1 /* starfire.c: Linux device driver for the Adaptec Starfire network adapter. */
3 Written 1998-2000 by Donald Becker.
5 Current maintainer is Ion Badulescu <ionut ta badula tod org>. Please
6 send all bug reports to me, and not to Donald Becker, as this code
7 has been heavily modified from Donald's original version.
9 This software may be used and distributed according to the terms of
10 the GNU General Public License (GPL), incorporated herein by reference.
11 Drivers based on or derived from this code fall under the GPL and must
12 retain the authorship, copyright and license notice. This file is not
13 a complete program and may only be used when the entire operating
14 system is licensed under the GPL.
16 The information below comes from Donald Becker's original driver:
19 Scyld Computing Corporation
20 410 Severn Ave., Suite 210
23 Support and updates available at
24 http://www.scyld.com/network/starfire.html
25 [link no longer provides useful info -jgarzik]
29 #define DRV_NAME "starfire"
30 #define DRV_VERSION "2.0"
31 #define DRV_RELDATE "June 27, 2006"
33 #include <linux/module.h>
34 #include <linux/kernel.h>
35 #include <linux/pci.h>
36 #include <linux/netdevice.h>
37 #include <linux/etherdevice.h>
38 #include <linux/init.h>
39 #include <linux/delay.h>
40 #include <linux/crc32.h>
41 #include <linux/ethtool.h>
42 #include <linux/mii.h>
43 #include <linux/if_vlan.h>
45 #include <asm/processor.h> /* Processor type for cache alignment. */
46 #include <asm/uaccess.h>
49 #include "starfire_firmware.h"
51 * The current frame processor firmware fails to checksum a fragment
52 * of length 1. If and when this is fixed, the #define below can be removed.
54 #define HAS_BROKEN_FIRMWARE
57 * If using the broken firmware, data must be padded to the next 32-bit boundary.
59 #ifdef HAS_BROKEN_FIRMWARE
60 #define PADDING_MASK 3
64 * Define this if using the driver with the zero-copy patch
68 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
72 #ifndef CONFIG_ADAPTEC_STARFIRE_NAPI
73 #undef HAVE_NETDEV_POLL
76 /* The user-configurable values.
77 These may be modified when a driver module is loaded.*/
79 /* Used for tuning interrupt latency vs. overhead. */
80 static int intr_latency;
81 static int small_frames;
83 static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
84 static int max_interrupt_work = 20;
86 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
87 The Starfire has a 512 element hash table based on the Ethernet CRC. */
88 static const int multicast_filter_limit = 512;
89 /* Whether to do TCP/UDP checksums in hardware */
90 static int enable_hw_cksum = 1;
92 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
94 * Set the copy breakpoint for the copy-only-tiny-frames scheme.
95 * Setting to > 1518 effectively disables this feature.
98 * The ia64 doesn't allow for unaligned loads even of integers being
99 * misaligned on a 2 byte boundary. Thus always force copying of
100 * packets as the starfire doesn't allow for misaligned DMAs ;-(
103 * The Alpha and the Sparc don't like unaligned loads, either. On Sparc64,
104 * at least, having unaligned frames leads to a rather serious performance
107 #if defined(__ia64__) || defined(__alpha__) || defined(__sparc__)
108 static int rx_copybreak = PKT_BUF_SZ;
110 static int rx_copybreak /* = 0 */;
113 /* PCI DMA burst size -- on sparc64 we want to force it to 64 bytes, on the others the default of 128 is fine. */
115 #define DMA_BURST_SIZE 64
117 #define DMA_BURST_SIZE 128
120 /* Used to pass the media type, etc.
121 Both 'options[]' and 'full_duplex[]' exist for driver interoperability.
122 The media type is usually passed in 'options[]'.
123 These variables are deprecated, use ethtool instead. -Ion
125 #define MAX_UNITS 8 /* More are supported, limit only on options */
126 static int options[MAX_UNITS] = {0, };
127 static int full_duplex[MAX_UNITS] = {0, };
129 /* Operational parameters that are set at compile time. */
131 /* The "native" ring sizes are either 256 or 2048.
132 However in some modes a descriptor may be marked to wrap the ring earlier.
134 #define RX_RING_SIZE 256
135 #define TX_RING_SIZE 32
136 /* The completion queues are fixed at 1024 entries i.e. 4K or 8KB. */
137 #define DONE_Q_SIZE 1024
138 /* All queues must be aligned on a 256-byte boundary */
139 #define QUEUE_ALIGN 256
141 #if RX_RING_SIZE > 256
142 #define RX_Q_ENTRIES Rx2048QEntries
144 #define RX_Q_ENTRIES Rx256QEntries
147 /* Operational parameters that usually are not changed. */
148 /* Time in jiffies before concluding the transmitter is hung. */
149 #define TX_TIMEOUT (2 * HZ)
153 * We need a much better method to determine if dma_addr_t is 64-bit.
155 #if (defined(__i386__) && defined(CONFIG_HIGHMEM64G)) || defined(__x86_64__) || defined (__ia64__) || defined(__alpha__) || defined(__mips64__) || (defined(__mips__) && defined(CONFIG_HIGHMEM) && defined(CONFIG_64BIT_PHYS_ADDR))
156 /* 64-bit dma_addr_t */
157 #define ADDR_64BITS /* This chip uses 64 bit addresses. */
158 #define netdrv_addr_t u64
159 #define cpu_to_dma(x) cpu_to_le64(x)
160 #define dma_to_cpu(x) le64_to_cpu(x)
161 #define RX_DESC_Q_ADDR_SIZE RxDescQAddr64bit
162 #define TX_DESC_Q_ADDR_SIZE TxDescQAddr64bit
163 #define RX_COMPL_Q_ADDR_SIZE RxComplQAddr64bit
164 #define TX_COMPL_Q_ADDR_SIZE TxComplQAddr64bit
165 #define RX_DESC_ADDR_SIZE RxDescAddr64bit
166 #else /* 32-bit dma_addr_t */
167 #define netdrv_addr_t u32
168 #define cpu_to_dma(x) cpu_to_le32(x)
169 #define dma_to_cpu(x) le32_to_cpu(x)
170 #define RX_DESC_Q_ADDR_SIZE RxDescQAddr32bit
171 #define TX_DESC_Q_ADDR_SIZE TxDescQAddr32bit
172 #define RX_COMPL_Q_ADDR_SIZE RxComplQAddr32bit
173 #define TX_COMPL_Q_ADDR_SIZE TxComplQAddr32bit
174 #define RX_DESC_ADDR_SIZE RxDescAddr32bit
177 #define skb_first_frag_len(skb) skb_headlen(skb)
178 #define skb_num_frags(skb) (skb_shinfo(skb)->nr_frags + 1)
180 #ifdef HAVE_NETDEV_POLL
181 #define init_poll(dev, np) \
182 netif_napi_add(dev, &np->napi, netdev_poll, max_interrupt_work)
183 #define netdev_rx(dev, np, ioaddr) \
186 if (netif_rx_schedule_prep(dev, &np->napi)) { \
187 __netif_rx_schedule(dev, &np->napi); \
188 intr_enable = readl(ioaddr + IntrEnable); \
189 intr_enable &= ~(IntrRxDone | IntrRxEmpty); \
190 writel(intr_enable, ioaddr + IntrEnable); \
191 readl(ioaddr + IntrEnable); /* flush PCI posting buffers */ \
193 /* Paranoia check */ \
194 intr_enable = readl(ioaddr + IntrEnable); \
195 if (intr_enable & (IntrRxDone | IntrRxEmpty)) { \
196 printk(KERN_INFO "%s: interrupt while in polling mode!\n", dev->name); \
197 intr_enable &= ~(IntrRxDone | IntrRxEmpty); \
198 writel(intr_enable, ioaddr + IntrEnable); \
202 #define netdev_receive_skb(skb) netif_receive_skb(skb)
203 #define vlan_netdev_receive_skb(skb, vlgrp, vlid) vlan_hwaccel_receive_skb(skb, vlgrp, vlid)
204 static int netdev_poll(struct napi_struct *napi, int budget);
205 #else /* not HAVE_NETDEV_POLL */
206 #define init_poll(dev, np)
207 #define netdev_receive_skb(skb) netif_rx(skb)
208 #define vlan_netdev_receive_skb(skb, vlgrp, vlid) vlan_hwaccel_rx(skb, vlgrp, vlid)
209 #define netdev_rx(dev, np, ioaddr) \
211 int quota = np->dirty_rx + RX_RING_SIZE - np->cur_rx; \
212 __netdev_rx(dev, "a);\
214 #endif /* not HAVE_NETDEV_POLL */
215 /* end of compatibility code */
218 /* These identify the driver base version and may not be removed. */
219 static const char version[] __devinitdata =
221 KERN_INFO " (unofficial 2.2/2.4 kernel port, version " DRV_VERSION ", " DRV_RELDATE ")\n";
224 MODULE_DESCRIPTION("Adaptec Starfire Ethernet driver");
225 MODULE_LICENSE("GPL");
226 MODULE_VERSION(DRV_VERSION);
228 module_param(max_interrupt_work, int, 0);
229 module_param(mtu, int, 0);
230 module_param(debug, int, 0);
231 module_param(rx_copybreak, int, 0);
232 module_param(intr_latency, int, 0);
233 module_param(small_frames, int, 0);
234 module_param_array(options, int, NULL, 0);
235 module_param_array(full_duplex, int, NULL, 0);
236 module_param(enable_hw_cksum, int, 0);
237 MODULE_PARM_DESC(max_interrupt_work, "Maximum events handled per interrupt");
238 MODULE_PARM_DESC(mtu, "MTU (all boards)");
239 MODULE_PARM_DESC(debug, "Debug level (0-6)");
240 MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames");
241 MODULE_PARM_DESC(intr_latency, "Maximum interrupt latency, in microseconds");
242 MODULE_PARM_DESC(small_frames, "Maximum size of receive frames that bypass interrupt latency (0,64,128,256,512)");
243 MODULE_PARM_DESC(options, "Deprecated: Bits 0-3: media type, bit 17: full duplex");
244 MODULE_PARM_DESC(full_duplex, "Deprecated: Forced full-duplex setting (0/1)");
245 MODULE_PARM_DESC(enable_hw_cksum, "Enable/disable hardware cksum support (0/1)");
250 I. Board Compatibility
252 This driver is for the Adaptec 6915 "Starfire" 64 bit PCI Ethernet adapter.
254 II. Board-specific settings
256 III. Driver operation
260 The Starfire hardware uses multiple fixed-size descriptor queues/rings. The
261 ring sizes are set fixed by the hardware, but may optionally be wrapped
262 earlier by the END bit in the descriptor.
263 This driver uses that hardware queue size for the Rx ring, where a large
264 number of entries has no ill effect beyond increases the potential backlog.
265 The Tx ring is wrapped with the END bit, since a large hardware Tx queue
266 disables the queue layer priority ordering and we have no mechanism to
267 utilize the hardware two-level priority queue. When modifying the
268 RX/TX_RING_SIZE pay close attention to page sizes and the ring-empty warning
271 IIIb/c. Transmit/Receive Structure
273 See the Adaptec manual for the many possible structures, and options for
274 each structure. There are far too many to document all of them here.
276 For transmit this driver uses type 0/1 transmit descriptors (depending
277 on the 32/64 bitness of the architecture), and relies on automatic
278 minimum-length padding. It does not use the completion queue
279 consumer index, but instead checks for non-zero status entries.
281 For receive this driver uses type 2/3 receive descriptors. The driver
282 allocates full frame size skbuffs for the Rx ring buffers, so all frames
283 should fit in a single descriptor. The driver does not use the completion
284 queue consumer index, but instead checks for non-zero status entries.
286 When an incoming frame is less than RX_COPYBREAK bytes long, a fresh skbuff
287 is allocated and the frame is copied to the new skbuff. When the incoming
288 frame is larger, the skbuff is passed directly up the protocol stack.
289 Buffers consumed this way are replaced by newly allocated skbuffs in a later
292 A notable aspect of operation is that unaligned buffers are not permitted by
293 the Starfire hardware. Thus the IP header at offset 14 in an ethernet frame
294 isn't longword aligned, which may cause problems on some machine
295 e.g. Alphas and IA64. For these architectures, the driver is forced to copy
296 the frame into a new skbuff unconditionally. Copied frames are put into the
297 skbuff at an offset of "+2", thus 16-byte aligning the IP header.
299 IIId. Synchronization
301 The driver runs as two independent, single-threaded flows of control. One
302 is the send-packet routine, which enforces single-threaded use by the
303 dev->tbusy flag. The other thread is the interrupt handler, which is single
304 threaded by the hardware and interrupt handling software.
306 The send packet thread has partial control over the Tx ring and the netif_queue
307 status. If the number of free Tx slots in the ring falls below a certain number
308 (currently hardcoded to 4), it signals the upper layer to stop the queue.
310 The interrupt handler has exclusive control over the Rx ring and records stats
311 from the Tx ring. After reaping the stats, it marks the Tx queue entry as
312 empty by incrementing the dirty_tx mark. Iff the netif_queue is stopped and the
313 number of free Tx slow is above the threshold, it signals the upper layer to
320 The Adaptec Starfire manuals, available only from Adaptec.
321 http://www.scyld.com/expert/100mbps.html
322 http://www.scyld.com/expert/NWay.html
326 - StopOnPerr is broken, don't enable
327 - Hardware ethernet padding exposes random data, perform software padding
328 instead (unverified -- works correctly for all the hardware I have)
334 enum chip_capability_flags {CanHaveMII=1, };
340 static struct pci_device_id starfire_pci_tbl[] = {
341 { 0x9004, 0x6915, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_6915 },
344 MODULE_DEVICE_TABLE(pci, starfire_pci_tbl);
346 /* A chip capabilities table, matching the CH_xxx entries in xxx_pci_tbl[] above. */
347 static const struct chip_info {
350 } netdrv_tbl[] __devinitdata = {
351 { "Adaptec Starfire 6915", CanHaveMII },
355 /* Offsets to the device registers.
356 Unlike software-only systems, device drivers interact with complex hardware.
357 It's not useful to define symbolic names for every register bit in the
358 device. The name can only partially document the semantics and make
359 the driver longer and more difficult to read.
360 In general, only the important configuration values or bits changed
361 multiple times should be defined symbolically.
363 enum register_offsets {
364 PCIDeviceConfig=0x50040, GenCtrl=0x50070, IntrTimerCtrl=0x50074,
365 IntrClear=0x50080, IntrStatus=0x50084, IntrEnable=0x50088,
366 MIICtrl=0x52000, TxStationAddr=0x50120, EEPROMCtrl=0x51000,
367 GPIOCtrl=0x5008C, TxDescCtrl=0x50090,
368 TxRingPtr=0x50098, HiPriTxRingPtr=0x50094, /* Low and High priority. */
369 TxRingHiAddr=0x5009C, /* 64 bit address extension. */
370 TxProducerIdx=0x500A0, TxConsumerIdx=0x500A4,
372 CompletionHiAddr=0x500B4, TxCompletionAddr=0x500B8,
373 RxCompletionAddr=0x500BC, RxCompletionQ2Addr=0x500C0,
374 CompletionQConsumerIdx=0x500C4, RxDMACtrl=0x500D0,
375 RxDescQCtrl=0x500D4, RxDescQHiAddr=0x500DC, RxDescQAddr=0x500E0,
376 RxDescQIdx=0x500E8, RxDMAStatus=0x500F0, RxFilterMode=0x500F4,
377 TxMode=0x55000, VlanType=0x55064,
378 PerfFilterTable=0x56000, HashTable=0x56100,
379 TxGfpMem=0x58000, RxGfpMem=0x5a000,
383 * Bits in the interrupt status/mask registers.
384 * Warning: setting Intr[Ab]NormalSummary in the IntrEnable register
385 * enables all the interrupt sources that are or'ed into those status bits.
387 enum intr_status_bits {
388 IntrLinkChange=0xf0000000, IntrStatsMax=0x08000000,
389 IntrAbnormalSummary=0x02000000, IntrGeneralTimer=0x01000000,
390 IntrSoftware=0x800000, IntrRxComplQ1Low=0x400000,
391 IntrTxComplQLow=0x200000, IntrPCI=0x100000,
392 IntrDMAErr=0x080000, IntrTxDataLow=0x040000,
393 IntrRxComplQ2Low=0x020000, IntrRxDescQ1Low=0x010000,
394 IntrNormalSummary=0x8000, IntrTxDone=0x4000,
395 IntrTxDMADone=0x2000, IntrTxEmpty=0x1000,
396 IntrEarlyRxQ2=0x0800, IntrEarlyRxQ1=0x0400,
397 IntrRxQ2Done=0x0200, IntrRxQ1Done=0x0100,
398 IntrRxGFPDead=0x80, IntrRxDescQ2Low=0x40,
399 IntrNoTxCsum=0x20, IntrTxBadID=0x10,
400 IntrHiPriTxBadID=0x08, IntrRxGfp=0x04,
401 IntrTxGfp=0x02, IntrPCIPad=0x01,
403 IntrRxDone=IntrRxQ2Done | IntrRxQ1Done,
404 IntrRxEmpty=IntrRxDescQ1Low | IntrRxDescQ2Low,
405 IntrNormalMask=0xff00, IntrAbnormalMask=0x3ff00fe,
408 /* Bits in the RxFilterMode register. */
410 AcceptBroadcast=0x04, AcceptAllMulticast=0x02, AcceptAll=0x01,
411 AcceptMulticast=0x10, PerfectFilter=0x40, HashFilter=0x30,
412 PerfectFilterVlan=0x80, MinVLANPrio=0xE000, VlanMode=0x0200,
416 /* Bits in the TxMode register */
418 MiiSoftReset=0x8000, MIILoopback=0x4000,
419 TxFlowEnable=0x0800, RxFlowEnable=0x0400,
420 PadEnable=0x04, FullDuplex=0x02, HugeFrame=0x01,
423 /* Bits in the TxDescCtrl register. */
425 TxDescSpaceUnlim=0x00, TxDescSpace32=0x10, TxDescSpace64=0x20,
426 TxDescSpace128=0x30, TxDescSpace256=0x40,
427 TxDescType0=0x00, TxDescType1=0x01, TxDescType2=0x02,
428 TxDescType3=0x03, TxDescType4=0x04,
429 TxNoDMACompletion=0x08,
430 TxDescQAddr64bit=0x80, TxDescQAddr32bit=0,
431 TxHiPriFIFOThreshShift=24, TxPadLenShift=16,
432 TxDMABurstSizeShift=8,
435 /* Bits in the RxDescQCtrl register. */
437 RxBufferLenShift=16, RxMinDescrThreshShift=0,
438 RxPrefetchMode=0x8000, RxVariableQ=0x2000,
439 Rx2048QEntries=0x4000, Rx256QEntries=0,
440 RxDescAddr64bit=0x1000, RxDescAddr32bit=0,
441 RxDescQAddr64bit=0x0100, RxDescQAddr32bit=0,
442 RxDescSpace4=0x000, RxDescSpace8=0x100,
443 RxDescSpace16=0x200, RxDescSpace32=0x300,
444 RxDescSpace64=0x400, RxDescSpace128=0x500,
448 /* Bits in the RxDMACtrl register. */
449 enum rx_dmactrl_bits {
450 RxReportBadFrames=0x80000000, RxDMAShortFrames=0x40000000,
451 RxDMABadFrames=0x20000000, RxDMACrcErrorFrames=0x10000000,
452 RxDMAControlFrame=0x08000000, RxDMAPauseFrame=0x04000000,
453 RxChecksumIgnore=0, RxChecksumRejectTCPUDP=0x02000000,
454 RxChecksumRejectTCPOnly=0x01000000,
455 RxCompletionQ2Enable=0x800000,
456 RxDMAQ2Disable=0, RxDMAQ2FPOnly=0x100000,
457 RxDMAQ2SmallPkt=0x200000, RxDMAQ2HighPrio=0x300000,
458 RxDMAQ2NonIP=0x400000,
459 RxUseBackupQueue=0x080000, RxDMACRC=0x040000,
460 RxEarlyIntThreshShift=12, RxHighPrioThreshShift=8,
464 /* Bits in the RxCompletionAddr register */
466 RxComplQAddr64bit=0x80, RxComplQAddr32bit=0,
467 RxComplProducerWrEn=0x40,
468 RxComplType0=0x00, RxComplType1=0x10,
469 RxComplType2=0x20, RxComplType3=0x30,
470 RxComplThreshShift=0,
473 /* Bits in the TxCompletionAddr register */
475 TxComplQAddr64bit=0x80, TxComplQAddr32bit=0,
476 TxComplProducerWrEn=0x40,
477 TxComplIntrStatus=0x20,
478 CommonQueueMode=0x10,
479 TxComplThreshShift=0,
482 /* Bits in the GenCtrl register */
484 RxEnable=0x05, TxEnable=0x0a,
485 RxGFPEnable=0x10, TxGFPEnable=0x20,
488 /* Bits in the IntrTimerCtrl register */
489 enum intr_ctrl_bits {
490 Timer10X=0x800, EnableIntrMasking=0x60, SmallFrameBypass=0x100,
491 SmallFrame64=0, SmallFrame128=0x200, SmallFrame256=0x400, SmallFrame512=0x600,
492 IntrLatencyMask=0x1f,
495 /* The Rx and Tx buffer descriptors. */
496 struct starfire_rx_desc {
500 RxDescValid=1, RxDescEndRing=2,
503 /* Completion queue entry. */
504 struct short_rx_done_desc {
505 u32 status; /* Low 16 bits is length. */
507 struct basic_rx_done_desc {
508 u32 status; /* Low 16 bits is length. */
512 struct csum_rx_done_desc {
513 u32 status; /* Low 16 bits is length. */
514 u16 csum; /* Partial checksum */
517 struct full_rx_done_desc {
518 u32 status; /* Low 16 bits is length. */
522 u16 csum; /* partial checksum */
525 /* XXX: this is ugly and I'm not sure it's worth the trouble -Ion */
527 typedef struct full_rx_done_desc rx_done_desc;
528 #define RxComplType RxComplType3
529 #else /* not VLAN_SUPPORT */
530 typedef struct csum_rx_done_desc rx_done_desc;
531 #define RxComplType RxComplType2
532 #endif /* not VLAN_SUPPORT */
535 RxOK=0x20000000, RxFIFOErr=0x10000000, RxBufQ2=0x08000000,
538 /* Type 1 Tx descriptor. */
539 struct starfire_tx_desc_1 {
540 u32 status; /* Upper bits are status, lower 16 length. */
544 /* Type 2 Tx descriptor. */
545 struct starfire_tx_desc_2 {
546 u32 status; /* Upper bits are status, lower 16 length. */
552 typedef struct starfire_tx_desc_2 starfire_tx_desc;
553 #define TX_DESC_TYPE TxDescType2
554 #else /* not ADDR_64BITS */
555 typedef struct starfire_tx_desc_1 starfire_tx_desc;
556 #define TX_DESC_TYPE TxDescType1
557 #endif /* not ADDR_64BITS */
558 #define TX_DESC_SPACING TxDescSpaceUnlim
562 TxCRCEn=0x01000000, TxDescIntr=0x08000000,
563 TxRingWrap=0x04000000, TxCalTCP=0x02000000,
565 struct tx_done_desc {
566 u32 status; /* timestamp, index. */
568 u32 intrstatus; /* interrupt status */
572 struct rx_ring_info {
576 struct tx_ring_info {
579 unsigned int used_slots;
583 struct netdev_private {
584 /* Descriptor rings first for alignment. */
585 struct starfire_rx_desc *rx_ring;
586 starfire_tx_desc *tx_ring;
587 dma_addr_t rx_ring_dma;
588 dma_addr_t tx_ring_dma;
589 /* The addresses of rx/tx-in-place skbuffs. */
590 struct rx_ring_info rx_info[RX_RING_SIZE];
591 struct tx_ring_info tx_info[TX_RING_SIZE];
592 /* Pointers to completion queues (full pages). */
593 rx_done_desc *rx_done_q;
594 dma_addr_t rx_done_q_dma;
595 unsigned int rx_done;
596 struct tx_done_desc *tx_done_q;
597 dma_addr_t tx_done_q_dma;
598 unsigned int tx_done;
599 struct napi_struct napi;
600 struct net_device *dev;
601 struct net_device_stats stats;
602 struct pci_dev *pci_dev;
604 struct vlan_group *vlgrp;
607 dma_addr_t queue_mem_dma;
608 size_t queue_mem_size;
610 /* Frequently used values: keep some adjacent for cache effect. */
612 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
613 unsigned int cur_tx, dirty_tx, reap_tx;
614 unsigned int rx_buf_sz; /* Based on MTU+slack. */
615 /* These values keep track of the transceiver/media in use. */
616 int speed100; /* Set if speed == 100MBit. */
620 /* MII transceiver section. */
621 struct mii_if_info mii_if; /* MII lib hooks/info */
622 int phy_cnt; /* MII device addresses. */
623 unsigned char phys[PHY_CNT]; /* MII device addresses. */
628 static int mdio_read(struct net_device *dev, int phy_id, int location);
629 static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
630 static int netdev_open(struct net_device *dev);
631 static void check_duplex(struct net_device *dev);
632 static void tx_timeout(struct net_device *dev);
633 static void init_ring(struct net_device *dev);
634 static int start_tx(struct sk_buff *skb, struct net_device *dev);
635 static irqreturn_t intr_handler(int irq, void *dev_instance);
636 static void netdev_error(struct net_device *dev, int intr_status);
637 static int __netdev_rx(struct net_device *dev, int *quota);
638 static void refill_rx_ring(struct net_device *dev);
639 static void netdev_error(struct net_device *dev, int intr_status);
640 static void set_rx_mode(struct net_device *dev);
641 static struct net_device_stats *get_stats(struct net_device *dev);
642 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
643 static int netdev_close(struct net_device *dev);
644 static void netdev_media_change(struct net_device *dev);
645 static const struct ethtool_ops ethtool_ops;
649 static void netdev_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
651 struct netdev_private *np = netdev_priv(dev);
653 spin_lock(&np->lock);
655 printk("%s: Setting vlgrp to %p\n", dev->name, grp);
658 spin_unlock(&np->lock);
661 static void netdev_vlan_rx_add_vid(struct net_device *dev, unsigned short vid)
663 struct netdev_private *np = netdev_priv(dev);
665 spin_lock(&np->lock);
667 printk("%s: Adding vlanid %d to vlan filter\n", dev->name, vid);
669 spin_unlock(&np->lock);
672 static void netdev_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
674 struct netdev_private *np = netdev_priv(dev);
676 spin_lock(&np->lock);
678 printk("%s: removing vlanid %d from vlan filter\n", dev->name, vid);
679 vlan_group_set_device(np->vlgrp, vid, NULL);
681 spin_unlock(&np->lock);
683 #endif /* VLAN_SUPPORT */
686 static int __devinit starfire_init_one(struct pci_dev *pdev,
687 const struct pci_device_id *ent)
689 struct netdev_private *np;
690 int i, irq, option, chip_idx = ent->driver_data;
691 struct net_device *dev;
692 static int card_idx = -1;
695 int drv_flags, io_size;
698 /* when built into the kernel, we only print version if device is found */
700 static int printed_version;
701 if (!printed_version++)
707 if (pci_enable_device (pdev))
710 ioaddr = pci_resource_start(pdev, 0);
711 io_size = pci_resource_len(pdev, 0);
712 if (!ioaddr || ((pci_resource_flags(pdev, 0) & IORESOURCE_MEM) == 0)) {
713 printk(KERN_ERR DRV_NAME " %d: no PCI MEM resources, aborting\n", card_idx);
717 dev = alloc_etherdev(sizeof(*np));
719 printk(KERN_ERR DRV_NAME " %d: cannot alloc etherdev, aborting\n", card_idx);
722 SET_NETDEV_DEV(dev, &pdev->dev);
726 if (pci_request_regions (pdev, DRV_NAME)) {
727 printk(KERN_ERR DRV_NAME " %d: cannot reserve PCI resources, aborting\n", card_idx);
728 goto err_out_free_netdev;
731 base = ioremap(ioaddr, io_size);
733 printk(KERN_ERR DRV_NAME " %d: cannot remap %#x @ %#lx, aborting\n",
734 card_idx, io_size, ioaddr);
735 goto err_out_free_res;
738 pci_set_master(pdev);
740 /* enable MWI -- it vastly improves Rx performance on sparc64 */
741 pci_try_set_mwi(pdev);
744 /* Starfire can do TCP/UDP checksumming */
746 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
747 #endif /* ZEROCOPY */
749 dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER;
750 dev->vlan_rx_register = netdev_vlan_rx_register;
751 dev->vlan_rx_add_vid = netdev_vlan_rx_add_vid;
752 dev->vlan_rx_kill_vid = netdev_vlan_rx_kill_vid;
753 #endif /* VLAN_RX_KILL_VID */
755 dev->features |= NETIF_F_HIGHDMA;
756 #endif /* ADDR_64BITS */
758 /* Serial EEPROM reads are hidden by the hardware. */
759 for (i = 0; i < 6; i++)
760 dev->dev_addr[i] = readb(base + EEPROMCtrl + 20 - i);
762 #if ! defined(final_version) /* Dump the EEPROM contents during development. */
764 for (i = 0; i < 0x20; i++)
766 (unsigned int)readb(base + EEPROMCtrl + i),
767 i % 16 != 15 ? " " : "\n");
770 /* Issue soft reset */
771 writel(MiiSoftReset, base + TxMode);
773 writel(0, base + TxMode);
775 /* Reset the chip to erase previous misconfiguration. */
776 writel(1, base + PCIDeviceConfig);
778 while (--boguscnt > 0) {
780 if ((readl(base + PCIDeviceConfig) & 1) == 0)
784 printk("%s: chipset reset never completed!\n", dev->name);
785 /* wait a little longer */
788 dev->base_addr = (unsigned long)base;
791 np = netdev_priv(dev);
794 spin_lock_init(&np->lock);
795 pci_set_drvdata(pdev, dev);
799 np->mii_if.dev = dev;
800 np->mii_if.mdio_read = mdio_read;
801 np->mii_if.mdio_write = mdio_write;
802 np->mii_if.phy_id_mask = 0x1f;
803 np->mii_if.reg_num_mask = 0x1f;
805 drv_flags = netdrv_tbl[chip_idx].drv_flags;
807 option = card_idx < MAX_UNITS ? options[card_idx] : 0;
809 option = dev->mem_start;
811 /* The lower four bits are the media type. */
813 np->mii_if.full_duplex = 1;
815 if (card_idx < MAX_UNITS && full_duplex[card_idx] > 0)
816 np->mii_if.full_duplex = 1;
818 if (np->mii_if.full_duplex)
819 np->mii_if.force_media = 1;
821 np->mii_if.force_media = 0;
824 /* timer resolution is 128 * 0.8us */
825 np->intr_timer_ctrl = (((intr_latency * 10) / 1024) & IntrLatencyMask) |
826 Timer10X | EnableIntrMasking;
828 if (small_frames > 0) {
829 np->intr_timer_ctrl |= SmallFrameBypass;
830 switch (small_frames) {
832 np->intr_timer_ctrl |= SmallFrame64;
835 np->intr_timer_ctrl |= SmallFrame128;
838 np->intr_timer_ctrl |= SmallFrame256;
841 np->intr_timer_ctrl |= SmallFrame512;
842 if (small_frames > 512)
843 printk("Adjusting small_frames down to 512\n");
848 /* The chip-specific entries in the device structure. */
849 dev->open = &netdev_open;
850 dev->hard_start_xmit = &start_tx;
851 dev->tx_timeout = tx_timeout;
852 dev->watchdog_timeo = TX_TIMEOUT;
854 dev->stop = &netdev_close;
855 dev->get_stats = &get_stats;
856 dev->set_multicast_list = &set_rx_mode;
857 dev->do_ioctl = &netdev_ioctl;
858 SET_ETHTOOL_OPS(dev, ðtool_ops);
863 if (register_netdev(dev))
864 goto err_out_cleardev;
866 printk(KERN_INFO "%s: %s at %p, ",
867 dev->name, netdrv_tbl[chip_idx].name, base);
868 for (i = 0; i < 5; i++)
869 printk("%2.2x:", dev->dev_addr[i]);
870 printk("%2.2x, IRQ %d.\n", dev->dev_addr[i], irq);
872 if (drv_flags & CanHaveMII) {
873 int phy, phy_idx = 0;
875 for (phy = 0; phy < 32 && phy_idx < PHY_CNT; phy++) {
876 mdio_write(dev, phy, MII_BMCR, BMCR_RESET);
879 while (--boguscnt > 0)
880 if ((mdio_read(dev, phy, MII_BMCR) & BMCR_RESET) == 0)
883 printk("%s: PHY#%d reset never completed!\n", dev->name, phy);
886 mii_status = mdio_read(dev, phy, MII_BMSR);
887 if (mii_status != 0) {
888 np->phys[phy_idx++] = phy;
889 np->mii_if.advertising = mdio_read(dev, phy, MII_ADVERTISE);
890 printk(KERN_INFO "%s: MII PHY found at address %d, status "
891 "%#4.4x advertising %#4.4x.\n",
892 dev->name, phy, mii_status, np->mii_if.advertising);
893 /* there can be only one PHY on-board */
897 np->phy_cnt = phy_idx;
899 np->mii_if.phy_id = np->phys[0];
901 memset(&np->mii_if, 0, sizeof(np->mii_if));
904 printk(KERN_INFO "%s: scatter-gather and hardware TCP cksumming %s.\n",
905 dev->name, enable_hw_cksum ? "enabled" : "disabled");
909 pci_set_drvdata(pdev, NULL);
912 pci_release_regions (pdev);
919 /* Read the MII Management Data I/O (MDIO) interfaces. */
920 static int mdio_read(struct net_device *dev, int phy_id, int location)
922 struct netdev_private *np = netdev_priv(dev);
923 void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
924 int result, boguscnt=1000;
925 /* ??? Should we add a busy-wait here? */
927 result = readl(mdio_addr);
928 while ((result & 0xC0000000) != 0x80000000 && --boguscnt > 0);
931 if ((result & 0xffff) == 0xffff)
933 return result & 0xffff;
937 static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
939 struct netdev_private *np = netdev_priv(dev);
940 void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
941 writel(value, mdio_addr);
942 /* The busy-wait will occur before a read. */
946 static int netdev_open(struct net_device *dev)
948 struct netdev_private *np = netdev_priv(dev);
949 void __iomem *ioaddr = np->base;
951 size_t tx_done_q_size, rx_done_q_size, tx_ring_size, rx_ring_size;
953 /* Do we ever need to reset the chip??? */
955 retval = request_irq(dev->irq, &intr_handler, IRQF_SHARED, dev->name, dev);
959 /* Disable the Rx and Tx, and reset the chip. */
960 writel(0, ioaddr + GenCtrl);
961 writel(1, ioaddr + PCIDeviceConfig);
963 printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
964 dev->name, dev->irq);
966 /* Allocate the various queues. */
967 if (np->queue_mem == 0) {
968 tx_done_q_size = ((sizeof(struct tx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
969 rx_done_q_size = ((sizeof(rx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
970 tx_ring_size = ((sizeof(starfire_tx_desc) * TX_RING_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
971 rx_ring_size = sizeof(struct starfire_rx_desc) * RX_RING_SIZE;
972 np->queue_mem_size = tx_done_q_size + rx_done_q_size + tx_ring_size + rx_ring_size;
973 np->queue_mem = pci_alloc_consistent(np->pci_dev, np->queue_mem_size, &np->queue_mem_dma);
974 if (np->queue_mem == NULL) {
975 free_irq(dev->irq, dev);
979 np->tx_done_q = np->queue_mem;
980 np->tx_done_q_dma = np->queue_mem_dma;
981 np->rx_done_q = (void *) np->tx_done_q + tx_done_q_size;
982 np->rx_done_q_dma = np->tx_done_q_dma + tx_done_q_size;
983 np->tx_ring = (void *) np->rx_done_q + rx_done_q_size;
984 np->tx_ring_dma = np->rx_done_q_dma + rx_done_q_size;
985 np->rx_ring = (void *) np->tx_ring + tx_ring_size;
986 np->rx_ring_dma = np->tx_ring_dma + tx_ring_size;
989 /* Start with no carrier, it gets adjusted later */
990 netif_carrier_off(dev);
992 /* Set the size of the Rx buffers. */
993 writel((np->rx_buf_sz << RxBufferLenShift) |
994 (0 << RxMinDescrThreshShift) |
995 RxPrefetchMode | RxVariableQ |
997 RX_DESC_Q_ADDR_SIZE | RX_DESC_ADDR_SIZE |
999 ioaddr + RxDescQCtrl);
1001 /* Set up the Rx DMA controller. */
1002 writel(RxChecksumIgnore |
1003 (0 << RxEarlyIntThreshShift) |
1004 (6 << RxHighPrioThreshShift) |
1005 ((DMA_BURST_SIZE / 32) << RxBurstSizeShift),
1006 ioaddr + RxDMACtrl);
1008 /* Set Tx descriptor */
1009 writel((2 << TxHiPriFIFOThreshShift) |
1010 (0 << TxPadLenShift) |
1011 ((DMA_BURST_SIZE / 32) << TxDMABurstSizeShift) |
1012 TX_DESC_Q_ADDR_SIZE |
1013 TX_DESC_SPACING | TX_DESC_TYPE,
1014 ioaddr + TxDescCtrl);
1016 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + RxDescQHiAddr);
1017 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + TxRingHiAddr);
1018 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + CompletionHiAddr);
1019 writel(np->rx_ring_dma, ioaddr + RxDescQAddr);
1020 writel(np->tx_ring_dma, ioaddr + TxRingPtr);
1022 writel(np->tx_done_q_dma, ioaddr + TxCompletionAddr);
1023 writel(np->rx_done_q_dma |
1025 (0 << RxComplThreshShift),
1026 ioaddr + RxCompletionAddr);
1029 printk(KERN_DEBUG "%s: Filling in the station address.\n", dev->name);
1031 /* Fill both the Tx SA register and the Rx perfect filter. */
1032 for (i = 0; i < 6; i++)
1033 writeb(dev->dev_addr[i], ioaddr + TxStationAddr + 5 - i);
1034 /* The first entry is special because it bypasses the VLAN filter.
1036 writew(0, ioaddr + PerfFilterTable);
1037 writew(0, ioaddr + PerfFilterTable + 4);
1038 writew(0, ioaddr + PerfFilterTable + 8);
1039 for (i = 1; i < 16; i++) {
1040 u16 *eaddrs = (u16 *)dev->dev_addr;
1041 void __iomem *setup_frm = ioaddr + PerfFilterTable + i * 16;
1042 writew(cpu_to_be16(eaddrs[2]), setup_frm); setup_frm += 4;
1043 writew(cpu_to_be16(eaddrs[1]), setup_frm); setup_frm += 4;
1044 writew(cpu_to_be16(eaddrs[0]), setup_frm); setup_frm += 8;
1047 /* Initialize other registers. */
1048 /* Configure the PCI bus bursts and FIFO thresholds. */
1049 np->tx_mode = TxFlowEnable|RxFlowEnable|PadEnable; /* modified when link is up. */
1050 writel(MiiSoftReset | np->tx_mode, ioaddr + TxMode);
1052 writel(np->tx_mode, ioaddr + TxMode);
1053 np->tx_threshold = 4;
1054 writel(np->tx_threshold, ioaddr + TxThreshold);
1056 writel(np->intr_timer_ctrl, ioaddr + IntrTimerCtrl);
1058 #ifdef HAVE_NETDEV_POLL
1059 napi_enable(&np->napi);
1061 netif_start_queue(dev);
1064 printk(KERN_DEBUG "%s: Setting the Rx and Tx modes.\n", dev->name);
1067 np->mii_if.advertising = mdio_read(dev, np->phys[0], MII_ADVERTISE);
1070 /* Enable GPIO interrupts on link change */
1071 writel(0x0f00ff00, ioaddr + GPIOCtrl);
1073 /* Set the interrupt mask */
1074 writel(IntrRxDone | IntrRxEmpty | IntrDMAErr |
1075 IntrTxDMADone | IntrStatsMax | IntrLinkChange |
1076 IntrRxGFPDead | IntrNoTxCsum | IntrTxBadID,
1077 ioaddr + IntrEnable);
1078 /* Enable PCI interrupts. */
1079 writel(0x00800000 | readl(ioaddr + PCIDeviceConfig),
1080 ioaddr + PCIDeviceConfig);
1083 /* Set VLAN type to 802.1q */
1084 writel(ETH_P_8021Q, ioaddr + VlanType);
1085 #endif /* VLAN_SUPPORT */
1087 /* Load Rx/Tx firmware into the frame processors */
1088 for (i = 0; i < FIRMWARE_RX_SIZE * 2; i++)
1089 writel(firmware_rx[i], ioaddr + RxGfpMem + i * 4);
1090 for (i = 0; i < FIRMWARE_TX_SIZE * 2; i++)
1091 writel(firmware_tx[i], ioaddr + TxGfpMem + i * 4);
1092 if (enable_hw_cksum)
1093 /* Enable the Rx and Tx units, and the Rx/Tx frame processors. */
1094 writel(TxEnable|TxGFPEnable|RxEnable|RxGFPEnable, ioaddr + GenCtrl);
1096 /* Enable the Rx and Tx units only. */
1097 writel(TxEnable|RxEnable, ioaddr + GenCtrl);
1100 printk(KERN_DEBUG "%s: Done netdev_open().\n",
1107 static void check_duplex(struct net_device *dev)
1109 struct netdev_private *np = netdev_priv(dev);
1111 int silly_count = 1000;
1113 mdio_write(dev, np->phys[0], MII_ADVERTISE, np->mii_if.advertising);
1114 mdio_write(dev, np->phys[0], MII_BMCR, BMCR_RESET);
1116 while (--silly_count && mdio_read(dev, np->phys[0], MII_BMCR) & BMCR_RESET)
1119 printk("%s: MII reset failed!\n", dev->name);
1123 reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1125 if (!np->mii_if.force_media) {
1126 reg0 |= BMCR_ANENABLE | BMCR_ANRESTART;
1128 reg0 &= ~(BMCR_ANENABLE | BMCR_ANRESTART);
1130 reg0 |= BMCR_SPEED100;
1131 if (np->mii_if.full_duplex)
1132 reg0 |= BMCR_FULLDPLX;
1133 printk(KERN_DEBUG "%s: Link forced to %sMbit %s-duplex\n",
1135 np->speed100 ? "100" : "10",
1136 np->mii_if.full_duplex ? "full" : "half");
1138 mdio_write(dev, np->phys[0], MII_BMCR, reg0);
1142 static void tx_timeout(struct net_device *dev)
1144 struct netdev_private *np = netdev_priv(dev);
1145 void __iomem *ioaddr = np->base;
1148 printk(KERN_WARNING "%s: Transmit timed out, status %#8.8x, "
1149 "resetting...\n", dev->name, (int) readl(ioaddr + IntrStatus));
1151 /* Perhaps we should reinitialize the hardware here. */
1154 * Stop and restart the interface.
1155 * Cheat and increase the debug level temporarily.
1163 /* Trigger an immediate transmit demand. */
1165 dev->trans_start = jiffies;
1166 np->stats.tx_errors++;
1167 netif_wake_queue(dev);
1171 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1172 static void init_ring(struct net_device *dev)
1174 struct netdev_private *np = netdev_priv(dev);
1177 np->cur_rx = np->cur_tx = np->reap_tx = 0;
1178 np->dirty_rx = np->dirty_tx = np->rx_done = np->tx_done = 0;
1180 np->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
1182 /* Fill in the Rx buffers. Handle allocation failure gracefully. */
1183 for (i = 0; i < RX_RING_SIZE; i++) {
1184 struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz);
1185 np->rx_info[i].skb = skb;
1188 np->rx_info[i].mapping = pci_map_single(np->pci_dev, skb->data, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1189 skb->dev = dev; /* Mark as being used by this device. */
1190 /* Grrr, we cannot offset to correctly align the IP header. */
1191 np->rx_ring[i].rxaddr = cpu_to_dma(np->rx_info[i].mapping | RxDescValid);
1193 writew(i - 1, np->base + RxDescQIdx);
1194 np->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
1196 /* Clear the remainder of the Rx buffer ring. */
1197 for ( ; i < RX_RING_SIZE; i++) {
1198 np->rx_ring[i].rxaddr = 0;
1199 np->rx_info[i].skb = NULL;
1200 np->rx_info[i].mapping = 0;
1202 /* Mark the last entry as wrapping the ring. */
1203 np->rx_ring[RX_RING_SIZE - 1].rxaddr |= cpu_to_dma(RxDescEndRing);
1205 /* Clear the completion rings. */
1206 for (i = 0; i < DONE_Q_SIZE; i++) {
1207 np->rx_done_q[i].status = 0;
1208 np->tx_done_q[i].status = 0;
1211 for (i = 0; i < TX_RING_SIZE; i++)
1212 memset(&np->tx_info[i], 0, sizeof(np->tx_info[i]));
1218 static int start_tx(struct sk_buff *skb, struct net_device *dev)
1220 struct netdev_private *np = netdev_priv(dev);
1226 * be cautious here, wrapping the queue has weird semantics
1227 * and we may not have enough slots even when it seems we do.
1229 if ((np->cur_tx - np->dirty_tx) + skb_num_frags(skb) * 2 > TX_RING_SIZE) {
1230 netif_stop_queue(dev);
1234 #if defined(ZEROCOPY) && defined(HAS_BROKEN_FIRMWARE)
1235 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1236 if (skb_padto(skb, (skb->len + PADDING_MASK) & ~PADDING_MASK))
1237 return NETDEV_TX_OK;
1239 #endif /* ZEROCOPY && HAS_BROKEN_FIRMWARE */
1241 entry = np->cur_tx % TX_RING_SIZE;
1242 for (i = 0; i < skb_num_frags(skb); i++) {
1247 np->tx_info[entry].skb = skb;
1249 if (entry >= TX_RING_SIZE - skb_num_frags(skb)) {
1250 status |= TxRingWrap;
1254 status |= TxDescIntr;
1257 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1259 np->stats.tx_compressed++;
1261 status |= skb_first_frag_len(skb) | (skb_num_frags(skb) << 16);
1263 np->tx_info[entry].mapping =
1264 pci_map_single(np->pci_dev, skb->data, skb_first_frag_len(skb), PCI_DMA_TODEVICE);
1266 skb_frag_t *this_frag = &skb_shinfo(skb)->frags[i - 1];
1267 status |= this_frag->size;
1268 np->tx_info[entry].mapping =
1269 pci_map_single(np->pci_dev, page_address(this_frag->page) + this_frag->page_offset, this_frag->size, PCI_DMA_TODEVICE);
1272 np->tx_ring[entry].addr = cpu_to_dma(np->tx_info[entry].mapping);
1273 np->tx_ring[entry].status = cpu_to_le32(status);
1275 printk(KERN_DEBUG "%s: Tx #%d/#%d slot %d status %#8.8x.\n",
1276 dev->name, np->cur_tx, np->dirty_tx,
1279 np->tx_info[entry].used_slots = TX_RING_SIZE - entry;
1280 np->cur_tx += np->tx_info[entry].used_slots;
1283 np->tx_info[entry].used_slots = 1;
1284 np->cur_tx += np->tx_info[entry].used_slots;
1287 /* scavenge the tx descriptors twice per TX_RING_SIZE */
1288 if (np->cur_tx % (TX_RING_SIZE / 2) == 0)
1292 /* Non-x86: explicitly flush descriptor cache lines here. */
1293 /* Ensure all descriptors are written back before the transmit is
1297 /* Update the producer index. */
1298 writel(entry * (sizeof(starfire_tx_desc) / 8), np->base + TxProducerIdx);
1300 /* 4 is arbitrary, but should be ok */
1301 if ((np->cur_tx - np->dirty_tx) + 4 > TX_RING_SIZE)
1302 netif_stop_queue(dev);
1304 dev->trans_start = jiffies;
1310 /* The interrupt handler does all of the Rx thread work and cleans up
1311 after the Tx thread. */
1312 static irqreturn_t intr_handler(int irq, void *dev_instance)
1314 struct net_device *dev = dev_instance;
1315 struct netdev_private *np = netdev_priv(dev);
1316 void __iomem *ioaddr = np->base;
1317 int boguscnt = max_interrupt_work;
1323 u32 intr_status = readl(ioaddr + IntrClear);
1326 printk(KERN_DEBUG "%s: Interrupt status %#8.8x.\n",
1327 dev->name, intr_status);
1329 if (intr_status == 0 || intr_status == (u32) -1)
1334 if (intr_status & (IntrRxDone | IntrRxEmpty))
1335 netdev_rx(dev, np, ioaddr);
1337 /* Scavenge the skbuff list based on the Tx-done queue.
1338 There are redundant checks here that may be cleaned up
1339 after the driver has proven to be reliable. */
1340 consumer = readl(ioaddr + TxConsumerIdx);
1342 printk(KERN_DEBUG "%s: Tx Consumer index is %d.\n",
1343 dev->name, consumer);
1345 while ((tx_status = le32_to_cpu(np->tx_done_q[np->tx_done].status)) != 0) {
1347 printk(KERN_DEBUG "%s: Tx completion #%d entry %d is %#8.8x.\n",
1348 dev->name, np->dirty_tx, np->tx_done, tx_status);
1349 if ((tx_status & 0xe0000000) == 0xa0000000) {
1350 np->stats.tx_packets++;
1351 } else if ((tx_status & 0xe0000000) == 0x80000000) {
1352 u16 entry = (tx_status & 0x7fff) / sizeof(starfire_tx_desc);
1353 struct sk_buff *skb = np->tx_info[entry].skb;
1354 np->tx_info[entry].skb = NULL;
1355 pci_unmap_single(np->pci_dev,
1356 np->tx_info[entry].mapping,
1357 skb_first_frag_len(skb),
1359 np->tx_info[entry].mapping = 0;
1360 np->dirty_tx += np->tx_info[entry].used_slots;
1361 entry = (entry + np->tx_info[entry].used_slots) % TX_RING_SIZE;
1364 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1365 pci_unmap_single(np->pci_dev,
1366 np->tx_info[entry].mapping,
1367 skb_shinfo(skb)->frags[i].size,
1374 dev_kfree_skb_irq(skb);
1376 np->tx_done_q[np->tx_done].status = 0;
1377 np->tx_done = (np->tx_done + 1) % DONE_Q_SIZE;
1379 writew(np->tx_done, ioaddr + CompletionQConsumerIdx + 2);
1381 if (netif_queue_stopped(dev) &&
1382 (np->cur_tx - np->dirty_tx + 4 < TX_RING_SIZE)) {
1383 /* The ring is no longer full, wake the queue. */
1384 netif_wake_queue(dev);
1387 /* Stats overflow */
1388 if (intr_status & IntrStatsMax)
1391 /* Media change interrupt. */
1392 if (intr_status & IntrLinkChange)
1393 netdev_media_change(dev);
1395 /* Abnormal error summary/uncommon events handlers. */
1396 if (intr_status & IntrAbnormalSummary)
1397 netdev_error(dev, intr_status);
1399 if (--boguscnt < 0) {
1401 printk(KERN_WARNING "%s: Too much work at interrupt, "
1403 dev->name, intr_status);
1409 printk(KERN_DEBUG "%s: exiting interrupt, status=%#8.8x.\n",
1410 dev->name, (int) readl(ioaddr + IntrStatus));
1411 return IRQ_RETVAL(handled);
1415 /* This routine is logically part of the interrupt/poll handler, but separated
1416 for clarity, code sharing between NAPI/non-NAPI, and better register allocation. */
1417 static int __netdev_rx(struct net_device *dev, int *quota)
1419 struct netdev_private *np = netdev_priv(dev);
1423 /* If EOP is set on the next entry, it's a new packet. Send it up. */
1424 while ((desc_status = le32_to_cpu(np->rx_done_q[np->rx_done].status)) != 0) {
1425 struct sk_buff *skb;
1428 rx_done_desc *desc = &np->rx_done_q[np->rx_done];
1431 printk(KERN_DEBUG " netdev_rx() status of %d was %#8.8x.\n", np->rx_done, desc_status);
1432 if (!(desc_status & RxOK)) {
1433 /* There was an error. */
1435 printk(KERN_DEBUG " netdev_rx() Rx error was %#8.8x.\n", desc_status);
1436 np->stats.rx_errors++;
1437 if (desc_status & RxFIFOErr)
1438 np->stats.rx_fifo_errors++;
1442 if (*quota <= 0) { /* out of rx quota */
1448 pkt_len = desc_status; /* Implicitly Truncate */
1449 entry = (desc_status >> 16) & 0x7ff;
1452 printk(KERN_DEBUG " netdev_rx() normal Rx pkt length %d, quota %d.\n", pkt_len, *quota);
1453 /* Check if the packet is long enough to accept without copying
1454 to a minimally-sized skbuff. */
1455 if (pkt_len < rx_copybreak
1456 && (skb = dev_alloc_skb(pkt_len + 2)) != NULL) {
1457 skb_reserve(skb, 2); /* 16 byte align the IP header */
1458 pci_dma_sync_single_for_cpu(np->pci_dev,
1459 np->rx_info[entry].mapping,
1460 pkt_len, PCI_DMA_FROMDEVICE);
1461 skb_copy_to_linear_data(skb, np->rx_info[entry].skb->data, pkt_len);
1462 pci_dma_sync_single_for_device(np->pci_dev,
1463 np->rx_info[entry].mapping,
1464 pkt_len, PCI_DMA_FROMDEVICE);
1465 skb_put(skb, pkt_len);
1467 pci_unmap_single(np->pci_dev, np->rx_info[entry].mapping, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1468 skb = np->rx_info[entry].skb;
1469 skb_put(skb, pkt_len);
1470 np->rx_info[entry].skb = NULL;
1471 np->rx_info[entry].mapping = 0;
1473 #ifndef final_version /* Remove after testing. */
1474 /* You will want this info for the initial debug. */
1476 printk(KERN_DEBUG " Rx data %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:"
1477 "%2.2x %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x %2.2x%2.2x.\n",
1478 skb->data[0], skb->data[1], skb->data[2], skb->data[3],
1479 skb->data[4], skb->data[5], skb->data[6], skb->data[7],
1480 skb->data[8], skb->data[9], skb->data[10],
1481 skb->data[11], skb->data[12], skb->data[13]);
1484 skb->protocol = eth_type_trans(skb, dev);
1487 printk(KERN_DEBUG " netdev_rx() status2 of %d was %#4.4x.\n", np->rx_done, le16_to_cpu(desc->status2));
1489 if (le16_to_cpu(desc->status2) & 0x0100) {
1490 skb->ip_summed = CHECKSUM_UNNECESSARY;
1491 np->stats.rx_compressed++;
1494 * This feature doesn't seem to be working, at least
1495 * with the two firmware versions I have. If the GFP sees
1496 * an IP fragment, it either ignores it completely, or reports
1497 * "bad checksum" on it.
1499 * Maybe I missed something -- corrections are welcome.
1500 * Until then, the printk stays. :-) -Ion
1502 else if (le16_to_cpu(desc->status2) & 0x0040) {
1503 skb->ip_summed = CHECKSUM_COMPLETE;
1504 skb->csum = le16_to_cpu(desc->csum);
1505 printk(KERN_DEBUG "%s: checksum_hw, status2 = %#x\n", dev->name, le16_to_cpu(desc->status2));
1508 if (np->vlgrp && le16_to_cpu(desc->status2) & 0x0200) {
1510 printk(KERN_DEBUG " netdev_rx() vlanid = %d\n", le16_to_cpu(desc->vlanid));
1511 /* vlan_netdev_receive_skb() expects a packet with the VLAN tag stripped out */
1512 vlan_netdev_receive_skb(skb, np->vlgrp, le16_to_cpu(desc->vlanid) & VLAN_VID_MASK);
1514 #endif /* VLAN_SUPPORT */
1515 netdev_receive_skb(skb);
1516 dev->last_rx = jiffies;
1517 np->stats.rx_packets++;
1522 np->rx_done = (np->rx_done + 1) % DONE_Q_SIZE;
1524 writew(np->rx_done, np->base + CompletionQConsumerIdx);
1527 refill_rx_ring(dev);
1529 printk(KERN_DEBUG " exiting netdev_rx(): %d, status of %d was %#8.8x.\n",
1530 retcode, np->rx_done, desc_status);
1535 #ifdef HAVE_NETDEV_POLL
1536 static int netdev_poll(struct napi_struct *napi, int budget)
1538 struct netdev_private *np = container_of(napi, struct netdev_private, napi);
1539 struct net_device *dev = np->dev;
1541 void __iomem *ioaddr = np->base;
1545 writel(IntrRxDone | IntrRxEmpty, ioaddr + IntrClear);
1547 if (__netdev_rx(dev, "a))
1550 intr_status = readl(ioaddr + IntrStatus);
1551 } while (intr_status & (IntrRxDone | IntrRxEmpty));
1553 netif_rx_complete(dev, napi);
1554 intr_status = readl(ioaddr + IntrEnable);
1555 intr_status |= IntrRxDone | IntrRxEmpty;
1556 writel(intr_status, ioaddr + IntrEnable);
1560 printk(KERN_DEBUG " exiting netdev_poll(): %d.\n",
1563 /* Restart Rx engine if stopped. */
1564 return budget - quota;
1566 #endif /* HAVE_NETDEV_POLL */
1569 static void refill_rx_ring(struct net_device *dev)
1571 struct netdev_private *np = netdev_priv(dev);
1572 struct sk_buff *skb;
1575 /* Refill the Rx ring buffers. */
1576 for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
1577 entry = np->dirty_rx % RX_RING_SIZE;
1578 if (np->rx_info[entry].skb == NULL) {
1579 skb = dev_alloc_skb(np->rx_buf_sz);
1580 np->rx_info[entry].skb = skb;
1582 break; /* Better luck next round. */
1583 np->rx_info[entry].mapping =
1584 pci_map_single(np->pci_dev, skb->data, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1585 skb->dev = dev; /* Mark as being used by this device. */
1586 np->rx_ring[entry].rxaddr =
1587 cpu_to_dma(np->rx_info[entry].mapping | RxDescValid);
1589 if (entry == RX_RING_SIZE - 1)
1590 np->rx_ring[entry].rxaddr |= cpu_to_dma(RxDescEndRing);
1593 writew(entry, np->base + RxDescQIdx);
1597 static void netdev_media_change(struct net_device *dev)
1599 struct netdev_private *np = netdev_priv(dev);
1600 void __iomem *ioaddr = np->base;
1601 u16 reg0, reg1, reg4, reg5;
1603 u32 new_intr_timer_ctrl;
1605 /* reset status first */
1606 mdio_read(dev, np->phys[0], MII_BMCR);
1607 mdio_read(dev, np->phys[0], MII_BMSR);
1609 reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1610 reg1 = mdio_read(dev, np->phys[0], MII_BMSR);
1612 if (reg1 & BMSR_LSTATUS) {
1614 if (reg0 & BMCR_ANENABLE) {
1615 /* autonegotiation is enabled */
1616 reg4 = mdio_read(dev, np->phys[0], MII_ADVERTISE);
1617 reg5 = mdio_read(dev, np->phys[0], MII_LPA);
1618 if (reg4 & ADVERTISE_100FULL && reg5 & LPA_100FULL) {
1620 np->mii_if.full_duplex = 1;
1621 } else if (reg4 & ADVERTISE_100HALF && reg5 & LPA_100HALF) {
1623 np->mii_if.full_duplex = 0;
1624 } else if (reg4 & ADVERTISE_10FULL && reg5 & LPA_10FULL) {
1626 np->mii_if.full_duplex = 1;
1629 np->mii_if.full_duplex = 0;
1632 /* autonegotiation is disabled */
1633 if (reg0 & BMCR_SPEED100)
1637 if (reg0 & BMCR_FULLDPLX)
1638 np->mii_if.full_duplex = 1;
1640 np->mii_if.full_duplex = 0;
1642 netif_carrier_on(dev);
1643 printk(KERN_DEBUG "%s: Link is up, running at %sMbit %s-duplex\n",
1645 np->speed100 ? "100" : "10",
1646 np->mii_if.full_duplex ? "full" : "half");
1648 new_tx_mode = np->tx_mode & ~FullDuplex; /* duplex setting */
1649 if (np->mii_if.full_duplex)
1650 new_tx_mode |= FullDuplex;
1651 if (np->tx_mode != new_tx_mode) {
1652 np->tx_mode = new_tx_mode;
1653 writel(np->tx_mode | MiiSoftReset, ioaddr + TxMode);
1655 writel(np->tx_mode, ioaddr + TxMode);
1658 new_intr_timer_ctrl = np->intr_timer_ctrl & ~Timer10X;
1660 new_intr_timer_ctrl |= Timer10X;
1661 if (np->intr_timer_ctrl != new_intr_timer_ctrl) {
1662 np->intr_timer_ctrl = new_intr_timer_ctrl;
1663 writel(new_intr_timer_ctrl, ioaddr + IntrTimerCtrl);
1666 netif_carrier_off(dev);
1667 printk(KERN_DEBUG "%s: Link is down\n", dev->name);
1672 static void netdev_error(struct net_device *dev, int intr_status)
1674 struct netdev_private *np = netdev_priv(dev);
1676 /* Came close to underrunning the Tx FIFO, increase threshold. */
1677 if (intr_status & IntrTxDataLow) {
1678 if (np->tx_threshold <= PKT_BUF_SZ / 16) {
1679 writel(++np->tx_threshold, np->base + TxThreshold);
1680 printk(KERN_NOTICE "%s: PCI bus congestion, increasing Tx FIFO threshold to %d bytes\n",
1681 dev->name, np->tx_threshold * 16);
1683 printk(KERN_WARNING "%s: PCI Tx underflow -- adapter is probably malfunctioning\n", dev->name);
1685 if (intr_status & IntrRxGFPDead) {
1686 np->stats.rx_fifo_errors++;
1687 np->stats.rx_errors++;
1689 if (intr_status & (IntrNoTxCsum | IntrDMAErr)) {
1690 np->stats.tx_fifo_errors++;
1691 np->stats.tx_errors++;
1693 if ((intr_status & ~(IntrNormalMask | IntrAbnormalSummary | IntrLinkChange | IntrStatsMax | IntrTxDataLow | IntrRxGFPDead | IntrNoTxCsum | IntrPCIPad)) && debug)
1694 printk(KERN_ERR "%s: Something Wicked happened! %#8.8x.\n",
1695 dev->name, intr_status);
1699 static struct net_device_stats *get_stats(struct net_device *dev)
1701 struct netdev_private *np = netdev_priv(dev);
1702 void __iomem *ioaddr = np->base;
1704 /* This adapter architecture needs no SMP locks. */
1705 np->stats.tx_bytes = readl(ioaddr + 0x57010);
1706 np->stats.rx_bytes = readl(ioaddr + 0x57044);
1707 np->stats.tx_packets = readl(ioaddr + 0x57000);
1708 np->stats.tx_aborted_errors =
1709 readl(ioaddr + 0x57024) + readl(ioaddr + 0x57028);
1710 np->stats.tx_window_errors = readl(ioaddr + 0x57018);
1711 np->stats.collisions =
1712 readl(ioaddr + 0x57004) + readl(ioaddr + 0x57008);
1714 /* The chip only need report frame silently dropped. */
1715 np->stats.rx_dropped += readw(ioaddr + RxDMAStatus);
1716 writew(0, ioaddr + RxDMAStatus);
1717 np->stats.rx_crc_errors = readl(ioaddr + 0x5703C);
1718 np->stats.rx_frame_errors = readl(ioaddr + 0x57040);
1719 np->stats.rx_length_errors = readl(ioaddr + 0x57058);
1720 np->stats.rx_missed_errors = readl(ioaddr + 0x5707C);
1726 static void set_rx_mode(struct net_device *dev)
1728 struct netdev_private *np = netdev_priv(dev);
1729 void __iomem *ioaddr = np->base;
1730 u32 rx_mode = MinVLANPrio;
1731 struct dev_mc_list *mclist;
1735 rx_mode |= VlanMode;
1738 void __iomem *filter_addr = ioaddr + HashTable + 8;
1739 for (i = 0; i < VLAN_VID_MASK; i++) {
1740 if (vlan_group_get_device(np->vlgrp, i)) {
1741 if (vlan_count >= 32)
1743 writew(cpu_to_be16(i), filter_addr);
1748 if (i == VLAN_VID_MASK) {
1749 rx_mode |= PerfectFilterVlan;
1750 while (vlan_count < 32) {
1751 writew(0, filter_addr);
1757 #endif /* VLAN_SUPPORT */
1759 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1760 rx_mode |= AcceptAll;
1761 } else if ((dev->mc_count > multicast_filter_limit)
1762 || (dev->flags & IFF_ALLMULTI)) {
1763 /* Too many to match, or accept all multicasts. */
1764 rx_mode |= AcceptBroadcast|AcceptAllMulticast|PerfectFilter;
1765 } else if (dev->mc_count <= 14) {
1766 /* Use the 16 element perfect filter, skip first two entries. */
1767 void __iomem *filter_addr = ioaddr + PerfFilterTable + 2 * 16;
1769 for (i = 2, mclist = dev->mc_list; mclist && i < dev->mc_count + 2;
1770 i++, mclist = mclist->next) {
1771 eaddrs = (u16 *)mclist->dmi_addr;
1772 writew(cpu_to_be16(eaddrs[2]), filter_addr); filter_addr += 4;
1773 writew(cpu_to_be16(eaddrs[1]), filter_addr); filter_addr += 4;
1774 writew(cpu_to_be16(eaddrs[0]), filter_addr); filter_addr += 8;
1776 eaddrs = (u16 *)dev->dev_addr;
1778 writew(cpu_to_be16(eaddrs[0]), filter_addr); filter_addr += 4;
1779 writew(cpu_to_be16(eaddrs[1]), filter_addr); filter_addr += 4;
1780 writew(cpu_to_be16(eaddrs[2]), filter_addr); filter_addr += 8;
1782 rx_mode |= AcceptBroadcast|PerfectFilter;
1784 /* Must use a multicast hash table. */
1785 void __iomem *filter_addr;
1787 u16 mc_filter[32] __attribute__ ((aligned(sizeof(long)))); /* Multicast hash filter */
1789 memset(mc_filter, 0, sizeof(mc_filter));
1790 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
1791 i++, mclist = mclist->next) {
1792 /* The chip uses the upper 9 CRC bits
1793 as index into the hash table */
1794 int bit_nr = ether_crc_le(ETH_ALEN, mclist->dmi_addr) >> 23;
1795 __u32 *fptr = (__u32 *) &mc_filter[(bit_nr >> 4) & ~1];
1797 *fptr |= cpu_to_le32(1 << (bit_nr & 31));
1799 /* Clear the perfect filter list, skip first two entries. */
1800 filter_addr = ioaddr + PerfFilterTable + 2 * 16;
1801 eaddrs = (u16 *)dev->dev_addr;
1802 for (i = 2; i < 16; i++) {
1803 writew(cpu_to_be16(eaddrs[0]), filter_addr); filter_addr += 4;
1804 writew(cpu_to_be16(eaddrs[1]), filter_addr); filter_addr += 4;
1805 writew(cpu_to_be16(eaddrs[2]), filter_addr); filter_addr += 8;
1807 for (filter_addr = ioaddr + HashTable, i = 0; i < 32; filter_addr+= 16, i++)
1808 writew(mc_filter[i], filter_addr);
1809 rx_mode |= AcceptBroadcast|PerfectFilter|HashFilter;
1811 writel(rx_mode, ioaddr + RxFilterMode);
1814 static int check_if_running(struct net_device *dev)
1816 if (!netif_running(dev))
1821 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1823 struct netdev_private *np = netdev_priv(dev);
1824 strcpy(info->driver, DRV_NAME);
1825 strcpy(info->version, DRV_VERSION);
1826 strcpy(info->bus_info, pci_name(np->pci_dev));
1829 static int get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1831 struct netdev_private *np = netdev_priv(dev);
1832 spin_lock_irq(&np->lock);
1833 mii_ethtool_gset(&np->mii_if, ecmd);
1834 spin_unlock_irq(&np->lock);
1838 static int set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1840 struct netdev_private *np = netdev_priv(dev);
1842 spin_lock_irq(&np->lock);
1843 res = mii_ethtool_sset(&np->mii_if, ecmd);
1844 spin_unlock_irq(&np->lock);
1849 static int nway_reset(struct net_device *dev)
1851 struct netdev_private *np = netdev_priv(dev);
1852 return mii_nway_restart(&np->mii_if);
1855 static u32 get_link(struct net_device *dev)
1857 struct netdev_private *np = netdev_priv(dev);
1858 return mii_link_ok(&np->mii_if);
1861 static u32 get_msglevel(struct net_device *dev)
1866 static void set_msglevel(struct net_device *dev, u32 val)
1871 static const struct ethtool_ops ethtool_ops = {
1872 .begin = check_if_running,
1873 .get_drvinfo = get_drvinfo,
1874 .get_settings = get_settings,
1875 .set_settings = set_settings,
1876 .nway_reset = nway_reset,
1877 .get_link = get_link,
1878 .get_msglevel = get_msglevel,
1879 .set_msglevel = set_msglevel,
1882 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1884 struct netdev_private *np = netdev_priv(dev);
1885 struct mii_ioctl_data *data = if_mii(rq);
1888 if (!netif_running(dev))
1891 spin_lock_irq(&np->lock);
1892 rc = generic_mii_ioctl(&np->mii_if, data, cmd, NULL);
1893 spin_unlock_irq(&np->lock);
1895 if ((cmd == SIOCSMIIREG) && (data->phy_id == np->phys[0]))
1901 static int netdev_close(struct net_device *dev)
1903 struct netdev_private *np = netdev_priv(dev);
1904 void __iomem *ioaddr = np->base;
1907 netif_stop_queue(dev);
1908 #ifdef HAVE_NETDEV_POLL
1909 napi_disable(&np->napi);
1913 printk(KERN_DEBUG "%s: Shutting down ethercard, Intr status %#8.8x.\n",
1914 dev->name, (int) readl(ioaddr + IntrStatus));
1915 printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
1916 dev->name, np->cur_tx, np->dirty_tx,
1917 np->cur_rx, np->dirty_rx);
1920 /* Disable interrupts by clearing the interrupt mask. */
1921 writel(0, ioaddr + IntrEnable);
1923 /* Stop the chip's Tx and Rx processes. */
1924 writel(0, ioaddr + GenCtrl);
1925 readl(ioaddr + GenCtrl);
1928 printk(KERN_DEBUG" Tx ring at %#llx:\n",
1929 (long long) np->tx_ring_dma);
1930 for (i = 0; i < 8 /* TX_RING_SIZE is huge! */; i++)
1931 printk(KERN_DEBUG " #%d desc. %#8.8x %#llx -> %#8.8x.\n",
1932 i, le32_to_cpu(np->tx_ring[i].status),
1933 (long long) dma_to_cpu(np->tx_ring[i].addr),
1934 le32_to_cpu(np->tx_done_q[i].status));
1935 printk(KERN_DEBUG " Rx ring at %#llx -> %p:\n",
1936 (long long) np->rx_ring_dma, np->rx_done_q);
1938 for (i = 0; i < 8 /* RX_RING_SIZE */; i++) {
1939 printk(KERN_DEBUG " #%d desc. %#llx -> %#8.8x\n",
1940 i, (long long) dma_to_cpu(np->rx_ring[i].rxaddr), le32_to_cpu(np->rx_done_q[i].status));
1944 free_irq(dev->irq, dev);
1946 /* Free all the skbuffs in the Rx queue. */
1947 for (i = 0; i < RX_RING_SIZE; i++) {
1948 np->rx_ring[i].rxaddr = cpu_to_dma(0xBADF00D0); /* An invalid address. */
1949 if (np->rx_info[i].skb != NULL) {
1950 pci_unmap_single(np->pci_dev, np->rx_info[i].mapping, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1951 dev_kfree_skb(np->rx_info[i].skb);
1953 np->rx_info[i].skb = NULL;
1954 np->rx_info[i].mapping = 0;
1956 for (i = 0; i < TX_RING_SIZE; i++) {
1957 struct sk_buff *skb = np->tx_info[i].skb;
1960 pci_unmap_single(np->pci_dev,
1961 np->tx_info[i].mapping,
1962 skb_first_frag_len(skb), PCI_DMA_TODEVICE);
1963 np->tx_info[i].mapping = 0;
1965 np->tx_info[i].skb = NULL;
1972 static int starfire_suspend(struct pci_dev *pdev, pm_message_t state)
1974 struct net_device *dev = pci_get_drvdata(pdev);
1976 if (netif_running(dev)) {
1977 netif_device_detach(dev);
1981 pci_save_state(pdev);
1982 pci_set_power_state(pdev, pci_choose_state(pdev,state));
1987 static int starfire_resume(struct pci_dev *pdev)
1989 struct net_device *dev = pci_get_drvdata(pdev);
1991 pci_set_power_state(pdev, PCI_D0);
1992 pci_restore_state(pdev);
1994 if (netif_running(dev)) {
1996 netif_device_attach(dev);
2001 #endif /* CONFIG_PM */
2004 static void __devexit starfire_remove_one (struct pci_dev *pdev)
2006 struct net_device *dev = pci_get_drvdata(pdev);
2007 struct netdev_private *np = netdev_priv(dev);
2011 unregister_netdev(dev);
2014 pci_free_consistent(pdev, np->queue_mem_size, np->queue_mem, np->queue_mem_dma);
2017 /* XXX: add wakeup code -- requires firmware for MagicPacket */
2018 pci_set_power_state(pdev, PCI_D3hot); /* go to sleep in D3 mode */
2019 pci_disable_device(pdev);
2022 pci_release_regions(pdev);
2024 pci_set_drvdata(pdev, NULL);
2025 free_netdev(dev); /* Will also free np!! */
2029 static struct pci_driver starfire_driver = {
2031 .probe = starfire_init_one,
2032 .remove = __devexit_p(starfire_remove_one),
2034 .suspend = starfire_suspend,
2035 .resume = starfire_resume,
2036 #endif /* CONFIG_PM */
2037 .id_table = starfire_pci_tbl,
2041 static int __init starfire_init (void)
2043 /* when a module, this is printed whether or not devices are found in probe */
2046 #ifdef HAVE_NETDEV_POLL
2047 printk(KERN_INFO DRV_NAME ": polling (NAPI) enabled\n");
2049 printk(KERN_INFO DRV_NAME ": polling (NAPI) disabled\n");
2053 /* we can do this test only at run-time... sigh */
2054 if (sizeof(dma_addr_t) != sizeof(netdrv_addr_t)) {
2055 printk("This driver has dma_addr_t issues, please send email to maintainer\n");
2059 return pci_register_driver(&starfire_driver);
2063 static void __exit starfire_cleanup (void)
2065 pci_unregister_driver (&starfire_driver);
2069 module_init(starfire_init);
2070 module_exit(starfire_cleanup);