4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/stop_machine.h>
61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h>
63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73 #include <linux/ftrace.h>
74 #include <linux/slab.h>
77 #include <asm/irq_regs.h>
79 #include "sched_cpupri.h"
80 #include "workqueue_sched.h"
82 #define CREATE_TRACE_POINTS
83 #include <trace/events/sched.h>
86 * Convert user-nice values [ -20 ... 0 ... 19 ]
87 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
90 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
91 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
92 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
95 * 'User priority' is the nice value converted to something we
96 * can work with better when scaling various scheduler parameters,
97 * it's a [ 0 ... 39 ] range.
99 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
100 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
101 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
104 * Helpers for converting nanosecond timing to jiffy resolution
106 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
108 #define NICE_0_LOAD SCHED_LOAD_SCALE
109 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
112 * These are the 'tuning knobs' of the scheduler:
114 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
115 * Timeslices get refilled after they expire.
117 #define DEF_TIMESLICE (100 * HZ / 1000)
120 * single value that denotes runtime == period, ie unlimited time.
122 #define RUNTIME_INF ((u64)~0ULL)
124 static inline int rt_policy(int policy)
126 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
131 static inline int task_has_rt_policy(struct task_struct *p)
133 return rt_policy(p->policy);
137 * This is the priority-queue data structure of the RT scheduling class:
139 struct rt_prio_array {
140 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
141 struct list_head queue[MAX_RT_PRIO];
144 struct rt_bandwidth {
145 /* nests inside the rq lock: */
146 raw_spinlock_t rt_runtime_lock;
149 struct hrtimer rt_period_timer;
152 static struct rt_bandwidth def_rt_bandwidth;
154 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
156 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
158 struct rt_bandwidth *rt_b =
159 container_of(timer, struct rt_bandwidth, rt_period_timer);
165 now = hrtimer_cb_get_time(timer);
166 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
171 idle = do_sched_rt_period_timer(rt_b, overrun);
174 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
178 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
180 rt_b->rt_period = ns_to_ktime(period);
181 rt_b->rt_runtime = runtime;
183 raw_spin_lock_init(&rt_b->rt_runtime_lock);
185 hrtimer_init(&rt_b->rt_period_timer,
186 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
187 rt_b->rt_period_timer.function = sched_rt_period_timer;
190 static inline int rt_bandwidth_enabled(void)
192 return sysctl_sched_rt_runtime >= 0;
195 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
199 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
202 if (hrtimer_active(&rt_b->rt_period_timer))
205 raw_spin_lock(&rt_b->rt_runtime_lock);
210 if (hrtimer_active(&rt_b->rt_period_timer))
213 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
214 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
216 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
217 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
218 delta = ktime_to_ns(ktime_sub(hard, soft));
219 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
220 HRTIMER_MODE_ABS_PINNED, 0);
222 raw_spin_unlock(&rt_b->rt_runtime_lock);
225 #ifdef CONFIG_RT_GROUP_SCHED
226 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
228 hrtimer_cancel(&rt_b->rt_period_timer);
233 * sched_domains_mutex serializes calls to arch_init_sched_domains,
234 * detach_destroy_domains and partition_sched_domains.
236 static DEFINE_MUTEX(sched_domains_mutex);
238 #ifdef CONFIG_CGROUP_SCHED
240 #include <linux/cgroup.h>
244 static LIST_HEAD(task_groups);
246 /* task group related information */
248 struct cgroup_subsys_state css;
250 #ifdef CONFIG_FAIR_GROUP_SCHED
251 /* schedulable entities of this group on each cpu */
252 struct sched_entity **se;
253 /* runqueue "owned" by this group on each cpu */
254 struct cfs_rq **cfs_rq;
255 unsigned long shares;
258 #ifdef CONFIG_RT_GROUP_SCHED
259 struct sched_rt_entity **rt_se;
260 struct rt_rq **rt_rq;
262 struct rt_bandwidth rt_bandwidth;
266 struct list_head list;
268 struct task_group *parent;
269 struct list_head siblings;
270 struct list_head children;
273 #define root_task_group init_task_group
275 /* task_group_lock serializes add/remove of task groups and also changes to
276 * a task group's cpu shares.
278 static DEFINE_SPINLOCK(task_group_lock);
280 #ifdef CONFIG_FAIR_GROUP_SCHED
283 static int root_task_group_empty(void)
285 return list_empty(&root_task_group.children);
289 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
292 * A weight of 0 or 1 can cause arithmetics problems.
293 * A weight of a cfs_rq is the sum of weights of which entities
294 * are queued on this cfs_rq, so a weight of a entity should not be
295 * too large, so as the shares value of a task group.
296 * (The default weight is 1024 - so there's no practical
297 * limitation from this.)
300 #define MAX_SHARES (1UL << 18)
302 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
305 /* Default task group.
306 * Every task in system belong to this group at bootup.
308 struct task_group init_task_group;
310 #endif /* CONFIG_CGROUP_SCHED */
312 /* CFS-related fields in a runqueue */
314 struct load_weight load;
315 unsigned long nr_running;
320 struct rb_root tasks_timeline;
321 struct rb_node *rb_leftmost;
323 struct list_head tasks;
324 struct list_head *balance_iterator;
327 * 'curr' points to currently running entity on this cfs_rq.
328 * It is set to NULL otherwise (i.e when none are currently running).
330 struct sched_entity *curr, *next, *last;
332 unsigned int nr_spread_over;
334 #ifdef CONFIG_FAIR_GROUP_SCHED
335 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
338 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
339 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
340 * (like users, containers etc.)
342 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
343 * list is used during load balance.
345 struct list_head leaf_cfs_rq_list;
346 struct task_group *tg; /* group that "owns" this runqueue */
350 * the part of load.weight contributed by tasks
352 unsigned long task_weight;
355 * h_load = weight * f(tg)
357 * Where f(tg) is the recursive weight fraction assigned to
360 unsigned long h_load;
363 * this cpu's part of tg->shares
365 unsigned long shares;
368 * load.weight at the time we set shares
370 unsigned long rq_weight;
375 /* Real-Time classes' related field in a runqueue: */
377 struct rt_prio_array active;
378 unsigned long rt_nr_running;
379 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
381 int curr; /* highest queued rt task prio */
383 int next; /* next highest */
388 unsigned long rt_nr_migratory;
389 unsigned long rt_nr_total;
391 struct plist_head pushable_tasks;
396 /* Nests inside the rq lock: */
397 raw_spinlock_t rt_runtime_lock;
399 #ifdef CONFIG_RT_GROUP_SCHED
400 unsigned long rt_nr_boosted;
403 struct list_head leaf_rt_rq_list;
404 struct task_group *tg;
411 * We add the notion of a root-domain which will be used to define per-domain
412 * variables. Each exclusive cpuset essentially defines an island domain by
413 * fully partitioning the member cpus from any other cpuset. Whenever a new
414 * exclusive cpuset is created, we also create and attach a new root-domain
421 cpumask_var_t online;
424 * The "RT overload" flag: it gets set if a CPU has more than
425 * one runnable RT task.
427 cpumask_var_t rto_mask;
429 struct cpupri cpupri;
433 * By default the system creates a single root-domain with all cpus as
434 * members (mimicking the global state we have today).
436 static struct root_domain def_root_domain;
438 #endif /* CONFIG_SMP */
441 * This is the main, per-CPU runqueue data structure.
443 * Locking rule: those places that want to lock multiple runqueues
444 * (such as the load balancing or the thread migration code), lock
445 * acquire operations must be ordered by ascending &runqueue.
452 * nr_running and cpu_load should be in the same cacheline because
453 * remote CPUs use both these fields when doing load calculation.
455 unsigned long nr_running;
456 #define CPU_LOAD_IDX_MAX 5
457 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
458 unsigned long last_load_update_tick;
461 unsigned char nohz_balance_kick;
463 unsigned int skip_clock_update;
465 /* capture load from *all* tasks on this cpu: */
466 struct load_weight load;
467 unsigned long nr_load_updates;
473 #ifdef CONFIG_FAIR_GROUP_SCHED
474 /* list of leaf cfs_rq on this cpu: */
475 struct list_head leaf_cfs_rq_list;
477 #ifdef CONFIG_RT_GROUP_SCHED
478 struct list_head leaf_rt_rq_list;
482 * This is part of a global counter where only the total sum
483 * over all CPUs matters. A task can increase this counter on
484 * one CPU and if it got migrated afterwards it may decrease
485 * it on another CPU. Always updated under the runqueue lock:
487 unsigned long nr_uninterruptible;
489 struct task_struct *curr, *idle, *stop;
490 unsigned long next_balance;
491 struct mm_struct *prev_mm;
499 struct root_domain *rd;
500 struct sched_domain *sd;
502 unsigned long cpu_power;
504 unsigned char idle_at_tick;
505 /* For active balancing */
509 struct cpu_stop_work active_balance_work;
510 /* cpu of this runqueue: */
514 unsigned long avg_load_per_task;
522 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
526 /* calc_load related fields */
527 unsigned long calc_load_update;
528 long calc_load_active;
530 #ifdef CONFIG_SCHED_HRTICK
532 int hrtick_csd_pending;
533 struct call_single_data hrtick_csd;
535 struct hrtimer hrtick_timer;
538 #ifdef CONFIG_SCHEDSTATS
540 struct sched_info rq_sched_info;
541 unsigned long long rq_cpu_time;
542 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
544 /* sys_sched_yield() stats */
545 unsigned int yld_count;
547 /* schedule() stats */
548 unsigned int sched_switch;
549 unsigned int sched_count;
550 unsigned int sched_goidle;
552 /* try_to_wake_up() stats */
553 unsigned int ttwu_count;
554 unsigned int ttwu_local;
557 unsigned int bkl_count;
561 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
564 static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
566 static inline int cpu_of(struct rq *rq)
575 #define rcu_dereference_check_sched_domain(p) \
576 rcu_dereference_check((p), \
577 rcu_read_lock_sched_held() || \
578 lockdep_is_held(&sched_domains_mutex))
581 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
582 * See detach_destroy_domains: synchronize_sched for details.
584 * The domain tree of any CPU may only be accessed from within
585 * preempt-disabled sections.
587 #define for_each_domain(cpu, __sd) \
588 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
590 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
591 #define this_rq() (&__get_cpu_var(runqueues))
592 #define task_rq(p) cpu_rq(task_cpu(p))
593 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
594 #define raw_rq() (&__raw_get_cpu_var(runqueues))
596 #ifdef CONFIG_CGROUP_SCHED
599 * Return the group to which this tasks belongs.
601 * We use task_subsys_state_check() and extend the RCU verification
602 * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
603 * holds that lock for each task it moves into the cgroup. Therefore
604 * by holding that lock, we pin the task to the current cgroup.
606 static inline struct task_group *task_group(struct task_struct *p)
608 struct cgroup_subsys_state *css;
610 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
611 lockdep_is_held(&task_rq(p)->lock));
612 return container_of(css, struct task_group, css);
615 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
616 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
618 #ifdef CONFIG_FAIR_GROUP_SCHED
619 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
620 p->se.parent = task_group(p)->se[cpu];
623 #ifdef CONFIG_RT_GROUP_SCHED
624 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
625 p->rt.parent = task_group(p)->rt_se[cpu];
629 #else /* CONFIG_CGROUP_SCHED */
631 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
632 static inline struct task_group *task_group(struct task_struct *p)
637 #endif /* CONFIG_CGROUP_SCHED */
639 static u64 irq_time_cpu(int cpu);
640 static void sched_irq_time_avg_update(struct rq *rq, u64 irq_time);
642 inline void update_rq_clock(struct rq *rq)
644 if (!rq->skip_clock_update) {
645 int cpu = cpu_of(rq);
648 rq->clock = sched_clock_cpu(cpu);
649 irq_time = irq_time_cpu(cpu);
650 if (rq->clock - irq_time > rq->clock_task)
651 rq->clock_task = rq->clock - irq_time;
653 sched_irq_time_avg_update(rq, irq_time);
658 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
660 #ifdef CONFIG_SCHED_DEBUG
661 # define const_debug __read_mostly
663 # define const_debug static const
668 * @cpu: the processor in question.
670 * Returns true if the current cpu runqueue is locked.
671 * This interface allows printk to be called with the runqueue lock
672 * held and know whether or not it is OK to wake up the klogd.
674 int runqueue_is_locked(int cpu)
676 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
680 * Debugging: various feature bits
683 #define SCHED_FEAT(name, enabled) \
684 __SCHED_FEAT_##name ,
687 #include "sched_features.h"
692 #define SCHED_FEAT(name, enabled) \
693 (1UL << __SCHED_FEAT_##name) * enabled |
695 const_debug unsigned int sysctl_sched_features =
696 #include "sched_features.h"
701 #ifdef CONFIG_SCHED_DEBUG
702 #define SCHED_FEAT(name, enabled) \
705 static __read_mostly char *sched_feat_names[] = {
706 #include "sched_features.h"
712 static int sched_feat_show(struct seq_file *m, void *v)
716 for (i = 0; sched_feat_names[i]; i++) {
717 if (!(sysctl_sched_features & (1UL << i)))
719 seq_printf(m, "%s ", sched_feat_names[i]);
727 sched_feat_write(struct file *filp, const char __user *ubuf,
728 size_t cnt, loff_t *ppos)
738 if (copy_from_user(&buf, ubuf, cnt))
744 if (strncmp(buf, "NO_", 3) == 0) {
749 for (i = 0; sched_feat_names[i]; i++) {
750 if (strcmp(cmp, sched_feat_names[i]) == 0) {
752 sysctl_sched_features &= ~(1UL << i);
754 sysctl_sched_features |= (1UL << i);
759 if (!sched_feat_names[i])
767 static int sched_feat_open(struct inode *inode, struct file *filp)
769 return single_open(filp, sched_feat_show, NULL);
772 static const struct file_operations sched_feat_fops = {
773 .open = sched_feat_open,
774 .write = sched_feat_write,
777 .release = single_release,
780 static __init int sched_init_debug(void)
782 debugfs_create_file("sched_features", 0644, NULL, NULL,
787 late_initcall(sched_init_debug);
791 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
794 * Number of tasks to iterate in a single balance run.
795 * Limited because this is done with IRQs disabled.
797 const_debug unsigned int sysctl_sched_nr_migrate = 32;
800 * ratelimit for updating the group shares.
803 unsigned int sysctl_sched_shares_ratelimit = 250000;
804 unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
807 * Inject some fuzzyness into changing the per-cpu group shares
808 * this avoids remote rq-locks at the expense of fairness.
811 unsigned int sysctl_sched_shares_thresh = 4;
814 * period over which we average the RT time consumption, measured
819 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
822 * period over which we measure -rt task cpu usage in us.
825 unsigned int sysctl_sched_rt_period = 1000000;
827 static __read_mostly int scheduler_running;
830 * part of the period that we allow rt tasks to run in us.
833 int sysctl_sched_rt_runtime = 950000;
835 static inline u64 global_rt_period(void)
837 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
840 static inline u64 global_rt_runtime(void)
842 if (sysctl_sched_rt_runtime < 0)
845 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
848 #ifndef prepare_arch_switch
849 # define prepare_arch_switch(next) do { } while (0)
851 #ifndef finish_arch_switch
852 # define finish_arch_switch(prev) do { } while (0)
855 static inline int task_current(struct rq *rq, struct task_struct *p)
857 return rq->curr == p;
860 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
861 static inline int task_running(struct rq *rq, struct task_struct *p)
863 return task_current(rq, p);
866 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
870 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
872 #ifdef CONFIG_DEBUG_SPINLOCK
873 /* this is a valid case when another task releases the spinlock */
874 rq->lock.owner = current;
877 * If we are tracking spinlock dependencies then we have to
878 * fix up the runqueue lock - which gets 'carried over' from
881 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
883 raw_spin_unlock_irq(&rq->lock);
886 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
887 static inline int task_running(struct rq *rq, struct task_struct *p)
892 return task_current(rq, p);
896 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
900 * We can optimise this out completely for !SMP, because the
901 * SMP rebalancing from interrupt is the only thing that cares
906 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
907 raw_spin_unlock_irq(&rq->lock);
909 raw_spin_unlock(&rq->lock);
913 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
917 * After ->oncpu is cleared, the task can be moved to a different CPU.
918 * We must ensure this doesn't happen until the switch is completely
924 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
928 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
931 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
934 static inline int task_is_waking(struct task_struct *p)
936 return unlikely(p->state == TASK_WAKING);
940 * __task_rq_lock - lock the runqueue a given task resides on.
941 * Must be called interrupts disabled.
943 static inline struct rq *__task_rq_lock(struct task_struct *p)
950 raw_spin_lock(&rq->lock);
951 if (likely(rq == task_rq(p)))
953 raw_spin_unlock(&rq->lock);
958 * task_rq_lock - lock the runqueue a given task resides on and disable
959 * interrupts. Note the ordering: we can safely lookup the task_rq without
960 * explicitly disabling preemption.
962 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
968 local_irq_save(*flags);
970 raw_spin_lock(&rq->lock);
971 if (likely(rq == task_rq(p)))
973 raw_spin_unlock_irqrestore(&rq->lock, *flags);
977 static void __task_rq_unlock(struct rq *rq)
980 raw_spin_unlock(&rq->lock);
983 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
986 raw_spin_unlock_irqrestore(&rq->lock, *flags);
990 * this_rq_lock - lock this runqueue and disable interrupts.
992 static struct rq *this_rq_lock(void)
999 raw_spin_lock(&rq->lock);
1004 #ifdef CONFIG_SCHED_HRTICK
1006 * Use HR-timers to deliver accurate preemption points.
1008 * Its all a bit involved since we cannot program an hrt while holding the
1009 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1012 * When we get rescheduled we reprogram the hrtick_timer outside of the
1018 * - enabled by features
1019 * - hrtimer is actually high res
1021 static inline int hrtick_enabled(struct rq *rq)
1023 if (!sched_feat(HRTICK))
1025 if (!cpu_active(cpu_of(rq)))
1027 return hrtimer_is_hres_active(&rq->hrtick_timer);
1030 static void hrtick_clear(struct rq *rq)
1032 if (hrtimer_active(&rq->hrtick_timer))
1033 hrtimer_cancel(&rq->hrtick_timer);
1037 * High-resolution timer tick.
1038 * Runs from hardirq context with interrupts disabled.
1040 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1042 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1044 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1046 raw_spin_lock(&rq->lock);
1047 update_rq_clock(rq);
1048 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1049 raw_spin_unlock(&rq->lock);
1051 return HRTIMER_NORESTART;
1056 * called from hardirq (IPI) context
1058 static void __hrtick_start(void *arg)
1060 struct rq *rq = arg;
1062 raw_spin_lock(&rq->lock);
1063 hrtimer_restart(&rq->hrtick_timer);
1064 rq->hrtick_csd_pending = 0;
1065 raw_spin_unlock(&rq->lock);
1069 * Called to set the hrtick timer state.
1071 * called with rq->lock held and irqs disabled
1073 static void hrtick_start(struct rq *rq, u64 delay)
1075 struct hrtimer *timer = &rq->hrtick_timer;
1076 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1078 hrtimer_set_expires(timer, time);
1080 if (rq == this_rq()) {
1081 hrtimer_restart(timer);
1082 } else if (!rq->hrtick_csd_pending) {
1083 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1084 rq->hrtick_csd_pending = 1;
1089 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1091 int cpu = (int)(long)hcpu;
1094 case CPU_UP_CANCELED:
1095 case CPU_UP_CANCELED_FROZEN:
1096 case CPU_DOWN_PREPARE:
1097 case CPU_DOWN_PREPARE_FROZEN:
1099 case CPU_DEAD_FROZEN:
1100 hrtick_clear(cpu_rq(cpu));
1107 static __init void init_hrtick(void)
1109 hotcpu_notifier(hotplug_hrtick, 0);
1113 * Called to set the hrtick timer state.
1115 * called with rq->lock held and irqs disabled
1117 static void hrtick_start(struct rq *rq, u64 delay)
1119 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1120 HRTIMER_MODE_REL_PINNED, 0);
1123 static inline void init_hrtick(void)
1126 #endif /* CONFIG_SMP */
1128 static void init_rq_hrtick(struct rq *rq)
1131 rq->hrtick_csd_pending = 0;
1133 rq->hrtick_csd.flags = 0;
1134 rq->hrtick_csd.func = __hrtick_start;
1135 rq->hrtick_csd.info = rq;
1138 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1139 rq->hrtick_timer.function = hrtick;
1141 #else /* CONFIG_SCHED_HRTICK */
1142 static inline void hrtick_clear(struct rq *rq)
1146 static inline void init_rq_hrtick(struct rq *rq)
1150 static inline void init_hrtick(void)
1153 #endif /* CONFIG_SCHED_HRTICK */
1156 * resched_task - mark a task 'to be rescheduled now'.
1158 * On UP this means the setting of the need_resched flag, on SMP it
1159 * might also involve a cross-CPU call to trigger the scheduler on
1164 #ifndef tsk_is_polling
1165 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1168 static void resched_task(struct task_struct *p)
1172 assert_raw_spin_locked(&task_rq(p)->lock);
1174 if (test_tsk_need_resched(p))
1177 set_tsk_need_resched(p);
1180 if (cpu == smp_processor_id())
1183 /* NEED_RESCHED must be visible before we test polling */
1185 if (!tsk_is_polling(p))
1186 smp_send_reschedule(cpu);
1189 static void resched_cpu(int cpu)
1191 struct rq *rq = cpu_rq(cpu);
1192 unsigned long flags;
1194 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
1196 resched_task(cpu_curr(cpu));
1197 raw_spin_unlock_irqrestore(&rq->lock, flags);
1202 * In the semi idle case, use the nearest busy cpu for migrating timers
1203 * from an idle cpu. This is good for power-savings.
1205 * We don't do similar optimization for completely idle system, as
1206 * selecting an idle cpu will add more delays to the timers than intended
1207 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1209 int get_nohz_timer_target(void)
1211 int cpu = smp_processor_id();
1213 struct sched_domain *sd;
1215 for_each_domain(cpu, sd) {
1216 for_each_cpu(i, sched_domain_span(sd))
1223 * When add_timer_on() enqueues a timer into the timer wheel of an
1224 * idle CPU then this timer might expire before the next timer event
1225 * which is scheduled to wake up that CPU. In case of a completely
1226 * idle system the next event might even be infinite time into the
1227 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1228 * leaves the inner idle loop so the newly added timer is taken into
1229 * account when the CPU goes back to idle and evaluates the timer
1230 * wheel for the next timer event.
1232 void wake_up_idle_cpu(int cpu)
1234 struct rq *rq = cpu_rq(cpu);
1236 if (cpu == smp_processor_id())
1240 * This is safe, as this function is called with the timer
1241 * wheel base lock of (cpu) held. When the CPU is on the way
1242 * to idle and has not yet set rq->curr to idle then it will
1243 * be serialized on the timer wheel base lock and take the new
1244 * timer into account automatically.
1246 if (rq->curr != rq->idle)
1250 * We can set TIF_RESCHED on the idle task of the other CPU
1251 * lockless. The worst case is that the other CPU runs the
1252 * idle task through an additional NOOP schedule()
1254 set_tsk_need_resched(rq->idle);
1256 /* NEED_RESCHED must be visible before we test polling */
1258 if (!tsk_is_polling(rq->idle))
1259 smp_send_reschedule(cpu);
1262 #endif /* CONFIG_NO_HZ */
1264 static u64 sched_avg_period(void)
1266 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1269 static void sched_avg_update(struct rq *rq)
1271 s64 period = sched_avg_period();
1273 while ((s64)(rq->clock - rq->age_stamp) > period) {
1275 * Inline assembly required to prevent the compiler
1276 * optimising this loop into a divmod call.
1277 * See __iter_div_u64_rem() for another example of this.
1279 asm("" : "+rm" (rq->age_stamp));
1280 rq->age_stamp += period;
1285 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1287 rq->rt_avg += rt_delta;
1288 sched_avg_update(rq);
1291 #else /* !CONFIG_SMP */
1292 static void resched_task(struct task_struct *p)
1294 assert_raw_spin_locked(&task_rq(p)->lock);
1295 set_tsk_need_resched(p);
1298 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1302 static void sched_avg_update(struct rq *rq)
1305 #endif /* CONFIG_SMP */
1307 #if BITS_PER_LONG == 32
1308 # define WMULT_CONST (~0UL)
1310 # define WMULT_CONST (1UL << 32)
1313 #define WMULT_SHIFT 32
1316 * Shift right and round:
1318 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1321 * delta *= weight / lw
1323 static unsigned long
1324 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1325 struct load_weight *lw)
1329 if (!lw->inv_weight) {
1330 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1333 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1337 tmp = (u64)delta_exec * weight;
1339 * Check whether we'd overflow the 64-bit multiplication:
1341 if (unlikely(tmp > WMULT_CONST))
1342 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1345 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1347 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1350 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1356 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1363 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1364 * of tasks with abnormal "nice" values across CPUs the contribution that
1365 * each task makes to its run queue's load is weighted according to its
1366 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1367 * scaled version of the new time slice allocation that they receive on time
1371 #define WEIGHT_IDLEPRIO 3
1372 #define WMULT_IDLEPRIO 1431655765
1375 * Nice levels are multiplicative, with a gentle 10% change for every
1376 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1377 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1378 * that remained on nice 0.
1380 * The "10% effect" is relative and cumulative: from _any_ nice level,
1381 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1382 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1383 * If a task goes up by ~10% and another task goes down by ~10% then
1384 * the relative distance between them is ~25%.)
1386 static const int prio_to_weight[40] = {
1387 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1388 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1389 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1390 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1391 /* 0 */ 1024, 820, 655, 526, 423,
1392 /* 5 */ 335, 272, 215, 172, 137,
1393 /* 10 */ 110, 87, 70, 56, 45,
1394 /* 15 */ 36, 29, 23, 18, 15,
1398 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1400 * In cases where the weight does not change often, we can use the
1401 * precalculated inverse to speed up arithmetics by turning divisions
1402 * into multiplications:
1404 static const u32 prio_to_wmult[40] = {
1405 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1406 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1407 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1408 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1409 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1410 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1411 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1412 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1415 /* Time spent by the tasks of the cpu accounting group executing in ... */
1416 enum cpuacct_stat_index {
1417 CPUACCT_STAT_USER, /* ... user mode */
1418 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1420 CPUACCT_STAT_NSTATS,
1423 #ifdef CONFIG_CGROUP_CPUACCT
1424 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1425 static void cpuacct_update_stats(struct task_struct *tsk,
1426 enum cpuacct_stat_index idx, cputime_t val);
1428 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1429 static inline void cpuacct_update_stats(struct task_struct *tsk,
1430 enum cpuacct_stat_index idx, cputime_t val) {}
1433 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1435 update_load_add(&rq->load, load);
1438 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1440 update_load_sub(&rq->load, load);
1443 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1444 typedef int (*tg_visitor)(struct task_group *, void *);
1447 * Iterate the full tree, calling @down when first entering a node and @up when
1448 * leaving it for the final time.
1450 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1452 struct task_group *parent, *child;
1456 parent = &root_task_group;
1458 ret = (*down)(parent, data);
1461 list_for_each_entry_rcu(child, &parent->children, siblings) {
1468 ret = (*up)(parent, data);
1473 parent = parent->parent;
1482 static int tg_nop(struct task_group *tg, void *data)
1489 /* Used instead of source_load when we know the type == 0 */
1490 static unsigned long weighted_cpuload(const int cpu)
1492 return cpu_rq(cpu)->load.weight;
1496 * Return a low guess at the load of a migration-source cpu weighted
1497 * according to the scheduling class and "nice" value.
1499 * We want to under-estimate the load of migration sources, to
1500 * balance conservatively.
1502 static unsigned long source_load(int cpu, int type)
1504 struct rq *rq = cpu_rq(cpu);
1505 unsigned long total = weighted_cpuload(cpu);
1507 if (type == 0 || !sched_feat(LB_BIAS))
1510 return min(rq->cpu_load[type-1], total);
1514 * Return a high guess at the load of a migration-target cpu weighted
1515 * according to the scheduling class and "nice" value.
1517 static unsigned long target_load(int cpu, int type)
1519 struct rq *rq = cpu_rq(cpu);
1520 unsigned long total = weighted_cpuload(cpu);
1522 if (type == 0 || !sched_feat(LB_BIAS))
1525 return max(rq->cpu_load[type-1], total);
1528 static unsigned long power_of(int cpu)
1530 return cpu_rq(cpu)->cpu_power;
1533 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1535 static unsigned long cpu_avg_load_per_task(int cpu)
1537 struct rq *rq = cpu_rq(cpu);
1538 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1541 rq->avg_load_per_task = rq->load.weight / nr_running;
1543 rq->avg_load_per_task = 0;
1545 return rq->avg_load_per_task;
1548 #ifdef CONFIG_FAIR_GROUP_SCHED
1550 static __read_mostly unsigned long __percpu *update_shares_data;
1552 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1555 * Calculate and set the cpu's group shares.
1557 static void update_group_shares_cpu(struct task_group *tg, int cpu,
1558 unsigned long sd_shares,
1559 unsigned long sd_rq_weight,
1560 unsigned long *usd_rq_weight)
1562 unsigned long shares, rq_weight;
1565 rq_weight = usd_rq_weight[cpu];
1568 rq_weight = NICE_0_LOAD;
1572 * \Sum_j shares_j * rq_weight_i
1573 * shares_i = -----------------------------
1574 * \Sum_j rq_weight_j
1576 shares = (sd_shares * rq_weight) / sd_rq_weight;
1577 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1579 if (abs(shares - tg->se[cpu]->load.weight) >
1580 sysctl_sched_shares_thresh) {
1581 struct rq *rq = cpu_rq(cpu);
1582 unsigned long flags;
1584 raw_spin_lock_irqsave(&rq->lock, flags);
1585 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
1586 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1587 __set_se_shares(tg->se[cpu], shares);
1588 raw_spin_unlock_irqrestore(&rq->lock, flags);
1593 * Re-compute the task group their per cpu shares over the given domain.
1594 * This needs to be done in a bottom-up fashion because the rq weight of a
1595 * parent group depends on the shares of its child groups.
1597 static int tg_shares_up(struct task_group *tg, void *data)
1599 unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
1600 unsigned long *usd_rq_weight;
1601 struct sched_domain *sd = data;
1602 unsigned long flags;
1608 local_irq_save(flags);
1609 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
1611 for_each_cpu(i, sched_domain_span(sd)) {
1612 weight = tg->cfs_rq[i]->load.weight;
1613 usd_rq_weight[i] = weight;
1615 rq_weight += weight;
1617 * If there are currently no tasks on the cpu pretend there
1618 * is one of average load so that when a new task gets to
1619 * run here it will not get delayed by group starvation.
1622 weight = NICE_0_LOAD;
1624 sum_weight += weight;
1625 shares += tg->cfs_rq[i]->shares;
1629 rq_weight = sum_weight;
1631 if ((!shares && rq_weight) || shares > tg->shares)
1632 shares = tg->shares;
1634 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1635 shares = tg->shares;
1637 for_each_cpu(i, sched_domain_span(sd))
1638 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
1640 local_irq_restore(flags);
1646 * Compute the cpu's hierarchical load factor for each task group.
1647 * This needs to be done in a top-down fashion because the load of a child
1648 * group is a fraction of its parents load.
1650 static int tg_load_down(struct task_group *tg, void *data)
1653 long cpu = (long)data;
1656 load = cpu_rq(cpu)->load.weight;
1658 load = tg->parent->cfs_rq[cpu]->h_load;
1659 load *= tg->cfs_rq[cpu]->shares;
1660 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1663 tg->cfs_rq[cpu]->h_load = load;
1668 static void update_shares(struct sched_domain *sd)
1673 if (root_task_group_empty())
1676 now = local_clock();
1677 elapsed = now - sd->last_update;
1679 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1680 sd->last_update = now;
1681 walk_tg_tree(tg_nop, tg_shares_up, sd);
1685 static void update_h_load(long cpu)
1687 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1692 static inline void update_shares(struct sched_domain *sd)
1698 #ifdef CONFIG_PREEMPT
1700 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1703 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1704 * way at the expense of forcing extra atomic operations in all
1705 * invocations. This assures that the double_lock is acquired using the
1706 * same underlying policy as the spinlock_t on this architecture, which
1707 * reduces latency compared to the unfair variant below. However, it
1708 * also adds more overhead and therefore may reduce throughput.
1710 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1711 __releases(this_rq->lock)
1712 __acquires(busiest->lock)
1713 __acquires(this_rq->lock)
1715 raw_spin_unlock(&this_rq->lock);
1716 double_rq_lock(this_rq, busiest);
1723 * Unfair double_lock_balance: Optimizes throughput at the expense of
1724 * latency by eliminating extra atomic operations when the locks are
1725 * already in proper order on entry. This favors lower cpu-ids and will
1726 * grant the double lock to lower cpus over higher ids under contention,
1727 * regardless of entry order into the function.
1729 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1730 __releases(this_rq->lock)
1731 __acquires(busiest->lock)
1732 __acquires(this_rq->lock)
1736 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1737 if (busiest < this_rq) {
1738 raw_spin_unlock(&this_rq->lock);
1739 raw_spin_lock(&busiest->lock);
1740 raw_spin_lock_nested(&this_rq->lock,
1741 SINGLE_DEPTH_NESTING);
1744 raw_spin_lock_nested(&busiest->lock,
1745 SINGLE_DEPTH_NESTING);
1750 #endif /* CONFIG_PREEMPT */
1753 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1755 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1757 if (unlikely(!irqs_disabled())) {
1758 /* printk() doesn't work good under rq->lock */
1759 raw_spin_unlock(&this_rq->lock);
1763 return _double_lock_balance(this_rq, busiest);
1766 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1767 __releases(busiest->lock)
1769 raw_spin_unlock(&busiest->lock);
1770 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1774 * double_rq_lock - safely lock two runqueues
1776 * Note this does not disable interrupts like task_rq_lock,
1777 * you need to do so manually before calling.
1779 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1780 __acquires(rq1->lock)
1781 __acquires(rq2->lock)
1783 BUG_ON(!irqs_disabled());
1785 raw_spin_lock(&rq1->lock);
1786 __acquire(rq2->lock); /* Fake it out ;) */
1789 raw_spin_lock(&rq1->lock);
1790 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1792 raw_spin_lock(&rq2->lock);
1793 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1799 * double_rq_unlock - safely unlock two runqueues
1801 * Note this does not restore interrupts like task_rq_unlock,
1802 * you need to do so manually after calling.
1804 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1805 __releases(rq1->lock)
1806 __releases(rq2->lock)
1808 raw_spin_unlock(&rq1->lock);
1810 raw_spin_unlock(&rq2->lock);
1812 __release(rq2->lock);
1817 #ifdef CONFIG_FAIR_GROUP_SCHED
1818 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1821 cfs_rq->shares = shares;
1826 static void calc_load_account_idle(struct rq *this_rq);
1827 static void update_sysctl(void);
1828 static int get_update_sysctl_factor(void);
1829 static void update_cpu_load(struct rq *this_rq);
1831 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1833 set_task_rq(p, cpu);
1836 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1837 * successfuly executed on another CPU. We must ensure that updates of
1838 * per-task data have been completed by this moment.
1841 task_thread_info(p)->cpu = cpu;
1845 static const struct sched_class rt_sched_class;
1847 #define sched_class_highest (&stop_sched_class)
1848 #define for_each_class(class) \
1849 for (class = sched_class_highest; class; class = class->next)
1851 #include "sched_stats.h"
1853 static void inc_nr_running(struct rq *rq)
1858 static void dec_nr_running(struct rq *rq)
1863 static void set_load_weight(struct task_struct *p)
1866 * SCHED_IDLE tasks get minimal weight:
1868 if (p->policy == SCHED_IDLE) {
1869 p->se.load.weight = WEIGHT_IDLEPRIO;
1870 p->se.load.inv_weight = WMULT_IDLEPRIO;
1874 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1875 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1878 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1880 update_rq_clock(rq);
1881 sched_info_queued(p);
1882 p->sched_class->enqueue_task(rq, p, flags);
1886 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1888 update_rq_clock(rq);
1889 sched_info_dequeued(p);
1890 p->sched_class->dequeue_task(rq, p, flags);
1895 * activate_task - move a task to the runqueue.
1897 static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1899 if (task_contributes_to_load(p))
1900 rq->nr_uninterruptible--;
1902 enqueue_task(rq, p, flags);
1907 * deactivate_task - remove a task from the runqueue.
1909 static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1911 if (task_contributes_to_load(p))
1912 rq->nr_uninterruptible++;
1914 dequeue_task(rq, p, flags);
1918 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1921 * There are no locks covering percpu hardirq/softirq time.
1922 * They are only modified in account_system_vtime, on corresponding CPU
1923 * with interrupts disabled. So, writes are safe.
1924 * They are read and saved off onto struct rq in update_rq_clock().
1925 * This may result in other CPU reading this CPU's irq time and can
1926 * race with irq/account_system_vtime on this CPU. We would either get old
1927 * or new value (or semi updated value on 32 bit) with a side effect of
1928 * accounting a slice of irq time to wrong task when irq is in progress
1929 * while we read rq->clock. That is a worthy compromise in place of having
1930 * locks on each irq in account_system_time.
1932 static DEFINE_PER_CPU(u64, cpu_hardirq_time);
1933 static DEFINE_PER_CPU(u64, cpu_softirq_time);
1935 static DEFINE_PER_CPU(u64, irq_start_time);
1936 static int sched_clock_irqtime;
1938 void enable_sched_clock_irqtime(void)
1940 sched_clock_irqtime = 1;
1943 void disable_sched_clock_irqtime(void)
1945 sched_clock_irqtime = 0;
1948 static u64 irq_time_cpu(int cpu)
1950 if (!sched_clock_irqtime)
1953 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1956 void account_system_vtime(struct task_struct *curr)
1958 unsigned long flags;
1962 if (!sched_clock_irqtime)
1965 local_irq_save(flags);
1967 cpu = smp_processor_id();
1968 now = sched_clock_cpu(cpu);
1969 delta = now - per_cpu(irq_start_time, cpu);
1970 per_cpu(irq_start_time, cpu) = now;
1972 * We do not account for softirq time from ksoftirqd here.
1973 * We want to continue accounting softirq time to ksoftirqd thread
1974 * in that case, so as not to confuse scheduler with a special task
1975 * that do not consume any time, but still wants to run.
1977 if (hardirq_count())
1978 per_cpu(cpu_hardirq_time, cpu) += delta;
1979 else if (in_serving_softirq() && !(curr->flags & PF_KSOFTIRQD))
1980 per_cpu(cpu_softirq_time, cpu) += delta;
1982 local_irq_restore(flags);
1984 EXPORT_SYMBOL_GPL(account_system_vtime);
1986 static void sched_irq_time_avg_update(struct rq *rq, u64 curr_irq_time)
1988 if (sched_clock_irqtime && sched_feat(NONIRQ_POWER)) {
1989 u64 delta_irq = curr_irq_time - rq->prev_irq_time;
1990 rq->prev_irq_time = curr_irq_time;
1991 sched_rt_avg_update(rq, delta_irq);
1997 static u64 irq_time_cpu(int cpu)
2002 static void sched_irq_time_avg_update(struct rq *rq, u64 curr_irq_time) { }
2006 #include "sched_idletask.c"
2007 #include "sched_fair.c"
2008 #include "sched_rt.c"
2009 #include "sched_stoptask.c"
2010 #ifdef CONFIG_SCHED_DEBUG
2011 # include "sched_debug.c"
2014 void sched_set_stop_task(int cpu, struct task_struct *stop)
2016 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2017 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2021 * Make it appear like a SCHED_FIFO task, its something
2022 * userspace knows about and won't get confused about.
2024 * Also, it will make PI more or less work without too
2025 * much confusion -- but then, stop work should not
2026 * rely on PI working anyway.
2028 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m);
2030 stop->sched_class = &stop_sched_class;
2033 cpu_rq(cpu)->stop = stop;
2037 * Reset it back to a normal scheduling class so that
2038 * it can die in pieces.
2040 old_stop->sched_class = &rt_sched_class;
2045 * __normal_prio - return the priority that is based on the static prio
2047 static inline int __normal_prio(struct task_struct *p)
2049 return p->static_prio;
2053 * Calculate the expected normal priority: i.e. priority
2054 * without taking RT-inheritance into account. Might be
2055 * boosted by interactivity modifiers. Changes upon fork,
2056 * setprio syscalls, and whenever the interactivity
2057 * estimator recalculates.
2059 static inline int normal_prio(struct task_struct *p)
2063 if (task_has_rt_policy(p))
2064 prio = MAX_RT_PRIO-1 - p->rt_priority;
2066 prio = __normal_prio(p);
2071 * Calculate the current priority, i.e. the priority
2072 * taken into account by the scheduler. This value might
2073 * be boosted by RT tasks, or might be boosted by
2074 * interactivity modifiers. Will be RT if the task got
2075 * RT-boosted. If not then it returns p->normal_prio.
2077 static int effective_prio(struct task_struct *p)
2079 p->normal_prio = normal_prio(p);
2081 * If we are RT tasks or we were boosted to RT priority,
2082 * keep the priority unchanged. Otherwise, update priority
2083 * to the normal priority:
2085 if (!rt_prio(p->prio))
2086 return p->normal_prio;
2091 * task_curr - is this task currently executing on a CPU?
2092 * @p: the task in question.
2094 inline int task_curr(const struct task_struct *p)
2096 return cpu_curr(task_cpu(p)) == p;
2099 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2100 const struct sched_class *prev_class,
2101 int oldprio, int running)
2103 if (prev_class != p->sched_class) {
2104 if (prev_class->switched_from)
2105 prev_class->switched_from(rq, p, running);
2106 p->sched_class->switched_to(rq, p, running);
2108 p->sched_class->prio_changed(rq, p, oldprio, running);
2111 static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2113 const struct sched_class *class;
2115 if (p->sched_class == rq->curr->sched_class) {
2116 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2118 for_each_class(class) {
2119 if (class == rq->curr->sched_class)
2121 if (class == p->sched_class) {
2122 resched_task(rq->curr);
2129 * A queue event has occurred, and we're going to schedule. In
2130 * this case, we can save a useless back to back clock update.
2132 if (test_tsk_need_resched(rq->curr))
2133 rq->skip_clock_update = 1;
2138 * Is this task likely cache-hot:
2141 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2145 if (p->sched_class != &fair_sched_class)
2148 if (unlikely(p->policy == SCHED_IDLE))
2152 * Buddy candidates are cache hot:
2154 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
2155 (&p->se == cfs_rq_of(&p->se)->next ||
2156 &p->se == cfs_rq_of(&p->se)->last))
2159 if (sysctl_sched_migration_cost == -1)
2161 if (sysctl_sched_migration_cost == 0)
2164 delta = now - p->se.exec_start;
2166 return delta < (s64)sysctl_sched_migration_cost;
2169 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2171 #ifdef CONFIG_SCHED_DEBUG
2173 * We should never call set_task_cpu() on a blocked task,
2174 * ttwu() will sort out the placement.
2176 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2177 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2180 trace_sched_migrate_task(p, new_cpu);
2182 if (task_cpu(p) != new_cpu) {
2183 p->se.nr_migrations++;
2184 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2187 __set_task_cpu(p, new_cpu);
2190 struct migration_arg {
2191 struct task_struct *task;
2195 static int migration_cpu_stop(void *data);
2198 * The task's runqueue lock must be held.
2199 * Returns true if you have to wait for migration thread.
2201 static bool migrate_task(struct task_struct *p, int dest_cpu)
2203 struct rq *rq = task_rq(p);
2206 * If the task is not on a runqueue (and not running), then
2207 * the next wake-up will properly place the task.
2209 return p->se.on_rq || task_running(rq, p);
2213 * wait_task_inactive - wait for a thread to unschedule.
2215 * If @match_state is nonzero, it's the @p->state value just checked and
2216 * not expected to change. If it changes, i.e. @p might have woken up,
2217 * then return zero. When we succeed in waiting for @p to be off its CPU,
2218 * we return a positive number (its total switch count). If a second call
2219 * a short while later returns the same number, the caller can be sure that
2220 * @p has remained unscheduled the whole time.
2222 * The caller must ensure that the task *will* unschedule sometime soon,
2223 * else this function might spin for a *long* time. This function can't
2224 * be called with interrupts off, or it may introduce deadlock with
2225 * smp_call_function() if an IPI is sent by the same process we are
2226 * waiting to become inactive.
2228 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2230 unsigned long flags;
2237 * We do the initial early heuristics without holding
2238 * any task-queue locks at all. We'll only try to get
2239 * the runqueue lock when things look like they will
2245 * If the task is actively running on another CPU
2246 * still, just relax and busy-wait without holding
2249 * NOTE! Since we don't hold any locks, it's not
2250 * even sure that "rq" stays as the right runqueue!
2251 * But we don't care, since "task_running()" will
2252 * return false if the runqueue has changed and p
2253 * is actually now running somewhere else!
2255 while (task_running(rq, p)) {
2256 if (match_state && unlikely(p->state != match_state))
2262 * Ok, time to look more closely! We need the rq
2263 * lock now, to be *sure*. If we're wrong, we'll
2264 * just go back and repeat.
2266 rq = task_rq_lock(p, &flags);
2267 trace_sched_wait_task(p);
2268 running = task_running(rq, p);
2269 on_rq = p->se.on_rq;
2271 if (!match_state || p->state == match_state)
2272 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2273 task_rq_unlock(rq, &flags);
2276 * If it changed from the expected state, bail out now.
2278 if (unlikely(!ncsw))
2282 * Was it really running after all now that we
2283 * checked with the proper locks actually held?
2285 * Oops. Go back and try again..
2287 if (unlikely(running)) {
2293 * It's not enough that it's not actively running,
2294 * it must be off the runqueue _entirely_, and not
2297 * So if it was still runnable (but just not actively
2298 * running right now), it's preempted, and we should
2299 * yield - it could be a while.
2301 if (unlikely(on_rq)) {
2302 schedule_timeout_uninterruptible(1);
2307 * Ahh, all good. It wasn't running, and it wasn't
2308 * runnable, which means that it will never become
2309 * running in the future either. We're all done!
2318 * kick_process - kick a running thread to enter/exit the kernel
2319 * @p: the to-be-kicked thread
2321 * Cause a process which is running on another CPU to enter
2322 * kernel-mode, without any delay. (to get signals handled.)
2324 * NOTE: this function doesnt have to take the runqueue lock,
2325 * because all it wants to ensure is that the remote task enters
2326 * the kernel. If the IPI races and the task has been migrated
2327 * to another CPU then no harm is done and the purpose has been
2330 void kick_process(struct task_struct *p)
2336 if ((cpu != smp_processor_id()) && task_curr(p))
2337 smp_send_reschedule(cpu);
2340 EXPORT_SYMBOL_GPL(kick_process);
2341 #endif /* CONFIG_SMP */
2344 * task_oncpu_function_call - call a function on the cpu on which a task runs
2345 * @p: the task to evaluate
2346 * @func: the function to be called
2347 * @info: the function call argument
2349 * Calls the function @func when the task is currently running. This might
2350 * be on the current CPU, which just calls the function directly
2352 void task_oncpu_function_call(struct task_struct *p,
2353 void (*func) (void *info), void *info)
2360 smp_call_function_single(cpu, func, info, 1);
2366 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
2368 static int select_fallback_rq(int cpu, struct task_struct *p)
2371 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2373 /* Look for allowed, online CPU in same node. */
2374 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2375 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2378 /* Any allowed, online CPU? */
2379 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2380 if (dest_cpu < nr_cpu_ids)
2383 /* No more Mr. Nice Guy. */
2384 if (unlikely(dest_cpu >= nr_cpu_ids)) {
2385 dest_cpu = cpuset_cpus_allowed_fallback(p);
2387 * Don't tell them about moving exiting tasks or
2388 * kernel threads (both mm NULL), since they never
2391 if (p->mm && printk_ratelimit()) {
2392 printk(KERN_INFO "process %d (%s) no "
2393 "longer affine to cpu%d\n",
2394 task_pid_nr(p), p->comm, cpu);
2402 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
2405 int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
2407 int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
2410 * In order not to call set_task_cpu() on a blocking task we need
2411 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2414 * Since this is common to all placement strategies, this lives here.
2416 * [ this allows ->select_task() to simply return task_cpu(p) and
2417 * not worry about this generic constraint ]
2419 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
2421 cpu = select_fallback_rq(task_cpu(p), p);
2426 static void update_avg(u64 *avg, u64 sample)
2428 s64 diff = sample - *avg;
2433 static inline void ttwu_activate(struct task_struct *p, struct rq *rq,
2434 bool is_sync, bool is_migrate, bool is_local,
2435 unsigned long en_flags)
2437 schedstat_inc(p, se.statistics.nr_wakeups);
2439 schedstat_inc(p, se.statistics.nr_wakeups_sync);
2441 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2443 schedstat_inc(p, se.statistics.nr_wakeups_local);
2445 schedstat_inc(p, se.statistics.nr_wakeups_remote);
2447 activate_task(rq, p, en_flags);
2450 static inline void ttwu_post_activation(struct task_struct *p, struct rq *rq,
2451 int wake_flags, bool success)
2453 trace_sched_wakeup(p, success);
2454 check_preempt_curr(rq, p, wake_flags);
2456 p->state = TASK_RUNNING;
2458 if (p->sched_class->task_woken)
2459 p->sched_class->task_woken(rq, p);
2461 if (unlikely(rq->idle_stamp)) {
2462 u64 delta = rq->clock - rq->idle_stamp;
2463 u64 max = 2*sysctl_sched_migration_cost;
2468 update_avg(&rq->avg_idle, delta);
2472 /* if a worker is waking up, notify workqueue */
2473 if ((p->flags & PF_WQ_WORKER) && success)
2474 wq_worker_waking_up(p, cpu_of(rq));
2478 * try_to_wake_up - wake up a thread
2479 * @p: the thread to be awakened
2480 * @state: the mask of task states that can be woken
2481 * @wake_flags: wake modifier flags (WF_*)
2483 * Put it on the run-queue if it's not already there. The "current"
2484 * thread is always on the run-queue (except when the actual
2485 * re-schedule is in progress), and as such you're allowed to do
2486 * the simpler "current->state = TASK_RUNNING" to mark yourself
2487 * runnable without the overhead of this.
2489 * Returns %true if @p was woken up, %false if it was already running
2490 * or @state didn't match @p's state.
2492 static int try_to_wake_up(struct task_struct *p, unsigned int state,
2495 int cpu, orig_cpu, this_cpu, success = 0;
2496 unsigned long flags;
2497 unsigned long en_flags = ENQUEUE_WAKEUP;
2500 this_cpu = get_cpu();
2503 rq = task_rq_lock(p, &flags);
2504 if (!(p->state & state))
2514 if (unlikely(task_running(rq, p)))
2518 * In order to handle concurrent wakeups and release the rq->lock
2519 * we put the task in TASK_WAKING state.
2521 * First fix up the nr_uninterruptible count:
2523 if (task_contributes_to_load(p)) {
2524 if (likely(cpu_online(orig_cpu)))
2525 rq->nr_uninterruptible--;
2527 this_rq()->nr_uninterruptible--;
2529 p->state = TASK_WAKING;
2531 if (p->sched_class->task_waking) {
2532 p->sched_class->task_waking(rq, p);
2533 en_flags |= ENQUEUE_WAKING;
2536 cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
2537 if (cpu != orig_cpu)
2538 set_task_cpu(p, cpu);
2539 __task_rq_unlock(rq);
2542 raw_spin_lock(&rq->lock);
2545 * We migrated the task without holding either rq->lock, however
2546 * since the task is not on the task list itself, nobody else
2547 * will try and migrate the task, hence the rq should match the
2548 * cpu we just moved it to.
2550 WARN_ON(task_cpu(p) != cpu);
2551 WARN_ON(p->state != TASK_WAKING);
2553 #ifdef CONFIG_SCHEDSTATS
2554 schedstat_inc(rq, ttwu_count);
2555 if (cpu == this_cpu)
2556 schedstat_inc(rq, ttwu_local);
2558 struct sched_domain *sd;
2559 for_each_domain(this_cpu, sd) {
2560 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2561 schedstat_inc(sd, ttwu_wake_remote);
2566 #endif /* CONFIG_SCHEDSTATS */
2569 #endif /* CONFIG_SMP */
2570 ttwu_activate(p, rq, wake_flags & WF_SYNC, orig_cpu != cpu,
2571 cpu == this_cpu, en_flags);
2574 ttwu_post_activation(p, rq, wake_flags, success);
2576 task_rq_unlock(rq, &flags);
2583 * try_to_wake_up_local - try to wake up a local task with rq lock held
2584 * @p: the thread to be awakened
2586 * Put @p on the run-queue if it's not alredy there. The caller must
2587 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2588 * the current task. this_rq() stays locked over invocation.
2590 static void try_to_wake_up_local(struct task_struct *p)
2592 struct rq *rq = task_rq(p);
2593 bool success = false;
2595 BUG_ON(rq != this_rq());
2596 BUG_ON(p == current);
2597 lockdep_assert_held(&rq->lock);
2599 if (!(p->state & TASK_NORMAL))
2603 if (likely(!task_running(rq, p))) {
2604 schedstat_inc(rq, ttwu_count);
2605 schedstat_inc(rq, ttwu_local);
2607 ttwu_activate(p, rq, false, false, true, ENQUEUE_WAKEUP);
2610 ttwu_post_activation(p, rq, 0, success);
2614 * wake_up_process - Wake up a specific process
2615 * @p: The process to be woken up.
2617 * Attempt to wake up the nominated process and move it to the set of runnable
2618 * processes. Returns 1 if the process was woken up, 0 if it was already
2621 * It may be assumed that this function implies a write memory barrier before
2622 * changing the task state if and only if any tasks are woken up.
2624 int wake_up_process(struct task_struct *p)
2626 return try_to_wake_up(p, TASK_ALL, 0);
2628 EXPORT_SYMBOL(wake_up_process);
2630 int wake_up_state(struct task_struct *p, unsigned int state)
2632 return try_to_wake_up(p, state, 0);
2636 * Perform scheduler related setup for a newly forked process p.
2637 * p is forked by current.
2639 * __sched_fork() is basic setup used by init_idle() too:
2641 static void __sched_fork(struct task_struct *p)
2643 p->se.exec_start = 0;
2644 p->se.sum_exec_runtime = 0;
2645 p->se.prev_sum_exec_runtime = 0;
2646 p->se.nr_migrations = 0;
2648 #ifdef CONFIG_SCHEDSTATS
2649 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2652 INIT_LIST_HEAD(&p->rt.run_list);
2654 INIT_LIST_HEAD(&p->se.group_node);
2656 #ifdef CONFIG_PREEMPT_NOTIFIERS
2657 INIT_HLIST_HEAD(&p->preempt_notifiers);
2662 * fork()/clone()-time setup:
2664 void sched_fork(struct task_struct *p, int clone_flags)
2666 int cpu = get_cpu();
2670 * We mark the process as running here. This guarantees that
2671 * nobody will actually run it, and a signal or other external
2672 * event cannot wake it up and insert it on the runqueue either.
2674 p->state = TASK_RUNNING;
2677 * Revert to default priority/policy on fork if requested.
2679 if (unlikely(p->sched_reset_on_fork)) {
2680 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2681 p->policy = SCHED_NORMAL;
2682 p->normal_prio = p->static_prio;
2685 if (PRIO_TO_NICE(p->static_prio) < 0) {
2686 p->static_prio = NICE_TO_PRIO(0);
2687 p->normal_prio = p->static_prio;
2692 * We don't need the reset flag anymore after the fork. It has
2693 * fulfilled its duty:
2695 p->sched_reset_on_fork = 0;
2699 * Make sure we do not leak PI boosting priority to the child.
2701 p->prio = current->normal_prio;
2703 if (!rt_prio(p->prio))
2704 p->sched_class = &fair_sched_class;
2706 if (p->sched_class->task_fork)
2707 p->sched_class->task_fork(p);
2710 * The child is not yet in the pid-hash so no cgroup attach races,
2711 * and the cgroup is pinned to this child due to cgroup_fork()
2712 * is ran before sched_fork().
2714 * Silence PROVE_RCU.
2717 set_task_cpu(p, cpu);
2720 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2721 if (likely(sched_info_on()))
2722 memset(&p->sched_info, 0, sizeof(p->sched_info));
2724 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2727 #ifdef CONFIG_PREEMPT
2728 /* Want to start with kernel preemption disabled. */
2729 task_thread_info(p)->preempt_count = 1;
2731 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2737 * wake_up_new_task - wake up a newly created task for the first time.
2739 * This function will do some initial scheduler statistics housekeeping
2740 * that must be done for every newly created context, then puts the task
2741 * on the runqueue and wakes it.
2743 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2745 unsigned long flags;
2747 int cpu __maybe_unused = get_cpu();
2750 rq = task_rq_lock(p, &flags);
2751 p->state = TASK_WAKING;
2754 * Fork balancing, do it here and not earlier because:
2755 * - cpus_allowed can change in the fork path
2756 * - any previously selected cpu might disappear through hotplug
2758 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
2759 * without people poking at ->cpus_allowed.
2761 cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
2762 set_task_cpu(p, cpu);
2764 p->state = TASK_RUNNING;
2765 task_rq_unlock(rq, &flags);
2768 rq = task_rq_lock(p, &flags);
2769 activate_task(rq, p, 0);
2770 trace_sched_wakeup_new(p, 1);
2771 check_preempt_curr(rq, p, WF_FORK);
2773 if (p->sched_class->task_woken)
2774 p->sched_class->task_woken(rq, p);
2776 task_rq_unlock(rq, &flags);
2780 #ifdef CONFIG_PREEMPT_NOTIFIERS
2783 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2784 * @notifier: notifier struct to register
2786 void preempt_notifier_register(struct preempt_notifier *notifier)
2788 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers);
2790 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2793 * preempt_notifier_unregister - no longer interested in preemption notifications
2794 * @notifier: notifier struct to unregister
2796 * This is safe to call from within a preemption notifier.
2798 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2800 hlist_del(¬ifier->link);
2802 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2804 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2806 struct preempt_notifier *notifier;
2807 struct hlist_node *node;
2809 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2810 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2814 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2815 struct task_struct *next)
2817 struct preempt_notifier *notifier;
2818 struct hlist_node *node;
2820 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2821 notifier->ops->sched_out(notifier, next);
2824 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2826 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2831 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2832 struct task_struct *next)
2836 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2839 * prepare_task_switch - prepare to switch tasks
2840 * @rq: the runqueue preparing to switch
2841 * @prev: the current task that is being switched out
2842 * @next: the task we are going to switch to.
2844 * This is called with the rq lock held and interrupts off. It must
2845 * be paired with a subsequent finish_task_switch after the context
2848 * prepare_task_switch sets up locking and calls architecture specific
2852 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2853 struct task_struct *next)
2855 fire_sched_out_preempt_notifiers(prev, next);
2856 prepare_lock_switch(rq, next);
2857 prepare_arch_switch(next);
2861 * finish_task_switch - clean up after a task-switch
2862 * @rq: runqueue associated with task-switch
2863 * @prev: the thread we just switched away from.
2865 * finish_task_switch must be called after the context switch, paired
2866 * with a prepare_task_switch call before the context switch.
2867 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2868 * and do any other architecture-specific cleanup actions.
2870 * Note that we may have delayed dropping an mm in context_switch(). If
2871 * so, we finish that here outside of the runqueue lock. (Doing it
2872 * with the lock held can cause deadlocks; see schedule() for
2875 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2876 __releases(rq->lock)
2878 struct mm_struct *mm = rq->prev_mm;
2884 * A task struct has one reference for the use as "current".
2885 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2886 * schedule one last time. The schedule call will never return, and
2887 * the scheduled task must drop that reference.
2888 * The test for TASK_DEAD must occur while the runqueue locks are
2889 * still held, otherwise prev could be scheduled on another cpu, die
2890 * there before we look at prev->state, and then the reference would
2894 prev_state = prev->state;
2895 finish_arch_switch(prev);
2896 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2897 local_irq_disable();
2898 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2899 perf_event_task_sched_in(current);
2900 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2902 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2903 finish_lock_switch(rq, prev);
2905 fire_sched_in_preempt_notifiers(current);
2908 if (unlikely(prev_state == TASK_DEAD)) {
2910 * Remove function-return probe instances associated with this
2911 * task and put them back on the free list.
2913 kprobe_flush_task(prev);
2914 put_task_struct(prev);
2920 /* assumes rq->lock is held */
2921 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2923 if (prev->sched_class->pre_schedule)
2924 prev->sched_class->pre_schedule(rq, prev);
2927 /* rq->lock is NOT held, but preemption is disabled */
2928 static inline void post_schedule(struct rq *rq)
2930 if (rq->post_schedule) {
2931 unsigned long flags;
2933 raw_spin_lock_irqsave(&rq->lock, flags);
2934 if (rq->curr->sched_class->post_schedule)
2935 rq->curr->sched_class->post_schedule(rq);
2936 raw_spin_unlock_irqrestore(&rq->lock, flags);
2938 rq->post_schedule = 0;
2944 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2948 static inline void post_schedule(struct rq *rq)
2955 * schedule_tail - first thing a freshly forked thread must call.
2956 * @prev: the thread we just switched away from.
2958 asmlinkage void schedule_tail(struct task_struct *prev)
2959 __releases(rq->lock)
2961 struct rq *rq = this_rq();
2963 finish_task_switch(rq, prev);
2966 * FIXME: do we need to worry about rq being invalidated by the
2971 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2972 /* In this case, finish_task_switch does not reenable preemption */
2975 if (current->set_child_tid)
2976 put_user(task_pid_vnr(current), current->set_child_tid);
2980 * context_switch - switch to the new MM and the new
2981 * thread's register state.
2984 context_switch(struct rq *rq, struct task_struct *prev,
2985 struct task_struct *next)
2987 struct mm_struct *mm, *oldmm;
2989 prepare_task_switch(rq, prev, next);
2990 trace_sched_switch(prev, next);
2992 oldmm = prev->active_mm;
2994 * For paravirt, this is coupled with an exit in switch_to to
2995 * combine the page table reload and the switch backend into
2998 arch_start_context_switch(prev);
3001 next->active_mm = oldmm;
3002 atomic_inc(&oldmm->mm_count);
3003 enter_lazy_tlb(oldmm, next);
3005 switch_mm(oldmm, mm, next);
3008 prev->active_mm = NULL;
3009 rq->prev_mm = oldmm;
3012 * Since the runqueue lock will be released by the next
3013 * task (which is an invalid locking op but in the case
3014 * of the scheduler it's an obvious special-case), so we
3015 * do an early lockdep release here:
3017 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
3018 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3021 /* Here we just switch the register state and the stack. */
3022 switch_to(prev, next, prev);
3026 * this_rq must be evaluated again because prev may have moved
3027 * CPUs since it called schedule(), thus the 'rq' on its stack
3028 * frame will be invalid.
3030 finish_task_switch(this_rq(), prev);
3034 * nr_running, nr_uninterruptible and nr_context_switches:
3036 * externally visible scheduler statistics: current number of runnable
3037 * threads, current number of uninterruptible-sleeping threads, total
3038 * number of context switches performed since bootup.
3040 unsigned long nr_running(void)
3042 unsigned long i, sum = 0;
3044 for_each_online_cpu(i)
3045 sum += cpu_rq(i)->nr_running;
3050 unsigned long nr_uninterruptible(void)
3052 unsigned long i, sum = 0;
3054 for_each_possible_cpu(i)
3055 sum += cpu_rq(i)->nr_uninterruptible;
3058 * Since we read the counters lockless, it might be slightly
3059 * inaccurate. Do not allow it to go below zero though:
3061 if (unlikely((long)sum < 0))
3067 unsigned long long nr_context_switches(void)
3070 unsigned long long sum = 0;
3072 for_each_possible_cpu(i)
3073 sum += cpu_rq(i)->nr_switches;
3078 unsigned long nr_iowait(void)
3080 unsigned long i, sum = 0;
3082 for_each_possible_cpu(i)
3083 sum += atomic_read(&cpu_rq(i)->nr_iowait);
3088 unsigned long nr_iowait_cpu(int cpu)
3090 struct rq *this = cpu_rq(cpu);
3091 return atomic_read(&this->nr_iowait);
3094 unsigned long this_cpu_load(void)
3096 struct rq *this = this_rq();
3097 return this->cpu_load[0];
3101 /* Variables and functions for calc_load */
3102 static atomic_long_t calc_load_tasks;
3103 static unsigned long calc_load_update;
3104 unsigned long avenrun[3];
3105 EXPORT_SYMBOL(avenrun);
3107 static long calc_load_fold_active(struct rq *this_rq)
3109 long nr_active, delta = 0;
3111 nr_active = this_rq->nr_running;
3112 nr_active += (long) this_rq->nr_uninterruptible;
3114 if (nr_active != this_rq->calc_load_active) {
3115 delta = nr_active - this_rq->calc_load_active;
3116 this_rq->calc_load_active = nr_active;
3122 static unsigned long
3123 calc_load(unsigned long load, unsigned long exp, unsigned long active)
3126 load += active * (FIXED_1 - exp);
3127 load += 1UL << (FSHIFT - 1);
3128 return load >> FSHIFT;
3133 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
3135 * When making the ILB scale, we should try to pull this in as well.
3137 static atomic_long_t calc_load_tasks_idle;
3139 static void calc_load_account_idle(struct rq *this_rq)
3143 delta = calc_load_fold_active(this_rq);
3145 atomic_long_add(delta, &calc_load_tasks_idle);
3148 static long calc_load_fold_idle(void)
3153 * Its got a race, we don't care...
3155 if (atomic_long_read(&calc_load_tasks_idle))
3156 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
3162 * fixed_power_int - compute: x^n, in O(log n) time
3164 * @x: base of the power
3165 * @frac_bits: fractional bits of @x
3166 * @n: power to raise @x to.
3168 * By exploiting the relation between the definition of the natural power
3169 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
3170 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
3171 * (where: n_i \elem {0, 1}, the binary vector representing n),
3172 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
3173 * of course trivially computable in O(log_2 n), the length of our binary
3176 static unsigned long
3177 fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
3179 unsigned long result = 1UL << frac_bits;
3184 result += 1UL << (frac_bits - 1);
3185 result >>= frac_bits;
3191 x += 1UL << (frac_bits - 1);
3199 * a1 = a0 * e + a * (1 - e)
3201 * a2 = a1 * e + a * (1 - e)
3202 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
3203 * = a0 * e^2 + a * (1 - e) * (1 + e)
3205 * a3 = a2 * e + a * (1 - e)
3206 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
3207 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
3211 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
3212 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
3213 * = a0 * e^n + a * (1 - e^n)
3215 * [1] application of the geometric series:
3218 * S_n := \Sum x^i = -------------
3221 static unsigned long
3222 calc_load_n(unsigned long load, unsigned long exp,
3223 unsigned long active, unsigned int n)
3226 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
3230 * NO_HZ can leave us missing all per-cpu ticks calling
3231 * calc_load_account_active(), but since an idle CPU folds its delta into
3232 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
3233 * in the pending idle delta if our idle period crossed a load cycle boundary.
3235 * Once we've updated the global active value, we need to apply the exponential
3236 * weights adjusted to the number of cycles missed.
3238 static void calc_global_nohz(unsigned long ticks)
3240 long delta, active, n;
3242 if (time_before(jiffies, calc_load_update))
3246 * If we crossed a calc_load_update boundary, make sure to fold
3247 * any pending idle changes, the respective CPUs might have
3248 * missed the tick driven calc_load_account_active() update
3251 delta = calc_load_fold_idle();
3253 atomic_long_add(delta, &calc_load_tasks);
3256 * If we were idle for multiple load cycles, apply them.
3258 if (ticks >= LOAD_FREQ) {
3259 n = ticks / LOAD_FREQ;
3261 active = atomic_long_read(&calc_load_tasks);
3262 active = active > 0 ? active * FIXED_1 : 0;
3264 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
3265 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
3266 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
3268 calc_load_update += n * LOAD_FREQ;
3272 * Its possible the remainder of the above division also crosses
3273 * a LOAD_FREQ period, the regular check in calc_global_load()
3274 * which comes after this will take care of that.
3276 * Consider us being 11 ticks before a cycle completion, and us
3277 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
3278 * age us 4 cycles, and the test in calc_global_load() will
3279 * pick up the final one.
3283 static void calc_load_account_idle(struct rq *this_rq)
3287 static inline long calc_load_fold_idle(void)
3292 static void calc_global_nohz(unsigned long ticks)
3298 * get_avenrun - get the load average array
3299 * @loads: pointer to dest load array
3300 * @offset: offset to add
3301 * @shift: shift count to shift the result left
3303 * These values are estimates at best, so no need for locking.
3305 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3307 loads[0] = (avenrun[0] + offset) << shift;
3308 loads[1] = (avenrun[1] + offset) << shift;
3309 loads[2] = (avenrun[2] + offset) << shift;
3313 * calc_load - update the avenrun load estimates 10 ticks after the
3314 * CPUs have updated calc_load_tasks.
3316 void calc_global_load(unsigned long ticks)
3320 calc_global_nohz(ticks);
3322 if (time_before(jiffies, calc_load_update + 10))
3325 active = atomic_long_read(&calc_load_tasks);
3326 active = active > 0 ? active * FIXED_1 : 0;
3328 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3329 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3330 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3332 calc_load_update += LOAD_FREQ;
3336 * Called from update_cpu_load() to periodically update this CPU's
3339 static void calc_load_account_active(struct rq *this_rq)
3343 if (time_before(jiffies, this_rq->calc_load_update))
3346 delta = calc_load_fold_active(this_rq);
3347 delta += calc_load_fold_idle();
3349 atomic_long_add(delta, &calc_load_tasks);
3351 this_rq->calc_load_update += LOAD_FREQ;
3355 * The exact cpuload at various idx values, calculated at every tick would be
3356 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3358 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3359 * on nth tick when cpu may be busy, then we have:
3360 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3361 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3363 * decay_load_missed() below does efficient calculation of
3364 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3365 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3367 * The calculation is approximated on a 128 point scale.
3368 * degrade_zero_ticks is the number of ticks after which load at any
3369 * particular idx is approximated to be zero.
3370 * degrade_factor is a precomputed table, a row for each load idx.
3371 * Each column corresponds to degradation factor for a power of two ticks,
3372 * based on 128 point scale.
3374 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3375 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3377 * With this power of 2 load factors, we can degrade the load n times
3378 * by looking at 1 bits in n and doing as many mult/shift instead of
3379 * n mult/shifts needed by the exact degradation.
3381 #define DEGRADE_SHIFT 7
3382 static const unsigned char
3383 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
3384 static const unsigned char
3385 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
3386 {0, 0, 0, 0, 0, 0, 0, 0},
3387 {64, 32, 8, 0, 0, 0, 0, 0},
3388 {96, 72, 40, 12, 1, 0, 0},
3389 {112, 98, 75, 43, 15, 1, 0},
3390 {120, 112, 98, 76, 45, 16, 2} };
3393 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3394 * would be when CPU is idle and so we just decay the old load without
3395 * adding any new load.
3397 static unsigned long
3398 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
3402 if (!missed_updates)
3405 if (missed_updates >= degrade_zero_ticks[idx])
3409 return load >> missed_updates;
3411 while (missed_updates) {
3412 if (missed_updates % 2)
3413 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
3415 missed_updates >>= 1;
3422 * Update rq->cpu_load[] statistics. This function is usually called every
3423 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3424 * every tick. We fix it up based on jiffies.
3426 static void update_cpu_load(struct rq *this_rq)
3428 unsigned long this_load = this_rq->load.weight;
3429 unsigned long curr_jiffies = jiffies;
3430 unsigned long pending_updates;
3433 this_rq->nr_load_updates++;
3435 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3436 if (curr_jiffies == this_rq->last_load_update_tick)
3439 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
3440 this_rq->last_load_update_tick = curr_jiffies;
3442 /* Update our load: */
3443 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
3444 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3445 unsigned long old_load, new_load;
3447 /* scale is effectively 1 << i now, and >> i divides by scale */
3449 old_load = this_rq->cpu_load[i];
3450 old_load = decay_load_missed(old_load, pending_updates - 1, i);
3451 new_load = this_load;
3453 * Round up the averaging division if load is increasing. This
3454 * prevents us from getting stuck on 9 if the load is 10, for
3457 if (new_load > old_load)
3458 new_load += scale - 1;
3460 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
3463 sched_avg_update(this_rq);
3466 static void update_cpu_load_active(struct rq *this_rq)
3468 update_cpu_load(this_rq);
3470 calc_load_account_active(this_rq);
3476 * sched_exec - execve() is a valuable balancing opportunity, because at
3477 * this point the task has the smallest effective memory and cache footprint.
3479 void sched_exec(void)
3481 struct task_struct *p = current;
3482 unsigned long flags;
3486 rq = task_rq_lock(p, &flags);
3487 dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
3488 if (dest_cpu == smp_processor_id())
3492 * select_task_rq() can race against ->cpus_allowed
3494 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
3495 likely(cpu_active(dest_cpu)) && migrate_task(p, dest_cpu)) {
3496 struct migration_arg arg = { p, dest_cpu };
3498 task_rq_unlock(rq, &flags);
3499 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
3503 task_rq_unlock(rq, &flags);
3508 DEFINE_PER_CPU(struct kernel_stat, kstat);
3510 EXPORT_PER_CPU_SYMBOL(kstat);
3513 * Return any ns on the sched_clock that have not yet been accounted in
3514 * @p in case that task is currently running.
3516 * Called with task_rq_lock() held on @rq.
3518 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3522 if (task_current(rq, p)) {
3523 update_rq_clock(rq);
3524 ns = rq->clock_task - p->se.exec_start;
3532 unsigned long long task_delta_exec(struct task_struct *p)
3534 unsigned long flags;
3538 rq = task_rq_lock(p, &flags);
3539 ns = do_task_delta_exec(p, rq);
3540 task_rq_unlock(rq, &flags);
3546 * Return accounted runtime for the task.
3547 * In case the task is currently running, return the runtime plus current's
3548 * pending runtime that have not been accounted yet.
3550 unsigned long long task_sched_runtime(struct task_struct *p)
3552 unsigned long flags;
3556 rq = task_rq_lock(p, &flags);
3557 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3558 task_rq_unlock(rq, &flags);
3564 * Return sum_exec_runtime for the thread group.
3565 * In case the task is currently running, return the sum plus current's
3566 * pending runtime that have not been accounted yet.
3568 * Note that the thread group might have other running tasks as well,
3569 * so the return value not includes other pending runtime that other
3570 * running tasks might have.
3572 unsigned long long thread_group_sched_runtime(struct task_struct *p)
3574 struct task_cputime totals;
3575 unsigned long flags;
3579 rq = task_rq_lock(p, &flags);
3580 thread_group_cputime(p, &totals);
3581 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
3582 task_rq_unlock(rq, &flags);
3588 * Account user cpu time to a process.
3589 * @p: the process that the cpu time gets accounted to
3590 * @cputime: the cpu time spent in user space since the last update
3591 * @cputime_scaled: cputime scaled by cpu frequency
3593 void account_user_time(struct task_struct *p, cputime_t cputime,
3594 cputime_t cputime_scaled)
3596 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3599 /* Add user time to process. */
3600 p->utime = cputime_add(p->utime, cputime);
3601 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3602 account_group_user_time(p, cputime);
3604 /* Add user time to cpustat. */
3605 tmp = cputime_to_cputime64(cputime);
3606 if (TASK_NICE(p) > 0)
3607 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3609 cpustat->user = cputime64_add(cpustat->user, tmp);
3611 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
3612 /* Account for user time used */
3613 acct_update_integrals(p);
3617 * Account guest cpu time to a process.
3618 * @p: the process that the cpu time gets accounted to
3619 * @cputime: the cpu time spent in virtual machine since the last update
3620 * @cputime_scaled: cputime scaled by cpu frequency
3622 static void account_guest_time(struct task_struct *p, cputime_t cputime,
3623 cputime_t cputime_scaled)
3626 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3628 tmp = cputime_to_cputime64(cputime);
3630 /* Add guest time to process. */
3631 p->utime = cputime_add(p->utime, cputime);
3632 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3633 account_group_user_time(p, cputime);
3634 p->gtime = cputime_add(p->gtime, cputime);
3636 /* Add guest time to cpustat. */
3637 if (TASK_NICE(p) > 0) {
3638 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3639 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3641 cpustat->user = cputime64_add(cpustat->user, tmp);
3642 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3647 * Account system cpu time to a process.
3648 * @p: the process that the cpu time gets accounted to
3649 * @hardirq_offset: the offset to subtract from hardirq_count()
3650 * @cputime: the cpu time spent in kernel space since the last update
3651 * @cputime_scaled: cputime scaled by cpu frequency
3653 void account_system_time(struct task_struct *p, int hardirq_offset,
3654 cputime_t cputime, cputime_t cputime_scaled)
3656 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3659 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3660 account_guest_time(p, cputime, cputime_scaled);
3664 /* Add system time to process. */
3665 p->stime = cputime_add(p->stime, cputime);
3666 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3667 account_group_system_time(p, cputime);
3669 /* Add system time to cpustat. */
3670 tmp = cputime_to_cputime64(cputime);
3671 if (hardirq_count() - hardirq_offset)
3672 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3673 else if (in_serving_softirq())
3674 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3676 cpustat->system = cputime64_add(cpustat->system, tmp);
3678 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3680 /* Account for system time used */
3681 acct_update_integrals(p);
3685 * Account for involuntary wait time.
3686 * @steal: the cpu time spent in involuntary wait
3688 void account_steal_time(cputime_t cputime)
3690 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3691 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3693 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
3697 * Account for idle time.
3698 * @cputime: the cpu time spent in idle wait
3700 void account_idle_time(cputime_t cputime)
3702 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3703 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3704 struct rq *rq = this_rq();
3706 if (atomic_read(&rq->nr_iowait) > 0)
3707 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3709 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
3712 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
3715 * Account a single tick of cpu time.
3716 * @p: the process that the cpu time gets accounted to
3717 * @user_tick: indicates if the tick is a user or a system tick
3719 void account_process_tick(struct task_struct *p, int user_tick)
3721 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3722 struct rq *rq = this_rq();
3725 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3726 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
3727 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
3730 account_idle_time(cputime_one_jiffy);
3734 * Account multiple ticks of steal time.
3735 * @p: the process from which the cpu time has been stolen
3736 * @ticks: number of stolen ticks
3738 void account_steal_ticks(unsigned long ticks)
3740 account_steal_time(jiffies_to_cputime(ticks));
3744 * Account multiple ticks of idle time.
3745 * @ticks: number of stolen ticks
3747 void account_idle_ticks(unsigned long ticks)
3749 account_idle_time(jiffies_to_cputime(ticks));
3755 * Use precise platform statistics if available:
3757 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
3758 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3764 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3766 struct task_cputime cputime;
3768 thread_group_cputime(p, &cputime);
3770 *ut = cputime.utime;
3771 *st = cputime.stime;
3775 #ifndef nsecs_to_cputime
3776 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
3779 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3781 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
3784 * Use CFS's precise accounting:
3786 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
3792 do_div(temp, total);
3793 utime = (cputime_t)temp;
3798 * Compare with previous values, to keep monotonicity:
3800 p->prev_utime = max(p->prev_utime, utime);
3801 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
3803 *ut = p->prev_utime;
3804 *st = p->prev_stime;
3808 * Must be called with siglock held.
3810 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3812 struct signal_struct *sig = p->signal;
3813 struct task_cputime cputime;
3814 cputime_t rtime, utime, total;
3816 thread_group_cputime(p, &cputime);
3818 total = cputime_add(cputime.utime, cputime.stime);
3819 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
3824 temp *= cputime.utime;
3825 do_div(temp, total);
3826 utime = (cputime_t)temp;
3830 sig->prev_utime = max(sig->prev_utime, utime);
3831 sig->prev_stime = max(sig->prev_stime,
3832 cputime_sub(rtime, sig->prev_utime));
3834 *ut = sig->prev_utime;
3835 *st = sig->prev_stime;
3840 * This function gets called by the timer code, with HZ frequency.
3841 * We call it with interrupts disabled.
3843 * It also gets called by the fork code, when changing the parent's
3846 void scheduler_tick(void)
3848 int cpu = smp_processor_id();
3849 struct rq *rq = cpu_rq(cpu);
3850 struct task_struct *curr = rq->curr;
3854 raw_spin_lock(&rq->lock);
3855 update_rq_clock(rq);
3856 update_cpu_load_active(rq);
3857 curr->sched_class->task_tick(rq, curr, 0);
3858 raw_spin_unlock(&rq->lock);
3860 perf_event_task_tick();
3863 rq->idle_at_tick = idle_cpu(cpu);
3864 trigger_load_balance(rq, cpu);
3868 notrace unsigned long get_parent_ip(unsigned long addr)
3870 if (in_lock_functions(addr)) {
3871 addr = CALLER_ADDR2;
3872 if (in_lock_functions(addr))
3873 addr = CALLER_ADDR3;
3878 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3879 defined(CONFIG_PREEMPT_TRACER))
3881 void __kprobes add_preempt_count(int val)
3883 #ifdef CONFIG_DEBUG_PREEMPT
3887 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3890 preempt_count() += val;
3891 #ifdef CONFIG_DEBUG_PREEMPT
3893 * Spinlock count overflowing soon?
3895 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3898 if (preempt_count() == val)
3899 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3901 EXPORT_SYMBOL(add_preempt_count);
3903 void __kprobes sub_preempt_count(int val)
3905 #ifdef CONFIG_DEBUG_PREEMPT
3909 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3912 * Is the spinlock portion underflowing?
3914 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3915 !(preempt_count() & PREEMPT_MASK)))
3919 if (preempt_count() == val)
3920 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3921 preempt_count() -= val;
3923 EXPORT_SYMBOL(sub_preempt_count);
3928 * Print scheduling while atomic bug:
3930 static noinline void __schedule_bug(struct task_struct *prev)
3932 struct pt_regs *regs = get_irq_regs();
3934 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3935 prev->comm, prev->pid, preempt_count());
3937 debug_show_held_locks(prev);
3939 if (irqs_disabled())
3940 print_irqtrace_events(prev);
3949 * Various schedule()-time debugging checks and statistics:
3951 static inline void schedule_debug(struct task_struct *prev)
3954 * Test if we are atomic. Since do_exit() needs to call into
3955 * schedule() atomically, we ignore that path for now.
3956 * Otherwise, whine if we are scheduling when we should not be.
3958 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
3959 __schedule_bug(prev);
3961 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3963 schedstat_inc(this_rq(), sched_count);
3964 #ifdef CONFIG_SCHEDSTATS
3965 if (unlikely(prev->lock_depth >= 0)) {
3966 schedstat_inc(this_rq(), bkl_count);
3967 schedstat_inc(prev, sched_info.bkl_count);
3972 static void put_prev_task(struct rq *rq, struct task_struct *prev)
3975 update_rq_clock(rq);
3976 rq->skip_clock_update = 0;
3977 prev->sched_class->put_prev_task(rq, prev);
3981 * Pick up the highest-prio task:
3983 static inline struct task_struct *
3984 pick_next_task(struct rq *rq)
3986 const struct sched_class *class;
3987 struct task_struct *p;
3990 * Optimization: we know that if all tasks are in
3991 * the fair class we can call that function directly:
3993 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3994 p = fair_sched_class.pick_next_task(rq);
3999 for_each_class(class) {
4000 p = class->pick_next_task(rq);
4005 BUG(); /* the idle class will always have a runnable task */
4009 * schedule() is the main scheduler function.
4011 asmlinkage void __sched schedule(void)
4013 struct task_struct *prev, *next;
4014 unsigned long *switch_count;
4020 cpu = smp_processor_id();
4022 rcu_note_context_switch(cpu);
4025 release_kernel_lock(prev);
4026 need_resched_nonpreemptible:
4028 schedule_debug(prev);
4030 if (sched_feat(HRTICK))
4033 raw_spin_lock_irq(&rq->lock);
4034 clear_tsk_need_resched(prev);
4036 switch_count = &prev->nivcsw;
4037 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4038 if (unlikely(signal_pending_state(prev->state, prev))) {
4039 prev->state = TASK_RUNNING;
4042 * If a worker is going to sleep, notify and
4043 * ask workqueue whether it wants to wake up a
4044 * task to maintain concurrency. If so, wake
4047 if (prev->flags & PF_WQ_WORKER) {
4048 struct task_struct *to_wakeup;
4050 to_wakeup = wq_worker_sleeping(prev, cpu);
4052 try_to_wake_up_local(to_wakeup);
4054 deactivate_task(rq, prev, DEQUEUE_SLEEP);
4056 switch_count = &prev->nvcsw;
4059 pre_schedule(rq, prev);
4061 if (unlikely(!rq->nr_running))
4062 idle_balance(cpu, rq);
4064 put_prev_task(rq, prev);
4065 next = pick_next_task(rq);
4067 if (likely(prev != next)) {
4068 sched_info_switch(prev, next);
4069 perf_event_task_sched_out(prev, next);
4075 context_switch(rq, prev, next); /* unlocks the rq */
4077 * The context switch have flipped the stack from under us
4078 * and restored the local variables which were saved when
4079 * this task called schedule() in the past. prev == current
4080 * is still correct, but it can be moved to another cpu/rq.
4082 cpu = smp_processor_id();
4085 raw_spin_unlock_irq(&rq->lock);
4089 if (unlikely(reacquire_kernel_lock(prev)))
4090 goto need_resched_nonpreemptible;
4092 preempt_enable_no_resched();
4096 EXPORT_SYMBOL(schedule);
4098 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
4100 * Look out! "owner" is an entirely speculative pointer
4101 * access and not reliable.
4103 int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
4108 if (!sched_feat(OWNER_SPIN))
4111 #ifdef CONFIG_DEBUG_PAGEALLOC
4113 * Need to access the cpu field knowing that
4114 * DEBUG_PAGEALLOC could have unmapped it if
4115 * the mutex owner just released it and exited.
4117 if (probe_kernel_address(&owner->cpu, cpu))
4124 * Even if the access succeeded (likely case),
4125 * the cpu field may no longer be valid.
4127 if (cpu >= nr_cpumask_bits)
4131 * We need to validate that we can do a
4132 * get_cpu() and that we have the percpu area.
4134 if (!cpu_online(cpu))
4141 * Owner changed, break to re-assess state.
4143 if (lock->owner != owner) {
4145 * If the lock has switched to a different owner,
4146 * we likely have heavy contention. Return 0 to quit
4147 * optimistic spinning and not contend further:
4155 * Is that owner really running on that cpu?
4157 if (task_thread_info(rq->curr) != owner || need_resched())
4167 #ifdef CONFIG_PREEMPT
4169 * this is the entry point to schedule() from in-kernel preemption
4170 * off of preempt_enable. Kernel preemptions off return from interrupt
4171 * occur there and call schedule directly.
4173 asmlinkage void __sched notrace preempt_schedule(void)
4175 struct thread_info *ti = current_thread_info();
4178 * If there is a non-zero preempt_count or interrupts are disabled,
4179 * we do not want to preempt the current task. Just return..
4181 if (likely(ti->preempt_count || irqs_disabled()))
4185 add_preempt_count_notrace(PREEMPT_ACTIVE);
4187 sub_preempt_count_notrace(PREEMPT_ACTIVE);
4190 * Check again in case we missed a preemption opportunity
4191 * between schedule and now.
4194 } while (need_resched());
4196 EXPORT_SYMBOL(preempt_schedule);
4199 * this is the entry point to schedule() from kernel preemption
4200 * off of irq context.
4201 * Note, that this is called and return with irqs disabled. This will
4202 * protect us against recursive calling from irq.
4204 asmlinkage void __sched preempt_schedule_irq(void)
4206 struct thread_info *ti = current_thread_info();
4208 /* Catch callers which need to be fixed */
4209 BUG_ON(ti->preempt_count || !irqs_disabled());
4212 add_preempt_count(PREEMPT_ACTIVE);
4215 local_irq_disable();
4216 sub_preempt_count(PREEMPT_ACTIVE);
4219 * Check again in case we missed a preemption opportunity
4220 * between schedule and now.
4223 } while (need_resched());
4226 #endif /* CONFIG_PREEMPT */
4228 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
4231 return try_to_wake_up(curr->private, mode, wake_flags);
4233 EXPORT_SYMBOL(default_wake_function);
4236 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4237 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4238 * number) then we wake all the non-exclusive tasks and one exclusive task.
4240 * There are circumstances in which we can try to wake a task which has already
4241 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4242 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4244 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4245 int nr_exclusive, int wake_flags, void *key)
4247 wait_queue_t *curr, *next;
4249 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4250 unsigned flags = curr->flags;
4252 if (curr->func(curr, mode, wake_flags, key) &&
4253 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
4259 * __wake_up - wake up threads blocked on a waitqueue.
4261 * @mode: which threads
4262 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4263 * @key: is directly passed to the wakeup function
4265 * It may be assumed that this function implies a write memory barrier before
4266 * changing the task state if and only if any tasks are woken up.
4268 void __wake_up(wait_queue_head_t *q, unsigned int mode,
4269 int nr_exclusive, void *key)
4271 unsigned long flags;
4273 spin_lock_irqsave(&q->lock, flags);
4274 __wake_up_common(q, mode, nr_exclusive, 0, key);
4275 spin_unlock_irqrestore(&q->lock, flags);
4277 EXPORT_SYMBOL(__wake_up);
4280 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4282 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4284 __wake_up_common(q, mode, 1, 0, NULL);
4286 EXPORT_SYMBOL_GPL(__wake_up_locked);
4288 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
4290 __wake_up_common(q, mode, 1, 0, key);
4294 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
4296 * @mode: which threads
4297 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4298 * @key: opaque value to be passed to wakeup targets
4300 * The sync wakeup differs that the waker knows that it will schedule
4301 * away soon, so while the target thread will be woken up, it will not
4302 * be migrated to another CPU - ie. the two threads are 'synchronized'
4303 * with each other. This can prevent needless bouncing between CPUs.
4305 * On UP it can prevent extra preemption.
4307 * It may be assumed that this function implies a write memory barrier before
4308 * changing the task state if and only if any tasks are woken up.
4310 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
4311 int nr_exclusive, void *key)
4313 unsigned long flags;
4314 int wake_flags = WF_SYNC;
4319 if (unlikely(!nr_exclusive))
4322 spin_lock_irqsave(&q->lock, flags);
4323 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
4324 spin_unlock_irqrestore(&q->lock, flags);
4326 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
4329 * __wake_up_sync - see __wake_up_sync_key()
4331 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4333 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
4335 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4338 * complete: - signals a single thread waiting on this completion
4339 * @x: holds the state of this particular completion
4341 * This will wake up a single thread waiting on this completion. Threads will be
4342 * awakened in the same order in which they were queued.
4344 * See also complete_all(), wait_for_completion() and related routines.
4346 * It may be assumed that this function implies a write memory barrier before
4347 * changing the task state if and only if any tasks are woken up.
4349 void complete(struct completion *x)
4351 unsigned long flags;
4353 spin_lock_irqsave(&x->wait.lock, flags);
4355 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4356 spin_unlock_irqrestore(&x->wait.lock, flags);
4358 EXPORT_SYMBOL(complete);
4361 * complete_all: - signals all threads waiting on this completion
4362 * @x: holds the state of this particular completion
4364 * This will wake up all threads waiting on this particular completion event.
4366 * It may be assumed that this function implies a write memory barrier before
4367 * changing the task state if and only if any tasks are woken up.
4369 void complete_all(struct completion *x)
4371 unsigned long flags;
4373 spin_lock_irqsave(&x->wait.lock, flags);
4374 x->done += UINT_MAX/2;
4375 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4376 spin_unlock_irqrestore(&x->wait.lock, flags);
4378 EXPORT_SYMBOL(complete_all);
4380 static inline long __sched
4381 do_wait_for_common(struct completion *x, long timeout, int state)
4384 DECLARE_WAITQUEUE(wait, current);
4386 __add_wait_queue_tail_exclusive(&x->wait, &wait);
4388 if (signal_pending_state(state, current)) {
4389 timeout = -ERESTARTSYS;
4392 __set_current_state(state);
4393 spin_unlock_irq(&x->wait.lock);
4394 timeout = schedule_timeout(timeout);
4395 spin_lock_irq(&x->wait.lock);
4396 } while (!x->done && timeout);
4397 __remove_wait_queue(&x->wait, &wait);
4402 return timeout ?: 1;
4406 wait_for_common(struct completion *x, long timeout, int state)
4410 spin_lock_irq(&x->wait.lock);
4411 timeout = do_wait_for_common(x, timeout, state);
4412 spin_unlock_irq(&x->wait.lock);
4417 * wait_for_completion: - waits for completion of a task
4418 * @x: holds the state of this particular completion
4420 * This waits to be signaled for completion of a specific task. It is NOT
4421 * interruptible and there is no timeout.
4423 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4424 * and interrupt capability. Also see complete().
4426 void __sched wait_for_completion(struct completion *x)
4428 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4430 EXPORT_SYMBOL(wait_for_completion);
4433 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4434 * @x: holds the state of this particular completion
4435 * @timeout: timeout value in jiffies
4437 * This waits for either a completion of a specific task to be signaled or for a
4438 * specified timeout to expire. The timeout is in jiffies. It is not
4441 unsigned long __sched
4442 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4444 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4446 EXPORT_SYMBOL(wait_for_completion_timeout);
4449 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4450 * @x: holds the state of this particular completion
4452 * This waits for completion of a specific task to be signaled. It is
4455 int __sched wait_for_completion_interruptible(struct completion *x)
4457 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4458 if (t == -ERESTARTSYS)
4462 EXPORT_SYMBOL(wait_for_completion_interruptible);
4465 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4466 * @x: holds the state of this particular completion
4467 * @timeout: timeout value in jiffies
4469 * This waits for either a completion of a specific task to be signaled or for a
4470 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4472 unsigned long __sched
4473 wait_for_completion_interruptible_timeout(struct completion *x,
4474 unsigned long timeout)
4476 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4478 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4481 * wait_for_completion_killable: - waits for completion of a task (killable)
4482 * @x: holds the state of this particular completion
4484 * This waits to be signaled for completion of a specific task. It can be
4485 * interrupted by a kill signal.
4487 int __sched wait_for_completion_killable(struct completion *x)
4489 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4490 if (t == -ERESTARTSYS)
4494 EXPORT_SYMBOL(wait_for_completion_killable);
4497 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4498 * @x: holds the state of this particular completion
4499 * @timeout: timeout value in jiffies
4501 * This waits for either a completion of a specific task to be
4502 * signaled or for a specified timeout to expire. It can be
4503 * interrupted by a kill signal. The timeout is in jiffies.
4505 unsigned long __sched
4506 wait_for_completion_killable_timeout(struct completion *x,
4507 unsigned long timeout)
4509 return wait_for_common(x, timeout, TASK_KILLABLE);
4511 EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4514 * try_wait_for_completion - try to decrement a completion without blocking
4515 * @x: completion structure
4517 * Returns: 0 if a decrement cannot be done without blocking
4518 * 1 if a decrement succeeded.
4520 * If a completion is being used as a counting completion,
4521 * attempt to decrement the counter without blocking. This
4522 * enables us to avoid waiting if the resource the completion
4523 * is protecting is not available.
4525 bool try_wait_for_completion(struct completion *x)
4527 unsigned long flags;
4530 spin_lock_irqsave(&x->wait.lock, flags);
4535 spin_unlock_irqrestore(&x->wait.lock, flags);
4538 EXPORT_SYMBOL(try_wait_for_completion);
4541 * completion_done - Test to see if a completion has any waiters
4542 * @x: completion structure
4544 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4545 * 1 if there are no waiters.
4548 bool completion_done(struct completion *x)
4550 unsigned long flags;
4553 spin_lock_irqsave(&x->wait.lock, flags);
4556 spin_unlock_irqrestore(&x->wait.lock, flags);
4559 EXPORT_SYMBOL(completion_done);
4562 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4564 unsigned long flags;
4567 init_waitqueue_entry(&wait, current);
4569 __set_current_state(state);
4571 spin_lock_irqsave(&q->lock, flags);
4572 __add_wait_queue(q, &wait);
4573 spin_unlock(&q->lock);
4574 timeout = schedule_timeout(timeout);
4575 spin_lock_irq(&q->lock);
4576 __remove_wait_queue(q, &wait);
4577 spin_unlock_irqrestore(&q->lock, flags);
4582 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4584 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4586 EXPORT_SYMBOL(interruptible_sleep_on);
4589 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4591 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4593 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4595 void __sched sleep_on(wait_queue_head_t *q)
4597 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4599 EXPORT_SYMBOL(sleep_on);
4601 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4603 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4605 EXPORT_SYMBOL(sleep_on_timeout);
4607 #ifdef CONFIG_RT_MUTEXES
4610 * rt_mutex_setprio - set the current priority of a task
4612 * @prio: prio value (kernel-internal form)
4614 * This function changes the 'effective' priority of a task. It does
4615 * not touch ->normal_prio like __setscheduler().
4617 * Used by the rt_mutex code to implement priority inheritance logic.
4619 void rt_mutex_setprio(struct task_struct *p, int prio)
4621 unsigned long flags;
4622 int oldprio, on_rq, running;
4624 const struct sched_class *prev_class;
4626 BUG_ON(prio < 0 || prio > MAX_PRIO);
4628 rq = task_rq_lock(p, &flags);
4630 trace_sched_pi_setprio(p, prio);
4632 prev_class = p->sched_class;
4633 on_rq = p->se.on_rq;
4634 running = task_current(rq, p);
4636 dequeue_task(rq, p, 0);
4638 p->sched_class->put_prev_task(rq, p);
4641 p->sched_class = &rt_sched_class;
4643 p->sched_class = &fair_sched_class;
4648 p->sched_class->set_curr_task(rq);
4650 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
4652 check_class_changed(rq, p, prev_class, oldprio, running);
4654 task_rq_unlock(rq, &flags);
4659 void set_user_nice(struct task_struct *p, long nice)
4661 int old_prio, delta, on_rq;
4662 unsigned long flags;
4665 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4668 * We have to be careful, if called from sys_setpriority(),
4669 * the task might be in the middle of scheduling on another CPU.
4671 rq = task_rq_lock(p, &flags);
4673 * The RT priorities are set via sched_setscheduler(), but we still
4674 * allow the 'normal' nice value to be set - but as expected
4675 * it wont have any effect on scheduling until the task is
4676 * SCHED_FIFO/SCHED_RR:
4678 if (task_has_rt_policy(p)) {
4679 p->static_prio = NICE_TO_PRIO(nice);
4682 on_rq = p->se.on_rq;
4684 dequeue_task(rq, p, 0);
4686 p->static_prio = NICE_TO_PRIO(nice);
4689 p->prio = effective_prio(p);
4690 delta = p->prio - old_prio;
4693 enqueue_task(rq, p, 0);
4695 * If the task increased its priority or is running and
4696 * lowered its priority, then reschedule its CPU:
4698 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4699 resched_task(rq->curr);
4702 task_rq_unlock(rq, &flags);
4704 EXPORT_SYMBOL(set_user_nice);
4707 * can_nice - check if a task can reduce its nice value
4711 int can_nice(const struct task_struct *p, const int nice)
4713 /* convert nice value [19,-20] to rlimit style value [1,40] */
4714 int nice_rlim = 20 - nice;
4716 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
4717 capable(CAP_SYS_NICE));
4720 #ifdef __ARCH_WANT_SYS_NICE
4723 * sys_nice - change the priority of the current process.
4724 * @increment: priority increment
4726 * sys_setpriority is a more generic, but much slower function that
4727 * does similar things.
4729 SYSCALL_DEFINE1(nice, int, increment)
4734 * Setpriority might change our priority at the same moment.
4735 * We don't have to worry. Conceptually one call occurs first
4736 * and we have a single winner.
4738 if (increment < -40)
4743 nice = TASK_NICE(current) + increment;
4749 if (increment < 0 && !can_nice(current, nice))
4752 retval = security_task_setnice(current, nice);
4756 set_user_nice(current, nice);
4763 * task_prio - return the priority value of a given task.
4764 * @p: the task in question.
4766 * This is the priority value as seen by users in /proc.
4767 * RT tasks are offset by -200. Normal tasks are centered
4768 * around 0, value goes from -16 to +15.
4770 int task_prio(const struct task_struct *p)
4772 return p->prio - MAX_RT_PRIO;
4776 * task_nice - return the nice value of a given task.
4777 * @p: the task in question.
4779 int task_nice(const struct task_struct *p)
4781 return TASK_NICE(p);
4783 EXPORT_SYMBOL(task_nice);
4786 * idle_cpu - is a given cpu idle currently?
4787 * @cpu: the processor in question.
4789 int idle_cpu(int cpu)
4791 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4795 * idle_task - return the idle task for a given cpu.
4796 * @cpu: the processor in question.
4798 struct task_struct *idle_task(int cpu)
4800 return cpu_rq(cpu)->idle;
4804 * find_process_by_pid - find a process with a matching PID value.
4805 * @pid: the pid in question.
4807 static struct task_struct *find_process_by_pid(pid_t pid)
4809 return pid ? find_task_by_vpid(pid) : current;
4812 /* Actually do priority change: must hold rq lock. */
4814 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4816 BUG_ON(p->se.on_rq);
4819 p->rt_priority = prio;
4820 p->normal_prio = normal_prio(p);
4821 /* we are holding p->pi_lock already */
4822 p->prio = rt_mutex_getprio(p);
4823 if (rt_prio(p->prio))
4824 p->sched_class = &rt_sched_class;
4826 p->sched_class = &fair_sched_class;
4831 * check the target process has a UID that matches the current process's
4833 static bool check_same_owner(struct task_struct *p)
4835 const struct cred *cred = current_cred(), *pcred;
4839 pcred = __task_cred(p);
4840 match = (cred->euid == pcred->euid ||
4841 cred->euid == pcred->uid);
4846 static int __sched_setscheduler(struct task_struct *p, int policy,
4847 struct sched_param *param, bool user)
4849 int retval, oldprio, oldpolicy = -1, on_rq, running;
4850 unsigned long flags;
4851 const struct sched_class *prev_class;
4855 /* may grab non-irq protected spin_locks */
4856 BUG_ON(in_interrupt());
4858 /* double check policy once rq lock held */
4860 reset_on_fork = p->sched_reset_on_fork;
4861 policy = oldpolicy = p->policy;
4863 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4864 policy &= ~SCHED_RESET_ON_FORK;
4866 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4867 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4868 policy != SCHED_IDLE)
4873 * Valid priorities for SCHED_FIFO and SCHED_RR are
4874 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4875 * SCHED_BATCH and SCHED_IDLE is 0.
4877 if (param->sched_priority < 0 ||
4878 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4879 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4881 if (rt_policy(policy) != (param->sched_priority != 0))
4885 * Allow unprivileged RT tasks to decrease priority:
4887 if (user && !capable(CAP_SYS_NICE)) {
4888 if (rt_policy(policy)) {
4889 unsigned long rlim_rtprio =
4890 task_rlimit(p, RLIMIT_RTPRIO);
4892 /* can't set/change the rt policy */
4893 if (policy != p->policy && !rlim_rtprio)
4896 /* can't increase priority */
4897 if (param->sched_priority > p->rt_priority &&
4898 param->sched_priority > rlim_rtprio)
4902 * Like positive nice levels, dont allow tasks to
4903 * move out of SCHED_IDLE either:
4905 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4908 /* can't change other user's priorities */
4909 if (!check_same_owner(p))
4912 /* Normal users shall not reset the sched_reset_on_fork flag */
4913 if (p->sched_reset_on_fork && !reset_on_fork)
4918 retval = security_task_setscheduler(p);
4924 * make sure no PI-waiters arrive (or leave) while we are
4925 * changing the priority of the task:
4927 raw_spin_lock_irqsave(&p->pi_lock, flags);
4929 * To be able to change p->policy safely, the apropriate
4930 * runqueue lock must be held.
4932 rq = __task_rq_lock(p);
4935 * Changing the policy of the stop threads its a very bad idea
4937 if (p == rq->stop) {
4938 __task_rq_unlock(rq);
4939 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4943 #ifdef CONFIG_RT_GROUP_SCHED
4946 * Do not allow realtime tasks into groups that have no runtime
4949 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4950 task_group(p)->rt_bandwidth.rt_runtime == 0) {
4951 __task_rq_unlock(rq);
4952 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4958 /* recheck policy now with rq lock held */
4959 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4960 policy = oldpolicy = -1;
4961 __task_rq_unlock(rq);
4962 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4965 on_rq = p->se.on_rq;
4966 running = task_current(rq, p);
4968 deactivate_task(rq, p, 0);
4970 p->sched_class->put_prev_task(rq, p);
4972 p->sched_reset_on_fork = reset_on_fork;
4975 prev_class = p->sched_class;
4976 __setscheduler(rq, p, policy, param->sched_priority);
4979 p->sched_class->set_curr_task(rq);
4981 activate_task(rq, p, 0);
4983 check_class_changed(rq, p, prev_class, oldprio, running);
4985 __task_rq_unlock(rq);
4986 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4988 rt_mutex_adjust_pi(p);
4994 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4995 * @p: the task in question.
4996 * @policy: new policy.
4997 * @param: structure containing the new RT priority.
4999 * NOTE that the task may be already dead.
5001 int sched_setscheduler(struct task_struct *p, int policy,
5002 struct sched_param *param)
5004 return __sched_setscheduler(p, policy, param, true);
5006 EXPORT_SYMBOL_GPL(sched_setscheduler);
5009 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5010 * @p: the task in question.
5011 * @policy: new policy.
5012 * @param: structure containing the new RT priority.
5014 * Just like sched_setscheduler, only don't bother checking if the
5015 * current context has permission. For example, this is needed in
5016 * stop_machine(): we create temporary high priority worker threads,
5017 * but our caller might not have that capability.
5019 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5020 struct sched_param *param)
5022 return __sched_setscheduler(p, policy, param, false);
5026 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5028 struct sched_param lparam;
5029 struct task_struct *p;
5032 if (!param || pid < 0)
5034 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5039 p = find_process_by_pid(pid);
5041 retval = sched_setscheduler(p, policy, &lparam);
5048 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5049 * @pid: the pid in question.
5050 * @policy: new policy.
5051 * @param: structure containing the new RT priority.
5053 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
5054 struct sched_param __user *, param)
5056 /* negative values for policy are not valid */
5060 return do_sched_setscheduler(pid, policy, param);
5064 * sys_sched_setparam - set/change the RT priority of a thread
5065 * @pid: the pid in question.
5066 * @param: structure containing the new RT priority.
5068 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
5070 return do_sched_setscheduler(pid, -1, param);
5074 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5075 * @pid: the pid in question.
5077 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
5079 struct task_struct *p;
5087 p = find_process_by_pid(pid);
5089 retval = security_task_getscheduler(p);
5092 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
5099 * sys_sched_getparam - get the RT priority of a thread
5100 * @pid: the pid in question.
5101 * @param: structure containing the RT priority.
5103 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
5105 struct sched_param lp;
5106 struct task_struct *p;
5109 if (!param || pid < 0)
5113 p = find_process_by_pid(pid);
5118 retval = security_task_getscheduler(p);
5122 lp.sched_priority = p->rt_priority;
5126 * This one might sleep, we cannot do it with a spinlock held ...
5128 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5137 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
5139 cpumask_var_t cpus_allowed, new_mask;
5140 struct task_struct *p;
5146 p = find_process_by_pid(pid);
5153 /* Prevent p going away */
5157 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5161 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5163 goto out_free_cpus_allowed;
5166 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
5169 retval = security_task_setscheduler(p);
5173 cpuset_cpus_allowed(p, cpus_allowed);
5174 cpumask_and(new_mask, in_mask, cpus_allowed);
5176 retval = set_cpus_allowed_ptr(p, new_mask);
5179 cpuset_cpus_allowed(p, cpus_allowed);
5180 if (!cpumask_subset(new_mask, cpus_allowed)) {
5182 * We must have raced with a concurrent cpuset
5183 * update. Just reset the cpus_allowed to the
5184 * cpuset's cpus_allowed
5186 cpumask_copy(new_mask, cpus_allowed);
5191 free_cpumask_var(new_mask);
5192 out_free_cpus_allowed:
5193 free_cpumask_var(cpus_allowed);
5200 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5201 struct cpumask *new_mask)
5203 if (len < cpumask_size())
5204 cpumask_clear(new_mask);
5205 else if (len > cpumask_size())
5206 len = cpumask_size();
5208 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5212 * sys_sched_setaffinity - set the cpu affinity of a process
5213 * @pid: pid of the process
5214 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5215 * @user_mask_ptr: user-space pointer to the new cpu mask
5217 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5218 unsigned long __user *, user_mask_ptr)
5220 cpumask_var_t new_mask;
5223 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5226 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5228 retval = sched_setaffinity(pid, new_mask);
5229 free_cpumask_var(new_mask);
5233 long sched_getaffinity(pid_t pid, struct cpumask *mask)
5235 struct task_struct *p;
5236 unsigned long flags;
5244 p = find_process_by_pid(pid);
5248 retval = security_task_getscheduler(p);
5252 rq = task_rq_lock(p, &flags);
5253 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
5254 task_rq_unlock(rq, &flags);
5264 * sys_sched_getaffinity - get the cpu affinity of a process
5265 * @pid: pid of the process
5266 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5267 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5269 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5270 unsigned long __user *, user_mask_ptr)
5275 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
5277 if (len & (sizeof(unsigned long)-1))
5280 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5283 ret = sched_getaffinity(pid, mask);
5285 size_t retlen = min_t(size_t, len, cpumask_size());
5287 if (copy_to_user(user_mask_ptr, mask, retlen))
5292 free_cpumask_var(mask);
5298 * sys_sched_yield - yield the current processor to other threads.
5300 * This function yields the current CPU to other tasks. If there are no
5301 * other threads running on this CPU then this function will return.
5303 SYSCALL_DEFINE0(sched_yield)
5305 struct rq *rq = this_rq_lock();
5307 schedstat_inc(rq, yld_count);
5308 current->sched_class->yield_task(rq);
5311 * Since we are going to call schedule() anyway, there's
5312 * no need to preempt or enable interrupts:
5314 __release(rq->lock);
5315 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5316 do_raw_spin_unlock(&rq->lock);
5317 preempt_enable_no_resched();
5324 static inline int should_resched(void)
5326 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
5329 static void __cond_resched(void)
5331 add_preempt_count(PREEMPT_ACTIVE);
5333 sub_preempt_count(PREEMPT_ACTIVE);
5336 int __sched _cond_resched(void)
5338 if (should_resched()) {
5344 EXPORT_SYMBOL(_cond_resched);
5347 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
5348 * call schedule, and on return reacquire the lock.
5350 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5351 * operations here to prevent schedule() from being called twice (once via
5352 * spin_unlock(), once by hand).
5354 int __cond_resched_lock(spinlock_t *lock)
5356 int resched = should_resched();
5359 lockdep_assert_held(lock);
5361 if (spin_needbreak(lock) || resched) {
5372 EXPORT_SYMBOL(__cond_resched_lock);
5374 int __sched __cond_resched_softirq(void)
5376 BUG_ON(!in_softirq());
5378 if (should_resched()) {
5386 EXPORT_SYMBOL(__cond_resched_softirq);
5389 * yield - yield the current processor to other threads.
5391 * This is a shortcut for kernel-space yielding - it marks the
5392 * thread runnable and calls sys_sched_yield().
5394 void __sched yield(void)
5396 set_current_state(TASK_RUNNING);
5399 EXPORT_SYMBOL(yield);
5402 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5403 * that process accounting knows that this is a task in IO wait state.
5405 void __sched io_schedule(void)
5407 struct rq *rq = raw_rq();
5409 delayacct_blkio_start();
5410 atomic_inc(&rq->nr_iowait);
5411 current->in_iowait = 1;
5413 current->in_iowait = 0;
5414 atomic_dec(&rq->nr_iowait);
5415 delayacct_blkio_end();
5417 EXPORT_SYMBOL(io_schedule);
5419 long __sched io_schedule_timeout(long timeout)
5421 struct rq *rq = raw_rq();
5424 delayacct_blkio_start();
5425 atomic_inc(&rq->nr_iowait);
5426 current->in_iowait = 1;
5427 ret = schedule_timeout(timeout);
5428 current->in_iowait = 0;
5429 atomic_dec(&rq->nr_iowait);
5430 delayacct_blkio_end();
5435 * sys_sched_get_priority_max - return maximum RT priority.
5436 * @policy: scheduling class.
5438 * this syscall returns the maximum rt_priority that can be used
5439 * by a given scheduling class.
5441 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5448 ret = MAX_USER_RT_PRIO-1;
5460 * sys_sched_get_priority_min - return minimum RT priority.
5461 * @policy: scheduling class.
5463 * this syscall returns the minimum rt_priority that can be used
5464 * by a given scheduling class.
5466 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5484 * sys_sched_rr_get_interval - return the default timeslice of a process.
5485 * @pid: pid of the process.
5486 * @interval: userspace pointer to the timeslice value.
5488 * this syscall writes the default timeslice value of a given process
5489 * into the user-space timespec buffer. A value of '0' means infinity.
5491 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5492 struct timespec __user *, interval)
5494 struct task_struct *p;
5495 unsigned int time_slice;
5496 unsigned long flags;
5506 p = find_process_by_pid(pid);
5510 retval = security_task_getscheduler(p);
5514 rq = task_rq_lock(p, &flags);
5515 time_slice = p->sched_class->get_rr_interval(rq, p);
5516 task_rq_unlock(rq, &flags);
5519 jiffies_to_timespec(time_slice, &t);
5520 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5528 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5530 void sched_show_task(struct task_struct *p)
5532 unsigned long free = 0;
5535 state = p->state ? __ffs(p->state) + 1 : 0;
5536 printk(KERN_INFO "%-13.13s %c", p->comm,
5537 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5538 #if BITS_PER_LONG == 32
5539 if (state == TASK_RUNNING)
5540 printk(KERN_CONT " running ");
5542 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5544 if (state == TASK_RUNNING)
5545 printk(KERN_CONT " running task ");
5547 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5549 #ifdef CONFIG_DEBUG_STACK_USAGE
5550 free = stack_not_used(p);
5552 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5553 task_pid_nr(p), task_pid_nr(p->real_parent),
5554 (unsigned long)task_thread_info(p)->flags);
5556 show_stack(p, NULL);
5559 void show_state_filter(unsigned long state_filter)
5561 struct task_struct *g, *p;
5563 #if BITS_PER_LONG == 32
5565 " task PC stack pid father\n");
5568 " task PC stack pid father\n");
5570 read_lock(&tasklist_lock);
5571 do_each_thread(g, p) {
5573 * reset the NMI-timeout, listing all files on a slow
5574 * console might take alot of time:
5576 touch_nmi_watchdog();
5577 if (!state_filter || (p->state & state_filter))
5579 } while_each_thread(g, p);
5581 touch_all_softlockup_watchdogs();
5583 #ifdef CONFIG_SCHED_DEBUG
5584 sysrq_sched_debug_show();
5586 read_unlock(&tasklist_lock);
5588 * Only show locks if all tasks are dumped:
5591 debug_show_all_locks();
5594 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5596 idle->sched_class = &idle_sched_class;
5600 * init_idle - set up an idle thread for a given CPU
5601 * @idle: task in question
5602 * @cpu: cpu the idle task belongs to
5604 * NOTE: this function does not set the idle thread's NEED_RESCHED
5605 * flag, to make booting more robust.
5607 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5609 struct rq *rq = cpu_rq(cpu);
5610 unsigned long flags;
5612 raw_spin_lock_irqsave(&rq->lock, flags);
5615 idle->state = TASK_RUNNING;
5616 idle->se.exec_start = sched_clock();
5618 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
5620 * We're having a chicken and egg problem, even though we are
5621 * holding rq->lock, the cpu isn't yet set to this cpu so the
5622 * lockdep check in task_group() will fail.
5624 * Similar case to sched_fork(). / Alternatively we could
5625 * use task_rq_lock() here and obtain the other rq->lock.
5630 __set_task_cpu(idle, cpu);
5633 rq->curr = rq->idle = idle;
5634 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5637 raw_spin_unlock_irqrestore(&rq->lock, flags);
5639 /* Set the preempt count _outside_ the spinlocks! */
5640 #if defined(CONFIG_PREEMPT)
5641 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5643 task_thread_info(idle)->preempt_count = 0;
5646 * The idle tasks have their own, simple scheduling class:
5648 idle->sched_class = &idle_sched_class;
5649 ftrace_graph_init_task(idle);
5653 * In a system that switches off the HZ timer nohz_cpu_mask
5654 * indicates which cpus entered this state. This is used
5655 * in the rcu update to wait only for active cpus. For system
5656 * which do not switch off the HZ timer nohz_cpu_mask should
5657 * always be CPU_BITS_NONE.
5659 cpumask_var_t nohz_cpu_mask;
5662 * Increase the granularity value when there are more CPUs,
5663 * because with more CPUs the 'effective latency' as visible
5664 * to users decreases. But the relationship is not linear,
5665 * so pick a second-best guess by going with the log2 of the
5668 * This idea comes from the SD scheduler of Con Kolivas:
5670 static int get_update_sysctl_factor(void)
5672 unsigned int cpus = min_t(int, num_online_cpus(), 8);
5673 unsigned int factor;
5675 switch (sysctl_sched_tunable_scaling) {
5676 case SCHED_TUNABLESCALING_NONE:
5679 case SCHED_TUNABLESCALING_LINEAR:
5682 case SCHED_TUNABLESCALING_LOG:
5684 factor = 1 + ilog2(cpus);
5691 static void update_sysctl(void)
5693 unsigned int factor = get_update_sysctl_factor();
5695 #define SET_SYSCTL(name) \
5696 (sysctl_##name = (factor) * normalized_sysctl_##name)
5697 SET_SYSCTL(sched_min_granularity);
5698 SET_SYSCTL(sched_latency);
5699 SET_SYSCTL(sched_wakeup_granularity);
5700 SET_SYSCTL(sched_shares_ratelimit);
5704 static inline void sched_init_granularity(void)
5711 * This is how migration works:
5713 * 1) we invoke migration_cpu_stop() on the target CPU using
5715 * 2) stopper starts to run (implicitly forcing the migrated thread
5717 * 3) it checks whether the migrated task is still in the wrong runqueue.
5718 * 4) if it's in the wrong runqueue then the migration thread removes
5719 * it and puts it into the right queue.
5720 * 5) stopper completes and stop_one_cpu() returns and the migration
5725 * Change a given task's CPU affinity. Migrate the thread to a
5726 * proper CPU and schedule it away if the CPU it's executing on
5727 * is removed from the allowed bitmask.
5729 * NOTE: the caller must have a valid reference to the task, the
5730 * task must not exit() & deallocate itself prematurely. The
5731 * call is not atomic; no spinlocks may be held.
5733 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
5735 unsigned long flags;
5737 unsigned int dest_cpu;
5741 * Serialize against TASK_WAKING so that ttwu() and wunt() can
5742 * drop the rq->lock and still rely on ->cpus_allowed.
5745 while (task_is_waking(p))
5747 rq = task_rq_lock(p, &flags);
5748 if (task_is_waking(p)) {
5749 task_rq_unlock(rq, &flags);
5753 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
5758 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5759 !cpumask_equal(&p->cpus_allowed, new_mask))) {
5764 if (p->sched_class->set_cpus_allowed)
5765 p->sched_class->set_cpus_allowed(p, new_mask);
5767 cpumask_copy(&p->cpus_allowed, new_mask);
5768 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
5771 /* Can the task run on the task's current CPU? If so, we're done */
5772 if (cpumask_test_cpu(task_cpu(p), new_mask))
5775 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
5776 if (migrate_task(p, dest_cpu)) {
5777 struct migration_arg arg = { p, dest_cpu };
5778 /* Need help from migration thread: drop lock and wait. */
5779 task_rq_unlock(rq, &flags);
5780 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
5781 tlb_migrate_finish(p->mm);
5785 task_rq_unlock(rq, &flags);
5789 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
5792 * Move (not current) task off this cpu, onto dest cpu. We're doing
5793 * this because either it can't run here any more (set_cpus_allowed()
5794 * away from this CPU, or CPU going down), or because we're
5795 * attempting to rebalance this task on exec (sched_exec).
5797 * So we race with normal scheduler movements, but that's OK, as long
5798 * as the task is no longer on this CPU.
5800 * Returns non-zero if task was successfully migrated.
5802 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5804 struct rq *rq_dest, *rq_src;
5807 if (unlikely(!cpu_active(dest_cpu)))
5810 rq_src = cpu_rq(src_cpu);
5811 rq_dest = cpu_rq(dest_cpu);
5813 double_rq_lock(rq_src, rq_dest);
5814 /* Already moved. */
5815 if (task_cpu(p) != src_cpu)
5817 /* Affinity changed (again). */
5818 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
5822 * If we're not on a rq, the next wake-up will ensure we're
5826 deactivate_task(rq_src, p, 0);
5827 set_task_cpu(p, dest_cpu);
5828 activate_task(rq_dest, p, 0);
5829 check_preempt_curr(rq_dest, p, 0);
5834 double_rq_unlock(rq_src, rq_dest);
5839 * migration_cpu_stop - this will be executed by a highprio stopper thread
5840 * and performs thread migration by bumping thread off CPU then
5841 * 'pushing' onto another runqueue.
5843 static int migration_cpu_stop(void *data)
5845 struct migration_arg *arg = data;
5848 * The original target cpu might have gone down and we might
5849 * be on another cpu but it doesn't matter.
5851 local_irq_disable();
5852 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
5857 #ifdef CONFIG_HOTPLUG_CPU
5859 * Figure out where task on dead CPU should go, use force if necessary.
5861 void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5863 struct rq *rq = cpu_rq(dead_cpu);
5864 int needs_cpu, uninitialized_var(dest_cpu);
5865 unsigned long flags;
5867 local_irq_save(flags);
5869 raw_spin_lock(&rq->lock);
5870 needs_cpu = (task_cpu(p) == dead_cpu) && (p->state != TASK_WAKING);
5872 dest_cpu = select_fallback_rq(dead_cpu, p);
5873 raw_spin_unlock(&rq->lock);
5875 * It can only fail if we race with set_cpus_allowed(),
5876 * in the racer should migrate the task anyway.
5879 __migrate_task(p, dead_cpu, dest_cpu);
5880 local_irq_restore(flags);
5884 * While a dead CPU has no uninterruptible tasks queued at this point,
5885 * it might still have a nonzero ->nr_uninterruptible counter, because
5886 * for performance reasons the counter is not stricly tracking tasks to
5887 * their home CPUs. So we just add the counter to another CPU's counter,
5888 * to keep the global sum constant after CPU-down:
5890 static void migrate_nr_uninterruptible(struct rq *rq_src)
5892 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
5893 unsigned long flags;
5895 local_irq_save(flags);
5896 double_rq_lock(rq_src, rq_dest);
5897 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5898 rq_src->nr_uninterruptible = 0;
5899 double_rq_unlock(rq_src, rq_dest);
5900 local_irq_restore(flags);
5903 /* Run through task list and migrate tasks from the dead cpu. */
5904 static void migrate_live_tasks(int src_cpu)
5906 struct task_struct *p, *t;
5908 read_lock(&tasklist_lock);
5910 do_each_thread(t, p) {
5914 if (task_cpu(p) == src_cpu)
5915 move_task_off_dead_cpu(src_cpu, p);
5916 } while_each_thread(t, p);
5918 read_unlock(&tasklist_lock);
5922 * Schedules idle task to be the next runnable task on current CPU.
5923 * It does so by boosting its priority to highest possible.
5924 * Used by CPU offline code.
5926 void sched_idle_next(void)
5928 int this_cpu = smp_processor_id();
5929 struct rq *rq = cpu_rq(this_cpu);
5930 struct task_struct *p = rq->idle;
5931 unsigned long flags;
5933 /* cpu has to be offline */
5934 BUG_ON(cpu_online(this_cpu));
5937 * Strictly not necessary since rest of the CPUs are stopped by now
5938 * and interrupts disabled on the current cpu.
5940 raw_spin_lock_irqsave(&rq->lock, flags);
5942 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5944 activate_task(rq, p, 0);
5946 raw_spin_unlock_irqrestore(&rq->lock, flags);
5950 * Ensures that the idle task is using init_mm right before its cpu goes
5953 void idle_task_exit(void)
5955 struct mm_struct *mm = current->active_mm;
5957 BUG_ON(cpu_online(smp_processor_id()));
5960 switch_mm(mm, &init_mm, current);
5964 /* called under rq->lock with disabled interrupts */
5965 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5967 struct rq *rq = cpu_rq(dead_cpu);
5969 /* Must be exiting, otherwise would be on tasklist. */
5970 BUG_ON(!p->exit_state);
5972 /* Cannot have done final schedule yet: would have vanished. */
5973 BUG_ON(p->state == TASK_DEAD);
5978 * Drop lock around migration; if someone else moves it,
5979 * that's OK. No task can be added to this CPU, so iteration is
5982 raw_spin_unlock_irq(&rq->lock);
5983 move_task_off_dead_cpu(dead_cpu, p);
5984 raw_spin_lock_irq(&rq->lock);
5989 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5990 static void migrate_dead_tasks(unsigned int dead_cpu)
5992 struct rq *rq = cpu_rq(dead_cpu);
5993 struct task_struct *next;
5996 if (!rq->nr_running)
5998 next = pick_next_task(rq);
6001 next->sched_class->put_prev_task(rq, next);
6002 migrate_dead(dead_cpu, next);
6008 * remove the tasks which were accounted by rq from calc_load_tasks.
6010 static void calc_global_load_remove(struct rq *rq)
6012 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
6013 rq->calc_load_active = 0;
6015 #endif /* CONFIG_HOTPLUG_CPU */
6017 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6019 static struct ctl_table sd_ctl_dir[] = {
6021 .procname = "sched_domain",
6027 static struct ctl_table sd_ctl_root[] = {
6029 .procname = "kernel",
6031 .child = sd_ctl_dir,
6036 static struct ctl_table *sd_alloc_ctl_entry(int n)
6038 struct ctl_table *entry =
6039 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6044 static void sd_free_ctl_entry(struct ctl_table **tablep)
6046 struct ctl_table *entry;
6049 * In the intermediate directories, both the child directory and
6050 * procname are dynamically allocated and could fail but the mode
6051 * will always be set. In the lowest directory the names are
6052 * static strings and all have proc handlers.
6054 for (entry = *tablep; entry->mode; entry++) {
6056 sd_free_ctl_entry(&entry->child);
6057 if (entry->proc_handler == NULL)
6058 kfree(entry->procname);
6066 set_table_entry(struct ctl_table *entry,
6067 const char *procname, void *data, int maxlen,
6068 mode_t mode, proc_handler *proc_handler)
6070 entry->procname = procname;
6072 entry->maxlen = maxlen;
6074 entry->proc_handler = proc_handler;
6077 static struct ctl_table *
6078 sd_alloc_ctl_domain_table(struct sched_domain *sd)
6080 struct ctl_table *table = sd_alloc_ctl_entry(13);
6085 set_table_entry(&table[0], "min_interval", &sd->min_interval,
6086 sizeof(long), 0644, proc_doulongvec_minmax);
6087 set_table_entry(&table[1], "max_interval", &sd->max_interval,
6088 sizeof(long), 0644, proc_doulongvec_minmax);
6089 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6090 sizeof(int), 0644, proc_dointvec_minmax);
6091 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6092 sizeof(int), 0644, proc_dointvec_minmax);
6093 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6094 sizeof(int), 0644, proc_dointvec_minmax);
6095 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6096 sizeof(int), 0644, proc_dointvec_minmax);
6097 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6098 sizeof(int), 0644, proc_dointvec_minmax);
6099 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6100 sizeof(int), 0644, proc_dointvec_minmax);
6101 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6102 sizeof(int), 0644, proc_dointvec_minmax);
6103 set_table_entry(&table[9], "cache_nice_tries",
6104 &sd->cache_nice_tries,
6105 sizeof(int), 0644, proc_dointvec_minmax);
6106 set_table_entry(&table[10], "flags", &sd->flags,
6107 sizeof(int), 0644, proc_dointvec_minmax);
6108 set_table_entry(&table[11], "name", sd->name,
6109 CORENAME_MAX_SIZE, 0444, proc_dostring);
6110 /* &table[12] is terminator */
6115 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6117 struct ctl_table *entry, *table;
6118 struct sched_domain *sd;
6119 int domain_num = 0, i;
6122 for_each_domain(cpu, sd)
6124 entry = table = sd_alloc_ctl_entry(domain_num + 1);
6129 for_each_domain(cpu, sd) {
6130 snprintf(buf, 32, "domain%d", i);
6131 entry->procname = kstrdup(buf, GFP_KERNEL);
6133 entry->child = sd_alloc_ctl_domain_table(sd);
6140 static struct ctl_table_header *sd_sysctl_header;
6141 static void register_sched_domain_sysctl(void)
6143 int i, cpu_num = num_possible_cpus();
6144 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6147 WARN_ON(sd_ctl_dir[0].child);
6148 sd_ctl_dir[0].child = entry;
6153 for_each_possible_cpu(i) {
6154 snprintf(buf, 32, "cpu%d", i);
6155 entry->procname = kstrdup(buf, GFP_KERNEL);
6157 entry->child = sd_alloc_ctl_cpu_table(i);
6161 WARN_ON(sd_sysctl_header);
6162 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6165 /* may be called multiple times per register */
6166 static void unregister_sched_domain_sysctl(void)
6168 if (sd_sysctl_header)
6169 unregister_sysctl_table(sd_sysctl_header);
6170 sd_sysctl_header = NULL;
6171 if (sd_ctl_dir[0].child)
6172 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6175 static void register_sched_domain_sysctl(void)
6178 static void unregister_sched_domain_sysctl(void)
6183 static void set_rq_online(struct rq *rq)
6186 const struct sched_class *class;
6188 cpumask_set_cpu(rq->cpu, rq->rd->online);
6191 for_each_class(class) {
6192 if (class->rq_online)
6193 class->rq_online(rq);
6198 static void set_rq_offline(struct rq *rq)
6201 const struct sched_class *class;
6203 for_each_class(class) {
6204 if (class->rq_offline)
6205 class->rq_offline(rq);
6208 cpumask_clear_cpu(rq->cpu, rq->rd->online);
6214 * migration_call - callback that gets triggered when a CPU is added.
6215 * Here we can start up the necessary migration thread for the new CPU.
6217 static int __cpuinit
6218 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
6220 int cpu = (long)hcpu;
6221 unsigned long flags;
6222 struct rq *rq = cpu_rq(cpu);
6226 case CPU_UP_PREPARE:
6227 case CPU_UP_PREPARE_FROZEN:
6228 rq->calc_load_update = calc_load_update;
6232 case CPU_ONLINE_FROZEN:
6233 /* Update our root-domain */
6234 raw_spin_lock_irqsave(&rq->lock, flags);
6236 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6240 raw_spin_unlock_irqrestore(&rq->lock, flags);
6243 #ifdef CONFIG_HOTPLUG_CPU
6245 case CPU_DEAD_FROZEN:
6246 migrate_live_tasks(cpu);
6247 /* Idle task back to normal (off runqueue, low prio) */
6248 raw_spin_lock_irq(&rq->lock);
6249 deactivate_task(rq, rq->idle, 0);
6250 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6251 rq->idle->sched_class = &idle_sched_class;
6252 migrate_dead_tasks(cpu);
6253 raw_spin_unlock_irq(&rq->lock);
6254 migrate_nr_uninterruptible(rq);
6255 BUG_ON(rq->nr_running != 0);
6256 calc_global_load_remove(rq);
6260 case CPU_DYING_FROZEN:
6261 /* Update our root-domain */
6262 raw_spin_lock_irqsave(&rq->lock, flags);
6264 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6267 raw_spin_unlock_irqrestore(&rq->lock, flags);
6275 * Register at high priority so that task migration (migrate_all_tasks)
6276 * happens before everything else. This has to be lower priority than
6277 * the notifier in the perf_event subsystem, though.
6279 static struct notifier_block __cpuinitdata migration_notifier = {
6280 .notifier_call = migration_call,
6281 .priority = CPU_PRI_MIGRATION,
6284 static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
6285 unsigned long action, void *hcpu)
6287 switch (action & ~CPU_TASKS_FROZEN) {
6289 case CPU_DOWN_FAILED:
6290 set_cpu_active((long)hcpu, true);
6297 static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
6298 unsigned long action, void *hcpu)
6300 switch (action & ~CPU_TASKS_FROZEN) {
6301 case CPU_DOWN_PREPARE:
6302 set_cpu_active((long)hcpu, false);
6309 static int __init migration_init(void)
6311 void *cpu = (void *)(long)smp_processor_id();
6314 /* Initialize migration for the boot CPU */
6315 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6316 BUG_ON(err == NOTIFY_BAD);
6317 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6318 register_cpu_notifier(&migration_notifier);
6320 /* Register cpu active notifiers */
6321 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
6322 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
6326 early_initcall(migration_init);
6331 #ifdef CONFIG_SCHED_DEBUG
6333 static __read_mostly int sched_domain_debug_enabled;
6335 static int __init sched_domain_debug_setup(char *str)
6337 sched_domain_debug_enabled = 1;
6341 early_param("sched_debug", sched_domain_debug_setup);
6343 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6344 struct cpumask *groupmask)
6346 struct sched_group *group = sd->groups;
6349 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
6350 cpumask_clear(groupmask);
6352 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6354 if (!(sd->flags & SD_LOAD_BALANCE)) {
6355 printk("does not load-balance\n");
6357 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6362 printk(KERN_CONT "span %s level %s\n", str, sd->name);
6364 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
6365 printk(KERN_ERR "ERROR: domain->span does not contain "
6368 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
6369 printk(KERN_ERR "ERROR: domain->groups does not contain"
6373 printk(KERN_DEBUG "%*s groups:", level + 1, "");
6377 printk(KERN_ERR "ERROR: group is NULL\n");
6381 if (!group->cpu_power) {
6382 printk(KERN_CONT "\n");
6383 printk(KERN_ERR "ERROR: domain->cpu_power not "
6388 if (!cpumask_weight(sched_group_cpus(group))) {
6389 printk(KERN_CONT "\n");
6390 printk(KERN_ERR "ERROR: empty group\n");
6394 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
6395 printk(KERN_CONT "\n");
6396 printk(KERN_ERR "ERROR: repeated CPUs\n");
6400 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
6402 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
6404 printk(KERN_CONT " %s", str);
6405 if (group->cpu_power != SCHED_LOAD_SCALE) {
6406 printk(KERN_CONT " (cpu_power = %d)",
6410 group = group->next;
6411 } while (group != sd->groups);
6412 printk(KERN_CONT "\n");
6414 if (!cpumask_equal(sched_domain_span(sd), groupmask))
6415 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6418 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
6419 printk(KERN_ERR "ERROR: parent span is not a superset "
6420 "of domain->span\n");
6424 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6426 cpumask_var_t groupmask;
6429 if (!sched_domain_debug_enabled)
6433 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6437 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6439 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
6440 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6445 if (sched_domain_debug_one(sd, cpu, level, groupmask))
6452 free_cpumask_var(groupmask);
6454 #else /* !CONFIG_SCHED_DEBUG */
6455 # define sched_domain_debug(sd, cpu) do { } while (0)
6456 #endif /* CONFIG_SCHED_DEBUG */
6458 static int sd_degenerate(struct sched_domain *sd)
6460 if (cpumask_weight(sched_domain_span(sd)) == 1)
6463 /* Following flags need at least 2 groups */
6464 if (sd->flags & (SD_LOAD_BALANCE |
6465 SD_BALANCE_NEWIDLE |
6469 SD_SHARE_PKG_RESOURCES)) {
6470 if (sd->groups != sd->groups->next)
6474 /* Following flags don't use groups */
6475 if (sd->flags & (SD_WAKE_AFFINE))
6482 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6484 unsigned long cflags = sd->flags, pflags = parent->flags;
6486 if (sd_degenerate(parent))
6489 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6492 /* Flags needing groups don't count if only 1 group in parent */
6493 if (parent->groups == parent->groups->next) {
6494 pflags &= ~(SD_LOAD_BALANCE |
6495 SD_BALANCE_NEWIDLE |
6499 SD_SHARE_PKG_RESOURCES);
6500 if (nr_node_ids == 1)
6501 pflags &= ~SD_SERIALIZE;
6503 if (~cflags & pflags)
6509 static void free_rootdomain(struct root_domain *rd)
6511 synchronize_sched();
6513 cpupri_cleanup(&rd->cpupri);
6515 free_cpumask_var(rd->rto_mask);
6516 free_cpumask_var(rd->online);
6517 free_cpumask_var(rd->span);
6521 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6523 struct root_domain *old_rd = NULL;
6524 unsigned long flags;
6526 raw_spin_lock_irqsave(&rq->lock, flags);
6531 if (cpumask_test_cpu(rq->cpu, old_rd->online))
6534 cpumask_clear_cpu(rq->cpu, old_rd->span);
6537 * If we dont want to free the old_rt yet then
6538 * set old_rd to NULL to skip the freeing later
6541 if (!atomic_dec_and_test(&old_rd->refcount))
6545 atomic_inc(&rd->refcount);
6548 cpumask_set_cpu(rq->cpu, rd->span);
6549 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
6552 raw_spin_unlock_irqrestore(&rq->lock, flags);
6555 free_rootdomain(old_rd);
6558 static int init_rootdomain(struct root_domain *rd)
6560 memset(rd, 0, sizeof(*rd));
6562 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
6564 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
6566 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
6569 if (cpupri_init(&rd->cpupri) != 0)
6574 free_cpumask_var(rd->rto_mask);
6576 free_cpumask_var(rd->online);
6578 free_cpumask_var(rd->span);
6583 static void init_defrootdomain(void)
6585 init_rootdomain(&def_root_domain);
6587 atomic_set(&def_root_domain.refcount, 1);
6590 static struct root_domain *alloc_rootdomain(void)
6592 struct root_domain *rd;
6594 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6598 if (init_rootdomain(rd) != 0) {
6607 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6608 * hold the hotplug lock.
6611 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6613 struct rq *rq = cpu_rq(cpu);
6614 struct sched_domain *tmp;
6616 for (tmp = sd; tmp; tmp = tmp->parent)
6617 tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
6619 /* Remove the sched domains which do not contribute to scheduling. */
6620 for (tmp = sd; tmp; ) {
6621 struct sched_domain *parent = tmp->parent;
6625 if (sd_parent_degenerate(tmp, parent)) {
6626 tmp->parent = parent->parent;
6628 parent->parent->child = tmp;
6633 if (sd && sd_degenerate(sd)) {
6639 sched_domain_debug(sd, cpu);
6641 rq_attach_root(rq, rd);
6642 rcu_assign_pointer(rq->sd, sd);
6645 /* cpus with isolated domains */
6646 static cpumask_var_t cpu_isolated_map;
6648 /* Setup the mask of cpus configured for isolated domains */
6649 static int __init isolated_cpu_setup(char *str)
6651 alloc_bootmem_cpumask_var(&cpu_isolated_map);
6652 cpulist_parse(str, cpu_isolated_map);
6656 __setup("isolcpus=", isolated_cpu_setup);
6659 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6660 * to a function which identifies what group(along with sched group) a CPU
6661 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6662 * (due to the fact that we keep track of groups covered with a struct cpumask).
6664 * init_sched_build_groups will build a circular linked list of the groups
6665 * covered by the given span, and will set each group's ->cpumask correctly,
6666 * and ->cpu_power to 0.
6669 init_sched_build_groups(const struct cpumask *span,
6670 const struct cpumask *cpu_map,
6671 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
6672 struct sched_group **sg,
6673 struct cpumask *tmpmask),
6674 struct cpumask *covered, struct cpumask *tmpmask)
6676 struct sched_group *first = NULL, *last = NULL;
6679 cpumask_clear(covered);
6681 for_each_cpu(i, span) {
6682 struct sched_group *sg;
6683 int group = group_fn(i, cpu_map, &sg, tmpmask);
6686 if (cpumask_test_cpu(i, covered))
6689 cpumask_clear(sched_group_cpus(sg));
6692 for_each_cpu(j, span) {
6693 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
6696 cpumask_set_cpu(j, covered);
6697 cpumask_set_cpu(j, sched_group_cpus(sg));
6708 #define SD_NODES_PER_DOMAIN 16
6713 * find_next_best_node - find the next node to include in a sched_domain
6714 * @node: node whose sched_domain we're building
6715 * @used_nodes: nodes already in the sched_domain
6717 * Find the next node to include in a given scheduling domain. Simply
6718 * finds the closest node not already in the @used_nodes map.
6720 * Should use nodemask_t.
6722 static int find_next_best_node(int node, nodemask_t *used_nodes)
6724 int i, n, val, min_val, best_node = 0;
6728 for (i = 0; i < nr_node_ids; i++) {
6729 /* Start at @node */
6730 n = (node + i) % nr_node_ids;
6732 if (!nr_cpus_node(n))
6735 /* Skip already used nodes */
6736 if (node_isset(n, *used_nodes))
6739 /* Simple min distance search */
6740 val = node_distance(node, n);
6742 if (val < min_val) {
6748 node_set(best_node, *used_nodes);
6753 * sched_domain_node_span - get a cpumask for a node's sched_domain
6754 * @node: node whose cpumask we're constructing
6755 * @span: resulting cpumask
6757 * Given a node, construct a good cpumask for its sched_domain to span. It
6758 * should be one that prevents unnecessary balancing, but also spreads tasks
6761 static void sched_domain_node_span(int node, struct cpumask *span)
6763 nodemask_t used_nodes;
6766 cpumask_clear(span);
6767 nodes_clear(used_nodes);
6769 cpumask_or(span, span, cpumask_of_node(node));
6770 node_set(node, used_nodes);
6772 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6773 int next_node = find_next_best_node(node, &used_nodes);
6775 cpumask_or(span, span, cpumask_of_node(next_node));
6778 #endif /* CONFIG_NUMA */
6780 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6783 * The cpus mask in sched_group and sched_domain hangs off the end.
6785 * ( See the the comments in include/linux/sched.h:struct sched_group
6786 * and struct sched_domain. )
6788 struct static_sched_group {
6789 struct sched_group sg;
6790 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
6793 struct static_sched_domain {
6794 struct sched_domain sd;
6795 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
6801 cpumask_var_t domainspan;
6802 cpumask_var_t covered;
6803 cpumask_var_t notcovered;
6805 cpumask_var_t nodemask;
6806 cpumask_var_t this_sibling_map;
6807 cpumask_var_t this_core_map;
6808 cpumask_var_t this_book_map;
6809 cpumask_var_t send_covered;
6810 cpumask_var_t tmpmask;
6811 struct sched_group **sched_group_nodes;
6812 struct root_domain *rd;
6816 sa_sched_groups = 0,
6822 sa_this_sibling_map,
6824 sa_sched_group_nodes,
6834 * SMT sched-domains:
6836 #ifdef CONFIG_SCHED_SMT
6837 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
6838 static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
6841 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
6842 struct sched_group **sg, struct cpumask *unused)
6845 *sg = &per_cpu(sched_groups, cpu).sg;
6848 #endif /* CONFIG_SCHED_SMT */
6851 * multi-core sched-domains:
6853 #ifdef CONFIG_SCHED_MC
6854 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
6855 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6858 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6859 struct sched_group **sg, struct cpumask *mask)
6862 #ifdef CONFIG_SCHED_SMT
6863 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6864 group = cpumask_first(mask);
6869 *sg = &per_cpu(sched_group_core, group).sg;
6872 #endif /* CONFIG_SCHED_MC */
6875 * book sched-domains:
6877 #ifdef CONFIG_SCHED_BOOK
6878 static DEFINE_PER_CPU(struct static_sched_domain, book_domains);
6879 static DEFINE_PER_CPU(struct static_sched_group, sched_group_book);
6882 cpu_to_book_group(int cpu, const struct cpumask *cpu_map,
6883 struct sched_group **sg, struct cpumask *mask)
6886 #ifdef CONFIG_SCHED_MC
6887 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6888 group = cpumask_first(mask);
6889 #elif defined(CONFIG_SCHED_SMT)
6890 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6891 group = cpumask_first(mask);
6894 *sg = &per_cpu(sched_group_book, group).sg;
6897 #endif /* CONFIG_SCHED_BOOK */
6899 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
6900 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
6903 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
6904 struct sched_group **sg, struct cpumask *mask)
6907 #ifdef CONFIG_SCHED_BOOK
6908 cpumask_and(mask, cpu_book_mask(cpu), cpu_map);
6909 group = cpumask_first(mask);
6910 #elif defined(CONFIG_SCHED_MC)
6911 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6912 group = cpumask_first(mask);
6913 #elif defined(CONFIG_SCHED_SMT)
6914 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6915 group = cpumask_first(mask);
6920 *sg = &per_cpu(sched_group_phys, group).sg;
6926 * The init_sched_build_groups can't handle what we want to do with node
6927 * groups, so roll our own. Now each node has its own list of groups which
6928 * gets dynamically allocated.
6930 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
6931 static struct sched_group ***sched_group_nodes_bycpu;
6933 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6934 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
6936 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
6937 struct sched_group **sg,
6938 struct cpumask *nodemask)
6942 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
6943 group = cpumask_first(nodemask);
6946 *sg = &per_cpu(sched_group_allnodes, group).sg;
6950 static void init_numa_sched_groups_power(struct sched_group *group_head)
6952 struct sched_group *sg = group_head;
6958 for_each_cpu(j, sched_group_cpus(sg)) {
6959 struct sched_domain *sd;
6961 sd = &per_cpu(phys_domains, j).sd;
6962 if (j != group_first_cpu(sd->groups)) {
6964 * Only add "power" once for each
6970 sg->cpu_power += sd->groups->cpu_power;
6973 } while (sg != group_head);
6976 static int build_numa_sched_groups(struct s_data *d,
6977 const struct cpumask *cpu_map, int num)
6979 struct sched_domain *sd;
6980 struct sched_group *sg, *prev;
6983 cpumask_clear(d->covered);
6984 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
6985 if (cpumask_empty(d->nodemask)) {
6986 d->sched_group_nodes[num] = NULL;
6990 sched_domain_node_span(num, d->domainspan);
6991 cpumask_and(d->domainspan, d->domainspan, cpu_map);
6993 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6996 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
7000 d->sched_group_nodes[num] = sg;
7002 for_each_cpu(j, d->nodemask) {
7003 sd = &per_cpu(node_domains, j).sd;
7008 cpumask_copy(sched_group_cpus(sg), d->nodemask);
7010 cpumask_or(d->covered, d->covered, d->nodemask);
7013 for (j = 0; j < nr_node_ids; j++) {
7014 n = (num + j) % nr_node_ids;
7015 cpumask_complement(d->notcovered, d->covered);
7016 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
7017 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
7018 if (cpumask_empty(d->tmpmask))
7020 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
7021 if (cpumask_empty(d->tmpmask))
7023 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
7027 "Can not alloc domain group for node %d\n", j);
7031 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
7032 sg->next = prev->next;
7033 cpumask_or(d->covered, d->covered, d->tmpmask);
7040 #endif /* CONFIG_NUMA */
7043 /* Free memory allocated for various sched_group structures */
7044 static void free_sched_groups(const struct cpumask *cpu_map,
7045 struct cpumask *nodemask)
7049 for_each_cpu(cpu, cpu_map) {
7050 struct sched_group **sched_group_nodes
7051 = sched_group_nodes_bycpu[cpu];
7053 if (!sched_group_nodes)
7056 for (i = 0; i < nr_node_ids; i++) {
7057 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7059 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
7060 if (cpumask_empty(nodemask))
7070 if (oldsg != sched_group_nodes[i])
7073 kfree(sched_group_nodes);
7074 sched_group_nodes_bycpu[cpu] = NULL;
7077 #else /* !CONFIG_NUMA */
7078 static void free_sched_groups(const struct cpumask *cpu_map,
7079 struct cpumask *nodemask)
7082 #endif /* CONFIG_NUMA */
7085 * Initialize sched groups cpu_power.
7087 * cpu_power indicates the capacity of sched group, which is used while
7088 * distributing the load between different sched groups in a sched domain.
7089 * Typically cpu_power for all the groups in a sched domain will be same unless
7090 * there are asymmetries in the topology. If there are asymmetries, group
7091 * having more cpu_power will pickup more load compared to the group having
7094 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7096 struct sched_domain *child;
7097 struct sched_group *group;
7101 WARN_ON(!sd || !sd->groups);
7103 if (cpu != group_first_cpu(sd->groups))
7106 sd->groups->group_weight = cpumask_weight(sched_group_cpus(sd->groups));
7110 sd->groups->cpu_power = 0;
7113 power = SCHED_LOAD_SCALE;
7114 weight = cpumask_weight(sched_domain_span(sd));
7116 * SMT siblings share the power of a single core.
7117 * Usually multiple threads get a better yield out of
7118 * that one core than a single thread would have,
7119 * reflect that in sd->smt_gain.
7121 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
7122 power *= sd->smt_gain;
7124 power >>= SCHED_LOAD_SHIFT;
7126 sd->groups->cpu_power += power;
7131 * Add cpu_power of each child group to this groups cpu_power.
7133 group = child->groups;
7135 sd->groups->cpu_power += group->cpu_power;
7136 group = group->next;
7137 } while (group != child->groups);
7141 * Initializers for schedule domains
7142 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7145 #ifdef CONFIG_SCHED_DEBUG
7146 # define SD_INIT_NAME(sd, type) sd->name = #type
7148 # define SD_INIT_NAME(sd, type) do { } while (0)
7151 #define SD_INIT(sd, type) sd_init_##type(sd)
7153 #define SD_INIT_FUNC(type) \
7154 static noinline void sd_init_##type(struct sched_domain *sd) \
7156 memset(sd, 0, sizeof(*sd)); \
7157 *sd = SD_##type##_INIT; \
7158 sd->level = SD_LV_##type; \
7159 SD_INIT_NAME(sd, type); \
7164 SD_INIT_FUNC(ALLNODES)
7167 #ifdef CONFIG_SCHED_SMT
7168 SD_INIT_FUNC(SIBLING)
7170 #ifdef CONFIG_SCHED_MC
7173 #ifdef CONFIG_SCHED_BOOK
7177 static int default_relax_domain_level = -1;
7179 static int __init setup_relax_domain_level(char *str)
7183 val = simple_strtoul(str, NULL, 0);
7184 if (val < SD_LV_MAX)
7185 default_relax_domain_level = val;
7189 __setup("relax_domain_level=", setup_relax_domain_level);
7191 static void set_domain_attribute(struct sched_domain *sd,
7192 struct sched_domain_attr *attr)
7196 if (!attr || attr->relax_domain_level < 0) {
7197 if (default_relax_domain_level < 0)
7200 request = default_relax_domain_level;
7202 request = attr->relax_domain_level;
7203 if (request < sd->level) {
7204 /* turn off idle balance on this domain */
7205 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
7207 /* turn on idle balance on this domain */
7208 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
7212 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
7213 const struct cpumask *cpu_map)
7216 case sa_sched_groups:
7217 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
7218 d->sched_group_nodes = NULL;
7220 free_rootdomain(d->rd); /* fall through */
7222 free_cpumask_var(d->tmpmask); /* fall through */
7223 case sa_send_covered:
7224 free_cpumask_var(d->send_covered); /* fall through */
7225 case sa_this_book_map:
7226 free_cpumask_var(d->this_book_map); /* fall through */
7227 case sa_this_core_map:
7228 free_cpumask_var(d->this_core_map); /* fall through */
7229 case sa_this_sibling_map:
7230 free_cpumask_var(d->this_sibling_map); /* fall through */
7232 free_cpumask_var(d->nodemask); /* fall through */
7233 case sa_sched_group_nodes:
7235 kfree(d->sched_group_nodes); /* fall through */
7237 free_cpumask_var(d->notcovered); /* fall through */
7239 free_cpumask_var(d->covered); /* fall through */
7241 free_cpumask_var(d->domainspan); /* fall through */
7248 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
7249 const struct cpumask *cpu_map)
7252 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
7254 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
7255 return sa_domainspan;
7256 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
7258 /* Allocate the per-node list of sched groups */
7259 d->sched_group_nodes = kcalloc(nr_node_ids,
7260 sizeof(struct sched_group *), GFP_KERNEL);
7261 if (!d->sched_group_nodes) {
7262 printk(KERN_WARNING "Can not alloc sched group node list\n");
7263 return sa_notcovered;
7265 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
7267 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
7268 return sa_sched_group_nodes;
7269 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
7271 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
7272 return sa_this_sibling_map;
7273 if (!alloc_cpumask_var(&d->this_book_map, GFP_KERNEL))
7274 return sa_this_core_map;
7275 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
7276 return sa_this_book_map;
7277 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
7278 return sa_send_covered;
7279 d->rd = alloc_rootdomain();
7281 printk(KERN_WARNING "Cannot alloc root domain\n");
7284 return sa_rootdomain;
7287 static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
7288 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
7290 struct sched_domain *sd = NULL;
7292 struct sched_domain *parent;
7295 if (cpumask_weight(cpu_map) >
7296 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
7297 sd = &per_cpu(allnodes_domains, i).sd;
7298 SD_INIT(sd, ALLNODES);
7299 set_domain_attribute(sd, attr);
7300 cpumask_copy(sched_domain_span(sd), cpu_map);
7301 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
7306 sd = &per_cpu(node_domains, i).sd;
7308 set_domain_attribute(sd, attr);
7309 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
7310 sd->parent = parent;
7313 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
7318 static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
7319 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7320 struct sched_domain *parent, int i)
7322 struct sched_domain *sd;
7323 sd = &per_cpu(phys_domains, i).sd;
7325 set_domain_attribute(sd, attr);
7326 cpumask_copy(sched_domain_span(sd), d->nodemask);
7327 sd->parent = parent;
7330 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
7334 static struct sched_domain *__build_book_sched_domain(struct s_data *d,
7335 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7336 struct sched_domain *parent, int i)
7338 struct sched_domain *sd = parent;
7339 #ifdef CONFIG_SCHED_BOOK
7340 sd = &per_cpu(book_domains, i).sd;
7342 set_domain_attribute(sd, attr);
7343 cpumask_and(sched_domain_span(sd), cpu_map, cpu_book_mask(i));
7344 sd->parent = parent;
7346 cpu_to_book_group(i, cpu_map, &sd->groups, d->tmpmask);
7351 static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
7352 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7353 struct sched_domain *parent, int i)
7355 struct sched_domain *sd = parent;
7356 #ifdef CONFIG_SCHED_MC
7357 sd = &per_cpu(core_domains, i).sd;
7359 set_domain_attribute(sd, attr);
7360 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
7361 sd->parent = parent;
7363 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
7368 static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
7369 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7370 struct sched_domain *parent, int i)
7372 struct sched_domain *sd = parent;
7373 #ifdef CONFIG_SCHED_SMT
7374 sd = &per_cpu(cpu_domains, i).sd;
7375 SD_INIT(sd, SIBLING);
7376 set_domain_attribute(sd, attr);
7377 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
7378 sd->parent = parent;
7380 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
7385 static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
7386 const struct cpumask *cpu_map, int cpu)
7389 #ifdef CONFIG_SCHED_SMT
7390 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
7391 cpumask_and(d->this_sibling_map, cpu_map,
7392 topology_thread_cpumask(cpu));
7393 if (cpu == cpumask_first(d->this_sibling_map))
7394 init_sched_build_groups(d->this_sibling_map, cpu_map,
7396 d->send_covered, d->tmpmask);
7399 #ifdef CONFIG_SCHED_MC
7400 case SD_LV_MC: /* set up multi-core groups */
7401 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
7402 if (cpu == cpumask_first(d->this_core_map))
7403 init_sched_build_groups(d->this_core_map, cpu_map,
7405 d->send_covered, d->tmpmask);
7408 #ifdef CONFIG_SCHED_BOOK
7409 case SD_LV_BOOK: /* set up book groups */
7410 cpumask_and(d->this_book_map, cpu_map, cpu_book_mask(cpu));
7411 if (cpu == cpumask_first(d->this_book_map))
7412 init_sched_build_groups(d->this_book_map, cpu_map,
7414 d->send_covered, d->tmpmask);
7417 case SD_LV_CPU: /* set up physical groups */
7418 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
7419 if (!cpumask_empty(d->nodemask))
7420 init_sched_build_groups(d->nodemask, cpu_map,
7422 d->send_covered, d->tmpmask);
7425 case SD_LV_ALLNODES:
7426 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
7427 d->send_covered, d->tmpmask);
7436 * Build sched domains for a given set of cpus and attach the sched domains
7437 * to the individual cpus
7439 static int __build_sched_domains(const struct cpumask *cpu_map,
7440 struct sched_domain_attr *attr)
7442 enum s_alloc alloc_state = sa_none;
7444 struct sched_domain *sd;
7450 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7451 if (alloc_state != sa_rootdomain)
7453 alloc_state = sa_sched_groups;
7456 * Set up domains for cpus specified by the cpu_map.
7458 for_each_cpu(i, cpu_map) {
7459 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
7462 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
7463 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
7464 sd = __build_book_sched_domain(&d, cpu_map, attr, sd, i);
7465 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
7466 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
7469 for_each_cpu(i, cpu_map) {
7470 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
7471 build_sched_groups(&d, SD_LV_BOOK, cpu_map, i);
7472 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
7475 /* Set up physical groups */
7476 for (i = 0; i < nr_node_ids; i++)
7477 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
7480 /* Set up node groups */
7482 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
7484 for (i = 0; i < nr_node_ids; i++)
7485 if (build_numa_sched_groups(&d, cpu_map, i))
7489 /* Calculate CPU power for physical packages and nodes */
7490 #ifdef CONFIG_SCHED_SMT
7491 for_each_cpu(i, cpu_map) {
7492 sd = &per_cpu(cpu_domains, i).sd;
7493 init_sched_groups_power(i, sd);
7496 #ifdef CONFIG_SCHED_MC
7497 for_each_cpu(i, cpu_map) {
7498 sd = &per_cpu(core_domains, i).sd;
7499 init_sched_groups_power(i, sd);
7502 #ifdef CONFIG_SCHED_BOOK
7503 for_each_cpu(i, cpu_map) {
7504 sd = &per_cpu(book_domains, i).sd;
7505 init_sched_groups_power(i, sd);
7509 for_each_cpu(i, cpu_map) {
7510 sd = &per_cpu(phys_domains, i).sd;
7511 init_sched_groups_power(i, sd);
7515 for (i = 0; i < nr_node_ids; i++)
7516 init_numa_sched_groups_power(d.sched_group_nodes[i]);
7518 if (d.sd_allnodes) {
7519 struct sched_group *sg;
7521 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7523 init_numa_sched_groups_power(sg);
7527 /* Attach the domains */
7528 for_each_cpu(i, cpu_map) {
7529 #ifdef CONFIG_SCHED_SMT
7530 sd = &per_cpu(cpu_domains, i).sd;
7531 #elif defined(CONFIG_SCHED_MC)
7532 sd = &per_cpu(core_domains, i).sd;
7533 #elif defined(CONFIG_SCHED_BOOK)
7534 sd = &per_cpu(book_domains, i).sd;
7536 sd = &per_cpu(phys_domains, i).sd;
7538 cpu_attach_domain(sd, d.rd, i);
7541 d.sched_group_nodes = NULL; /* don't free this we still need it */
7542 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
7546 __free_domain_allocs(&d, alloc_state, cpu_map);
7550 static int build_sched_domains(const struct cpumask *cpu_map)
7552 return __build_sched_domains(cpu_map, NULL);
7555 static cpumask_var_t *doms_cur; /* current sched domains */
7556 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7557 static struct sched_domain_attr *dattr_cur;
7558 /* attribues of custom domains in 'doms_cur' */
7561 * Special case: If a kmalloc of a doms_cur partition (array of
7562 * cpumask) fails, then fallback to a single sched domain,
7563 * as determined by the single cpumask fallback_doms.
7565 static cpumask_var_t fallback_doms;
7568 * arch_update_cpu_topology lets virtualized architectures update the
7569 * cpu core maps. It is supposed to return 1 if the topology changed
7570 * or 0 if it stayed the same.
7572 int __attribute__((weak)) arch_update_cpu_topology(void)
7577 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7580 cpumask_var_t *doms;
7582 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7585 for (i = 0; i < ndoms; i++) {
7586 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7587 free_sched_domains(doms, i);
7594 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7597 for (i = 0; i < ndoms; i++)
7598 free_cpumask_var(doms[i]);
7603 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7604 * For now this just excludes isolated cpus, but could be used to
7605 * exclude other special cases in the future.
7607 static int arch_init_sched_domains(const struct cpumask *cpu_map)
7611 arch_update_cpu_topology();
7613 doms_cur = alloc_sched_domains(ndoms_cur);
7615 doms_cur = &fallback_doms;
7616 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7618 err = build_sched_domains(doms_cur[0]);
7619 register_sched_domain_sysctl();
7624 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7625 struct cpumask *tmpmask)
7627 free_sched_groups(cpu_map, tmpmask);
7631 * Detach sched domains from a group of cpus specified in cpu_map
7632 * These cpus will now be attached to the NULL domain
7634 static void detach_destroy_domains(const struct cpumask *cpu_map)
7636 /* Save because hotplug lock held. */
7637 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
7640 for_each_cpu(i, cpu_map)
7641 cpu_attach_domain(NULL, &def_root_domain, i);
7642 synchronize_sched();
7643 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
7646 /* handle null as "default" */
7647 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7648 struct sched_domain_attr *new, int idx_new)
7650 struct sched_domain_attr tmp;
7657 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7658 new ? (new + idx_new) : &tmp,
7659 sizeof(struct sched_domain_attr));
7663 * Partition sched domains as specified by the 'ndoms_new'
7664 * cpumasks in the array doms_new[] of cpumasks. This compares
7665 * doms_new[] to the current sched domain partitioning, doms_cur[].
7666 * It destroys each deleted domain and builds each new domain.
7668 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7669 * The masks don't intersect (don't overlap.) We should setup one
7670 * sched domain for each mask. CPUs not in any of the cpumasks will
7671 * not be load balanced. If the same cpumask appears both in the
7672 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7675 * The passed in 'doms_new' should be allocated using
7676 * alloc_sched_domains. This routine takes ownership of it and will
7677 * free_sched_domains it when done with it. If the caller failed the
7678 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7679 * and partition_sched_domains() will fallback to the single partition
7680 * 'fallback_doms', it also forces the domains to be rebuilt.
7682 * If doms_new == NULL it will be replaced with cpu_online_mask.
7683 * ndoms_new == 0 is a special case for destroying existing domains,
7684 * and it will not create the default domain.
7686 * Call with hotplug lock held
7688 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7689 struct sched_domain_attr *dattr_new)
7694 mutex_lock(&sched_domains_mutex);
7696 /* always unregister in case we don't destroy any domains */
7697 unregister_sched_domain_sysctl();
7699 /* Let architecture update cpu core mappings. */
7700 new_topology = arch_update_cpu_topology();
7702 n = doms_new ? ndoms_new : 0;
7704 /* Destroy deleted domains */
7705 for (i = 0; i < ndoms_cur; i++) {
7706 for (j = 0; j < n && !new_topology; j++) {
7707 if (cpumask_equal(doms_cur[i], doms_new[j])
7708 && dattrs_equal(dattr_cur, i, dattr_new, j))
7711 /* no match - a current sched domain not in new doms_new[] */
7712 detach_destroy_domains(doms_cur[i]);
7717 if (doms_new == NULL) {
7719 doms_new = &fallback_doms;
7720 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7721 WARN_ON_ONCE(dattr_new);
7724 /* Build new domains */
7725 for (i = 0; i < ndoms_new; i++) {
7726 for (j = 0; j < ndoms_cur && !new_topology; j++) {
7727 if (cpumask_equal(doms_new[i], doms_cur[j])
7728 && dattrs_equal(dattr_new, i, dattr_cur, j))
7731 /* no match - add a new doms_new */
7732 __build_sched_domains(doms_new[i],
7733 dattr_new ? dattr_new + i : NULL);
7738 /* Remember the new sched domains */
7739 if (doms_cur != &fallback_doms)
7740 free_sched_domains(doms_cur, ndoms_cur);
7741 kfree(dattr_cur); /* kfree(NULL) is safe */
7742 doms_cur = doms_new;
7743 dattr_cur = dattr_new;
7744 ndoms_cur = ndoms_new;
7746 register_sched_domain_sysctl();
7748 mutex_unlock(&sched_domains_mutex);
7751 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7752 static void arch_reinit_sched_domains(void)
7756 /* Destroy domains first to force the rebuild */
7757 partition_sched_domains(0, NULL, NULL);
7759 rebuild_sched_domains();
7763 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7765 unsigned int level = 0;
7767 if (sscanf(buf, "%u", &level) != 1)
7771 * level is always be positive so don't check for
7772 * level < POWERSAVINGS_BALANCE_NONE which is 0
7773 * What happens on 0 or 1 byte write,
7774 * need to check for count as well?
7777 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
7781 sched_smt_power_savings = level;
7783 sched_mc_power_savings = level;
7785 arch_reinit_sched_domains();
7790 #ifdef CONFIG_SCHED_MC
7791 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7792 struct sysdev_class_attribute *attr,
7795 return sprintf(page, "%u\n", sched_mc_power_savings);
7797 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7798 struct sysdev_class_attribute *attr,
7799 const char *buf, size_t count)
7801 return sched_power_savings_store(buf, count, 0);
7803 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7804 sched_mc_power_savings_show,
7805 sched_mc_power_savings_store);
7808 #ifdef CONFIG_SCHED_SMT
7809 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7810 struct sysdev_class_attribute *attr,
7813 return sprintf(page, "%u\n", sched_smt_power_savings);
7815 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7816 struct sysdev_class_attribute *attr,
7817 const char *buf, size_t count)
7819 return sched_power_savings_store(buf, count, 1);
7821 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7822 sched_smt_power_savings_show,
7823 sched_smt_power_savings_store);
7826 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7830 #ifdef CONFIG_SCHED_SMT
7832 err = sysfs_create_file(&cls->kset.kobj,
7833 &attr_sched_smt_power_savings.attr);
7835 #ifdef CONFIG_SCHED_MC
7836 if (!err && mc_capable())
7837 err = sysfs_create_file(&cls->kset.kobj,
7838 &attr_sched_mc_power_savings.attr);
7842 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7845 * Update cpusets according to cpu_active mask. If cpusets are
7846 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7847 * around partition_sched_domains().
7849 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7852 switch (action & ~CPU_TASKS_FROZEN) {
7854 case CPU_DOWN_FAILED:
7855 cpuset_update_active_cpus();
7862 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7865 switch (action & ~CPU_TASKS_FROZEN) {
7866 case CPU_DOWN_PREPARE:
7867 cpuset_update_active_cpus();
7874 static int update_runtime(struct notifier_block *nfb,
7875 unsigned long action, void *hcpu)
7877 int cpu = (int)(long)hcpu;
7880 case CPU_DOWN_PREPARE:
7881 case CPU_DOWN_PREPARE_FROZEN:
7882 disable_runtime(cpu_rq(cpu));
7885 case CPU_DOWN_FAILED:
7886 case CPU_DOWN_FAILED_FROZEN:
7888 case CPU_ONLINE_FROZEN:
7889 enable_runtime(cpu_rq(cpu));
7897 void __init sched_init_smp(void)
7899 cpumask_var_t non_isolated_cpus;
7901 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7902 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7904 #if defined(CONFIG_NUMA)
7905 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7907 BUG_ON(sched_group_nodes_bycpu == NULL);
7910 mutex_lock(&sched_domains_mutex);
7911 arch_init_sched_domains(cpu_active_mask);
7912 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7913 if (cpumask_empty(non_isolated_cpus))
7914 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7915 mutex_unlock(&sched_domains_mutex);
7918 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7919 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7921 /* RT runtime code needs to handle some hotplug events */
7922 hotcpu_notifier(update_runtime, 0);
7926 /* Move init over to a non-isolated CPU */
7927 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7929 sched_init_granularity();
7930 free_cpumask_var(non_isolated_cpus);
7932 init_sched_rt_class();
7935 void __init sched_init_smp(void)
7937 sched_init_granularity();
7939 #endif /* CONFIG_SMP */
7941 const_debug unsigned int sysctl_timer_migration = 1;
7943 int in_sched_functions(unsigned long addr)
7945 return in_lock_functions(addr) ||
7946 (addr >= (unsigned long)__sched_text_start
7947 && addr < (unsigned long)__sched_text_end);
7950 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
7952 cfs_rq->tasks_timeline = RB_ROOT;
7953 INIT_LIST_HEAD(&cfs_rq->tasks);
7954 #ifdef CONFIG_FAIR_GROUP_SCHED
7957 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7960 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7962 struct rt_prio_array *array;
7965 array = &rt_rq->active;
7966 for (i = 0; i < MAX_RT_PRIO; i++) {
7967 INIT_LIST_HEAD(array->queue + i);
7968 __clear_bit(i, array->bitmap);
7970 /* delimiter for bitsearch: */
7971 __set_bit(MAX_RT_PRIO, array->bitmap);
7973 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7974 rt_rq->highest_prio.curr = MAX_RT_PRIO;
7976 rt_rq->highest_prio.next = MAX_RT_PRIO;
7980 rt_rq->rt_nr_migratory = 0;
7981 rt_rq->overloaded = 0;
7982 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
7986 rt_rq->rt_throttled = 0;
7987 rt_rq->rt_runtime = 0;
7988 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
7990 #ifdef CONFIG_RT_GROUP_SCHED
7991 rt_rq->rt_nr_boosted = 0;
7996 #ifdef CONFIG_FAIR_GROUP_SCHED
7997 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7998 struct sched_entity *se, int cpu, int add,
7999 struct sched_entity *parent)
8001 struct rq *rq = cpu_rq(cpu);
8002 tg->cfs_rq[cpu] = cfs_rq;
8003 init_cfs_rq(cfs_rq, rq);
8006 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
8009 /* se could be NULL for init_task_group */
8014 se->cfs_rq = &rq->cfs;
8016 se->cfs_rq = parent->my_q;
8019 se->load.weight = tg->shares;
8020 se->load.inv_weight = 0;
8021 se->parent = parent;
8025 #ifdef CONFIG_RT_GROUP_SCHED
8026 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8027 struct sched_rt_entity *rt_se, int cpu, int add,
8028 struct sched_rt_entity *parent)
8030 struct rq *rq = cpu_rq(cpu);
8032 tg->rt_rq[cpu] = rt_rq;
8033 init_rt_rq(rt_rq, rq);
8035 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
8037 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
8039 tg->rt_se[cpu] = rt_se;
8044 rt_se->rt_rq = &rq->rt;
8046 rt_se->rt_rq = parent->my_q;
8048 rt_se->my_q = rt_rq;
8049 rt_se->parent = parent;
8050 INIT_LIST_HEAD(&rt_se->run_list);
8054 void __init sched_init(void)
8057 unsigned long alloc_size = 0, ptr;
8059 #ifdef CONFIG_FAIR_GROUP_SCHED
8060 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8062 #ifdef CONFIG_RT_GROUP_SCHED
8063 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8065 #ifdef CONFIG_CPUMASK_OFFSTACK
8066 alloc_size += num_possible_cpus() * cpumask_size();
8069 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
8071 #ifdef CONFIG_FAIR_GROUP_SCHED
8072 init_task_group.se = (struct sched_entity **)ptr;
8073 ptr += nr_cpu_ids * sizeof(void **);
8075 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
8076 ptr += nr_cpu_ids * sizeof(void **);
8078 #endif /* CONFIG_FAIR_GROUP_SCHED */
8079 #ifdef CONFIG_RT_GROUP_SCHED
8080 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
8081 ptr += nr_cpu_ids * sizeof(void **);
8083 init_task_group.rt_rq = (struct rt_rq **)ptr;
8084 ptr += nr_cpu_ids * sizeof(void **);
8086 #endif /* CONFIG_RT_GROUP_SCHED */
8087 #ifdef CONFIG_CPUMASK_OFFSTACK
8088 for_each_possible_cpu(i) {
8089 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
8090 ptr += cpumask_size();
8092 #endif /* CONFIG_CPUMASK_OFFSTACK */
8096 init_defrootdomain();
8099 init_rt_bandwidth(&def_rt_bandwidth,
8100 global_rt_period(), global_rt_runtime());
8102 #ifdef CONFIG_RT_GROUP_SCHED
8103 init_rt_bandwidth(&init_task_group.rt_bandwidth,
8104 global_rt_period(), global_rt_runtime());
8105 #endif /* CONFIG_RT_GROUP_SCHED */
8107 #ifdef CONFIG_CGROUP_SCHED
8108 list_add(&init_task_group.list, &task_groups);
8109 INIT_LIST_HEAD(&init_task_group.children);
8111 #endif /* CONFIG_CGROUP_SCHED */
8113 #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
8114 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
8115 __alignof__(unsigned long));
8117 for_each_possible_cpu(i) {
8121 raw_spin_lock_init(&rq->lock);
8123 rq->calc_load_active = 0;
8124 rq->calc_load_update = jiffies + LOAD_FREQ;
8125 init_cfs_rq(&rq->cfs, rq);
8126 init_rt_rq(&rq->rt, rq);
8127 #ifdef CONFIG_FAIR_GROUP_SCHED
8128 init_task_group.shares = init_task_group_load;
8129 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
8130 #ifdef CONFIG_CGROUP_SCHED
8132 * How much cpu bandwidth does init_task_group get?
8134 * In case of task-groups formed thr' the cgroup filesystem, it
8135 * gets 100% of the cpu resources in the system. This overall
8136 * system cpu resource is divided among the tasks of
8137 * init_task_group and its child task-groups in a fair manner,
8138 * based on each entity's (task or task-group's) weight
8139 * (se->load.weight).
8141 * In other words, if init_task_group has 10 tasks of weight
8142 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8143 * then A0's share of the cpu resource is:
8145 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8147 * We achieve this by letting init_task_group's tasks sit
8148 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8150 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
8152 #endif /* CONFIG_FAIR_GROUP_SCHED */
8154 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8155 #ifdef CONFIG_RT_GROUP_SCHED
8156 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
8157 #ifdef CONFIG_CGROUP_SCHED
8158 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
8162 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8163 rq->cpu_load[j] = 0;
8165 rq->last_load_update_tick = jiffies;
8170 rq->cpu_power = SCHED_LOAD_SCALE;
8171 rq->post_schedule = 0;
8172 rq->active_balance = 0;
8173 rq->next_balance = jiffies;
8178 rq->avg_idle = 2*sysctl_sched_migration_cost;
8179 rq_attach_root(rq, &def_root_domain);
8181 rq->nohz_balance_kick = 0;
8182 init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
8186 atomic_set(&rq->nr_iowait, 0);
8189 set_load_weight(&init_task);
8191 #ifdef CONFIG_PREEMPT_NOTIFIERS
8192 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8196 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8199 #ifdef CONFIG_RT_MUTEXES
8200 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
8204 * The boot idle thread does lazy MMU switching as well:
8206 atomic_inc(&init_mm.mm_count);
8207 enter_lazy_tlb(&init_mm, current);
8210 * Make us the idle thread. Technically, schedule() should not be
8211 * called from this thread, however somewhere below it might be,
8212 * but because we are the idle thread, we just pick up running again
8213 * when this runqueue becomes "idle".
8215 init_idle(current, smp_processor_id());
8217 calc_load_update = jiffies + LOAD_FREQ;
8220 * During early bootup we pretend to be a normal task:
8222 current->sched_class = &fair_sched_class;
8224 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
8225 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
8228 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8229 alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
8230 atomic_set(&nohz.load_balancer, nr_cpu_ids);
8231 atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
8232 atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
8234 /* May be allocated at isolcpus cmdline parse time */
8235 if (cpu_isolated_map == NULL)
8236 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
8241 scheduler_running = 1;
8244 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8245 static inline int preempt_count_equals(int preempt_offset)
8247 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
8249 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
8252 void __might_sleep(const char *file, int line, int preempt_offset)
8255 static unsigned long prev_jiffy; /* ratelimiting */
8257 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
8258 system_state != SYSTEM_RUNNING || oops_in_progress)
8260 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8262 prev_jiffy = jiffies;
8265 "BUG: sleeping function called from invalid context at %s:%d\n",
8268 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8269 in_atomic(), irqs_disabled(),
8270 current->pid, current->comm);
8272 debug_show_held_locks(current);
8273 if (irqs_disabled())
8274 print_irqtrace_events(current);
8278 EXPORT_SYMBOL(__might_sleep);
8281 #ifdef CONFIG_MAGIC_SYSRQ
8282 static void normalize_task(struct rq *rq, struct task_struct *p)
8286 on_rq = p->se.on_rq;
8288 deactivate_task(rq, p, 0);
8289 __setscheduler(rq, p, SCHED_NORMAL, 0);
8291 activate_task(rq, p, 0);
8292 resched_task(rq->curr);
8296 void normalize_rt_tasks(void)
8298 struct task_struct *g, *p;
8299 unsigned long flags;
8302 read_lock_irqsave(&tasklist_lock, flags);
8303 do_each_thread(g, p) {
8305 * Only normalize user tasks:
8310 p->se.exec_start = 0;
8311 #ifdef CONFIG_SCHEDSTATS
8312 p->se.statistics.wait_start = 0;
8313 p->se.statistics.sleep_start = 0;
8314 p->se.statistics.block_start = 0;
8319 * Renice negative nice level userspace
8322 if (TASK_NICE(p) < 0 && p->mm)
8323 set_user_nice(p, 0);
8327 raw_spin_lock(&p->pi_lock);
8328 rq = __task_rq_lock(p);
8330 normalize_task(rq, p);
8332 __task_rq_unlock(rq);
8333 raw_spin_unlock(&p->pi_lock);
8334 } while_each_thread(g, p);
8336 read_unlock_irqrestore(&tasklist_lock, flags);
8339 #endif /* CONFIG_MAGIC_SYSRQ */
8341 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
8343 * These functions are only useful for the IA64 MCA handling, or kdb.
8345 * They can only be called when the whole system has been
8346 * stopped - every CPU needs to be quiescent, and no scheduling
8347 * activity can take place. Using them for anything else would
8348 * be a serious bug, and as a result, they aren't even visible
8349 * under any other configuration.
8353 * curr_task - return the current task for a given cpu.
8354 * @cpu: the processor in question.
8356 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8358 struct task_struct *curr_task(int cpu)
8360 return cpu_curr(cpu);
8363 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8367 * set_curr_task - set the current task for a given cpu.
8368 * @cpu: the processor in question.
8369 * @p: the task pointer to set.
8371 * Description: This function must only be used when non-maskable interrupts
8372 * are serviced on a separate stack. It allows the architecture to switch the
8373 * notion of the current task on a cpu in a non-blocking manner. This function
8374 * must be called with all CPU's synchronized, and interrupts disabled, the
8375 * and caller must save the original value of the current task (see
8376 * curr_task() above) and restore that value before reenabling interrupts and
8377 * re-starting the system.
8379 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8381 void set_curr_task(int cpu, struct task_struct *p)
8388 #ifdef CONFIG_FAIR_GROUP_SCHED
8389 static void free_fair_sched_group(struct task_group *tg)
8393 for_each_possible_cpu(i) {
8395 kfree(tg->cfs_rq[i]);
8405 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8407 struct cfs_rq *cfs_rq;
8408 struct sched_entity *se;
8412 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8415 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8419 tg->shares = NICE_0_LOAD;
8421 for_each_possible_cpu(i) {
8424 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8425 GFP_KERNEL, cpu_to_node(i));
8429 se = kzalloc_node(sizeof(struct sched_entity),
8430 GFP_KERNEL, cpu_to_node(i));
8434 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
8445 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8447 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8448 &cpu_rq(cpu)->leaf_cfs_rq_list);
8451 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8453 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8455 #else /* !CONFG_FAIR_GROUP_SCHED */
8456 static inline void free_fair_sched_group(struct task_group *tg)
8461 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8466 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8470 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8473 #endif /* CONFIG_FAIR_GROUP_SCHED */
8475 #ifdef CONFIG_RT_GROUP_SCHED
8476 static void free_rt_sched_group(struct task_group *tg)
8480 destroy_rt_bandwidth(&tg->rt_bandwidth);
8482 for_each_possible_cpu(i) {
8484 kfree(tg->rt_rq[i]);
8486 kfree(tg->rt_se[i]);
8494 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8496 struct rt_rq *rt_rq;
8497 struct sched_rt_entity *rt_se;
8501 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8504 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8508 init_rt_bandwidth(&tg->rt_bandwidth,
8509 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8511 for_each_possible_cpu(i) {
8514 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8515 GFP_KERNEL, cpu_to_node(i));
8519 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8520 GFP_KERNEL, cpu_to_node(i));
8524 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
8535 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8537 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8538 &cpu_rq(cpu)->leaf_rt_rq_list);
8541 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8543 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8545 #else /* !CONFIG_RT_GROUP_SCHED */
8546 static inline void free_rt_sched_group(struct task_group *tg)
8551 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8556 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8560 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8563 #endif /* CONFIG_RT_GROUP_SCHED */
8565 #ifdef CONFIG_CGROUP_SCHED
8566 static void free_sched_group(struct task_group *tg)
8568 free_fair_sched_group(tg);
8569 free_rt_sched_group(tg);
8573 /* allocate runqueue etc for a new task group */
8574 struct task_group *sched_create_group(struct task_group *parent)
8576 struct task_group *tg;
8577 unsigned long flags;
8580 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8582 return ERR_PTR(-ENOMEM);
8584 if (!alloc_fair_sched_group(tg, parent))
8587 if (!alloc_rt_sched_group(tg, parent))
8590 spin_lock_irqsave(&task_group_lock, flags);
8591 for_each_possible_cpu(i) {
8592 register_fair_sched_group(tg, i);
8593 register_rt_sched_group(tg, i);
8595 list_add_rcu(&tg->list, &task_groups);
8597 WARN_ON(!parent); /* root should already exist */
8599 tg->parent = parent;
8600 INIT_LIST_HEAD(&tg->children);
8601 list_add_rcu(&tg->siblings, &parent->children);
8602 spin_unlock_irqrestore(&task_group_lock, flags);
8607 free_sched_group(tg);
8608 return ERR_PTR(-ENOMEM);
8611 /* rcu callback to free various structures associated with a task group */
8612 static void free_sched_group_rcu(struct rcu_head *rhp)
8614 /* now it should be safe to free those cfs_rqs */
8615 free_sched_group(container_of(rhp, struct task_group, rcu));
8618 /* Destroy runqueue etc associated with a task group */
8619 void sched_destroy_group(struct task_group *tg)
8621 unsigned long flags;
8624 spin_lock_irqsave(&task_group_lock, flags);
8625 for_each_possible_cpu(i) {
8626 unregister_fair_sched_group(tg, i);
8627 unregister_rt_sched_group(tg, i);
8629 list_del_rcu(&tg->list);
8630 list_del_rcu(&tg->siblings);
8631 spin_unlock_irqrestore(&task_group_lock, flags);
8633 /* wait for possible concurrent references to cfs_rqs complete */
8634 call_rcu(&tg->rcu, free_sched_group_rcu);
8637 /* change task's runqueue when it moves between groups.
8638 * The caller of this function should have put the task in its new group
8639 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8640 * reflect its new group.
8642 void sched_move_task(struct task_struct *tsk)
8645 unsigned long flags;
8648 rq = task_rq_lock(tsk, &flags);
8650 running = task_current(rq, tsk);
8651 on_rq = tsk->se.on_rq;
8654 dequeue_task(rq, tsk, 0);
8655 if (unlikely(running))
8656 tsk->sched_class->put_prev_task(rq, tsk);
8658 #ifdef CONFIG_FAIR_GROUP_SCHED
8659 if (tsk->sched_class->task_move_group)
8660 tsk->sched_class->task_move_group(tsk, on_rq);
8663 set_task_rq(tsk, task_cpu(tsk));
8665 if (unlikely(running))
8666 tsk->sched_class->set_curr_task(rq);
8668 enqueue_task(rq, tsk, 0);
8670 task_rq_unlock(rq, &flags);
8672 #endif /* CONFIG_CGROUP_SCHED */
8674 #ifdef CONFIG_FAIR_GROUP_SCHED
8675 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
8677 struct cfs_rq *cfs_rq = se->cfs_rq;
8682 dequeue_entity(cfs_rq, se, 0);
8684 se->load.weight = shares;
8685 se->load.inv_weight = 0;
8688 enqueue_entity(cfs_rq, se, 0);
8691 static void set_se_shares(struct sched_entity *se, unsigned long shares)
8693 struct cfs_rq *cfs_rq = se->cfs_rq;
8694 struct rq *rq = cfs_rq->rq;
8695 unsigned long flags;
8697 raw_spin_lock_irqsave(&rq->lock, flags);
8698 __set_se_shares(se, shares);
8699 raw_spin_unlock_irqrestore(&rq->lock, flags);
8702 static DEFINE_MUTEX(shares_mutex);
8704 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8707 unsigned long flags;
8710 * We can't change the weight of the root cgroup.
8715 if (shares < MIN_SHARES)
8716 shares = MIN_SHARES;
8717 else if (shares > MAX_SHARES)
8718 shares = MAX_SHARES;
8720 mutex_lock(&shares_mutex);
8721 if (tg->shares == shares)
8724 spin_lock_irqsave(&task_group_lock, flags);
8725 for_each_possible_cpu(i)
8726 unregister_fair_sched_group(tg, i);
8727 list_del_rcu(&tg->siblings);
8728 spin_unlock_irqrestore(&task_group_lock, flags);
8730 /* wait for any ongoing reference to this group to finish */
8731 synchronize_sched();
8734 * Now we are free to modify the group's share on each cpu
8735 * w/o tripping rebalance_share or load_balance_fair.
8737 tg->shares = shares;
8738 for_each_possible_cpu(i) {
8742 cfs_rq_set_shares(tg->cfs_rq[i], 0);
8743 set_se_shares(tg->se[i], shares);
8747 * Enable load balance activity on this group, by inserting it back on
8748 * each cpu's rq->leaf_cfs_rq_list.
8750 spin_lock_irqsave(&task_group_lock, flags);
8751 for_each_possible_cpu(i)
8752 register_fair_sched_group(tg, i);
8753 list_add_rcu(&tg->siblings, &tg->parent->children);
8754 spin_unlock_irqrestore(&task_group_lock, flags);
8756 mutex_unlock(&shares_mutex);
8760 unsigned long sched_group_shares(struct task_group *tg)
8766 #ifdef CONFIG_RT_GROUP_SCHED
8768 * Ensure that the real time constraints are schedulable.
8770 static DEFINE_MUTEX(rt_constraints_mutex);
8772 static unsigned long to_ratio(u64 period, u64 runtime)
8774 if (runtime == RUNTIME_INF)
8777 return div64_u64(runtime << 20, period);
8780 /* Must be called with tasklist_lock held */
8781 static inline int tg_has_rt_tasks(struct task_group *tg)
8783 struct task_struct *g, *p;
8785 do_each_thread(g, p) {
8786 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8788 } while_each_thread(g, p);
8793 struct rt_schedulable_data {
8794 struct task_group *tg;
8799 static int tg_schedulable(struct task_group *tg, void *data)
8801 struct rt_schedulable_data *d = data;
8802 struct task_group *child;
8803 unsigned long total, sum = 0;
8804 u64 period, runtime;
8806 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8807 runtime = tg->rt_bandwidth.rt_runtime;
8810 period = d->rt_period;
8811 runtime = d->rt_runtime;
8815 * Cannot have more runtime than the period.
8817 if (runtime > period && runtime != RUNTIME_INF)
8821 * Ensure we don't starve existing RT tasks.
8823 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8826 total = to_ratio(period, runtime);
8829 * Nobody can have more than the global setting allows.
8831 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8835 * The sum of our children's runtime should not exceed our own.
8837 list_for_each_entry_rcu(child, &tg->children, siblings) {
8838 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8839 runtime = child->rt_bandwidth.rt_runtime;
8841 if (child == d->tg) {
8842 period = d->rt_period;
8843 runtime = d->rt_runtime;
8846 sum += to_ratio(period, runtime);
8855 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8857 struct rt_schedulable_data data = {
8859 .rt_period = period,
8860 .rt_runtime = runtime,
8863 return walk_tg_tree(tg_schedulable, tg_nop, &data);
8866 static int tg_set_bandwidth(struct task_group *tg,
8867 u64 rt_period, u64 rt_runtime)
8871 mutex_lock(&rt_constraints_mutex);
8872 read_lock(&tasklist_lock);
8873 err = __rt_schedulable(tg, rt_period, rt_runtime);
8877 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8878 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8879 tg->rt_bandwidth.rt_runtime = rt_runtime;
8881 for_each_possible_cpu(i) {
8882 struct rt_rq *rt_rq = tg->rt_rq[i];
8884 raw_spin_lock(&rt_rq->rt_runtime_lock);
8885 rt_rq->rt_runtime = rt_runtime;
8886 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8888 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8890 read_unlock(&tasklist_lock);
8891 mutex_unlock(&rt_constraints_mutex);
8896 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8898 u64 rt_runtime, rt_period;
8900 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8901 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8902 if (rt_runtime_us < 0)
8903 rt_runtime = RUNTIME_INF;
8905 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8908 long sched_group_rt_runtime(struct task_group *tg)
8912 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8915 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8916 do_div(rt_runtime_us, NSEC_PER_USEC);
8917 return rt_runtime_us;
8920 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8922 u64 rt_runtime, rt_period;
8924 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8925 rt_runtime = tg->rt_bandwidth.rt_runtime;
8930 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8933 long sched_group_rt_period(struct task_group *tg)
8937 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8938 do_div(rt_period_us, NSEC_PER_USEC);
8939 return rt_period_us;
8942 static int sched_rt_global_constraints(void)
8944 u64 runtime, period;
8947 if (sysctl_sched_rt_period <= 0)
8950 runtime = global_rt_runtime();
8951 period = global_rt_period();
8954 * Sanity check on the sysctl variables.
8956 if (runtime > period && runtime != RUNTIME_INF)
8959 mutex_lock(&rt_constraints_mutex);
8960 read_lock(&tasklist_lock);
8961 ret = __rt_schedulable(NULL, 0, 0);
8962 read_unlock(&tasklist_lock);
8963 mutex_unlock(&rt_constraints_mutex);
8968 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8970 /* Don't accept realtime tasks when there is no way for them to run */
8971 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8977 #else /* !CONFIG_RT_GROUP_SCHED */
8978 static int sched_rt_global_constraints(void)
8980 unsigned long flags;
8983 if (sysctl_sched_rt_period <= 0)
8987 * There's always some RT tasks in the root group
8988 * -- migration, kstopmachine etc..
8990 if (sysctl_sched_rt_runtime == 0)
8993 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8994 for_each_possible_cpu(i) {
8995 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8997 raw_spin_lock(&rt_rq->rt_runtime_lock);
8998 rt_rq->rt_runtime = global_rt_runtime();
8999 raw_spin_unlock(&rt_rq->rt_runtime_lock);
9001 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
9005 #endif /* CONFIG_RT_GROUP_SCHED */
9007 int sched_rt_handler(struct ctl_table *table, int write,
9008 void __user *buffer, size_t *lenp,
9012 int old_period, old_runtime;
9013 static DEFINE_MUTEX(mutex);
9016 old_period = sysctl_sched_rt_period;
9017 old_runtime = sysctl_sched_rt_runtime;
9019 ret = proc_dointvec(table, write, buffer, lenp, ppos);
9021 if (!ret && write) {
9022 ret = sched_rt_global_constraints();
9024 sysctl_sched_rt_period = old_period;
9025 sysctl_sched_rt_runtime = old_runtime;
9027 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9028 def_rt_bandwidth.rt_period =
9029 ns_to_ktime(global_rt_period());
9032 mutex_unlock(&mutex);
9037 #ifdef CONFIG_CGROUP_SCHED
9039 /* return corresponding task_group object of a cgroup */
9040 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
9042 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9043 struct task_group, css);
9046 static struct cgroup_subsys_state *
9047 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
9049 struct task_group *tg, *parent;
9051 if (!cgrp->parent) {
9052 /* This is early initialization for the top cgroup */
9053 return &init_task_group.css;
9056 parent = cgroup_tg(cgrp->parent);
9057 tg = sched_create_group(parent);
9059 return ERR_PTR(-ENOMEM);
9065 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9067 struct task_group *tg = cgroup_tg(cgrp);
9069 sched_destroy_group(tg);
9073 cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
9075 #ifdef CONFIG_RT_GROUP_SCHED
9076 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
9079 /* We don't support RT-tasks being in separate groups */
9080 if (tsk->sched_class != &fair_sched_class)
9087 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9088 struct task_struct *tsk, bool threadgroup)
9090 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
9094 struct task_struct *c;
9096 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
9097 retval = cpu_cgroup_can_attach_task(cgrp, c);
9109 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9110 struct cgroup *old_cont, struct task_struct *tsk,
9113 sched_move_task(tsk);
9115 struct task_struct *c;
9117 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
9124 #ifdef CONFIG_FAIR_GROUP_SCHED
9125 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9128 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
9131 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9133 struct task_group *tg = cgroup_tg(cgrp);
9135 return (u64) tg->shares;
9137 #endif /* CONFIG_FAIR_GROUP_SCHED */
9139 #ifdef CONFIG_RT_GROUP_SCHED
9140 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9143 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
9146 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
9148 return sched_group_rt_runtime(cgroup_tg(cgrp));
9151 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9154 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9157 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9159 return sched_group_rt_period(cgroup_tg(cgrp));
9161 #endif /* CONFIG_RT_GROUP_SCHED */
9163 static struct cftype cpu_files[] = {
9164 #ifdef CONFIG_FAIR_GROUP_SCHED
9167 .read_u64 = cpu_shares_read_u64,
9168 .write_u64 = cpu_shares_write_u64,
9171 #ifdef CONFIG_RT_GROUP_SCHED
9173 .name = "rt_runtime_us",
9174 .read_s64 = cpu_rt_runtime_read,
9175 .write_s64 = cpu_rt_runtime_write,
9178 .name = "rt_period_us",
9179 .read_u64 = cpu_rt_period_read_uint,
9180 .write_u64 = cpu_rt_period_write_uint,
9185 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9187 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9190 struct cgroup_subsys cpu_cgroup_subsys = {
9192 .create = cpu_cgroup_create,
9193 .destroy = cpu_cgroup_destroy,
9194 .can_attach = cpu_cgroup_can_attach,
9195 .attach = cpu_cgroup_attach,
9196 .populate = cpu_cgroup_populate,
9197 .subsys_id = cpu_cgroup_subsys_id,
9201 #endif /* CONFIG_CGROUP_SCHED */
9203 #ifdef CONFIG_CGROUP_CPUACCT
9206 * CPU accounting code for task groups.
9212 /* track cpu usage of a group of tasks and its child groups */
9214 struct cgroup_subsys_state css;
9215 /* cpuusage holds pointer to a u64-type object on every cpu */
9216 u64 __percpu *cpuusage;
9217 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
9218 struct cpuacct *parent;
9221 struct cgroup_subsys cpuacct_subsys;
9223 /* return cpu accounting group corresponding to this container */
9224 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9226 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9227 struct cpuacct, css);
9230 /* return cpu accounting group to which this task belongs */
9231 static inline struct cpuacct *task_ca(struct task_struct *tsk)
9233 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9234 struct cpuacct, css);
9237 /* create a new cpu accounting group */
9238 static struct cgroup_subsys_state *cpuacct_create(
9239 struct cgroup_subsys *ss, struct cgroup *cgrp)
9241 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9247 ca->cpuusage = alloc_percpu(u64);
9251 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9252 if (percpu_counter_init(&ca->cpustat[i], 0))
9253 goto out_free_counters;
9256 ca->parent = cgroup_ca(cgrp->parent);
9262 percpu_counter_destroy(&ca->cpustat[i]);
9263 free_percpu(ca->cpuusage);
9267 return ERR_PTR(-ENOMEM);
9270 /* destroy an existing cpu accounting group */
9272 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9274 struct cpuacct *ca = cgroup_ca(cgrp);
9277 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9278 percpu_counter_destroy(&ca->cpustat[i]);
9279 free_percpu(ca->cpuusage);
9283 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9285 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9288 #ifndef CONFIG_64BIT
9290 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9292 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
9294 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
9302 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9304 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9306 #ifndef CONFIG_64BIT
9308 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9310 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
9312 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
9318 /* return total cpu usage (in nanoseconds) of a group */
9319 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9321 struct cpuacct *ca = cgroup_ca(cgrp);
9322 u64 totalcpuusage = 0;
9325 for_each_present_cpu(i)
9326 totalcpuusage += cpuacct_cpuusage_read(ca, i);
9328 return totalcpuusage;
9331 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9334 struct cpuacct *ca = cgroup_ca(cgrp);
9343 for_each_present_cpu(i)
9344 cpuacct_cpuusage_write(ca, i, 0);
9350 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9353 struct cpuacct *ca = cgroup_ca(cgroup);
9357 for_each_present_cpu(i) {
9358 percpu = cpuacct_cpuusage_read(ca, i);
9359 seq_printf(m, "%llu ", (unsigned long long) percpu);
9361 seq_printf(m, "\n");
9365 static const char *cpuacct_stat_desc[] = {
9366 [CPUACCT_STAT_USER] = "user",
9367 [CPUACCT_STAT_SYSTEM] = "system",
9370 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
9371 struct cgroup_map_cb *cb)
9373 struct cpuacct *ca = cgroup_ca(cgrp);
9376 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
9377 s64 val = percpu_counter_read(&ca->cpustat[i]);
9378 val = cputime64_to_clock_t(val);
9379 cb->fill(cb, cpuacct_stat_desc[i], val);
9384 static struct cftype files[] = {
9387 .read_u64 = cpuusage_read,
9388 .write_u64 = cpuusage_write,
9391 .name = "usage_percpu",
9392 .read_seq_string = cpuacct_percpu_seq_read,
9396 .read_map = cpuacct_stats_show,
9400 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9402 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9406 * charge this task's execution time to its accounting group.
9408 * called with rq->lock held.
9410 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9415 if (unlikely(!cpuacct_subsys.active))
9418 cpu = task_cpu(tsk);
9424 for (; ca; ca = ca->parent) {
9425 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9426 *cpuusage += cputime;
9433 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9434 * in cputime_t units. As a result, cpuacct_update_stats calls
9435 * percpu_counter_add with values large enough to always overflow the
9436 * per cpu batch limit causing bad SMP scalability.
9438 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9439 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9440 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9443 #define CPUACCT_BATCH \
9444 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9446 #define CPUACCT_BATCH 0
9450 * Charge the system/user time to the task's accounting group.
9452 static void cpuacct_update_stats(struct task_struct *tsk,
9453 enum cpuacct_stat_index idx, cputime_t val)
9456 int batch = CPUACCT_BATCH;
9458 if (unlikely(!cpuacct_subsys.active))
9465 __percpu_counter_add(&ca->cpustat[idx], val, batch);
9471 struct cgroup_subsys cpuacct_subsys = {
9473 .create = cpuacct_create,
9474 .destroy = cpuacct_destroy,
9475 .populate = cpuacct_populate,
9476 .subsys_id = cpuacct_subsys_id,
9478 #endif /* CONFIG_CGROUP_CPUACCT */
9482 void synchronize_sched_expedited(void)
9486 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9488 #else /* #ifndef CONFIG_SMP */
9490 static atomic_t synchronize_sched_expedited_count = ATOMIC_INIT(0);
9492 static int synchronize_sched_expedited_cpu_stop(void *data)
9495 * There must be a full memory barrier on each affected CPU
9496 * between the time that try_stop_cpus() is called and the
9497 * time that it returns.
9499 * In the current initial implementation of cpu_stop, the
9500 * above condition is already met when the control reaches
9501 * this point and the following smp_mb() is not strictly
9502 * necessary. Do smp_mb() anyway for documentation and
9503 * robustness against future implementation changes.
9505 smp_mb(); /* See above comment block. */
9510 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
9511 * approach to force grace period to end quickly. This consumes
9512 * significant time on all CPUs, and is thus not recommended for
9513 * any sort of common-case code.
9515 * Note that it is illegal to call this function while holding any
9516 * lock that is acquired by a CPU-hotplug notifier. Failing to
9517 * observe this restriction will result in deadlock.
9519 void synchronize_sched_expedited(void)
9521 int snap, trycount = 0;
9523 smp_mb(); /* ensure prior mod happens before capturing snap. */
9524 snap = atomic_read(&synchronize_sched_expedited_count) + 1;
9526 while (try_stop_cpus(cpu_online_mask,
9527 synchronize_sched_expedited_cpu_stop,
9530 if (trycount++ < 10)
9531 udelay(trycount * num_online_cpus());
9533 synchronize_sched();
9536 if (atomic_read(&synchronize_sched_expedited_count) - snap > 0) {
9537 smp_mb(); /* ensure test happens before caller kfree */
9542 atomic_inc(&synchronize_sched_expedited_count);
9543 smp_mb__after_atomic_inc(); /* ensure post-GP actions seen after GP. */
9546 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9548 #endif /* #else #ifndef CONFIG_SMP */