1 /* SPDX-License-Identifier: GPL-2.0 */
6 * Define 'struct task_struct' and provide the main scheduler
7 * APIs (schedule(), wakeup variants, etc.)
10 #include <uapi/linux/sched.h>
12 #include <asm/current.h>
14 #include <linux/pid.h>
15 #include <linux/sem.h>
16 #include <linux/shm.h>
17 #include <linux/mutex.h>
18 #include <linux/plist.h>
19 #include <linux/hrtimer.h>
20 #include <linux/irqflags.h>
21 #include <linux/seccomp.h>
22 #include <linux/nodemask.h>
23 #include <linux/rcupdate.h>
24 #include <linux/refcount.h>
25 #include <linux/resource.h>
26 #include <linux/latencytop.h>
27 #include <linux/sched/prio.h>
28 #include <linux/sched/types.h>
29 #include <linux/signal_types.h>
30 #include <linux/syscall_user_dispatch.h>
31 #include <linux/mm_types_task.h>
32 #include <linux/task_io_accounting.h>
33 #include <linux/posix-timers.h>
34 #include <linux/rseq.h>
35 #include <linux/seqlock.h>
36 #include <linux/kcsan.h>
37 #include <asm/kmap_size.h>
39 /* task_struct member predeclarations (sorted alphabetically): */
41 struct backing_dev_info;
44 struct bpf_local_storage;
46 struct capture_control;
49 struct futex_pi_state;
55 struct perf_event_context;
57 struct pipe_inode_info;
60 struct robust_list_head;
66 struct sighand_struct;
68 struct task_delay_info;
72 * Task state bitmask. NOTE! These bits are also
73 * encoded in fs/proc/array.c: get_task_state().
75 * We have two separate sets of flags: task->state
76 * is about runnability, while task->exit_state are
77 * about the task exiting. Confusing, but this way
78 * modifying one set can't modify the other one by
82 /* Used in tsk->state: */
83 #define TASK_RUNNING 0x0000
84 #define TASK_INTERRUPTIBLE 0x0001
85 #define TASK_UNINTERRUPTIBLE 0x0002
86 #define __TASK_STOPPED 0x0004
87 #define __TASK_TRACED 0x0008
88 /* Used in tsk->exit_state: */
89 #define EXIT_DEAD 0x0010
90 #define EXIT_ZOMBIE 0x0020
91 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
92 /* Used in tsk->state again: */
93 #define TASK_PARKED 0x0040
94 #define TASK_DEAD 0x0080
95 #define TASK_WAKEKILL 0x0100
96 #define TASK_WAKING 0x0200
97 #define TASK_NOLOAD 0x0400
98 #define TASK_NEW 0x0800
99 /* RT specific auxilliary flag to mark RT lock waiters */
100 #define TASK_RTLOCK_WAIT 0x1000
101 #define TASK_STATE_MAX 0x2000
103 /* Convenience macros for the sake of set_current_state: */
104 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
105 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
106 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
108 #define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
110 /* Convenience macros for the sake of wake_up(): */
111 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
113 /* get_task_state(): */
114 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
115 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
116 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
119 #define task_is_running(task) (READ_ONCE((task)->__state) == TASK_RUNNING)
121 #define task_is_traced(task) ((READ_ONCE(task->__state) & __TASK_TRACED) != 0)
123 #define task_is_stopped(task) ((READ_ONCE(task->__state) & __TASK_STOPPED) != 0)
125 #define task_is_stopped_or_traced(task) ((READ_ONCE(task->__state) & (__TASK_STOPPED | __TASK_TRACED)) != 0)
128 * Special states are those that do not use the normal wait-loop pattern. See
129 * the comment with set_special_state().
131 #define is_special_task_state(state) \
132 ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
134 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
135 # define debug_normal_state_change(state_value) \
137 WARN_ON_ONCE(is_special_task_state(state_value)); \
138 current->task_state_change = _THIS_IP_; \
141 # define debug_special_state_change(state_value) \
143 WARN_ON_ONCE(!is_special_task_state(state_value)); \
144 current->task_state_change = _THIS_IP_; \
147 # define debug_rtlock_wait_set_state() \
149 current->saved_state_change = current->task_state_change;\
150 current->task_state_change = _THIS_IP_; \
153 # define debug_rtlock_wait_restore_state() \
155 current->task_state_change = current->saved_state_change;\
159 # define debug_normal_state_change(cond) do { } while (0)
160 # define debug_special_state_change(cond) do { } while (0)
161 # define debug_rtlock_wait_set_state() do { } while (0)
162 # define debug_rtlock_wait_restore_state() do { } while (0)
166 * set_current_state() includes a barrier so that the write of current->state
167 * is correctly serialised wrt the caller's subsequent test of whether to
171 * set_current_state(TASK_UNINTERRUPTIBLE);
177 * __set_current_state(TASK_RUNNING);
179 * If the caller does not need such serialisation (because, for instance, the
180 * CONDITION test and condition change and wakeup are under the same lock) then
181 * use __set_current_state().
183 * The above is typically ordered against the wakeup, which does:
186 * wake_up_state(p, TASK_UNINTERRUPTIBLE);
188 * where wake_up_state()/try_to_wake_up() executes a full memory barrier before
189 * accessing p->state.
191 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
192 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
193 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
195 * However, with slightly different timing the wakeup TASK_RUNNING store can
196 * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
197 * a problem either because that will result in one extra go around the loop
198 * and our @cond test will save the day.
200 * Also see the comments of try_to_wake_up().
202 #define __set_current_state(state_value) \
204 debug_normal_state_change((state_value)); \
205 WRITE_ONCE(current->__state, (state_value)); \
208 #define set_current_state(state_value) \
210 debug_normal_state_change((state_value)); \
211 smp_store_mb(current->__state, (state_value)); \
215 * set_special_state() should be used for those states when the blocking task
216 * can not use the regular condition based wait-loop. In that case we must
217 * serialize against wakeups such that any possible in-flight TASK_RUNNING
218 * stores will not collide with our state change.
220 #define set_special_state(state_value) \
222 unsigned long flags; /* may shadow */ \
224 raw_spin_lock_irqsave(¤t->pi_lock, flags); \
225 debug_special_state_change((state_value)); \
226 WRITE_ONCE(current->__state, (state_value)); \
227 raw_spin_unlock_irqrestore(¤t->pi_lock, flags); \
231 * PREEMPT_RT specific variants for "sleeping" spin/rwlocks
233 * RT's spin/rwlock substitutions are state preserving. The state of the
234 * task when blocking on the lock is saved in task_struct::saved_state and
235 * restored after the lock has been acquired. These operations are
236 * serialized by task_struct::pi_lock against try_to_wake_up(). Any non RT
237 * lock related wakeups while the task is blocked on the lock are
238 * redirected to operate on task_struct::saved_state to ensure that these
239 * are not dropped. On restore task_struct::saved_state is set to
240 * TASK_RUNNING so any wakeup attempt redirected to saved_state will fail.
242 * The lock operation looks like this:
244 * current_save_and_set_rtlock_wait_state();
248 * raw_spin_unlock_irq(&lock->wait_lock);
250 * raw_spin_lock_irq(&lock->wait_lock);
251 * set_current_state(TASK_RTLOCK_WAIT);
253 * current_restore_rtlock_saved_state();
255 #define current_save_and_set_rtlock_wait_state() \
257 lockdep_assert_irqs_disabled(); \
258 raw_spin_lock(¤t->pi_lock); \
259 current->saved_state = current->__state; \
260 debug_rtlock_wait_set_state(); \
261 WRITE_ONCE(current->__state, TASK_RTLOCK_WAIT); \
262 raw_spin_unlock(¤t->pi_lock); \
265 #define current_restore_rtlock_saved_state() \
267 lockdep_assert_irqs_disabled(); \
268 raw_spin_lock(¤t->pi_lock); \
269 debug_rtlock_wait_restore_state(); \
270 WRITE_ONCE(current->__state, current->saved_state); \
271 current->saved_state = TASK_RUNNING; \
272 raw_spin_unlock(¤t->pi_lock); \
275 #define get_current_state() READ_ONCE(current->__state)
278 * Define the task command name length as enum, then it can be visible to
285 extern void scheduler_tick(void);
287 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
289 extern long schedule_timeout(long timeout);
290 extern long schedule_timeout_interruptible(long timeout);
291 extern long schedule_timeout_killable(long timeout);
292 extern long schedule_timeout_uninterruptible(long timeout);
293 extern long schedule_timeout_idle(long timeout);
294 asmlinkage void schedule(void);
295 extern void schedule_preempt_disabled(void);
296 asmlinkage void preempt_schedule_irq(void);
297 #ifdef CONFIG_PREEMPT_RT
298 extern void schedule_rtlock(void);
301 extern int __must_check io_schedule_prepare(void);
302 extern void io_schedule_finish(int token);
303 extern long io_schedule_timeout(long timeout);
304 extern void io_schedule(void);
307 * struct prev_cputime - snapshot of system and user cputime
308 * @utime: time spent in user mode
309 * @stime: time spent in system mode
310 * @lock: protects the above two fields
312 * Stores previous user/system time values such that we can guarantee
315 struct prev_cputime {
316 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
324 /* Task is sleeping or running in a CPU with VTIME inactive: */
328 /* Task runs in kernelspace in a CPU with VTIME active: */
330 /* Task runs in userspace in a CPU with VTIME active: */
332 /* Task runs as guests in a CPU with VTIME active: */
338 unsigned long long starttime;
339 enum vtime_state state;
347 * Utilization clamp constraints.
348 * @UCLAMP_MIN: Minimum utilization
349 * @UCLAMP_MAX: Maximum utilization
350 * @UCLAMP_CNT: Utilization clamp constraints count
359 extern struct root_domain def_root_domain;
360 extern struct mutex sched_domains_mutex;
364 #ifdef CONFIG_SCHED_INFO
365 /* Cumulative counters: */
367 /* # of times we have run on this CPU: */
368 unsigned long pcount;
370 /* Time spent waiting on a runqueue: */
371 unsigned long long run_delay;
375 /* When did we last run on a CPU? */
376 unsigned long long last_arrival;
378 /* When were we last queued to run? */
379 unsigned long long last_queued;
381 #endif /* CONFIG_SCHED_INFO */
385 * Integer metrics need fixed point arithmetic, e.g., sched/fair
386 * has a few: load, load_avg, util_avg, freq, and capacity.
388 * We define a basic fixed point arithmetic range, and then formalize
389 * all these metrics based on that basic range.
391 # define SCHED_FIXEDPOINT_SHIFT 10
392 # define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
394 /* Increase resolution of cpu_capacity calculations */
395 # define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT
396 # define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
399 unsigned long weight;
404 * struct util_est - Estimation utilization of FAIR tasks
405 * @enqueued: instantaneous estimated utilization of a task/cpu
406 * @ewma: the Exponential Weighted Moving Average (EWMA)
407 * utilization of a task
409 * Support data structure to track an Exponential Weighted Moving Average
410 * (EWMA) of a FAIR task's utilization. New samples are added to the moving
411 * average each time a task completes an activation. Sample's weight is chosen
412 * so that the EWMA will be relatively insensitive to transient changes to the
415 * The enqueued attribute has a slightly different meaning for tasks and cpus:
416 * - task: the task's util_avg at last task dequeue time
417 * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
418 * Thus, the util_est.enqueued of a task represents the contribution on the
419 * estimated utilization of the CPU where that task is currently enqueued.
421 * Only for tasks we track a moving average of the past instantaneous
422 * estimated utilization. This allows to absorb sporadic drops in utilization
423 * of an otherwise almost periodic task.
425 * The UTIL_AVG_UNCHANGED flag is used to synchronize util_est with util_avg
426 * updates. When a task is dequeued, its util_est should not be updated if its
427 * util_avg has not been updated in the meantime.
428 * This information is mapped into the MSB bit of util_est.enqueued at dequeue
429 * time. Since max value of util_est.enqueued for a task is 1024 (PELT util_avg
430 * for a task) it is safe to use MSB.
433 unsigned int enqueued;
435 #define UTIL_EST_WEIGHT_SHIFT 2
436 #define UTIL_AVG_UNCHANGED 0x80000000
437 } __attribute__((__aligned__(sizeof(u64))));
440 * The load/runnable/util_avg accumulates an infinite geometric series
441 * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c).
443 * [load_avg definition]
445 * load_avg = runnable% * scale_load_down(load)
447 * [runnable_avg definition]
449 * runnable_avg = runnable% * SCHED_CAPACITY_SCALE
451 * [util_avg definition]
453 * util_avg = running% * SCHED_CAPACITY_SCALE
455 * where runnable% is the time ratio that a sched_entity is runnable and
456 * running% the time ratio that a sched_entity is running.
458 * For cfs_rq, they are the aggregated values of all runnable and blocked
461 * The load/runnable/util_avg doesn't directly factor frequency scaling and CPU
462 * capacity scaling. The scaling is done through the rq_clock_pelt that is used
463 * for computing those signals (see update_rq_clock_pelt())
465 * N.B., the above ratios (runnable% and running%) themselves are in the
466 * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
467 * to as large a range as necessary. This is for example reflected by
468 * util_avg's SCHED_CAPACITY_SCALE.
472 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
473 * with the highest load (=88761), always runnable on a single cfs_rq,
474 * and should not overflow as the number already hits PID_MAX_LIMIT.
476 * For all other cases (including 32-bit kernels), struct load_weight's
477 * weight will overflow first before we do, because:
479 * Max(load_avg) <= Max(load.weight)
481 * Then it is the load_weight's responsibility to consider overflow
485 u64 last_update_time;
490 unsigned long load_avg;
491 unsigned long runnable_avg;
492 unsigned long util_avg;
493 struct util_est util_est;
494 } ____cacheline_aligned;
496 struct sched_statistics {
497 #ifdef CONFIG_SCHEDSTATS
507 s64 sum_sleep_runtime;
511 s64 sum_block_runtime;
516 u64 nr_migrations_cold;
517 u64 nr_failed_migrations_affine;
518 u64 nr_failed_migrations_running;
519 u64 nr_failed_migrations_hot;
520 u64 nr_forced_migrations;
524 u64 nr_wakeups_migrate;
525 u64 nr_wakeups_local;
526 u64 nr_wakeups_remote;
527 u64 nr_wakeups_affine;
528 u64 nr_wakeups_affine_attempts;
529 u64 nr_wakeups_passive;
532 #ifdef CONFIG_SCHED_CORE
533 u64 core_forceidle_sum;
535 #endif /* CONFIG_SCHEDSTATS */
536 } ____cacheline_aligned;
538 struct sched_entity {
539 /* For load-balancing: */
540 struct load_weight load;
541 struct rb_node run_node;
542 struct list_head group_node;
546 u64 sum_exec_runtime;
548 u64 prev_sum_exec_runtime;
552 #ifdef CONFIG_FAIR_GROUP_SCHED
554 struct sched_entity *parent;
555 /* rq on which this entity is (to be) queued: */
556 struct cfs_rq *cfs_rq;
557 /* rq "owned" by this entity/group: */
559 /* cached value of my_q->h_nr_running */
560 unsigned long runnable_weight;
565 * Per entity load average tracking.
567 * Put into separate cache line so it does not
568 * collide with read-mostly values above.
570 struct sched_avg avg;
574 struct sched_rt_entity {
575 struct list_head run_list;
576 unsigned long timeout;
577 unsigned long watchdog_stamp;
578 unsigned int time_slice;
579 unsigned short on_rq;
580 unsigned short on_list;
582 struct sched_rt_entity *back;
583 #ifdef CONFIG_RT_GROUP_SCHED
584 struct sched_rt_entity *parent;
585 /* rq on which this entity is (to be) queued: */
587 /* rq "owned" by this entity/group: */
590 } __randomize_layout;
592 struct sched_dl_entity {
593 struct rb_node rb_node;
596 * Original scheduling parameters. Copied here from sched_attr
597 * during sched_setattr(), they will remain the same until
598 * the next sched_setattr().
600 u64 dl_runtime; /* Maximum runtime for each instance */
601 u64 dl_deadline; /* Relative deadline of each instance */
602 u64 dl_period; /* Separation of two instances (period) */
603 u64 dl_bw; /* dl_runtime / dl_period */
604 u64 dl_density; /* dl_runtime / dl_deadline */
607 * Actual scheduling parameters. Initialized with the values above,
608 * they are continuously updated during task execution. Note that
609 * the remaining runtime could be < 0 in case we are in overrun.
611 s64 runtime; /* Remaining runtime for this instance */
612 u64 deadline; /* Absolute deadline for this instance */
613 unsigned int flags; /* Specifying the scheduler behaviour */
618 * @dl_throttled tells if we exhausted the runtime. If so, the
619 * task has to wait for a replenishment to be performed at the
620 * next firing of dl_timer.
622 * @dl_yielded tells if task gave up the CPU before consuming
623 * all its available runtime during the last job.
625 * @dl_non_contending tells if the task is inactive while still
626 * contributing to the active utilization. In other words, it
627 * indicates if the inactive timer has been armed and its handler
628 * has not been executed yet. This flag is useful to avoid race
629 * conditions between the inactive timer handler and the wakeup
632 * @dl_overrun tells if the task asked to be informed about runtime
635 unsigned int dl_throttled : 1;
636 unsigned int dl_yielded : 1;
637 unsigned int dl_non_contending : 1;
638 unsigned int dl_overrun : 1;
641 * Bandwidth enforcement timer. Each -deadline task has its
642 * own bandwidth to be enforced, thus we need one timer per task.
644 struct hrtimer dl_timer;
647 * Inactive timer, responsible for decreasing the active utilization
648 * at the "0-lag time". When a -deadline task blocks, it contributes
649 * to GRUB's active utilization until the "0-lag time", hence a
650 * timer is needed to decrease the active utilization at the correct
653 struct hrtimer inactive_timer;
655 #ifdef CONFIG_RT_MUTEXES
657 * Priority Inheritance. When a DEADLINE scheduling entity is boosted
658 * pi_se points to the donor, otherwise points to the dl_se it belongs
659 * to (the original one/itself).
661 struct sched_dl_entity *pi_se;
665 #ifdef CONFIG_UCLAMP_TASK
666 /* Number of utilization clamp buckets (shorter alias) */
667 #define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
670 * Utilization clamp for a scheduling entity
671 * @value: clamp value "assigned" to a se
672 * @bucket_id: bucket index corresponding to the "assigned" value
673 * @active: the se is currently refcounted in a rq's bucket
674 * @user_defined: the requested clamp value comes from user-space
676 * The bucket_id is the index of the clamp bucket matching the clamp value
677 * which is pre-computed and stored to avoid expensive integer divisions from
680 * The active bit is set whenever a task has got an "effective" value assigned,
681 * which can be different from the clamp value "requested" from user-space.
682 * This allows to know a task is refcounted in the rq's bucket corresponding
683 * to the "effective" bucket_id.
685 * The user_defined bit is set whenever a task has got a task-specific clamp
686 * value requested from userspace, i.e. the system defaults apply to this task
687 * just as a restriction. This allows to relax default clamps when a less
688 * restrictive task-specific value has been requested, thus allowing to
689 * implement a "nice" semantic. For example, a task running with a 20%
690 * default boost can still drop its own boosting to 0%.
693 unsigned int value : bits_per(SCHED_CAPACITY_SCALE);
694 unsigned int bucket_id : bits_per(UCLAMP_BUCKETS);
695 unsigned int active : 1;
696 unsigned int user_defined : 1;
698 #endif /* CONFIG_UCLAMP_TASK */
704 u8 exp_hint; /* Hint for performance. */
705 u8 need_mb; /* Readers need smp_mb(). */
707 u32 s; /* Set of bits. */
710 enum perf_event_task_context {
711 perf_invalid_context = -1,
714 perf_nr_task_contexts,
718 struct wake_q_node *next;
722 #ifdef CONFIG_KMAP_LOCAL
724 pte_t pteval[KM_MAX_IDX];
729 #ifdef CONFIG_THREAD_INFO_IN_TASK
731 * For reasons of header soup (see current_thread_info()), this
732 * must be the first element of task_struct.
734 struct thread_info thread_info;
736 unsigned int __state;
738 #ifdef CONFIG_PREEMPT_RT
739 /* saved state for "spinlock sleepers" */
740 unsigned int saved_state;
744 * This begins the randomizable portion of task_struct. Only
745 * scheduling-critical items should be added above here.
747 randomized_struct_fields_start
751 /* Per task flags (PF_*), defined further below: */
757 struct __call_single_node wake_entry;
758 unsigned int wakee_flips;
759 unsigned long wakee_flip_decay_ts;
760 struct task_struct *last_wakee;
763 * recent_used_cpu is initially set as the last CPU used by a task
764 * that wakes affine another task. Waker/wakee relationships can
765 * push tasks around a CPU where each wakeup moves to the next one.
766 * Tracking a recently used CPU allows a quick search for a recently
767 * used CPU that may be idle.
777 unsigned int rt_priority;
779 struct sched_entity se;
780 struct sched_rt_entity rt;
781 struct sched_dl_entity dl;
782 const struct sched_class *sched_class;
784 #ifdef CONFIG_SCHED_CORE
785 struct rb_node core_node;
786 unsigned long core_cookie;
787 unsigned int core_occupation;
790 #ifdef CONFIG_CGROUP_SCHED
791 struct task_group *sched_task_group;
794 #ifdef CONFIG_UCLAMP_TASK
796 * Clamp values requested for a scheduling entity.
797 * Must be updated with task_rq_lock() held.
799 struct uclamp_se uclamp_req[UCLAMP_CNT];
801 * Effective clamp values used for a scheduling entity.
802 * Must be updated with task_rq_lock() held.
804 struct uclamp_se uclamp[UCLAMP_CNT];
807 struct sched_statistics stats;
809 #ifdef CONFIG_PREEMPT_NOTIFIERS
810 /* List of struct preempt_notifier: */
811 struct hlist_head preempt_notifiers;
814 #ifdef CONFIG_BLK_DEV_IO_TRACE
815 unsigned int btrace_seq;
820 const cpumask_t *cpus_ptr;
821 cpumask_t *user_cpus_ptr;
823 void *migration_pending;
825 unsigned short migration_disabled;
827 unsigned short migration_flags;
829 #ifdef CONFIG_PREEMPT_RCU
830 int rcu_read_lock_nesting;
831 union rcu_special rcu_read_unlock_special;
832 struct list_head rcu_node_entry;
833 struct rcu_node *rcu_blocked_node;
834 #endif /* #ifdef CONFIG_PREEMPT_RCU */
836 #ifdef CONFIG_TASKS_RCU
837 unsigned long rcu_tasks_nvcsw;
838 u8 rcu_tasks_holdout;
840 int rcu_tasks_idle_cpu;
841 struct list_head rcu_tasks_holdout_list;
842 #endif /* #ifdef CONFIG_TASKS_RCU */
844 #ifdef CONFIG_TASKS_TRACE_RCU
845 int trc_reader_nesting;
847 union rcu_special trc_reader_special;
848 bool trc_reader_checked;
849 struct list_head trc_holdout_list;
850 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
852 struct sched_info sched_info;
854 struct list_head tasks;
856 struct plist_node pushable_tasks;
857 struct rb_node pushable_dl_tasks;
860 struct mm_struct *mm;
861 struct mm_struct *active_mm;
863 /* Per-thread vma caching: */
864 struct vmacache vmacache;
866 #ifdef SPLIT_RSS_COUNTING
867 struct task_rss_stat rss_stat;
872 /* The signal sent when the parent dies: */
874 /* JOBCTL_*, siglock protected: */
875 unsigned long jobctl;
877 /* Used for emulating ABI behavior of previous Linux versions: */
878 unsigned int personality;
880 /* Scheduler bits, serialized by scheduler locks: */
881 unsigned sched_reset_on_fork:1;
882 unsigned sched_contributes_to_load:1;
883 unsigned sched_migrated:1;
885 unsigned sched_psi_wake_requeue:1;
888 /* Force alignment to the next boundary: */
891 /* Unserialized, strictly 'current' */
894 * This field must not be in the scheduler word above due to wakelist
895 * queueing no longer being serialized by p->on_cpu. However:
898 * schedule() if (p->on_rq && ..) // false
899 * smp_mb__after_spinlock(); if (smp_load_acquire(&p->on_cpu) && //true
900 * deactivate_task() ttwu_queue_wakelist())
901 * p->on_rq = 0; p->sched_remote_wakeup = Y;
903 * guarantees all stores of 'current' are visible before
904 * ->sched_remote_wakeup gets used, so it can be in this word.
906 unsigned sched_remote_wakeup:1;
908 /* Bit to tell LSMs we're in execve(): */
909 unsigned in_execve:1;
910 unsigned in_iowait:1;
911 #ifndef TIF_RESTORE_SIGMASK
912 unsigned restore_sigmask:1;
915 unsigned in_user_fault:1;
917 #ifdef CONFIG_COMPAT_BRK
918 unsigned brk_randomized:1;
920 #ifdef CONFIG_CGROUPS
921 /* disallow userland-initiated cgroup migration */
922 unsigned no_cgroup_migration:1;
923 /* task is frozen/stopped (used by the cgroup freezer) */
926 #ifdef CONFIG_BLK_CGROUP
927 unsigned use_memdelay:1;
930 /* Stalled due to lack of memory */
931 unsigned in_memstall:1;
933 #ifdef CONFIG_PAGE_OWNER
934 /* Used by page_owner=on to detect recursion in page tracking. */
935 unsigned in_page_owner:1;
937 #ifdef CONFIG_EVENTFD
938 /* Recursion prevention for eventfd_signal() */
939 unsigned in_eventfd_signal:1;
941 #ifdef CONFIG_IOMMU_SVA
942 unsigned pasid_activated:1;
945 unsigned long atomic_flags; /* Flags requiring atomic access. */
947 struct restart_block restart_block;
952 #ifdef CONFIG_STACKPROTECTOR
953 /* Canary value for the -fstack-protector GCC feature: */
954 unsigned long stack_canary;
957 * Pointers to the (original) parent process, youngest child, younger sibling,
958 * older sibling, respectively. (p->father can be replaced with
959 * p->real_parent->pid)
962 /* Real parent process: */
963 struct task_struct __rcu *real_parent;
965 /* Recipient of SIGCHLD, wait4() reports: */
966 struct task_struct __rcu *parent;
969 * Children/sibling form the list of natural children:
971 struct list_head children;
972 struct list_head sibling;
973 struct task_struct *group_leader;
976 * 'ptraced' is the list of tasks this task is using ptrace() on.
978 * This includes both natural children and PTRACE_ATTACH targets.
979 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
981 struct list_head ptraced;
982 struct list_head ptrace_entry;
984 /* PID/PID hash table linkage. */
985 struct pid *thread_pid;
986 struct hlist_node pid_links[PIDTYPE_MAX];
987 struct list_head thread_group;
988 struct list_head thread_node;
990 struct completion *vfork_done;
992 /* CLONE_CHILD_SETTID: */
993 int __user *set_child_tid;
995 /* CLONE_CHILD_CLEARTID: */
996 int __user *clear_child_tid;
998 /* PF_KTHREAD | PF_IO_WORKER */
999 void *worker_private;
1003 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1008 struct prev_cputime prev_cputime;
1009 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1013 #ifdef CONFIG_NO_HZ_FULL
1014 atomic_t tick_dep_mask;
1016 /* Context switch counts: */
1017 unsigned long nvcsw;
1018 unsigned long nivcsw;
1020 /* Monotonic time in nsecs: */
1023 /* Boot based time in nsecs: */
1026 /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
1027 unsigned long min_flt;
1028 unsigned long maj_flt;
1030 /* Empty if CONFIG_POSIX_CPUTIMERS=n */
1031 struct posix_cputimers posix_cputimers;
1033 #ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
1034 struct posix_cputimers_work posix_cputimers_work;
1037 /* Process credentials: */
1039 /* Tracer's credentials at attach: */
1040 const struct cred __rcu *ptracer_cred;
1042 /* Objective and real subjective task credentials (COW): */
1043 const struct cred __rcu *real_cred;
1045 /* Effective (overridable) subjective task credentials (COW): */
1046 const struct cred __rcu *cred;
1049 /* Cached requested key. */
1050 struct key *cached_requested_key;
1054 * executable name, excluding path.
1056 * - normally initialized setup_new_exec()
1057 * - access it with [gs]et_task_comm()
1058 * - lock it with task_lock()
1060 char comm[TASK_COMM_LEN];
1062 struct nameidata *nameidata;
1064 #ifdef CONFIG_SYSVIPC
1065 struct sysv_sem sysvsem;
1066 struct sysv_shm sysvshm;
1068 #ifdef CONFIG_DETECT_HUNG_TASK
1069 unsigned long last_switch_count;
1070 unsigned long last_switch_time;
1072 /* Filesystem information: */
1073 struct fs_struct *fs;
1075 /* Open file information: */
1076 struct files_struct *files;
1078 #ifdef CONFIG_IO_URING
1079 struct io_uring_task *io_uring;
1083 struct nsproxy *nsproxy;
1085 /* Signal handlers: */
1086 struct signal_struct *signal;
1087 struct sighand_struct __rcu *sighand;
1089 sigset_t real_blocked;
1090 /* Restored if set_restore_sigmask() was used: */
1091 sigset_t saved_sigmask;
1092 struct sigpending pending;
1093 unsigned long sas_ss_sp;
1095 unsigned int sas_ss_flags;
1097 struct callback_head *task_works;
1100 #ifdef CONFIG_AUDITSYSCALL
1101 struct audit_context *audit_context;
1104 unsigned int sessionid;
1106 struct seccomp seccomp;
1107 struct syscall_user_dispatch syscall_dispatch;
1109 /* Thread group tracking: */
1113 /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
1114 spinlock_t alloc_lock;
1116 /* Protection of the PI data structures: */
1117 raw_spinlock_t pi_lock;
1119 struct wake_q_node wake_q;
1121 #ifdef CONFIG_RT_MUTEXES
1122 /* PI waiters blocked on a rt_mutex held by this task: */
1123 struct rb_root_cached pi_waiters;
1124 /* Updated under owner's pi_lock and rq lock */
1125 struct task_struct *pi_top_task;
1126 /* Deadlock detection and priority inheritance handling: */
1127 struct rt_mutex_waiter *pi_blocked_on;
1130 #ifdef CONFIG_DEBUG_MUTEXES
1131 /* Mutex deadlock detection: */
1132 struct mutex_waiter *blocked_on;
1135 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1136 int non_block_count;
1139 #ifdef CONFIG_TRACE_IRQFLAGS
1140 struct irqtrace_events irqtrace;
1141 unsigned int hardirq_threaded;
1142 u64 hardirq_chain_key;
1143 int softirqs_enabled;
1144 int softirq_context;
1147 #ifdef CONFIG_PREEMPT_RT
1148 int softirq_disable_cnt;
1151 #ifdef CONFIG_LOCKDEP
1152 # define MAX_LOCK_DEPTH 48UL
1155 unsigned int lockdep_recursion;
1156 struct held_lock held_locks[MAX_LOCK_DEPTH];
1159 #if defined(CONFIG_UBSAN) && !defined(CONFIG_UBSAN_TRAP)
1160 unsigned int in_ubsan;
1163 /* Journalling filesystem info: */
1166 /* Stacked block device info: */
1167 struct bio_list *bio_list;
1169 /* Stack plugging: */
1170 struct blk_plug *plug;
1173 struct reclaim_state *reclaim_state;
1175 struct backing_dev_info *backing_dev_info;
1177 struct io_context *io_context;
1179 #ifdef CONFIG_COMPACTION
1180 struct capture_control *capture_control;
1183 unsigned long ptrace_message;
1184 kernel_siginfo_t *last_siginfo;
1186 struct task_io_accounting ioac;
1188 /* Pressure stall state */
1189 unsigned int psi_flags;
1191 #ifdef CONFIG_TASK_XACCT
1192 /* Accumulated RSS usage: */
1194 /* Accumulated virtual memory usage: */
1196 /* stime + utime since last update: */
1199 #ifdef CONFIG_CPUSETS
1200 /* Protected by ->alloc_lock: */
1201 nodemask_t mems_allowed;
1202 /* Sequence number to catch updates: */
1203 seqcount_spinlock_t mems_allowed_seq;
1204 int cpuset_mem_spread_rotor;
1205 int cpuset_slab_spread_rotor;
1207 #ifdef CONFIG_CGROUPS
1208 /* Control Group info protected by css_set_lock: */
1209 struct css_set __rcu *cgroups;
1210 /* cg_list protected by css_set_lock and tsk->alloc_lock: */
1211 struct list_head cg_list;
1213 #ifdef CONFIG_X86_CPU_RESCTRL
1218 struct robust_list_head __user *robust_list;
1219 #ifdef CONFIG_COMPAT
1220 struct compat_robust_list_head __user *compat_robust_list;
1222 struct list_head pi_state_list;
1223 struct futex_pi_state *pi_state_cache;
1224 struct mutex futex_exit_mutex;
1225 unsigned int futex_state;
1227 #ifdef CONFIG_PERF_EVENTS
1228 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1229 struct mutex perf_event_mutex;
1230 struct list_head perf_event_list;
1232 #ifdef CONFIG_DEBUG_PREEMPT
1233 unsigned long preempt_disable_ip;
1236 /* Protected by alloc_lock: */
1237 struct mempolicy *mempolicy;
1239 short pref_node_fork;
1241 #ifdef CONFIG_NUMA_BALANCING
1243 unsigned int numa_scan_period;
1244 unsigned int numa_scan_period_max;
1245 int numa_preferred_nid;
1246 unsigned long numa_migrate_retry;
1247 /* Migration stamp: */
1249 u64 last_task_numa_placement;
1250 u64 last_sum_exec_runtime;
1251 struct callback_head numa_work;
1254 * This pointer is only modified for current in syscall and
1255 * pagefault context (and for tasks being destroyed), so it can be read
1256 * from any of the following contexts:
1257 * - RCU read-side critical section
1258 * - current->numa_group from everywhere
1259 * - task's runqueue locked, task not running
1261 struct numa_group __rcu *numa_group;
1264 * numa_faults is an array split into four regions:
1265 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1266 * in this precise order.
1268 * faults_memory: Exponential decaying average of faults on a per-node
1269 * basis. Scheduling placement decisions are made based on these
1270 * counts. The values remain static for the duration of a PTE scan.
1271 * faults_cpu: Track the nodes the process was running on when a NUMA
1272 * hinting fault was incurred.
1273 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1274 * during the current scan window. When the scan completes, the counts
1275 * in faults_memory and faults_cpu decay and these values are copied.
1277 unsigned long *numa_faults;
1278 unsigned long total_numa_faults;
1281 * numa_faults_locality tracks if faults recorded during the last
1282 * scan window were remote/local or failed to migrate. The task scan
1283 * period is adapted based on the locality of the faults with different
1284 * weights depending on whether they were shared or private faults
1286 unsigned long numa_faults_locality[3];
1288 unsigned long numa_pages_migrated;
1289 #endif /* CONFIG_NUMA_BALANCING */
1292 struct rseq __user *rseq;
1295 * RmW on rseq_event_mask must be performed atomically
1296 * with respect to preemption.
1298 unsigned long rseq_event_mask;
1301 struct tlbflush_unmap_batch tlb_ubc;
1304 refcount_t rcu_users;
1305 struct rcu_head rcu;
1308 /* Cache last used pipe for splice(): */
1309 struct pipe_inode_info *splice_pipe;
1311 struct page_frag task_frag;
1313 #ifdef CONFIG_TASK_DELAY_ACCT
1314 struct task_delay_info *delays;
1317 #ifdef CONFIG_FAULT_INJECTION
1319 unsigned int fail_nth;
1322 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1323 * balance_dirty_pages() for a dirty throttling pause:
1326 int nr_dirtied_pause;
1327 /* Start of a write-and-pause period: */
1328 unsigned long dirty_paused_when;
1330 #ifdef CONFIG_LATENCYTOP
1331 int latency_record_count;
1332 struct latency_record latency_record[LT_SAVECOUNT];
1335 * Time slack values; these are used to round up poll() and
1336 * select() etc timeout values. These are in nanoseconds.
1339 u64 default_timer_slack_ns;
1341 #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
1342 unsigned int kasan_depth;
1346 struct kcsan_ctx kcsan_ctx;
1347 #ifdef CONFIG_TRACE_IRQFLAGS
1348 struct irqtrace_events kcsan_save_irqtrace;
1350 #ifdef CONFIG_KCSAN_WEAK_MEMORY
1351 int kcsan_stack_depth;
1355 #if IS_ENABLED(CONFIG_KUNIT)
1356 struct kunit *kunit_test;
1359 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1360 /* Index of current stored address in ret_stack: */
1364 /* Stack of return addresses for return function tracing: */
1365 struct ftrace_ret_stack *ret_stack;
1367 /* Timestamp for last schedule: */
1368 unsigned long long ftrace_timestamp;
1371 * Number of functions that haven't been traced
1372 * because of depth overrun:
1374 atomic_t trace_overrun;
1376 /* Pause tracing: */
1377 atomic_t tracing_graph_pause;
1380 #ifdef CONFIG_TRACING
1381 /* State flags for use by tracers: */
1382 unsigned long trace;
1384 /* Bitmask and counter of trace recursion: */
1385 unsigned long trace_recursion;
1386 #endif /* CONFIG_TRACING */
1389 /* See kernel/kcov.c for more details. */
1391 /* Coverage collection mode enabled for this task (0 if disabled): */
1392 unsigned int kcov_mode;
1394 /* Size of the kcov_area: */
1395 unsigned int kcov_size;
1397 /* Buffer for coverage collection: */
1400 /* KCOV descriptor wired with this task or NULL: */
1403 /* KCOV common handle for remote coverage collection: */
1406 /* KCOV sequence number: */
1409 /* Collect coverage from softirq context: */
1410 unsigned int kcov_softirq;
1414 struct mem_cgroup *memcg_in_oom;
1415 gfp_t memcg_oom_gfp_mask;
1416 int memcg_oom_order;
1418 /* Number of pages to reclaim on returning to userland: */
1419 unsigned int memcg_nr_pages_over_high;
1421 /* Used by memcontrol for targeted memcg charge: */
1422 struct mem_cgroup *active_memcg;
1425 #ifdef CONFIG_BLK_CGROUP
1426 struct request_queue *throttle_queue;
1429 #ifdef CONFIG_UPROBES
1430 struct uprobe_task *utask;
1432 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1433 unsigned int sequential_io;
1434 unsigned int sequential_io_avg;
1436 struct kmap_ctrl kmap_ctrl;
1437 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1438 unsigned long task_state_change;
1439 # ifdef CONFIG_PREEMPT_RT
1440 unsigned long saved_state_change;
1443 int pagefault_disabled;
1445 struct task_struct *oom_reaper_list;
1446 struct timer_list oom_reaper_timer;
1448 #ifdef CONFIG_VMAP_STACK
1449 struct vm_struct *stack_vm_area;
1451 #ifdef CONFIG_THREAD_INFO_IN_TASK
1452 /* A live task holds one reference: */
1453 refcount_t stack_refcount;
1455 #ifdef CONFIG_LIVEPATCH
1458 #ifdef CONFIG_SECURITY
1459 /* Used by LSM modules for access restriction: */
1462 #ifdef CONFIG_BPF_SYSCALL
1463 /* Used by BPF task local storage */
1464 struct bpf_local_storage __rcu *bpf_storage;
1465 /* Used for BPF run context */
1466 struct bpf_run_ctx *bpf_ctx;
1469 #ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1470 unsigned long lowest_stack;
1471 unsigned long prev_lowest_stack;
1474 #ifdef CONFIG_X86_MCE
1475 void __user *mce_vaddr;
1480 __mce_reserved : 62;
1481 struct callback_head mce_kill_me;
1485 #ifdef CONFIG_KRETPROBES
1486 struct llist_head kretprobe_instances;
1488 #ifdef CONFIG_RETHOOK
1489 struct llist_head rethooks;
1492 #ifdef CONFIG_ARCH_HAS_PARANOID_L1D_FLUSH
1494 * If L1D flush is supported on mm context switch
1495 * then we use this callback head to queue kill work
1496 * to kill tasks that are not running on SMT disabled
1499 struct callback_head l1d_flush_kill;
1503 * New fields for task_struct should be added above here, so that
1504 * they are included in the randomized portion of task_struct.
1506 randomized_struct_fields_end
1508 /* CPU-specific state of this task: */
1509 struct thread_struct thread;
1512 * WARNING: on x86, 'thread_struct' contains a variable-sized
1513 * structure. It *MUST* be at the end of 'task_struct'.
1515 * Do not put anything below here!
1519 static inline struct pid *task_pid(struct task_struct *task)
1521 return task->thread_pid;
1525 * the helpers to get the task's different pids as they are seen
1526 * from various namespaces
1528 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1529 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1531 * task_xid_nr_ns() : id seen from the ns specified;
1533 * see also pid_nr() etc in include/linux/pid.h
1535 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
1537 static inline pid_t task_pid_nr(struct task_struct *tsk)
1542 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1544 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1547 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1549 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1553 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1559 * pid_alive - check that a task structure is not stale
1560 * @p: Task structure to be checked.
1562 * Test if a process is not yet dead (at most zombie state)
1563 * If pid_alive fails, then pointers within the task structure
1564 * can be stale and must not be dereferenced.
1566 * Return: 1 if the process is alive. 0 otherwise.
1568 static inline int pid_alive(const struct task_struct *p)
1570 return p->thread_pid != NULL;
1573 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1575 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1578 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1580 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1584 static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1586 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1589 static inline pid_t task_session_vnr(struct task_struct *tsk)
1591 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1594 static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1596 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
1599 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1601 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
1604 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1610 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1616 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1618 return task_ppid_nr_ns(tsk, &init_pid_ns);
1621 /* Obsolete, do not use: */
1622 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1624 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1627 #define TASK_REPORT_IDLE (TASK_REPORT + 1)
1628 #define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1)
1630 static inline unsigned int __task_state_index(unsigned int tsk_state,
1631 unsigned int tsk_exit_state)
1633 unsigned int state = (tsk_state | tsk_exit_state) & TASK_REPORT;
1635 BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1637 if (tsk_state == TASK_IDLE)
1638 state = TASK_REPORT_IDLE;
1641 * We're lying here, but rather than expose a completely new task state
1642 * to userspace, we can make this appear as if the task has gone through
1643 * a regular rt_mutex_lock() call.
1645 if (tsk_state == TASK_RTLOCK_WAIT)
1646 state = TASK_UNINTERRUPTIBLE;
1651 static inline unsigned int task_state_index(struct task_struct *tsk)
1653 return __task_state_index(READ_ONCE(tsk->__state), tsk->exit_state);
1656 static inline char task_index_to_char(unsigned int state)
1658 static const char state_char[] = "RSDTtXZPI";
1660 BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
1662 return state_char[state];
1665 static inline char task_state_to_char(struct task_struct *tsk)
1667 return task_index_to_char(task_state_index(tsk));
1671 * is_global_init - check if a task structure is init. Since init
1672 * is free to have sub-threads we need to check tgid.
1673 * @tsk: Task structure to be checked.
1675 * Check if a task structure is the first user space task the kernel created.
1677 * Return: 1 if the task structure is init. 0 otherwise.
1679 static inline int is_global_init(struct task_struct *tsk)
1681 return task_tgid_nr(tsk) == 1;
1684 extern struct pid *cad_pid;
1689 #define PF_VCPU 0x00000001 /* I'm a virtual CPU */
1690 #define PF_IDLE 0x00000002 /* I am an IDLE thread */
1691 #define PF_EXITING 0x00000004 /* Getting shut down */
1692 #define PF_POSTCOREDUMP 0x00000008 /* Coredumps should ignore this task */
1693 #define PF_IO_WORKER 0x00000010 /* Task is an IO worker */
1694 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1695 #define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */
1696 #define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */
1697 #define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */
1698 #define PF_DUMPCORE 0x00000200 /* Dumped core */
1699 #define PF_SIGNALED 0x00000400 /* Killed by a signal */
1700 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1701 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */
1702 #define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */
1703 #define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */
1704 #define PF_FROZEN 0x00010000 /* Frozen for system suspend */
1705 #define PF_KSWAPD 0x00020000 /* I am kswapd */
1706 #define PF_MEMALLOC_NOFS 0x00040000 /* All allocation requests will inherit GFP_NOFS */
1707 #define PF_MEMALLOC_NOIO 0x00080000 /* All allocation requests will inherit GFP_NOIO */
1708 #define PF_LOCAL_THROTTLE 0x00100000 /* Throttle writes only against the bdi I write to,
1709 * I am cleaning dirty pages from some other bdi. */
1710 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1711 #define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */
1712 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_mask */
1713 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1714 #define PF_MEMALLOC_PIN 0x10000000 /* Allocation context constrained to zones which allow long term pinning. */
1715 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1716 #define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */
1719 * Only the _current_ task can read/write to tsk->flags, but other
1720 * tasks can access tsk->flags in readonly mode for example
1721 * with tsk_used_math (like during threaded core dumping).
1722 * There is however an exception to this rule during ptrace
1723 * or during fork: the ptracer task is allowed to write to the
1724 * child->flags of its traced child (same goes for fork, the parent
1725 * can write to the child->flags), because we're guaranteed the
1726 * child is not running and in turn not changing child->flags
1727 * at the same time the parent does it.
1729 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1730 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1731 #define clear_used_math() clear_stopped_child_used_math(current)
1732 #define set_used_math() set_stopped_child_used_math(current)
1734 #define conditional_stopped_child_used_math(condition, child) \
1735 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1737 #define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current)
1739 #define copy_to_stopped_child_used_math(child) \
1740 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1742 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1743 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1744 #define used_math() tsk_used_math(current)
1746 static __always_inline bool is_percpu_thread(void)
1749 return (current->flags & PF_NO_SETAFFINITY) &&
1750 (current->nr_cpus_allowed == 1);
1756 /* Per-process atomic flags. */
1757 #define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
1758 #define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
1759 #define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
1760 #define PFA_SPEC_SSB_DISABLE 3 /* Speculative Store Bypass disabled */
1761 #define PFA_SPEC_SSB_FORCE_DISABLE 4 /* Speculative Store Bypass force disabled*/
1762 #define PFA_SPEC_IB_DISABLE 5 /* Indirect branch speculation restricted */
1763 #define PFA_SPEC_IB_FORCE_DISABLE 6 /* Indirect branch speculation permanently restricted */
1764 #define PFA_SPEC_SSB_NOEXEC 7 /* Speculative Store Bypass clear on execve() */
1766 #define TASK_PFA_TEST(name, func) \
1767 static inline bool task_##func(struct task_struct *p) \
1768 { return test_bit(PFA_##name, &p->atomic_flags); }
1770 #define TASK_PFA_SET(name, func) \
1771 static inline void task_set_##func(struct task_struct *p) \
1772 { set_bit(PFA_##name, &p->atomic_flags); }
1774 #define TASK_PFA_CLEAR(name, func) \
1775 static inline void task_clear_##func(struct task_struct *p) \
1776 { clear_bit(PFA_##name, &p->atomic_flags); }
1778 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1779 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1781 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1782 TASK_PFA_SET(SPREAD_PAGE, spread_page)
1783 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1785 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1786 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1787 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1789 TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1790 TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1791 TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1793 TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1794 TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1795 TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1797 TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1798 TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1800 TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1801 TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1802 TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1804 TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1805 TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1808 current_restore_flags(unsigned long orig_flags, unsigned long flags)
1810 current->flags &= ~flags;
1811 current->flags |= orig_flags & flags;
1814 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1815 extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
1817 extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1818 extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1819 extern int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node);
1820 extern void release_user_cpus_ptr(struct task_struct *p);
1821 extern int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask);
1822 extern void force_compatible_cpus_allowed_ptr(struct task_struct *p);
1823 extern void relax_compatible_cpus_allowed_ptr(struct task_struct *p);
1825 static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1828 static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1830 if (!cpumask_test_cpu(0, new_mask))
1834 static inline int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node)
1836 if (src->user_cpus_ptr)
1840 static inline void release_user_cpus_ptr(struct task_struct *p)
1842 WARN_ON(p->user_cpus_ptr);
1845 static inline int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
1851 extern int yield_to(struct task_struct *p, bool preempt);
1852 extern void set_user_nice(struct task_struct *p, long nice);
1853 extern int task_prio(const struct task_struct *p);
1856 * task_nice - return the nice value of a given task.
1857 * @p: the task in question.
1859 * Return: The nice value [ -20 ... 0 ... 19 ].
1861 static inline int task_nice(const struct task_struct *p)
1863 return PRIO_TO_NICE((p)->static_prio);
1866 extern int can_nice(const struct task_struct *p, const int nice);
1867 extern int task_curr(const struct task_struct *p);
1868 extern int idle_cpu(int cpu);
1869 extern int available_idle_cpu(int cpu);
1870 extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1871 extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1872 extern void sched_set_fifo(struct task_struct *p);
1873 extern void sched_set_fifo_low(struct task_struct *p);
1874 extern void sched_set_normal(struct task_struct *p, int nice);
1875 extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1876 extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1877 extern struct task_struct *idle_task(int cpu);
1880 * is_idle_task - is the specified task an idle task?
1881 * @p: the task in question.
1883 * Return: 1 if @p is an idle task. 0 otherwise.
1885 static __always_inline bool is_idle_task(const struct task_struct *p)
1887 return !!(p->flags & PF_IDLE);
1890 extern struct task_struct *curr_task(int cpu);
1891 extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1895 union thread_union {
1896 #ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
1897 struct task_struct task;
1899 #ifndef CONFIG_THREAD_INFO_IN_TASK
1900 struct thread_info thread_info;
1902 unsigned long stack[THREAD_SIZE/sizeof(long)];
1905 #ifndef CONFIG_THREAD_INFO_IN_TASK
1906 extern struct thread_info init_thread_info;
1909 extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1911 #ifdef CONFIG_THREAD_INFO_IN_TASK
1912 # define task_thread_info(task) (&(task)->thread_info)
1913 #elif !defined(__HAVE_THREAD_FUNCTIONS)
1914 # define task_thread_info(task) ((struct thread_info *)(task)->stack)
1918 * find a task by one of its numerical ids
1920 * find_task_by_pid_ns():
1921 * finds a task by its pid in the specified namespace
1922 * find_task_by_vpid():
1923 * finds a task by its virtual pid
1925 * see also find_vpid() etc in include/linux/pid.h
1928 extern struct task_struct *find_task_by_vpid(pid_t nr);
1929 extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1932 * find a task by its virtual pid and get the task struct
1934 extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1936 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1937 extern int wake_up_process(struct task_struct *tsk);
1938 extern void wake_up_new_task(struct task_struct *tsk);
1941 extern void kick_process(struct task_struct *tsk);
1943 static inline void kick_process(struct task_struct *tsk) { }
1946 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1948 static inline void set_task_comm(struct task_struct *tsk, const char *from)
1950 __set_task_comm(tsk, from, false);
1953 extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1954 #define get_task_comm(buf, tsk) ({ \
1955 BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN); \
1956 __get_task_comm(buf, sizeof(buf), tsk); \
1960 static __always_inline void scheduler_ipi(void)
1963 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1964 * TIF_NEED_RESCHED remotely (for the first time) will also send
1967 preempt_fold_need_resched();
1969 extern unsigned long wait_task_inactive(struct task_struct *, unsigned int match_state);
1971 static inline void scheduler_ipi(void) { }
1972 static inline unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
1979 * Set thread flags in other task's structures.
1980 * See asm/thread_info.h for TIF_xxxx flags available:
1982 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1984 set_ti_thread_flag(task_thread_info(tsk), flag);
1987 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1989 clear_ti_thread_flag(task_thread_info(tsk), flag);
1992 static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
1995 update_ti_thread_flag(task_thread_info(tsk), flag, value);
1998 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2000 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2003 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2005 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2008 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2010 return test_ti_thread_flag(task_thread_info(tsk), flag);
2013 static inline void set_tsk_need_resched(struct task_struct *tsk)
2015 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2018 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2020 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2023 static inline int test_tsk_need_resched(struct task_struct *tsk)
2025 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2029 * cond_resched() and cond_resched_lock(): latency reduction via
2030 * explicit rescheduling in places that are safe. The return
2031 * value indicates whether a reschedule was done in fact.
2032 * cond_resched_lock() will drop the spinlock before scheduling,
2034 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
2035 extern int __cond_resched(void);
2037 #if defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
2039 DECLARE_STATIC_CALL(cond_resched, __cond_resched);
2041 static __always_inline int _cond_resched(void)
2043 return static_call_mod(cond_resched)();
2046 #elif defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
2047 extern int dynamic_cond_resched(void);
2049 static __always_inline int _cond_resched(void)
2051 return dynamic_cond_resched();
2056 static inline int _cond_resched(void)
2058 return __cond_resched();
2061 #endif /* CONFIG_PREEMPT_DYNAMIC */
2065 static inline int _cond_resched(void) { return 0; }
2067 #endif /* !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) */
2069 #define cond_resched() ({ \
2070 __might_resched(__FILE__, __LINE__, 0); \
2074 extern int __cond_resched_lock(spinlock_t *lock);
2075 extern int __cond_resched_rwlock_read(rwlock_t *lock);
2076 extern int __cond_resched_rwlock_write(rwlock_t *lock);
2078 #define MIGHT_RESCHED_RCU_SHIFT 8
2079 #define MIGHT_RESCHED_PREEMPT_MASK ((1U << MIGHT_RESCHED_RCU_SHIFT) - 1)
2081 #ifndef CONFIG_PREEMPT_RT
2083 * Non RT kernels have an elevated preempt count due to the held lock,
2084 * but are not allowed to be inside a RCU read side critical section
2086 # define PREEMPT_LOCK_RESCHED_OFFSETS PREEMPT_LOCK_OFFSET
2089 * spin/rw_lock() on RT implies rcu_read_lock(). The might_sleep() check in
2090 * cond_resched*lock() has to take that into account because it checks for
2091 * preempt_count() and rcu_preempt_depth().
2093 # define PREEMPT_LOCK_RESCHED_OFFSETS \
2094 (PREEMPT_LOCK_OFFSET + (1U << MIGHT_RESCHED_RCU_SHIFT))
2097 #define cond_resched_lock(lock) ({ \
2098 __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS); \
2099 __cond_resched_lock(lock); \
2102 #define cond_resched_rwlock_read(lock) ({ \
2103 __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS); \
2104 __cond_resched_rwlock_read(lock); \
2107 #define cond_resched_rwlock_write(lock) ({ \
2108 __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS); \
2109 __cond_resched_rwlock_write(lock); \
2112 static inline void cond_resched_rcu(void)
2114 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2122 * Does a critical section need to be broken due to another
2123 * task waiting?: (technically does not depend on CONFIG_PREEMPTION,
2124 * but a general need for low latency)
2126 static inline int spin_needbreak(spinlock_t *lock)
2128 #ifdef CONFIG_PREEMPTION
2129 return spin_is_contended(lock);
2136 * Check if a rwlock is contended.
2137 * Returns non-zero if there is another task waiting on the rwlock.
2138 * Returns zero if the lock is not contended or the system / underlying
2139 * rwlock implementation does not support contention detection.
2140 * Technically does not depend on CONFIG_PREEMPTION, but a general need
2143 static inline int rwlock_needbreak(rwlock_t *lock)
2145 #ifdef CONFIG_PREEMPTION
2146 return rwlock_is_contended(lock);
2152 static __always_inline bool need_resched(void)
2154 return unlikely(tif_need_resched());
2158 * Wrappers for p->thread_info->cpu access. No-op on UP.
2162 static inline unsigned int task_cpu(const struct task_struct *p)
2164 return READ_ONCE(task_thread_info(p)->cpu);
2167 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2171 static inline unsigned int task_cpu(const struct task_struct *p)
2176 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2180 #endif /* CONFIG_SMP */
2182 extern bool sched_task_on_rq(struct task_struct *p);
2183 extern unsigned long get_wchan(struct task_struct *p);
2186 * In order to reduce various lock holder preemption latencies provide an
2187 * interface to see if a vCPU is currently running or not.
2189 * This allows us to terminate optimistic spin loops and block, analogous to
2190 * the native optimistic spin heuristic of testing if the lock owner task is
2193 #ifndef vcpu_is_preempted
2194 static inline bool vcpu_is_preempted(int cpu)
2200 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2201 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2203 #ifndef TASK_SIZE_OF
2204 #define TASK_SIZE_OF(tsk) TASK_SIZE
2208 static inline bool owner_on_cpu(struct task_struct *owner)
2211 * As lock holder preemption issue, we both skip spinning if
2212 * task is not on cpu or its cpu is preempted
2214 return READ_ONCE(owner->on_cpu) && !vcpu_is_preempted(task_cpu(owner));
2217 /* Returns effective CPU energy utilization, as seen by the scheduler */
2218 unsigned long sched_cpu_util(int cpu, unsigned long max);
2219 #endif /* CONFIG_SMP */
2224 * Map the event mask on the user-space ABI enum rseq_cs_flags
2225 * for direct mask checks.
2227 enum rseq_event_mask_bits {
2228 RSEQ_EVENT_PREEMPT_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
2229 RSEQ_EVENT_SIGNAL_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
2230 RSEQ_EVENT_MIGRATE_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
2233 enum rseq_event_mask {
2234 RSEQ_EVENT_PREEMPT = (1U << RSEQ_EVENT_PREEMPT_BIT),
2235 RSEQ_EVENT_SIGNAL = (1U << RSEQ_EVENT_SIGNAL_BIT),
2236 RSEQ_EVENT_MIGRATE = (1U << RSEQ_EVENT_MIGRATE_BIT),
2239 static inline void rseq_set_notify_resume(struct task_struct *t)
2242 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
2245 void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
2247 static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2248 struct pt_regs *regs)
2251 __rseq_handle_notify_resume(ksig, regs);
2254 static inline void rseq_signal_deliver(struct ksignal *ksig,
2255 struct pt_regs *regs)
2258 __set_bit(RSEQ_EVENT_SIGNAL_BIT, ¤t->rseq_event_mask);
2260 rseq_handle_notify_resume(ksig, regs);
2263 /* rseq_preempt() requires preemption to be disabled. */
2264 static inline void rseq_preempt(struct task_struct *t)
2266 __set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
2267 rseq_set_notify_resume(t);
2270 /* rseq_migrate() requires preemption to be disabled. */
2271 static inline void rseq_migrate(struct task_struct *t)
2273 __set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
2274 rseq_set_notify_resume(t);
2278 * If parent process has a registered restartable sequences area, the
2279 * child inherits. Unregister rseq for a clone with CLONE_VM set.
2281 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2283 if (clone_flags & CLONE_VM) {
2286 t->rseq_event_mask = 0;
2288 t->rseq = current->rseq;
2289 t->rseq_sig = current->rseq_sig;
2290 t->rseq_event_mask = current->rseq_event_mask;
2294 static inline void rseq_execve(struct task_struct *t)
2298 t->rseq_event_mask = 0;
2303 static inline void rseq_set_notify_resume(struct task_struct *t)
2306 static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2307 struct pt_regs *regs)
2310 static inline void rseq_signal_deliver(struct ksignal *ksig,
2311 struct pt_regs *regs)
2314 static inline void rseq_preempt(struct task_struct *t)
2317 static inline void rseq_migrate(struct task_struct *t)
2320 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2323 static inline void rseq_execve(struct task_struct *t)
2329 #ifdef CONFIG_DEBUG_RSEQ
2331 void rseq_syscall(struct pt_regs *regs);
2335 static inline void rseq_syscall(struct pt_regs *regs)
2341 const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq);
2342 char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len);
2343 int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq);
2345 const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq);
2346 const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq);
2347 const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq);
2349 int sched_trace_rq_cpu(struct rq *rq);
2350 int sched_trace_rq_cpu_capacity(struct rq *rq);
2351 int sched_trace_rq_nr_running(struct rq *rq);
2353 const struct cpumask *sched_trace_rd_span(struct root_domain *rd);
2355 #ifdef CONFIG_SCHED_CORE
2356 extern void sched_core_free(struct task_struct *tsk);
2357 extern void sched_core_fork(struct task_struct *p);
2358 extern int sched_core_share_pid(unsigned int cmd, pid_t pid, enum pid_type type,
2359 unsigned long uaddr);
2361 static inline void sched_core_free(struct task_struct *tsk) { }
2362 static inline void sched_core_fork(struct task_struct *p) { }