(void)
212 return __dm_get_module_param(&reserved_bio_based_ios,
213 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
215 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
217 static unsigned dm_get_numa_node(void)
219 return __dm_get_module_param_int(&dm_numa_node,
220 DM_NUMA_NODE, num_online_nodes() - 1);
223 static int __init local_init(void)
227 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
231 _rq_cache = kmem_cache_create("dm_old_clone_request", sizeof(struct request),
232 __alignof__(struct request), 0, NULL);
234 goto out_free_rq_tio_cache;
236 r = dm_uevent_init();
238 goto out_free_rq_cache;
240 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
241 if (!deferred_remove_workqueue) {
243 goto out_uevent_exit;
247 r = register_blkdev(_major, _name);
249 goto out_free_workqueue;
257 destroy_workqueue(deferred_remove_workqueue);
261 kmem_cache_destroy(_rq_cache);
262 out_free_rq_tio_cache:
263 kmem_cache_destroy(_rq_tio_cache);
268 static void local_exit(void)
270 flush_scheduled_work();
271 destroy_workqueue(deferred_remove_workqueue);
273 kmem_cache_destroy(_rq_cache);
274 kmem_cache_destroy(_rq_tio_cache);
275 unregister_blkdev(_major, _name);
280 DMINFO("cleaned up");
283 static int (*_inits[])(void) __initdata = {
294 static void (*_exits[])(void) = {
305 static int __init dm_init(void)
307 const int count = ARRAY_SIZE(_inits);
311 for (i = 0; i < count; i++) {
326 static void __exit dm_exit(void)
328 int i = ARRAY_SIZE(_exits);
334 * Should be empty by this point.
336 idr_destroy(&_minor_idr);
340 * Block device functions
342 int dm_deleting_md(struct mapped_device *md)
344 return test_bit(DMF_DELETING, &md->flags);
347 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
349 struct mapped_device *md;
351 spin_lock(&_minor_lock);
353 md = bdev->bd_disk->private_data;
357 if (test_bit(DMF_FREEING, &md->flags) ||
358 dm_deleting_md(md)) {
364 atomic_inc(&md->open_count);
366 spin_unlock(&_minor_lock);
368 return md ? 0 : -ENXIO;
371 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
373 struct mapped_device *md;
375 spin_lock(&_minor_lock);
377 md = disk->private_data;
381 if (atomic_dec_and_test(&md->open_count) &&
382 (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
383 queue_work(deferred_remove_workqueue, &deferred_remove_work);
387 spin_unlock(&_minor_lock);
390 int dm_open_count(struct mapped_device *md)
392 return atomic_read(&md->open_count);
396 * Guarantees nothing is using the device before it's deleted.
398 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
402 spin_lock(&_minor_lock);
404 if (dm_open_count(md)) {
407 set_bit(DMF_DEFERRED_REMOVE, &md->flags);
408 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
411 set_bit(DMF_DELETING, &md->flags);
413 spin_unlock(&_minor_lock);
418 int dm_cancel_deferred_remove(struct mapped_device *md)
422 spin_lock(&_minor_lock);
424 if (test_bit(DMF_DELETING, &md->flags))
427 clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
429 spin_unlock(&_minor_lock);
434 static void do_deferred_remove(struct work_struct *w)
436 dm_deferred_remove();
439 sector_t dm_get_size(struct mapped_device *md)
441 return get_capacity(md->disk);
444 struct request_queue *dm_get_md_queue(struct mapped_device *md)
449 struct dm_stats *dm_get_stats(struct mapped_device *md)
454 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
456 struct mapped_device *md = bdev->bd_disk->private_data;
458 return dm_get_geometry(md, geo);
461 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
462 struct block_device **bdev)
463 __acquires(md->io_barrier)
465 struct dm_target *tgt;
466 struct dm_table *map;
471 map = dm_get_live_table(md, srcu_idx);
472 if (!map || !dm_table_get_size(map))
475 /* We only support devices that have a single target */
476 if (dm_table_get_num_targets(map) != 1)
479 tgt = dm_table_get_target(map, 0);
480 if (!tgt->type->prepare_ioctl)
483 if (dm_suspended_md(md))
486 r = tgt->type->prepare_ioctl(tgt, bdev);
487 if (r == -ENOTCONN && !fatal_signal_pending(current)) {
488 dm_put_live_table(md, *srcu_idx);
496 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
497 __releases(md->io_barrier)
499 dm_put_live_table(md, srcu_idx);
502 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
503 unsigned int cmd, unsigned long arg)
505 struct mapped_device *md = bdev->bd_disk->private_data;
508 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
514 * Target determined this ioctl is being issued against a
515 * subset of the parent bdev; require extra privileges.
517 if (!capable(CAP_SYS_RAWIO)) {
519 "%s: sending ioctl %x to DM device without required privilege.",
526 r = __blkdev_driver_ioctl(bdev, mode, cmd, arg);
528 dm_unprepare_ioctl(md, srcu_idx);
532 static void start_io_acct(struct dm_io *io);
534 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
537 struct dm_target_io *tio;
540 clone = bio_alloc_bioset(GFP_NOIO, 0, md->io_bs);
544 tio = container_of(clone, struct dm_target_io, clone);
545 tio->inside_dm_io = true;
548 io = container_of(tio, struct dm_io, tio);
549 io->magic = DM_IO_MAGIC;
551 atomic_set(&io->io_count, 1);
554 spin_lock_init(&io->endio_lock);
561 static void free_io(struct mapped_device *md, struct dm_io *io)
563 bio_put(&io->tio.clone);
566 static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti,
567 unsigned target_bio_nr, gfp_t gfp_mask)
569 struct dm_target_io *tio;
571 if (!ci->io->tio.io) {
572 /* the dm_target_io embedded in ci->io is available */
575 struct bio *clone = bio_alloc_bioset(gfp_mask, 0, ci->io->md->bs);
579 tio = container_of(clone, struct dm_target_io, clone);
580 tio->inside_dm_io = false;
583 tio->magic = DM_TIO_MAGIC;
586 tio->target_bio_nr = target_bio_nr;
591 static void free_tio(struct dm_target_io *tio)
593 if (tio->inside_dm_io)
595 bio_put(&tio->clone);
598 int md_in_flight(struct mapped_device *md)
600 return atomic_read(&md->pending[READ]) +
601 atomic_read(&md->pending[WRITE]);
604 static void start_io_acct(struct dm_io *io)
606 struct mapped_device *md = io->md;
607 struct bio *bio = io->orig_bio;
608 int rw = bio_data_dir(bio);
610 io->start_time = jiffies;
612 generic_start_io_acct(md->queue, rw, bio_sectors(bio), &dm_disk(md)->part0);
614 atomic_set(&dm_disk(md)->part0.in_flight[rw],
615 atomic_inc_return(&md->pending[rw]));
617 if (unlikely(dm_stats_used(&md->stats)))
618 dm_stats_account_io(&md->stats, bio_data_dir(bio),
619 bio->bi_iter.bi_sector, bio_sectors(bio),
620 false, 0, &io->stats_aux);
623 static void end_io_acct(struct dm_io *io)
625 struct mapped_device *md = io->md;
626 struct bio *bio = io->orig_bio;
627 unsigned long duration = jiffies - io->start_time;
629 int rw = bio_data_dir(bio);
631 generic_end_io_acct(md->queue, rw, &dm_disk(md)->part0, io->start_time);
633 if (unlikely(dm_stats_used(&md->stats)))
634 dm_stats_account_io(&md->stats, bio_data_dir(bio),
635 bio->bi_iter.bi_sector, bio_sectors(bio),
636 true, duration, &io->stats_aux);
639 * After this is decremented the bio must not be touched if it is
642 pending = atomic_dec_return(&md->pending[rw]);
643 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
644 pending += atomic_read(&md->pending[rw^0x1]);
646 /* nudge anyone waiting on suspend queue */
652 * Add the bio to the list of deferred io.
654 static void queue_io(struct mapped_device *md, struct bio *bio)
658 spin_lock_irqsave(&md->deferred_lock, flags);
659 bio_list_add(&md->deferred, bio);
660 spin_unlock_irqrestore(&md->deferred_lock, flags);
661 queue_work(md->wq, &md->work);
665 * Everyone (including functions in this file), should use this
666 * function to access the md->map field, and make sure they call
667 * dm_put_live_table() when finished.
669 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
671 *srcu_idx = srcu_read_lock(&md->io_barrier);
673 return srcu_dereference(md->map, &md->io_barrier);
676 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
678 srcu_read_unlock(&md->io_barrier, srcu_idx);
681 void dm_sync_table(struct mapped_device *md)
683 synchronize_srcu(&md->io_barrier);
684 synchronize_rcu_expedited();
688 * A fast alternative to dm_get_live_table/dm_put_live_table.
689 * The caller must not block between these two functions.
691 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
694 return rcu_dereference(md->map);
697 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
702 static char *_dm_claim_ptr = "I belong to device-mapper";
705 * Open a table device so we can use it as a map destination.
707 static int open_table_device(struct table_device *td, dev_t dev,
708 struct mapped_device *md)
710 struct block_device *bdev;
714 BUG_ON(td->dm_dev.bdev);
716 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
718 return PTR_ERR(bdev);
720 r = bd_link_disk_holder(bdev, dm_disk(md));
722 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
726 td->dm_dev.bdev = bdev;
727 td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
732 * Close a table device that we've been using.
734 static void close_table_device(struct table_device *td, struct mapped_device *md)
736 if (!td->dm_dev.bdev)
739 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
740 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
741 put_dax(td->dm_dev.dax_dev);
742 td->dm_dev.bdev = NULL;
743 td->dm_dev.dax_dev = NULL;
746 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
748 struct table_device *td;
750 list_for_each_entry(td, l, list)
751 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
757 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
758 struct dm_dev **result) {
760 struct table_device *td;
762 mutex_lock(&md->table_devices_lock);
763 td = find_table_device(&md->table_devices, dev, mode);
765 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
767 mutex_unlock(&md->table_devices_lock);
771 td->dm_dev.mode = mode;
772 td->dm_dev.bdev = NULL;
774 if ((r = open_table_device(td, dev, md))) {
775 mutex_unlock(&md->table_devices_lock);
780 format_dev_t(td->dm_dev.name, dev);
782 refcount_set(&td->count, 1);
783 list_add(&td->list, &md->table_devices);
785 refcount_inc(&td->count);
787 mutex_unlock(&md->table_devices_lock);
789 *result = &td->dm_dev;
792 EXPORT_SYMBOL_GPL(dm_get_table_device);
794 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
796 struct table_device *td = container_of(d, struct table_device, dm_dev);
798 mutex_lock(&md->table_devices_lock);
799 if (refcount_dec_and_test(&td->count)) {
800 close_table_device(td, md);
804 mutex_unlock(&md->table_devices_lock);
806 EXPORT_SYMBOL(dm_put_table_device);
808 static void free_table_devices(struct list_head *devices)
810 struct list_head *tmp, *next;
812 list_for_each_safe(tmp, next, devices) {
813 struct table_device *td = list_entry(tmp, struct table_device, list);
815 DMWARN("dm_destroy: %s still exists with %d references",
816 td->dm_dev.name, refcount_read(&td->count));
822 * Get the geometry associated with a dm device
824 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
832 * Set the geometry of a device.
834 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
836 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
838 if (geo->start > sz) {
839 DMWARN("Start sector is beyond the geometry limits.");
848 static int __noflush_suspending(struct mapped_device *md)
850 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
854 * Decrements the number of outstanding ios that a bio has been
855 * cloned into, completing the original io if necc.
857 static void dec_pending(struct dm_io *io, blk_status_t error)
860 blk_status_t io_error;
862 struct mapped_device *md = io->md;
864 /* Push-back supersedes any I/O errors */
865 if (unlikely(error)) {
866 spin_lock_irqsave(&io->endio_lock, flags);
867 if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md)))
869 spin_unlock_irqrestore(&io->endio_lock, flags);
872 if (atomic_dec_and_test(&io->io_count)) {
873 if (io->status == BLK_STS_DM_REQUEUE) {
875 * Target requested pushing back the I/O.
877 spin_lock_irqsave(&md->deferred_lock, flags);
878 if (__noflush_suspending(md))
879 /* NOTE early return due to BLK_STS_DM_REQUEUE below */
880 bio_list_add_head(&md->deferred, io->orig_bio);
882 /* noflush suspend was interrupted. */
883 io->status = BLK_STS_IOERR;
884 spin_unlock_irqrestore(&md->deferred_lock, flags);
887 io_error = io->status;
892 if (io_error == BLK_STS_DM_REQUEUE)
895 if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
897 * Preflush done for flush with data, reissue
898 * without REQ_PREFLUSH.
900 bio->bi_opf &= ~REQ_PREFLUSH;
903 /* done with normal IO or empty flush */
905 bio->bi_status = io_error;
911 void disable_write_same(struct mapped_device *md)
913 struct queue_limits *limits = dm_get_queue_limits(md);
915 /* device doesn't really support WRITE SAME, disable it */
916 limits->max_write_same_sectors = 0;
919 void disable_write_zeroes(struct mapped_device *md)
921 struct queue_limits *limits = dm_get_queue_limits(md);
923 /* device doesn't really support WRITE ZEROES, disable it */
924 limits->max_write_zeroes_sectors = 0;
927 static void clone_endio(struct bio *bio)
929 blk_status_t error = bio->bi_status;
930 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
931 struct dm_io *io = tio->io;
932 struct mapped_device *md = tio->io->md;
933 dm_endio_fn endio = tio->ti->type->end_io;
935 if (unlikely(error == BLK_STS_TARGET) && md->type != DM_TYPE_NVME_BIO_BASED) {
936 if (bio_op(bio) == REQ_OP_WRITE_SAME &&
937 !bio->bi_disk->queue->limits.max_write_same_sectors)
938 disable_write_same(md);
939 if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
940 !bio->bi_disk->queue->limits.max_write_zeroes_sectors)
941 disable_write_zeroes(md);
945 int r = endio(tio->ti, bio, &error);
947 case DM_ENDIO_REQUEUE:
948 error = BLK_STS_DM_REQUEUE;
952 case DM_ENDIO_INCOMPLETE:
953 /* The target will handle the io */
956 DMWARN("unimplemented target endio return value: %d", r);
962 dec_pending(io, error);
966 * Return maximum size of I/O possible at the supplied sector up to the current
969 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
971 sector_t target_offset = dm_target_offset(ti, sector);
973 return ti->len - target_offset;
976 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
978 sector_t len = max_io_len_target_boundary(sector, ti);
979 sector_t offset, max_len;
982 * Does the target need to split even further?
984 if (ti->max_io_len) {
985 offset = dm_target_offset(ti, sector);
986 if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
987 max_len = sector_div(offset, ti->max_io_len);
989 max_len = offset & (ti->max_io_len - 1);
990 max_len = ti->max_io_len - max_len;
999 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1001 if (len > UINT_MAX) {
1002 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1003 (unsigned long long)len, UINT_MAX);
1004 ti->error = "Maximum size of target IO is too large";
1009 * BIO based queue uses its own splitting. When multipage bvecs
1010 * is switched on, size of the incoming bio may be too big to
1011 * be handled in some targets, such as crypt.
1013 * When these targets are ready for the big bio, we can remove
1016 ti->max_io_len = min_t(uint32_t, len, BIO_MAX_PAGES * PAGE_SIZE);
1020 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1022 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1023 sector_t sector, int *srcu_idx)
1024 __acquires(md->io_barrier)
1026 struct dm_table *map;
1027 struct dm_target *ti;
1029 map = dm_get_live_table(md, srcu_idx);
1033 ti = dm_table_find_target(map, sector);
1034 if (!dm_target_is_valid(ti))
1040 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1041 long nr_pages, void **kaddr, pfn_t *pfn)
1043 struct mapped_device *md = dax_get_private(dax_dev);
1044 sector_t sector = pgoff * PAGE_SECTORS;
1045 struct dm_target *ti;
1046 long len, ret = -EIO;
1049 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1053 if (!ti->type->direct_access)
1055 len = max_io_len(sector, ti) / PAGE_SECTORS;
1058 nr_pages = min(len, nr_pages);
1059 if (ti->type->direct_access)
1060 ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
1063 dm_put_live_table(md, srcu_idx);
1068 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1069 void *addr, size_t bytes, struct iov_iter *i)
1071 struct mapped_device *md = dax_get_private(dax_dev);
1072 sector_t sector = pgoff * PAGE_SECTORS;
1073 struct dm_target *ti;
1077 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1081 if (!ti->type->dax_copy_from_iter) {
1082 ret = copy_from_iter(addr, bytes, i);
1085 ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i);
1087 dm_put_live_table(md, srcu_idx);
1093 * A target may call dm_accept_partial_bio only from the map routine. It is
1094 * allowed for all bio types except REQ_PREFLUSH and REQ_OP_ZONE_RESET.
1096 * dm_accept_partial_bio informs the dm that the target only wants to process
1097 * additional n_sectors sectors of the bio and the rest of the data should be
1098 * sent in a next bio.
1100 * A diagram that explains the arithmetics:
1101 * +--------------------+---------------+-------+
1103 * +--------------------+---------------+-------+
1105 * <-------------- *tio->len_ptr --------------->
1106 * <------- bi_size ------->
1109 * Region 1 was already iterated over with bio_advance or similar function.
1110 * (it may be empty if the target doesn't use bio_advance)
1111 * Region 2 is the remaining bio size that the target wants to process.
1112 * (it may be empty if region 1 is non-empty, although there is no reason
1114 * The target requires that region 3 is to be sent in the next bio.
1116 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1117 * the partially processed part (the sum of regions 1+2) must be the same for all
1118 * copies of the bio.
1120 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1122 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1123 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1124 BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1125 BUG_ON(bi_size > *tio->len_ptr);
1126 BUG_ON(n_sectors > bi_size);
1127 *tio->len_ptr -= bi_size - n_sectors;
1128 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1130 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1133 * The zone descriptors obtained with a zone report indicate
1134 * zone positions within the target device. The zone descriptors
1135 * must be remapped to match their position within the dm device.
1136 * A target may call dm_remap_zone_report after completion of a
1137 * REQ_OP_ZONE_REPORT bio to remap the zone descriptors obtained
1138 * from the target device mapping to the dm device.
1140 void dm_remap_zone_report(struct dm_target *ti, struct bio *bio, sector_t start)
1142 #ifdef CONFIG_BLK_DEV_ZONED
1143 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1144 struct bio *report_bio = tio->io->orig_bio;
1145 struct blk_zone_report_hdr *hdr = NULL;
1146 struct blk_zone *zone;
1147 unsigned int nr_rep = 0;
1149 struct bio_vec bvec;
1150 struct bvec_iter iter;
1157 * Remap the start sector of the reported zones. For sequential zones,
1158 * also remap the write pointer position.
1160 bio_for_each_segment(bvec, report_bio, iter) {
1161 addr = kmap_atomic(bvec.bv_page);
1163 /* Remember the report header in the first page */
1166 ofst = sizeof(struct blk_zone_report_hdr);
1170 /* Set zones start sector */
1171 while (hdr->nr_zones && ofst < bvec.bv_len) {
1173 if (zone->start >= start + ti->len) {
1177 zone->start = zone->start + ti->begin - start;
1178 if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL) {
1179 if (zone->cond == BLK_ZONE_COND_FULL)
1180 zone->wp = zone->start + zone->len;
1181 else if (zone->cond == BLK_ZONE_COND_EMPTY)
1182 zone->wp = zone->start;
1184 zone->wp = zone->wp + ti->begin - start;
1186 ofst += sizeof(struct blk_zone);
1192 kunmap_atomic(addr);
1199 hdr->nr_zones = nr_rep;
1203 bio_advance(report_bio, report_bio->bi_iter.bi_size);
1205 #else /* !CONFIG_BLK_DEV_ZONED */
1206 bio->bi_status = BLK_STS_NOTSUPP;
1209 EXPORT_SYMBOL_GPL(dm_remap_zone_report);
1211 static blk_qc_t __map_bio(struct dm_target_io *tio)
1215 struct bio *clone = &tio->clone;
1216 struct dm_io *io = tio->io;
1217 struct mapped_device *md = io->md;
1218 struct dm_target *ti = tio->ti;
1219 blk_qc_t ret = BLK_QC_T_NONE;
1221 clone->bi_end_io = clone_endio;
1224 * Map the clone. If r == 0 we don't need to do
1225 * anything, the target has assumed ownership of
1228 atomic_inc(&io->io_count);
1229 sector = clone->bi_iter.bi_sector;
1231 r = ti->type->map(ti, clone);
1233 case DM_MAPIO_SUBMITTED:
1235 case DM_MAPIO_REMAPPED:
1236 /* the bio has been remapped so dispatch it */
1237 trace_block_bio_remap(clone->bi_disk->queue, clone,
1238 bio_dev(io->orig_bio), sector);
1239 if (md->type == DM_TYPE_NVME_BIO_BASED)
1240 ret = direct_make_request(clone);
1242 ret = generic_make_request(clone);
1246 dec_pending(io, BLK_STS_IOERR);
1248 case DM_MAPIO_REQUEUE:
1250 dec_pending(io, BLK_STS_DM_REQUEUE);
1253 DMWARN("unimplemented target map return value: %d", r);
1260 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1262 bio->bi_iter.bi_sector = sector;
1263 bio->bi_iter.bi_size = to_bytes(len);
1267 * Creates a bio that consists of range of complete bvecs.
1269 static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1270 sector_t sector, unsigned len)
1272 struct bio *clone = &tio->clone;
1274 __bio_clone_fast(clone, bio);
1276 if (unlikely(bio_integrity(bio) != NULL)) {
1279 if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1280 !dm_target_passes_integrity(tio->ti->type))) {
1281 DMWARN("%s: the target %s doesn't support integrity data.",
1282 dm_device_name(tio->io->md),
1283 tio->ti->type->name);
1287 r = bio_integrity_clone(clone, bio, GFP_NOIO);
1292 if (bio_op(bio) != REQ_OP_ZONE_REPORT)
1293 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1294 clone->bi_iter.bi_size = to_bytes(len);
1296 if (unlikely(bio_integrity(bio) != NULL))
1297 bio_integrity_trim(clone);
1302 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1303 struct dm_target *ti, unsigned num_bios)
1305 struct dm_target_io *tio;
1311 if (num_bios == 1) {
1312 tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1313 bio_list_add(blist, &tio->clone);
1317 for (try = 0; try < 2; try++) {
1322 mutex_lock(&ci->io->md->table_devices_lock);
1323 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1324 tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT);
1328 bio_list_add(blist, &tio->clone);
1331 mutex_unlock(&ci->io->md->table_devices_lock);
1332 if (bio_nr == num_bios)
1335 while ((bio = bio_list_pop(blist))) {
1336 tio = container_of(bio, struct dm_target_io, clone);
1342 static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci,
1343 struct dm_target_io *tio, unsigned *len)
1345 struct bio *clone = &tio->clone;
1349 __bio_clone_fast(clone, ci->bio);
1351 bio_setup_sector(clone, ci->sector, *len);
1353 return __map_bio(tio);
1356 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1357 unsigned num_bios, unsigned *len)
1359 struct bio_list blist = BIO_EMPTY_LIST;
1361 struct dm_target_io *tio;
1363 alloc_multiple_bios(&blist, ci, ti, num_bios);
1365 while ((bio = bio_list_pop(&blist))) {
1366 tio = container_of(bio, struct dm_target_io, clone);
1367 (void) __clone_and_map_simple_bio(ci, tio, len);
1371 static int __send_empty_flush(struct clone_info *ci)
1373 unsigned target_nr = 0;
1374 struct dm_target *ti;
1376 BUG_ON(bio_has_data(ci->bio));
1377 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1378 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1383 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1384 sector_t sector, unsigned *len)
1386 struct bio *bio = ci->bio;
1387 struct dm_target_io *tio;
1390 tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1392 r = clone_bio(tio, bio, sector, *len);
1397 (void) __map_bio(tio);
1402 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1404 static unsigned get_num_discard_bios(struct dm_target *ti)
1406 return ti->num_discard_bios;
1409 static unsigned get_num_secure_erase_bios(struct dm_target *ti)
1411 return ti->num_secure_erase_bios;
1414 static unsigned get_num_write_same_bios(struct dm_target *ti)
1416 return ti->num_write_same_bios;
1419 static unsigned get_num_write_zeroes_bios(struct dm_target *ti)
1421 return ti->num_write_zeroes_bios;
1424 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1426 static bool is_split_required_for_discard(struct dm_target *ti)
1428 return ti->split_discard_bios;
1431 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1432 get_num_bios_fn get_num_bios,
1433 is_split_required_fn is_split_required)
1439 * Even though the device advertised support for this type of
1440 * request, that does not mean every target supports it, and
1441 * reconfiguration might also have changed that since the
1442 * check was performed.
1444 num_bios = get_num_bios ? get_num_bios(ti) : 0;
1448 if (is_split_required && !is_split_required(ti))
1449 len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1451 len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1453 __send_duplicate_bios(ci, ti, num_bios, &len);
1456 ci->sector_count -= len;
1461 static int __send_discard(struct clone_info *ci, struct dm_target *ti)
1463 return __send_changing_extent_only(ci, ti, get_num_discard_bios,
1464 is_split_required_for_discard);
1467 static int __send_secure_erase(struct clone_info *ci, struct dm_target *ti)
1469 return __send_changing_extent_only(ci, ti, get_num_secure_erase_bios, NULL);
1472 static int __send_write_same(struct clone_info *ci, struct dm_target *ti)
1474 return __send_changing_extent_only(ci, ti, get_num_write_same_bios, NULL);
1477 static int __send_write_zeroes(struct clone_info *ci, struct dm_target *ti)
1479 return __send_changing_extent_only(ci, ti, get_num_write_zeroes_bios, NULL);
1482 static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1485 struct bio *bio = ci->bio;
1487 if (bio_op(bio) == REQ_OP_DISCARD)
1488 *result = __send_discard(ci, ti);
1489 else if (bio_op(bio) == REQ_OP_SECURE_ERASE)
1490 *result = __send_secure_erase(ci, ti);
1491 else if (bio_op(bio) == REQ_OP_WRITE_SAME)
1492 *result = __send_write_same(ci, ti);
1493 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES)
1494 *result = __send_write_zeroes(ci, ti);
1502 * Select the correct strategy for processing a non-flush bio.
1504 static int __split_and_process_non_flush(struct clone_info *ci)
1506 struct bio *bio = ci->bio;
1507 struct dm_target *ti;
1511 ti = dm_table_find_target(ci->map, ci->sector);
1512 if (!dm_target_is_valid(ti))
1515 if (unlikely(__process_abnormal_io(ci, ti, &r)))
1518 if (bio_op(bio) == REQ_OP_ZONE_REPORT)
1519 len = ci->sector_count;
1521 len = min_t(sector_t, max_io_len(ci->sector, ti),
1524 r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1529 ci->sector_count -= len;
1534 static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1535 struct dm_table *map, struct bio *bio)
1538 ci->io = alloc_io(md, bio);
1539 ci->sector = bio->bi_iter.bi_sector;
1543 * Entry point to split a bio into clones and submit them to the targets.
1545 static blk_qc_t __split_and_process_bio(struct mapped_device *md,
1546 struct dm_table *map, struct bio *bio)
1548 struct clone_info ci;
1549 blk_qc_t ret = BLK_QC_T_NONE;
1552 if (unlikely(!map)) {
1557 init_clone_info(&ci, md, map, bio);
1559 if (bio->bi_opf & REQ_PREFLUSH) {
1560 ci.bio = &ci.io->md->flush_bio;
1561 ci.sector_count = 0;
1562 error = __send_empty_flush(&ci);
1563 /* dec_pending submits any data associated with flush */
1564 } else if (bio_op(bio) == REQ_OP_ZONE_RESET) {
1566 ci.sector_count = 0;
1567 error = __split_and_process_non_flush(&ci);
1570 ci.sector_count = bio_sectors(bio);
1571 while (ci.sector_count && !error) {
1572 error = __split_and_process_non_flush(&ci);
1573 if (current->bio_list && ci.sector_count && !error) {
1575 * Remainder must be passed to generic_make_request()
1576 * so that it gets handled *after* bios already submitted
1577 * have been completely processed.
1578 * We take a clone of the original to store in
1579 * ci.io->orig_bio to be used by end_io_acct() and
1580 * for dec_pending to use for completion handling.
1581 * As this path is not used for REQ_OP_ZONE_REPORT,
1582 * the usage of io->orig_bio in dm_remap_zone_report()
1583 * won't be affected by this reassignment.
1585 struct bio *b = bio_clone_bioset(bio, GFP_NOIO,
1586 md->queue->bio_split);
1587 ci.io->orig_bio = b;
1588 bio_advance(bio, (bio_sectors(bio) - ci.sector_count) << 9);
1590 ret = generic_make_request(bio);
1596 /* drop the extra reference count */
1597 dec_pending(ci.io, errno_to_blk_status(error));
1602 * Optimized variant of __split_and_process_bio that leverages the
1603 * fact that targets that use it do _not_ have a need to split bios.
1605 static blk_qc_t __process_bio(struct mapped_device *md,
1606 struct dm_table *map, struct bio *bio)
1608 struct clone_info ci;
1609 blk_qc_t ret = BLK_QC_T_NONE;
1612 if (unlikely(!map)) {
1617 init_clone_info(&ci, md, map, bio);
1619 if (bio->bi_opf & REQ_PREFLUSH) {
1620 ci.bio = &ci.io->md->flush_bio;
1621 ci.sector_count = 0;
1622 error = __send_empty_flush(&ci);
1623 /* dec_pending submits any data associated with flush */
1625 struct dm_target *ti = md->immutable_target;
1626 struct dm_target_io *tio;
1629 * Defend against IO still getting in during teardown
1630 * - as was seen for a time with nvme-fcloop
1632 if (unlikely(WARN_ON_ONCE(!ti || !dm_target_is_valid(ti)))) {
1638 ci.sector_count = bio_sectors(bio);
1639 if (unlikely(__process_abnormal_io(&ci, ti, &error)))
1642 tio = alloc_tio(&ci, ti, 0, GFP_NOIO);
1643 ret = __clone_and_map_simple_bio(&ci, tio, NULL);
1646 /* drop the extra reference count */
1647 dec_pending(ci.io, errno_to_blk_status(error));
1651 typedef blk_qc_t (process_bio_fn)(struct mapped_device *, struct dm_table *, struct bio *);
1653 static blk_qc_t __dm_make_request(struct request_queue *q, struct bio *bio,
1654 process_bio_fn process_bio)
1656 struct mapped_device *md = q->queuedata;
1657 blk_qc_t ret = BLK_QC_T_NONE;
1659 struct dm_table *map;
1661 map = dm_get_live_table(md, &srcu_idx);
1663 /* if we're suspended, we have to queue this io for later */
1664 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1665 dm_put_live_table(md, srcu_idx);
1667 if (!(bio->bi_opf & REQ_RAHEAD))
1674 ret = process_bio(md, map, bio);
1676 dm_put_live_table(md, srcu_idx);
1681 * The request function that remaps the bio to one target and
1682 * splits off any remainder.
1684 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio)
1686 return __dm_make_request(q, bio, __split_and_process_bio);
1689 static blk_qc_t dm_make_request_nvme(struct request_queue *q, struct bio *bio)
1691 return __dm_make_request(q, bio, __process_bio);
1694 static int dm_any_congested(void *congested_data, int bdi_bits)
1697 struct mapped_device *md = congested_data;
1698 struct dm_table *map;
1700 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1701 if (dm_request_based(md)) {
1703 * With request-based DM we only need to check the
1704 * top-level queue for congestion.
1706 r = md->queue->backing_dev_info->wb.state & bdi_bits;
1708 map = dm_get_live_table_fast(md);
1710 r = dm_table_any_congested(map, bdi_bits);
1711 dm_put_live_table_fast(md);
1718 /*-----------------------------------------------------------------
1719 * An IDR is used to keep track of allocated minor numbers.
1720 *---------------------------------------------------------------*/
1721 static void free_minor(int minor)
1723 spin_lock(&_minor_lock);
1724 idr_remove(&_minor_idr, minor);
1725 spin_unlock(&_minor_lock);
1729 * See if the device with a specific minor # is free.
1731 static int specific_minor(int minor)
1735 if (minor >= (1 << MINORBITS))
1738 idr_preload(GFP_KERNEL);
1739 spin_lock(&_minor_lock);
1741 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1743 spin_unlock(&_minor_lock);
1746 return r == -ENOSPC ? -EBUSY : r;
1750 static int next_free_minor(int *minor)
1754 idr_preload(GFP_KERNEL);
1755 spin_lock(&_minor_lock);
1757 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1759 spin_unlock(&_minor_lock);
1767 static const struct block_device_operations dm_blk_dops;
1768 static const struct dax_operations dm_dax_ops;
1770 static void dm_wq_work(struct work_struct *work);
1772 static void dm_init_normal_md_queue(struct mapped_device *md)
1774 md->use_blk_mq = false;
1777 * Initialize aspects of queue that aren't relevant for blk-mq
1779 md->queue->backing_dev_info->congested_fn = dm_any_congested;
1782 static void cleanup_mapped_device(struct mapped_device *md)
1785 destroy_workqueue(md->wq);
1786 if (md->kworker_task)
1787 kthread_stop(md->kworker_task);
1789 bioset_free(md->bs);
1791 bioset_free(md->io_bs);
1794 kill_dax(md->dax_dev);
1795 put_dax(md->dax_dev);
1800 spin_lock(&_minor_lock);
1801 md->disk->private_data = NULL;
1802 spin_unlock(&_minor_lock);
1803 del_gendisk(md->disk);
1808 blk_cleanup_queue(md->queue);
1810 cleanup_srcu_struct(&md->io_barrier);
1817 mutex_destroy(&md->suspend_lock);
1818 mutex_destroy(&md->type_lock);
1819 mutex_destroy(&md->table_devices_lock);
1821 dm_mq_cleanup_mapped_device(md);
1825 * Allocate and initialise a blank device with a given minor.
1827 static struct mapped_device *alloc_dev(int minor)
1829 int r, numa_node_id = dm_get_numa_node();
1830 struct dax_device *dax_dev = NULL;
1831 struct mapped_device *md;
1834 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1836 DMWARN("unable to allocate device, out of memory.");
1840 if (!try_module_get(THIS_MODULE))
1841 goto bad_module_get;
1843 /* get a minor number for the dev */
1844 if (minor == DM_ANY_MINOR)
1845 r = next_free_minor(&minor);
1847 r = specific_minor(minor);
1851 r = init_srcu_struct(&md->io_barrier);
1853 goto bad_io_barrier;
1855 md->numa_node_id = numa_node_id;
1856 md->use_blk_mq = dm_use_blk_mq_default();
1857 md->init_tio_pdu = false;
1858 md->type = DM_TYPE_NONE;
1859 mutex_init(&md->suspend_lock);
1860 mutex_init(&md->type_lock);
1861 mutex_init(&md->table_devices_lock);
1862 spin_lock_init(&md->deferred_lock);
1863 atomic_set(&md->holders, 1);
1864 atomic_set(&md->open_count, 0);
1865 atomic_set(&md->event_nr, 0);
1866 atomic_set(&md->uevent_seq, 0);
1867 INIT_LIST_HEAD(&md->uevent_list);
1868 INIT_LIST_HEAD(&md->table_devices);
1869 spin_lock_init(&md->uevent_lock);
1871 md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id, NULL);
1874 md->queue->queuedata = md;
1875 md->queue->backing_dev_info->congested_data = md;
1877 md->disk = alloc_disk_node(1, md->numa_node_id);
1881 atomic_set(&md->pending[0], 0);
1882 atomic_set(&md->pending[1], 0);
1883 init_waitqueue_head(&md->wait);
1884 INIT_WORK(&md->work, dm_wq_work);
1885 init_waitqueue_head(&md->eventq);
1886 init_completion(&md->kobj_holder.completion);
1887 md->kworker_task = NULL;
1889 md->disk->major = _major;
1890 md->disk->first_minor = minor;
1891 md->disk->fops = &dm_blk_dops;
1892 md->disk->queue = md->queue;
1893 md->disk->private_data = md;
1894 sprintf(md->disk->disk_name, "dm-%d", minor);
1896 if (IS_ENABLED(CONFIG_DAX_DRIVER)) {
1897 dax_dev = alloc_dax(md, md->disk->disk_name, &dm_dax_ops);
1901 md->dax_dev = dax_dev;
1903 add_disk_no_queue_reg(md->disk);
1904 format_dev_t(md->name, MKDEV(_major, minor));
1906 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1910 md->bdev = bdget_disk(md->disk, 0);
1914 bio_init(&md->flush_bio, NULL, 0);
1915 bio_set_dev(&md->flush_bio, md->bdev);
1916 md->flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1918 dm_stats_init(&md->stats);
1920 /* Populate the mapping, nobody knows we exist yet */
1921 spin_lock(&_minor_lock);
1922 old_md = idr_replace(&_minor_idr, md, minor);
1923 spin_unlock(&_minor_lock);
1925 BUG_ON(old_md != MINOR_ALLOCED);
1930 cleanup_mapped_device(md);
1934 module_put(THIS_MODULE);
1940 static void unlock_fs(struct mapped_device *md);
1942 static void free_dev(struct mapped_device *md)
1944 int minor = MINOR(disk_devt(md->disk));
1948 cleanup_mapped_device(md);
1950 free_table_devices(&md->table_devices);
1951 dm_stats_cleanup(&md->stats);
1954 module_put(THIS_MODULE);
1958 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1960 struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1962 if (dm_table_bio_based(t)) {
1964 * The md may already have mempools that need changing.
1965 * If so, reload bioset because front_pad may have changed
1966 * because a different table was loaded.
1969 bioset_free(md->bs);
1973 bioset_free(md->io_bs);
1977 } else if (md->bs) {
1979 * There's no need to reload with request-based dm
1980 * because the size of front_pad doesn't change.
1981 * Note for future: If you are to reload bioset,
1982 * prep-ed requests in the queue may refer
1983 * to bio from the old bioset, so you must walk
1984 * through the queue to unprep.
1989 BUG_ON(!p || md->bs || md->io_bs);
1993 md->io_bs = p->io_bs;
1996 /* mempool bind completed, no longer need any mempools in the table */
1997 dm_table_free_md_mempools(t);
2001 * Bind a table to the device.
2003 static void event_callback(void *context)
2005 unsigned long flags;
2007 struct mapped_device *md = (struct mapped_device *) context;
2009 spin_lock_irqsave(&md->uevent_lock, flags);
2010 list_splice_init(&md->uevent_list, &uevents);
2011 spin_unlock_irqrestore(&md->uevent_lock, flags);
2013 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2015 atomic_inc(&md->event_nr);
2016 wake_up(&md->eventq);
2017 dm_issue_global_event();
2021 * Protected by md->suspend_lock obtained by dm_swap_table().
2023 static void __set_size(struct mapped_device *md, sector_t size)
2025 lockdep_assert_held(&md->suspend_lock);
2027 set_capacity(md->disk, size);
2029 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2033 * Returns old map, which caller must destroy.
2035 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2036 struct queue_limits *limits)
2038 struct dm_table *old_map;
2039 struct request_queue *q = md->queue;
2040 bool request_based = dm_table_request_based(t);
2043 lockdep_assert_held(&md->suspend_lock);
2045 size = dm_table_get_size(t);
2048 * Wipe any geometry if the size of the table changed.
2050 if (size != dm_get_size(md))
2051 memset(&md->geometry, 0, sizeof(md->geometry));
2053 __set_size(md, size);
2055 dm_table_event_callback(t, event_callback, md);
2058 * The queue hasn't been stopped yet, if the old table type wasn't
2059 * for request-based during suspension. So stop it to prevent
2060 * I/O mapping before resume.
2061 * This must be done before setting the queue restrictions,
2062 * because request-based dm may be run just after the setting.
2067 if (request_based || md->type == DM_TYPE_NVME_BIO_BASED) {
2069 * Leverage the fact that request-based DM targets and
2070 * NVMe bio based targets are immutable singletons
2071 * - used to optimize both dm_request_fn and dm_mq_queue_rq;
2072 * and __process_bio.
2074 md->immutable_target = dm_table_get_immutable_target(t);
2077 __bind_mempools(md, t);
2079 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2080 rcu_assign_pointer(md->map, (void *)t);
2081 md->immutable_target_type = dm_table_get_immutable_target_type(t);
2083 dm_table_set_restrictions(t, q, limits);
2091 * Returns unbound table for the caller to free.
2093 static struct dm_table *__unbind(struct mapped_device *md)
2095 struct dm_table *map = rcu_dereference_protected(md->map, 1);
2100 dm_table_event_callback(map, NULL, NULL);
2101 RCU_INIT_POINTER(md->map, NULL);
2108 * Constructor for a new device.
2110 int dm_create(int minor, struct mapped_device **result)
2113 struct mapped_device *md;
2115 md = alloc_dev(minor);
2119 r = dm_sysfs_init(md);
2130 * Functions to manage md->type.
2131 * All are required to hold md->type_lock.
2133 void dm_lock_md_type(struct mapped_device *md)
2135 mutex_lock(&md->type_lock);
2138 void dm_unlock_md_type(struct mapped_device *md)
2140 mutex_unlock(&md->type_lock);
2143 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2145 BUG_ON(!mutex_is_locked(&md->type_lock));
2149 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2154 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2156 return md->immutable_target_type;
2160 * The queue_limits are only valid as long as you have a reference
2163 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2165 BUG_ON(!atomic_read(&md->holders));
2166 return &md->queue->limits;
2168 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2171 * Setup the DM device's queue based on md's type
2173 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2176 struct queue_limits limits;
2177 enum dm_queue_mode type = dm_get_md_type(md);
2180 case DM_TYPE_REQUEST_BASED:
2181 dm_init_normal_md_queue(md);
2182 r = dm_old_init_request_queue(md, t);
2184 DMERR("Cannot initialize queue for request-based mapped device");
2188 case DM_TYPE_MQ_REQUEST_BASED:
2189 r = dm_mq_init_request_queue(md, t);
2191 DMERR("Cannot initialize queue for request-based dm-mq mapped device");
2195 case DM_TYPE_BIO_BASED:
2196 case DM_TYPE_DAX_BIO_BASED:
2197 dm_init_normal_md_queue(md);
2198 blk_queue_make_request(md->queue, dm_make_request);
2200 case DM_TYPE_NVME_BIO_BASED:
2201 dm_init_normal_md_queue(md);
2202 blk_queue_make_request(md->queue, dm_make_request_nvme);
2209 r = dm_calculate_queue_limits(t, &limits);
2211 DMERR("Cannot calculate initial queue limits");
2214 dm_table_set_restrictions(t, md->queue, &limits);
2215 blk_register_queue(md->disk);
2220 struct mapped_device *dm_get_md(dev_t dev)
2222 struct mapped_device *md;
2223 unsigned minor = MINOR(dev);
2225 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2228 spin_lock(&_minor_lock);
2230 md = idr_find(&_minor_idr, minor);
2231 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2232 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2238 spin_unlock(&_minor_lock);
2242 EXPORT_SYMBOL_GPL(dm_get_md);
2244 void *dm_get_mdptr(struct mapped_device *md)
2246 return md->interface_ptr;
2249 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2251 md->interface_ptr = ptr;
2254 void dm_get(struct mapped_device *md)
2256 atomic_inc(&md->holders);
2257 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2260 int dm_hold(struct mapped_device *md)
2262 spin_lock(&_minor_lock);
2263 if (test_bit(DMF_FREEING, &md->flags)) {
2264 spin_unlock(&_minor_lock);
2268 spin_unlock(&_minor_lock);
2271 EXPORT_SYMBOL_GPL(dm_hold);
2273 const char *dm_device_name(struct mapped_device *md)
2277 EXPORT_SYMBOL_GPL(dm_device_name);
2279 static void __dm_destroy(struct mapped_device *md, bool wait)
2281 struct dm_table *map;
2286 spin_lock(&_minor_lock);
2287 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2288 set_bit(DMF_FREEING, &md->flags);
2289 spin_unlock(&_minor_lock);
2291 blk_set_queue_dying(md->queue);
2293 if (dm_request_based(md) && md->kworker_task)
2294 kthread_flush_worker(&md->kworker);
2297 * Take suspend_lock so that presuspend and postsuspend methods
2298 * do not race with internal suspend.
2300 mutex_lock(&md->suspend_lock);
2301 map = dm_get_live_table(md, &srcu_idx);
2302 if (!dm_suspended_md(md)) {
2303 dm_table_presuspend_targets(map);
2304 dm_table_postsuspend_targets(map);
2306 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2307 dm_put_live_table(md, srcu_idx);
2308 mutex_unlock(&md->suspend_lock);
2311 * Rare, but there may be I/O requests still going to complete,
2312 * for example. Wait for all references to disappear.
2313 * No one should increment the reference count of the mapped_device,
2314 * after the mapped_device state becomes DMF_FREEING.
2317 while (atomic_read(&md->holders))
2319 else if (atomic_read(&md->holders))
2320 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2321 dm_device_name(md), atomic_read(&md->holders));
2324 dm_table_destroy(__unbind(md));
2328 void dm_destroy(struct mapped_device *md)
2330 __dm_destroy(md, true);
2333 void dm_destroy_immediate(struct mapped_device *md)
2335 __dm_destroy(md, false);
2338 void dm_put(struct mapped_device *md)
2340 atomic_dec(&md->holders);
2342 EXPORT_SYMBOL_GPL(dm_put);
2344 static int dm_wait_for_completion(struct mapped_device *md, long task_state)
2350 prepare_to_wait(&md->wait, &wait, task_state);
2352 if (!md_in_flight(md))
2355 if (signal_pending_state(task_state, current)) {
2362 finish_wait(&md->wait, &wait);
2368 * Process the deferred bios
2370 static void dm_wq_work(struct work_struct *work)
2372 struct mapped_device *md = container_of(work, struct mapped_device,
2376 struct dm_table *map;
2378 map = dm_get_live_table(md, &srcu_idx);
2380 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2381 spin_lock_irq(&md->deferred_lock);
2382 c = bio_list_pop(&md->deferred);
2383 spin_unlock_irq(&md->deferred_lock);
2388 if (dm_request_based(md))
2389 generic_make_request(c);
2391 __split_and_process_bio(md, map, c);
2394 dm_put_live_table(md, srcu_idx);
2397 static void dm_queue_flush(struct mapped_device *md)
2399 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2400 smp_mb__after_atomic();
2401 queue_work(md->wq, &md->work);
2405 * Swap in a new table, returning the old one for the caller to destroy.
2407 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2409 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2410 struct queue_limits limits;
2413 mutex_lock(&md->suspend_lock);
2415 /* device must be suspended */
2416 if (!dm_suspended_md(md))
2420 * If the new table has no data devices, retain the existing limits.
2421 * This helps multipath with queue_if_no_path if all paths disappear,
2422 * then new I/O is queued based on these limits, and then some paths
2425 if (dm_table_has_no_data_devices(table)) {
2426 live_map = dm_get_live_table_fast(md);
2428 limits = md->queue->limits;
2429 dm_put_live_table_fast(md);
2433 r = dm_calculate_queue_limits(table, &limits);
2440 map = __bind(md, table, &limits);
2441 dm_issue_global_event();
2444 mutex_unlock(&md->suspend_lock);
2449 * Functions to lock and unlock any filesystem running on the
2452 static int lock_fs(struct mapped_device *md)
2456 WARN_ON(md->frozen_sb);
2458 md->frozen_sb = freeze_bdev(md->bdev);
2459 if (IS_ERR(md->frozen_sb)) {
2460 r = PTR_ERR(md->frozen_sb);
2461 md->frozen_sb = NULL;
2465 set_bit(DMF_FROZEN, &md->flags);
2470 static void unlock_fs(struct mapped_device *md)
2472 if (!test_bit(DMF_FROZEN, &md->flags))
2475 thaw_bdev(md->bdev, md->frozen_sb);
2476 md->frozen_sb = NULL;
2477 clear_bit(DMF_FROZEN, &md->flags);
2481 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2482 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2483 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2485 * If __dm_suspend returns 0, the device is completely quiescent
2486 * now. There is no request-processing activity. All new requests
2487 * are being added to md->deferred list.
2489 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2490 unsigned suspend_flags, long task_state,
2491 int dmf_suspended_flag)
2493 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2494 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2497 lockdep_assert_held(&md->suspend_lock);
2500 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2501 * This flag is cleared before dm_suspend returns.
2504 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2506 pr_debug("%s: suspending with flush\n", dm_device_name(md));
2509 * This gets reverted if there's an error later and the targets
2510 * provide the .presuspend_undo hook.
2512 dm_table_presuspend_targets(map);
2515 * Flush I/O to the device.
2516 * Any I/O submitted after lock_fs() may not be flushed.
2517 * noflush takes precedence over do_lockfs.
2518 * (lock_fs() flushes I/Os and waits for them to complete.)
2520 if (!noflush && do_lockfs) {
2523 dm_table_presuspend_undo_targets(map);
2529 * Here we must make sure that no processes are submitting requests
2530 * to target drivers i.e. no one may be executing
2531 * __split_and_process_bio. This is called from dm_request and
2534 * To get all processes out of __split_and_process_bio in dm_request,
2535 * we take the write lock. To prevent any process from reentering
2536 * __split_and_process_bio from dm_request and quiesce the thread
2537 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2538 * flush_workqueue(md->wq).
2540 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2542 synchronize_srcu(&md->io_barrier);
2545 * Stop md->queue before flushing md->wq in case request-based
2546 * dm defers requests to md->wq from md->queue.
2548 if (dm_request_based(md)) {
2549 dm_stop_queue(md->queue);
2550 if (md->kworker_task)
2551 kthread_flush_worker(&md->kworker);
2554 flush_workqueue(md->wq);
2557 * At this point no more requests are entering target request routines.
2558 * We call dm_wait_for_completion to wait for all existing requests
2561 r = dm_wait_for_completion(md, task_state);
2563 set_bit(dmf_suspended_flag, &md->flags);
2566 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2568 synchronize_srcu(&md->io_barrier);
2570 /* were we interrupted ? */
2574 if (dm_request_based(md))
2575 dm_start_queue(md->queue);
2578 dm_table_presuspend_undo_targets(map);
2579 /* pushback list is already flushed, so skip flush */
2586 * We need to be able to change a mapping table under a mounted
2587 * filesystem. For example we might want to move some data in
2588 * the background. Before the table can be swapped with
2589 * dm_bind_table, dm_suspend must be called to flush any in
2590 * flight bios and ensure that any further io gets deferred.
2593 * Suspend mechanism in request-based dm.
2595 * 1. Flush all I/Os by lock_fs() if needed.
2596 * 2. Stop dispatching any I/O by stopping the request_queue.
2597 * 3. Wait for all in-flight I/Os to be completed or requeued.
2599 * To abort suspend, start the request_queue.
2601 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2603 struct dm_table *map = NULL;
2607 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2609 if (dm_suspended_md(md)) {
2614 if (dm_suspended_internally_md(md)) {
2615 /* already internally suspended, wait for internal resume */
2616 mutex_unlock(&md->suspend_lock);
2617 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2623 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2625 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2629 dm_table_postsuspend_targets(map);
2632 mutex_unlock(&md->suspend_lock);
2636 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2639 int r = dm_table_resume_targets(map);
2647 * Flushing deferred I/Os must be done after targets are resumed
2648 * so that mapping of targets can work correctly.
2649 * Request-based dm is queueing the deferred I/Os in its request_queue.
2651 if (dm_request_based(md))
2652 dm_start_queue(md->queue);
2659 int dm_resume(struct mapped_device *md)
2662 struct dm_table *map = NULL;
2666 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2668 if (!dm_suspended_md(md))
2671 if (dm_suspended_internally_md(md)) {
2672 /* already internally suspended, wait for internal resume */
2673 mutex_unlock(&md->suspend_lock);
2674 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2680 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2681 if (!map || !dm_table_get_size(map))
2684 r = __dm_resume(md, map);
2688 clear_bit(DMF_SUSPENDED, &md->flags);
2690 mutex_unlock(&md->suspend_lock);
2696 * Internal suspend/resume works like userspace-driven suspend. It waits
2697 * until all bios finish and prevents issuing new bios to the target drivers.
2698 * It may be used only from the kernel.
2701 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2703 struct dm_table *map = NULL;
2705 lockdep_assert_held(&md->suspend_lock);
2707 if (md->internal_suspend_count++)
2708 return; /* nested internal suspend */
2710 if (dm_suspended_md(md)) {
2711 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2712 return; /* nest suspend */
2715 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2718 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2719 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend
2720 * would require changing .presuspend to return an error -- avoid this
2721 * until there is a need for more elaborate variants of internal suspend.
2723 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2724 DMF_SUSPENDED_INTERNALLY);
2726 dm_table_postsuspend_targets(map);
2729 static void __dm_internal_resume(struct mapped_device *md)
2731 BUG_ON(!md->internal_suspend_count);
2733 if (--md->internal_suspend_count)
2734 return; /* resume from nested internal suspend */
2736 if (dm_suspended_md(md))
2737 goto done; /* resume from nested suspend */
2740 * NOTE: existing callers don't need to call dm_table_resume_targets
2741 * (which may fail -- so best to avoid it for now by passing NULL map)
2743 (void) __dm_resume(md, NULL);
2746 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2747 smp_mb__after_atomic();
2748 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2751 void dm_internal_suspend_noflush(struct mapped_device *md)
2753 mutex_lock(&md->suspend_lock);
2754 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2755 mutex_unlock(&md->suspend_lock);
2757 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2759 void dm_internal_resume(struct mapped_device *md)
2761 mutex_lock(&md->suspend_lock);
2762 __dm_internal_resume(md);
2763 mutex_unlock(&md->suspend_lock);
2765 EXPORT_SYMBOL_GPL(dm_internal_resume);
2768 * Fast variants of internal suspend/resume hold md->suspend_lock,
2769 * which prevents interaction with userspace-driven suspend.
2772 void dm_internal_suspend_fast(struct mapped_device *md)
2774 mutex_lock(&md->suspend_lock);
2775 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2778 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2779 synchronize_srcu(&md->io_barrier);
2780 flush_workqueue(md->wq);
2781 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2783 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2785 void dm_internal_resume_fast(struct mapped_device *md)
2787 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2793 mutex_unlock(&md->suspend_lock);
2795 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2797 /*-----------------------------------------------------------------
2798 * Event notification.
2799 *---------------------------------------------------------------*/
2800 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2803 char udev_cookie[DM_COOKIE_LENGTH];
2804 char *envp[] = { udev_cookie, NULL };
2807 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2809 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2810 DM_COOKIE_ENV_VAR_NAME, cookie);
2811 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2816 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2818 return atomic_add_return(1, &md->uevent_seq);
2821 uint32_t dm_get_event_nr(struct mapped_device *md)
2823 return atomic_read(&md->event_nr);
2826 int dm_wait_event(struct mapped_device *md, int event_nr)
2828 return wait_event_interruptible(md->eventq,
2829 (event_nr != atomic_read(&md->event_nr)));
2832 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2834 unsigned long flags;
2836 spin_lock_irqsave(&md->uevent_lock, flags);
2837 list_add(elist, &md->uevent_list);
2838 spin_unlock_irqrestore(&md->uevent_lock, flags);
2842 * The gendisk is only valid as long as you have a reference
2845 struct gendisk *dm_disk(struct mapped_device *md)
2849 EXPORT_SYMBOL_GPL(dm_disk);
2851 struct kobject *dm_kobject(struct mapped_device *md)
2853 return &md->kobj_holder.kobj;
2856 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2858 struct mapped_device *md;
2860 md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2862 spin_lock(&_minor_lock);
2863 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2869 spin_unlock(&_minor_lock);
2874 int dm_suspended_md(struct mapped_device *md)
2876 return test_bit(DMF_SUSPENDED, &md->flags);
2879 int dm_suspended_internally_md(struct mapped_device *md)
2881 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2884 int dm_test_deferred_remove_flag(struct mapped_device *md)
2886 return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2889 int dm_suspended(struct dm_target *ti)
2891 return dm_suspended_md(dm_table_get_md(ti->table));
2893 EXPORT_SYMBOL_GPL(dm_suspended);
2895 int dm_noflush_suspending(struct dm_target *ti)
2897 return __noflush_suspending(dm_table_get_md(ti->table));
2899 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2901 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2902 unsigned integrity, unsigned per_io_data_size,
2903 unsigned min_pool_size)
2905 struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2906 unsigned int pool_size = 0;
2907 unsigned int front_pad, io_front_pad;
2913 case DM_TYPE_BIO_BASED:
2914 case DM_TYPE_DAX_BIO_BASED:
2915 case DM_TYPE_NVME_BIO_BASED:
2916 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
2917 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
2918 io_front_pad = roundup(front_pad, __alignof__(struct dm_io)) + offsetof(struct dm_io, tio);
2919 pools->io_bs = bioset_create(pool_size, io_front_pad, 0);
2922 if (integrity && bioset_integrity_create(pools->io_bs, pool_size))
2925 case DM_TYPE_REQUEST_BASED:
2926 case DM_TYPE_MQ_REQUEST_BASED:
2927 pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
2928 front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2929 /* per_io_data_size is used for blk-mq pdu at queue allocation */
2935 pools->bs = bioset_create(pool_size, front_pad, 0);
2939 if (integrity && bioset_integrity_create(pools->bs, pool_size))
2945 dm_free_md_mempools(pools);
2950 void dm_free_md_mempools(struct dm_md_mempools *pools)
2956 bioset_free(pools->bs);
2958 bioset_free(pools->io_bs);
2970 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
2973 struct mapped_device *md = bdev->bd_disk->private_data;
2974 struct dm_table *table;
2975 struct dm_target *ti;
2976 int ret = -ENOTTY, srcu_idx;
2978 table = dm_get_live_table(md, &srcu_idx);
2979 if (!table || !dm_table_get_size(table))
2982 /* We only support devices that have a single target */
2983 if (dm_table_get_num_targets(table) != 1)
2985 ti = dm_table_get_target(table, 0);
2988 if (!ti->type->iterate_devices)
2991 ret = ti->type->iterate_devices(ti, fn, data);
2993 dm_put_live_table(md, srcu_idx);
2998 * For register / unregister we need to manually call out to every path.
3000 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3001 sector_t start, sector_t len, void *data)
3003 struct dm_pr *pr = data;
3004 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3006 if (!ops || !ops->pr_register)
3008 return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3011 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3022 ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3023 if (ret && new_key) {
3024 /* unregister all paths if we failed to register any path */
3025 pr.old_key = new_key;
3028 pr.fail_early = false;
3029 dm_call_pr(bdev, __dm_pr_register, &pr);
3035 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3038 struct mapped_device *md = bdev->bd_disk->private_data;
3039 const struct pr_ops *ops;
3042 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3046 ops = bdev->bd_disk->fops->pr_ops;
3047 if (ops && ops->pr_reserve)
3048 r = ops->pr_reserve(bdev, key, type, flags);
3052 dm_unprepare_ioctl(md, srcu_idx);
3056 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3058 struct mapped_device *md = bdev->bd_disk->private_data;
3059 const struct pr_ops *ops;
3062 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3066 ops = bdev->bd_disk->fops->pr_ops;
3067 if (ops && ops->pr_release)
3068 r = ops->pr_release(bdev, key, type);
3072 dm_unprepare_ioctl(md, srcu_idx);
3076 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3077 enum pr_type type, bool abort)
3079 struct mapped_device *md = bdev->bd_disk->private_data;
3080 const struct pr_ops *ops;
3083 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3087 ops = bdev->bd_disk->fops->pr_ops;
3088 if (ops && ops->pr_preempt)
3089 r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3093 dm_unprepare_ioctl(md, srcu_idx);
3097 static int dm_pr_clear(struct block_device *bdev, u64 key)
3099 struct mapped_device *md = bdev->bd_disk->private_data;
3100 const struct pr_ops *ops;
3103 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3107 ops = bdev->bd_disk->fops->pr_ops;
3108 if (ops && ops->pr_clear)
3109 r = ops->pr_clear(bdev, key);
3113 dm_unprepare_ioctl(md, srcu_idx);
3117 static const struct pr_ops dm_pr_ops = {
3118 .pr_register = dm_pr_register,
3119 .pr_reserve = dm_pr_reserve,
3120 .pr_release = dm_pr_release,
3121 .pr_preempt = dm_pr_preempt,
3122 .pr_clear = dm_pr_clear,
3125 static const struct block_device_operations dm_blk_dops = {
3126 .open = dm_blk_open,
3127 .release = dm_blk_close,
3128 .ioctl = dm_blk_ioctl,
3129 .getgeo = dm_blk_getgeo,
3130 .pr_ops = &dm_pr_ops,
3131 .owner = THIS_MODULE
3134 static const struct dax_operations dm_dax_ops = {
3135 .direct_access = dm_dax_direct_access,
3136 .copy_from_iter = dm_dax_copy_from_iter,
3142 module_init(dm_init);
3143 module_exit(dm_exit);
3145 module_param(major, uint, 0);
3146 MODULE_PARM_DESC(major, "The major number of the device mapper");
3148 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3149 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3151 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3152 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3154 MODULE_DESCRIPTION(DM_NAME " driver");
3156 MODULE_LICENSE("GPL");