1 // SPDX-License-Identifier: GPL-2.0+
3 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
5 * Copyright IBM Corporation, 2008
12 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
14 * For detailed explanation of Read-Copy Update mechanism see -
18 #define pr_fmt(fmt) "rcu: " fmt
20 #include <linux/types.h>
21 #include <linux/kernel.h>
22 #include <linux/init.h>
23 #include <linux/spinlock.h>
24 #include <linux/smp.h>
25 #include <linux/rcupdate_wait.h>
26 #include <linux/interrupt.h>
27 #include <linux/sched.h>
28 #include <linux/sched/debug.h>
29 #include <linux/nmi.h>
30 #include <linux/atomic.h>
31 #include <linux/bitops.h>
32 #include <linux/export.h>
33 #include <linux/completion.h>
34 #include <linux/moduleparam.h>
35 #include <linux/percpu.h>
36 #include <linux/notifier.h>
37 #include <linux/cpu.h>
38 #include <linux/mutex.h>
39 #include <linux/time.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/wait.h>
42 #include <linux/kthread.h>
43 #include <uapi/linux/sched/types.h>
44 #include <linux/prefetch.h>
45 #include <linux/delay.h>
46 #include <linux/random.h>
47 #include <linux/trace_events.h>
48 #include <linux/suspend.h>
49 #include <linux/ftrace.h>
50 #include <linux/tick.h>
51 #include <linux/sysrq.h>
52 #include <linux/kprobes.h>
53 #include <linux/gfp.h>
54 #include <linux/oom.h>
55 #include <linux/smpboot.h>
56 #include <linux/jiffies.h>
57 #include <linux/slab.h>
58 #include <linux/sched/isolation.h>
59 #include <linux/sched/clock.h>
60 #include <linux/vmalloc.h>
62 #include <linux/kasan.h>
63 #include "../time/tick-internal.h"
68 #ifdef MODULE_PARAM_PREFIX
69 #undef MODULE_PARAM_PREFIX
71 #define MODULE_PARAM_PREFIX "rcutree."
73 /* Data structures. */
76 * Steal a bit from the bottom of ->dynticks for idle entry/exit
77 * control. Initially this is for TLB flushing.
79 #define RCU_DYNTICK_CTRL_MASK 0x1
80 #define RCU_DYNTICK_CTRL_CTR (RCU_DYNTICK_CTRL_MASK + 1)
82 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = {
83 .dynticks_nesting = 1,
84 .dynticks_nmi_nesting = DYNTICK_IRQ_NONIDLE,
85 .dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR),
87 static struct rcu_state rcu_state = {
88 .level = { &rcu_state.node[0] },
89 .gp_state = RCU_GP_IDLE,
90 .gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT,
91 .barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex),
94 .exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex),
95 .exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex),
96 .ofl_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.ofl_lock),
99 /* Dump rcu_node combining tree at boot to verify correct setup. */
100 static bool dump_tree;
101 module_param(dump_tree, bool, 0444);
102 /* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */
103 static bool use_softirq = true;
104 module_param(use_softirq, bool, 0444);
105 /* Control rcu_node-tree auto-balancing at boot time. */
106 static bool rcu_fanout_exact;
107 module_param(rcu_fanout_exact, bool, 0444);
108 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
109 static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
110 module_param(rcu_fanout_leaf, int, 0444);
111 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
112 /* Number of rcu_nodes at specified level. */
113 int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
114 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
117 * The rcu_scheduler_active variable is initialized to the value
118 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
119 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE,
120 * RCU can assume that there is but one task, allowing RCU to (for example)
121 * optimize synchronize_rcu() to a simple barrier(). When this variable
122 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
123 * to detect real grace periods. This variable is also used to suppress
124 * boot-time false positives from lockdep-RCU error checking. Finally, it
125 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
126 * is fully initialized, including all of its kthreads having been spawned.
128 int rcu_scheduler_active __read_mostly;
129 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
132 * The rcu_scheduler_fully_active variable transitions from zero to one
133 * during the early_initcall() processing, which is after the scheduler
134 * is capable of creating new tasks. So RCU processing (for example,
135 * creating tasks for RCU priority boosting) must be delayed until after
136 * rcu_scheduler_fully_active transitions from zero to one. We also
137 * currently delay invocation of any RCU callbacks until after this point.
139 * It might later prove better for people registering RCU callbacks during
140 * early boot to take responsibility for these callbacks, but one step at
143 static int rcu_scheduler_fully_active __read_mostly;
145 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
146 unsigned long gps, unsigned long flags);
147 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
148 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
149 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
150 static void invoke_rcu_core(void);
151 static void rcu_report_exp_rdp(struct rcu_data *rdp);
152 static void sync_sched_exp_online_cleanup(int cpu);
153 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp);
155 /* rcuc/rcub kthread realtime priority */
156 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
157 module_param(kthread_prio, int, 0444);
159 /* Delay in jiffies for grace-period initialization delays, debug only. */
161 static int gp_preinit_delay;
162 module_param(gp_preinit_delay, int, 0444);
163 static int gp_init_delay;
164 module_param(gp_init_delay, int, 0444);
165 static int gp_cleanup_delay;
166 module_param(gp_cleanup_delay, int, 0444);
168 // Add delay to rcu_read_unlock() for strict grace periods.
169 static int rcu_unlock_delay;
170 #ifdef CONFIG_RCU_STRICT_GRACE_PERIOD
171 module_param(rcu_unlock_delay, int, 0444);
175 * This rcu parameter is runtime-read-only. It reflects
176 * a minimum allowed number of objects which can be cached
177 * per-CPU. Object size is equal to one page. This value
178 * can be changed at boot time.
180 static int rcu_min_cached_objs = 5;
181 module_param(rcu_min_cached_objs, int, 0444);
183 /* Retrieve RCU kthreads priority for rcutorture */
184 int rcu_get_gp_kthreads_prio(void)
188 EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio);
191 * Number of grace periods between delays, normalized by the duration of
192 * the delay. The longer the delay, the more the grace periods between
193 * each delay. The reason for this normalization is that it means that,
194 * for non-zero delays, the overall slowdown of grace periods is constant
195 * regardless of the duration of the delay. This arrangement balances
196 * the need for long delays to increase some race probabilities with the
197 * need for fast grace periods to increase other race probabilities.
199 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */
202 * Compute the mask of online CPUs for the specified rcu_node structure.
203 * This will not be stable unless the rcu_node structure's ->lock is
204 * held, but the bit corresponding to the current CPU will be stable
207 static unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
209 return READ_ONCE(rnp->qsmaskinitnext);
213 * Return true if an RCU grace period is in progress. The READ_ONCE()s
214 * permit this function to be invoked without holding the root rcu_node
215 * structure's ->lock, but of course results can be subject to change.
217 static int rcu_gp_in_progress(void)
219 return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq));
223 * Return the number of callbacks queued on the specified CPU.
224 * Handles both the nocbs and normal cases.
226 static long rcu_get_n_cbs_cpu(int cpu)
228 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
230 if (rcu_segcblist_is_enabled(&rdp->cblist))
231 return rcu_segcblist_n_cbs(&rdp->cblist);
235 void rcu_softirq_qs(void)
238 rcu_preempt_deferred_qs(current);
242 * Record entry into an extended quiescent state. This is only to be
243 * called when not already in an extended quiescent state, that is,
244 * RCU is watching prior to the call to this function and is no longer
245 * watching upon return.
247 static noinstr void rcu_dynticks_eqs_enter(void)
249 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
253 * CPUs seeing atomic_add_return() must see prior RCU read-side
254 * critical sections, and we also must force ordering with the
257 rcu_dynticks_task_trace_enter(); // Before ->dynticks update!
258 seq = arch_atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
259 // RCU is no longer watching. Better be in extended quiescent state!
260 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
261 (seq & RCU_DYNTICK_CTRL_CTR));
262 /* Better not have special action (TLB flush) pending! */
263 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
264 (seq & RCU_DYNTICK_CTRL_MASK));
268 * Record exit from an extended quiescent state. This is only to be
269 * called from an extended quiescent state, that is, RCU is not watching
270 * prior to the call to this function and is watching upon return.
272 static noinstr void rcu_dynticks_eqs_exit(void)
274 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
278 * CPUs seeing atomic_add_return() must see prior idle sojourns,
279 * and we also must force ordering with the next RCU read-side
282 seq = arch_atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
283 // RCU is now watching. Better not be in an extended quiescent state!
284 rcu_dynticks_task_trace_exit(); // After ->dynticks update!
285 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
286 !(seq & RCU_DYNTICK_CTRL_CTR));
287 if (seq & RCU_DYNTICK_CTRL_MASK) {
288 arch_atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdp->dynticks);
289 smp_mb__after_atomic(); /* _exit after clearing mask. */
294 * Reset the current CPU's ->dynticks counter to indicate that the
295 * newly onlined CPU is no longer in an extended quiescent state.
296 * This will either leave the counter unchanged, or increment it
297 * to the next non-quiescent value.
299 * The non-atomic test/increment sequence works because the upper bits
300 * of the ->dynticks counter are manipulated only by the corresponding CPU,
301 * or when the corresponding CPU is offline.
303 static void rcu_dynticks_eqs_online(void)
305 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
307 if (atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR)
309 atomic_add(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
313 * Is the current CPU in an extended quiescent state?
315 * No ordering, as we are sampling CPU-local information.
317 static __always_inline bool rcu_dynticks_curr_cpu_in_eqs(void)
319 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
321 return !(arch_atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR);
325 * Snapshot the ->dynticks counter with full ordering so as to allow
326 * stable comparison of this counter with past and future snapshots.
328 static int rcu_dynticks_snap(struct rcu_data *rdp)
330 int snap = atomic_add_return(0, &rdp->dynticks);
332 return snap & ~RCU_DYNTICK_CTRL_MASK;
336 * Return true if the snapshot returned from rcu_dynticks_snap()
337 * indicates that RCU is in an extended quiescent state.
339 static bool rcu_dynticks_in_eqs(int snap)
341 return !(snap & RCU_DYNTICK_CTRL_CTR);
344 /* Return true if the specified CPU is currently idle from an RCU viewpoint. */
345 bool rcu_is_idle_cpu(int cpu)
347 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
349 return rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp));
353 * Return true if the CPU corresponding to the specified rcu_data
354 * structure has spent some time in an extended quiescent state since
355 * rcu_dynticks_snap() returned the specified snapshot.
357 static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap)
359 return snap != rcu_dynticks_snap(rdp);
363 * Return true if the referenced integer is zero while the specified
364 * CPU remains within a single extended quiescent state.
366 bool rcu_dynticks_zero_in_eqs(int cpu, int *vp)
368 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
371 // If not quiescent, force back to earlier extended quiescent state.
372 snap = atomic_read(&rdp->dynticks) & ~(RCU_DYNTICK_CTRL_MASK |
373 RCU_DYNTICK_CTRL_CTR);
375 smp_rmb(); // Order ->dynticks and *vp reads.
377 return false; // Non-zero, so report failure;
378 smp_rmb(); // Order *vp read and ->dynticks re-read.
380 // If still in the same extended quiescent state, we are good!
381 return snap == (atomic_read(&rdp->dynticks) & ~RCU_DYNTICK_CTRL_MASK);
385 * Set the special (bottom) bit of the specified CPU so that it
386 * will take special action (such as flushing its TLB) on the
387 * next exit from an extended quiescent state. Returns true if
388 * the bit was successfully set, or false if the CPU was not in
389 * an extended quiescent state.
391 bool rcu_eqs_special_set(int cpu)
396 struct rcu_data *rdp = &per_cpu(rcu_data, cpu);
398 new_old = atomic_read(&rdp->dynticks);
401 if (old & RCU_DYNTICK_CTRL_CTR)
403 new = old | RCU_DYNTICK_CTRL_MASK;
404 new_old = atomic_cmpxchg(&rdp->dynticks, old, new);
405 } while (new_old != old);
410 * Let the RCU core know that this CPU has gone through the scheduler,
411 * which is a quiescent state. This is called when the need for a
412 * quiescent state is urgent, so we burn an atomic operation and full
413 * memory barriers to let the RCU core know about it, regardless of what
414 * this CPU might (or might not) do in the near future.
416 * We inform the RCU core by emulating a zero-duration dyntick-idle period.
418 * The caller must have disabled interrupts and must not be idle.
420 notrace void rcu_momentary_dyntick_idle(void)
424 raw_cpu_write(rcu_data.rcu_need_heavy_qs, false);
425 special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR,
426 &this_cpu_ptr(&rcu_data)->dynticks);
427 /* It is illegal to call this from idle state. */
428 WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR));
429 rcu_preempt_deferred_qs(current);
431 EXPORT_SYMBOL_GPL(rcu_momentary_dyntick_idle);
434 * rcu_is_cpu_rrupt_from_idle - see if 'interrupted' from idle
436 * If the current CPU is idle and running at a first-level (not nested)
437 * interrupt, or directly, from idle, return true.
439 * The caller must have at least disabled IRQs.
441 static int rcu_is_cpu_rrupt_from_idle(void)
446 * Usually called from the tick; but also used from smp_function_call()
447 * for expedited grace periods. This latter can result in running from
448 * the idle task, instead of an actual IPI.
450 lockdep_assert_irqs_disabled();
452 /* Check for counter underflows */
453 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nesting) < 0,
454 "RCU dynticks_nesting counter underflow!");
455 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nmi_nesting) <= 0,
456 "RCU dynticks_nmi_nesting counter underflow/zero!");
458 /* Are we at first interrupt nesting level? */
459 nesting = __this_cpu_read(rcu_data.dynticks_nmi_nesting);
464 * If we're not in an interrupt, we must be in the idle task!
466 WARN_ON_ONCE(!nesting && !is_idle_task(current));
468 /* Does CPU appear to be idle from an RCU standpoint? */
469 return __this_cpu_read(rcu_data.dynticks_nesting) == 0;
472 #define DEFAULT_RCU_BLIMIT (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 1000 : 10)
473 // Maximum callbacks per rcu_do_batch ...
474 #define DEFAULT_MAX_RCU_BLIMIT 10000 // ... even during callback flood.
475 static long blimit = DEFAULT_RCU_BLIMIT;
476 #define DEFAULT_RCU_QHIMARK 10000 // If this many pending, ignore blimit.
477 static long qhimark = DEFAULT_RCU_QHIMARK;
478 #define DEFAULT_RCU_QLOMARK 100 // Once only this many pending, use blimit.
479 static long qlowmark = DEFAULT_RCU_QLOMARK;
480 #define DEFAULT_RCU_QOVLD_MULT 2
481 #define DEFAULT_RCU_QOVLD (DEFAULT_RCU_QOVLD_MULT * DEFAULT_RCU_QHIMARK)
482 static long qovld = DEFAULT_RCU_QOVLD; // If this many pending, hammer QS.
483 static long qovld_calc = -1; // No pre-initialization lock acquisitions!
485 module_param(blimit, long, 0444);
486 module_param(qhimark, long, 0444);
487 module_param(qlowmark, long, 0444);
488 module_param(qovld, long, 0444);
490 static ulong jiffies_till_first_fqs = IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 0 : ULONG_MAX;
491 static ulong jiffies_till_next_fqs = ULONG_MAX;
492 static bool rcu_kick_kthreads;
493 static int rcu_divisor = 7;
494 module_param(rcu_divisor, int, 0644);
496 /* Force an exit from rcu_do_batch() after 3 milliseconds. */
497 static long rcu_resched_ns = 3 * NSEC_PER_MSEC;
498 module_param(rcu_resched_ns, long, 0644);
501 * How long the grace period must be before we start recruiting
502 * quiescent-state help from rcu_note_context_switch().
504 static ulong jiffies_till_sched_qs = ULONG_MAX;
505 module_param(jiffies_till_sched_qs, ulong, 0444);
506 static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */
507 module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */
510 * Make sure that we give the grace-period kthread time to detect any
511 * idle CPUs before taking active measures to force quiescent states.
512 * However, don't go below 100 milliseconds, adjusted upwards for really
515 static void adjust_jiffies_till_sched_qs(void)
519 /* If jiffies_till_sched_qs was specified, respect the request. */
520 if (jiffies_till_sched_qs != ULONG_MAX) {
521 WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs);
524 /* Otherwise, set to third fqs scan, but bound below on large system. */
525 j = READ_ONCE(jiffies_till_first_fqs) +
526 2 * READ_ONCE(jiffies_till_next_fqs);
527 if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV)
528 j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
529 pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j);
530 WRITE_ONCE(jiffies_to_sched_qs, j);
533 static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp)
536 int ret = kstrtoul(val, 0, &j);
539 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j);
540 adjust_jiffies_till_sched_qs();
545 static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp)
548 int ret = kstrtoul(val, 0, &j);
551 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1));
552 adjust_jiffies_till_sched_qs();
557 static const struct kernel_param_ops first_fqs_jiffies_ops = {
558 .set = param_set_first_fqs_jiffies,
559 .get = param_get_ulong,
562 static const struct kernel_param_ops next_fqs_jiffies_ops = {
563 .set = param_set_next_fqs_jiffies,
564 .get = param_get_ulong,
567 module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644);
568 module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644);
569 module_param(rcu_kick_kthreads, bool, 0644);
571 static void force_qs_rnp(int (*f)(struct rcu_data *rdp));
572 static int rcu_pending(int user);
575 * Return the number of RCU GPs completed thus far for debug & stats.
577 unsigned long rcu_get_gp_seq(void)
579 return READ_ONCE(rcu_state.gp_seq);
581 EXPORT_SYMBOL_GPL(rcu_get_gp_seq);
584 * Return the number of RCU expedited batches completed thus far for
585 * debug & stats. Odd numbers mean that a batch is in progress, even
586 * numbers mean idle. The value returned will thus be roughly double
587 * the cumulative batches since boot.
589 unsigned long rcu_exp_batches_completed(void)
591 return rcu_state.expedited_sequence;
593 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
596 * Return the root node of the rcu_state structure.
598 static struct rcu_node *rcu_get_root(void)
600 return &rcu_state.node[0];
604 * Send along grace-period-related data for rcutorture diagnostics.
606 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
607 unsigned long *gp_seq)
611 *flags = READ_ONCE(rcu_state.gp_flags);
612 *gp_seq = rcu_seq_current(&rcu_state.gp_seq);
618 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
621 * Enter an RCU extended quiescent state, which can be either the
622 * idle loop or adaptive-tickless usermode execution.
624 * We crowbar the ->dynticks_nmi_nesting field to zero to allow for
625 * the possibility of usermode upcalls having messed up our count
626 * of interrupt nesting level during the prior busy period.
628 static noinstr void rcu_eqs_enter(bool user)
630 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
632 WARN_ON_ONCE(rdp->dynticks_nmi_nesting != DYNTICK_IRQ_NONIDLE);
633 WRITE_ONCE(rdp->dynticks_nmi_nesting, 0);
634 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
635 rdp->dynticks_nesting == 0);
636 if (rdp->dynticks_nesting != 1) {
637 // RCU will still be watching, so just do accounting and leave.
638 rdp->dynticks_nesting--;
642 lockdep_assert_irqs_disabled();
643 instrumentation_begin();
644 trace_rcu_dyntick(TPS("Start"), rdp->dynticks_nesting, 0, atomic_read(&rdp->dynticks));
645 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
646 rdp = this_cpu_ptr(&rcu_data);
647 do_nocb_deferred_wakeup(rdp);
648 rcu_prepare_for_idle();
649 rcu_preempt_deferred_qs(current);
651 // instrumentation for the noinstr rcu_dynticks_eqs_enter()
652 instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks));
654 instrumentation_end();
655 WRITE_ONCE(rdp->dynticks_nesting, 0); /* Avoid irq-access tearing. */
656 // RCU is watching here ...
657 rcu_dynticks_eqs_enter();
658 // ... but is no longer watching here.
659 rcu_dynticks_task_enter();
663 * rcu_idle_enter - inform RCU that current CPU is entering idle
665 * Enter idle mode, in other words, -leave- the mode in which RCU
666 * read-side critical sections can occur. (Though RCU read-side
667 * critical sections can occur in irq handlers in idle, a possibility
668 * handled by irq_enter() and irq_exit().)
670 * If you add or remove a call to rcu_idle_enter(), be sure to test with
671 * CONFIG_RCU_EQS_DEBUG=y.
673 void rcu_idle_enter(void)
675 lockdep_assert_irqs_disabled();
676 rcu_eqs_enter(false);
678 EXPORT_SYMBOL_GPL(rcu_idle_enter);
680 #ifdef CONFIG_NO_HZ_FULL
682 * rcu_user_enter - inform RCU that we are resuming userspace.
684 * Enter RCU idle mode right before resuming userspace. No use of RCU
685 * is permitted between this call and rcu_user_exit(). This way the
686 * CPU doesn't need to maintain the tick for RCU maintenance purposes
687 * when the CPU runs in userspace.
689 * If you add or remove a call to rcu_user_enter(), be sure to test with
690 * CONFIG_RCU_EQS_DEBUG=y.
692 noinstr void rcu_user_enter(void)
694 lockdep_assert_irqs_disabled();
697 #endif /* CONFIG_NO_HZ_FULL */
700 * rcu_nmi_exit - inform RCU of exit from NMI context
702 * If we are returning from the outermost NMI handler that interrupted an
703 * RCU-idle period, update rdp->dynticks and rdp->dynticks_nmi_nesting
704 * to let the RCU grace-period handling know that the CPU is back to
707 * If you add or remove a call to rcu_nmi_exit(), be sure to test
708 * with CONFIG_RCU_EQS_DEBUG=y.
710 noinstr void rcu_nmi_exit(void)
712 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
714 instrumentation_begin();
716 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
717 * (We are exiting an NMI handler, so RCU better be paying attention
720 WARN_ON_ONCE(rdp->dynticks_nmi_nesting <= 0);
721 WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
724 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
725 * leave it in non-RCU-idle state.
727 if (rdp->dynticks_nmi_nesting != 1) {
728 trace_rcu_dyntick(TPS("--="), rdp->dynticks_nmi_nesting, rdp->dynticks_nmi_nesting - 2,
729 atomic_read(&rdp->dynticks));
730 WRITE_ONCE(rdp->dynticks_nmi_nesting, /* No store tearing. */
731 rdp->dynticks_nmi_nesting - 2);
732 instrumentation_end();
736 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
737 trace_rcu_dyntick(TPS("Startirq"), rdp->dynticks_nmi_nesting, 0, atomic_read(&rdp->dynticks));
738 WRITE_ONCE(rdp->dynticks_nmi_nesting, 0); /* Avoid store tearing. */
741 rcu_prepare_for_idle();
743 // instrumentation for the noinstr rcu_dynticks_eqs_enter()
744 instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks));
745 instrumentation_end();
747 // RCU is watching here ...
748 rcu_dynticks_eqs_enter();
749 // ... but is no longer watching here.
752 rcu_dynticks_task_enter();
756 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
758 * Exit from an interrupt handler, which might possibly result in entering
759 * idle mode, in other words, leaving the mode in which read-side critical
760 * sections can occur. The caller must have disabled interrupts.
762 * This code assumes that the idle loop never does anything that might
763 * result in unbalanced calls to irq_enter() and irq_exit(). If your
764 * architecture's idle loop violates this assumption, RCU will give you what
765 * you deserve, good and hard. But very infrequently and irreproducibly.
767 * Use things like work queues to work around this limitation.
769 * You have been warned.
771 * If you add or remove a call to rcu_irq_exit(), be sure to test with
772 * CONFIG_RCU_EQS_DEBUG=y.
774 void noinstr rcu_irq_exit(void)
776 lockdep_assert_irqs_disabled();
781 * rcu_irq_exit_preempt - Inform RCU that current CPU is exiting irq
782 * towards in kernel preemption
784 * Same as rcu_irq_exit() but has a sanity check that scheduling is safe
785 * from RCU point of view. Invoked from return from interrupt before kernel
788 void rcu_irq_exit_preempt(void)
790 lockdep_assert_irqs_disabled();
793 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nesting) <= 0,
794 "RCU dynticks_nesting counter underflow/zero!");
795 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nmi_nesting) !=
797 "Bad RCU dynticks_nmi_nesting counter\n");
798 RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
799 "RCU in extended quiescent state!");
802 #ifdef CONFIG_PROVE_RCU
804 * rcu_irq_exit_check_preempt - Validate that scheduling is possible
806 void rcu_irq_exit_check_preempt(void)
808 lockdep_assert_irqs_disabled();
810 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nesting) <= 0,
811 "RCU dynticks_nesting counter underflow/zero!");
812 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nmi_nesting) !=
814 "Bad RCU dynticks_nmi_nesting counter\n");
815 RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
816 "RCU in extended quiescent state!");
818 #endif /* #ifdef CONFIG_PROVE_RCU */
821 * Wrapper for rcu_irq_exit() where interrupts are enabled.
823 * If you add or remove a call to rcu_irq_exit_irqson(), be sure to test
824 * with CONFIG_RCU_EQS_DEBUG=y.
826 void rcu_irq_exit_irqson(void)
830 local_irq_save(flags);
832 local_irq_restore(flags);
836 * Exit an RCU extended quiescent state, which can be either the
837 * idle loop or adaptive-tickless usermode execution.
839 * We crowbar the ->dynticks_nmi_nesting field to DYNTICK_IRQ_NONIDLE to
840 * allow for the possibility of usermode upcalls messing up our count of
841 * interrupt nesting level during the busy period that is just now starting.
843 static void noinstr rcu_eqs_exit(bool user)
845 struct rcu_data *rdp;
848 lockdep_assert_irqs_disabled();
849 rdp = this_cpu_ptr(&rcu_data);
850 oldval = rdp->dynticks_nesting;
851 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
853 // RCU was already watching, so just do accounting and leave.
854 rdp->dynticks_nesting++;
857 rcu_dynticks_task_exit();
858 // RCU is not watching here ...
859 rcu_dynticks_eqs_exit();
860 // ... but is watching here.
861 instrumentation_begin();
863 // instrumentation for the noinstr rcu_dynticks_eqs_exit()
864 instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks));
866 rcu_cleanup_after_idle();
867 trace_rcu_dyntick(TPS("End"), rdp->dynticks_nesting, 1, atomic_read(&rdp->dynticks));
868 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
869 WRITE_ONCE(rdp->dynticks_nesting, 1);
870 WARN_ON_ONCE(rdp->dynticks_nmi_nesting);
871 WRITE_ONCE(rdp->dynticks_nmi_nesting, DYNTICK_IRQ_NONIDLE);
872 instrumentation_end();
876 * rcu_idle_exit - inform RCU that current CPU is leaving idle
878 * Exit idle mode, in other words, -enter- the mode in which RCU
879 * read-side critical sections can occur.
881 * If you add or remove a call to rcu_idle_exit(), be sure to test with
882 * CONFIG_RCU_EQS_DEBUG=y.
884 void rcu_idle_exit(void)
888 local_irq_save(flags);
890 local_irq_restore(flags);
892 EXPORT_SYMBOL_GPL(rcu_idle_exit);
894 #ifdef CONFIG_NO_HZ_FULL
896 * rcu_user_exit - inform RCU that we are exiting userspace.
898 * Exit RCU idle mode while entering the kernel because it can
899 * run a RCU read side critical section anytime.
901 * If you add or remove a call to rcu_user_exit(), be sure to test with
902 * CONFIG_RCU_EQS_DEBUG=y.
904 void noinstr rcu_user_exit(void)
910 * __rcu_irq_enter_check_tick - Enable scheduler tick on CPU if RCU needs it.
912 * The scheduler tick is not normally enabled when CPUs enter the kernel
913 * from nohz_full userspace execution. After all, nohz_full userspace
914 * execution is an RCU quiescent state and the time executing in the kernel
915 * is quite short. Except of course when it isn't. And it is not hard to
916 * cause a large system to spend tens of seconds or even minutes looping
917 * in the kernel, which can cause a number of problems, include RCU CPU
920 * Therefore, if a nohz_full CPU fails to report a quiescent state
921 * in a timely manner, the RCU grace-period kthread sets that CPU's
922 * ->rcu_urgent_qs flag with the expectation that the next interrupt or
923 * exception will invoke this function, which will turn on the scheduler
924 * tick, which will enable RCU to detect that CPU's quiescent states,
925 * for example, due to cond_resched() calls in CONFIG_PREEMPT=n kernels.
926 * The tick will be disabled once a quiescent state is reported for
929 * Of course, in carefully tuned systems, there might never be an
930 * interrupt or exception. In that case, the RCU grace-period kthread
931 * will eventually cause one to happen. However, in less carefully
932 * controlled environments, this function allows RCU to get what it
933 * needs without creating otherwise useless interruptions.
935 void __rcu_irq_enter_check_tick(void)
937 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
939 // If we're here from NMI there's nothing to do.
943 RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
944 "Illegal rcu_irq_enter_check_tick() from extended quiescent state");
946 if (!tick_nohz_full_cpu(rdp->cpu) ||
947 !READ_ONCE(rdp->rcu_urgent_qs) ||
948 READ_ONCE(rdp->rcu_forced_tick)) {
949 // RCU doesn't need nohz_full help from this CPU, or it is
950 // already getting that help.
954 // We get here only when not in an extended quiescent state and
955 // from interrupts (as opposed to NMIs). Therefore, (1) RCU is
956 // already watching and (2) The fact that we are in an interrupt
957 // handler and that the rcu_node lock is an irq-disabled lock
958 // prevents self-deadlock. So we can safely recheck under the lock.
959 // Note that the nohz_full state currently cannot change.
960 raw_spin_lock_rcu_node(rdp->mynode);
961 if (rdp->rcu_urgent_qs && !rdp->rcu_forced_tick) {
962 // A nohz_full CPU is in the kernel and RCU needs a
963 // quiescent state. Turn on the tick!
964 WRITE_ONCE(rdp->rcu_forced_tick, true);
965 tick_dep_set_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
967 raw_spin_unlock_rcu_node(rdp->mynode);
969 #endif /* CONFIG_NO_HZ_FULL */
972 * rcu_nmi_enter - inform RCU of entry to NMI context
974 * If the CPU was idle from RCU's viewpoint, update rdp->dynticks and
975 * rdp->dynticks_nmi_nesting to let the RCU grace-period handling know
976 * that the CPU is active. This implementation permits nested NMIs, as
977 * long as the nesting level does not overflow an int. (You will probably
978 * run out of stack space first.)
980 * If you add or remove a call to rcu_nmi_enter(), be sure to test
981 * with CONFIG_RCU_EQS_DEBUG=y.
983 noinstr void rcu_nmi_enter(void)
986 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
988 /* Complain about underflow. */
989 WARN_ON_ONCE(rdp->dynticks_nmi_nesting < 0);
992 * If idle from RCU viewpoint, atomically increment ->dynticks
993 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
994 * Otherwise, increment ->dynticks_nmi_nesting by two. This means
995 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
996 * to be in the outermost NMI handler that interrupted an RCU-idle
997 * period (observation due to Andy Lutomirski).
999 if (rcu_dynticks_curr_cpu_in_eqs()) {
1002 rcu_dynticks_task_exit();
1004 // RCU is not watching here ...
1005 rcu_dynticks_eqs_exit();
1006 // ... but is watching here.
1009 instrumentation_begin();
1010 rcu_cleanup_after_idle();
1011 instrumentation_end();
1014 instrumentation_begin();
1015 // instrumentation for the noinstr rcu_dynticks_curr_cpu_in_eqs()
1016 instrument_atomic_read(&rdp->dynticks, sizeof(rdp->dynticks));
1017 // instrumentation for the noinstr rcu_dynticks_eqs_exit()
1018 instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks));
1021 } else if (!in_nmi()) {
1022 instrumentation_begin();
1023 rcu_irq_enter_check_tick();
1024 instrumentation_end();
1026 instrumentation_begin();
1029 trace_rcu_dyntick(incby == 1 ? TPS("Endirq") : TPS("++="),
1030 rdp->dynticks_nmi_nesting,
1031 rdp->dynticks_nmi_nesting + incby, atomic_read(&rdp->dynticks));
1032 instrumentation_end();
1033 WRITE_ONCE(rdp->dynticks_nmi_nesting, /* Prevent store tearing. */
1034 rdp->dynticks_nmi_nesting + incby);
1039 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
1041 * Enter an interrupt handler, which might possibly result in exiting
1042 * idle mode, in other words, entering the mode in which read-side critical
1043 * sections can occur. The caller must have disabled interrupts.
1045 * Note that the Linux kernel is fully capable of entering an interrupt
1046 * handler that it never exits, for example when doing upcalls to user mode!
1047 * This code assumes that the idle loop never does upcalls to user mode.
1048 * If your architecture's idle loop does do upcalls to user mode (or does
1049 * anything else that results in unbalanced calls to the irq_enter() and
1050 * irq_exit() functions), RCU will give you what you deserve, good and hard.
1051 * But very infrequently and irreproducibly.
1053 * Use things like work queues to work around this limitation.
1055 * You have been warned.
1057 * If you add or remove a call to rcu_irq_enter(), be sure to test with
1058 * CONFIG_RCU_EQS_DEBUG=y.
1060 noinstr void rcu_irq_enter(void)
1062 lockdep_assert_irqs_disabled();
1067 * Wrapper for rcu_irq_enter() where interrupts are enabled.
1069 * If you add or remove a call to rcu_irq_enter_irqson(), be sure to test
1070 * with CONFIG_RCU_EQS_DEBUG=y.
1072 void rcu_irq_enter_irqson(void)
1074 unsigned long flags;
1076 local_irq_save(flags);
1078 local_irq_restore(flags);
1082 * If any sort of urgency was applied to the current CPU (for example,
1083 * the scheduler-clock interrupt was enabled on a nohz_full CPU) in order
1084 * to get to a quiescent state, disable it.
1086 static void rcu_disable_urgency_upon_qs(struct rcu_data *rdp)
1088 raw_lockdep_assert_held_rcu_node(rdp->mynode);
1089 WRITE_ONCE(rdp->rcu_urgent_qs, false);
1090 WRITE_ONCE(rdp->rcu_need_heavy_qs, false);
1091 if (tick_nohz_full_cpu(rdp->cpu) && rdp->rcu_forced_tick) {
1092 tick_dep_clear_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
1093 WRITE_ONCE(rdp->rcu_forced_tick, false);
1098 * rcu_is_watching - see if RCU thinks that the current CPU is not idle
1100 * Return true if RCU is watching the running CPU, which means that this
1101 * CPU can safely enter RCU read-side critical sections. In other words,
1102 * if the current CPU is not in its idle loop or is in an interrupt or
1103 * NMI handler, return true.
1105 * Make notrace because it can be called by the internal functions of
1106 * ftrace, and making this notrace removes unnecessary recursion calls.
1108 notrace bool rcu_is_watching(void)
1112 preempt_disable_notrace();
1113 ret = !rcu_dynticks_curr_cpu_in_eqs();
1114 preempt_enable_notrace();
1117 EXPORT_SYMBOL_GPL(rcu_is_watching);
1120 * If a holdout task is actually running, request an urgent quiescent
1121 * state from its CPU. This is unsynchronized, so migrations can cause
1122 * the request to go to the wrong CPU. Which is OK, all that will happen
1123 * is that the CPU's next context switch will be a bit slower and next
1124 * time around this task will generate another request.
1126 void rcu_request_urgent_qs_task(struct task_struct *t)
1133 return; /* This task is not running on that CPU. */
1134 smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true);
1137 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
1140 * Is the current CPU online as far as RCU is concerned?
1142 * Disable preemption to avoid false positives that could otherwise
1143 * happen due to the current CPU number being sampled, this task being
1144 * preempted, its old CPU being taken offline, resuming on some other CPU,
1145 * then determining that its old CPU is now offline.
1147 * Disable checking if in an NMI handler because we cannot safely
1148 * report errors from NMI handlers anyway. In addition, it is OK to use
1149 * RCU on an offline processor during initial boot, hence the check for
1150 * rcu_scheduler_fully_active.
1152 bool rcu_lockdep_current_cpu_online(void)
1154 struct rcu_data *rdp;
1155 struct rcu_node *rnp;
1158 if (in_nmi() || !rcu_scheduler_fully_active)
1160 preempt_disable_notrace();
1161 rdp = this_cpu_ptr(&rcu_data);
1163 if (rdp->grpmask & rcu_rnp_online_cpus(rnp) || READ_ONCE(rnp->ofl_seq) & 0x1)
1165 preempt_enable_notrace();
1168 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
1170 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1173 * We are reporting a quiescent state on behalf of some other CPU, so
1174 * it is our responsibility to check for and handle potential overflow
1175 * of the rcu_node ->gp_seq counter with respect to the rcu_data counters.
1176 * After all, the CPU might be in deep idle state, and thus executing no
1179 static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
1181 raw_lockdep_assert_held_rcu_node(rnp);
1182 if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4,
1184 WRITE_ONCE(rdp->gpwrap, true);
1185 if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq))
1186 rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4;
1190 * Snapshot the specified CPU's dynticks counter so that we can later
1191 * credit them with an implicit quiescent state. Return 1 if this CPU
1192 * is in dynticks idle mode, which is an extended quiescent state.
1194 static int dyntick_save_progress_counter(struct rcu_data *rdp)
1196 rdp->dynticks_snap = rcu_dynticks_snap(rdp);
1197 if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
1198 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
1199 rcu_gpnum_ovf(rdp->mynode, rdp);
1206 * Return true if the specified CPU has passed through a quiescent
1207 * state by virtue of being in or having passed through an dynticks
1208 * idle state since the last call to dyntick_save_progress_counter()
1209 * for this same CPU, or by virtue of having been offline.
1211 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
1216 struct rcu_node *rnp = rdp->mynode;
1219 * If the CPU passed through or entered a dynticks idle phase with
1220 * no active irq/NMI handlers, then we can safely pretend that the CPU
1221 * already acknowledged the request to pass through a quiescent
1222 * state. Either way, that CPU cannot possibly be in an RCU
1223 * read-side critical section that started before the beginning
1224 * of the current RCU grace period.
1226 if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) {
1227 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
1228 rcu_gpnum_ovf(rnp, rdp);
1233 * Complain if a CPU that is considered to be offline from RCU's
1234 * perspective has not yet reported a quiescent state. After all,
1235 * the offline CPU should have reported a quiescent state during
1236 * the CPU-offline process, or, failing that, by rcu_gp_init()
1237 * if it ran concurrently with either the CPU going offline or the
1238 * last task on a leaf rcu_node structure exiting its RCU read-side
1239 * critical section while all CPUs corresponding to that structure
1240 * are offline. This added warning detects bugs in any of these
1243 * The rcu_node structure's ->lock is held here, which excludes
1244 * the relevant portions the CPU-hotplug code, the grace-period
1245 * initialization code, and the rcu_read_unlock() code paths.
1247 * For more detail, please refer to the "Hotplug CPU" section
1248 * of RCU's Requirements documentation.
1250 if (WARN_ON_ONCE(!(rdp->grpmask & rcu_rnp_online_cpus(rnp)))) {
1252 struct rcu_node *rnp1;
1254 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
1255 __func__, rnp->grplo, rnp->grphi, rnp->level,
1256 (long)rnp->gp_seq, (long)rnp->completedqs);
1257 for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
1258 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n",
1259 __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask);
1260 onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp));
1261 pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n",
1262 __func__, rdp->cpu, ".o"[onl],
1263 (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
1264 (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
1265 return 1; /* Break things loose after complaining. */
1269 * A CPU running for an extended time within the kernel can
1270 * delay RCU grace periods: (1) At age jiffies_to_sched_qs,
1271 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set
1272 * both .rcu_need_heavy_qs and .rcu_urgent_qs. Note that the
1273 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs
1274 * variable are safe because the assignments are repeated if this
1275 * CPU failed to pass through a quiescent state. This code
1276 * also checks .jiffies_resched in case jiffies_to_sched_qs
1279 jtsq = READ_ONCE(jiffies_to_sched_qs);
1280 ruqp = per_cpu_ptr(&rcu_data.rcu_urgent_qs, rdp->cpu);
1281 rnhqp = &per_cpu(rcu_data.rcu_need_heavy_qs, rdp->cpu);
1282 if (!READ_ONCE(*rnhqp) &&
1283 (time_after(jiffies, rcu_state.gp_start + jtsq * 2) ||
1284 time_after(jiffies, rcu_state.jiffies_resched) ||
1285 rcu_state.cbovld)) {
1286 WRITE_ONCE(*rnhqp, true);
1287 /* Store rcu_need_heavy_qs before rcu_urgent_qs. */
1288 smp_store_release(ruqp, true);
1289 } else if (time_after(jiffies, rcu_state.gp_start + jtsq)) {
1290 WRITE_ONCE(*ruqp, true);
1294 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq!
1295 * The above code handles this, but only for straight cond_resched().
1296 * And some in-kernel loops check need_resched() before calling
1297 * cond_resched(), which defeats the above code for CPUs that are
1298 * running in-kernel with scheduling-clock interrupts disabled.
1299 * So hit them over the head with the resched_cpu() hammer!
1301 if (tick_nohz_full_cpu(rdp->cpu) &&
1302 (time_after(jiffies, READ_ONCE(rdp->last_fqs_resched) + jtsq * 3) ||
1303 rcu_state.cbovld)) {
1304 WRITE_ONCE(*ruqp, true);
1305 resched_cpu(rdp->cpu);
1306 WRITE_ONCE(rdp->last_fqs_resched, jiffies);
1310 * If more than halfway to RCU CPU stall-warning time, invoke
1311 * resched_cpu() more frequently to try to loosen things up a bit.
1312 * Also check to see if the CPU is getting hammered with interrupts,
1313 * but only once per grace period, just to keep the IPIs down to
1316 if (time_after(jiffies, rcu_state.jiffies_resched)) {
1317 if (time_after(jiffies,
1318 READ_ONCE(rdp->last_fqs_resched) + jtsq)) {
1319 resched_cpu(rdp->cpu);
1320 WRITE_ONCE(rdp->last_fqs_resched, jiffies);
1322 if (IS_ENABLED(CONFIG_IRQ_WORK) &&
1323 !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq &&
1324 (rnp->ffmask & rdp->grpmask)) {
1325 rdp->rcu_iw_pending = true;
1326 rdp->rcu_iw_gp_seq = rnp->gp_seq;
1327 irq_work_queue_on(&rdp->rcu_iw, rdp->cpu);
1334 /* Trace-event wrapper function for trace_rcu_future_grace_period. */
1335 static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1336 unsigned long gp_seq_req, const char *s)
1338 trace_rcu_future_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
1339 gp_seq_req, rnp->level,
1340 rnp->grplo, rnp->grphi, s);
1344 * rcu_start_this_gp - Request the start of a particular grace period
1345 * @rnp_start: The leaf node of the CPU from which to start.
1346 * @rdp: The rcu_data corresponding to the CPU from which to start.
1347 * @gp_seq_req: The gp_seq of the grace period to start.
1349 * Start the specified grace period, as needed to handle newly arrived
1350 * callbacks. The required future grace periods are recorded in each
1351 * rcu_node structure's ->gp_seq_needed field. Returns true if there
1352 * is reason to awaken the grace-period kthread.
1354 * The caller must hold the specified rcu_node structure's ->lock, which
1355 * is why the caller is responsible for waking the grace-period kthread.
1357 * Returns true if the GP thread needs to be awakened else false.
1359 static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp,
1360 unsigned long gp_seq_req)
1363 struct rcu_node *rnp;
1366 * Use funnel locking to either acquire the root rcu_node
1367 * structure's lock or bail out if the need for this grace period
1368 * has already been recorded -- or if that grace period has in
1369 * fact already started. If there is already a grace period in
1370 * progress in a non-leaf node, no recording is needed because the
1371 * end of the grace period will scan the leaf rcu_node structures.
1372 * Note that rnp_start->lock must not be released.
1374 raw_lockdep_assert_held_rcu_node(rnp_start);
1375 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf"));
1376 for (rnp = rnp_start; 1; rnp = rnp->parent) {
1377 if (rnp != rnp_start)
1378 raw_spin_lock_rcu_node(rnp);
1379 if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) ||
1380 rcu_seq_started(&rnp->gp_seq, gp_seq_req) ||
1381 (rnp != rnp_start &&
1382 rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) {
1383 trace_rcu_this_gp(rnp, rdp, gp_seq_req,
1387 WRITE_ONCE(rnp->gp_seq_needed, gp_seq_req);
1388 if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) {
1390 * We just marked the leaf or internal node, and a
1391 * grace period is in progress, which means that
1392 * rcu_gp_cleanup() will see the marking. Bail to
1393 * reduce contention.
1395 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req,
1396 TPS("Startedleaf"));
1399 if (rnp != rnp_start && rnp->parent != NULL)
1400 raw_spin_unlock_rcu_node(rnp);
1402 break; /* At root, and perhaps also leaf. */
1405 /* If GP already in progress, just leave, otherwise start one. */
1406 if (rcu_gp_in_progress()) {
1407 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot"));
1410 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot"));
1411 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT);
1412 WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
1413 if (!READ_ONCE(rcu_state.gp_kthread)) {
1414 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread"));
1417 trace_rcu_grace_period(rcu_state.name, data_race(rcu_state.gp_seq), TPS("newreq"));
1418 ret = true; /* Caller must wake GP kthread. */
1420 /* Push furthest requested GP to leaf node and rcu_data structure. */
1421 if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) {
1422 WRITE_ONCE(rnp_start->gp_seq_needed, rnp->gp_seq_needed);
1423 WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
1425 if (rnp != rnp_start)
1426 raw_spin_unlock_rcu_node(rnp);
1431 * Clean up any old requests for the just-ended grace period. Also return
1432 * whether any additional grace periods have been requested.
1434 static bool rcu_future_gp_cleanup(struct rcu_node *rnp)
1437 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1439 needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed);
1441 rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */
1442 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq,
1443 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1448 * Awaken the grace-period kthread. Don't do a self-awaken (unless in an
1449 * interrupt or softirq handler, in which case we just might immediately
1450 * sleep upon return, resulting in a grace-period hang), and don't bother
1451 * awakening when there is nothing for the grace-period kthread to do
1452 * (as in several CPUs raced to awaken, we lost), and finally don't try
1453 * to awaken a kthread that has not yet been created. If all those checks
1454 * are passed, track some debug information and awaken.
1456 * So why do the self-wakeup when in an interrupt or softirq handler
1457 * in the grace-period kthread's context? Because the kthread might have
1458 * been interrupted just as it was going to sleep, and just after the final
1459 * pre-sleep check of the awaken condition. In this case, a wakeup really
1460 * is required, and is therefore supplied.
1462 static void rcu_gp_kthread_wake(void)
1464 struct task_struct *t = READ_ONCE(rcu_state.gp_kthread);
1466 if ((current == t && !in_irq() && !in_serving_softirq()) ||
1467 !READ_ONCE(rcu_state.gp_flags) || !t)
1469 WRITE_ONCE(rcu_state.gp_wake_time, jiffies);
1470 WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq));
1471 swake_up_one(&rcu_state.gp_wq);
1475 * If there is room, assign a ->gp_seq number to any callbacks on this
1476 * CPU that have not already been assigned. Also accelerate any callbacks
1477 * that were previously assigned a ->gp_seq number that has since proven
1478 * to be too conservative, which can happen if callbacks get assigned a
1479 * ->gp_seq number while RCU is idle, but with reference to a non-root
1480 * rcu_node structure. This function is idempotent, so it does not hurt
1481 * to call it repeatedly. Returns an flag saying that we should awaken
1482 * the RCU grace-period kthread.
1484 * The caller must hold rnp->lock with interrupts disabled.
1486 static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1488 unsigned long gp_seq_req;
1491 rcu_lockdep_assert_cblist_protected(rdp);
1492 raw_lockdep_assert_held_rcu_node(rnp);
1494 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1495 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1499 * Callbacks are often registered with incomplete grace-period
1500 * information. Something about the fact that getting exact
1501 * information requires acquiring a global lock... RCU therefore
1502 * makes a conservative estimate of the grace period number at which
1503 * a given callback will become ready to invoke. The following
1504 * code checks this estimate and improves it when possible, thus
1505 * accelerating callback invocation to an earlier grace-period
1508 gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq);
1509 if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req))
1510 ret = rcu_start_this_gp(rnp, rdp, gp_seq_req);
1512 /* Trace depending on how much we were able to accelerate. */
1513 if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
1514 trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccWaitCB"));
1516 trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccReadyCB"));
1522 * Similar to rcu_accelerate_cbs(), but does not require that the leaf
1523 * rcu_node structure's ->lock be held. It consults the cached value
1524 * of ->gp_seq_needed in the rcu_data structure, and if that indicates
1525 * that a new grace-period request be made, invokes rcu_accelerate_cbs()
1526 * while holding the leaf rcu_node structure's ->lock.
1528 static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp,
1529 struct rcu_data *rdp)
1534 rcu_lockdep_assert_cblist_protected(rdp);
1535 c = rcu_seq_snap(&rcu_state.gp_seq);
1536 if (!READ_ONCE(rdp->gpwrap) && ULONG_CMP_GE(rdp->gp_seq_needed, c)) {
1537 /* Old request still live, so mark recent callbacks. */
1538 (void)rcu_segcblist_accelerate(&rdp->cblist, c);
1541 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1542 needwake = rcu_accelerate_cbs(rnp, rdp);
1543 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1545 rcu_gp_kthread_wake();
1549 * Move any callbacks whose grace period has completed to the
1550 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1551 * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL
1552 * sublist. This function is idempotent, so it does not hurt to
1553 * invoke it repeatedly. As long as it is not invoked -too- often...
1554 * Returns true if the RCU grace-period kthread needs to be awakened.
1556 * The caller must hold rnp->lock with interrupts disabled.
1558 static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1560 rcu_lockdep_assert_cblist_protected(rdp);
1561 raw_lockdep_assert_held_rcu_node(rnp);
1563 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1564 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1568 * Find all callbacks whose ->gp_seq numbers indicate that they
1569 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1571 rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq);
1573 /* Classify any remaining callbacks. */
1574 return rcu_accelerate_cbs(rnp, rdp);
1578 * Move and classify callbacks, but only if doing so won't require
1579 * that the RCU grace-period kthread be awakened.
1581 static void __maybe_unused rcu_advance_cbs_nowake(struct rcu_node *rnp,
1582 struct rcu_data *rdp)
1584 rcu_lockdep_assert_cblist_protected(rdp);
1585 if (!rcu_seq_state(rcu_seq_current(&rnp->gp_seq)) ||
1586 !raw_spin_trylock_rcu_node(rnp))
1588 WARN_ON_ONCE(rcu_advance_cbs(rnp, rdp));
1589 raw_spin_unlock_rcu_node(rnp);
1593 * In CONFIG_RCU_STRICT_GRACE_PERIOD=y kernels, attempt to generate a
1594 * quiescent state. This is intended to be invoked when the CPU notices
1595 * a new grace period.
1597 static void rcu_strict_gp_check_qs(void)
1599 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) {
1606 * Update CPU-local rcu_data state to record the beginnings and ends of
1607 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1608 * structure corresponding to the current CPU, and must have irqs disabled.
1609 * Returns true if the grace-period kthread needs to be awakened.
1611 static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp)
1615 const bool offloaded = rcu_segcblist_is_offloaded(&rdp->cblist);
1617 raw_lockdep_assert_held_rcu_node(rnp);
1619 if (rdp->gp_seq == rnp->gp_seq)
1620 return false; /* Nothing to do. */
1622 /* Handle the ends of any preceding grace periods first. */
1623 if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) ||
1624 unlikely(READ_ONCE(rdp->gpwrap))) {
1626 ret = rcu_advance_cbs(rnp, rdp); /* Advance CBs. */
1627 rdp->core_needs_qs = false;
1628 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend"));
1631 ret = rcu_accelerate_cbs(rnp, rdp); /* Recent CBs. */
1632 if (rdp->core_needs_qs)
1633 rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask);
1636 /* Now handle the beginnings of any new-to-this-CPU grace periods. */
1637 if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) ||
1638 unlikely(READ_ONCE(rdp->gpwrap))) {
1640 * If the current grace period is waiting for this CPU,
1641 * set up to detect a quiescent state, otherwise don't
1642 * go looking for one.
1644 trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart"));
1645 need_qs = !!(rnp->qsmask & rdp->grpmask);
1646 rdp->cpu_no_qs.b.norm = need_qs;
1647 rdp->core_needs_qs = need_qs;
1648 zero_cpu_stall_ticks(rdp);
1650 rdp->gp_seq = rnp->gp_seq; /* Remember new grace-period state. */
1651 if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap)
1652 WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
1653 WRITE_ONCE(rdp->gpwrap, false);
1654 rcu_gpnum_ovf(rnp, rdp);
1658 static void note_gp_changes(struct rcu_data *rdp)
1660 unsigned long flags;
1662 struct rcu_node *rnp;
1664 local_irq_save(flags);
1666 if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) &&
1667 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1668 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1669 local_irq_restore(flags);
1672 needwake = __note_gp_changes(rnp, rdp);
1673 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1674 rcu_strict_gp_check_qs();
1676 rcu_gp_kthread_wake();
1679 static void rcu_gp_slow(int delay)
1682 !(rcu_seq_ctr(rcu_state.gp_seq) %
1683 (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1684 schedule_timeout_idle(delay);
1687 static unsigned long sleep_duration;
1689 /* Allow rcutorture to stall the grace-period kthread. */
1690 void rcu_gp_set_torture_wait(int duration)
1692 if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST) && duration > 0)
1693 WRITE_ONCE(sleep_duration, duration);
1695 EXPORT_SYMBOL_GPL(rcu_gp_set_torture_wait);
1697 /* Actually implement the aforementioned wait. */
1698 static void rcu_gp_torture_wait(void)
1700 unsigned long duration;
1702 if (!IS_ENABLED(CONFIG_RCU_TORTURE_TEST))
1704 duration = xchg(&sleep_duration, 0UL);
1706 pr_alert("%s: Waiting %lu jiffies\n", __func__, duration);
1707 schedule_timeout_idle(duration);
1708 pr_alert("%s: Wait complete\n", __func__);
1713 * Handler for on_each_cpu() to invoke the target CPU's RCU core
1716 static void rcu_strict_gp_boundary(void *unused)
1722 * Initialize a new grace period. Return false if no grace period required.
1724 static bool rcu_gp_init(void)
1726 unsigned long firstseq;
1727 unsigned long flags;
1728 unsigned long oldmask;
1730 struct rcu_data *rdp;
1731 struct rcu_node *rnp = rcu_get_root();
1733 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1734 raw_spin_lock_irq_rcu_node(rnp);
1735 if (!READ_ONCE(rcu_state.gp_flags)) {
1736 /* Spurious wakeup, tell caller to go back to sleep. */
1737 raw_spin_unlock_irq_rcu_node(rnp);
1740 WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */
1742 if (WARN_ON_ONCE(rcu_gp_in_progress())) {
1744 * Grace period already in progress, don't start another.
1745 * Not supposed to be able to happen.
1747 raw_spin_unlock_irq_rcu_node(rnp);
1751 /* Advance to a new grace period and initialize state. */
1752 record_gp_stall_check_time();
1753 /* Record GP times before starting GP, hence rcu_seq_start(). */
1754 rcu_seq_start(&rcu_state.gp_seq);
1755 ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
1756 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start"));
1757 raw_spin_unlock_irq_rcu_node(rnp);
1760 * Apply per-leaf buffered online and offline operations to
1761 * the rcu_node tree. Note that this new grace period need not
1762 * wait for subsequent online CPUs, and that RCU hooks in the CPU
1763 * offlining path, when combined with checks in this function,
1764 * will handle CPUs that are currently going offline or that will
1765 * go offline later. Please also refer to "Hotplug CPU" section
1766 * of RCU's Requirements documentation.
1768 rcu_state.gp_state = RCU_GP_ONOFF;
1769 rcu_for_each_leaf_node(rnp) {
1770 smp_mb(); // Pair with barriers used when updating ->ofl_seq to odd values.
1771 firstseq = READ_ONCE(rnp->ofl_seq);
1773 while (firstseq == READ_ONCE(rnp->ofl_seq))
1774 schedule_timeout_idle(1); // Can't wake unless RCU is watching.
1775 smp_mb(); // Pair with barriers used when updating ->ofl_seq to even values.
1776 raw_spin_lock(&rcu_state.ofl_lock);
1777 raw_spin_lock_irq_rcu_node(rnp);
1778 if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1779 !rnp->wait_blkd_tasks) {
1780 /* Nothing to do on this leaf rcu_node structure. */
1781 raw_spin_unlock_irq_rcu_node(rnp);
1782 raw_spin_unlock(&rcu_state.ofl_lock);
1786 /* Record old state, apply changes to ->qsmaskinit field. */
1787 oldmask = rnp->qsmaskinit;
1788 rnp->qsmaskinit = rnp->qsmaskinitnext;
1790 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1791 if (!oldmask != !rnp->qsmaskinit) {
1792 if (!oldmask) { /* First online CPU for rcu_node. */
1793 if (!rnp->wait_blkd_tasks) /* Ever offline? */
1794 rcu_init_new_rnp(rnp);
1795 } else if (rcu_preempt_has_tasks(rnp)) {
1796 rnp->wait_blkd_tasks = true; /* blocked tasks */
1797 } else { /* Last offline CPU and can propagate. */
1798 rcu_cleanup_dead_rnp(rnp);
1803 * If all waited-on tasks from prior grace period are
1804 * done, and if all this rcu_node structure's CPUs are
1805 * still offline, propagate up the rcu_node tree and
1806 * clear ->wait_blkd_tasks. Otherwise, if one of this
1807 * rcu_node structure's CPUs has since come back online,
1808 * simply clear ->wait_blkd_tasks.
1810 if (rnp->wait_blkd_tasks &&
1811 (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) {
1812 rnp->wait_blkd_tasks = false;
1813 if (!rnp->qsmaskinit)
1814 rcu_cleanup_dead_rnp(rnp);
1817 raw_spin_unlock_irq_rcu_node(rnp);
1818 raw_spin_unlock(&rcu_state.ofl_lock);
1820 rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */
1823 * Set the quiescent-state-needed bits in all the rcu_node
1824 * structures for all currently online CPUs in breadth-first
1825 * order, starting from the root rcu_node structure, relying on the
1826 * layout of the tree within the rcu_state.node[] array. Note that
1827 * other CPUs will access only the leaves of the hierarchy, thus
1828 * seeing that no grace period is in progress, at least until the
1829 * corresponding leaf node has been initialized.
1831 * The grace period cannot complete until the initialization
1832 * process finishes, because this kthread handles both.
1834 rcu_state.gp_state = RCU_GP_INIT;
1835 rcu_for_each_node_breadth_first(rnp) {
1836 rcu_gp_slow(gp_init_delay);
1837 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1838 rdp = this_cpu_ptr(&rcu_data);
1839 rcu_preempt_check_blocked_tasks(rnp);
1840 rnp->qsmask = rnp->qsmaskinit;
1841 WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq);
1842 if (rnp == rdp->mynode)
1843 (void)__note_gp_changes(rnp, rdp);
1844 rcu_preempt_boost_start_gp(rnp);
1845 trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq,
1846 rnp->level, rnp->grplo,
1847 rnp->grphi, rnp->qsmask);
1848 /* Quiescent states for tasks on any now-offline CPUs. */
1849 mask = rnp->qsmask & ~rnp->qsmaskinitnext;
1850 rnp->rcu_gp_init_mask = mask;
1851 if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp))
1852 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
1854 raw_spin_unlock_irq_rcu_node(rnp);
1855 cond_resched_tasks_rcu_qs();
1856 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1859 // If strict, make all CPUs aware of new grace period.
1860 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
1861 on_each_cpu(rcu_strict_gp_boundary, NULL, 0);
1867 * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state
1870 static bool rcu_gp_fqs_check_wake(int *gfp)
1872 struct rcu_node *rnp = rcu_get_root();
1874 // If under overload conditions, force an immediate FQS scan.
1875 if (*gfp & RCU_GP_FLAG_OVLD)
1878 // Someone like call_rcu() requested a force-quiescent-state scan.
1879 *gfp = READ_ONCE(rcu_state.gp_flags);
1880 if (*gfp & RCU_GP_FLAG_FQS)
1883 // The current grace period has completed.
1884 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
1891 * Do one round of quiescent-state forcing.
1893 static void rcu_gp_fqs(bool first_time)
1895 struct rcu_node *rnp = rcu_get_root();
1897 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1898 rcu_state.n_force_qs++;
1900 /* Collect dyntick-idle snapshots. */
1901 force_qs_rnp(dyntick_save_progress_counter);
1903 /* Handle dyntick-idle and offline CPUs. */
1904 force_qs_rnp(rcu_implicit_dynticks_qs);
1906 /* Clear flag to prevent immediate re-entry. */
1907 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
1908 raw_spin_lock_irq_rcu_node(rnp);
1909 WRITE_ONCE(rcu_state.gp_flags,
1910 READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS);
1911 raw_spin_unlock_irq_rcu_node(rnp);
1916 * Loop doing repeated quiescent-state forcing until the grace period ends.
1918 static void rcu_gp_fqs_loop(void)
1924 struct rcu_node *rnp = rcu_get_root();
1926 first_gp_fqs = true;
1927 j = READ_ONCE(jiffies_till_first_fqs);
1928 if (rcu_state.cbovld)
1929 gf = RCU_GP_FLAG_OVLD;
1933 rcu_state.jiffies_force_qs = jiffies + j;
1934 WRITE_ONCE(rcu_state.jiffies_kick_kthreads,
1935 jiffies + (j ? 3 * j : 2));
1937 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1939 rcu_state.gp_state = RCU_GP_WAIT_FQS;
1940 ret = swait_event_idle_timeout_exclusive(
1941 rcu_state.gp_wq, rcu_gp_fqs_check_wake(&gf), j);
1942 rcu_gp_torture_wait();
1943 rcu_state.gp_state = RCU_GP_DOING_FQS;
1944 /* Locking provides needed memory barriers. */
1945 /* If grace period done, leave loop. */
1946 if (!READ_ONCE(rnp->qsmask) &&
1947 !rcu_preempt_blocked_readers_cgp(rnp))
1949 /* If time for quiescent-state forcing, do it. */
1950 if (!time_after(rcu_state.jiffies_force_qs, jiffies) ||
1951 (gf & (RCU_GP_FLAG_FQS | RCU_GP_FLAG_OVLD))) {
1952 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1954 rcu_gp_fqs(first_gp_fqs);
1957 first_gp_fqs = false;
1958 gf = rcu_state.cbovld ? RCU_GP_FLAG_OVLD : 0;
1960 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1962 cond_resched_tasks_rcu_qs();
1963 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1964 ret = 0; /* Force full wait till next FQS. */
1965 j = READ_ONCE(jiffies_till_next_fqs);
1967 /* Deal with stray signal. */
1968 cond_resched_tasks_rcu_qs();
1969 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1970 WARN_ON(signal_pending(current));
1971 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1973 ret = 1; /* Keep old FQS timing. */
1975 if (time_after(jiffies, rcu_state.jiffies_force_qs))
1978 j = rcu_state.jiffies_force_qs - j;
1985 * Clean up after the old grace period.
1987 static void rcu_gp_cleanup(void)
1990 bool needgp = false;
1991 unsigned long gp_duration;
1992 unsigned long new_gp_seq;
1994 struct rcu_data *rdp;
1995 struct rcu_node *rnp = rcu_get_root();
1996 struct swait_queue_head *sq;
1998 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1999 raw_spin_lock_irq_rcu_node(rnp);
2000 rcu_state.gp_end = jiffies;
2001 gp_duration = rcu_state.gp_end - rcu_state.gp_start;
2002 if (gp_duration > rcu_state.gp_max)
2003 rcu_state.gp_max = gp_duration;
2006 * We know the grace period is complete, but to everyone else
2007 * it appears to still be ongoing. But it is also the case
2008 * that to everyone else it looks like there is nothing that
2009 * they can do to advance the grace period. It is therefore
2010 * safe for us to drop the lock in order to mark the grace
2011 * period as completed in all of the rcu_node structures.
2013 raw_spin_unlock_irq_rcu_node(rnp);
2016 * Propagate new ->gp_seq value to rcu_node structures so that
2017 * other CPUs don't have to wait until the start of the next grace
2018 * period to process their callbacks. This also avoids some nasty
2019 * RCU grace-period initialization races by forcing the end of
2020 * the current grace period to be completely recorded in all of
2021 * the rcu_node structures before the beginning of the next grace
2022 * period is recorded in any of the rcu_node structures.
2024 new_gp_seq = rcu_state.gp_seq;
2025 rcu_seq_end(&new_gp_seq);
2026 rcu_for_each_node_breadth_first(rnp) {
2027 raw_spin_lock_irq_rcu_node(rnp);
2028 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
2029 dump_blkd_tasks(rnp, 10);
2030 WARN_ON_ONCE(rnp->qsmask);
2031 WRITE_ONCE(rnp->gp_seq, new_gp_seq);
2032 rdp = this_cpu_ptr(&rcu_data);
2033 if (rnp == rdp->mynode)
2034 needgp = __note_gp_changes(rnp, rdp) || needgp;
2035 /* smp_mb() provided by prior unlock-lock pair. */
2036 needgp = rcu_future_gp_cleanup(rnp) || needgp;
2037 // Reset overload indication for CPUs no longer overloaded
2038 if (rcu_is_leaf_node(rnp))
2039 for_each_leaf_node_cpu_mask(rnp, cpu, rnp->cbovldmask) {
2040 rdp = per_cpu_ptr(&rcu_data, cpu);
2041 check_cb_ovld_locked(rdp, rnp);
2043 sq = rcu_nocb_gp_get(rnp);
2044 raw_spin_unlock_irq_rcu_node(rnp);
2045 rcu_nocb_gp_cleanup(sq);
2046 cond_resched_tasks_rcu_qs();
2047 WRITE_ONCE(rcu_state.gp_activity, jiffies);
2048 rcu_gp_slow(gp_cleanup_delay);
2050 rnp = rcu_get_root();
2051 raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */
2053 /* Declare grace period done, trace first to use old GP number. */
2054 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end"));
2055 rcu_seq_end(&rcu_state.gp_seq);
2056 ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
2057 rcu_state.gp_state = RCU_GP_IDLE;
2058 /* Check for GP requests since above loop. */
2059 rdp = this_cpu_ptr(&rcu_data);
2060 if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) {
2061 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed,
2062 TPS("CleanupMore"));
2065 /* Advance CBs to reduce false positives below. */
2066 offloaded = rcu_segcblist_is_offloaded(&rdp->cblist);
2067 if ((offloaded || !rcu_accelerate_cbs(rnp, rdp)) && needgp) {
2068 WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT);
2069 WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
2070 trace_rcu_grace_period(rcu_state.name,
2074 WRITE_ONCE(rcu_state.gp_flags,
2075 rcu_state.gp_flags & RCU_GP_FLAG_INIT);
2077 raw_spin_unlock_irq_rcu_node(rnp);
2079 // If strict, make all CPUs aware of the end of the old grace period.
2080 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
2081 on_each_cpu(rcu_strict_gp_boundary, NULL, 0);
2085 * Body of kthread that handles grace periods.
2087 static int __noreturn rcu_gp_kthread(void *unused)
2089 rcu_bind_gp_kthread();
2092 /* Handle grace-period start. */
2094 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
2096 rcu_state.gp_state = RCU_GP_WAIT_GPS;
2097 swait_event_idle_exclusive(rcu_state.gp_wq,
2098 READ_ONCE(rcu_state.gp_flags) &
2100 rcu_gp_torture_wait();
2101 rcu_state.gp_state = RCU_GP_DONE_GPS;
2102 /* Locking provides needed memory barrier. */
2105 cond_resched_tasks_rcu_qs();
2106 WRITE_ONCE(rcu_state.gp_activity, jiffies);
2107 WARN_ON(signal_pending(current));
2108 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
2112 /* Handle quiescent-state forcing. */
2115 /* Handle grace-period end. */
2116 rcu_state.gp_state = RCU_GP_CLEANUP;
2118 rcu_state.gp_state = RCU_GP_CLEANED;
2123 * Report a full set of quiescent states to the rcu_state data structure.
2124 * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if
2125 * another grace period is required. Whether we wake the grace-period
2126 * kthread or it awakens itself for the next round of quiescent-state
2127 * forcing, that kthread will clean up after the just-completed grace
2128 * period. Note that the caller must hold rnp->lock, which is released
2131 static void rcu_report_qs_rsp(unsigned long flags)
2132 __releases(rcu_get_root()->lock)
2134 raw_lockdep_assert_held_rcu_node(rcu_get_root());
2135 WARN_ON_ONCE(!rcu_gp_in_progress());
2136 WRITE_ONCE(rcu_state.gp_flags,
2137 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
2138 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags);
2139 rcu_gp_kthread_wake();
2143 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2144 * Allows quiescent states for a group of CPUs to be reported at one go
2145 * to the specified rcu_node structure, though all the CPUs in the group
2146 * must be represented by the same rcu_node structure (which need not be a
2147 * leaf rcu_node structure, though it often will be). The gps parameter
2148 * is the grace-period snapshot, which means that the quiescent states
2149 * are valid only if rnp->gp_seq is equal to gps. That structure's lock
2150 * must be held upon entry, and it is released before return.
2152 * As a special case, if mask is zero, the bit-already-cleared check is
2153 * disabled. This allows propagating quiescent state due to resumed tasks
2154 * during grace-period initialization.
2156 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
2157 unsigned long gps, unsigned long flags)
2158 __releases(rnp->lock)
2160 unsigned long oldmask = 0;
2161 struct rcu_node *rnp_c;
2163 raw_lockdep_assert_held_rcu_node(rnp);
2165 /* Walk up the rcu_node hierarchy. */
2167 if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) {
2170 * Our bit has already been cleared, or the
2171 * relevant grace period is already over, so done.
2173 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2176 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2177 WARN_ON_ONCE(!rcu_is_leaf_node(rnp) &&
2178 rcu_preempt_blocked_readers_cgp(rnp));
2179 WRITE_ONCE(rnp->qsmask, rnp->qsmask & ~mask);
2180 trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq,
2181 mask, rnp->qsmask, rnp->level,
2182 rnp->grplo, rnp->grphi,
2184 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2186 /* Other bits still set at this level, so done. */
2187 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2190 rnp->completedqs = rnp->gp_seq;
2191 mask = rnp->grpmask;
2192 if (rnp->parent == NULL) {
2194 /* No more levels. Exit loop holding root lock. */
2198 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2201 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2202 oldmask = READ_ONCE(rnp_c->qsmask);
2206 * Get here if we are the last CPU to pass through a quiescent
2207 * state for this grace period. Invoke rcu_report_qs_rsp()
2208 * to clean up and start the next grace period if one is needed.
2210 rcu_report_qs_rsp(flags); /* releases rnp->lock. */
2214 * Record a quiescent state for all tasks that were previously queued
2215 * on the specified rcu_node structure and that were blocking the current
2216 * RCU grace period. The caller must hold the corresponding rnp->lock with
2217 * irqs disabled, and this lock is released upon return, but irqs remain
2220 static void __maybe_unused
2221 rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
2222 __releases(rnp->lock)
2226 struct rcu_node *rnp_p;
2228 raw_lockdep_assert_held_rcu_node(rnp);
2229 if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT_RCU)) ||
2230 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) ||
2232 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2233 return; /* Still need more quiescent states! */
2236 rnp->completedqs = rnp->gp_seq;
2237 rnp_p = rnp->parent;
2238 if (rnp_p == NULL) {
2240 * Only one rcu_node structure in the tree, so don't
2241 * try to report up to its nonexistent parent!
2243 rcu_report_qs_rsp(flags);
2247 /* Report up the rest of the hierarchy, tracking current ->gp_seq. */
2249 mask = rnp->grpmask;
2250 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2251 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */
2252 rcu_report_qs_rnp(mask, rnp_p, gps, flags);
2256 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2257 * structure. This must be called from the specified CPU.
2260 rcu_report_qs_rdp(struct rcu_data *rdp)
2262 unsigned long flags;
2264 bool needwake = false;
2265 const bool offloaded = rcu_segcblist_is_offloaded(&rdp->cblist);
2266 struct rcu_node *rnp;
2268 WARN_ON_ONCE(rdp->cpu != smp_processor_id());
2270 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2271 if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq ||
2275 * The grace period in which this quiescent state was
2276 * recorded has ended, so don't report it upwards.
2277 * We will instead need a new quiescent state that lies
2278 * within the current grace period.
2280 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */
2281 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2284 mask = rdp->grpmask;
2285 rdp->core_needs_qs = false;
2286 if ((rnp->qsmask & mask) == 0) {
2287 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2290 * This GP can't end until cpu checks in, so all of our
2291 * callbacks can be processed during the next GP.
2294 needwake = rcu_accelerate_cbs(rnp, rdp);
2296 rcu_disable_urgency_upon_qs(rdp);
2297 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2298 /* ^^^ Released rnp->lock */
2300 rcu_gp_kthread_wake();
2305 * Check to see if there is a new grace period of which this CPU
2306 * is not yet aware, and if so, set up local rcu_data state for it.
2307 * Otherwise, see if this CPU has just passed through its first
2308 * quiescent state for this grace period, and record that fact if so.
2311 rcu_check_quiescent_state(struct rcu_data *rdp)
2313 /* Check for grace-period ends and beginnings. */
2314 note_gp_changes(rdp);
2317 * Does this CPU still need to do its part for current grace period?
2318 * If no, return and let the other CPUs do their part as well.
2320 if (!rdp->core_needs_qs)
2324 * Was there a quiescent state since the beginning of the grace
2325 * period? If no, then exit and wait for the next call.
2327 if (rdp->cpu_no_qs.b.norm)
2331 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2334 rcu_report_qs_rdp(rdp);
2338 * Near the end of the offline process. Trace the fact that this CPU
2341 int rcutree_dying_cpu(unsigned int cpu)
2344 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
2345 struct rcu_node *rnp = rdp->mynode;
2347 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2350 blkd = !!(rnp->qsmask & rdp->grpmask);
2351 trace_rcu_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
2352 blkd ? TPS("cpuofl") : TPS("cpuofl-bgp"));
2357 * All CPUs for the specified rcu_node structure have gone offline,
2358 * and all tasks that were preempted within an RCU read-side critical
2359 * section while running on one of those CPUs have since exited their RCU
2360 * read-side critical section. Some other CPU is reporting this fact with
2361 * the specified rcu_node structure's ->lock held and interrupts disabled.
2362 * This function therefore goes up the tree of rcu_node structures,
2363 * clearing the corresponding bits in the ->qsmaskinit fields. Note that
2364 * the leaf rcu_node structure's ->qsmaskinit field has already been
2367 * This function does check that the specified rcu_node structure has
2368 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2369 * prematurely. That said, invoking it after the fact will cost you
2370 * a needless lock acquisition. So once it has done its work, don't
2373 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2376 struct rcu_node *rnp = rnp_leaf;
2378 raw_lockdep_assert_held_rcu_node(rnp_leaf);
2379 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2380 WARN_ON_ONCE(rnp_leaf->qsmaskinit) ||
2381 WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf)))
2384 mask = rnp->grpmask;
2388 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2389 rnp->qsmaskinit &= ~mask;
2390 /* Between grace periods, so better already be zero! */
2391 WARN_ON_ONCE(rnp->qsmask);
2392 if (rnp->qsmaskinit) {
2393 raw_spin_unlock_rcu_node(rnp);
2394 /* irqs remain disabled. */
2397 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2402 * The CPU has been completely removed, and some other CPU is reporting
2403 * this fact from process context. Do the remainder of the cleanup.
2404 * There can only be one CPU hotplug operation at a time, so no need for
2407 int rcutree_dead_cpu(unsigned int cpu)
2409 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2410 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
2412 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2415 WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus - 1);
2416 /* Adjust any no-longer-needed kthreads. */
2417 rcu_boost_kthread_setaffinity(rnp, -1);
2418 /* Do any needed no-CB deferred wakeups from this CPU. */
2419 do_nocb_deferred_wakeup(per_cpu_ptr(&rcu_data, cpu));
2421 // Stop-machine done, so allow nohz_full to disable tick.
2422 tick_dep_clear(TICK_DEP_BIT_RCU);
2427 * Invoke any RCU callbacks that have made it to the end of their grace
2428 * period. Thottle as specified by rdp->blimit.
2430 static void rcu_do_batch(struct rcu_data *rdp)
2433 unsigned long flags;
2434 const bool offloaded = rcu_segcblist_is_offloaded(&rdp->cblist);
2435 struct rcu_head *rhp;
2436 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2438 long pending, tlimit = 0;
2440 /* If no callbacks are ready, just return. */
2441 if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
2442 trace_rcu_batch_start(rcu_state.name,
2443 rcu_segcblist_n_cbs(&rdp->cblist), 0);
2444 trace_rcu_batch_end(rcu_state.name, 0,
2445 !rcu_segcblist_empty(&rdp->cblist),
2446 need_resched(), is_idle_task(current),
2447 rcu_is_callbacks_kthread());
2452 * Extract the list of ready callbacks, disabling to prevent
2453 * races with call_rcu() from interrupt handlers. Leave the
2454 * callback counts, as rcu_barrier() needs to be conservative.
2456 local_irq_save(flags);
2458 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2459 pending = rcu_segcblist_n_cbs(&rdp->cblist);
2460 div = READ_ONCE(rcu_divisor);
2461 div = div < 0 ? 7 : div > sizeof(long) * 8 - 2 ? sizeof(long) * 8 - 2 : div;
2462 bl = max(rdp->blimit, pending >> div);
2463 if (unlikely(bl > 100)) {
2464 long rrn = READ_ONCE(rcu_resched_ns);
2466 rrn = rrn < NSEC_PER_MSEC ? NSEC_PER_MSEC : rrn > NSEC_PER_SEC ? NSEC_PER_SEC : rrn;
2467 tlimit = local_clock() + rrn;
2469 trace_rcu_batch_start(rcu_state.name,
2470 rcu_segcblist_n_cbs(&rdp->cblist), bl);
2471 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
2473 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2474 rcu_nocb_unlock_irqrestore(rdp, flags);
2476 /* Invoke callbacks. */
2477 tick_dep_set_task(current, TICK_DEP_BIT_RCU);
2478 rhp = rcu_cblist_dequeue(&rcl);
2479 for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
2482 debug_rcu_head_unqueue(rhp);
2484 rcu_lock_acquire(&rcu_callback_map);
2485 trace_rcu_invoke_callback(rcu_state.name, rhp);
2488 WRITE_ONCE(rhp->func, (rcu_callback_t)0L);
2491 rcu_lock_release(&rcu_callback_map);
2494 * Stop only if limit reached and CPU has something to do.
2495 * Note: The rcl structure counts down from zero.
2497 if (-rcl.len >= bl && !offloaded &&
2499 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2501 if (unlikely(tlimit)) {
2502 /* only call local_clock() every 32 callbacks */
2503 if (likely((-rcl.len & 31) || local_clock() < tlimit))
2505 /* Exceeded the time limit, so leave. */
2509 WARN_ON_ONCE(in_serving_softirq());
2511 lockdep_assert_irqs_enabled();
2512 cond_resched_tasks_rcu_qs();
2513 lockdep_assert_irqs_enabled();
2518 local_irq_save(flags);
2521 rdp->n_cbs_invoked += count;
2522 trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(),
2523 is_idle_task(current), rcu_is_callbacks_kthread());
2525 /* Update counts and requeue any remaining callbacks. */
2526 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
2527 smp_mb(); /* List handling before counting for rcu_barrier(). */
2528 rcu_segcblist_insert_count(&rdp->cblist, &rcl);
2530 /* Reinstate batch limit if we have worked down the excess. */
2531 count = rcu_segcblist_n_cbs(&rdp->cblist);
2532 if (rdp->blimit >= DEFAULT_MAX_RCU_BLIMIT && count <= qlowmark)
2533 rdp->blimit = blimit;
2535 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2536 if (count == 0 && rdp->qlen_last_fqs_check != 0) {
2537 rdp->qlen_last_fqs_check = 0;
2538 rdp->n_force_qs_snap = rcu_state.n_force_qs;
2539 } else if (count < rdp->qlen_last_fqs_check - qhimark)
2540 rdp->qlen_last_fqs_check = count;
2543 * The following usually indicates a double call_rcu(). To track
2544 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y.
2546 WARN_ON_ONCE(count == 0 && !rcu_segcblist_empty(&rdp->cblist));
2547 WARN_ON_ONCE(!IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2548 count != 0 && rcu_segcblist_empty(&rdp->cblist));
2550 rcu_nocb_unlock_irqrestore(rdp, flags);
2552 /* Re-invoke RCU core processing if there are callbacks remaining. */
2553 if (!offloaded && rcu_segcblist_ready_cbs(&rdp->cblist))
2555 tick_dep_clear_task(current, TICK_DEP_BIT_RCU);
2559 * This function is invoked from each scheduling-clock interrupt,
2560 * and checks to see if this CPU is in a non-context-switch quiescent
2561 * state, for example, user mode or idle loop. It also schedules RCU
2562 * core processing. If the current grace period has gone on too long,
2563 * it will ask the scheduler to manufacture a context switch for the sole
2564 * purpose of providing a providing the needed quiescent state.
2566 void rcu_sched_clock_irq(int user)
2568 trace_rcu_utilization(TPS("Start scheduler-tick"));
2569 raw_cpu_inc(rcu_data.ticks_this_gp);
2570 /* The load-acquire pairs with the store-release setting to true. */
2571 if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
2572 /* Idle and userspace execution already are quiescent states. */
2573 if (!rcu_is_cpu_rrupt_from_idle() && !user) {
2574 set_tsk_need_resched(current);
2575 set_preempt_need_resched();
2577 __this_cpu_write(rcu_data.rcu_urgent_qs, false);
2579 rcu_flavor_sched_clock_irq(user);
2580 if (rcu_pending(user))
2583 trace_rcu_utilization(TPS("End scheduler-tick"));
2587 * Scan the leaf rcu_node structures. For each structure on which all
2588 * CPUs have reported a quiescent state and on which there are tasks
2589 * blocking the current grace period, initiate RCU priority boosting.
2590 * Otherwise, invoke the specified function to check dyntick state for
2591 * each CPU that has not yet reported a quiescent state.
2593 static void force_qs_rnp(int (*f)(struct rcu_data *rdp))
2596 unsigned long flags;
2598 struct rcu_data *rdp;
2599 struct rcu_node *rnp;
2601 rcu_state.cbovld = rcu_state.cbovldnext;
2602 rcu_state.cbovldnext = false;
2603 rcu_for_each_leaf_node(rnp) {
2604 cond_resched_tasks_rcu_qs();
2606 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2607 rcu_state.cbovldnext |= !!rnp->cbovldmask;
2608 if (rnp->qsmask == 0) {
2609 if (rcu_preempt_blocked_readers_cgp(rnp)) {
2611 * No point in scanning bits because they
2612 * are all zero. But we might need to
2613 * priority-boost blocked readers.
2615 rcu_initiate_boost(rnp, flags);
2616 /* rcu_initiate_boost() releases rnp->lock */
2619 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2622 for_each_leaf_node_cpu_mask(rnp, cpu, rnp->qsmask) {
2623 rdp = per_cpu_ptr(&rcu_data, cpu);
2625 mask |= rdp->grpmask;
2626 rcu_disable_urgency_upon_qs(rdp);
2630 /* Idle/offline CPUs, report (releases rnp->lock). */
2631 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2633 /* Nothing to do here, so just drop the lock. */
2634 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2640 * Force quiescent states on reluctant CPUs, and also detect which
2641 * CPUs are in dyntick-idle mode.
2643 void rcu_force_quiescent_state(void)
2645 unsigned long flags;
2647 struct rcu_node *rnp;
2648 struct rcu_node *rnp_old = NULL;
2650 /* Funnel through hierarchy to reduce memory contention. */
2651 rnp = __this_cpu_read(rcu_data.mynode);
2652 for (; rnp != NULL; rnp = rnp->parent) {
2653 ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) ||
2654 !raw_spin_trylock(&rnp->fqslock);
2655 if (rnp_old != NULL)
2656 raw_spin_unlock(&rnp_old->fqslock);
2661 /* rnp_old == rcu_get_root(), rnp == NULL. */
2663 /* Reached the root of the rcu_node tree, acquire lock. */
2664 raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2665 raw_spin_unlock(&rnp_old->fqslock);
2666 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
2667 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2668 return; /* Someone beat us to it. */
2670 WRITE_ONCE(rcu_state.gp_flags,
2671 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
2672 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2673 rcu_gp_kthread_wake();
2675 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
2677 // Workqueue handler for an RCU reader for kernels enforcing struct RCU
2679 static void strict_work_handler(struct work_struct *work)
2685 /* Perform RCU core processing work for the current CPU. */
2686 static __latent_entropy void rcu_core(void)
2688 unsigned long flags;
2689 struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
2690 struct rcu_node *rnp = rdp->mynode;
2691 const bool offloaded = rcu_segcblist_is_offloaded(&rdp->cblist);
2693 if (cpu_is_offline(smp_processor_id()))
2695 trace_rcu_utilization(TPS("Start RCU core"));
2696 WARN_ON_ONCE(!rdp->beenonline);
2698 /* Report any deferred quiescent states if preemption enabled. */
2699 if (!(preempt_count() & PREEMPT_MASK)) {
2700 rcu_preempt_deferred_qs(current);
2701 } else if (rcu_preempt_need_deferred_qs(current)) {
2702 set_tsk_need_resched(current);
2703 set_preempt_need_resched();
2706 /* Update RCU state based on any recent quiescent states. */
2707 rcu_check_quiescent_state(rdp);
2709 /* No grace period and unregistered callbacks? */
2710 if (!rcu_gp_in_progress() &&
2711 rcu_segcblist_is_enabled(&rdp->cblist) && !offloaded) {
2712 local_irq_save(flags);
2713 if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
2714 rcu_accelerate_cbs_unlocked(rnp, rdp);
2715 local_irq_restore(flags);
2718 rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check());
2720 /* If there are callbacks ready, invoke them. */
2721 if (!offloaded && rcu_segcblist_ready_cbs(&rdp->cblist) &&
2722 likely(READ_ONCE(rcu_scheduler_fully_active)))
2725 /* Do any needed deferred wakeups of rcuo kthreads. */
2726 do_nocb_deferred_wakeup(rdp);
2727 trace_rcu_utilization(TPS("End RCU core"));
2729 // If strict GPs, schedule an RCU reader in a clean environment.
2730 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
2731 queue_work_on(rdp->cpu, rcu_gp_wq, &rdp->strict_work);
2734 static void rcu_core_si(struct softirq_action *h)
2739 static void rcu_wake_cond(struct task_struct *t, int status)
2742 * If the thread is yielding, only wake it when this
2743 * is invoked from idle
2745 if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current)))
2749 static void invoke_rcu_core_kthread(void)
2751 struct task_struct *t;
2752 unsigned long flags;
2754 local_irq_save(flags);
2755 __this_cpu_write(rcu_data.rcu_cpu_has_work, 1);
2756 t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task);
2757 if (t != NULL && t != current)
2758 rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status));
2759 local_irq_restore(flags);
2763 * Wake up this CPU's rcuc kthread to do RCU core processing.
2765 static void invoke_rcu_core(void)
2767 if (!cpu_online(smp_processor_id()))
2770 raise_softirq(RCU_SOFTIRQ);
2772 invoke_rcu_core_kthread();
2775 static void rcu_cpu_kthread_park(unsigned int cpu)
2777 per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
2780 static int rcu_cpu_kthread_should_run(unsigned int cpu)
2782 return __this_cpu_read(rcu_data.rcu_cpu_has_work);
2786 * Per-CPU kernel thread that invokes RCU callbacks. This replaces
2787 * the RCU softirq used in configurations of RCU that do not support RCU
2788 * priority boosting.
2790 static void rcu_cpu_kthread(unsigned int cpu)
2792 unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status);
2793 char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work);
2796 trace_rcu_utilization(TPS("Start CPU kthread@rcu_run"));
2797 for (spincnt = 0; spincnt < 10; spincnt++) {
2799 *statusp = RCU_KTHREAD_RUNNING;
2800 local_irq_disable();
2808 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
2809 *statusp = RCU_KTHREAD_WAITING;
2813 *statusp = RCU_KTHREAD_YIELDING;
2814 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
2815 schedule_timeout_idle(2);
2816 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
2817 *statusp = RCU_KTHREAD_WAITING;
2820 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
2821 .store = &rcu_data.rcu_cpu_kthread_task,
2822 .thread_should_run = rcu_cpu_kthread_should_run,
2823 .thread_fn = rcu_cpu_kthread,
2824 .thread_comm = "rcuc/%u",
2825 .setup = rcu_cpu_kthread_setup,
2826 .park = rcu_cpu_kthread_park,
2830 * Spawn per-CPU RCU core processing kthreads.
2832 static int __init rcu_spawn_core_kthreads(void)
2836 for_each_possible_cpu(cpu)
2837 per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0;
2838 if (!IS_ENABLED(CONFIG_RCU_BOOST) && use_softirq)
2840 WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec),
2841 "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__);
2844 early_initcall(rcu_spawn_core_kthreads);
2847 * Handle any core-RCU processing required by a call_rcu() invocation.
2849 static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head,
2850 unsigned long flags)
2853 * If called from an extended quiescent state, invoke the RCU
2854 * core in order to force a re-evaluation of RCU's idleness.
2856 if (!rcu_is_watching())
2859 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2860 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2864 * Force the grace period if too many callbacks or too long waiting.
2865 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state()
2866 * if some other CPU has recently done so. Also, don't bother
2867 * invoking rcu_force_quiescent_state() if the newly enqueued callback
2868 * is the only one waiting for a grace period to complete.
2870 if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
2871 rdp->qlen_last_fqs_check + qhimark)) {
2873 /* Are we ignoring a completed grace period? */
2874 note_gp_changes(rdp);
2876 /* Start a new grace period if one not already started. */
2877 if (!rcu_gp_in_progress()) {
2878 rcu_accelerate_cbs_unlocked(rdp->mynode, rdp);
2880 /* Give the grace period a kick. */
2881 rdp->blimit = DEFAULT_MAX_RCU_BLIMIT;
2882 if (rcu_state.n_force_qs == rdp->n_force_qs_snap &&
2883 rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
2884 rcu_force_quiescent_state();
2885 rdp->n_force_qs_snap = rcu_state.n_force_qs;
2886 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2892 * RCU callback function to leak a callback.
2894 static void rcu_leak_callback(struct rcu_head *rhp)
2899 * Check and if necessary update the leaf rcu_node structure's
2900 * ->cbovldmask bit corresponding to the current CPU based on that CPU's
2901 * number of queued RCU callbacks. The caller must hold the leaf rcu_node
2902 * structure's ->lock.
2904 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp)
2906 raw_lockdep_assert_held_rcu_node(rnp);
2907 if (qovld_calc <= 0)
2908 return; // Early boot and wildcard value set.
2909 if (rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc)
2910 WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask | rdp->grpmask);
2912 WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask & ~rdp->grpmask);
2916 * Check and if necessary update the leaf rcu_node structure's
2917 * ->cbovldmask bit corresponding to the current CPU based on that CPU's
2918 * number of queued RCU callbacks. No locks need be held, but the
2919 * caller must have disabled interrupts.
2921 * Note that this function ignores the possibility that there are a lot
2922 * of callbacks all of which have already seen the end of their respective
2923 * grace periods. This omission is due to the need for no-CBs CPUs to
2924 * be holding ->nocb_lock to do this check, which is too heavy for a
2925 * common-case operation.
2927 static void check_cb_ovld(struct rcu_data *rdp)
2929 struct rcu_node *const rnp = rdp->mynode;
2931 if (qovld_calc <= 0 ||
2932 ((rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) ==
2933 !!(READ_ONCE(rnp->cbovldmask) & rdp->grpmask)))
2934 return; // Early boot wildcard value or already set correctly.
2935 raw_spin_lock_rcu_node(rnp);
2936 check_cb_ovld_locked(rdp, rnp);
2937 raw_spin_unlock_rcu_node(rnp);
2940 /* Helper function for call_rcu() and friends. */
2942 __call_rcu(struct rcu_head *head, rcu_callback_t func)
2944 unsigned long flags;
2945 struct rcu_data *rdp;
2948 /* Misaligned rcu_head! */
2949 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
2951 if (debug_rcu_head_queue(head)) {
2953 * Probable double call_rcu(), so leak the callback.
2954 * Use rcu:rcu_callback trace event to find the previous
2955 * time callback was passed to __call_rcu().
2957 WARN_ONCE(1, "__call_rcu(): Double-freed CB %p->%pS()!!!\n",
2959 WRITE_ONCE(head->func, rcu_leak_callback);
2964 local_irq_save(flags);
2965 kasan_record_aux_stack(head);
2966 rdp = this_cpu_ptr(&rcu_data);
2968 /* Add the callback to our list. */
2969 if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist))) {
2970 // This can trigger due to call_rcu() from offline CPU:
2971 WARN_ON_ONCE(rcu_scheduler_active != RCU_SCHEDULER_INACTIVE);
2972 WARN_ON_ONCE(!rcu_is_watching());
2973 // Very early boot, before rcu_init(). Initialize if needed
2974 // and then drop through to queue the callback.
2975 if (rcu_segcblist_empty(&rdp->cblist))
2976 rcu_segcblist_init(&rdp->cblist);
2980 if (rcu_nocb_try_bypass(rdp, head, &was_alldone, flags))
2981 return; // Enqueued onto ->nocb_bypass, so just leave.
2982 // If no-CBs CPU gets here, rcu_nocb_try_bypass() acquired ->nocb_lock.
2983 rcu_segcblist_enqueue(&rdp->cblist, head);
2984 if (__is_kvfree_rcu_offset((unsigned long)func))
2985 trace_rcu_kvfree_callback(rcu_state.name, head,
2986 (unsigned long)func,
2987 rcu_segcblist_n_cbs(&rdp->cblist));
2989 trace_rcu_callback(rcu_state.name, head,
2990 rcu_segcblist_n_cbs(&rdp->cblist));
2992 /* Go handle any RCU core processing required. */
2993 if (unlikely(rcu_segcblist_is_offloaded(&rdp->cblist))) {
2994 __call_rcu_nocb_wake(rdp, was_alldone, flags); /* unlocks */
2996 __call_rcu_core(rdp, head, flags);
2997 local_irq_restore(flags);
3002 * call_rcu() - Queue an RCU callback for invocation after a grace period.
3003 * @head: structure to be used for queueing the RCU updates.
3004 * @func: actual callback function to be invoked after the grace period
3006 * The callback function will be invoked some time after a full grace
3007 * period elapses, in other words after all pre-existing RCU read-side
3008 * critical sections have completed. However, the callback function
3009 * might well execute concurrently with RCU read-side critical sections
3010 * that started after call_rcu() was invoked. RCU read-side critical
3011 * sections are delimited by rcu_read_lock() and rcu_read_unlock(), and
3012 * may be nested. In addition, regions of code across which interrupts,
3013 * preemption, or softirqs have been disabled also serve as RCU read-side
3014 * critical sections. This includes hardware interrupt handlers, softirq
3015 * handlers, and NMI handlers.
3017 * Note that all CPUs must agree that the grace period extended beyond
3018 * all pre-existing RCU read-side critical section. On systems with more
3019 * than one CPU, this means that when "func()" is invoked, each CPU is
3020 * guaranteed to have executed a full memory barrier since the end of its
3021 * last RCU read-side critical section whose beginning preceded the call
3022 * to call_rcu(). It also means that each CPU executing an RCU read-side
3023 * critical section that continues beyond the start of "func()" must have
3024 * executed a memory barrier after the call_rcu() but before the beginning
3025 * of that RCU read-side critical section. Note that these guarantees
3026 * include CPUs that are offline, idle, or executing in user mode, as
3027 * well as CPUs that are executing in the kernel.
3029 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
3030 * resulting RCU callback function "func()", then both CPU A and CPU B are
3031 * guaranteed to execute a full memory barrier during the time interval
3032 * between the call to call_rcu() and the invocation of "func()" -- even
3033 * if CPU A and CPU B are the same CPU (but again only if the system has
3034 * more than one CPU).
3036 void call_rcu(struct rcu_head *head, rcu_callback_t func)
3038 __call_rcu(head, func);
3040 EXPORT_SYMBOL_GPL(call_rcu);
3043 /* Maximum number of jiffies to wait before draining a batch. */
3044 #define KFREE_DRAIN_JIFFIES (HZ / 50)
3045 #define KFREE_N_BATCHES 2
3046 #define FREE_N_CHANNELS 2
3049 * struct kvfree_rcu_bulk_data - single block to store kvfree_rcu() pointers
3050 * @nr_records: Number of active pointers in the array
3051 * @next: Next bulk object in the block chain
3052 * @records: Array of the kvfree_rcu() pointers
3054 struct kvfree_rcu_bulk_data {
3055 unsigned long nr_records;
3056 struct kvfree_rcu_bulk_data *next;
3061 * This macro defines how many entries the "records" array
3062 * will contain. It is based on the fact that the size of
3063 * kvfree_rcu_bulk_data structure becomes exactly one page.
3065 #define KVFREE_BULK_MAX_ENTR \
3066 ((PAGE_SIZE - sizeof(struct kvfree_rcu_bulk_data)) / sizeof(void *))
3069 * struct kfree_rcu_cpu_work - single batch of kfree_rcu() requests
3070 * @rcu_work: Let queue_rcu_work() invoke workqueue handler after grace period
3071 * @head_free: List of kfree_rcu() objects waiting for a grace period
3072 * @bkvhead_free: Bulk-List of kvfree_rcu() objects waiting for a grace period
3073 * @krcp: Pointer to @kfree_rcu_cpu structure
3076 struct kfree_rcu_cpu_work {
3077 struct rcu_work rcu_work;
3078 struct rcu_head *head_free;
3079 struct kvfree_rcu_bulk_data *bkvhead_free[FREE_N_CHANNELS];
3080 struct kfree_rcu_cpu *krcp;
3084 * struct kfree_rcu_cpu - batch up kfree_rcu() requests for RCU grace period
3085 * @head: List of kfree_rcu() objects not yet waiting for a grace period
3086 * @bkvhead: Bulk-List of kvfree_rcu() objects not yet waiting for a grace period
3087 * @krw_arr: Array of batches of kfree_rcu() objects waiting for a grace period
3088 * @lock: Synchronize access to this structure
3089 * @monitor_work: Promote @head to @head_free after KFREE_DRAIN_JIFFIES
3090 * @monitor_todo: Tracks whether a @monitor_work delayed work is pending
3091 * @initialized: The @rcu_work fields have been initialized
3092 * @count: Number of objects for which GP not started
3094 * A simple cache list that contains objects for reuse purpose.
3095 * In order to save some per-cpu space the list is singular.
3096 * Even though it is lockless an access has to be protected by the
3098 * @page_cache_work: A work to refill the cache when it is empty
3099 * @work_in_progress: Indicates that page_cache_work is running
3100 * @hrtimer: A hrtimer for scheduling a page_cache_work
3101 * @nr_bkv_objs: number of allocated objects at @bkvcache.
3103 * This is a per-CPU structure. The reason that it is not included in
3104 * the rcu_data structure is to permit this code to be extracted from
3105 * the RCU files. Such extraction could allow further optimization of
3106 * the interactions with the slab allocators.
3108 struct kfree_rcu_cpu {
3109 struct rcu_head *head;
3110 struct kvfree_rcu_bulk_data *bkvhead[FREE_N_CHANNELS];
3111 struct kfree_rcu_cpu_work krw_arr[KFREE_N_BATCHES];
3112 raw_spinlock_t lock;
3113 struct delayed_work monitor_work;
3118 struct work_struct page_cache_work;
3119 atomic_t work_in_progress;
3120 struct hrtimer hrtimer;
3122 struct llist_head bkvcache;
3126 static DEFINE_PER_CPU(struct kfree_rcu_cpu, krc) = {
3127 .lock = __RAW_SPIN_LOCK_UNLOCKED(krc.lock),
3130 static __always_inline void
3131 debug_rcu_bhead_unqueue(struct kvfree_rcu_bulk_data *bhead)
3133 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
3136 for (i = 0; i < bhead->nr_records; i++)
3137 debug_rcu_head_unqueue((struct rcu_head *)(bhead->records[i]));
3141 static inline struct kfree_rcu_cpu *
3142 krc_this_cpu_lock(unsigned long *flags)
3144 struct kfree_rcu_cpu *krcp;
3146 local_irq_save(*flags); // For safely calling this_cpu_ptr().
3147 krcp = this_cpu_ptr(&krc);
3148 raw_spin_lock(&krcp->lock);
3154 krc_this_cpu_unlock(struct kfree_rcu_cpu *krcp, unsigned long flags)
3156 raw_spin_unlock(&krcp->lock);
3157 local_irq_restore(flags);
3160 static inline struct kvfree_rcu_bulk_data *
3161 get_cached_bnode(struct kfree_rcu_cpu *krcp)
3163 if (!krcp->nr_bkv_objs)
3166 krcp->nr_bkv_objs--;
3167 return (struct kvfree_rcu_bulk_data *)
3168 llist_del_first(&krcp->bkvcache);
3172 put_cached_bnode(struct kfree_rcu_cpu *krcp,
3173 struct kvfree_rcu_bulk_data *bnode)
3176 if (krcp->nr_bkv_objs >= rcu_min_cached_objs)
3179 llist_add((struct llist_node *) bnode, &krcp->bkvcache);
3180 krcp->nr_bkv_objs++;
3186 * This function is invoked in workqueue context after a grace period.
3187 * It frees all the objects queued on ->bhead_free or ->head_free.
3189 static void kfree_rcu_work(struct work_struct *work)
3191 unsigned long flags;
3192 struct kvfree_rcu_bulk_data *bkvhead[FREE_N_CHANNELS], *bnext;
3193 struct rcu_head *head, *next;
3194 struct kfree_rcu_cpu *krcp;
3195 struct kfree_rcu_cpu_work *krwp;
3198 krwp = container_of(to_rcu_work(work),
3199 struct kfree_rcu_cpu_work, rcu_work);
3202 raw_spin_lock_irqsave(&krcp->lock, flags);
3203 // Channels 1 and 2.
3204 for (i = 0; i < FREE_N_CHANNELS; i++) {
3205 bkvhead[i] = krwp->bkvhead_free[i];
3206 krwp->bkvhead_free[i] = NULL;
3210 head = krwp->head_free;
3211 krwp->head_free = NULL;
3212 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3214 // Handle two first channels.
3215 for (i = 0; i < FREE_N_CHANNELS; i++) {
3216 for (; bkvhead[i]; bkvhead[i] = bnext) {
3217 bnext = bkvhead[i]->next;
3218 debug_rcu_bhead_unqueue(bkvhead[i]);
3220 rcu_lock_acquire(&rcu_callback_map);
3221 if (i == 0) { // kmalloc() / kfree().
3222 trace_rcu_invoke_kfree_bulk_callback(
3223 rcu_state.name, bkvhead[i]->nr_records,
3224 bkvhead[i]->records);
3226 kfree_bulk(bkvhead[i]->nr_records,
3227 bkvhead[i]->records);
3228 } else { // vmalloc() / vfree().
3229 for (j = 0; j < bkvhead[i]->nr_records; j++) {
3230 trace_rcu_invoke_kvfree_callback(
3232 bkvhead[i]->records[j], 0);
3234 vfree(bkvhead[i]->records[j]);
3237 rcu_lock_release(&rcu_callback_map);
3239 raw_spin_lock_irqsave(&krcp->lock, flags);
3240 if (put_cached_bnode(krcp, bkvhead[i]))
3242 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3245 free_page((unsigned long) bkvhead[i]);
3247 cond_resched_tasks_rcu_qs();
3252 * Emergency case only. It can happen under low memory
3253 * condition when an allocation gets failed, so the "bulk"
3254 * path can not be temporary maintained.
3256 for (; head; head = next) {
3257 unsigned long offset = (unsigned long)head->func;
3258 void *ptr = (void *)head - offset;
3261 debug_rcu_head_unqueue((struct rcu_head *)ptr);
3262 rcu_lock_acquire(&rcu_callback_map);
3263 trace_rcu_invoke_kvfree_callback(rcu_state.name, head, offset);
3265 if (!WARN_ON_ONCE(!__is_kvfree_rcu_offset(offset)))
3268 rcu_lock_release(&rcu_callback_map);
3269 cond_resched_tasks_rcu_qs();
3274 * Schedule the kfree batch RCU work to run in workqueue context after a GP.
3276 * This function is invoked by kfree_rcu_monitor() when the KFREE_DRAIN_JIFFIES
3277 * timeout has been reached.
3279 static inline bool queue_kfree_rcu_work(struct kfree_rcu_cpu *krcp)
3281 struct kfree_rcu_cpu_work *krwp;
3282 bool repeat = false;
3285 lockdep_assert_held(&krcp->lock);
3287 for (i = 0; i < KFREE_N_BATCHES; i++) {
3288 krwp = &(krcp->krw_arr[i]);
3291 * Try to detach bkvhead or head and attach it over any
3292 * available corresponding free channel. It can be that
3293 * a previous RCU batch is in progress, it means that
3294 * immediately to queue another one is not possible so
3295 * return false to tell caller to retry.
3297 if ((krcp->bkvhead[0] && !krwp->bkvhead_free[0]) ||
3298 (krcp->bkvhead[1] && !krwp->bkvhead_free[1]) ||
3299 (krcp->head && !krwp->head_free)) {
3300 // Channel 1 corresponds to SLAB ptrs.
3301 // Channel 2 corresponds to vmalloc ptrs.
3302 for (j = 0; j < FREE_N_CHANNELS; j++) {
3303 if (!krwp->bkvhead_free[j]) {
3304 krwp->bkvhead_free[j] = krcp->bkvhead[j];
3305 krcp->bkvhead[j] = NULL;
3309 // Channel 3 corresponds to emergency path.
3310 if (!krwp->head_free) {
3311 krwp->head_free = krcp->head;
3315 WRITE_ONCE(krcp->count, 0);
3318 * One work is per one batch, so there are three
3319 * "free channels", the batch can handle. It can
3320 * be that the work is in the pending state when
3321 * channels have been detached following by each
3324 queue_rcu_work(system_wq, &krwp->rcu_work);
3327 // Repeat if any "free" corresponding channel is still busy.
3328 if (krcp->bkvhead[0] || krcp->bkvhead[1] || krcp->head)
3335 static inline void kfree_rcu_drain_unlock(struct kfree_rcu_cpu *krcp,
3336 unsigned long flags)
3338 // Attempt to start a new batch.
3339 krcp->monitor_todo = false;
3340 if (queue_kfree_rcu_work(krcp)) {
3341 // Success! Our job is done here.
3342 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3346 // Previous RCU batch still in progress, try again later.
3347 krcp->monitor_todo = true;
3348 schedule_delayed_work(&krcp->monitor_work, KFREE_DRAIN_JIFFIES);
3349 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3353 * This function is invoked after the KFREE_DRAIN_JIFFIES timeout.
3354 * It invokes kfree_rcu_drain_unlock() to attempt to start another batch.
3356 static void kfree_rcu_monitor(struct work_struct *work)
3358 unsigned long flags;
3359 struct kfree_rcu_cpu *krcp = container_of(work, struct kfree_rcu_cpu,
3362 raw_spin_lock_irqsave(&krcp->lock, flags);
3363 if (krcp->monitor_todo)
3364 kfree_rcu_drain_unlock(krcp, flags);
3366 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3369 static enum hrtimer_restart
3370 schedule_page_work_fn(struct hrtimer *t)
3372 struct kfree_rcu_cpu *krcp =
3373 container_of(t, struct kfree_rcu_cpu, hrtimer);
3375 queue_work(system_highpri_wq, &krcp->page_cache_work);
3376 return HRTIMER_NORESTART;
3379 static void fill_page_cache_func(struct work_struct *work)
3381 struct kvfree_rcu_bulk_data *bnode;
3382 struct kfree_rcu_cpu *krcp =
3383 container_of(work, struct kfree_rcu_cpu,
3385 unsigned long flags;
3389 for (i = 0; i < rcu_min_cached_objs; i++) {
3390 bnode = (struct kvfree_rcu_bulk_data *)
3391 __get_free_page(GFP_KERNEL | __GFP_NOWARN);
3394 raw_spin_lock_irqsave(&krcp->lock, flags);
3395 pushed = put_cached_bnode(krcp, bnode);
3396 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3399 free_page((unsigned long) bnode);
3405 atomic_set(&krcp->work_in_progress, 0);
3409 run_page_cache_worker(struct kfree_rcu_cpu *krcp)
3411 if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING &&
3412 !atomic_xchg(&krcp->work_in_progress, 1)) {
3413 hrtimer_init(&krcp->hrtimer, CLOCK_MONOTONIC,
3415 krcp->hrtimer.function = schedule_page_work_fn;
3416 hrtimer_start(&krcp->hrtimer, 0, HRTIMER_MODE_REL);
3421 kvfree_call_rcu_add_ptr_to_bulk(struct kfree_rcu_cpu *krcp, void *ptr)
3423 struct kvfree_rcu_bulk_data *bnode;
3426 if (unlikely(!krcp->initialized))
3429 lockdep_assert_held(&krcp->lock);
3430 idx = !!is_vmalloc_addr(ptr);
3432 /* Check if a new block is required. */
3433 if (!krcp->bkvhead[idx] ||
3434 krcp->bkvhead[idx]->nr_records == KVFREE_BULK_MAX_ENTR) {
3435 bnode = get_cached_bnode(krcp);
3436 /* Switch to emergency path. */
3440 /* Initialize the new block. */
3441 bnode->nr_records = 0;
3442 bnode->next = krcp->bkvhead[idx];
3444 /* Attach it to the head. */
3445 krcp->bkvhead[idx] = bnode;
3448 /* Finally insert. */
3449 krcp->bkvhead[idx]->records
3450 [krcp->bkvhead[idx]->nr_records++] = ptr;
3456 * Queue a request for lazy invocation of appropriate free routine after a
3457 * grace period. Please note there are three paths are maintained, two are the
3458 * main ones that use array of pointers interface and third one is emergency
3459 * one, that is used only when the main path can not be maintained temporary,
3460 * due to memory pressure.
3462 * Each kvfree_call_rcu() request is added to a batch. The batch will be drained
3463 * every KFREE_DRAIN_JIFFIES number of jiffies. All the objects in the batch will
3464 * be free'd in workqueue context. This allows us to: batch requests together to
3465 * reduce the number of grace periods during heavy kfree_rcu()/kvfree_rcu() load.
3467 void kvfree_call_rcu(struct rcu_head *head, rcu_callback_t func)
3469 unsigned long flags;
3470 struct kfree_rcu_cpu *krcp;
3475 ptr = (void *) head - (unsigned long) func;
3478 * Please note there is a limitation for the head-less
3479 * variant, that is why there is a clear rule for such
3480 * objects: it can be used from might_sleep() context
3481 * only. For other places please embed an rcu_head to
3485 ptr = (unsigned long *) func;
3488 krcp = krc_this_cpu_lock(&flags);
3490 // Queue the object but don't yet schedule the batch.
3491 if (debug_rcu_head_queue(ptr)) {
3492 // Probable double kfree_rcu(), just leak.
3493 WARN_ONCE(1, "%s(): Double-freed call. rcu_head %p\n",
3496 // Mark as success and leave.
3501 success = kvfree_call_rcu_add_ptr_to_bulk(krcp, ptr);
3503 run_page_cache_worker(krcp);
3506 // Inline if kvfree_rcu(one_arg) call.
3510 head->next = krcp->head;
3515 WRITE_ONCE(krcp->count, krcp->count + 1);
3517 // Set timer to drain after KFREE_DRAIN_JIFFIES.
3518 if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING &&
3519 !krcp->monitor_todo) {
3520 krcp->monitor_todo = true;
3521 schedule_delayed_work(&krcp->monitor_work, KFREE_DRAIN_JIFFIES);
3525 krc_this_cpu_unlock(krcp, flags);
3528 * Inline kvfree() after synchronize_rcu(). We can do
3529 * it from might_sleep() context only, so the current
3530 * CPU can pass the QS state.
3533 debug_rcu_head_unqueue((struct rcu_head *) ptr);
3538 EXPORT_SYMBOL_GPL(kvfree_call_rcu);
3540 static unsigned long
3541 kfree_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
3544 unsigned long count = 0;
3546 /* Snapshot count of all CPUs */
3547 for_each_possible_cpu(cpu) {
3548 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3550 count += READ_ONCE(krcp->count);
3556 static unsigned long
3557 kfree_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3560 unsigned long flags;
3562 for_each_possible_cpu(cpu) {
3564 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3566 count = krcp->count;
3567 raw_spin_lock_irqsave(&krcp->lock, flags);
3568 if (krcp->monitor_todo)
3569 kfree_rcu_drain_unlock(krcp, flags);
3571 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3573 sc->nr_to_scan -= count;
3576 if (sc->nr_to_scan <= 0)
3580 return freed == 0 ? SHRINK_STOP : freed;
3583 static struct shrinker kfree_rcu_shrinker = {
3584 .count_objects = kfree_rcu_shrink_count,
3585 .scan_objects = kfree_rcu_shrink_scan,
3587 .seeks = DEFAULT_SEEKS,
3590 void __init kfree_rcu_scheduler_running(void)
3593 unsigned long flags;
3595 for_each_possible_cpu(cpu) {
3596 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3598 raw_spin_lock_irqsave(&krcp->lock, flags);
3599 if (!krcp->head || krcp->monitor_todo) {
3600 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3603 krcp->monitor_todo = true;
3604 schedule_delayed_work_on(cpu, &krcp->monitor_work,
3605 KFREE_DRAIN_JIFFIES);
3606 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3611 * During early boot, any blocking grace-period wait automatically
3612 * implies a grace period. Later on, this is never the case for PREEMPTION.
3614 * However, because a context switch is a grace period for !PREEMPTION, any
3615 * blocking grace-period wait automatically implies a grace period if
3616 * there is only one CPU online at any point time during execution of
3617 * either synchronize_rcu() or synchronize_rcu_expedited(). It is OK to
3618 * occasionally incorrectly indicate that there are multiple CPUs online
3619 * when there was in fact only one the whole time, as this just adds some
3620 * overhead: RCU still operates correctly.
3622 static int rcu_blocking_is_gp(void)
3626 if (IS_ENABLED(CONFIG_PREEMPTION))
3627 return rcu_scheduler_active == RCU_SCHEDULER_INACTIVE;
3628 might_sleep(); /* Check for RCU read-side critical section. */
3631 * If the rcu_state.n_online_cpus counter is equal to one,
3632 * there is only one CPU, and that CPU sees all prior accesses
3633 * made by any CPU that was online at the time of its access.
3634 * Furthermore, if this counter is equal to one, its value cannot
3635 * change until after the preempt_enable() below.
3637 * Furthermore, if rcu_state.n_online_cpus is equal to one here,
3638 * all later CPUs (both this one and any that come online later
3639 * on) are guaranteed to see all accesses prior to this point
3640 * in the code, without the need for additional memory barriers.
3641 * Those memory barriers are provided by CPU-hotplug code.
3643 ret = READ_ONCE(rcu_state.n_online_cpus) <= 1;
3649 * synchronize_rcu - wait until a grace period has elapsed.
3651 * Control will return to the caller some time after a full grace
3652 * period has elapsed, in other words after all currently executing RCU
3653 * read-side critical sections have completed. Note, however, that
3654 * upon return from synchronize_rcu(), the caller might well be executing
3655 * concurrently with new RCU read-side critical sections that began while
3656 * synchronize_rcu() was waiting. RCU read-side critical sections are
3657 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
3658 * In addition, regions of code across which interrupts, preemption, or
3659 * softirqs have been disabled also serve as RCU read-side critical
3660 * sections. This includes hardware interrupt handlers, softirq handlers,
3663 * Note that this guarantee implies further memory-ordering guarantees.
3664 * On systems with more than one CPU, when synchronize_rcu() returns,
3665 * each CPU is guaranteed to have executed a full memory barrier since
3666 * the end of its last RCU read-side critical section whose beginning
3667 * preceded the call to synchronize_rcu(). In addition, each CPU having
3668 * an RCU read-side critical section that extends beyond the return from
3669 * synchronize_rcu() is guaranteed to have executed a full memory barrier
3670 * after the beginning of synchronize_rcu() and before the beginning of
3671 * that RCU read-side critical section. Note that these guarantees include
3672 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3673 * that are executing in the kernel.
3675 * Furthermore, if CPU A invoked synchronize_rcu(), which returned
3676 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3677 * to have executed a full memory barrier during the execution of
3678 * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but
3679 * again only if the system has more than one CPU).
3681 void synchronize_rcu(void)
3683 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3684 lock_is_held(&rcu_lock_map) ||
3685 lock_is_held(&rcu_sched_lock_map),
3686 "Illegal synchronize_rcu() in RCU read-side critical section");
3687 if (rcu_blocking_is_gp())
3688 return; // Context allows vacuous grace periods.
3689 if (rcu_gp_is_expedited())
3690 synchronize_rcu_expedited();
3692 wait_rcu_gp(call_rcu);
3694 EXPORT_SYMBOL_GPL(synchronize_rcu);
3697 * get_state_synchronize_rcu - Snapshot current RCU state
3699 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3700 * to determine whether or not a full grace period has elapsed in the
3703 unsigned long get_state_synchronize_rcu(void)
3706 * Any prior manipulation of RCU-protected data must happen
3707 * before the load from ->gp_seq.
3710 return rcu_seq_snap(&rcu_state.gp_seq);
3712 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3715 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3717 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3719 * If a full RCU grace period has elapsed since the earlier call to
3720 * get_state_synchronize_rcu(), just return. Otherwise, invoke
3721 * synchronize_rcu() to wait for a full grace period.
3723 * Yes, this function does not take counter wrap into account. But
3724 * counter wrap is harmless. If the counter wraps, we have waited for
3725 * more than 2 billion grace periods (and way more on a 64-bit system!),
3726 * so waiting for one additional grace period should be just fine.
3728 void cond_synchronize_rcu(unsigned long oldstate)
3730 if (!rcu_seq_done(&rcu_state.gp_seq, oldstate))
3733 smp_mb(); /* Ensure GP ends before subsequent accesses. */
3735 EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3738 * Check to see if there is any immediate RCU-related work to be done by
3739 * the current CPU, returning 1 if so and zero otherwise. The checks are
3740 * in order of increasing expense: checks that can be carried out against
3741 * CPU-local state are performed first. However, we must check for CPU
3742 * stalls first, else we might not get a chance.
3744 static int rcu_pending(int user)
3746 bool gp_in_progress;
3747 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
3748 struct rcu_node *rnp = rdp->mynode;
3750 /* Check for CPU stalls, if enabled. */
3751 check_cpu_stall(rdp);
3753 /* Does this CPU need a deferred NOCB wakeup? */
3754 if (rcu_nocb_need_deferred_wakeup(rdp))
3757 /* Is this a nohz_full CPU in userspace or idle? (Ignore RCU if so.) */
3758 if ((user || rcu_is_cpu_rrupt_from_idle()) && rcu_nohz_full_cpu())
3761 /* Is the RCU core waiting for a quiescent state from this CPU? */
3762 gp_in_progress = rcu_gp_in_progress();
3763 if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm && gp_in_progress)
3766 /* Does this CPU have callbacks ready to invoke? */
3767 if (!rcu_segcblist_is_offloaded(&rdp->cblist) &&
3768 rcu_segcblist_ready_cbs(&rdp->cblist))
3771 /* Has RCU gone idle with this CPU needing another grace period? */
3772 if (!gp_in_progress && rcu_segcblist_is_enabled(&rdp->cblist) &&
3773 !rcu_segcblist_is_offloaded(&rdp->cblist) &&
3774 !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
3777 /* Have RCU grace period completed or started? */
3778 if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq ||
3779 unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */
3787 * Helper function for rcu_barrier() tracing. If tracing is disabled,
3788 * the compiler is expected to optimize this away.
3790 static void rcu_barrier_trace(const char *s, int cpu, unsigned long done)
3792 trace_rcu_barrier(rcu_state.name, s, cpu,
3793 atomic_read(&rcu_state.barrier_cpu_count), done);
3797 * RCU callback function for rcu_barrier(). If we are last, wake
3798 * up the task executing rcu_barrier().
3800 * Note that the value of rcu_state.barrier_sequence must be captured
3801 * before the atomic_dec_and_test(). Otherwise, if this CPU is not last,
3802 * other CPUs might count the value down to zero before this CPU gets
3803 * around to invoking rcu_barrier_trace(), which might result in bogus
3804 * data from the next instance of rcu_barrier().
3806 static void rcu_barrier_callback(struct rcu_head *rhp)
3808 unsigned long __maybe_unused s = rcu_state.barrier_sequence;
3810 if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) {
3811 rcu_barrier_trace(TPS("LastCB"), -1, s);
3812 complete(&rcu_state.barrier_completion);
3814 rcu_barrier_trace(TPS("CB"), -1, s);
3819 * Called with preemption disabled, and from cross-cpu IRQ context.
3821 static void rcu_barrier_func(void *cpu_in)
3823 uintptr_t cpu = (uintptr_t)cpu_in;
3824 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3826 rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence);
3827 rdp->barrier_head.func = rcu_barrier_callback;
3828 debug_rcu_head_queue(&rdp->barrier_head);
3830 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies));
3831 if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head)) {
3832 atomic_inc(&rcu_state.barrier_cpu_count);
3834 debug_rcu_head_unqueue(&rdp->barrier_head);
3835 rcu_barrier_trace(TPS("IRQNQ"), -1,
3836 rcu_state.barrier_sequence);
3838 rcu_nocb_unlock(rdp);
3842 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
3844 * Note that this primitive does not necessarily wait for an RCU grace period
3845 * to complete. For example, if there are no RCU callbacks queued anywhere
3846 * in the system, then rcu_barrier() is within its rights to return
3847 * immediately, without waiting for anything, much less an RCU grace period.
3849 void rcu_barrier(void)
3852 struct rcu_data *rdp;
3853 unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence);
3855 rcu_barrier_trace(TPS("Begin"), -1, s);
3857 /* Take mutex to serialize concurrent rcu_barrier() requests. */
3858 mutex_lock(&rcu_state.barrier_mutex);
3860 /* Did someone else do our work for us? */
3861 if (rcu_seq_done(&rcu_state.barrier_sequence, s)) {
3862 rcu_barrier_trace(TPS("EarlyExit"), -1,
3863 rcu_state.barrier_sequence);
3864 smp_mb(); /* caller's subsequent code after above check. */
3865 mutex_unlock(&rcu_state.barrier_mutex);
3869 /* Mark the start of the barrier operation. */
3870 rcu_seq_start(&rcu_state.barrier_sequence);
3871 rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence);
3874 * Initialize the count to two rather than to zero in order
3875 * to avoid a too-soon return to zero in case of an immediate
3876 * invocation of the just-enqueued callback (or preemption of
3877 * this task). Exclude CPU-hotplug operations to ensure that no
3878 * offline non-offloaded CPU has callbacks queued.
3880 init_completion(&rcu_state.barrier_completion);
3881 atomic_set(&rcu_state.barrier_cpu_count, 2);
3885 * Force each CPU with callbacks to register a new callback.
3886 * When that callback is invoked, we will know that all of the
3887 * corresponding CPU's preceding callbacks have been invoked.
3889 for_each_possible_cpu(cpu) {
3890 rdp = per_cpu_ptr(&rcu_data, cpu);
3891 if (cpu_is_offline(cpu) &&
3892 !rcu_segcblist_is_offloaded(&rdp->cblist))
3894 if (rcu_segcblist_n_cbs(&rdp->cblist) && cpu_online(cpu)) {
3895 rcu_barrier_trace(TPS("OnlineQ"), cpu,
3896 rcu_state.barrier_sequence);
3897 smp_call_function_single(cpu, rcu_barrier_func, (void *)cpu, 1);
3898 } else if (rcu_segcblist_n_cbs(&rdp->cblist) &&
3899 cpu_is_offline(cpu)) {
3900 rcu_barrier_trace(TPS("OfflineNoCBQ"), cpu,
3901 rcu_state.barrier_sequence);
3902 local_irq_disable();
3903 rcu_barrier_func((void *)cpu);
3905 } else if (cpu_is_offline(cpu)) {
3906 rcu_barrier_trace(TPS("OfflineNoCBNoQ"), cpu,
3907 rcu_state.barrier_sequence);
3909 rcu_barrier_trace(TPS("OnlineNQ"), cpu,
3910 rcu_state.barrier_sequence);
3916 * Now that we have an rcu_barrier_callback() callback on each
3917 * CPU, and thus each counted, remove the initial count.
3919 if (atomic_sub_and_test(2, &rcu_state.barrier_cpu_count))
3920 complete(&rcu_state.barrier_completion);
3922 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3923 wait_for_completion(&rcu_state.barrier_completion);
3925 /* Mark the end of the barrier operation. */
3926 rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence);
3927 rcu_seq_end(&rcu_state.barrier_sequence);
3929 /* Other rcu_barrier() invocations can now safely proceed. */
3930 mutex_unlock(&rcu_state.barrier_mutex);
3932 EXPORT_SYMBOL_GPL(rcu_barrier);
3935 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
3936 * first CPU in a given leaf rcu_node structure coming online. The caller
3937 * must hold the corresponding leaf rcu_node ->lock with interrrupts
3940 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
3944 struct rcu_node *rnp = rnp_leaf;
3946 raw_lockdep_assert_held_rcu_node(rnp_leaf);
3947 WARN_ON_ONCE(rnp->wait_blkd_tasks);
3949 mask = rnp->grpmask;
3953 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
3954 oldmask = rnp->qsmaskinit;
3955 rnp->qsmaskinit |= mask;
3956 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
3963 * Do boot-time initialization of a CPU's per-CPU RCU data.
3966 rcu_boot_init_percpu_data(int cpu)
3968 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3970 /* Set up local state, ensuring consistent view of global state. */
3971 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
3972 INIT_WORK(&rdp->strict_work, strict_work_handler);
3973 WARN_ON_ONCE(rdp->dynticks_nesting != 1);
3974 WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp)));
3975 rdp->rcu_ofl_gp_seq = rcu_state.gp_seq;
3976 rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED;
3977 rdp->rcu_onl_gp_seq = rcu_state.gp_seq;
3978 rdp->rcu_onl_gp_flags = RCU_GP_CLEANED;
3980 rcu_boot_init_nocb_percpu_data(rdp);
3984 * Invoked early in the CPU-online process, when pretty much all services
3985 * are available. The incoming CPU is not present.
3987 * Initializes a CPU's per-CPU RCU data. Note that only one online or
3988 * offline event can be happening at a given time. Note also that we can
3989 * accept some slop in the rsp->gp_seq access due to the fact that this
3990 * CPU cannot possibly have any non-offloaded RCU callbacks in flight yet.
3991 * And any offloaded callbacks are being numbered elsewhere.
3993 int rcutree_prepare_cpu(unsigned int cpu)
3995 unsigned long flags;
3996 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3997 struct rcu_node *rnp = rcu_get_root();
3999 /* Set up local state, ensuring consistent view of global state. */
4000 raw_spin_lock_irqsave_rcu_node(rnp, flags);
4001 rdp->qlen_last_fqs_check = 0;
4002 rdp->n_force_qs_snap = rcu_state.n_force_qs;
4003 rdp->blimit = blimit;
4004 if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */
4005 !rcu_segcblist_is_offloaded(&rdp->cblist))
4006 rcu_segcblist_init(&rdp->cblist); /* Re-enable callbacks. */
4007 rdp->dynticks_nesting = 1; /* CPU not up, no tearing. */
4008 rcu_dynticks_eqs_online();
4009 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
4012 * Add CPU to leaf rcu_node pending-online bitmask. Any needed
4013 * propagation up the rcu_node tree will happen at the beginning
4014 * of the next grace period.
4017 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
4018 rdp->beenonline = true; /* We have now been online. */
4019 rdp->gp_seq = READ_ONCE(rnp->gp_seq);
4020 rdp->gp_seq_needed = rdp->gp_seq;
4021 rdp->cpu_no_qs.b.norm = true;
4022 rdp->core_needs_qs = false;
4023 rdp->rcu_iw_pending = false;
4024 rdp->rcu_iw = IRQ_WORK_INIT_HARD(rcu_iw_handler);
4025 rdp->rcu_iw_gp_seq = rdp->gp_seq - 1;
4026 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl"));
4027 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4028 rcu_prepare_kthreads(cpu);
4029 rcu_spawn_cpu_nocb_kthread(cpu);
4030 WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus + 1);
4036 * Update RCU priority boot kthread affinity for CPU-hotplug changes.
4038 static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
4040 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4042 rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
4046 * Near the end of the CPU-online process. Pretty much all services
4047 * enabled, and the CPU is now very much alive.
4049 int rcutree_online_cpu(unsigned int cpu)
4051 unsigned long flags;
4052 struct rcu_data *rdp;
4053 struct rcu_node *rnp;
4055 rdp = per_cpu_ptr(&rcu_data, cpu);
4057 raw_spin_lock_irqsave_rcu_node(rnp, flags);
4058 rnp->ffmask |= rdp->grpmask;
4059 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4060 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
4061 return 0; /* Too early in boot for scheduler work. */
4062 sync_sched_exp_online_cleanup(cpu);
4063 rcutree_affinity_setting(cpu, -1);
4065 // Stop-machine done, so allow nohz_full to disable tick.
4066 tick_dep_clear(TICK_DEP_BIT_RCU);
4071 * Near the beginning of the process. The CPU is still very much alive
4072 * with pretty much all services enabled.
4074 int rcutree_offline_cpu(unsigned int cpu)
4076 unsigned long flags;
4077 struct rcu_data *rdp;
4078 struct rcu_node *rnp;
4080 rdp = per_cpu_ptr(&rcu_data, cpu);
4082 raw_spin_lock_irqsave_rcu_node(rnp, flags);
4083 rnp->ffmask &= ~rdp->grpmask;
4084 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4086 rcutree_affinity_setting(cpu, cpu);
4088 // nohz_full CPUs need the tick for stop-machine to work quickly
4089 tick_dep_set(TICK_DEP_BIT_RCU);
4094 * Mark the specified CPU as being online so that subsequent grace periods
4095 * (both expedited and normal) will wait on it. Note that this means that
4096 * incoming CPUs are not allowed to use RCU read-side critical sections
4097 * until this function is called. Failing to observe this restriction
4098 * will result in lockdep splats.
4100 * Note that this function is special in that it is invoked directly
4101 * from the incoming CPU rather than from the cpuhp_step mechanism.
4102 * This is because this function must be invoked at a precise location.
4104 void rcu_cpu_starting(unsigned int cpu)
4106 unsigned long flags;
4108 struct rcu_data *rdp;
4109 struct rcu_node *rnp;
4112 rdp = per_cpu_ptr(&rcu_data, cpu);
4113 if (rdp->cpu_started)
4115 rdp->cpu_started = true;
4118 mask = rdp->grpmask;
4119 WRITE_ONCE(rnp->ofl_seq, rnp->ofl_seq + 1);
4120 WARN_ON_ONCE(!(rnp->ofl_seq & 0x1));
4121 smp_mb(); // Pair with rcu_gp_cleanup()'s ->ofl_seq barrier().
4122 raw_spin_lock_irqsave_rcu_node(rnp, flags);
4123 WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext | mask);
4124 newcpu = !(rnp->expmaskinitnext & mask);
4125 rnp->expmaskinitnext |= mask;
4126 /* Allow lockless access for expedited grace periods. */
4127 smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + newcpu); /* ^^^ */
4128 ASSERT_EXCLUSIVE_WRITER(rcu_state.ncpus);
4129 rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */
4130 rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq);
4131 rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags);
4133 /* An incoming CPU should never be blocking a grace period. */
4134 if (WARN_ON_ONCE(rnp->qsmask & mask)) { /* RCU waiting on incoming CPU? */
4135 rcu_disable_urgency_upon_qs(rdp);
4136 /* Report QS -after- changing ->qsmaskinitnext! */
4137 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
4139 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4141 smp_mb(); // Pair with rcu_gp_cleanup()'s ->ofl_seq barrier().
4142 WRITE_ONCE(rnp->ofl_seq, rnp->ofl_seq + 1);
4143 WARN_ON_ONCE(rnp->ofl_seq & 0x1);
4144 smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
4148 * The outgoing function has no further need of RCU, so remove it from
4149 * the rcu_node tree's ->qsmaskinitnext bit masks.
4151 * Note that this function is special in that it is invoked directly
4152 * from the outgoing CPU rather than from the cpuhp_step mechanism.
4153 * This is because this function must be invoked at a precise location.
4155 void rcu_report_dead(unsigned int cpu)
4157 unsigned long flags;
4159 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4160 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
4162 /* QS for any half-done expedited grace period. */
4164 rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
4166 rcu_preempt_deferred_qs(current);
4168 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
4169 mask = rdp->grpmask;
4170 WRITE_ONCE(rnp->ofl_seq, rnp->ofl_seq + 1);
4171 WARN_ON_ONCE(!(rnp->ofl_seq & 0x1));
4172 smp_mb(); // Pair with rcu_gp_cleanup()'s ->ofl_seq barrier().
4173 raw_spin_lock(&rcu_state.ofl_lock);
4174 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
4175 rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq);
4176 rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags);
4177 if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */
4178 /* Report quiescent state -before- changing ->qsmaskinitnext! */
4179 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
4180 raw_spin_lock_irqsave_rcu_node(rnp, flags);
4182 WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext & ~mask);
4183 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4184 raw_spin_unlock(&rcu_state.ofl_lock);
4185 smp_mb(); // Pair with rcu_gp_cleanup()'s ->ofl_seq barrier().
4186 WRITE_ONCE(rnp->ofl_seq, rnp->ofl_seq + 1);
4187 WARN_ON_ONCE(rnp->ofl_seq & 0x1);
4189 rdp->cpu_started = false;
4192 #ifdef CONFIG_HOTPLUG_CPU
4194 * The outgoing CPU has just passed through the dying-idle state, and we
4195 * are being invoked from the CPU that was IPIed to continue the offline
4196 * operation. Migrate the outgoing CPU's callbacks to the current CPU.
4198 void rcutree_migrate_callbacks(int cpu)
4200 unsigned long flags;
4201 struct rcu_data *my_rdp;
4202 struct rcu_node *my_rnp;
4203 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4206 if (rcu_segcblist_is_offloaded(&rdp->cblist) ||
4207 rcu_segcblist_empty(&rdp->cblist))
4208 return; /* No callbacks to migrate. */
4210 local_irq_save(flags);
4211 my_rdp = this_cpu_ptr(&rcu_data);
4212 my_rnp = my_rdp->mynode;
4213 rcu_nocb_lock(my_rdp); /* irqs already disabled. */
4214 WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies));
4215 raw_spin_lock_rcu_node(my_rnp); /* irqs already disabled. */
4216 /* Leverage recent GPs and set GP for new callbacks. */
4217 needwake = rcu_advance_cbs(my_rnp, rdp) ||
4218 rcu_advance_cbs(my_rnp, my_rdp);
4219 rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
4220 needwake = needwake || rcu_advance_cbs(my_rnp, my_rdp);
4221 rcu_segcblist_disable(&rdp->cblist);
4222 WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) !=
4223 !rcu_segcblist_n_cbs(&my_rdp->cblist));
4224 if (rcu_segcblist_is_offloaded(&my_rdp->cblist)) {
4225 raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */
4226 __call_rcu_nocb_wake(my_rdp, true, flags);
4228 rcu_nocb_unlock(my_rdp); /* irqs remain disabled. */
4229 raw_spin_unlock_irqrestore_rcu_node(my_rnp, flags);
4232 rcu_gp_kthread_wake();
4233 lockdep_assert_irqs_enabled();
4234 WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
4235 !rcu_segcblist_empty(&rdp->cblist),
4236 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
4237 cpu, rcu_segcblist_n_cbs(&rdp->cblist),
4238 rcu_segcblist_first_cb(&rdp->cblist));
4243 * On non-huge systems, use expedited RCU grace periods to make suspend
4244 * and hibernation run faster.
4246 static int rcu_pm_notify(struct notifier_block *self,
4247 unsigned long action, void *hcpu)
4250 case PM_HIBERNATION_PREPARE:
4251 case PM_SUSPEND_PREPARE:
4254 case PM_POST_HIBERNATION:
4255 case PM_POST_SUSPEND:
4256 rcu_unexpedite_gp();
4265 * Spawn the kthreads that handle RCU's grace periods.
4267 static int __init rcu_spawn_gp_kthread(void)
4269 unsigned long flags;
4270 int kthread_prio_in = kthread_prio;
4271 struct rcu_node *rnp;
4272 struct sched_param sp;
4273 struct task_struct *t;
4275 /* Force priority into range. */
4276 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2
4277 && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST))
4279 else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
4281 else if (kthread_prio < 0)
4283 else if (kthread_prio > 99)
4286 if (kthread_prio != kthread_prio_in)
4287 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
4288 kthread_prio, kthread_prio_in);
4290 rcu_scheduler_fully_active = 1;
4291 t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name);
4292 if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__))
4295 sp.sched_priority = kthread_prio;
4296 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
4298 rnp = rcu_get_root();
4299 raw_spin_lock_irqsave_rcu_node(rnp, flags);
4300 WRITE_ONCE(rcu_state.gp_activity, jiffies);
4301 WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
4302 // Reset .gp_activity and .gp_req_activity before setting .gp_kthread.
4303 smp_store_release(&rcu_state.gp_kthread, t); /* ^^^ */
4304 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4306 rcu_spawn_nocb_kthreads();
4307 rcu_spawn_boost_kthreads();
4310 early_initcall(rcu_spawn_gp_kthread);
4313 * This function is invoked towards the end of the scheduler's
4314 * initialization process. Before this is called, the idle task might
4315 * contain synchronous grace-period primitives (during which time, this idle
4316 * task is booting the system, and such primitives are no-ops). After this
4317 * function is called, any synchronous grace-period primitives are run as
4318 * expedited, with the requesting task driving the grace period forward.
4319 * A later core_initcall() rcu_set_runtime_mode() will switch to full
4320 * runtime RCU functionality.
4322 void rcu_scheduler_starting(void)
4324 WARN_ON(num_online_cpus() != 1);
4325 WARN_ON(nr_context_switches() > 0);
4326 rcu_test_sync_prims();
4327 rcu_scheduler_active = RCU_SCHEDULER_INIT;
4328 rcu_test_sync_prims();
4332 * Helper function for rcu_init() that initializes the rcu_state structure.
4334 static void __init rcu_init_one(void)
4336 static const char * const buf[] = RCU_NODE_NAME_INIT;
4337 static const char * const fqs[] = RCU_FQS_NAME_INIT;
4338 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
4339 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
4341 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */
4345 struct rcu_node *rnp;
4347 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
4349 /* Silence gcc 4.8 false positive about array index out of range. */
4350 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4351 panic("rcu_init_one: rcu_num_lvls out of range");
4353 /* Initialize the level-tracking arrays. */
4355 for (i = 1; i < rcu_num_lvls; i++)
4356 rcu_state.level[i] =
4357 rcu_state.level[i - 1] + num_rcu_lvl[i - 1];
4358 rcu_init_levelspread(levelspread, num_rcu_lvl);
4360 /* Initialize the elements themselves, starting from the leaves. */
4362 for (i = rcu_num_lvls - 1; i >= 0; i--) {
4363 cpustride *= levelspread[i];
4364 rnp = rcu_state.level[i];
4365 for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
4366 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
4367 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
4368 &rcu_node_class[i], buf[i]);
4369 raw_spin_lock_init(&rnp->fqslock);
4370 lockdep_set_class_and_name(&rnp->fqslock,
4371 &rcu_fqs_class[i], fqs[i]);
4372 rnp->gp_seq = rcu_state.gp_seq;
4373 rnp->gp_seq_needed = rcu_state.gp_seq;
4374 rnp->completedqs = rcu_state.gp_seq;
4376 rnp->qsmaskinit = 0;
4377 rnp->grplo = j * cpustride;
4378 rnp->grphi = (j + 1) * cpustride - 1;
4379 if (rnp->grphi >= nr_cpu_ids)
4380 rnp->grphi = nr_cpu_ids - 1;
4386 rnp->grpnum = j % levelspread[i - 1];
4387 rnp->grpmask = BIT(rnp->grpnum);
4388 rnp->parent = rcu_state.level[i - 1] +
4389 j / levelspread[i - 1];
4392 INIT_LIST_HEAD(&rnp->blkd_tasks);
4393 rcu_init_one_nocb(rnp);
4394 init_waitqueue_head(&rnp->exp_wq[0]);
4395 init_waitqueue_head(&rnp->exp_wq[1]);
4396 init_waitqueue_head(&rnp->exp_wq[2]);
4397 init_waitqueue_head(&rnp->exp_wq[3]);
4398 spin_lock_init(&rnp->exp_lock);
4402 init_swait_queue_head(&rcu_state.gp_wq);
4403 init_swait_queue_head(&rcu_state.expedited_wq);
4404 rnp = rcu_first_leaf_node();
4405 for_each_possible_cpu(i) {
4406 while (i > rnp->grphi)
4408 per_cpu_ptr(&rcu_data, i)->mynode = rnp;
4409 rcu_boot_init_percpu_data(i);
4414 * Compute the rcu_node tree geometry from kernel parameters. This cannot
4415 * replace the definitions in tree.h because those are needed to size
4416 * the ->node array in the rcu_state structure.
4418 static void __init rcu_init_geometry(void)
4422 int rcu_capacity[RCU_NUM_LVLS];
4425 * Initialize any unspecified boot parameters.
4426 * The default values of jiffies_till_first_fqs and
4427 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4428 * value, which is a function of HZ, then adding one for each
4429 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4431 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4432 if (jiffies_till_first_fqs == ULONG_MAX)
4433 jiffies_till_first_fqs = d;
4434 if (jiffies_till_next_fqs == ULONG_MAX)
4435 jiffies_till_next_fqs = d;
4436 adjust_jiffies_till_sched_qs();
4438 /* If the compile-time values are accurate, just leave. */
4439 if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4440 nr_cpu_ids == NR_CPUS)
4442 pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
4443 rcu_fanout_leaf, nr_cpu_ids);
4446 * The boot-time rcu_fanout_leaf parameter must be at least two
4447 * and cannot exceed the number of bits in the rcu_node masks.
4448 * Complain and fall back to the compile-time values if this
4449 * limit is exceeded.
4451 if (rcu_fanout_leaf < 2 ||
4452 rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4453 rcu_fanout_leaf = RCU_FANOUT_LEAF;
4459 * Compute number of nodes that can be handled an rcu_node tree
4460 * with the given number of levels.
4462 rcu_capacity[0] = rcu_fanout_leaf;
4463 for (i = 1; i < RCU_NUM_LVLS; i++)
4464 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4467 * The tree must be able to accommodate the configured number of CPUs.
4468 * If this limit is exceeded, fall back to the compile-time values.
4470 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4471 rcu_fanout_leaf = RCU_FANOUT_LEAF;
4476 /* Calculate the number of levels in the tree. */
4477 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4479 rcu_num_lvls = i + 1;
4481 /* Calculate the number of rcu_nodes at each level of the tree. */
4482 for (i = 0; i < rcu_num_lvls; i++) {
4483 int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4484 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4487 /* Calculate the total number of rcu_node structures. */
4489 for (i = 0; i < rcu_num_lvls; i++)
4490 rcu_num_nodes += num_rcu_lvl[i];
4494 * Dump out the structure of the rcu_node combining tree associated
4495 * with the rcu_state structure.
4497 static void __init rcu_dump_rcu_node_tree(void)
4500 struct rcu_node *rnp;
4502 pr_info("rcu_node tree layout dump\n");
4504 rcu_for_each_node_breadth_first(rnp) {
4505 if (rnp->level != level) {
4510 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum);
4515 struct workqueue_struct *rcu_gp_wq;
4516 struct workqueue_struct *rcu_par_gp_wq;
4518 static void __init kfree_rcu_batch_init(void)
4523 for_each_possible_cpu(cpu) {
4524 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
4526 for (i = 0; i < KFREE_N_BATCHES; i++) {
4527 INIT_RCU_WORK(&krcp->krw_arr[i].rcu_work, kfree_rcu_work);
4528 krcp->krw_arr[i].krcp = krcp;
4531 INIT_DELAYED_WORK(&krcp->monitor_work, kfree_rcu_monitor);
4532 INIT_WORK(&krcp->page_cache_work, fill_page_cache_func);
4533 krcp->initialized = true;
4535 if (register_shrinker(&kfree_rcu_shrinker))
4536 pr_err("Failed to register kfree_rcu() shrinker!\n");
4539 void __init rcu_init(void)
4543 rcu_early_boot_tests();
4545 kfree_rcu_batch_init();
4546 rcu_bootup_announce();
4547 rcu_init_geometry();
4550 rcu_dump_rcu_node_tree();
4552 open_softirq(RCU_SOFTIRQ, rcu_core_si);
4555 * We don't need protection against CPU-hotplug here because
4556 * this is called early in boot, before either interrupts
4557 * or the scheduler are operational.
4559 pm_notifier(rcu_pm_notify, 0);
4560 for_each_online_cpu(cpu) {
4561 rcutree_prepare_cpu(cpu);
4562 rcu_cpu_starting(cpu);
4563 rcutree_online_cpu(cpu);
4566 /* Create workqueue for expedited GPs and for Tree SRCU. */
4567 rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0);
4568 WARN_ON(!rcu_gp_wq);
4569 rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0);
4570 WARN_ON(!rcu_par_gp_wq);
4573 /* Fill in default value for rcutree.qovld boot parameter. */
4574 /* -After- the rcu_node ->lock fields are initialized! */
4576 qovld_calc = DEFAULT_RCU_QOVLD_MULT * qhimark;
4581 #include "tree_stall.h"
4582 #include "tree_exp.h"
4583 #include "tree_plugin.h"