1 // SPDX-License-Identifier: GPL-2.0-only
3 * Kernel-based Virtual Machine driver for Linux
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
8 * Copyright (C) 2006 Qumranet, Inc.
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
16 #include <kvm/iodev.h>
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
55 #include <asm/processor.h>
56 #include <asm/ioctl.h>
57 #include <linux/uaccess.h>
59 #include "coalesced_mmio.h"
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
66 #include <linux/kvm_dirty_ring.h>
68 /* Worst case buffer size needed for holding an integer. */
69 #define ITOA_MAX_LEN 12
71 MODULE_AUTHOR("Qumranet");
72 MODULE_LICENSE("GPL");
74 /* Architectures should define their poll value according to the halt latency */
75 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
76 module_param(halt_poll_ns, uint, 0644);
77 EXPORT_SYMBOL_GPL(halt_poll_ns);
79 /* Default doubles per-vcpu halt_poll_ns. */
80 unsigned int halt_poll_ns_grow = 2;
81 module_param(halt_poll_ns_grow, uint, 0644);
82 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
84 /* The start value to grow halt_poll_ns from */
85 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
86 module_param(halt_poll_ns_grow_start, uint, 0644);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
89 /* Default resets per-vcpu halt_poll_ns . */
90 unsigned int halt_poll_ns_shrink;
91 module_param(halt_poll_ns_shrink, uint, 0644);
92 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
97 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
100 DEFINE_MUTEX(kvm_lock);
101 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
104 static cpumask_var_t cpus_hardware_enabled;
105 static int kvm_usage_count;
106 static atomic_t hardware_enable_failed;
108 static struct kmem_cache *kvm_vcpu_cache;
110 static __read_mostly struct preempt_ops kvm_preempt_ops;
111 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
113 struct dentry *kvm_debugfs_dir;
114 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
116 static int kvm_debugfs_num_entries;
117 static const struct file_operations stat_fops_per_vm;
119 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
121 #ifdef CONFIG_KVM_COMPAT
122 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
124 #define KVM_COMPAT(c) .compat_ioctl = (c)
127 * For architectures that don't implement a compat infrastructure,
128 * adopt a double line of defense:
129 * - Prevent a compat task from opening /dev/kvm
130 * - If the open has been done by a 64bit task, and the KVM fd
131 * passed to a compat task, let the ioctls fail.
133 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
134 unsigned long arg) { return -EINVAL; }
136 static int kvm_no_compat_open(struct inode *inode, struct file *file)
138 return is_compat_task() ? -ENODEV : 0;
140 #define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl, \
141 .open = kvm_no_compat_open
143 static int hardware_enable_all(void);
144 static void hardware_disable_all(void);
146 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
148 __visible bool kvm_rebooting;
149 EXPORT_SYMBOL_GPL(kvm_rebooting);
151 #define KVM_EVENT_CREATE_VM 0
152 #define KVM_EVENT_DESTROY_VM 1
153 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
154 static unsigned long long kvm_createvm_count;
155 static unsigned long long kvm_active_vms;
157 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
158 unsigned long start, unsigned long end)
162 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn)
165 * The metadata used by is_zone_device_page() to determine whether or
166 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
167 * the device has been pinned, e.g. by get_user_pages(). WARN if the
168 * page_count() is zero to help detect bad usage of this helper.
170 if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn))))
173 return is_zone_device_page(pfn_to_page(pfn));
176 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
179 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
180 * perspective they are "normal" pages, albeit with slightly different
184 return PageReserved(pfn_to_page(pfn)) &&
186 !kvm_is_zone_device_pfn(pfn);
191 bool kvm_is_transparent_hugepage(kvm_pfn_t pfn)
193 struct page *page = pfn_to_page(pfn);
195 if (!PageTransCompoundMap(page))
198 return is_transparent_hugepage(compound_head(page));
202 * Switches to specified vcpu, until a matching vcpu_put()
204 void vcpu_load(struct kvm_vcpu *vcpu)
208 __this_cpu_write(kvm_running_vcpu, vcpu);
209 preempt_notifier_register(&vcpu->preempt_notifier);
210 kvm_arch_vcpu_load(vcpu, cpu);
213 EXPORT_SYMBOL_GPL(vcpu_load);
215 void vcpu_put(struct kvm_vcpu *vcpu)
218 kvm_arch_vcpu_put(vcpu);
219 preempt_notifier_unregister(&vcpu->preempt_notifier);
220 __this_cpu_write(kvm_running_vcpu, NULL);
223 EXPORT_SYMBOL_GPL(vcpu_put);
225 /* TODO: merge with kvm_arch_vcpu_should_kick */
226 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
228 int mode = kvm_vcpu_exiting_guest_mode(vcpu);
231 * We need to wait for the VCPU to reenable interrupts and get out of
232 * READING_SHADOW_PAGE_TABLES mode.
234 if (req & KVM_REQUEST_WAIT)
235 return mode != OUTSIDE_GUEST_MODE;
238 * Need to kick a running VCPU, but otherwise there is nothing to do.
240 return mode == IN_GUEST_MODE;
243 static void ack_flush(void *_completed)
247 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
250 cpus = cpu_online_mask;
252 if (cpumask_empty(cpus))
255 smp_call_function_many(cpus, ack_flush, NULL, wait);
259 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
260 struct kvm_vcpu *except,
261 unsigned long *vcpu_bitmap, cpumask_var_t tmp)
264 struct kvm_vcpu *vcpu;
269 kvm_for_each_vcpu(i, vcpu, kvm) {
270 if ((vcpu_bitmap && !test_bit(i, vcpu_bitmap)) ||
274 kvm_make_request(req, vcpu);
277 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
280 if (tmp != NULL && cpu != -1 && cpu != me &&
281 kvm_request_needs_ipi(vcpu, req))
282 __cpumask_set_cpu(cpu, tmp);
285 called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
291 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
292 struct kvm_vcpu *except)
297 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
299 called = kvm_make_vcpus_request_mask(kvm, req, except, NULL, cpus);
301 free_cpumask_var(cpus);
305 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
307 return kvm_make_all_cpus_request_except(kvm, req, NULL);
310 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
311 void kvm_flush_remote_tlbs(struct kvm *kvm)
314 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
315 * kvm_make_all_cpus_request.
317 long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
320 * We want to publish modifications to the page tables before reading
321 * mode. Pairs with a memory barrier in arch-specific code.
322 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
323 * and smp_mb in walk_shadow_page_lockless_begin/end.
324 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
326 * There is already an smp_mb__after_atomic() before
327 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
330 if (!kvm_arch_flush_remote_tlb(kvm)
331 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
332 ++kvm->stat.remote_tlb_flush;
333 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
335 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
338 void kvm_reload_remote_mmus(struct kvm *kvm)
340 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
343 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
344 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
347 gfp_flags |= mc->gfp_zero;
350 return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
352 return (void *)__get_free_page(gfp_flags);
355 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
359 if (mc->nobjs >= min)
361 while (mc->nobjs < ARRAY_SIZE(mc->objects)) {
362 obj = mmu_memory_cache_alloc_obj(mc, GFP_KERNEL_ACCOUNT);
364 return mc->nobjs >= min ? 0 : -ENOMEM;
365 mc->objects[mc->nobjs++] = obj;
370 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
375 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
379 kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
381 free_page((unsigned long)mc->objects[--mc->nobjs]);
385 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
389 if (WARN_ON(!mc->nobjs))
390 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
392 p = mc->objects[--mc->nobjs];
398 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
400 mutex_init(&vcpu->mutex);
405 rcuwait_init(&vcpu->wait);
406 kvm_async_pf_vcpu_init(vcpu);
409 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
411 kvm_vcpu_set_in_spin_loop(vcpu, false);
412 kvm_vcpu_set_dy_eligible(vcpu, false);
413 vcpu->preempted = false;
415 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
418 void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
420 kvm_dirty_ring_free(&vcpu->dirty_ring);
421 kvm_arch_vcpu_destroy(vcpu);
424 * No need for rcu_read_lock as VCPU_RUN is the only place that changes
425 * the vcpu->pid pointer, and at destruction time all file descriptors
428 put_pid(rcu_dereference_protected(vcpu->pid, 1));
430 free_page((unsigned long)vcpu->run);
431 kmem_cache_free(kvm_vcpu_cache, vcpu);
433 EXPORT_SYMBOL_GPL(kvm_vcpu_destroy);
435 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
436 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
438 return container_of(mn, struct kvm, mmu_notifier);
441 static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn,
442 struct mm_struct *mm,
443 unsigned long start, unsigned long end)
445 struct kvm *kvm = mmu_notifier_to_kvm(mn);
448 idx = srcu_read_lock(&kvm->srcu);
449 kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
450 srcu_read_unlock(&kvm->srcu, idx);
453 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
454 struct mm_struct *mm,
455 unsigned long address,
458 struct kvm *kvm = mmu_notifier_to_kvm(mn);
461 idx = srcu_read_lock(&kvm->srcu);
462 spin_lock(&kvm->mmu_lock);
463 kvm->mmu_notifier_seq++;
465 if (kvm_set_spte_hva(kvm, address, pte))
466 kvm_flush_remote_tlbs(kvm);
468 spin_unlock(&kvm->mmu_lock);
469 srcu_read_unlock(&kvm->srcu, idx);
472 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
473 const struct mmu_notifier_range *range)
475 struct kvm *kvm = mmu_notifier_to_kvm(mn);
476 int need_tlb_flush = 0, idx;
478 idx = srcu_read_lock(&kvm->srcu);
479 spin_lock(&kvm->mmu_lock);
481 * The count increase must become visible at unlock time as no
482 * spte can be established without taking the mmu_lock and
483 * count is also read inside the mmu_lock critical section.
485 kvm->mmu_notifier_count++;
486 need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end,
488 need_tlb_flush |= kvm->tlbs_dirty;
489 /* we've to flush the tlb before the pages can be freed */
491 kvm_flush_remote_tlbs(kvm);
493 spin_unlock(&kvm->mmu_lock);
494 srcu_read_unlock(&kvm->srcu, idx);
499 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
500 const struct mmu_notifier_range *range)
502 struct kvm *kvm = mmu_notifier_to_kvm(mn);
504 spin_lock(&kvm->mmu_lock);
506 * This sequence increase will notify the kvm page fault that
507 * the page that is going to be mapped in the spte could have
510 kvm->mmu_notifier_seq++;
513 * The above sequence increase must be visible before the
514 * below count decrease, which is ensured by the smp_wmb above
515 * in conjunction with the smp_rmb in mmu_notifier_retry().
517 kvm->mmu_notifier_count--;
518 spin_unlock(&kvm->mmu_lock);
520 BUG_ON(kvm->mmu_notifier_count < 0);
523 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
524 struct mm_struct *mm,
528 struct kvm *kvm = mmu_notifier_to_kvm(mn);
531 idx = srcu_read_lock(&kvm->srcu);
532 spin_lock(&kvm->mmu_lock);
534 young = kvm_age_hva(kvm, start, end);
536 kvm_flush_remote_tlbs(kvm);
538 spin_unlock(&kvm->mmu_lock);
539 srcu_read_unlock(&kvm->srcu, idx);
544 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
545 struct mm_struct *mm,
549 struct kvm *kvm = mmu_notifier_to_kvm(mn);
552 idx = srcu_read_lock(&kvm->srcu);
553 spin_lock(&kvm->mmu_lock);
555 * Even though we do not flush TLB, this will still adversely
556 * affect performance on pre-Haswell Intel EPT, where there is
557 * no EPT Access Bit to clear so that we have to tear down EPT
558 * tables instead. If we find this unacceptable, we can always
559 * add a parameter to kvm_age_hva so that it effectively doesn't
560 * do anything on clear_young.
562 * Also note that currently we never issue secondary TLB flushes
563 * from clear_young, leaving this job up to the regular system
564 * cadence. If we find this inaccurate, we might come up with a
565 * more sophisticated heuristic later.
567 young = kvm_age_hva(kvm, start, end);
568 spin_unlock(&kvm->mmu_lock);
569 srcu_read_unlock(&kvm->srcu, idx);
574 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
575 struct mm_struct *mm,
576 unsigned long address)
578 struct kvm *kvm = mmu_notifier_to_kvm(mn);
581 idx = srcu_read_lock(&kvm->srcu);
582 spin_lock(&kvm->mmu_lock);
583 young = kvm_test_age_hva(kvm, address);
584 spin_unlock(&kvm->mmu_lock);
585 srcu_read_unlock(&kvm->srcu, idx);
590 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
591 struct mm_struct *mm)
593 struct kvm *kvm = mmu_notifier_to_kvm(mn);
596 idx = srcu_read_lock(&kvm->srcu);
597 kvm_arch_flush_shadow_all(kvm);
598 srcu_read_unlock(&kvm->srcu, idx);
601 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
602 .invalidate_range = kvm_mmu_notifier_invalidate_range,
603 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
604 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
605 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
606 .clear_young = kvm_mmu_notifier_clear_young,
607 .test_young = kvm_mmu_notifier_test_young,
608 .change_pte = kvm_mmu_notifier_change_pte,
609 .release = kvm_mmu_notifier_release,
612 static int kvm_init_mmu_notifier(struct kvm *kvm)
614 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
615 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
618 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
620 static int kvm_init_mmu_notifier(struct kvm *kvm)
625 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
627 static struct kvm_memslots *kvm_alloc_memslots(void)
630 struct kvm_memslots *slots;
632 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
636 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
637 slots->id_to_index[i] = -1;
642 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
644 if (!memslot->dirty_bitmap)
647 kvfree(memslot->dirty_bitmap);
648 memslot->dirty_bitmap = NULL;
651 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
653 kvm_destroy_dirty_bitmap(slot);
655 kvm_arch_free_memslot(kvm, slot);
661 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
663 struct kvm_memory_slot *memslot;
668 kvm_for_each_memslot(memslot, slots)
669 kvm_free_memslot(kvm, memslot);
674 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
678 if (!kvm->debugfs_dentry)
681 debugfs_remove_recursive(kvm->debugfs_dentry);
683 if (kvm->debugfs_stat_data) {
684 for (i = 0; i < kvm_debugfs_num_entries; i++)
685 kfree(kvm->debugfs_stat_data[i]);
686 kfree(kvm->debugfs_stat_data);
690 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
692 char dir_name[ITOA_MAX_LEN * 2];
693 struct kvm_stat_data *stat_data;
694 struct kvm_stats_debugfs_item *p;
696 if (!debugfs_initialized())
699 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
700 kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
702 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
703 sizeof(*kvm->debugfs_stat_data),
705 if (!kvm->debugfs_stat_data)
708 for (p = debugfs_entries; p->name; p++) {
709 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
713 stat_data->kvm = kvm;
714 stat_data->dbgfs_item = p;
715 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
716 debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p),
717 kvm->debugfs_dentry, stat_data,
724 * Called after the VM is otherwise initialized, but just before adding it to
727 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
733 * Called just after removing the VM from the vm_list, but before doing any
736 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
740 static struct kvm *kvm_create_vm(unsigned long type)
742 struct kvm *kvm = kvm_arch_alloc_vm();
747 return ERR_PTR(-ENOMEM);
749 spin_lock_init(&kvm->mmu_lock);
751 kvm->mm = current->mm;
752 kvm_eventfd_init(kvm);
753 mutex_init(&kvm->lock);
754 mutex_init(&kvm->irq_lock);
755 mutex_init(&kvm->slots_lock);
756 INIT_LIST_HEAD(&kvm->devices);
758 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
760 if (init_srcu_struct(&kvm->srcu))
761 goto out_err_no_srcu;
762 if (init_srcu_struct(&kvm->irq_srcu))
763 goto out_err_no_irq_srcu;
765 refcount_set(&kvm->users_count, 1);
766 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
767 struct kvm_memslots *slots = kvm_alloc_memslots();
770 goto out_err_no_arch_destroy_vm;
771 /* Generations must be different for each address space. */
772 slots->generation = i;
773 rcu_assign_pointer(kvm->memslots[i], slots);
776 for (i = 0; i < KVM_NR_BUSES; i++) {
777 rcu_assign_pointer(kvm->buses[i],
778 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
780 goto out_err_no_arch_destroy_vm;
783 kvm->max_halt_poll_ns = halt_poll_ns;
785 r = kvm_arch_init_vm(kvm, type);
787 goto out_err_no_arch_destroy_vm;
789 r = hardware_enable_all();
791 goto out_err_no_disable;
793 #ifdef CONFIG_HAVE_KVM_IRQFD
794 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
797 r = kvm_init_mmu_notifier(kvm);
799 goto out_err_no_mmu_notifier;
801 r = kvm_arch_post_init_vm(kvm);
805 mutex_lock(&kvm_lock);
806 list_add(&kvm->vm_list, &vm_list);
807 mutex_unlock(&kvm_lock);
809 preempt_notifier_inc();
814 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
815 if (kvm->mmu_notifier.ops)
816 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
818 out_err_no_mmu_notifier:
819 hardware_disable_all();
821 kvm_arch_destroy_vm(kvm);
822 out_err_no_arch_destroy_vm:
823 WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
824 for (i = 0; i < KVM_NR_BUSES; i++)
825 kfree(kvm_get_bus(kvm, i));
826 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
827 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
828 cleanup_srcu_struct(&kvm->irq_srcu);
830 cleanup_srcu_struct(&kvm->srcu);
832 kvm_arch_free_vm(kvm);
837 static void kvm_destroy_devices(struct kvm *kvm)
839 struct kvm_device *dev, *tmp;
842 * We do not need to take the kvm->lock here, because nobody else
843 * has a reference to the struct kvm at this point and therefore
844 * cannot access the devices list anyhow.
846 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
847 list_del(&dev->vm_node);
848 dev->ops->destroy(dev);
852 static void kvm_destroy_vm(struct kvm *kvm)
855 struct mm_struct *mm = kvm->mm;
857 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
858 kvm_destroy_vm_debugfs(kvm);
859 kvm_arch_sync_events(kvm);
860 mutex_lock(&kvm_lock);
861 list_del(&kvm->vm_list);
862 mutex_unlock(&kvm_lock);
863 kvm_arch_pre_destroy_vm(kvm);
865 kvm_free_irq_routing(kvm);
866 for (i = 0; i < KVM_NR_BUSES; i++) {
867 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
870 kvm_io_bus_destroy(bus);
871 kvm->buses[i] = NULL;
873 kvm_coalesced_mmio_free(kvm);
874 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
875 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
877 kvm_arch_flush_shadow_all(kvm);
879 kvm_arch_destroy_vm(kvm);
880 kvm_destroy_devices(kvm);
881 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
882 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
883 cleanup_srcu_struct(&kvm->irq_srcu);
884 cleanup_srcu_struct(&kvm->srcu);
885 kvm_arch_free_vm(kvm);
886 preempt_notifier_dec();
887 hardware_disable_all();
891 void kvm_get_kvm(struct kvm *kvm)
893 refcount_inc(&kvm->users_count);
895 EXPORT_SYMBOL_GPL(kvm_get_kvm);
897 void kvm_put_kvm(struct kvm *kvm)
899 if (refcount_dec_and_test(&kvm->users_count))
902 EXPORT_SYMBOL_GPL(kvm_put_kvm);
905 * Used to put a reference that was taken on behalf of an object associated
906 * with a user-visible file descriptor, e.g. a vcpu or device, if installation
907 * of the new file descriptor fails and the reference cannot be transferred to
908 * its final owner. In such cases, the caller is still actively using @kvm and
909 * will fail miserably if the refcount unexpectedly hits zero.
911 void kvm_put_kvm_no_destroy(struct kvm *kvm)
913 WARN_ON(refcount_dec_and_test(&kvm->users_count));
915 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
917 static int kvm_vm_release(struct inode *inode, struct file *filp)
919 struct kvm *kvm = filp->private_data;
921 kvm_irqfd_release(kvm);
928 * Allocation size is twice as large as the actual dirty bitmap size.
929 * See kvm_vm_ioctl_get_dirty_log() why this is needed.
931 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
933 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
935 memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
936 if (!memslot->dirty_bitmap)
943 * Delete a memslot by decrementing the number of used slots and shifting all
944 * other entries in the array forward one spot.
946 static inline void kvm_memslot_delete(struct kvm_memslots *slots,
947 struct kvm_memory_slot *memslot)
949 struct kvm_memory_slot *mslots = slots->memslots;
952 if (WARN_ON(slots->id_to_index[memslot->id] == -1))
957 if (atomic_read(&slots->lru_slot) >= slots->used_slots)
958 atomic_set(&slots->lru_slot, 0);
960 for (i = slots->id_to_index[memslot->id]; i < slots->used_slots; i++) {
961 mslots[i] = mslots[i + 1];
962 slots->id_to_index[mslots[i].id] = i;
964 mslots[i] = *memslot;
965 slots->id_to_index[memslot->id] = -1;
969 * "Insert" a new memslot by incrementing the number of used slots. Returns
970 * the new slot's initial index into the memslots array.
972 static inline int kvm_memslot_insert_back(struct kvm_memslots *slots)
974 return slots->used_slots++;
978 * Move a changed memslot backwards in the array by shifting existing slots
979 * with a higher GFN toward the front of the array. Note, the changed memslot
980 * itself is not preserved in the array, i.e. not swapped at this time, only
981 * its new index into the array is tracked. Returns the changed memslot's
982 * current index into the memslots array.
984 static inline int kvm_memslot_move_backward(struct kvm_memslots *slots,
985 struct kvm_memory_slot *memslot)
987 struct kvm_memory_slot *mslots = slots->memslots;
990 if (WARN_ON_ONCE(slots->id_to_index[memslot->id] == -1) ||
991 WARN_ON_ONCE(!slots->used_slots))
995 * Move the target memslot backward in the array by shifting existing
996 * memslots with a higher GFN (than the target memslot) towards the
997 * front of the array.
999 for (i = slots->id_to_index[memslot->id]; i < slots->used_slots - 1; i++) {
1000 if (memslot->base_gfn > mslots[i + 1].base_gfn)
1003 WARN_ON_ONCE(memslot->base_gfn == mslots[i + 1].base_gfn);
1005 /* Shift the next memslot forward one and update its index. */
1006 mslots[i] = mslots[i + 1];
1007 slots->id_to_index[mslots[i].id] = i;
1013 * Move a changed memslot forwards in the array by shifting existing slots with
1014 * a lower GFN toward the back of the array. Note, the changed memslot itself
1015 * is not preserved in the array, i.e. not swapped at this time, only its new
1016 * index into the array is tracked. Returns the changed memslot's final index
1017 * into the memslots array.
1019 static inline int kvm_memslot_move_forward(struct kvm_memslots *slots,
1020 struct kvm_memory_slot *memslot,
1023 struct kvm_memory_slot *mslots = slots->memslots;
1026 for (i = start; i > 0; i--) {
1027 if (memslot->base_gfn < mslots[i - 1].base_gfn)
1030 WARN_ON_ONCE(memslot->base_gfn == mslots[i - 1].base_gfn);
1032 /* Shift the next memslot back one and update its index. */
1033 mslots[i] = mslots[i - 1];
1034 slots->id_to_index[mslots[i].id] = i;
1040 * Re-sort memslots based on their GFN to account for an added, deleted, or
1041 * moved memslot. Sorting memslots by GFN allows using a binary search during
1044 * IMPORTANT: Slots are sorted from highest GFN to lowest GFN! I.e. the entry
1045 * at memslots[0] has the highest GFN.
1047 * The sorting algorithm takes advantage of having initially sorted memslots
1048 * and knowing the position of the changed memslot. Sorting is also optimized
1049 * by not swapping the updated memslot and instead only shifting other memslots
1050 * and tracking the new index for the update memslot. Only once its final
1051 * index is known is the updated memslot copied into its position in the array.
1053 * - When deleting a memslot, the deleted memslot simply needs to be moved to
1054 * the end of the array.
1056 * - When creating a memslot, the algorithm "inserts" the new memslot at the
1057 * end of the array and then it forward to its correct location.
1059 * - When moving a memslot, the algorithm first moves the updated memslot
1060 * backward to handle the scenario where the memslot's GFN was changed to a
1061 * lower value. update_memslots() then falls through and runs the same flow
1062 * as creating a memslot to move the memslot forward to handle the scenario
1063 * where its GFN was changed to a higher value.
1065 * Note, slots are sorted from highest->lowest instead of lowest->highest for
1066 * historical reasons. Originally, invalid memslots where denoted by having
1067 * GFN=0, thus sorting from highest->lowest naturally sorted invalid memslots
1068 * to the end of the array. The current algorithm uses dedicated logic to
1069 * delete a memslot and thus does not rely on invalid memslots having GFN=0.
1071 * The other historical motiviation for highest->lowest was to improve the
1072 * performance of memslot lookup. KVM originally used a linear search starting
1073 * at memslots[0]. On x86, the largest memslot usually has one of the highest,
1074 * if not *the* highest, GFN, as the bulk of the guest's RAM is located in a
1075 * single memslot above the 4gb boundary. As the largest memslot is also the
1076 * most likely to be referenced, sorting it to the front of the array was
1077 * advantageous. The current binary search starts from the middle of the array
1078 * and uses an LRU pointer to improve performance for all memslots and GFNs.
1080 static void update_memslots(struct kvm_memslots *slots,
1081 struct kvm_memory_slot *memslot,
1082 enum kvm_mr_change change)
1086 if (change == KVM_MR_DELETE) {
1087 kvm_memslot_delete(slots, memslot);
1089 if (change == KVM_MR_CREATE)
1090 i = kvm_memslot_insert_back(slots);
1092 i = kvm_memslot_move_backward(slots, memslot);
1093 i = kvm_memslot_move_forward(slots, memslot, i);
1096 * Copy the memslot to its new position in memslots and update
1097 * its index accordingly.
1099 slots->memslots[i] = *memslot;
1100 slots->id_to_index[memslot->id] = i;
1104 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
1106 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1108 #ifdef __KVM_HAVE_READONLY_MEM
1109 valid_flags |= KVM_MEM_READONLY;
1112 if (mem->flags & ~valid_flags)
1118 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
1119 int as_id, struct kvm_memslots *slots)
1121 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
1122 u64 gen = old_memslots->generation;
1124 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1125 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1127 rcu_assign_pointer(kvm->memslots[as_id], slots);
1128 synchronize_srcu_expedited(&kvm->srcu);
1131 * Increment the new memslot generation a second time, dropping the
1132 * update in-progress flag and incrementing the generation based on
1133 * the number of address spaces. This provides a unique and easily
1134 * identifiable generation number while the memslots are in flux.
1136 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1139 * Generations must be unique even across address spaces. We do not need
1140 * a global counter for that, instead the generation space is evenly split
1141 * across address spaces. For example, with two address spaces, address
1142 * space 0 will use generations 0, 2, 4, ... while address space 1 will
1143 * use generations 1, 3, 5, ...
1145 gen += KVM_ADDRESS_SPACE_NUM;
1147 kvm_arch_memslots_updated(kvm, gen);
1149 slots->generation = gen;
1151 return old_memslots;
1155 * Note, at a minimum, the current number of used slots must be allocated, even
1156 * when deleting a memslot, as we need a complete duplicate of the memslots for
1157 * use when invalidating a memslot prior to deleting/moving the memslot.
1159 static struct kvm_memslots *kvm_dup_memslots(struct kvm_memslots *old,
1160 enum kvm_mr_change change)
1162 struct kvm_memslots *slots;
1163 size_t old_size, new_size;
1165 old_size = sizeof(struct kvm_memslots) +
1166 (sizeof(struct kvm_memory_slot) * old->used_slots);
1168 if (change == KVM_MR_CREATE)
1169 new_size = old_size + sizeof(struct kvm_memory_slot);
1171 new_size = old_size;
1173 slots = kvzalloc(new_size, GFP_KERNEL_ACCOUNT);
1175 memcpy(slots, old, old_size);
1180 static int kvm_set_memslot(struct kvm *kvm,
1181 const struct kvm_userspace_memory_region *mem,
1182 struct kvm_memory_slot *old,
1183 struct kvm_memory_slot *new, int as_id,
1184 enum kvm_mr_change change)
1186 struct kvm_memory_slot *slot;
1187 struct kvm_memslots *slots;
1190 slots = kvm_dup_memslots(__kvm_memslots(kvm, as_id), change);
1194 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1196 * Note, the INVALID flag needs to be in the appropriate entry
1197 * in the freshly allocated memslots, not in @old or @new.
1199 slot = id_to_memslot(slots, old->id);
1200 slot->flags |= KVM_MEMSLOT_INVALID;
1203 * We can re-use the old memslots, the only difference from the
1204 * newly installed memslots is the invalid flag, which will get
1205 * dropped by update_memslots anyway. We'll also revert to the
1206 * old memslots if preparing the new memory region fails.
1208 slots = install_new_memslots(kvm, as_id, slots);
1210 /* From this point no new shadow pages pointing to a deleted,
1211 * or moved, memslot will be created.
1213 * validation of sp->gfn happens in:
1214 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1215 * - kvm_is_visible_gfn (mmu_check_root)
1217 kvm_arch_flush_shadow_memslot(kvm, slot);
1220 r = kvm_arch_prepare_memory_region(kvm, new, mem, change);
1224 update_memslots(slots, new, change);
1225 slots = install_new_memslots(kvm, as_id, slots);
1227 kvm_arch_commit_memory_region(kvm, mem, old, new, change);
1233 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1234 slots = install_new_memslots(kvm, as_id, slots);
1239 static int kvm_delete_memslot(struct kvm *kvm,
1240 const struct kvm_userspace_memory_region *mem,
1241 struct kvm_memory_slot *old, int as_id)
1243 struct kvm_memory_slot new;
1249 memset(&new, 0, sizeof(new));
1252 * This is only for debugging purpose; it should never be referenced
1253 * for a removed memslot.
1257 r = kvm_set_memslot(kvm, mem, old, &new, as_id, KVM_MR_DELETE);
1261 kvm_free_memslot(kvm, old);
1266 * Allocate some memory and give it an address in the guest physical address
1269 * Discontiguous memory is allowed, mostly for framebuffers.
1271 * Must be called holding kvm->slots_lock for write.
1273 int __kvm_set_memory_region(struct kvm *kvm,
1274 const struct kvm_userspace_memory_region *mem)
1276 struct kvm_memory_slot old, new;
1277 struct kvm_memory_slot *tmp;
1278 enum kvm_mr_change change;
1282 r = check_memory_region_flags(mem);
1286 as_id = mem->slot >> 16;
1287 id = (u16)mem->slot;
1289 /* General sanity checks */
1290 if (mem->memory_size & (PAGE_SIZE - 1))
1292 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1294 /* We can read the guest memory with __xxx_user() later on. */
1295 if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1296 !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1299 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1301 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1305 * Make a full copy of the old memslot, the pointer will become stale
1306 * when the memslots are re-sorted by update_memslots(), and the old
1307 * memslot needs to be referenced after calling update_memslots(), e.g.
1308 * to free its resources and for arch specific behavior.
1310 tmp = id_to_memslot(__kvm_memslots(kvm, as_id), id);
1315 memset(&old, 0, sizeof(old));
1319 if (!mem->memory_size)
1320 return kvm_delete_memslot(kvm, mem, &old, as_id);
1324 new.base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1325 new.npages = mem->memory_size >> PAGE_SHIFT;
1326 new.flags = mem->flags;
1327 new.userspace_addr = mem->userspace_addr;
1329 if (new.npages > KVM_MEM_MAX_NR_PAGES)
1333 change = KVM_MR_CREATE;
1334 new.dirty_bitmap = NULL;
1335 memset(&new.arch, 0, sizeof(new.arch));
1336 } else { /* Modify an existing slot. */
1337 if ((new.userspace_addr != old.userspace_addr) ||
1338 (new.npages != old.npages) ||
1339 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
1342 if (new.base_gfn != old.base_gfn)
1343 change = KVM_MR_MOVE;
1344 else if (new.flags != old.flags)
1345 change = KVM_MR_FLAGS_ONLY;
1346 else /* Nothing to change. */
1349 /* Copy dirty_bitmap and arch from the current memslot. */
1350 new.dirty_bitmap = old.dirty_bitmap;
1351 memcpy(&new.arch, &old.arch, sizeof(new.arch));
1354 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1355 /* Check for overlaps */
1356 kvm_for_each_memslot(tmp, __kvm_memslots(kvm, as_id)) {
1359 if (!((new.base_gfn + new.npages <= tmp->base_gfn) ||
1360 (new.base_gfn >= tmp->base_gfn + tmp->npages)))
1365 /* Allocate/free page dirty bitmap as needed */
1366 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1367 new.dirty_bitmap = NULL;
1368 else if (!new.dirty_bitmap && !kvm->dirty_ring_size) {
1369 r = kvm_alloc_dirty_bitmap(&new);
1373 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1374 bitmap_set(new.dirty_bitmap, 0, new.npages);
1377 r = kvm_set_memslot(kvm, mem, &old, &new, as_id, change);
1381 if (old.dirty_bitmap && !new.dirty_bitmap)
1382 kvm_destroy_dirty_bitmap(&old);
1386 if (new.dirty_bitmap && !old.dirty_bitmap)
1387 kvm_destroy_dirty_bitmap(&new);
1390 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1392 int kvm_set_memory_region(struct kvm *kvm,
1393 const struct kvm_userspace_memory_region *mem)
1397 mutex_lock(&kvm->slots_lock);
1398 r = __kvm_set_memory_region(kvm, mem);
1399 mutex_unlock(&kvm->slots_lock);
1402 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1404 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1405 struct kvm_userspace_memory_region *mem)
1407 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1410 return kvm_set_memory_region(kvm, mem);
1413 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1415 * kvm_get_dirty_log - get a snapshot of dirty pages
1416 * @kvm: pointer to kvm instance
1417 * @log: slot id and address to which we copy the log
1418 * @is_dirty: set to '1' if any dirty pages were found
1419 * @memslot: set to the associated memslot, always valid on success
1421 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1422 int *is_dirty, struct kvm_memory_slot **memslot)
1424 struct kvm_memslots *slots;
1427 unsigned long any = 0;
1429 /* Dirty ring tracking is exclusive to dirty log tracking */
1430 if (kvm->dirty_ring_size)
1436 as_id = log->slot >> 16;
1437 id = (u16)log->slot;
1438 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1441 slots = __kvm_memslots(kvm, as_id);
1442 *memslot = id_to_memslot(slots, id);
1443 if (!(*memslot) || !(*memslot)->dirty_bitmap)
1446 kvm_arch_sync_dirty_log(kvm, *memslot);
1448 n = kvm_dirty_bitmap_bytes(*memslot);
1450 for (i = 0; !any && i < n/sizeof(long); ++i)
1451 any = (*memslot)->dirty_bitmap[i];
1453 if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
1460 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1462 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1464 * kvm_get_dirty_log_protect - get a snapshot of dirty pages
1465 * and reenable dirty page tracking for the corresponding pages.
1466 * @kvm: pointer to kvm instance
1467 * @log: slot id and address to which we copy the log
1469 * We need to keep it in mind that VCPU threads can write to the bitmap
1470 * concurrently. So, to avoid losing track of dirty pages we keep the
1473 * 1. Take a snapshot of the bit and clear it if needed.
1474 * 2. Write protect the corresponding page.
1475 * 3. Copy the snapshot to the userspace.
1476 * 4. Upon return caller flushes TLB's if needed.
1478 * Between 2 and 4, the guest may write to the page using the remaining TLB
1479 * entry. This is not a problem because the page is reported dirty using
1480 * the snapshot taken before and step 4 ensures that writes done after
1481 * exiting to userspace will be logged for the next call.
1484 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
1486 struct kvm_memslots *slots;
1487 struct kvm_memory_slot *memslot;
1490 unsigned long *dirty_bitmap;
1491 unsigned long *dirty_bitmap_buffer;
1494 /* Dirty ring tracking is exclusive to dirty log tracking */
1495 if (kvm->dirty_ring_size)
1498 as_id = log->slot >> 16;
1499 id = (u16)log->slot;
1500 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1503 slots = __kvm_memslots(kvm, as_id);
1504 memslot = id_to_memslot(slots, id);
1505 if (!memslot || !memslot->dirty_bitmap)
1508 dirty_bitmap = memslot->dirty_bitmap;
1510 kvm_arch_sync_dirty_log(kvm, memslot);
1512 n = kvm_dirty_bitmap_bytes(memslot);
1514 if (kvm->manual_dirty_log_protect) {
1516 * Unlike kvm_get_dirty_log, we always return false in *flush,
1517 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There
1518 * is some code duplication between this function and
1519 * kvm_get_dirty_log, but hopefully all architecture
1520 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1521 * can be eliminated.
1523 dirty_bitmap_buffer = dirty_bitmap;
1525 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1526 memset(dirty_bitmap_buffer, 0, n);
1528 spin_lock(&kvm->mmu_lock);
1529 for (i = 0; i < n / sizeof(long); i++) {
1533 if (!dirty_bitmap[i])
1537 mask = xchg(&dirty_bitmap[i], 0);
1538 dirty_bitmap_buffer[i] = mask;
1540 offset = i * BITS_PER_LONG;
1541 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1544 spin_unlock(&kvm->mmu_lock);
1548 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1550 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1557 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1558 * @kvm: kvm instance
1559 * @log: slot id and address to which we copy the log
1561 * Steps 1-4 below provide general overview of dirty page logging. See
1562 * kvm_get_dirty_log_protect() function description for additional details.
1564 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1565 * always flush the TLB (step 4) even if previous step failed and the dirty
1566 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1567 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1568 * writes will be marked dirty for next log read.
1570 * 1. Take a snapshot of the bit and clear it if needed.
1571 * 2. Write protect the corresponding page.
1572 * 3. Copy the snapshot to the userspace.
1573 * 4. Flush TLB's if needed.
1575 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1576 struct kvm_dirty_log *log)
1580 mutex_lock(&kvm->slots_lock);
1582 r = kvm_get_dirty_log_protect(kvm, log);
1584 mutex_unlock(&kvm->slots_lock);
1589 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1590 * and reenable dirty page tracking for the corresponding pages.
1591 * @kvm: pointer to kvm instance
1592 * @log: slot id and address from which to fetch the bitmap of dirty pages
1594 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
1595 struct kvm_clear_dirty_log *log)
1597 struct kvm_memslots *slots;
1598 struct kvm_memory_slot *memslot;
1602 unsigned long *dirty_bitmap;
1603 unsigned long *dirty_bitmap_buffer;
1606 /* Dirty ring tracking is exclusive to dirty log tracking */
1607 if (kvm->dirty_ring_size)
1610 as_id = log->slot >> 16;
1611 id = (u16)log->slot;
1612 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1615 if (log->first_page & 63)
1618 slots = __kvm_memslots(kvm, as_id);
1619 memslot = id_to_memslot(slots, id);
1620 if (!memslot || !memslot->dirty_bitmap)
1623 dirty_bitmap = memslot->dirty_bitmap;
1625 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
1627 if (log->first_page > memslot->npages ||
1628 log->num_pages > memslot->npages - log->first_page ||
1629 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
1632 kvm_arch_sync_dirty_log(kvm, memslot);
1635 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1636 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
1639 spin_lock(&kvm->mmu_lock);
1640 for (offset = log->first_page, i = offset / BITS_PER_LONG,
1641 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
1642 i++, offset += BITS_PER_LONG) {
1643 unsigned long mask = *dirty_bitmap_buffer++;
1644 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
1648 mask &= atomic_long_fetch_andnot(mask, p);
1651 * mask contains the bits that really have been cleared. This
1652 * never includes any bits beyond the length of the memslot (if
1653 * the length is not aligned to 64 pages), therefore it is not
1654 * a problem if userspace sets them in log->dirty_bitmap.
1658 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1662 spin_unlock(&kvm->mmu_lock);
1665 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1670 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
1671 struct kvm_clear_dirty_log *log)
1675 mutex_lock(&kvm->slots_lock);
1677 r = kvm_clear_dirty_log_protect(kvm, log);
1679 mutex_unlock(&kvm->slots_lock);
1682 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1684 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1686 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1688 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1690 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1692 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1694 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_memslot);
1696 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1698 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1700 return kvm_is_visible_memslot(memslot);
1702 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1704 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1706 struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1708 return kvm_is_visible_memslot(memslot);
1710 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
1712 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
1714 struct vm_area_struct *vma;
1715 unsigned long addr, size;
1719 addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
1720 if (kvm_is_error_hva(addr))
1723 mmap_read_lock(current->mm);
1724 vma = find_vma(current->mm, addr);
1728 size = vma_kernel_pagesize(vma);
1731 mmap_read_unlock(current->mm);
1736 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1738 return slot->flags & KVM_MEM_READONLY;
1741 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1742 gfn_t *nr_pages, bool write)
1744 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1745 return KVM_HVA_ERR_BAD;
1747 if (memslot_is_readonly(slot) && write)
1748 return KVM_HVA_ERR_RO_BAD;
1751 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1753 return __gfn_to_hva_memslot(slot, gfn);
1756 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1759 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1762 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1765 return gfn_to_hva_many(slot, gfn, NULL);
1767 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1769 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1771 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1773 EXPORT_SYMBOL_GPL(gfn_to_hva);
1775 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1777 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1779 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1782 * Return the hva of a @gfn and the R/W attribute if possible.
1784 * @slot: the kvm_memory_slot which contains @gfn
1785 * @gfn: the gfn to be translated
1786 * @writable: used to return the read/write attribute of the @slot if the hva
1787 * is valid and @writable is not NULL
1789 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1790 gfn_t gfn, bool *writable)
1792 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1794 if (!kvm_is_error_hva(hva) && writable)
1795 *writable = !memslot_is_readonly(slot);
1800 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1802 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1804 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1807 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1809 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1811 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1814 static inline int check_user_page_hwpoison(unsigned long addr)
1816 int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1818 rc = get_user_pages(addr, 1, flags, NULL, NULL);
1819 return rc == -EHWPOISON;
1823 * The fast path to get the writable pfn which will be stored in @pfn,
1824 * true indicates success, otherwise false is returned. It's also the
1825 * only part that runs if we can in atomic context.
1827 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
1828 bool *writable, kvm_pfn_t *pfn)
1830 struct page *page[1];
1833 * Fast pin a writable pfn only if it is a write fault request
1834 * or the caller allows to map a writable pfn for a read fault
1837 if (!(write_fault || writable))
1840 if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
1841 *pfn = page_to_pfn(page[0]);
1852 * The slow path to get the pfn of the specified host virtual address,
1853 * 1 indicates success, -errno is returned if error is detected.
1855 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1856 bool *writable, kvm_pfn_t *pfn)
1858 unsigned int flags = FOLL_HWPOISON;
1865 *writable = write_fault;
1868 flags |= FOLL_WRITE;
1870 flags |= FOLL_NOWAIT;
1872 npages = get_user_pages_unlocked(addr, 1, &page, flags);
1876 /* map read fault as writable if possible */
1877 if (unlikely(!write_fault) && writable) {
1880 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
1886 *pfn = page_to_pfn(page);
1890 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1892 if (unlikely(!(vma->vm_flags & VM_READ)))
1895 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1901 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1902 unsigned long addr, bool *async,
1903 bool write_fault, bool *writable,
1909 r = follow_pfn(vma, addr, &pfn);
1912 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1913 * not call the fault handler, so do it here.
1915 bool unlocked = false;
1916 r = fixup_user_fault(current->mm, addr,
1917 (write_fault ? FAULT_FLAG_WRITE : 0),
1924 r = follow_pfn(vma, addr, &pfn);
1934 * Get a reference here because callers of *hva_to_pfn* and
1935 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1936 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP
1937 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1938 * simply do nothing for reserved pfns.
1940 * Whoever called remap_pfn_range is also going to call e.g.
1941 * unmap_mapping_range before the underlying pages are freed,
1942 * causing a call to our MMU notifier.
1951 * Pin guest page in memory and return its pfn.
1952 * @addr: host virtual address which maps memory to the guest
1953 * @atomic: whether this function can sleep
1954 * @async: whether this function need to wait IO complete if the
1955 * host page is not in the memory
1956 * @write_fault: whether we should get a writable host page
1957 * @writable: whether it allows to map a writable host page for !@write_fault
1959 * The function will map a writable host page for these two cases:
1960 * 1): @write_fault = true
1961 * 2): @write_fault = false && @writable, @writable will tell the caller
1962 * whether the mapping is writable.
1964 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1965 bool write_fault, bool *writable)
1967 struct vm_area_struct *vma;
1971 /* we can do it either atomically or asynchronously, not both */
1972 BUG_ON(atomic && async);
1974 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
1978 return KVM_PFN_ERR_FAULT;
1980 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1984 mmap_read_lock(current->mm);
1985 if (npages == -EHWPOISON ||
1986 (!async && check_user_page_hwpoison(addr))) {
1987 pfn = KVM_PFN_ERR_HWPOISON;
1992 vma = find_vma_intersection(current->mm, addr, addr + 1);
1995 pfn = KVM_PFN_ERR_FAULT;
1996 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1997 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
2001 pfn = KVM_PFN_ERR_FAULT;
2003 if (async && vma_is_valid(vma, write_fault))
2005 pfn = KVM_PFN_ERR_FAULT;
2008 mmap_read_unlock(current->mm);
2012 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
2013 bool atomic, bool *async, bool write_fault,
2016 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
2018 if (addr == KVM_HVA_ERR_RO_BAD) {
2021 return KVM_PFN_ERR_RO_FAULT;
2024 if (kvm_is_error_hva(addr)) {
2027 return KVM_PFN_NOSLOT;
2030 /* Do not map writable pfn in the readonly memslot. */
2031 if (writable && memslot_is_readonly(slot)) {
2036 return hva_to_pfn(addr, atomic, async, write_fault,
2039 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
2041 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
2044 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
2045 write_fault, writable);
2047 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
2049 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
2051 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
2053 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
2055 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
2057 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
2059 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
2061 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
2063 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2065 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
2067 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
2069 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
2071 EXPORT_SYMBOL_GPL(gfn_to_pfn);
2073 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2075 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2077 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
2079 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2080 struct page **pages, int nr_pages)
2085 addr = gfn_to_hva_many(slot, gfn, &entry);
2086 if (kvm_is_error_hva(addr))
2089 if (entry < nr_pages)
2092 return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
2094 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2096 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
2098 if (is_error_noslot_pfn(pfn))
2099 return KVM_ERR_PTR_BAD_PAGE;
2101 if (kvm_is_reserved_pfn(pfn)) {
2103 return KVM_ERR_PTR_BAD_PAGE;
2106 return pfn_to_page(pfn);
2109 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2113 pfn = gfn_to_pfn(kvm, gfn);
2115 return kvm_pfn_to_page(pfn);
2117 EXPORT_SYMBOL_GPL(gfn_to_page);
2119 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache)
2125 cache->pfn = cache->gfn = 0;
2128 kvm_release_pfn_dirty(pfn);
2130 kvm_release_pfn_clean(pfn);
2133 static void kvm_cache_gfn_to_pfn(struct kvm_memory_slot *slot, gfn_t gfn,
2134 struct gfn_to_pfn_cache *cache, u64 gen)
2136 kvm_release_pfn(cache->pfn, cache->dirty, cache);
2138 cache->pfn = gfn_to_pfn_memslot(slot, gfn);
2140 cache->dirty = false;
2141 cache->generation = gen;
2144 static int __kvm_map_gfn(struct kvm_memslots *slots, gfn_t gfn,
2145 struct kvm_host_map *map,
2146 struct gfn_to_pfn_cache *cache,
2151 struct page *page = KVM_UNMAPPED_PAGE;
2152 struct kvm_memory_slot *slot = __gfn_to_memslot(slots, gfn);
2153 u64 gen = slots->generation;
2159 if (!cache->pfn || cache->gfn != gfn ||
2160 cache->generation != gen) {
2163 kvm_cache_gfn_to_pfn(slot, gfn, cache, gen);
2169 pfn = gfn_to_pfn_memslot(slot, gfn);
2171 if (is_error_noslot_pfn(pfn))
2174 if (pfn_valid(pfn)) {
2175 page = pfn_to_page(pfn);
2177 hva = kmap_atomic(page);
2180 #ifdef CONFIG_HAS_IOMEM
2181 } else if (!atomic) {
2182 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
2199 int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
2200 struct gfn_to_pfn_cache *cache, bool atomic)
2202 return __kvm_map_gfn(kvm_memslots(vcpu->kvm), gfn, map,
2205 EXPORT_SYMBOL_GPL(kvm_map_gfn);
2207 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2209 return __kvm_map_gfn(kvm_vcpu_memslots(vcpu), gfn, map,
2212 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2214 static void __kvm_unmap_gfn(struct kvm *kvm,
2215 struct kvm_memory_slot *memslot,
2216 struct kvm_host_map *map,
2217 struct gfn_to_pfn_cache *cache,
2218 bool dirty, bool atomic)
2226 if (map->page != KVM_UNMAPPED_PAGE) {
2228 kunmap_atomic(map->hva);
2232 #ifdef CONFIG_HAS_IOMEM
2236 WARN_ONCE(1, "Unexpected unmapping in atomic context");
2240 mark_page_dirty_in_slot(kvm, memslot, map->gfn);
2243 cache->dirty |= dirty;
2245 kvm_release_pfn(map->pfn, dirty, NULL);
2251 int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map,
2252 struct gfn_to_pfn_cache *cache, bool dirty, bool atomic)
2254 __kvm_unmap_gfn(vcpu->kvm, gfn_to_memslot(vcpu->kvm, map->gfn), map,
2255 cache, dirty, atomic);
2258 EXPORT_SYMBOL_GPL(kvm_unmap_gfn);
2260 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2262 __kvm_unmap_gfn(vcpu->kvm, kvm_vcpu_gfn_to_memslot(vcpu, map->gfn),
2263 map, NULL, dirty, false);
2265 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2267 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
2271 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
2273 return kvm_pfn_to_page(pfn);
2275 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
2277 void kvm_release_page_clean(struct page *page)
2279 WARN_ON(is_error_page(page));
2281 kvm_release_pfn_clean(page_to_pfn(page));
2283 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2285 void kvm_release_pfn_clean(kvm_pfn_t pfn)
2287 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
2288 put_page(pfn_to_page(pfn));
2290 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2292 void kvm_release_page_dirty(struct page *page)
2294 WARN_ON(is_error_page(page));
2296 kvm_release_pfn_dirty(page_to_pfn(page));
2298 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2300 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2302 kvm_set_pfn_dirty(pfn);
2303 kvm_release_pfn_clean(pfn);
2305 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2307 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
2309 if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2310 SetPageDirty(pfn_to_page(pfn));
2312 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2314 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
2316 if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2317 mark_page_accessed(pfn_to_page(pfn));
2319 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2321 void kvm_get_pfn(kvm_pfn_t pfn)
2323 if (!kvm_is_reserved_pfn(pfn))
2324 get_page(pfn_to_page(pfn));
2326 EXPORT_SYMBOL_GPL(kvm_get_pfn);
2328 static int next_segment(unsigned long len, int offset)
2330 if (len > PAGE_SIZE - offset)
2331 return PAGE_SIZE - offset;
2336 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
2337 void *data, int offset, int len)
2342 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2343 if (kvm_is_error_hva(addr))
2345 r = __copy_from_user(data, (void __user *)addr + offset, len);
2351 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
2354 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2356 return __kvm_read_guest_page(slot, gfn, data, offset, len);
2358 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
2360 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
2361 int offset, int len)
2363 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2365 return __kvm_read_guest_page(slot, gfn, data, offset, len);
2367 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
2369 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
2371 gfn_t gfn = gpa >> PAGE_SHIFT;
2373 int offset = offset_in_page(gpa);
2376 while ((seg = next_segment(len, offset)) != 0) {
2377 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
2387 EXPORT_SYMBOL_GPL(kvm_read_guest);
2389 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
2391 gfn_t gfn = gpa >> PAGE_SHIFT;
2393 int offset = offset_in_page(gpa);
2396 while ((seg = next_segment(len, offset)) != 0) {
2397 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
2407 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
2409 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2410 void *data, int offset, unsigned long len)
2415 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2416 if (kvm_is_error_hva(addr))
2418 pagefault_disable();
2419 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
2426 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
2427 void *data, unsigned long len)
2429 gfn_t gfn = gpa >> PAGE_SHIFT;
2430 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2431 int offset = offset_in_page(gpa);
2433 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2435 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
2437 static int __kvm_write_guest_page(struct kvm *kvm,
2438 struct kvm_memory_slot *memslot, gfn_t gfn,
2439 const void *data, int offset, int len)
2444 addr = gfn_to_hva_memslot(memslot, gfn);
2445 if (kvm_is_error_hva(addr))
2447 r = __copy_to_user((void __user *)addr + offset, data, len);
2450 mark_page_dirty_in_slot(kvm, memslot, gfn);
2454 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2455 const void *data, int offset, int len)
2457 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2459 return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
2461 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2463 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2464 const void *data, int offset, int len)
2466 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2468 return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
2470 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2472 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2475 gfn_t gfn = gpa >> PAGE_SHIFT;
2477 int offset = offset_in_page(gpa);
2480 while ((seg = next_segment(len, offset)) != 0) {
2481 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2491 EXPORT_SYMBOL_GPL(kvm_write_guest);
2493 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2496 gfn_t gfn = gpa >> PAGE_SHIFT;
2498 int offset = offset_in_page(gpa);
2501 while ((seg = next_segment(len, offset)) != 0) {
2502 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
2512 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2514 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2515 struct gfn_to_hva_cache *ghc,
2516 gpa_t gpa, unsigned long len)
2518 int offset = offset_in_page(gpa);
2519 gfn_t start_gfn = gpa >> PAGE_SHIFT;
2520 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2521 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2522 gfn_t nr_pages_avail;
2524 /* Update ghc->generation before performing any error checks. */
2525 ghc->generation = slots->generation;
2527 if (start_gfn > end_gfn) {
2528 ghc->hva = KVM_HVA_ERR_BAD;
2533 * If the requested region crosses two memslots, we still
2534 * verify that the entire region is valid here.
2536 for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
2537 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2538 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2540 if (kvm_is_error_hva(ghc->hva))
2544 /* Use the slow path for cross page reads and writes. */
2545 if (nr_pages_needed == 1)
2548 ghc->memslot = NULL;
2555 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2556 gpa_t gpa, unsigned long len)
2558 struct kvm_memslots *slots = kvm_memslots(kvm);
2559 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2561 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2563 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2564 void *data, unsigned int offset,
2567 struct kvm_memslots *slots = kvm_memslots(kvm);
2569 gpa_t gpa = ghc->gpa + offset;
2571 BUG_ON(len + offset > ghc->len);
2573 if (slots->generation != ghc->generation) {
2574 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2578 if (kvm_is_error_hva(ghc->hva))
2581 if (unlikely(!ghc->memslot))
2582 return kvm_write_guest(kvm, gpa, data, len);
2584 r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2587 mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
2591 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2593 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2594 void *data, unsigned long len)
2596 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2598 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2600 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2601 void *data, unsigned int offset,
2604 struct kvm_memslots *slots = kvm_memslots(kvm);
2606 gpa_t gpa = ghc->gpa + offset;
2608 BUG_ON(len + offset > ghc->len);
2610 if (slots->generation != ghc->generation) {
2611 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2615 if (kvm_is_error_hva(ghc->hva))
2618 if (unlikely(!ghc->memslot))
2619 return kvm_read_guest(kvm, gpa, data, len);
2621 r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
2627 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
2629 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2630 void *data, unsigned long len)
2632 return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
2634 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2636 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2638 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2639 gfn_t gfn = gpa >> PAGE_SHIFT;
2641 int offset = offset_in_page(gpa);
2644 while ((seg = next_segment(len, offset)) != 0) {
2645 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2654 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2656 void mark_page_dirty_in_slot(struct kvm *kvm,
2657 struct kvm_memory_slot *memslot,
2660 if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
2661 unsigned long rel_gfn = gfn - memslot->base_gfn;
2662 u32 slot = (memslot->as_id << 16) | memslot->id;
2664 if (kvm->dirty_ring_size)
2665 kvm_dirty_ring_push(kvm_dirty_ring_get(kvm),
2668 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2671 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
2673 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2675 struct kvm_memory_slot *memslot;
2677 memslot = gfn_to_memslot(kvm, gfn);
2678 mark_page_dirty_in_slot(kvm, memslot, gfn);
2680 EXPORT_SYMBOL_GPL(mark_page_dirty);
2682 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2684 struct kvm_memory_slot *memslot;
2686 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2687 mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
2689 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2691 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2693 if (!vcpu->sigset_active)
2697 * This does a lockless modification of ->real_blocked, which is fine
2698 * because, only current can change ->real_blocked and all readers of
2699 * ->real_blocked don't care as long ->real_blocked is always a subset
2702 sigprocmask(SIG_SETMASK, &vcpu->sigset, ¤t->real_blocked);
2705 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2707 if (!vcpu->sigset_active)
2710 sigprocmask(SIG_SETMASK, ¤t->real_blocked, NULL);
2711 sigemptyset(¤t->real_blocked);
2714 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2716 unsigned int old, val, grow, grow_start;
2718 old = val = vcpu->halt_poll_ns;
2719 grow_start = READ_ONCE(halt_poll_ns_grow_start);
2720 grow = READ_ONCE(halt_poll_ns_grow);
2725 if (val < grow_start)
2728 if (val > halt_poll_ns)
2731 vcpu->halt_poll_ns = val;
2733 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2736 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2738 unsigned int old, val, shrink;
2740 old = val = vcpu->halt_poll_ns;
2741 shrink = READ_ONCE(halt_poll_ns_shrink);
2747 vcpu->halt_poll_ns = val;
2748 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2751 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2754 int idx = srcu_read_lock(&vcpu->kvm->srcu);
2756 if (kvm_arch_vcpu_runnable(vcpu)) {
2757 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2760 if (kvm_cpu_has_pending_timer(vcpu))
2762 if (signal_pending(current))
2767 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2772 update_halt_poll_stats(struct kvm_vcpu *vcpu, u64 poll_ns, bool waited)
2775 vcpu->stat.halt_poll_fail_ns += poll_ns;
2777 vcpu->stat.halt_poll_success_ns += poll_ns;
2781 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2783 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2785 ktime_t start, cur, poll_end;
2786 bool waited = false;
2789 kvm_arch_vcpu_blocking(vcpu);
2791 start = cur = poll_end = ktime_get();
2792 if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) {
2793 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2795 ++vcpu->stat.halt_attempted_poll;
2798 * This sets KVM_REQ_UNHALT if an interrupt
2801 if (kvm_vcpu_check_block(vcpu) < 0) {
2802 ++vcpu->stat.halt_successful_poll;
2803 if (!vcpu_valid_wakeup(vcpu))
2804 ++vcpu->stat.halt_poll_invalid;
2807 poll_end = cur = ktime_get();
2808 } while (single_task_running() && ktime_before(cur, stop));
2811 prepare_to_rcuwait(&vcpu->wait);
2813 set_current_state(TASK_INTERRUPTIBLE);
2815 if (kvm_vcpu_check_block(vcpu) < 0)
2821 finish_rcuwait(&vcpu->wait);
2824 kvm_arch_vcpu_unblocking(vcpu);
2825 block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2827 update_halt_poll_stats(
2828 vcpu, ktime_to_ns(ktime_sub(poll_end, start)), waited);
2830 if (!kvm_arch_no_poll(vcpu)) {
2831 if (!vcpu_valid_wakeup(vcpu)) {
2832 shrink_halt_poll_ns(vcpu);
2833 } else if (vcpu->kvm->max_halt_poll_ns) {
2834 if (block_ns <= vcpu->halt_poll_ns)
2836 /* we had a long block, shrink polling */
2837 else if (vcpu->halt_poll_ns &&
2838 block_ns > vcpu->kvm->max_halt_poll_ns)
2839 shrink_halt_poll_ns(vcpu);
2840 /* we had a short halt and our poll time is too small */
2841 else if (vcpu->halt_poll_ns < vcpu->kvm->max_halt_poll_ns &&
2842 block_ns < vcpu->kvm->max_halt_poll_ns)
2843 grow_halt_poll_ns(vcpu);
2845 vcpu->halt_poll_ns = 0;
2849 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2850 kvm_arch_vcpu_block_finish(vcpu);
2852 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2854 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2856 struct rcuwait *waitp;
2858 waitp = kvm_arch_vcpu_get_wait(vcpu);
2859 if (rcuwait_wake_up(waitp)) {
2860 WRITE_ONCE(vcpu->ready, true);
2861 ++vcpu->stat.halt_wakeup;
2867 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2871 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2873 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2876 int cpu = vcpu->cpu;
2878 if (kvm_vcpu_wake_up(vcpu))
2882 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2883 if (kvm_arch_vcpu_should_kick(vcpu))
2884 smp_send_reschedule(cpu);
2887 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2888 #endif /* !CONFIG_S390 */
2890 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2893 struct task_struct *task = NULL;
2897 pid = rcu_dereference(target->pid);
2899 task = get_pid_task(pid, PIDTYPE_PID);
2903 ret = yield_to(task, 1);
2904 put_task_struct(task);
2908 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2911 * Helper that checks whether a VCPU is eligible for directed yield.
2912 * Most eligible candidate to yield is decided by following heuristics:
2914 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2915 * (preempted lock holder), indicated by @in_spin_loop.
2916 * Set at the beginning and cleared at the end of interception/PLE handler.
2918 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2919 * chance last time (mostly it has become eligible now since we have probably
2920 * yielded to lockholder in last iteration. This is done by toggling
2921 * @dy_eligible each time a VCPU checked for eligibility.)
2923 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2924 * to preempted lock-holder could result in wrong VCPU selection and CPU
2925 * burning. Giving priority for a potential lock-holder increases lock
2928 * Since algorithm is based on heuristics, accessing another VCPU data without
2929 * locking does not harm. It may result in trying to yield to same VCPU, fail
2930 * and continue with next VCPU and so on.
2932 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2934 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2937 eligible = !vcpu->spin_loop.in_spin_loop ||
2938 vcpu->spin_loop.dy_eligible;
2940 if (vcpu->spin_loop.in_spin_loop)
2941 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2950 * Unlike kvm_arch_vcpu_runnable, this function is called outside
2951 * a vcpu_load/vcpu_put pair. However, for most architectures
2952 * kvm_arch_vcpu_runnable does not require vcpu_load.
2954 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
2956 return kvm_arch_vcpu_runnable(vcpu);
2959 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
2961 if (kvm_arch_dy_runnable(vcpu))
2964 #ifdef CONFIG_KVM_ASYNC_PF
2965 if (!list_empty_careful(&vcpu->async_pf.done))
2972 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2974 struct kvm *kvm = me->kvm;
2975 struct kvm_vcpu *vcpu;
2976 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2982 kvm_vcpu_set_in_spin_loop(me, true);
2984 * We boost the priority of a VCPU that is runnable but not
2985 * currently running, because it got preempted by something
2986 * else and called schedule in __vcpu_run. Hopefully that
2987 * VCPU is holding the lock that we need and will release it.
2988 * We approximate round-robin by starting at the last boosted VCPU.
2990 for (pass = 0; pass < 2 && !yielded && try; pass++) {
2991 kvm_for_each_vcpu(i, vcpu, kvm) {
2992 if (!pass && i <= last_boosted_vcpu) {
2993 i = last_boosted_vcpu;
2995 } else if (pass && i > last_boosted_vcpu)
2997 if (!READ_ONCE(vcpu->ready))
3001 if (rcuwait_active(&vcpu->wait) &&
3002 !vcpu_dy_runnable(vcpu))
3004 if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
3005 !kvm_arch_vcpu_in_kernel(vcpu))
3007 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
3010 yielded = kvm_vcpu_yield_to(vcpu);
3012 kvm->last_boosted_vcpu = i;
3014 } else if (yielded < 0) {
3021 kvm_vcpu_set_in_spin_loop(me, false);
3023 /* Ensure vcpu is not eligible during next spinloop */
3024 kvm_vcpu_set_dy_eligible(me, false);
3026 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
3028 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
3030 #if KVM_DIRTY_LOG_PAGE_OFFSET > 0
3031 return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
3032 (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
3033 kvm->dirty_ring_size / PAGE_SIZE);
3039 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
3041 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
3044 if (vmf->pgoff == 0)
3045 page = virt_to_page(vcpu->run);
3047 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
3048 page = virt_to_page(vcpu->arch.pio_data);
3050 #ifdef CONFIG_KVM_MMIO
3051 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
3052 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
3054 else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
3055 page = kvm_dirty_ring_get_page(
3057 vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
3059 return kvm_arch_vcpu_fault(vcpu, vmf);
3065 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
3066 .fault = kvm_vcpu_fault,
3069 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
3071 struct kvm_vcpu *vcpu = file->private_data;
3072 unsigned long pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3074 if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
3075 kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
3076 ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
3079 vma->vm_ops = &kvm_vcpu_vm_ops;
3083 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
3085 struct kvm_vcpu *vcpu = filp->private_data;
3087 kvm_put_kvm(vcpu->kvm);
3091 static struct file_operations kvm_vcpu_fops = {
3092 .release = kvm_vcpu_release,
3093 .unlocked_ioctl = kvm_vcpu_ioctl,
3094 .mmap = kvm_vcpu_mmap,
3095 .llseek = noop_llseek,
3096 KVM_COMPAT(kvm_vcpu_compat_ioctl),
3100 * Allocates an inode for the vcpu.
3102 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
3104 char name[8 + 1 + ITOA_MAX_LEN + 1];
3106 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
3107 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
3110 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
3112 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
3113 struct dentry *debugfs_dentry;
3114 char dir_name[ITOA_MAX_LEN * 2];
3116 if (!debugfs_initialized())
3119 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
3120 debugfs_dentry = debugfs_create_dir(dir_name,
3121 vcpu->kvm->debugfs_dentry);
3123 kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
3128 * Creates some virtual cpus. Good luck creating more than one.
3130 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
3133 struct kvm_vcpu *vcpu;
3136 if (id >= KVM_MAX_VCPU_ID)
3139 mutex_lock(&kvm->lock);
3140 if (kvm->created_vcpus == KVM_MAX_VCPUS) {
3141 mutex_unlock(&kvm->lock);
3145 kvm->created_vcpus++;
3146 mutex_unlock(&kvm->lock);
3148 r = kvm_arch_vcpu_precreate(kvm, id);
3150 goto vcpu_decrement;
3152 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
3155 goto vcpu_decrement;
3158 BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
3159 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
3164 vcpu->run = page_address(page);
3166 kvm_vcpu_init(vcpu, kvm, id);
3168 r = kvm_arch_vcpu_create(vcpu);
3170 goto vcpu_free_run_page;
3172 if (kvm->dirty_ring_size) {
3173 r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
3174 id, kvm->dirty_ring_size);
3176 goto arch_vcpu_destroy;
3179 mutex_lock(&kvm->lock);
3180 if (kvm_get_vcpu_by_id(kvm, id)) {
3182 goto unlock_vcpu_destroy;
3185 vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
3186 BUG_ON(kvm->vcpus[vcpu->vcpu_idx]);
3188 /* Now it's all set up, let userspace reach it */
3190 r = create_vcpu_fd(vcpu);
3192 kvm_put_kvm_no_destroy(kvm);
3193 goto unlock_vcpu_destroy;
3196 kvm->vcpus[vcpu->vcpu_idx] = vcpu;
3199 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus
3200 * before kvm->online_vcpu's incremented value.
3203 atomic_inc(&kvm->online_vcpus);
3205 mutex_unlock(&kvm->lock);
3206 kvm_arch_vcpu_postcreate(vcpu);
3207 kvm_create_vcpu_debugfs(vcpu);
3210 unlock_vcpu_destroy:
3211 mutex_unlock(&kvm->lock);
3212 kvm_dirty_ring_free(&vcpu->dirty_ring);
3214 kvm_arch_vcpu_destroy(vcpu);
3216 free_page((unsigned long)vcpu->run);
3218 kmem_cache_free(kvm_vcpu_cache, vcpu);
3220 mutex_lock(&kvm->lock);
3221 kvm->created_vcpus--;
3222 mutex_unlock(&kvm->lock);
3226 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
3229 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
3230 vcpu->sigset_active = 1;
3231 vcpu->sigset = *sigset;
3233 vcpu->sigset_active = 0;
3237 static long kvm_vcpu_ioctl(struct file *filp,
3238 unsigned int ioctl, unsigned long arg)
3240 struct kvm_vcpu *vcpu = filp->private_data;
3241 void __user *argp = (void __user *)arg;
3243 struct kvm_fpu *fpu = NULL;
3244 struct kvm_sregs *kvm_sregs = NULL;
3246 if (vcpu->kvm->mm != current->mm)
3249 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
3253 * Some architectures have vcpu ioctls that are asynchronous to vcpu
3254 * execution; mutex_lock() would break them.
3256 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
3257 if (r != -ENOIOCTLCMD)
3260 if (mutex_lock_killable(&vcpu->mutex))
3268 oldpid = rcu_access_pointer(vcpu->pid);
3269 if (unlikely(oldpid != task_pid(current))) {
3270 /* The thread running this VCPU changed. */
3273 r = kvm_arch_vcpu_run_pid_change(vcpu);
3277 newpid = get_task_pid(current, PIDTYPE_PID);
3278 rcu_assign_pointer(vcpu->pid, newpid);
3283 r = kvm_arch_vcpu_ioctl_run(vcpu);
3284 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
3287 case KVM_GET_REGS: {
3288 struct kvm_regs *kvm_regs;
3291 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
3294 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
3298 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
3305 case KVM_SET_REGS: {
3306 struct kvm_regs *kvm_regs;
3308 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
3309 if (IS_ERR(kvm_regs)) {
3310 r = PTR_ERR(kvm_regs);
3313 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
3317 case KVM_GET_SREGS: {
3318 kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
3319 GFP_KERNEL_ACCOUNT);
3323 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
3327 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
3332 case KVM_SET_SREGS: {
3333 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
3334 if (IS_ERR(kvm_sregs)) {
3335 r = PTR_ERR(kvm_sregs);
3339 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
3342 case KVM_GET_MP_STATE: {
3343 struct kvm_mp_state mp_state;
3345 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
3349 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
3354 case KVM_SET_MP_STATE: {
3355 struct kvm_mp_state mp_state;
3358 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
3360 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
3363 case KVM_TRANSLATE: {
3364 struct kvm_translation tr;
3367 if (copy_from_user(&tr, argp, sizeof(tr)))
3369 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
3373 if (copy_to_user(argp, &tr, sizeof(tr)))
3378 case KVM_SET_GUEST_DEBUG: {
3379 struct kvm_guest_debug dbg;
3382 if (copy_from_user(&dbg, argp, sizeof(dbg)))
3384 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
3387 case KVM_SET_SIGNAL_MASK: {
3388 struct kvm_signal_mask __user *sigmask_arg = argp;
3389 struct kvm_signal_mask kvm_sigmask;
3390 sigset_t sigset, *p;
3395 if (copy_from_user(&kvm_sigmask, argp,
3396 sizeof(kvm_sigmask)))
3399 if (kvm_sigmask.len != sizeof(sigset))
3402 if (copy_from_user(&sigset, sigmask_arg->sigset,
3407 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
3411 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
3415 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
3419 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
3425 fpu = memdup_user(argp, sizeof(*fpu));
3431 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
3435 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
3438 mutex_unlock(&vcpu->mutex);
3444 #ifdef CONFIG_KVM_COMPAT
3445 static long kvm_vcpu_compat_ioctl(struct file *filp,
3446 unsigned int ioctl, unsigned long arg)
3448 struct kvm_vcpu *vcpu = filp->private_data;
3449 void __user *argp = compat_ptr(arg);
3452 if (vcpu->kvm->mm != current->mm)
3456 case KVM_SET_SIGNAL_MASK: {
3457 struct kvm_signal_mask __user *sigmask_arg = argp;
3458 struct kvm_signal_mask kvm_sigmask;
3463 if (copy_from_user(&kvm_sigmask, argp,
3464 sizeof(kvm_sigmask)))
3467 if (kvm_sigmask.len != sizeof(compat_sigset_t))
3470 if (get_compat_sigset(&sigset,
3471 (compat_sigset_t __user *)sigmask_arg->sigset))
3473 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
3475 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
3479 r = kvm_vcpu_ioctl(filp, ioctl, arg);
3487 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
3489 struct kvm_device *dev = filp->private_data;
3492 return dev->ops->mmap(dev, vma);
3497 static int kvm_device_ioctl_attr(struct kvm_device *dev,
3498 int (*accessor)(struct kvm_device *dev,
3499 struct kvm_device_attr *attr),
3502 struct kvm_device_attr attr;
3507 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
3510 return accessor(dev, &attr);
3513 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
3516 struct kvm_device *dev = filp->private_data;
3518 if (dev->kvm->mm != current->mm)
3522 case KVM_SET_DEVICE_ATTR:
3523 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
3524 case KVM_GET_DEVICE_ATTR:
3525 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
3526 case KVM_HAS_DEVICE_ATTR:
3527 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
3529 if (dev->ops->ioctl)
3530 return dev->ops->ioctl(dev, ioctl, arg);
3536 static int kvm_device_release(struct inode *inode, struct file *filp)
3538 struct kvm_device *dev = filp->private_data;
3539 struct kvm *kvm = dev->kvm;
3541 if (dev->ops->release) {
3542 mutex_lock(&kvm->lock);
3543 list_del(&dev->vm_node);
3544 dev->ops->release(dev);
3545 mutex_unlock(&kvm->lock);
3552 static const struct file_operations kvm_device_fops = {
3553 .unlocked_ioctl = kvm_device_ioctl,
3554 .release = kvm_device_release,
3555 KVM_COMPAT(kvm_device_ioctl),
3556 .mmap = kvm_device_mmap,
3559 struct kvm_device *kvm_device_from_filp(struct file *filp)
3561 if (filp->f_op != &kvm_device_fops)
3564 return filp->private_data;
3567 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
3568 #ifdef CONFIG_KVM_MPIC
3569 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
3570 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
3574 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
3576 if (type >= ARRAY_SIZE(kvm_device_ops_table))
3579 if (kvm_device_ops_table[type] != NULL)
3582 kvm_device_ops_table[type] = ops;
3586 void kvm_unregister_device_ops(u32 type)
3588 if (kvm_device_ops_table[type] != NULL)
3589 kvm_device_ops_table[type] = NULL;
3592 static int kvm_ioctl_create_device(struct kvm *kvm,
3593 struct kvm_create_device *cd)
3595 const struct kvm_device_ops *ops = NULL;
3596 struct kvm_device *dev;
3597 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
3601 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
3604 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
3605 ops = kvm_device_ops_table[type];
3612 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
3619 mutex_lock(&kvm->lock);
3620 ret = ops->create(dev, type);
3622 mutex_unlock(&kvm->lock);
3626 list_add(&dev->vm_node, &kvm->devices);
3627 mutex_unlock(&kvm->lock);
3633 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
3635 kvm_put_kvm_no_destroy(kvm);
3636 mutex_lock(&kvm->lock);
3637 list_del(&dev->vm_node);
3638 mutex_unlock(&kvm->lock);
3647 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
3650 case KVM_CAP_USER_MEMORY:
3651 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
3652 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
3653 case KVM_CAP_INTERNAL_ERROR_DATA:
3654 #ifdef CONFIG_HAVE_KVM_MSI
3655 case KVM_CAP_SIGNAL_MSI:
3657 #ifdef CONFIG_HAVE_KVM_IRQFD
3659 case KVM_CAP_IRQFD_RESAMPLE:
3661 case KVM_CAP_IOEVENTFD_ANY_LENGTH:
3662 case KVM_CAP_CHECK_EXTENSION_VM:
3663 case KVM_CAP_ENABLE_CAP_VM:
3664 case KVM_CAP_HALT_POLL:
3666 #ifdef CONFIG_KVM_MMIO
3667 case KVM_CAP_COALESCED_MMIO:
3668 return KVM_COALESCED_MMIO_PAGE_OFFSET;
3669 case KVM_CAP_COALESCED_PIO:
3672 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3673 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3674 return KVM_DIRTY_LOG_MANUAL_CAPS;
3676 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3677 case KVM_CAP_IRQ_ROUTING:
3678 return KVM_MAX_IRQ_ROUTES;
3680 #if KVM_ADDRESS_SPACE_NUM > 1
3681 case KVM_CAP_MULTI_ADDRESS_SPACE:
3682 return KVM_ADDRESS_SPACE_NUM;
3684 case KVM_CAP_NR_MEMSLOTS:
3685 return KVM_USER_MEM_SLOTS;
3686 case KVM_CAP_DIRTY_LOG_RING:
3687 #if KVM_DIRTY_LOG_PAGE_OFFSET > 0
3688 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
3695 return kvm_vm_ioctl_check_extension(kvm, arg);
3698 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
3702 if (!KVM_DIRTY_LOG_PAGE_OFFSET)
3705 /* the size should be power of 2 */
3706 if (!size || (size & (size - 1)))
3709 /* Should be bigger to keep the reserved entries, or a page */
3710 if (size < kvm_dirty_ring_get_rsvd_entries() *
3711 sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
3714 if (size > KVM_DIRTY_RING_MAX_ENTRIES *
3715 sizeof(struct kvm_dirty_gfn))
3718 /* We only allow it to set once */
3719 if (kvm->dirty_ring_size)
3722 mutex_lock(&kvm->lock);
3724 if (kvm->created_vcpus) {
3725 /* We don't allow to change this value after vcpu created */
3728 kvm->dirty_ring_size = size;
3732 mutex_unlock(&kvm->lock);
3736 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
3739 struct kvm_vcpu *vcpu;
3742 if (!kvm->dirty_ring_size)
3745 mutex_lock(&kvm->slots_lock);
3747 kvm_for_each_vcpu(i, vcpu, kvm)
3748 cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
3750 mutex_unlock(&kvm->slots_lock);
3753 kvm_flush_remote_tlbs(kvm);
3758 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3759 struct kvm_enable_cap *cap)
3764 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
3765 struct kvm_enable_cap *cap)
3768 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3769 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
3770 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
3772 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
3773 allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
3775 if (cap->flags || (cap->args[0] & ~allowed_options))
3777 kvm->manual_dirty_log_protect = cap->args[0];
3781 case KVM_CAP_HALT_POLL: {
3782 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
3785 kvm->max_halt_poll_ns = cap->args[0];
3788 case KVM_CAP_DIRTY_LOG_RING:
3789 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
3791 return kvm_vm_ioctl_enable_cap(kvm, cap);
3795 static long kvm_vm_ioctl(struct file *filp,
3796 unsigned int ioctl, unsigned long arg)
3798 struct kvm *kvm = filp->private_data;
3799 void __user *argp = (void __user *)arg;
3802 if (kvm->mm != current->mm)
3805 case KVM_CREATE_VCPU:
3806 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
3808 case KVM_ENABLE_CAP: {
3809 struct kvm_enable_cap cap;
3812 if (copy_from_user(&cap, argp, sizeof(cap)))
3814 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
3817 case KVM_SET_USER_MEMORY_REGION: {
3818 struct kvm_userspace_memory_region kvm_userspace_mem;
3821 if (copy_from_user(&kvm_userspace_mem, argp,
3822 sizeof(kvm_userspace_mem)))
3825 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
3828 case KVM_GET_DIRTY_LOG: {
3829 struct kvm_dirty_log log;
3832 if (copy_from_user(&log, argp, sizeof(log)))
3834 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3837 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3838 case KVM_CLEAR_DIRTY_LOG: {
3839 struct kvm_clear_dirty_log log;
3842 if (copy_from_user(&log, argp, sizeof(log)))
3844 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
3848 #ifdef CONFIG_KVM_MMIO
3849 case KVM_REGISTER_COALESCED_MMIO: {
3850 struct kvm_coalesced_mmio_zone zone;
3853 if (copy_from_user(&zone, argp, sizeof(zone)))
3855 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3858 case KVM_UNREGISTER_COALESCED_MMIO: {
3859 struct kvm_coalesced_mmio_zone zone;
3862 if (copy_from_user(&zone, argp, sizeof(zone)))
3864 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3869 struct kvm_irqfd data;
3872 if (copy_from_user(&data, argp, sizeof(data)))
3874 r = kvm_irqfd(kvm, &data);
3877 case KVM_IOEVENTFD: {
3878 struct kvm_ioeventfd data;
3881 if (copy_from_user(&data, argp, sizeof(data)))
3883 r = kvm_ioeventfd(kvm, &data);
3886 #ifdef CONFIG_HAVE_KVM_MSI
3887 case KVM_SIGNAL_MSI: {
3891 if (copy_from_user(&msi, argp, sizeof(msi)))
3893 r = kvm_send_userspace_msi(kvm, &msi);
3897 #ifdef __KVM_HAVE_IRQ_LINE
3898 case KVM_IRQ_LINE_STATUS:
3899 case KVM_IRQ_LINE: {
3900 struct kvm_irq_level irq_event;
3903 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3906 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3907 ioctl == KVM_IRQ_LINE_STATUS);
3912 if (ioctl == KVM_IRQ_LINE_STATUS) {
3913 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3921 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3922 case KVM_SET_GSI_ROUTING: {
3923 struct kvm_irq_routing routing;
3924 struct kvm_irq_routing __user *urouting;
3925 struct kvm_irq_routing_entry *entries = NULL;
3928 if (copy_from_user(&routing, argp, sizeof(routing)))
3931 if (!kvm_arch_can_set_irq_routing(kvm))
3933 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3939 entries = vmemdup_user(urouting->entries,
3940 array_size(sizeof(*entries),
3942 if (IS_ERR(entries)) {
3943 r = PTR_ERR(entries);
3947 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3952 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3953 case KVM_CREATE_DEVICE: {
3954 struct kvm_create_device cd;
3957 if (copy_from_user(&cd, argp, sizeof(cd)))
3960 r = kvm_ioctl_create_device(kvm, &cd);
3965 if (copy_to_user(argp, &cd, sizeof(cd)))
3971 case KVM_CHECK_EXTENSION:
3972 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3974 case KVM_RESET_DIRTY_RINGS:
3975 r = kvm_vm_ioctl_reset_dirty_pages(kvm);
3978 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3984 #ifdef CONFIG_KVM_COMPAT
3985 struct compat_kvm_dirty_log {
3989 compat_uptr_t dirty_bitmap; /* one bit per page */
3994 static long kvm_vm_compat_ioctl(struct file *filp,
3995 unsigned int ioctl, unsigned long arg)
3997 struct kvm *kvm = filp->private_data;
4000 if (kvm->mm != current->mm)
4003 case KVM_GET_DIRTY_LOG: {
4004 struct compat_kvm_dirty_log compat_log;
4005 struct kvm_dirty_log log;
4007 if (copy_from_user(&compat_log, (void __user *)arg,
4008 sizeof(compat_log)))
4010 log.slot = compat_log.slot;
4011 log.padding1 = compat_log.padding1;
4012 log.padding2 = compat_log.padding2;
4013 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4015 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4019 r = kvm_vm_ioctl(filp, ioctl, arg);
4025 static struct file_operations kvm_vm_fops = {
4026 .release = kvm_vm_release,
4027 .unlocked_ioctl = kvm_vm_ioctl,
4028 .llseek = noop_llseek,
4029 KVM_COMPAT(kvm_vm_compat_ioctl),
4032 static int kvm_dev_ioctl_create_vm(unsigned long type)
4038 kvm = kvm_create_vm(type);
4040 return PTR_ERR(kvm);
4041 #ifdef CONFIG_KVM_MMIO
4042 r = kvm_coalesced_mmio_init(kvm);
4046 r = get_unused_fd_flags(O_CLOEXEC);
4050 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
4058 * Don't call kvm_put_kvm anymore at this point; file->f_op is
4059 * already set, with ->release() being kvm_vm_release(). In error
4060 * cases it will be called by the final fput(file) and will take
4061 * care of doing kvm_put_kvm(kvm).
4063 if (kvm_create_vm_debugfs(kvm, r) < 0) {
4068 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
4070 fd_install(r, file);
4078 static long kvm_dev_ioctl(struct file *filp,
4079 unsigned int ioctl, unsigned long arg)
4084 case KVM_GET_API_VERSION:
4087 r = KVM_API_VERSION;
4090 r = kvm_dev_ioctl_create_vm(arg);
4092 case KVM_CHECK_EXTENSION:
4093 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
4095 case KVM_GET_VCPU_MMAP_SIZE:
4098 r = PAGE_SIZE; /* struct kvm_run */
4100 r += PAGE_SIZE; /* pio data page */
4102 #ifdef CONFIG_KVM_MMIO
4103 r += PAGE_SIZE; /* coalesced mmio ring page */
4106 case KVM_TRACE_ENABLE:
4107 case KVM_TRACE_PAUSE:
4108 case KVM_TRACE_DISABLE:
4112 return kvm_arch_dev_ioctl(filp, ioctl, arg);
4118 static struct file_operations kvm_chardev_ops = {
4119 .unlocked_ioctl = kvm_dev_ioctl,
4120 .llseek = noop_llseek,
4121 KVM_COMPAT(kvm_dev_ioctl),
4124 static struct miscdevice kvm_dev = {
4130 static void hardware_enable_nolock(void *junk)
4132 int cpu = raw_smp_processor_id();
4135 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
4138 cpumask_set_cpu(cpu, cpus_hardware_enabled);
4140 r = kvm_arch_hardware_enable();
4143 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4144 atomic_inc(&hardware_enable_failed);
4145 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
4149 static int kvm_starting_cpu(unsigned int cpu)
4151 raw_spin_lock(&kvm_count_lock);
4152 if (kvm_usage_count)
4153 hardware_enable_nolock(NULL);
4154 raw_spin_unlock(&kvm_count_lock);
4158 static void hardware_disable_nolock(void *junk)
4160 int cpu = raw_smp_processor_id();
4162 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
4164 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4165 kvm_arch_hardware_disable();
4168 static int kvm_dying_cpu(unsigned int cpu)
4170 raw_spin_lock(&kvm_count_lock);
4171 if (kvm_usage_count)
4172 hardware_disable_nolock(NULL);
4173 raw_spin_unlock(&kvm_count_lock);
4177 static void hardware_disable_all_nolock(void)
4179 BUG_ON(!kvm_usage_count);
4182 if (!kvm_usage_count)
4183 on_each_cpu(hardware_disable_nolock, NULL, 1);
4186 static void hardware_disable_all(void)
4188 raw_spin_lock(&kvm_count_lock);
4189 hardware_disable_all_nolock();
4190 raw_spin_unlock(&kvm_count_lock);
4193 static int hardware_enable_all(void)
4197 raw_spin_lock(&kvm_count_lock);
4200 if (kvm_usage_count == 1) {
4201 atomic_set(&hardware_enable_failed, 0);
4202 on_each_cpu(hardware_enable_nolock, NULL, 1);
4204 if (atomic_read(&hardware_enable_failed)) {
4205 hardware_disable_all_nolock();
4210 raw_spin_unlock(&kvm_count_lock);
4215 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
4219 * Some (well, at least mine) BIOSes hang on reboot if
4222 * And Intel TXT required VMX off for all cpu when system shutdown.
4224 pr_info("kvm: exiting hardware virtualization\n");
4225 kvm_rebooting = true;
4226 on_each_cpu(hardware_disable_nolock, NULL, 1);
4230 static struct notifier_block kvm_reboot_notifier = {
4231 .notifier_call = kvm_reboot,
4235 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
4239 for (i = 0; i < bus->dev_count; i++) {
4240 struct kvm_io_device *pos = bus->range[i].dev;
4242 kvm_iodevice_destructor(pos);
4247 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
4248 const struct kvm_io_range *r2)
4250 gpa_t addr1 = r1->addr;
4251 gpa_t addr2 = r2->addr;
4256 /* If r2->len == 0, match the exact address. If r2->len != 0,
4257 * accept any overlapping write. Any order is acceptable for
4258 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
4259 * we process all of them.
4272 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
4274 return kvm_io_bus_cmp(p1, p2);
4277 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
4278 gpa_t addr, int len)
4280 struct kvm_io_range *range, key;
4283 key = (struct kvm_io_range) {
4288 range = bsearch(&key, bus->range, bus->dev_count,
4289 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
4293 off = range - bus->range;
4295 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
4301 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4302 struct kvm_io_range *range, const void *val)
4306 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4310 while (idx < bus->dev_count &&
4311 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4312 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
4321 /* kvm_io_bus_write - called under kvm->slots_lock */
4322 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4323 int len, const void *val)
4325 struct kvm_io_bus *bus;
4326 struct kvm_io_range range;
4329 range = (struct kvm_io_range) {
4334 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4337 r = __kvm_io_bus_write(vcpu, bus, &range, val);
4338 return r < 0 ? r : 0;
4340 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
4342 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
4343 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
4344 gpa_t addr, int len, const void *val, long cookie)
4346 struct kvm_io_bus *bus;
4347 struct kvm_io_range range;
4349 range = (struct kvm_io_range) {
4354 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4358 /* First try the device referenced by cookie. */
4359 if ((cookie >= 0) && (cookie < bus->dev_count) &&
4360 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
4361 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
4366 * cookie contained garbage; fall back to search and return the
4367 * correct cookie value.
4369 return __kvm_io_bus_write(vcpu, bus, &range, val);
4372 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4373 struct kvm_io_range *range, void *val)
4377 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4381 while (idx < bus->dev_count &&
4382 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4383 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
4392 /* kvm_io_bus_read - called under kvm->slots_lock */
4393 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4396 struct kvm_io_bus *bus;
4397 struct kvm_io_range range;
4400 range = (struct kvm_io_range) {
4405 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4408 r = __kvm_io_bus_read(vcpu, bus, &range, val);
4409 return r < 0 ? r : 0;
4412 /* Caller must hold slots_lock. */
4413 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
4414 int len, struct kvm_io_device *dev)
4417 struct kvm_io_bus *new_bus, *bus;
4418 struct kvm_io_range range;
4420 bus = kvm_get_bus(kvm, bus_idx);
4424 /* exclude ioeventfd which is limited by maximum fd */
4425 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
4428 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
4429 GFP_KERNEL_ACCOUNT);
4433 range = (struct kvm_io_range) {
4439 for (i = 0; i < bus->dev_count; i++)
4440 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
4443 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
4444 new_bus->dev_count++;
4445 new_bus->range[i] = range;
4446 memcpy(new_bus->range + i + 1, bus->range + i,
4447 (bus->dev_count - i) * sizeof(struct kvm_io_range));
4448 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4449 synchronize_srcu_expedited(&kvm->srcu);
4455 /* Caller must hold slots_lock. */
4456 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4457 struct kvm_io_device *dev)
4460 struct kvm_io_bus *new_bus, *bus;
4462 bus = kvm_get_bus(kvm, bus_idx);
4466 for (i = 0; i < bus->dev_count; i++)
4467 if (bus->range[i].dev == dev) {
4471 if (i == bus->dev_count)
4474 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
4475 GFP_KERNEL_ACCOUNT);
4477 memcpy(new_bus, bus, struct_size(bus, range, i));
4478 new_bus->dev_count--;
4479 memcpy(new_bus->range + i, bus->range + i + 1,
4480 flex_array_size(new_bus, range, new_bus->dev_count - i));
4482 pr_err("kvm: failed to shrink bus, removing it completely\n");
4483 for (j = 0; j < bus->dev_count; j++) {
4486 kvm_iodevice_destructor(bus->range[j].dev);
4490 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4491 synchronize_srcu_expedited(&kvm->srcu);
4496 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4499 struct kvm_io_bus *bus;
4500 int dev_idx, srcu_idx;
4501 struct kvm_io_device *iodev = NULL;
4503 srcu_idx = srcu_read_lock(&kvm->srcu);
4505 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
4509 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
4513 iodev = bus->range[dev_idx].dev;
4516 srcu_read_unlock(&kvm->srcu, srcu_idx);
4520 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
4522 static int kvm_debugfs_open(struct inode *inode, struct file *file,
4523 int (*get)(void *, u64 *), int (*set)(void *, u64),
4526 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4529 /* The debugfs files are a reference to the kvm struct which
4530 * is still valid when kvm_destroy_vm is called.
4531 * To avoid the race between open and the removal of the debugfs
4532 * directory we test against the users count.
4534 if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
4537 if (simple_attr_open(inode, file, get,
4538 KVM_DBGFS_GET_MODE(stat_data->dbgfs_item) & 0222
4541 kvm_put_kvm(stat_data->kvm);
4548 static int kvm_debugfs_release(struct inode *inode, struct file *file)
4550 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4553 simple_attr_release(inode, file);
4554 kvm_put_kvm(stat_data->kvm);
4559 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
4561 *val = *(ulong *)((void *)kvm + offset);
4566 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
4568 *(ulong *)((void *)kvm + offset) = 0;
4573 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
4576 struct kvm_vcpu *vcpu;
4580 kvm_for_each_vcpu(i, vcpu, kvm)
4581 *val += *(u64 *)((void *)vcpu + offset);
4586 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
4589 struct kvm_vcpu *vcpu;
4591 kvm_for_each_vcpu(i, vcpu, kvm)
4592 *(u64 *)((void *)vcpu + offset) = 0;
4597 static int kvm_stat_data_get(void *data, u64 *val)
4600 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4602 switch (stat_data->dbgfs_item->kind) {
4604 r = kvm_get_stat_per_vm(stat_data->kvm,
4605 stat_data->dbgfs_item->offset, val);
4608 r = kvm_get_stat_per_vcpu(stat_data->kvm,
4609 stat_data->dbgfs_item->offset, val);
4616 static int kvm_stat_data_clear(void *data, u64 val)
4619 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4624 switch (stat_data->dbgfs_item->kind) {
4626 r = kvm_clear_stat_per_vm(stat_data->kvm,
4627 stat_data->dbgfs_item->offset);
4630 r = kvm_clear_stat_per_vcpu(stat_data->kvm,
4631 stat_data->dbgfs_item->offset);
4638 static int kvm_stat_data_open(struct inode *inode, struct file *file)
4640 __simple_attr_check_format("%llu\n", 0ull);
4641 return kvm_debugfs_open(inode, file, kvm_stat_data_get,
4642 kvm_stat_data_clear, "%llu\n");
4645 static const struct file_operations stat_fops_per_vm = {
4646 .owner = THIS_MODULE,
4647 .open = kvm_stat_data_open,
4648 .release = kvm_debugfs_release,
4649 .read = simple_attr_read,
4650 .write = simple_attr_write,
4651 .llseek = no_llseek,
4654 static int vm_stat_get(void *_offset, u64 *val)
4656 unsigned offset = (long)_offset;
4661 mutex_lock(&kvm_lock);
4662 list_for_each_entry(kvm, &vm_list, vm_list) {
4663 kvm_get_stat_per_vm(kvm, offset, &tmp_val);
4666 mutex_unlock(&kvm_lock);
4670 static int vm_stat_clear(void *_offset, u64 val)
4672 unsigned offset = (long)_offset;
4678 mutex_lock(&kvm_lock);
4679 list_for_each_entry(kvm, &vm_list, vm_list) {
4680 kvm_clear_stat_per_vm(kvm, offset);
4682 mutex_unlock(&kvm_lock);
4687 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
4689 static int vcpu_stat_get(void *_offset, u64 *val)
4691 unsigned offset = (long)_offset;
4696 mutex_lock(&kvm_lock);
4697 list_for_each_entry(kvm, &vm_list, vm_list) {
4698 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
4701 mutex_unlock(&kvm_lock);
4705 static int vcpu_stat_clear(void *_offset, u64 val)
4707 unsigned offset = (long)_offset;
4713 mutex_lock(&kvm_lock);
4714 list_for_each_entry(kvm, &vm_list, vm_list) {
4715 kvm_clear_stat_per_vcpu(kvm, offset);
4717 mutex_unlock(&kvm_lock);
4722 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
4725 static const struct file_operations *stat_fops[] = {
4726 [KVM_STAT_VCPU] = &vcpu_stat_fops,
4727 [KVM_STAT_VM] = &vm_stat_fops,
4730 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
4732 struct kobj_uevent_env *env;
4733 unsigned long long created, active;
4735 if (!kvm_dev.this_device || !kvm)
4738 mutex_lock(&kvm_lock);
4739 if (type == KVM_EVENT_CREATE_VM) {
4740 kvm_createvm_count++;
4742 } else if (type == KVM_EVENT_DESTROY_VM) {
4745 created = kvm_createvm_count;
4746 active = kvm_active_vms;
4747 mutex_unlock(&kvm_lock);
4749 env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
4753 add_uevent_var(env, "CREATED=%llu", created);
4754 add_uevent_var(env, "COUNT=%llu", active);
4756 if (type == KVM_EVENT_CREATE_VM) {
4757 add_uevent_var(env, "EVENT=create");
4758 kvm->userspace_pid = task_pid_nr(current);
4759 } else if (type == KVM_EVENT_DESTROY_VM) {
4760 add_uevent_var(env, "EVENT=destroy");
4762 add_uevent_var(env, "PID=%d", kvm->userspace_pid);
4764 if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) {
4765 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
4768 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
4770 add_uevent_var(env, "STATS_PATH=%s", tmp);
4774 /* no need for checks, since we are adding at most only 5 keys */
4775 env->envp[env->envp_idx++] = NULL;
4776 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
4780 static void kvm_init_debug(void)
4782 struct kvm_stats_debugfs_item *p;
4784 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
4786 kvm_debugfs_num_entries = 0;
4787 for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
4788 debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p),
4789 kvm_debugfs_dir, (void *)(long)p->offset,
4790 stat_fops[p->kind]);
4794 static int kvm_suspend(void)
4796 if (kvm_usage_count)
4797 hardware_disable_nolock(NULL);
4801 static void kvm_resume(void)
4803 if (kvm_usage_count) {
4804 #ifdef CONFIG_LOCKDEP
4805 WARN_ON(lockdep_is_held(&kvm_count_lock));
4807 hardware_enable_nolock(NULL);
4811 static struct syscore_ops kvm_syscore_ops = {
4812 .suspend = kvm_suspend,
4813 .resume = kvm_resume,
4817 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
4819 return container_of(pn, struct kvm_vcpu, preempt_notifier);
4822 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
4824 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4826 WRITE_ONCE(vcpu->preempted, false);
4827 WRITE_ONCE(vcpu->ready, false);
4829 __this_cpu_write(kvm_running_vcpu, vcpu);
4830 kvm_arch_sched_in(vcpu, cpu);
4831 kvm_arch_vcpu_load(vcpu, cpu);
4834 static void kvm_sched_out(struct preempt_notifier *pn,
4835 struct task_struct *next)
4837 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4839 if (current->state == TASK_RUNNING) {
4840 WRITE_ONCE(vcpu->preempted, true);
4841 WRITE_ONCE(vcpu->ready, true);
4843 kvm_arch_vcpu_put(vcpu);
4844 __this_cpu_write(kvm_running_vcpu, NULL);
4848 * kvm_get_running_vcpu - get the vcpu running on the current CPU.
4850 * We can disable preemption locally around accessing the per-CPU variable,
4851 * and use the resolved vcpu pointer after enabling preemption again,
4852 * because even if the current thread is migrated to another CPU, reading
4853 * the per-CPU value later will give us the same value as we update the
4854 * per-CPU variable in the preempt notifier handlers.
4856 struct kvm_vcpu *kvm_get_running_vcpu(void)
4858 struct kvm_vcpu *vcpu;
4861 vcpu = __this_cpu_read(kvm_running_vcpu);
4866 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
4869 * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
4871 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
4873 return &kvm_running_vcpu;
4876 struct kvm_cpu_compat_check {
4881 static void check_processor_compat(void *data)
4883 struct kvm_cpu_compat_check *c = data;
4885 *c->ret = kvm_arch_check_processor_compat(c->opaque);
4888 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
4889 struct module *module)
4891 struct kvm_cpu_compat_check c;
4895 r = kvm_arch_init(opaque);
4900 * kvm_arch_init makes sure there's at most one caller
4901 * for architectures that support multiple implementations,
4902 * like intel and amd on x86.
4903 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4904 * conflicts in case kvm is already setup for another implementation.
4906 r = kvm_irqfd_init();
4910 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4915 r = kvm_arch_hardware_setup(opaque);
4921 for_each_online_cpu(cpu) {
4922 smp_call_function_single(cpu, check_processor_compat, &c, 1);
4927 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4928 kvm_starting_cpu, kvm_dying_cpu);
4931 register_reboot_notifier(&kvm_reboot_notifier);
4933 /* A kmem cache lets us meet the alignment requirements of fx_save. */
4935 vcpu_align = __alignof__(struct kvm_vcpu);
4937 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4939 offsetof(struct kvm_vcpu, arch),
4940 sizeof_field(struct kvm_vcpu, arch),
4942 if (!kvm_vcpu_cache) {
4947 r = kvm_async_pf_init();
4951 kvm_chardev_ops.owner = module;
4952 kvm_vm_fops.owner = module;
4953 kvm_vcpu_fops.owner = module;
4955 r = misc_register(&kvm_dev);
4957 pr_err("kvm: misc device register failed\n");
4961 register_syscore_ops(&kvm_syscore_ops);
4963 kvm_preempt_ops.sched_in = kvm_sched_in;
4964 kvm_preempt_ops.sched_out = kvm_sched_out;
4968 r = kvm_vfio_ops_init();
4974 kvm_async_pf_deinit();
4976 kmem_cache_destroy(kvm_vcpu_cache);
4978 unregister_reboot_notifier(&kvm_reboot_notifier);
4979 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4981 kvm_arch_hardware_unsetup();
4983 free_cpumask_var(cpus_hardware_enabled);
4991 EXPORT_SYMBOL_GPL(kvm_init);
4995 debugfs_remove_recursive(kvm_debugfs_dir);
4996 misc_deregister(&kvm_dev);
4997 kmem_cache_destroy(kvm_vcpu_cache);
4998 kvm_async_pf_deinit();
4999 unregister_syscore_ops(&kvm_syscore_ops);
5000 unregister_reboot_notifier(&kvm_reboot_notifier);
5001 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
5002 on_each_cpu(hardware_disable_nolock, NULL, 1);
5003 kvm_arch_hardware_unsetup();
5006 free_cpumask_var(cpus_hardware_enabled);
5007 kvm_vfio_ops_exit();
5009 EXPORT_SYMBOL_GPL(kvm_exit);
5011 struct kvm_vm_worker_thread_context {
5013 struct task_struct *parent;
5014 struct completion init_done;
5015 kvm_vm_thread_fn_t thread_fn;
5020 static int kvm_vm_worker_thread(void *context)
5023 * The init_context is allocated on the stack of the parent thread, so
5024 * we have to locally copy anything that is needed beyond initialization
5026 struct kvm_vm_worker_thread_context *init_context = context;
5027 struct kvm *kvm = init_context->kvm;
5028 kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
5029 uintptr_t data = init_context->data;
5032 err = kthread_park(current);
5033 /* kthread_park(current) is never supposed to return an error */
5038 err = cgroup_attach_task_all(init_context->parent, current);
5040 kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
5045 set_user_nice(current, task_nice(init_context->parent));
5048 init_context->err = err;
5049 complete(&init_context->init_done);
5050 init_context = NULL;
5055 /* Wait to be woken up by the spawner before proceeding. */
5058 if (!kthread_should_stop())
5059 err = thread_fn(kvm, data);
5064 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
5065 uintptr_t data, const char *name,
5066 struct task_struct **thread_ptr)
5068 struct kvm_vm_worker_thread_context init_context = {};
5069 struct task_struct *thread;
5072 init_context.kvm = kvm;
5073 init_context.parent = current;
5074 init_context.thread_fn = thread_fn;
5075 init_context.data = data;
5076 init_completion(&init_context.init_done);
5078 thread = kthread_run(kvm_vm_worker_thread, &init_context,
5079 "%s-%d", name, task_pid_nr(current));
5081 return PTR_ERR(thread);
5083 /* kthread_run is never supposed to return NULL */
5084 WARN_ON(thread == NULL);
5086 wait_for_completion(&init_context.init_done);
5088 if (!init_context.err)
5089 *thread_ptr = thread;
5091 return init_context.err;