4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #include <linux/f2fs_fs.h>
13 #include <linux/buffer_head.h>
14 #include <linux/mpage.h>
15 #include <linux/writeback.h>
16 #include <linux/backing-dev.h>
17 #include <linux/pagevec.h>
18 #include <linux/blkdev.h>
19 #include <linux/bio.h>
20 #include <linux/prefetch.h>
21 #include <linux/uio.h>
22 #include <linux/cleancache.h>
28 #include <trace/events/f2fs.h>
30 static void f2fs_read_end_io(struct bio *bio)
35 if (f2fs_bio_encrypted(bio)) {
37 fscrypt_release_ctx(bio->bi_private);
39 fscrypt_decrypt_bio_pages(bio->bi_private, bio);
44 bio_for_each_segment_all(bvec, bio, i) {
45 struct page *page = bvec->bv_page;
48 SetPageUptodate(page);
50 ClearPageUptodate(page);
58 static void f2fs_write_end_io(struct bio *bio)
60 struct f2fs_sb_info *sbi = bio->bi_private;
64 bio_for_each_segment_all(bvec, bio, i) {
65 struct page *page = bvec->bv_page;
67 fscrypt_pullback_bio_page(&page, true);
69 if (unlikely(bio->bi_error)) {
70 set_bit(AS_EIO, &page->mapping->flags);
71 f2fs_stop_checkpoint(sbi, true);
73 end_page_writeback(page);
75 if (atomic_dec_and_test(&sbi->nr_wb_bios) &&
76 wq_has_sleeper(&sbi->cp_wait))
77 wake_up(&sbi->cp_wait);
83 * Low-level block read/write IO operations.
85 static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr,
86 int npages, bool is_read)
90 bio = f2fs_bio_alloc(npages);
92 bio->bi_bdev = sbi->sb->s_bdev;
93 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
94 bio->bi_end_io = is_read ? f2fs_read_end_io : f2fs_write_end_io;
95 bio->bi_private = is_read ? NULL : sbi;
100 static inline void __submit_bio(struct f2fs_sb_info *sbi, int rw,
104 atomic_inc(&sbi->nr_wb_bios);
108 static void __submit_merged_bio(struct f2fs_bio_info *io)
110 struct f2fs_io_info *fio = &io->fio;
115 if (is_read_io(fio->rw))
116 trace_f2fs_submit_read_bio(io->sbi->sb, fio, io->bio);
118 trace_f2fs_submit_write_bio(io->sbi->sb, fio, io->bio);
120 __submit_bio(io->sbi, fio->rw, io->bio);
124 static bool __has_merged_page(struct f2fs_bio_info *io, struct inode *inode,
125 struct page *page, nid_t ino)
127 struct bio_vec *bvec;
134 if (!inode && !page && !ino)
137 bio_for_each_segment_all(bvec, io->bio, i) {
139 if (bvec->bv_page->mapping)
140 target = bvec->bv_page;
142 target = fscrypt_control_page(bvec->bv_page);
144 if (inode && inode == target->mapping->host)
146 if (page && page == target)
148 if (ino && ino == ino_of_node(target))
155 static bool has_merged_page(struct f2fs_sb_info *sbi, struct inode *inode,
156 struct page *page, nid_t ino,
159 enum page_type btype = PAGE_TYPE_OF_BIO(type);
160 struct f2fs_bio_info *io = &sbi->write_io[btype];
163 down_read(&io->io_rwsem);
164 ret = __has_merged_page(io, inode, page, ino);
165 up_read(&io->io_rwsem);
169 static void __f2fs_submit_merged_bio(struct f2fs_sb_info *sbi,
170 struct inode *inode, struct page *page,
171 nid_t ino, enum page_type type, int rw)
173 enum page_type btype = PAGE_TYPE_OF_BIO(type);
174 struct f2fs_bio_info *io;
176 io = is_read_io(rw) ? &sbi->read_io : &sbi->write_io[btype];
178 down_write(&io->io_rwsem);
180 if (!__has_merged_page(io, inode, page, ino))
183 /* change META to META_FLUSH in the checkpoint procedure */
184 if (type >= META_FLUSH) {
185 io->fio.type = META_FLUSH;
186 if (test_opt(sbi, NOBARRIER))
187 io->fio.rw = WRITE_FLUSH | REQ_META | REQ_PRIO;
189 io->fio.rw = WRITE_FLUSH_FUA | REQ_META | REQ_PRIO;
191 __submit_merged_bio(io);
193 up_write(&io->io_rwsem);
196 void f2fs_submit_merged_bio(struct f2fs_sb_info *sbi, enum page_type type,
199 __f2fs_submit_merged_bio(sbi, NULL, NULL, 0, type, rw);
202 void f2fs_submit_merged_bio_cond(struct f2fs_sb_info *sbi,
203 struct inode *inode, struct page *page,
204 nid_t ino, enum page_type type, int rw)
206 if (has_merged_page(sbi, inode, page, ino, type))
207 __f2fs_submit_merged_bio(sbi, inode, page, ino, type, rw);
210 void f2fs_flush_merged_bios(struct f2fs_sb_info *sbi)
212 f2fs_submit_merged_bio(sbi, DATA, WRITE);
213 f2fs_submit_merged_bio(sbi, NODE, WRITE);
214 f2fs_submit_merged_bio(sbi, META, WRITE);
218 * Fill the locked page with data located in the block address.
219 * Return unlocked page.
221 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
224 struct page *page = fio->encrypted_page ?
225 fio->encrypted_page : fio->page;
227 trace_f2fs_submit_page_bio(page, fio);
228 f2fs_trace_ios(fio, 0);
230 /* Allocate a new bio */
231 bio = __bio_alloc(fio->sbi, fio->new_blkaddr, 1, is_read_io(fio->rw));
233 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
238 __submit_bio(fio->sbi, fio->rw, bio);
242 void f2fs_submit_page_mbio(struct f2fs_io_info *fio)
244 struct f2fs_sb_info *sbi = fio->sbi;
245 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
246 struct f2fs_bio_info *io;
247 bool is_read = is_read_io(fio->rw);
248 struct page *bio_page;
250 io = is_read ? &sbi->read_io : &sbi->write_io[btype];
252 if (fio->old_blkaddr != NEW_ADDR)
253 verify_block_addr(sbi, fio->old_blkaddr);
254 verify_block_addr(sbi, fio->new_blkaddr);
256 down_write(&io->io_rwsem);
258 if (io->bio && (io->last_block_in_bio != fio->new_blkaddr - 1 ||
259 io->fio.rw != fio->rw))
260 __submit_merged_bio(io);
262 if (io->bio == NULL) {
263 int bio_blocks = MAX_BIO_BLOCKS(sbi);
265 io->bio = __bio_alloc(sbi, fio->new_blkaddr,
266 bio_blocks, is_read);
270 bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page;
272 if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) <
274 __submit_merged_bio(io);
278 io->last_block_in_bio = fio->new_blkaddr;
279 f2fs_trace_ios(fio, 0);
281 up_write(&io->io_rwsem);
282 trace_f2fs_submit_page_mbio(fio->page, fio);
285 static void __set_data_blkaddr(struct dnode_of_data *dn)
287 struct f2fs_node *rn = F2FS_NODE(dn->node_page);
290 /* Get physical address of data block */
291 addr_array = blkaddr_in_node(rn);
292 addr_array[dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
296 * Lock ordering for the change of data block address:
299 * update block addresses in the node page
301 void set_data_blkaddr(struct dnode_of_data *dn)
303 f2fs_wait_on_page_writeback(dn->node_page, NODE, true);
304 __set_data_blkaddr(dn);
305 if (set_page_dirty(dn->node_page))
306 dn->node_changed = true;
309 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
311 dn->data_blkaddr = blkaddr;
312 set_data_blkaddr(dn);
313 f2fs_update_extent_cache(dn);
316 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
317 int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
319 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
324 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
326 if (unlikely(!inc_valid_block_count(sbi, dn->inode, &count)))
329 trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
330 dn->ofs_in_node, count);
332 f2fs_wait_on_page_writeback(dn->node_page, NODE, true);
334 for (; count > 0; dn->ofs_in_node++) {
336 datablock_addr(dn->node_page, dn->ofs_in_node);
337 if (blkaddr == NULL_ADDR) {
338 dn->data_blkaddr = NEW_ADDR;
339 __set_data_blkaddr(dn);
344 if (set_page_dirty(dn->node_page))
345 dn->node_changed = true;
351 /* Should keep dn->ofs_in_node unchanged */
352 int reserve_new_block(struct dnode_of_data *dn)
354 unsigned int ofs_in_node = dn->ofs_in_node;
357 ret = reserve_new_blocks(dn, 1);
358 dn->ofs_in_node = ofs_in_node;
362 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
364 bool need_put = dn->inode_page ? false : true;
367 err = get_dnode_of_data(dn, index, ALLOC_NODE);
371 if (dn->data_blkaddr == NULL_ADDR)
372 err = reserve_new_block(dn);
378 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
380 struct extent_info ei;
381 struct inode *inode = dn->inode;
383 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
384 dn->data_blkaddr = ei.blk + index - ei.fofs;
388 return f2fs_reserve_block(dn, index);
391 struct page *get_read_data_page(struct inode *inode, pgoff_t index,
392 int rw, bool for_write)
394 struct address_space *mapping = inode->i_mapping;
395 struct dnode_of_data dn;
397 struct extent_info ei;
399 struct f2fs_io_info fio = {
400 .sbi = F2FS_I_SB(inode),
403 .encrypted_page = NULL,
406 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
407 return read_mapping_page(mapping, index, NULL);
409 page = f2fs_grab_cache_page(mapping, index, for_write);
411 return ERR_PTR(-ENOMEM);
413 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
414 dn.data_blkaddr = ei.blk + index - ei.fofs;
418 set_new_dnode(&dn, inode, NULL, NULL, 0);
419 err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
424 if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
429 if (PageUptodate(page)) {
435 * A new dentry page is allocated but not able to be written, since its
436 * new inode page couldn't be allocated due to -ENOSPC.
437 * In such the case, its blkaddr can be remained as NEW_ADDR.
438 * see, f2fs_add_link -> get_new_data_page -> init_inode_metadata.
440 if (dn.data_blkaddr == NEW_ADDR) {
441 zero_user_segment(page, 0, PAGE_SIZE);
442 SetPageUptodate(page);
447 fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr;
449 err = f2fs_submit_page_bio(&fio);
455 f2fs_put_page(page, 1);
459 struct page *find_data_page(struct inode *inode, pgoff_t index)
461 struct address_space *mapping = inode->i_mapping;
464 page = find_get_page(mapping, index);
465 if (page && PageUptodate(page))
467 f2fs_put_page(page, 0);
469 page = get_read_data_page(inode, index, READ_SYNC, false);
473 if (PageUptodate(page))
476 wait_on_page_locked(page);
477 if (unlikely(!PageUptodate(page))) {
478 f2fs_put_page(page, 0);
479 return ERR_PTR(-EIO);
485 * If it tries to access a hole, return an error.
486 * Because, the callers, functions in dir.c and GC, should be able to know
487 * whether this page exists or not.
489 struct page *get_lock_data_page(struct inode *inode, pgoff_t index,
492 struct address_space *mapping = inode->i_mapping;
495 page = get_read_data_page(inode, index, READ_SYNC, for_write);
499 /* wait for read completion */
501 if (unlikely(!PageUptodate(page))) {
502 f2fs_put_page(page, 1);
503 return ERR_PTR(-EIO);
505 if (unlikely(page->mapping != mapping)) {
506 f2fs_put_page(page, 1);
513 * Caller ensures that this data page is never allocated.
514 * A new zero-filled data page is allocated in the page cache.
516 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
518 * Note that, ipage is set only by make_empty_dir, and if any error occur,
519 * ipage should be released by this function.
521 struct page *get_new_data_page(struct inode *inode,
522 struct page *ipage, pgoff_t index, bool new_i_size)
524 struct address_space *mapping = inode->i_mapping;
526 struct dnode_of_data dn;
529 page = f2fs_grab_cache_page(mapping, index, true);
532 * before exiting, we should make sure ipage will be released
533 * if any error occur.
535 f2fs_put_page(ipage, 1);
536 return ERR_PTR(-ENOMEM);
539 set_new_dnode(&dn, inode, ipage, NULL, 0);
540 err = f2fs_reserve_block(&dn, index);
542 f2fs_put_page(page, 1);
548 if (PageUptodate(page))
551 if (dn.data_blkaddr == NEW_ADDR) {
552 zero_user_segment(page, 0, PAGE_SIZE);
553 SetPageUptodate(page);
555 f2fs_put_page(page, 1);
557 /* if ipage exists, blkaddr should be NEW_ADDR */
558 f2fs_bug_on(F2FS_I_SB(inode), ipage);
559 page = get_lock_data_page(inode, index, true);
564 if (new_i_size && i_size_read(inode) <
565 ((loff_t)(index + 1) << PAGE_SHIFT)) {
566 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
567 /* Only the directory inode sets new_i_size */
568 set_inode_flag(inode, FI_UPDATE_DIR);
573 static int __allocate_data_block(struct dnode_of_data *dn)
575 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
576 struct f2fs_summary sum;
578 int seg = CURSEG_WARM_DATA;
582 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
585 dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
586 if (dn->data_blkaddr == NEW_ADDR)
589 if (unlikely(!inc_valid_block_count(sbi, dn->inode, &count)))
593 get_node_info(sbi, dn->nid, &ni);
594 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
596 if (dn->ofs_in_node == 0 && dn->inode_page == dn->node_page)
597 seg = CURSEG_DIRECT_IO;
599 allocate_data_block(sbi, NULL, dn->data_blkaddr, &dn->data_blkaddr,
601 set_data_blkaddr(dn);
604 fofs = start_bidx_of_node(ofs_of_node(dn->node_page), dn->inode) +
606 if (i_size_read(dn->inode) < ((loff_t)(fofs + 1) << PAGE_SHIFT))
607 f2fs_i_size_write(dn->inode,
608 ((loff_t)(fofs + 1) << PAGE_SHIFT));
612 ssize_t f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from)
614 struct inode *inode = file_inode(iocb->ki_filp);
615 struct f2fs_map_blocks map;
618 map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos);
619 map.m_len = F2FS_BYTES_TO_BLK(iov_iter_count(from));
620 map.m_next_pgofs = NULL;
622 if (f2fs_encrypted_inode(inode))
625 if (iocb->ki_flags & IOCB_DIRECT) {
626 ret = f2fs_convert_inline_inode(inode);
629 return f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_DIO);
631 if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA) {
632 ret = f2fs_convert_inline_inode(inode);
636 if (!f2fs_has_inline_data(inode))
637 return f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
642 * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with
643 * f2fs_map_blocks structure.
644 * If original data blocks are allocated, then give them to blockdev.
646 * a. preallocate requested block addresses
647 * b. do not use extent cache for better performance
648 * c. give the block addresses to blockdev
650 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
651 int create, int flag)
653 unsigned int maxblocks = map->m_len;
654 struct dnode_of_data dn;
655 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
656 int mode = create ? ALLOC_NODE : LOOKUP_NODE_RA;
657 pgoff_t pgofs, end_offset, end;
658 int err = 0, ofs = 1;
659 unsigned int ofs_in_node, last_ofs_in_node;
661 struct extent_info ei;
662 bool allocated = false;
668 /* it only supports block size == page size */
669 pgofs = (pgoff_t)map->m_lblk;
670 end = pgofs + maxblocks;
672 if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
673 map->m_pblk = ei.blk + pgofs - ei.fofs;
674 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
675 map->m_flags = F2FS_MAP_MAPPED;
683 /* When reading holes, we need its node page */
684 set_new_dnode(&dn, inode, NULL, NULL, 0);
685 err = get_dnode_of_data(&dn, pgofs, mode);
687 if (flag == F2FS_GET_BLOCK_BMAP)
689 if (err == -ENOENT) {
691 if (map->m_next_pgofs)
693 get_next_page_offset(&dn, pgofs);
699 ofs_in_node = dn.ofs_in_node;
700 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
703 blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
705 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR) {
707 if (unlikely(f2fs_cp_error(sbi))) {
711 if (flag == F2FS_GET_BLOCK_PRE_AIO) {
712 if (blkaddr == NULL_ADDR) {
714 last_ofs_in_node = dn.ofs_in_node;
717 err = __allocate_data_block(&dn);
719 set_inode_flag(inode, FI_APPEND_WRITE);
725 map->m_flags = F2FS_MAP_NEW;
726 blkaddr = dn.data_blkaddr;
728 if (flag == F2FS_GET_BLOCK_BMAP) {
732 if (flag == F2FS_GET_BLOCK_FIEMAP &&
733 blkaddr == NULL_ADDR) {
734 if (map->m_next_pgofs)
735 *map->m_next_pgofs = pgofs + 1;
737 if (flag != F2FS_GET_BLOCK_FIEMAP ||
743 if (flag == F2FS_GET_BLOCK_PRE_AIO)
746 if (map->m_len == 0) {
747 /* preallocated unwritten block should be mapped for fiemap. */
748 if (blkaddr == NEW_ADDR)
749 map->m_flags |= F2FS_MAP_UNWRITTEN;
750 map->m_flags |= F2FS_MAP_MAPPED;
752 map->m_pblk = blkaddr;
754 } else if ((map->m_pblk != NEW_ADDR &&
755 blkaddr == (map->m_pblk + ofs)) ||
756 (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
757 flag == F2FS_GET_BLOCK_PRE_DIO) {
768 /* preallocate blocks in batch for one dnode page */
769 if (flag == F2FS_GET_BLOCK_PRE_AIO &&
770 (pgofs == end || dn.ofs_in_node == end_offset)) {
772 dn.ofs_in_node = ofs_in_node;
773 err = reserve_new_blocks(&dn, prealloc);
777 map->m_len += dn.ofs_in_node - ofs_in_node;
778 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
782 dn.ofs_in_node = end_offset;
787 else if (dn.ofs_in_node < end_offset)
791 sync_inode_page(&dn);
796 f2fs_balance_fs(sbi, allocated);
803 sync_inode_page(&dn);
808 f2fs_balance_fs(sbi, allocated);
811 trace_f2fs_map_blocks(inode, map, err);
815 static int __get_data_block(struct inode *inode, sector_t iblock,
816 struct buffer_head *bh, int create, int flag,
819 struct f2fs_map_blocks map;
823 map.m_len = bh->b_size >> inode->i_blkbits;
824 map.m_next_pgofs = next_pgofs;
826 ret = f2fs_map_blocks(inode, &map, create, flag);
828 map_bh(bh, inode->i_sb, map.m_pblk);
829 bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
830 bh->b_size = map.m_len << inode->i_blkbits;
835 static int get_data_block(struct inode *inode, sector_t iblock,
836 struct buffer_head *bh_result, int create, int flag,
839 return __get_data_block(inode, iblock, bh_result, create,
843 static int get_data_block_dio(struct inode *inode, sector_t iblock,
844 struct buffer_head *bh_result, int create)
846 return __get_data_block(inode, iblock, bh_result, create,
847 F2FS_GET_BLOCK_DIO, NULL);
850 static int get_data_block_bmap(struct inode *inode, sector_t iblock,
851 struct buffer_head *bh_result, int create)
853 /* Block number less than F2FS MAX BLOCKS */
854 if (unlikely(iblock >= F2FS_I_SB(inode)->max_file_blocks))
857 return __get_data_block(inode, iblock, bh_result, create,
858 F2FS_GET_BLOCK_BMAP, NULL);
861 static inline sector_t logical_to_blk(struct inode *inode, loff_t offset)
863 return (offset >> inode->i_blkbits);
866 static inline loff_t blk_to_logical(struct inode *inode, sector_t blk)
868 return (blk << inode->i_blkbits);
871 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
874 struct buffer_head map_bh;
875 sector_t start_blk, last_blk;
878 u64 logical = 0, phys = 0, size = 0;
882 ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC);
886 if (f2fs_has_inline_data(inode)) {
887 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
894 isize = i_size_read(inode);
898 if (start + len > isize)
901 if (logical_to_blk(inode, len) == 0)
902 len = blk_to_logical(inode, 1);
904 start_blk = logical_to_blk(inode, start);
905 last_blk = logical_to_blk(inode, start + len - 1);
908 memset(&map_bh, 0, sizeof(struct buffer_head));
911 ret = get_data_block(inode, start_blk, &map_bh, 0,
912 F2FS_GET_BLOCK_FIEMAP, &next_pgofs);
917 if (!buffer_mapped(&map_bh)) {
918 start_blk = next_pgofs;
919 /* Go through holes util pass the EOF */
920 if (blk_to_logical(inode, start_blk) < isize)
922 /* Found a hole beyond isize means no more extents.
923 * Note that the premise is that filesystems don't
924 * punch holes beyond isize and keep size unchanged.
926 flags |= FIEMAP_EXTENT_LAST;
930 if (f2fs_encrypted_inode(inode))
931 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
933 ret = fiemap_fill_next_extent(fieinfo, logical,
937 if (start_blk > last_blk || ret)
940 logical = blk_to_logical(inode, start_blk);
941 phys = blk_to_logical(inode, map_bh.b_blocknr);
942 size = map_bh.b_size;
944 if (buffer_unwritten(&map_bh))
945 flags = FIEMAP_EXTENT_UNWRITTEN;
947 start_blk += logical_to_blk(inode, size);
951 if (fatal_signal_pending(current))
964 * This function was originally taken from fs/mpage.c, and customized for f2fs.
965 * Major change was from block_size == page_size in f2fs by default.
967 static int f2fs_mpage_readpages(struct address_space *mapping,
968 struct list_head *pages, struct page *page,
971 struct bio *bio = NULL;
973 sector_t last_block_in_bio = 0;
974 struct inode *inode = mapping->host;
975 const unsigned blkbits = inode->i_blkbits;
976 const unsigned blocksize = 1 << blkbits;
977 sector_t block_in_file;
979 sector_t last_block_in_file;
981 struct block_device *bdev = inode->i_sb->s_bdev;
982 struct f2fs_map_blocks map;
988 map.m_next_pgofs = NULL;
990 for (page_idx = 0; nr_pages; page_idx++, nr_pages--) {
992 prefetchw(&page->flags);
994 page = list_entry(pages->prev, struct page, lru);
995 list_del(&page->lru);
996 if (add_to_page_cache_lru(page, mapping,
997 page->index, GFP_KERNEL))
1001 block_in_file = (sector_t)page->index;
1002 last_block = block_in_file + nr_pages;
1003 last_block_in_file = (i_size_read(inode) + blocksize - 1) >>
1005 if (last_block > last_block_in_file)
1006 last_block = last_block_in_file;
1009 * Map blocks using the previous result first.
1011 if ((map.m_flags & F2FS_MAP_MAPPED) &&
1012 block_in_file > map.m_lblk &&
1013 block_in_file < (map.m_lblk + map.m_len))
1017 * Then do more f2fs_map_blocks() calls until we are
1018 * done with this page.
1022 if (block_in_file < last_block) {
1023 map.m_lblk = block_in_file;
1024 map.m_len = last_block - block_in_file;
1026 if (f2fs_map_blocks(inode, &map, 0,
1027 F2FS_GET_BLOCK_READ))
1028 goto set_error_page;
1031 if ((map.m_flags & F2FS_MAP_MAPPED)) {
1032 block_nr = map.m_pblk + block_in_file - map.m_lblk;
1033 SetPageMappedToDisk(page);
1035 if (!PageUptodate(page) && !cleancache_get_page(page)) {
1036 SetPageUptodate(page);
1040 zero_user_segment(page, 0, PAGE_SIZE);
1041 SetPageUptodate(page);
1047 * This page will go to BIO. Do we need to send this
1050 if (bio && (last_block_in_bio != block_nr - 1)) {
1052 __submit_bio(F2FS_I_SB(inode), READ, bio);
1056 struct fscrypt_ctx *ctx = NULL;
1058 if (f2fs_encrypted_inode(inode) &&
1059 S_ISREG(inode->i_mode)) {
1061 ctx = fscrypt_get_ctx(inode, GFP_NOFS);
1063 goto set_error_page;
1065 /* wait the page to be moved by cleaning */
1066 f2fs_wait_on_encrypted_page_writeback(
1067 F2FS_I_SB(inode), block_nr);
1070 bio = bio_alloc(GFP_KERNEL,
1071 min_t(int, nr_pages, BIO_MAX_PAGES));
1074 fscrypt_release_ctx(ctx);
1075 goto set_error_page;
1077 bio->bi_bdev = bdev;
1078 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(block_nr);
1079 bio->bi_end_io = f2fs_read_end_io;
1080 bio->bi_private = ctx;
1083 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
1084 goto submit_and_realloc;
1086 last_block_in_bio = block_nr;
1090 zero_user_segment(page, 0, PAGE_SIZE);
1095 __submit_bio(F2FS_I_SB(inode), READ, bio);
1103 BUG_ON(pages && !list_empty(pages));
1105 __submit_bio(F2FS_I_SB(inode), READ, bio);
1109 static int f2fs_read_data_page(struct file *file, struct page *page)
1111 struct inode *inode = page->mapping->host;
1114 trace_f2fs_readpage(page, DATA);
1116 /* If the file has inline data, try to read it directly */
1117 if (f2fs_has_inline_data(inode))
1118 ret = f2fs_read_inline_data(inode, page);
1120 ret = f2fs_mpage_readpages(page->mapping, NULL, page, 1);
1124 static int f2fs_read_data_pages(struct file *file,
1125 struct address_space *mapping,
1126 struct list_head *pages, unsigned nr_pages)
1128 struct inode *inode = file->f_mapping->host;
1129 struct page *page = list_entry(pages->prev, struct page, lru);
1131 trace_f2fs_readpages(inode, page, nr_pages);
1133 /* If the file has inline data, skip readpages */
1134 if (f2fs_has_inline_data(inode))
1137 return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages);
1140 int do_write_data_page(struct f2fs_io_info *fio)
1142 struct page *page = fio->page;
1143 struct inode *inode = page->mapping->host;
1144 struct dnode_of_data dn;
1147 set_new_dnode(&dn, inode, NULL, NULL, 0);
1148 err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
1152 fio->old_blkaddr = dn.data_blkaddr;
1154 /* This page is already truncated */
1155 if (fio->old_blkaddr == NULL_ADDR) {
1156 ClearPageUptodate(page);
1160 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) {
1161 gfp_t gfp_flags = GFP_NOFS;
1163 /* wait for GCed encrypted page writeback */
1164 f2fs_wait_on_encrypted_page_writeback(F2FS_I_SB(inode),
1167 fio->encrypted_page = fscrypt_encrypt_page(inode, fio->page,
1169 if (IS_ERR(fio->encrypted_page)) {
1170 err = PTR_ERR(fio->encrypted_page);
1171 if (err == -ENOMEM) {
1172 /* flush pending ios and wait for a while */
1173 f2fs_flush_merged_bios(F2FS_I_SB(inode));
1174 congestion_wait(BLK_RW_ASYNC, HZ/50);
1175 gfp_flags |= __GFP_NOFAIL;
1183 set_page_writeback(page);
1186 * If current allocation needs SSR,
1187 * it had better in-place writes for updated data.
1189 if (unlikely(fio->old_blkaddr != NEW_ADDR &&
1190 !is_cold_data(page) &&
1191 !IS_ATOMIC_WRITTEN_PAGE(page) &&
1192 need_inplace_update(inode))) {
1193 rewrite_data_page(fio);
1194 set_inode_flag(inode, FI_UPDATE_WRITE);
1195 trace_f2fs_do_write_data_page(page, IPU);
1197 write_data_page(&dn, fio);
1198 trace_f2fs_do_write_data_page(page, OPU);
1199 set_inode_flag(inode, FI_APPEND_WRITE);
1200 if (page->index == 0)
1201 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
1204 f2fs_put_dnode(&dn);
1208 static int f2fs_write_data_page(struct page *page,
1209 struct writeback_control *wbc)
1211 struct inode *inode = page->mapping->host;
1212 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1213 loff_t i_size = i_size_read(inode);
1214 const pgoff_t end_index = ((unsigned long long) i_size)
1216 unsigned offset = 0;
1217 bool need_balance_fs = false;
1219 struct f2fs_io_info fio = {
1222 .rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
1224 .encrypted_page = NULL,
1227 trace_f2fs_writepage(page, DATA);
1229 if (page->index < end_index)
1233 * If the offset is out-of-range of file size,
1234 * this page does not have to be written to disk.
1236 offset = i_size & (PAGE_SIZE - 1);
1237 if ((page->index >= end_index + 1) || !offset)
1240 zero_user_segment(page, offset, PAGE_SIZE);
1242 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1244 if (f2fs_is_drop_cache(inode))
1246 /* we should not write 0'th page having journal header */
1247 if (f2fs_is_volatile_file(inode) && (!page->index ||
1248 (!wbc->for_reclaim &&
1249 available_free_memory(sbi, BASE_CHECK))))
1252 /* Dentry blocks are controlled by checkpoint */
1253 if (S_ISDIR(inode->i_mode)) {
1254 if (unlikely(f2fs_cp_error(sbi)))
1256 err = do_write_data_page(&fio);
1260 /* we should bypass data pages to proceed the kworkder jobs */
1261 if (unlikely(f2fs_cp_error(sbi))) {
1266 if (!wbc->for_reclaim)
1267 need_balance_fs = true;
1268 else if (has_not_enough_free_secs(sbi, 0))
1273 if (f2fs_has_inline_data(inode))
1274 err = f2fs_write_inline_data(inode, page);
1276 err = do_write_data_page(&fio);
1277 f2fs_unlock_op(sbi);
1279 if (err && err != -ENOENT)
1282 clear_cold_data(page);
1284 inode_dec_dirty_pages(inode);
1286 ClearPageUptodate(page);
1288 if (wbc->for_reclaim) {
1289 f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, DATA, WRITE);
1290 remove_dirty_inode(inode);
1294 f2fs_balance_fs(sbi, need_balance_fs);
1296 if (unlikely(f2fs_cp_error(sbi)))
1297 f2fs_submit_merged_bio(sbi, DATA, WRITE);
1302 redirty_page_for_writepage(wbc, page);
1303 return AOP_WRITEPAGE_ACTIVATE;
1306 static int __f2fs_writepage(struct page *page, struct writeback_control *wbc,
1309 struct address_space *mapping = data;
1310 int ret = mapping->a_ops->writepage(page, wbc);
1311 mapping_set_error(mapping, ret);
1316 * This function was copied from write_cche_pages from mm/page-writeback.c.
1317 * The major change is making write step of cold data page separately from
1318 * warm/hot data page.
1320 static int f2fs_write_cache_pages(struct address_space *mapping,
1321 struct writeback_control *wbc, writepage_t writepage,
1326 struct pagevec pvec;
1328 pgoff_t uninitialized_var(writeback_index);
1330 pgoff_t end; /* Inclusive */
1333 int range_whole = 0;
1337 pagevec_init(&pvec, 0);
1339 if (wbc->range_cyclic) {
1340 writeback_index = mapping->writeback_index; /* prev offset */
1341 index = writeback_index;
1348 index = wbc->range_start >> PAGE_SHIFT;
1349 end = wbc->range_end >> PAGE_SHIFT;
1350 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1352 cycled = 1; /* ignore range_cyclic tests */
1354 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1355 tag = PAGECACHE_TAG_TOWRITE;
1357 tag = PAGECACHE_TAG_DIRTY;
1359 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1360 tag_pages_for_writeback(mapping, index, end);
1362 while (!done && (index <= end)) {
1365 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1366 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1);
1370 for (i = 0; i < nr_pages; i++) {
1371 struct page *page = pvec.pages[i];
1373 if (page->index > end) {
1378 done_index = page->index;
1382 if (unlikely(page->mapping != mapping)) {
1388 if (!PageDirty(page)) {
1389 /* someone wrote it for us */
1390 goto continue_unlock;
1393 if (step == is_cold_data(page))
1394 goto continue_unlock;
1396 if (PageWriteback(page)) {
1397 if (wbc->sync_mode != WB_SYNC_NONE)
1398 f2fs_wait_on_page_writeback(page,
1401 goto continue_unlock;
1404 BUG_ON(PageWriteback(page));
1405 if (!clear_page_dirty_for_io(page))
1406 goto continue_unlock;
1408 ret = (*writepage)(page, wbc, data);
1409 if (unlikely(ret)) {
1410 if (ret == AOP_WRITEPAGE_ACTIVATE) {
1414 done_index = page->index + 1;
1420 if (--wbc->nr_to_write <= 0 &&
1421 wbc->sync_mode == WB_SYNC_NONE) {
1426 pagevec_release(&pvec);
1435 if (!cycled && !done) {
1438 end = writeback_index - 1;
1441 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1442 mapping->writeback_index = done_index;
1447 static int f2fs_write_data_pages(struct address_space *mapping,
1448 struct writeback_control *wbc)
1450 struct inode *inode = mapping->host;
1451 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1452 bool locked = false;
1456 /* deal with chardevs and other special file */
1457 if (!mapping->a_ops->writepage)
1460 /* skip writing if there is no dirty page in this inode */
1461 if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
1464 if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE &&
1465 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
1466 available_free_memory(sbi, DIRTY_DENTS))
1469 /* skip writing during file defragment */
1470 if (is_inode_flag_set(inode, FI_DO_DEFRAG))
1473 /* during POR, we don't need to trigger writepage at all. */
1474 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1477 trace_f2fs_writepages(mapping->host, wbc, DATA);
1479 diff = nr_pages_to_write(sbi, DATA, wbc);
1481 if (!S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_ALL) {
1482 mutex_lock(&sbi->writepages);
1485 ret = f2fs_write_cache_pages(mapping, wbc, __f2fs_writepage, mapping);
1486 f2fs_submit_merged_bio_cond(sbi, inode, NULL, 0, DATA, WRITE);
1488 mutex_unlock(&sbi->writepages);
1490 remove_dirty_inode(inode);
1492 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
1496 wbc->pages_skipped += get_dirty_pages(inode);
1497 trace_f2fs_writepages(mapping->host, wbc, DATA);
1501 static void f2fs_write_failed(struct address_space *mapping, loff_t to)
1503 struct inode *inode = mapping->host;
1504 loff_t i_size = i_size_read(inode);
1507 truncate_pagecache(inode, i_size);
1508 truncate_blocks(inode, i_size, true);
1512 static int prepare_write_begin(struct f2fs_sb_info *sbi,
1513 struct page *page, loff_t pos, unsigned len,
1514 block_t *blk_addr, bool *node_changed)
1516 struct inode *inode = page->mapping->host;
1517 pgoff_t index = page->index;
1518 struct dnode_of_data dn;
1520 bool locked = false;
1521 struct extent_info ei;
1525 * we already allocated all the blocks, so we don't need to get
1526 * the block addresses when there is no need to fill the page.
1528 if (!f2fs_has_inline_data(inode) && !f2fs_encrypted_inode(inode) &&
1532 if (f2fs_has_inline_data(inode) ||
1533 (pos & PAGE_MASK) >= i_size_read(inode)) {
1538 /* check inline_data */
1539 ipage = get_node_page(sbi, inode->i_ino);
1540 if (IS_ERR(ipage)) {
1541 err = PTR_ERR(ipage);
1545 set_new_dnode(&dn, inode, ipage, ipage, 0);
1547 if (f2fs_has_inline_data(inode)) {
1548 if (pos + len <= MAX_INLINE_DATA) {
1549 read_inline_data(page, ipage);
1550 set_inode_flag(inode, FI_DATA_EXIST);
1552 set_inline_node(ipage);
1554 err = f2fs_convert_inline_page(&dn, page);
1557 if (dn.data_blkaddr == NULL_ADDR)
1558 err = f2fs_get_block(&dn, index);
1560 } else if (locked) {
1561 err = f2fs_get_block(&dn, index);
1563 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1564 dn.data_blkaddr = ei.blk + index - ei.fofs;
1567 err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
1568 if (err || dn.data_blkaddr == NULL_ADDR) {
1569 f2fs_put_dnode(&dn);
1577 /* convert_inline_page can make node_changed */
1578 *blk_addr = dn.data_blkaddr;
1579 *node_changed = dn.node_changed;
1581 f2fs_put_dnode(&dn);
1584 f2fs_unlock_op(sbi);
1588 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
1589 loff_t pos, unsigned len, unsigned flags,
1590 struct page **pagep, void **fsdata)
1592 struct inode *inode = mapping->host;
1593 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1594 struct page *page = NULL;
1595 pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
1596 bool need_balance = false;
1597 block_t blkaddr = NULL_ADDR;
1600 trace_f2fs_write_begin(inode, pos, len, flags);
1603 * We should check this at this moment to avoid deadlock on inode page
1604 * and #0 page. The locking rule for inline_data conversion should be:
1605 * lock_page(page #0) -> lock_page(inode_page)
1608 err = f2fs_convert_inline_inode(inode);
1613 page = grab_cache_page_write_begin(mapping, index, flags);
1621 err = prepare_write_begin(sbi, page, pos, len,
1622 &blkaddr, &need_balance);
1626 if (need_balance && has_not_enough_free_secs(sbi, 0)) {
1628 f2fs_balance_fs(sbi, true);
1630 if (page->mapping != mapping) {
1631 /* The page got truncated from under us */
1632 f2fs_put_page(page, 1);
1637 f2fs_wait_on_page_writeback(page, DATA, false);
1639 /* wait for GCed encrypted page writeback */
1640 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
1641 f2fs_wait_on_encrypted_page_writeback(sbi, blkaddr);
1643 if (len == PAGE_SIZE)
1645 if (PageUptodate(page))
1648 if ((pos & PAGE_MASK) >= i_size_read(inode)) {
1649 unsigned start = pos & (PAGE_SIZE - 1);
1650 unsigned end = start + len;
1652 /* Reading beyond i_size is simple: memset to zero */
1653 zero_user_segments(page, 0, start, end, PAGE_SIZE);
1657 if (blkaddr == NEW_ADDR) {
1658 zero_user_segment(page, 0, PAGE_SIZE);
1660 struct f2fs_io_info fio = {
1664 .old_blkaddr = blkaddr,
1665 .new_blkaddr = blkaddr,
1667 .encrypted_page = NULL,
1669 err = f2fs_submit_page_bio(&fio);
1674 if (unlikely(!PageUptodate(page))) {
1678 if (unlikely(page->mapping != mapping)) {
1679 f2fs_put_page(page, 1);
1683 /* avoid symlink page */
1684 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) {
1685 err = fscrypt_decrypt_page(page);
1691 SetPageUptodate(page);
1693 clear_cold_data(page);
1697 f2fs_put_page(page, 1);
1698 f2fs_write_failed(mapping, pos + len);
1702 static int f2fs_write_end(struct file *file,
1703 struct address_space *mapping,
1704 loff_t pos, unsigned len, unsigned copied,
1705 struct page *page, void *fsdata)
1707 struct inode *inode = page->mapping->host;
1709 trace_f2fs_write_end(inode, pos, len, copied);
1711 set_page_dirty(page);
1713 if (pos + copied > i_size_read(inode))
1714 f2fs_i_size_write(inode, pos + copied);
1716 f2fs_put_page(page, 1);
1717 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1721 static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
1724 unsigned blocksize_mask = inode->i_sb->s_blocksize - 1;
1726 if (offset & blocksize_mask)
1729 if (iov_iter_alignment(iter) & blocksize_mask)
1735 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1737 struct address_space *mapping = iocb->ki_filp->f_mapping;
1738 struct inode *inode = mapping->host;
1739 size_t count = iov_iter_count(iter);
1740 loff_t offset = iocb->ki_pos;
1743 err = check_direct_IO(inode, iter, offset);
1747 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
1750 trace_f2fs_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
1752 err = blockdev_direct_IO(iocb, inode, iter, get_data_block_dio);
1753 if (iov_iter_rw(iter) == WRITE) {
1755 set_inode_flag(inode, FI_UPDATE_WRITE);
1757 f2fs_write_failed(mapping, offset + count);
1760 trace_f2fs_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), err);
1765 void f2fs_invalidate_page(struct page *page, unsigned int offset,
1766 unsigned int length)
1768 struct inode *inode = page->mapping->host;
1769 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1771 if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
1772 (offset % PAGE_SIZE || length != PAGE_SIZE))
1775 if (PageDirty(page)) {
1776 if (inode->i_ino == F2FS_META_INO(sbi))
1777 dec_page_count(sbi, F2FS_DIRTY_META);
1778 else if (inode->i_ino == F2FS_NODE_INO(sbi))
1779 dec_page_count(sbi, F2FS_DIRTY_NODES);
1781 inode_dec_dirty_pages(inode);
1784 /* This is atomic written page, keep Private */
1785 if (IS_ATOMIC_WRITTEN_PAGE(page))
1788 set_page_private(page, 0);
1789 ClearPagePrivate(page);
1792 int f2fs_release_page(struct page *page, gfp_t wait)
1794 /* If this is dirty page, keep PagePrivate */
1795 if (PageDirty(page))
1798 /* This is atomic written page, keep Private */
1799 if (IS_ATOMIC_WRITTEN_PAGE(page))
1802 set_page_private(page, 0);
1803 ClearPagePrivate(page);
1807 static int f2fs_set_data_page_dirty(struct page *page)
1809 struct address_space *mapping = page->mapping;
1810 struct inode *inode = mapping->host;
1812 trace_f2fs_set_page_dirty(page, DATA);
1814 SetPageUptodate(page);
1816 if (f2fs_is_atomic_file(inode)) {
1817 if (!IS_ATOMIC_WRITTEN_PAGE(page)) {
1818 register_inmem_page(inode, page);
1822 * Previously, this page has been registered, we just
1828 if (!PageDirty(page)) {
1829 __set_page_dirty_nobuffers(page);
1830 update_dirty_page(inode, page);
1836 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
1838 struct inode *inode = mapping->host;
1840 if (f2fs_has_inline_data(inode))
1843 /* make sure allocating whole blocks */
1844 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1845 filemap_write_and_wait(mapping);
1847 return generic_block_bmap(mapping, block, get_data_block_bmap);
1850 const struct address_space_operations f2fs_dblock_aops = {
1851 .readpage = f2fs_read_data_page,
1852 .readpages = f2fs_read_data_pages,
1853 .writepage = f2fs_write_data_page,
1854 .writepages = f2fs_write_data_pages,
1855 .write_begin = f2fs_write_begin,
1856 .write_end = f2fs_write_end,
1857 .set_page_dirty = f2fs_set_data_page_dirty,
1858 .invalidatepage = f2fs_invalidate_page,
1859 .releasepage = f2fs_release_page,
1860 .direct_IO = f2fs_direct_IO,