2 * "splice": joining two ropes together by interweaving their strands.
4 * This is the "extended pipe" functionality, where a pipe is used as
5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6 * buffer that you can use to transfer data from one end to the other.
8 * The traditional unix read/write is extended with a "splice()" operation
9 * that transfers data buffers to or from a pipe buffer.
11 * Named by Larry McVoy, original implementation from Linus, extended by
12 * Jens to support splicing to files, network, direct splicing, etc and
13 * fixing lots of bugs.
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/buffer_head.h>
29 #include <linux/module.h>
30 #include <linux/syscalls.h>
31 #include <linux/uio.h>
32 #include <linux/security.h>
33 #include <linux/gfp.h>
36 * Attempt to steal a page from a pipe buffer. This should perhaps go into
37 * a vm helper function, it's already simplified quite a bit by the
38 * addition of remove_mapping(). If success is returned, the caller may
39 * attempt to reuse this page for another destination.
41 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
42 struct pipe_buffer *buf)
44 struct page *page = buf->page;
45 struct address_space *mapping;
49 mapping = page_mapping(page);
51 WARN_ON(!PageUptodate(page));
54 * At least for ext2 with nobh option, we need to wait on
55 * writeback completing on this page, since we'll remove it
56 * from the pagecache. Otherwise truncate wont wait on the
57 * page, allowing the disk blocks to be reused by someone else
58 * before we actually wrote our data to them. fs corruption
61 wait_on_page_writeback(page);
63 if (page_has_private(page) &&
64 !try_to_release_page(page, GFP_KERNEL))
68 * If we succeeded in removing the mapping, set LRU flag
71 if (remove_mapping(mapping, page)) {
72 buf->flags |= PIPE_BUF_FLAG_LRU;
78 * Raced with truncate or failed to remove page from current
79 * address space, unlock and return failure.
86 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
87 struct pipe_buffer *buf)
89 page_cache_release(buf->page);
90 buf->flags &= ~PIPE_BUF_FLAG_LRU;
94 * Check whether the contents of buf is OK to access. Since the content
95 * is a page cache page, IO may be in flight.
97 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
98 struct pipe_buffer *buf)
100 struct page *page = buf->page;
103 if (!PageUptodate(page)) {
107 * Page got truncated/unhashed. This will cause a 0-byte
108 * splice, if this is the first page.
110 if (!page->mapping) {
116 * Uh oh, read-error from disk.
118 if (!PageUptodate(page)) {
124 * Page is ok afterall, we are done.
135 static const struct pipe_buf_operations page_cache_pipe_buf_ops = {
137 .map = generic_pipe_buf_map,
138 .unmap = generic_pipe_buf_unmap,
139 .confirm = page_cache_pipe_buf_confirm,
140 .release = page_cache_pipe_buf_release,
141 .steal = page_cache_pipe_buf_steal,
142 .get = generic_pipe_buf_get,
145 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
146 struct pipe_buffer *buf)
148 if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
151 buf->flags |= PIPE_BUF_FLAG_LRU;
152 return generic_pipe_buf_steal(pipe, buf);
155 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
157 .map = generic_pipe_buf_map,
158 .unmap = generic_pipe_buf_unmap,
159 .confirm = generic_pipe_buf_confirm,
160 .release = page_cache_pipe_buf_release,
161 .steal = user_page_pipe_buf_steal,
162 .get = generic_pipe_buf_get,
166 * splice_to_pipe - fill passed data into a pipe
167 * @pipe: pipe to fill
171 * @spd contains a map of pages and len/offset tuples, along with
172 * the struct pipe_buf_operations associated with these pages. This
173 * function will link that data to the pipe.
176 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
177 struct splice_pipe_desc *spd)
179 unsigned int spd_pages = spd->nr_pages;
180 int ret, do_wakeup, page_nr;
189 if (!pipe->readers) {
190 send_sig(SIGPIPE, current, 0);
196 if (pipe->nrbufs < PIPE_BUFFERS) {
197 int newbuf = (pipe->curbuf + pipe->nrbufs) & (PIPE_BUFFERS - 1);
198 struct pipe_buffer *buf = pipe->bufs + newbuf;
200 buf->page = spd->pages[page_nr];
201 buf->offset = spd->partial[page_nr].offset;
202 buf->len = spd->partial[page_nr].len;
203 buf->private = spd->partial[page_nr].private;
205 if (spd->flags & SPLICE_F_GIFT)
206 buf->flags |= PIPE_BUF_FLAG_GIFT;
215 if (!--spd->nr_pages)
217 if (pipe->nrbufs < PIPE_BUFFERS)
223 if (spd->flags & SPLICE_F_NONBLOCK) {
229 if (signal_pending(current)) {
237 if (waitqueue_active(&pipe->wait))
238 wake_up_interruptible_sync(&pipe->wait);
239 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
243 pipe->waiting_writers++;
245 pipe->waiting_writers--;
252 if (waitqueue_active(&pipe->wait))
253 wake_up_interruptible(&pipe->wait);
254 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
257 while (page_nr < spd_pages)
258 spd->spd_release(spd, page_nr++);
263 static void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
265 page_cache_release(spd->pages[i]);
269 __generic_file_splice_read(struct file *in, loff_t *ppos,
270 struct pipe_inode_info *pipe, size_t len,
273 struct address_space *mapping = in->f_mapping;
274 unsigned int loff, nr_pages, req_pages;
275 struct page *pages[PIPE_BUFFERS];
276 struct partial_page partial[PIPE_BUFFERS];
278 pgoff_t index, end_index;
281 struct splice_pipe_desc spd = {
285 .ops = &page_cache_pipe_buf_ops,
286 .spd_release = spd_release_page,
289 index = *ppos >> PAGE_CACHE_SHIFT;
290 loff = *ppos & ~PAGE_CACHE_MASK;
291 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
292 nr_pages = min(req_pages, (unsigned)PIPE_BUFFERS);
295 * Lookup the (hopefully) full range of pages we need.
297 spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, pages);
298 index += spd.nr_pages;
301 * If find_get_pages_contig() returned fewer pages than we needed,
302 * readahead/allocate the rest and fill in the holes.
304 if (spd.nr_pages < nr_pages)
305 page_cache_sync_readahead(mapping, &in->f_ra, in,
306 index, req_pages - spd.nr_pages);
309 while (spd.nr_pages < nr_pages) {
311 * Page could be there, find_get_pages_contig() breaks on
314 page = find_get_page(mapping, index);
317 * page didn't exist, allocate one.
319 page = page_cache_alloc_cold(mapping);
323 error = add_to_page_cache_lru(page, mapping, index,
324 mapping_gfp_mask(mapping));
325 if (unlikely(error)) {
326 page_cache_release(page);
327 if (error == -EEXIST)
332 * add_to_page_cache() locks the page, unlock it
333 * to avoid convoluting the logic below even more.
338 pages[spd.nr_pages++] = page;
343 * Now loop over the map and see if we need to start IO on any
344 * pages, fill in the partial map, etc.
346 index = *ppos >> PAGE_CACHE_SHIFT;
347 nr_pages = spd.nr_pages;
349 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
350 unsigned int this_len;
356 * this_len is the max we'll use from this page
358 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
359 page = pages[page_nr];
361 if (PageReadahead(page))
362 page_cache_async_readahead(mapping, &in->f_ra, in,
363 page, index, req_pages - page_nr);
366 * If the page isn't uptodate, we may need to start io on it
368 if (!PageUptodate(page)) {
370 * If in nonblock mode then dont block on waiting
371 * for an in-flight io page
373 if (flags & SPLICE_F_NONBLOCK) {
374 if (!trylock_page(page)) {
382 * Page was truncated, or invalidated by the
383 * filesystem. Redo the find/create, but this time the
384 * page is kept locked, so there's no chance of another
385 * race with truncate/invalidate.
387 if (!page->mapping) {
389 page = find_or_create_page(mapping, index,
390 mapping_gfp_mask(mapping));
396 page_cache_release(pages[page_nr]);
397 pages[page_nr] = page;
400 * page was already under io and is now done, great
402 if (PageUptodate(page)) {
408 * need to read in the page
410 error = mapping->a_ops->readpage(in, page);
411 if (unlikely(error)) {
413 * We really should re-lookup the page here,
414 * but it complicates things a lot. Instead
415 * lets just do what we already stored, and
416 * we'll get it the next time we are called.
418 if (error == AOP_TRUNCATED_PAGE)
426 * i_size must be checked after PageUptodate.
428 isize = i_size_read(mapping->host);
429 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
430 if (unlikely(!isize || index > end_index))
434 * if this is the last page, see if we need to shrink
435 * the length and stop
437 if (end_index == index) {
441 * max good bytes in this page
443 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
448 * force quit after adding this page
450 this_len = min(this_len, plen - loff);
454 partial[page_nr].offset = loff;
455 partial[page_nr].len = this_len;
463 * Release any pages at the end, if we quit early. 'page_nr' is how far
464 * we got, 'nr_pages' is how many pages are in the map.
466 while (page_nr < nr_pages)
467 page_cache_release(pages[page_nr++]);
468 in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
471 return splice_to_pipe(pipe, &spd);
477 * generic_file_splice_read - splice data from file to a pipe
478 * @in: file to splice from
479 * @ppos: position in @in
480 * @pipe: pipe to splice to
481 * @len: number of bytes to splice
482 * @flags: splice modifier flags
485 * Will read pages from given file and fill them into a pipe. Can be
486 * used as long as the address_space operations for the source implements
490 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
491 struct pipe_inode_info *pipe, size_t len,
497 isize = i_size_read(in->f_mapping->host);
498 if (unlikely(*ppos >= isize))
501 left = isize - *ppos;
502 if (unlikely(left < len))
505 ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
513 EXPORT_SYMBOL(generic_file_splice_read);
515 static const struct pipe_buf_operations default_pipe_buf_ops = {
517 .map = generic_pipe_buf_map,
518 .unmap = generic_pipe_buf_unmap,
519 .confirm = generic_pipe_buf_confirm,
520 .release = generic_pipe_buf_release,
521 .steal = generic_pipe_buf_steal,
522 .get = generic_pipe_buf_get,
525 static ssize_t kernel_readv(struct file *file, const struct iovec *vec,
526 unsigned long vlen, loff_t offset)
534 /* The cast to a user pointer is valid due to the set_fs() */
535 res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos);
541 static ssize_t kernel_write(struct file *file, const char *buf, size_t count,
549 /* The cast to a user pointer is valid due to the set_fs() */
550 res = vfs_write(file, (const char __user *)buf, count, &pos);
556 ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
557 struct pipe_inode_info *pipe, size_t len,
560 unsigned int nr_pages;
561 unsigned int nr_freed;
563 struct page *pages[PIPE_BUFFERS];
564 struct partial_page partial[PIPE_BUFFERS];
565 struct iovec vec[PIPE_BUFFERS];
571 struct splice_pipe_desc spd = {
575 .ops = &default_pipe_buf_ops,
576 .spd_release = spd_release_page,
579 index = *ppos >> PAGE_CACHE_SHIFT;
580 offset = *ppos & ~PAGE_CACHE_MASK;
581 nr_pages = (len + offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
583 for (i = 0; i < nr_pages && i < PIPE_BUFFERS && len; i++) {
586 page = alloc_page(GFP_USER);
591 this_len = min_t(size_t, len, PAGE_CACHE_SIZE - offset);
592 vec[i].iov_base = (void __user *) page_address(page);
593 vec[i].iov_len = this_len;
600 res = kernel_readv(in, vec, spd.nr_pages, *ppos);
611 for (i = 0; i < spd.nr_pages; i++) {
612 this_len = min_t(size_t, vec[i].iov_len, res);
613 partial[i].offset = 0;
614 partial[i].len = this_len;
616 __free_page(pages[i]);
622 spd.nr_pages -= nr_freed;
624 res = splice_to_pipe(pipe, &spd);
631 for (i = 0; i < spd.nr_pages; i++)
632 __free_page(pages[i]);
636 EXPORT_SYMBOL(default_file_splice_read);
639 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
640 * using sendpage(). Return the number of bytes sent.
642 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
643 struct pipe_buffer *buf, struct splice_desc *sd)
645 struct file *file = sd->u.file;
646 loff_t pos = sd->pos;
649 ret = buf->ops->confirm(pipe, buf);
651 more = (sd->flags & SPLICE_F_MORE) || sd->len < sd->total_len;
652 if (file->f_op && file->f_op->sendpage)
653 ret = file->f_op->sendpage(file, buf->page, buf->offset,
654 sd->len, &pos, more);
663 * This is a little more tricky than the file -> pipe splicing. There are
664 * basically three cases:
666 * - Destination page already exists in the address space and there
667 * are users of it. For that case we have no other option that
668 * copying the data. Tough luck.
669 * - Destination page already exists in the address space, but there
670 * are no users of it. Make sure it's uptodate, then drop it. Fall
671 * through to last case.
672 * - Destination page does not exist, we can add the pipe page to
673 * the page cache and avoid the copy.
675 * If asked to move pages to the output file (SPLICE_F_MOVE is set in
676 * sd->flags), we attempt to migrate pages from the pipe to the output
677 * file address space page cache. This is possible if no one else has
678 * the pipe page referenced outside of the pipe and page cache. If
679 * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
680 * a new page in the output file page cache and fill/dirty that.
682 int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
683 struct splice_desc *sd)
685 struct file *file = sd->u.file;
686 struct address_space *mapping = file->f_mapping;
687 unsigned int offset, this_len;
693 * make sure the data in this buffer is uptodate
695 ret = buf->ops->confirm(pipe, buf);
699 offset = sd->pos & ~PAGE_CACHE_MASK;
702 if (this_len + offset > PAGE_CACHE_SIZE)
703 this_len = PAGE_CACHE_SIZE - offset;
705 ret = pagecache_write_begin(file, mapping, sd->pos, this_len,
706 AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
710 if (buf->page != page) {
712 * Careful, ->map() uses KM_USER0!
714 char *src = buf->ops->map(pipe, buf, 1);
715 char *dst = kmap_atomic(page, KM_USER1);
717 memcpy(dst + offset, src + buf->offset, this_len);
718 flush_dcache_page(page);
719 kunmap_atomic(dst, KM_USER1);
720 buf->ops->unmap(pipe, buf, src);
722 ret = pagecache_write_end(file, mapping, sd->pos, this_len, this_len,
727 EXPORT_SYMBOL(pipe_to_file);
729 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
732 if (waitqueue_active(&pipe->wait))
733 wake_up_interruptible(&pipe->wait);
734 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
738 * splice_from_pipe_feed - feed available data from a pipe to a file
739 * @pipe: pipe to splice from
740 * @sd: information to @actor
741 * @actor: handler that splices the data
744 * This function loops over the pipe and calls @actor to do the
745 * actual moving of a single struct pipe_buffer to the desired
746 * destination. It returns when there's no more buffers left in
747 * the pipe or if the requested number of bytes (@sd->total_len)
748 * have been copied. It returns a positive number (one) if the
749 * pipe needs to be filled with more data, zero if the required
750 * number of bytes have been copied and -errno on error.
752 * This, together with splice_from_pipe_{begin,end,next}, may be
753 * used to implement the functionality of __splice_from_pipe() when
754 * locking is required around copying the pipe buffers to the
757 int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
762 while (pipe->nrbufs) {
763 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
764 const struct pipe_buf_operations *ops = buf->ops;
767 if (sd->len > sd->total_len)
768 sd->len = sd->total_len;
770 ret = actor(pipe, buf, sd);
779 sd->num_spliced += ret;
782 sd->total_len -= ret;
786 ops->release(pipe, buf);
787 pipe->curbuf = (pipe->curbuf + 1) & (PIPE_BUFFERS - 1);
790 sd->need_wakeup = true;
799 EXPORT_SYMBOL(splice_from_pipe_feed);
802 * splice_from_pipe_next - wait for some data to splice from
803 * @pipe: pipe to splice from
804 * @sd: information about the splice operation
807 * This function will wait for some data and return a positive
808 * value (one) if pipe buffers are available. It will return zero
809 * or -errno if no more data needs to be spliced.
811 int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
813 while (!pipe->nrbufs) {
817 if (!pipe->waiting_writers && sd->num_spliced)
820 if (sd->flags & SPLICE_F_NONBLOCK)
823 if (signal_pending(current))
826 if (sd->need_wakeup) {
827 wakeup_pipe_writers(pipe);
828 sd->need_wakeup = false;
836 EXPORT_SYMBOL(splice_from_pipe_next);
839 * splice_from_pipe_begin - start splicing from pipe
840 * @sd: information about the splice operation
843 * This function should be called before a loop containing
844 * splice_from_pipe_next() and splice_from_pipe_feed() to
845 * initialize the necessary fields of @sd.
847 void splice_from_pipe_begin(struct splice_desc *sd)
850 sd->need_wakeup = false;
852 EXPORT_SYMBOL(splice_from_pipe_begin);
855 * splice_from_pipe_end - finish splicing from pipe
856 * @pipe: pipe to splice from
857 * @sd: information about the splice operation
860 * This function will wake up pipe writers if necessary. It should
861 * be called after a loop containing splice_from_pipe_next() and
862 * splice_from_pipe_feed().
864 void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
867 wakeup_pipe_writers(pipe);
869 EXPORT_SYMBOL(splice_from_pipe_end);
872 * __splice_from_pipe - splice data from a pipe to given actor
873 * @pipe: pipe to splice from
874 * @sd: information to @actor
875 * @actor: handler that splices the data
878 * This function does little more than loop over the pipe and call
879 * @actor to do the actual moving of a single struct pipe_buffer to
880 * the desired destination. See pipe_to_file, pipe_to_sendpage, or
884 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
889 splice_from_pipe_begin(sd);
891 ret = splice_from_pipe_next(pipe, sd);
893 ret = splice_from_pipe_feed(pipe, sd, actor);
895 splice_from_pipe_end(pipe, sd);
897 return sd->num_spliced ? sd->num_spliced : ret;
899 EXPORT_SYMBOL(__splice_from_pipe);
902 * splice_from_pipe - splice data from a pipe to a file
903 * @pipe: pipe to splice from
904 * @out: file to splice to
905 * @ppos: position in @out
906 * @len: how many bytes to splice
907 * @flags: splice modifier flags
908 * @actor: handler that splices the data
911 * See __splice_from_pipe. This function locks the pipe inode,
912 * otherwise it's identical to __splice_from_pipe().
915 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
916 loff_t *ppos, size_t len, unsigned int flags,
920 struct splice_desc sd = {
928 ret = __splice_from_pipe(pipe, &sd, actor);
935 * generic_file_splice_write - splice data from a pipe to a file
937 * @out: file to write to
938 * @ppos: position in @out
939 * @len: number of bytes to splice
940 * @flags: splice modifier flags
943 * Will either move or copy pages (determined by @flags options) from
944 * the given pipe inode to the given file.
948 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
949 loff_t *ppos, size_t len, unsigned int flags)
951 struct address_space *mapping = out->f_mapping;
952 struct inode *inode = mapping->host;
953 struct splice_desc sd = {
963 splice_from_pipe_begin(&sd);
965 ret = splice_from_pipe_next(pipe, &sd);
969 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
970 ret = file_remove_suid(out);
972 file_update_time(out);
973 ret = splice_from_pipe_feed(pipe, &sd, pipe_to_file);
975 mutex_unlock(&inode->i_mutex);
977 splice_from_pipe_end(pipe, &sd);
982 ret = sd.num_spliced;
985 unsigned long nr_pages;
988 nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
990 err = generic_write_sync(out, *ppos, ret);
995 balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
1001 EXPORT_SYMBOL(generic_file_splice_write);
1003 static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1004 struct splice_desc *sd)
1009 ret = buf->ops->confirm(pipe, buf);
1013 data = buf->ops->map(pipe, buf, 0);
1014 ret = kernel_write(sd->u.file, data + buf->offset, sd->len, sd->pos);
1015 buf->ops->unmap(pipe, buf, data);
1020 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe,
1021 struct file *out, loff_t *ppos,
1022 size_t len, unsigned int flags)
1026 ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf);
1034 * generic_splice_sendpage - splice data from a pipe to a socket
1035 * @pipe: pipe to splice from
1036 * @out: socket to write to
1037 * @ppos: position in @out
1038 * @len: number of bytes to splice
1039 * @flags: splice modifier flags
1042 * Will send @len bytes from the pipe to a network socket. No data copying
1046 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
1047 loff_t *ppos, size_t len, unsigned int flags)
1049 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
1052 EXPORT_SYMBOL(generic_splice_sendpage);
1055 * Attempt to initiate a splice from pipe to file.
1057 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
1058 loff_t *ppos, size_t len, unsigned int flags)
1060 ssize_t (*splice_write)(struct pipe_inode_info *, struct file *,
1061 loff_t *, size_t, unsigned int);
1064 if (unlikely(!(out->f_mode & FMODE_WRITE)))
1067 if (unlikely(out->f_flags & O_APPEND))
1070 ret = rw_verify_area(WRITE, out, ppos, len);
1071 if (unlikely(ret < 0))
1074 if (out->f_op && out->f_op->splice_write)
1075 splice_write = out->f_op->splice_write;
1077 splice_write = default_file_splice_write;
1079 return splice_write(pipe, out, ppos, len, flags);
1083 * Attempt to initiate a splice from a file to a pipe.
1085 static long do_splice_to(struct file *in, loff_t *ppos,
1086 struct pipe_inode_info *pipe, size_t len,
1089 ssize_t (*splice_read)(struct file *, loff_t *,
1090 struct pipe_inode_info *, size_t, unsigned int);
1093 if (unlikely(!(in->f_mode & FMODE_READ)))
1096 ret = rw_verify_area(READ, in, ppos, len);
1097 if (unlikely(ret < 0))
1100 if (in->f_op && in->f_op->splice_read)
1101 splice_read = in->f_op->splice_read;
1103 splice_read = default_file_splice_read;
1105 return splice_read(in, ppos, pipe, len, flags);
1109 * splice_direct_to_actor - splices data directly between two non-pipes
1110 * @in: file to splice from
1111 * @sd: actor information on where to splice to
1112 * @actor: handles the data splicing
1115 * This is a special case helper to splice directly between two
1116 * points, without requiring an explicit pipe. Internally an allocated
1117 * pipe is cached in the process, and reused during the lifetime of
1121 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1122 splice_direct_actor *actor)
1124 struct pipe_inode_info *pipe;
1131 * We require the input being a regular file, as we don't want to
1132 * randomly drop data for eg socket -> socket splicing. Use the
1133 * piped splicing for that!
1135 i_mode = in->f_path.dentry->d_inode->i_mode;
1136 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1140 * neither in nor out is a pipe, setup an internal pipe attached to
1141 * 'out' and transfer the wanted data from 'in' to 'out' through that
1143 pipe = current->splice_pipe;
1144 if (unlikely(!pipe)) {
1145 pipe = alloc_pipe_info(NULL);
1150 * We don't have an immediate reader, but we'll read the stuff
1151 * out of the pipe right after the splice_to_pipe(). So set
1152 * PIPE_READERS appropriately.
1156 current->splice_pipe = pipe;
1164 len = sd->total_len;
1168 * Don't block on output, we have to drain the direct pipe.
1170 sd->flags &= ~SPLICE_F_NONBLOCK;
1174 loff_t pos = sd->pos, prev_pos = pos;
1176 ret = do_splice_to(in, &pos, pipe, len, flags);
1177 if (unlikely(ret <= 0))
1181 sd->total_len = read_len;
1184 * NOTE: nonblocking mode only applies to the input. We
1185 * must not do the output in nonblocking mode as then we
1186 * could get stuck data in the internal pipe:
1188 ret = actor(pipe, sd);
1189 if (unlikely(ret <= 0)) {
1198 if (ret < read_len) {
1199 sd->pos = prev_pos + ret;
1205 pipe->nrbufs = pipe->curbuf = 0;
1211 * If we did an incomplete transfer we must release
1212 * the pipe buffers in question:
1214 for (i = 0; i < PIPE_BUFFERS; i++) {
1215 struct pipe_buffer *buf = pipe->bufs + i;
1218 buf->ops->release(pipe, buf);
1228 EXPORT_SYMBOL(splice_direct_to_actor);
1230 static int direct_splice_actor(struct pipe_inode_info *pipe,
1231 struct splice_desc *sd)
1233 struct file *file = sd->u.file;
1235 return do_splice_from(pipe, file, &sd->pos, sd->total_len, sd->flags);
1239 * do_splice_direct - splices data directly between two files
1240 * @in: file to splice from
1241 * @ppos: input file offset
1242 * @out: file to splice to
1243 * @len: number of bytes to splice
1244 * @flags: splice modifier flags
1247 * For use by do_sendfile(). splice can easily emulate sendfile, but
1248 * doing it in the application would incur an extra system call
1249 * (splice in + splice out, as compared to just sendfile()). So this helper
1250 * can splice directly through a process-private pipe.
1253 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1254 size_t len, unsigned int flags)
1256 struct splice_desc sd = {
1265 ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1272 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1273 struct pipe_inode_info *opipe,
1274 size_t len, unsigned int flags);
1276 * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1277 * location, so checking ->i_pipe is not enough to verify that this is a
1280 static inline struct pipe_inode_info *pipe_info(struct inode *inode)
1282 if (S_ISFIFO(inode->i_mode))
1283 return inode->i_pipe;
1289 * Determine where to splice to/from.
1291 static long do_splice(struct file *in, loff_t __user *off_in,
1292 struct file *out, loff_t __user *off_out,
1293 size_t len, unsigned int flags)
1295 struct pipe_inode_info *ipipe;
1296 struct pipe_inode_info *opipe;
1297 loff_t offset, *off;
1300 ipipe = pipe_info(in->f_path.dentry->d_inode);
1301 opipe = pipe_info(out->f_path.dentry->d_inode);
1303 if (ipipe && opipe) {
1304 if (off_in || off_out)
1307 if (!(in->f_mode & FMODE_READ))
1310 if (!(out->f_mode & FMODE_WRITE))
1313 /* Splicing to self would be fun, but... */
1317 return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1324 if (!out->f_op || !out->f_op->llseek ||
1325 out->f_op->llseek == no_llseek)
1327 if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1333 ret = do_splice_from(ipipe, out, off, len, flags);
1335 if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
1345 if (!in->f_op || !in->f_op->llseek ||
1346 in->f_op->llseek == no_llseek)
1348 if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1354 ret = do_splice_to(in, off, opipe, len, flags);
1356 if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
1366 * Map an iov into an array of pages and offset/length tupples. With the
1367 * partial_page structure, we can map several non-contiguous ranges into
1368 * our ones pages[] map instead of splitting that operation into pieces.
1369 * Could easily be exported as a generic helper for other users, in which
1370 * case one would probably want to add a 'max_nr_pages' parameter as well.
1372 static int get_iovec_page_array(const struct iovec __user *iov,
1373 unsigned int nr_vecs, struct page **pages,
1374 struct partial_page *partial, int aligned)
1376 int buffers = 0, error = 0;
1379 unsigned long off, npages;
1386 if (copy_from_user(&entry, iov, sizeof(entry)))
1389 base = entry.iov_base;
1390 len = entry.iov_len;
1393 * Sanity check this iovec. 0 read succeeds.
1399 if (!access_ok(VERIFY_READ, base, len))
1403 * Get this base offset and number of pages, then map
1404 * in the user pages.
1406 off = (unsigned long) base & ~PAGE_MASK;
1409 * If asked for alignment, the offset must be zero and the
1410 * length a multiple of the PAGE_SIZE.
1413 if (aligned && (off || len & ~PAGE_MASK))
1416 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1417 if (npages > PIPE_BUFFERS - buffers)
1418 npages = PIPE_BUFFERS - buffers;
1420 error = get_user_pages_fast((unsigned long)base, npages,
1421 0, &pages[buffers]);
1423 if (unlikely(error <= 0))
1427 * Fill this contiguous range into the partial page map.
1429 for (i = 0; i < error; i++) {
1430 const int plen = min_t(size_t, len, PAGE_SIZE - off);
1432 partial[buffers].offset = off;
1433 partial[buffers].len = plen;
1441 * We didn't complete this iov, stop here since it probably
1442 * means we have to move some of this into a pipe to
1443 * be able to continue.
1449 * Don't continue if we mapped fewer pages than we asked for,
1450 * or if we mapped the max number of pages that we have
1453 if (error < npages || buffers == PIPE_BUFFERS)
1466 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1467 struct splice_desc *sd)
1472 ret = buf->ops->confirm(pipe, buf);
1477 * See if we can use the atomic maps, by prefaulting in the
1478 * pages and doing an atomic copy
1480 if (!fault_in_pages_writeable(sd->u.userptr, sd->len)) {
1481 src = buf->ops->map(pipe, buf, 1);
1482 ret = __copy_to_user_inatomic(sd->u.userptr, src + buf->offset,
1484 buf->ops->unmap(pipe, buf, src);
1492 * No dice, use slow non-atomic map and copy
1494 src = buf->ops->map(pipe, buf, 0);
1497 if (copy_to_user(sd->u.userptr, src + buf->offset, sd->len))
1500 buf->ops->unmap(pipe, buf, src);
1503 sd->u.userptr += ret;
1508 * For lack of a better implementation, implement vmsplice() to userspace
1509 * as a simple copy of the pipes pages to the user iov.
1511 static long vmsplice_to_user(struct file *file, const struct iovec __user *iov,
1512 unsigned long nr_segs, unsigned int flags)
1514 struct pipe_inode_info *pipe;
1515 struct splice_desc sd;
1520 pipe = pipe_info(file->f_path.dentry->d_inode);
1532 * Get user address base and length for this iovec.
1534 error = get_user(base, &iov->iov_base);
1535 if (unlikely(error))
1537 error = get_user(len, &iov->iov_len);
1538 if (unlikely(error))
1542 * Sanity check this iovec. 0 read succeeds.
1546 if (unlikely(!base)) {
1551 if (unlikely(!access_ok(VERIFY_WRITE, base, len))) {
1559 sd.u.userptr = base;
1562 size = __splice_from_pipe(pipe, &sd, pipe_to_user);
1588 * vmsplice splices a user address range into a pipe. It can be thought of
1589 * as splice-from-memory, where the regular splice is splice-from-file (or
1590 * to file). In both cases the output is a pipe, naturally.
1592 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1593 unsigned long nr_segs, unsigned int flags)
1595 struct pipe_inode_info *pipe;
1596 struct page *pages[PIPE_BUFFERS];
1597 struct partial_page partial[PIPE_BUFFERS];
1598 struct splice_pipe_desc spd = {
1602 .ops = &user_page_pipe_buf_ops,
1603 .spd_release = spd_release_page,
1606 pipe = pipe_info(file->f_path.dentry->d_inode);
1610 spd.nr_pages = get_iovec_page_array(iov, nr_segs, pages, partial,
1611 flags & SPLICE_F_GIFT);
1612 if (spd.nr_pages <= 0)
1613 return spd.nr_pages;
1615 return splice_to_pipe(pipe, &spd);
1619 * Note that vmsplice only really supports true splicing _from_ user memory
1620 * to a pipe, not the other way around. Splicing from user memory is a simple
1621 * operation that can be supported without any funky alignment restrictions
1622 * or nasty vm tricks. We simply map in the user memory and fill them into
1623 * a pipe. The reverse isn't quite as easy, though. There are two possible
1624 * solutions for that:
1626 * - memcpy() the data internally, at which point we might as well just
1627 * do a regular read() on the buffer anyway.
1628 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1629 * has restriction limitations on both ends of the pipe).
1631 * Currently we punt and implement it as a normal copy, see pipe_to_user().
1634 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1635 unsigned long, nr_segs, unsigned int, flags)
1641 if (unlikely(nr_segs > UIO_MAXIOV))
1643 else if (unlikely(!nr_segs))
1647 file = fget_light(fd, &fput);
1649 if (file->f_mode & FMODE_WRITE)
1650 error = vmsplice_to_pipe(file, iov, nr_segs, flags);
1651 else if (file->f_mode & FMODE_READ)
1652 error = vmsplice_to_user(file, iov, nr_segs, flags);
1654 fput_light(file, fput);
1660 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1661 int, fd_out, loff_t __user *, off_out,
1662 size_t, len, unsigned int, flags)
1665 struct file *in, *out;
1666 int fput_in, fput_out;
1672 in = fget_light(fd_in, &fput_in);
1674 if (in->f_mode & FMODE_READ) {
1675 out = fget_light(fd_out, &fput_out);
1677 if (out->f_mode & FMODE_WRITE)
1678 error = do_splice(in, off_in,
1681 fput_light(out, fput_out);
1685 fput_light(in, fput_in);
1692 * Make sure there's data to read. Wait for input if we can, otherwise
1693 * return an appropriate error.
1695 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1700 * Check ->nrbufs without the inode lock first. This function
1701 * is speculative anyways, so missing one is ok.
1709 while (!pipe->nrbufs) {
1710 if (signal_pending(current)) {
1716 if (!pipe->waiting_writers) {
1717 if (flags & SPLICE_F_NONBLOCK) {
1730 * Make sure there's writeable room. Wait for room if we can, otherwise
1731 * return an appropriate error.
1733 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1738 * Check ->nrbufs without the inode lock first. This function
1739 * is speculative anyways, so missing one is ok.
1741 if (pipe->nrbufs < PIPE_BUFFERS)
1747 while (pipe->nrbufs >= PIPE_BUFFERS) {
1748 if (!pipe->readers) {
1749 send_sig(SIGPIPE, current, 0);
1753 if (flags & SPLICE_F_NONBLOCK) {
1757 if (signal_pending(current)) {
1761 pipe->waiting_writers++;
1763 pipe->waiting_writers--;
1771 * Splice contents of ipipe to opipe.
1773 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1774 struct pipe_inode_info *opipe,
1775 size_t len, unsigned int flags)
1777 struct pipe_buffer *ibuf, *obuf;
1779 bool input_wakeup = false;
1783 ret = ipipe_prep(ipipe, flags);
1787 ret = opipe_prep(opipe, flags);
1792 * Potential ABBA deadlock, work around it by ordering lock
1793 * grabbing by pipe info address. Otherwise two different processes
1794 * could deadlock (one doing tee from A -> B, the other from B -> A).
1796 pipe_double_lock(ipipe, opipe);
1799 if (!opipe->readers) {
1800 send_sig(SIGPIPE, current, 0);
1806 if (!ipipe->nrbufs && !ipipe->writers)
1810 * Cannot make any progress, because either the input
1811 * pipe is empty or the output pipe is full.
1813 if (!ipipe->nrbufs || opipe->nrbufs >= PIPE_BUFFERS) {
1814 /* Already processed some buffers, break */
1818 if (flags & SPLICE_F_NONBLOCK) {
1824 * We raced with another reader/writer and haven't
1825 * managed to process any buffers. A zero return
1826 * value means EOF, so retry instead.
1833 ibuf = ipipe->bufs + ipipe->curbuf;
1834 nbuf = (opipe->curbuf + opipe->nrbufs) % PIPE_BUFFERS;
1835 obuf = opipe->bufs + nbuf;
1837 if (len >= ibuf->len) {
1839 * Simply move the whole buffer from ipipe to opipe
1844 ipipe->curbuf = (ipipe->curbuf + 1) % PIPE_BUFFERS;
1846 input_wakeup = true;
1849 * Get a reference to this pipe buffer,
1850 * so we can copy the contents over.
1852 ibuf->ops->get(ipipe, ibuf);
1856 * Don't inherit the gift flag, we need to
1857 * prevent multiple steals of this page.
1859 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1863 ibuf->offset += obuf->len;
1864 ibuf->len -= obuf->len;
1874 * If we put data in the output pipe, wakeup any potential readers.
1878 if (waitqueue_active(&opipe->wait))
1879 wake_up_interruptible(&opipe->wait);
1880 kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN);
1883 wakeup_pipe_writers(ipipe);
1889 * Link contents of ipipe to opipe.
1891 static int link_pipe(struct pipe_inode_info *ipipe,
1892 struct pipe_inode_info *opipe,
1893 size_t len, unsigned int flags)
1895 struct pipe_buffer *ibuf, *obuf;
1896 int ret = 0, i = 0, nbuf;
1899 * Potential ABBA deadlock, work around it by ordering lock
1900 * grabbing by pipe info address. Otherwise two different processes
1901 * could deadlock (one doing tee from A -> B, the other from B -> A).
1903 pipe_double_lock(ipipe, opipe);
1906 if (!opipe->readers) {
1907 send_sig(SIGPIPE, current, 0);
1914 * If we have iterated all input buffers or ran out of
1915 * output room, break.
1917 if (i >= ipipe->nrbufs || opipe->nrbufs >= PIPE_BUFFERS)
1920 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (PIPE_BUFFERS - 1));
1921 nbuf = (opipe->curbuf + opipe->nrbufs) & (PIPE_BUFFERS - 1);
1924 * Get a reference to this pipe buffer,
1925 * so we can copy the contents over.
1927 ibuf->ops->get(ipipe, ibuf);
1929 obuf = opipe->bufs + nbuf;
1933 * Don't inherit the gift flag, we need to
1934 * prevent multiple steals of this page.
1936 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1938 if (obuf->len > len)
1948 * return EAGAIN if we have the potential of some data in the
1949 * future, otherwise just return 0
1951 if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1958 * If we put data in the output pipe, wakeup any potential readers.
1962 if (waitqueue_active(&opipe->wait))
1963 wake_up_interruptible(&opipe->wait);
1964 kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN);
1971 * This is a tee(1) implementation that works on pipes. It doesn't copy
1972 * any data, it simply references the 'in' pages on the 'out' pipe.
1973 * The 'flags' used are the SPLICE_F_* variants, currently the only
1974 * applicable one is SPLICE_F_NONBLOCK.
1976 static long do_tee(struct file *in, struct file *out, size_t len,
1979 struct pipe_inode_info *ipipe = pipe_info(in->f_path.dentry->d_inode);
1980 struct pipe_inode_info *opipe = pipe_info(out->f_path.dentry->d_inode);
1984 * Duplicate the contents of ipipe to opipe without actually
1987 if (ipipe && opipe && ipipe != opipe) {
1989 * Keep going, unless we encounter an error. The ipipe/opipe
1990 * ordering doesn't really matter.
1992 ret = ipipe_prep(ipipe, flags);
1994 ret = opipe_prep(opipe, flags);
1996 ret = link_pipe(ipipe, opipe, len, flags);
2003 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
2012 in = fget_light(fdin, &fput_in);
2014 if (in->f_mode & FMODE_READ) {
2016 struct file *out = fget_light(fdout, &fput_out);
2019 if (out->f_mode & FMODE_WRITE)
2020 error = do_tee(in, out, len, flags);
2021 fput_light(out, fput_out);
2024 fput_light(in, fput_in);