1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Routines having to do with the 'struct sk_buff' memory handlers.
9 * Alan Cox : Fixed the worst of the load
11 * Dave Platt : Interrupt stacking fix.
12 * Richard Kooijman : Timestamp fixes.
13 * Alan Cox : Changed buffer format.
14 * Alan Cox : destructor hook for AF_UNIX etc.
15 * Linus Torvalds : Better skb_clone.
16 * Alan Cox : Added skb_copy.
17 * Alan Cox : Added all the changed routines Linus
18 * only put in the headers
19 * Ray VanTassle : Fixed --skb->lock in free
20 * Alan Cox : skb_copy copy arp field
21 * Andi Kleen : slabified it.
22 * Robert Olsson : Removed skb_head_pool
25 * The __skb_ routines should be called with interrupts
26 * disabled, or you better be *real* sure that the operation is atomic
27 * with respect to whatever list is being frobbed (e.g. via lock_sock()
28 * or via disabling bottom half handlers, etc).
32 * The functions in this file will not compile correctly with gcc 2.4.x
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
41 #include <linux/interrupt.h>
43 #include <linux/inet.h>
44 #include <linux/slab.h>
45 #include <linux/tcp.h>
46 #include <linux/udp.h>
47 #include <linux/sctp.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 #include <linux/errqueue.h>
60 #include <linux/prefetch.h>
61 #include <linux/if_vlan.h>
62 #include <linux/mpls.h>
63 #include <linux/kcov.h>
65 #include <net/protocol.h>
68 #include <net/checksum.h>
69 #include <net/ip6_checksum.h>
72 #include <net/mptcp.h>
73 #include <net/page_pool.h>
75 #include <linux/uaccess.h>
76 #include <trace/events/skb.h>
77 #include <linux/highmem.h>
78 #include <linux/capability.h>
79 #include <linux/user_namespace.h>
80 #include <linux/indirect_call_wrapper.h>
83 #include "sock_destructor.h"
85 struct kmem_cache *skbuff_head_cache __ro_after_init;
86 static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
87 #ifdef CONFIG_SKB_EXTENSIONS
88 static struct kmem_cache *skbuff_ext_cache __ro_after_init;
90 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
91 EXPORT_SYMBOL(sysctl_max_skb_frags);
94 * skb_panic - private function for out-of-line support
98 * @msg: skb_over_panic or skb_under_panic
100 * Out-of-line support for skb_put() and skb_push().
101 * Called via the wrapper skb_over_panic() or skb_under_panic().
102 * Keep out of line to prevent kernel bloat.
103 * __builtin_return_address is not used because it is not always reliable.
105 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
108 pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
109 msg, addr, skb->len, sz, skb->head, skb->data,
110 (unsigned long)skb->tail, (unsigned long)skb->end,
111 skb->dev ? skb->dev->name : "<NULL>");
115 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
117 skb_panic(skb, sz, addr, __func__);
120 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
122 skb_panic(skb, sz, addr, __func__);
125 #define NAPI_SKB_CACHE_SIZE 64
126 #define NAPI_SKB_CACHE_BULK 16
127 #define NAPI_SKB_CACHE_HALF (NAPI_SKB_CACHE_SIZE / 2)
129 struct napi_alloc_cache {
130 struct page_frag_cache page;
131 unsigned int skb_count;
132 void *skb_cache[NAPI_SKB_CACHE_SIZE];
135 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
136 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
138 static void *__alloc_frag_align(unsigned int fragsz, gfp_t gfp_mask,
139 unsigned int align_mask)
141 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
143 return page_frag_alloc_align(&nc->page, fragsz, gfp_mask, align_mask);
146 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
148 fragsz = SKB_DATA_ALIGN(fragsz);
150 return __alloc_frag_align(fragsz, GFP_ATOMIC, align_mask);
152 EXPORT_SYMBOL(__napi_alloc_frag_align);
154 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
156 struct page_frag_cache *nc;
159 fragsz = SKB_DATA_ALIGN(fragsz);
160 if (in_hardirq() || irqs_disabled()) {
161 nc = this_cpu_ptr(&netdev_alloc_cache);
162 data = page_frag_alloc_align(nc, fragsz, GFP_ATOMIC, align_mask);
165 data = __alloc_frag_align(fragsz, GFP_ATOMIC, align_mask);
170 EXPORT_SYMBOL(__netdev_alloc_frag_align);
172 static struct sk_buff *napi_skb_cache_get(void)
174 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
177 if (unlikely(!nc->skb_count))
178 nc->skb_count = kmem_cache_alloc_bulk(skbuff_head_cache,
182 if (unlikely(!nc->skb_count))
185 skb = nc->skb_cache[--nc->skb_count];
186 kasan_unpoison_object_data(skbuff_head_cache, skb);
191 /* Caller must provide SKB that is memset cleared */
192 static void __build_skb_around(struct sk_buff *skb, void *data,
193 unsigned int frag_size)
195 struct skb_shared_info *shinfo;
196 unsigned int size = frag_size ? : ksize(data);
198 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
200 /* Assumes caller memset cleared SKB */
201 skb->truesize = SKB_TRUESIZE(size);
202 refcount_set(&skb->users, 1);
205 skb_reset_tail_pointer(skb);
206 skb->end = skb->tail + size;
207 skb->mac_header = (typeof(skb->mac_header))~0U;
208 skb->transport_header = (typeof(skb->transport_header))~0U;
210 /* make sure we initialize shinfo sequentially */
211 shinfo = skb_shinfo(skb);
212 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
213 atomic_set(&shinfo->dataref, 1);
215 skb_set_kcov_handle(skb, kcov_common_handle());
219 * __build_skb - build a network buffer
220 * @data: data buffer provided by caller
221 * @frag_size: size of data, or 0 if head was kmalloced
223 * Allocate a new &sk_buff. Caller provides space holding head and
224 * skb_shared_info. @data must have been allocated by kmalloc() only if
225 * @frag_size is 0, otherwise data should come from the page allocator
227 * The return is the new skb buffer.
228 * On a failure the return is %NULL, and @data is not freed.
230 * Before IO, driver allocates only data buffer where NIC put incoming frame
231 * Driver should add room at head (NET_SKB_PAD) and
232 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
233 * After IO, driver calls build_skb(), to allocate sk_buff and populate it
234 * before giving packet to stack.
235 * RX rings only contains data buffers, not full skbs.
237 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
241 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
245 memset(skb, 0, offsetof(struct sk_buff, tail));
246 __build_skb_around(skb, data, frag_size);
251 /* build_skb() is wrapper over __build_skb(), that specifically
252 * takes care of skb->head and skb->pfmemalloc
253 * This means that if @frag_size is not zero, then @data must be backed
254 * by a page fragment, not kmalloc() or vmalloc()
256 struct sk_buff *build_skb(void *data, unsigned int frag_size)
258 struct sk_buff *skb = __build_skb(data, frag_size);
260 if (skb && frag_size) {
262 if (page_is_pfmemalloc(virt_to_head_page(data)))
267 EXPORT_SYMBOL(build_skb);
270 * build_skb_around - build a network buffer around provided skb
271 * @skb: sk_buff provide by caller, must be memset cleared
272 * @data: data buffer provided by caller
273 * @frag_size: size of data, or 0 if head was kmalloced
275 struct sk_buff *build_skb_around(struct sk_buff *skb,
276 void *data, unsigned int frag_size)
281 __build_skb_around(skb, data, frag_size);
285 if (page_is_pfmemalloc(virt_to_head_page(data)))
290 EXPORT_SYMBOL(build_skb_around);
293 * __napi_build_skb - build a network buffer
294 * @data: data buffer provided by caller
295 * @frag_size: size of data, or 0 if head was kmalloced
297 * Version of __build_skb() that uses NAPI percpu caches to obtain
298 * skbuff_head instead of inplace allocation.
300 * Returns a new &sk_buff on success, %NULL on allocation failure.
302 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size)
306 skb = napi_skb_cache_get();
310 memset(skb, 0, offsetof(struct sk_buff, tail));
311 __build_skb_around(skb, data, frag_size);
317 * napi_build_skb - build a network buffer
318 * @data: data buffer provided by caller
319 * @frag_size: size of data, or 0 if head was kmalloced
321 * Version of __napi_build_skb() that takes care of skb->head_frag
322 * and skb->pfmemalloc when the data is a page or page fragment.
324 * Returns a new &sk_buff on success, %NULL on allocation failure.
326 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size)
328 struct sk_buff *skb = __napi_build_skb(data, frag_size);
330 if (likely(skb) && frag_size) {
332 skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
337 EXPORT_SYMBOL(napi_build_skb);
340 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
341 * the caller if emergency pfmemalloc reserves are being used. If it is and
342 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
343 * may be used. Otherwise, the packet data may be discarded until enough
346 static void *kmalloc_reserve(size_t size, gfp_t flags, int node,
350 bool ret_pfmemalloc = false;
353 * Try a regular allocation, when that fails and we're not entitled
354 * to the reserves, fail.
356 obj = kmalloc_node_track_caller(size,
357 flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
359 if (obj || !(gfp_pfmemalloc_allowed(flags)))
362 /* Try again but now we are using pfmemalloc reserves */
363 ret_pfmemalloc = true;
364 obj = kmalloc_node_track_caller(size, flags, node);
368 *pfmemalloc = ret_pfmemalloc;
373 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
374 * 'private' fields and also do memory statistics to find all the
380 * __alloc_skb - allocate a network buffer
381 * @size: size to allocate
382 * @gfp_mask: allocation mask
383 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
384 * instead of head cache and allocate a cloned (child) skb.
385 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
386 * allocations in case the data is required for writeback
387 * @node: numa node to allocate memory on
389 * Allocate a new &sk_buff. The returned buffer has no headroom and a
390 * tail room of at least size bytes. The object has a reference count
391 * of one. The return is the buffer. On a failure the return is %NULL.
393 * Buffers may only be allocated from interrupts using a @gfp_mask of
396 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
399 struct kmem_cache *cache;
404 cache = (flags & SKB_ALLOC_FCLONE)
405 ? skbuff_fclone_cache : skbuff_head_cache;
407 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
408 gfp_mask |= __GFP_MEMALLOC;
411 if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI &&
412 likely(node == NUMA_NO_NODE || node == numa_mem_id()))
413 skb = napi_skb_cache_get();
415 skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node);
420 /* We do our best to align skb_shared_info on a separate cache
421 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
422 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
423 * Both skb->head and skb_shared_info are cache line aligned.
425 size = SKB_DATA_ALIGN(size);
426 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
427 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
430 /* kmalloc(size) might give us more room than requested.
431 * Put skb_shared_info exactly at the end of allocated zone,
432 * to allow max possible filling before reallocation.
434 size = SKB_WITH_OVERHEAD(ksize(data));
435 prefetchw(data + size);
438 * Only clear those fields we need to clear, not those that we will
439 * actually initialise below. Hence, don't put any more fields after
440 * the tail pointer in struct sk_buff!
442 memset(skb, 0, offsetof(struct sk_buff, tail));
443 __build_skb_around(skb, data, 0);
444 skb->pfmemalloc = pfmemalloc;
446 if (flags & SKB_ALLOC_FCLONE) {
447 struct sk_buff_fclones *fclones;
449 fclones = container_of(skb, struct sk_buff_fclones, skb1);
451 skb->fclone = SKB_FCLONE_ORIG;
452 refcount_set(&fclones->fclone_ref, 1);
454 fclones->skb2.fclone = SKB_FCLONE_CLONE;
460 kmem_cache_free(cache, skb);
463 EXPORT_SYMBOL(__alloc_skb);
466 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
467 * @dev: network device to receive on
468 * @len: length to allocate
469 * @gfp_mask: get_free_pages mask, passed to alloc_skb
471 * Allocate a new &sk_buff and assign it a usage count of one. The
472 * buffer has NET_SKB_PAD headroom built in. Users should allocate
473 * the headroom they think they need without accounting for the
474 * built in space. The built in space is used for optimisations.
476 * %NULL is returned if there is no free memory.
478 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
481 struct page_frag_cache *nc;
488 /* If requested length is either too small or too big,
489 * we use kmalloc() for skb->head allocation.
491 if (len <= SKB_WITH_OVERHEAD(1024) ||
492 len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
493 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
494 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
500 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
501 len = SKB_DATA_ALIGN(len);
503 if (sk_memalloc_socks())
504 gfp_mask |= __GFP_MEMALLOC;
506 if (in_hardirq() || irqs_disabled()) {
507 nc = this_cpu_ptr(&netdev_alloc_cache);
508 data = page_frag_alloc(nc, len, gfp_mask);
509 pfmemalloc = nc->pfmemalloc;
512 nc = this_cpu_ptr(&napi_alloc_cache.page);
513 data = page_frag_alloc(nc, len, gfp_mask);
514 pfmemalloc = nc->pfmemalloc;
521 skb = __build_skb(data, len);
522 if (unlikely(!skb)) {
532 skb_reserve(skb, NET_SKB_PAD);
538 EXPORT_SYMBOL(__netdev_alloc_skb);
541 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
542 * @napi: napi instance this buffer was allocated for
543 * @len: length to allocate
544 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
546 * Allocate a new sk_buff for use in NAPI receive. This buffer will
547 * attempt to allocate the head from a special reserved region used
548 * only for NAPI Rx allocation. By doing this we can save several
549 * CPU cycles by avoiding having to disable and re-enable IRQs.
551 * %NULL is returned if there is no free memory.
553 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
556 struct napi_alloc_cache *nc;
560 len += NET_SKB_PAD + NET_IP_ALIGN;
562 /* If requested length is either too small or too big,
563 * we use kmalloc() for skb->head allocation.
565 if (len <= SKB_WITH_OVERHEAD(1024) ||
566 len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
567 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
568 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI,
575 nc = this_cpu_ptr(&napi_alloc_cache);
576 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
577 len = SKB_DATA_ALIGN(len);
579 if (sk_memalloc_socks())
580 gfp_mask |= __GFP_MEMALLOC;
582 data = page_frag_alloc(&nc->page, len, gfp_mask);
586 skb = __napi_build_skb(data, len);
587 if (unlikely(!skb)) {
592 if (nc->page.pfmemalloc)
597 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
598 skb->dev = napi->dev;
603 EXPORT_SYMBOL(__napi_alloc_skb);
605 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
606 int size, unsigned int truesize)
608 skb_fill_page_desc(skb, i, page, off, size);
610 skb->data_len += size;
611 skb->truesize += truesize;
613 EXPORT_SYMBOL(skb_add_rx_frag);
615 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
616 unsigned int truesize)
618 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
620 skb_frag_size_add(frag, size);
622 skb->data_len += size;
623 skb->truesize += truesize;
625 EXPORT_SYMBOL(skb_coalesce_rx_frag);
627 static void skb_drop_list(struct sk_buff **listp)
629 kfree_skb_list(*listp);
633 static inline void skb_drop_fraglist(struct sk_buff *skb)
635 skb_drop_list(&skb_shinfo(skb)->frag_list);
638 static void skb_clone_fraglist(struct sk_buff *skb)
640 struct sk_buff *list;
642 skb_walk_frags(skb, list)
646 static void skb_free_head(struct sk_buff *skb)
648 unsigned char *head = skb->head;
650 if (skb->head_frag) {
651 if (skb_pp_recycle(skb, head))
659 static void skb_release_data(struct sk_buff *skb)
661 struct skb_shared_info *shinfo = skb_shinfo(skb);
665 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
669 skb_zcopy_clear(skb, true);
671 for (i = 0; i < shinfo->nr_frags; i++)
672 __skb_frag_unref(&shinfo->frags[i], skb->pp_recycle);
674 if (shinfo->frag_list)
675 kfree_skb_list(shinfo->frag_list);
679 /* When we clone an SKB we copy the reycling bit. The pp_recycle
680 * bit is only set on the head though, so in order to avoid races
681 * while trying to recycle fragments on __skb_frag_unref() we need
682 * to make one SKB responsible for triggering the recycle path.
683 * So disable the recycling bit if an SKB is cloned and we have
684 * additional references to to the fragmented part of the SKB.
685 * Eventually the last SKB will have the recycling bit set and it's
686 * dataref set to 0, which will trigger the recycling
692 * Free an skbuff by memory without cleaning the state.
694 static void kfree_skbmem(struct sk_buff *skb)
696 struct sk_buff_fclones *fclones;
698 switch (skb->fclone) {
699 case SKB_FCLONE_UNAVAILABLE:
700 kmem_cache_free(skbuff_head_cache, skb);
703 case SKB_FCLONE_ORIG:
704 fclones = container_of(skb, struct sk_buff_fclones, skb1);
706 /* We usually free the clone (TX completion) before original skb
707 * This test would have no chance to be true for the clone,
708 * while here, branch prediction will be good.
710 if (refcount_read(&fclones->fclone_ref) == 1)
714 default: /* SKB_FCLONE_CLONE */
715 fclones = container_of(skb, struct sk_buff_fclones, skb2);
718 if (!refcount_dec_and_test(&fclones->fclone_ref))
721 kmem_cache_free(skbuff_fclone_cache, fclones);
724 void skb_release_head_state(struct sk_buff *skb)
727 if (skb->destructor) {
728 WARN_ON(in_hardirq());
729 skb->destructor(skb);
731 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
732 nf_conntrack_put(skb_nfct(skb));
737 /* Free everything but the sk_buff shell. */
738 static void skb_release_all(struct sk_buff *skb)
740 skb_release_head_state(skb);
741 if (likely(skb->head))
742 skb_release_data(skb);
746 * __kfree_skb - private function
749 * Free an sk_buff. Release anything attached to the buffer.
750 * Clean the state. This is an internal helper function. Users should
751 * always call kfree_skb
754 void __kfree_skb(struct sk_buff *skb)
756 skb_release_all(skb);
759 EXPORT_SYMBOL(__kfree_skb);
762 * kfree_skb - free an sk_buff
763 * @skb: buffer to free
765 * Drop a reference to the buffer and free it if the usage count has
768 void kfree_skb(struct sk_buff *skb)
773 trace_kfree_skb(skb, __builtin_return_address(0));
776 EXPORT_SYMBOL(kfree_skb);
778 void kfree_skb_list(struct sk_buff *segs)
781 struct sk_buff *next = segs->next;
787 EXPORT_SYMBOL(kfree_skb_list);
789 /* Dump skb information and contents.
791 * Must only be called from net_ratelimit()-ed paths.
793 * Dumps whole packets if full_pkt, only headers otherwise.
795 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
797 struct skb_shared_info *sh = skb_shinfo(skb);
798 struct net_device *dev = skb->dev;
799 struct sock *sk = skb->sk;
800 struct sk_buff *list_skb;
801 bool has_mac, has_trans;
802 int headroom, tailroom;
808 len = min_t(int, skb->len, MAX_HEADER + 128);
810 headroom = skb_headroom(skb);
811 tailroom = skb_tailroom(skb);
813 has_mac = skb_mac_header_was_set(skb);
814 has_trans = skb_transport_header_was_set(skb);
816 printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
817 "mac=(%d,%d) net=(%d,%d) trans=%d\n"
818 "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
819 "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
820 "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n",
821 level, skb->len, headroom, skb_headlen(skb), tailroom,
822 has_mac ? skb->mac_header : -1,
823 has_mac ? skb_mac_header_len(skb) : -1,
825 has_trans ? skb_network_header_len(skb) : -1,
826 has_trans ? skb->transport_header : -1,
827 sh->tx_flags, sh->nr_frags,
828 sh->gso_size, sh->gso_type, sh->gso_segs,
829 skb->csum, skb->ip_summed, skb->csum_complete_sw,
830 skb->csum_valid, skb->csum_level,
831 skb->hash, skb->sw_hash, skb->l4_hash,
832 ntohs(skb->protocol), skb->pkt_type, skb->skb_iif);
835 printk("%sdev name=%s feat=0x%pNF\n",
836 level, dev->name, &dev->features);
838 printk("%ssk family=%hu type=%u proto=%u\n",
839 level, sk->sk_family, sk->sk_type, sk->sk_protocol);
841 if (full_pkt && headroom)
842 print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
843 16, 1, skb->head, headroom, false);
845 seg_len = min_t(int, skb_headlen(skb), len);
847 print_hex_dump(level, "skb linear: ", DUMP_PREFIX_OFFSET,
848 16, 1, skb->data, seg_len, false);
851 if (full_pkt && tailroom)
852 print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
853 16, 1, skb_tail_pointer(skb), tailroom, false);
855 for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
856 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
857 u32 p_off, p_len, copied;
861 skb_frag_foreach_page(frag, skb_frag_off(frag),
862 skb_frag_size(frag), p, p_off, p_len,
864 seg_len = min_t(int, p_len, len);
865 vaddr = kmap_atomic(p);
866 print_hex_dump(level, "skb frag: ",
868 16, 1, vaddr + p_off, seg_len, false);
869 kunmap_atomic(vaddr);
876 if (full_pkt && skb_has_frag_list(skb)) {
877 printk("skb fraglist:\n");
878 skb_walk_frags(skb, list_skb)
879 skb_dump(level, list_skb, true);
882 EXPORT_SYMBOL(skb_dump);
885 * skb_tx_error - report an sk_buff xmit error
886 * @skb: buffer that triggered an error
888 * Report xmit error if a device callback is tracking this skb.
889 * skb must be freed afterwards.
891 void skb_tx_error(struct sk_buff *skb)
893 skb_zcopy_clear(skb, true);
895 EXPORT_SYMBOL(skb_tx_error);
897 #ifdef CONFIG_TRACEPOINTS
899 * consume_skb - free an skbuff
900 * @skb: buffer to free
902 * Drop a ref to the buffer and free it if the usage count has hit zero
903 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
904 * is being dropped after a failure and notes that
906 void consume_skb(struct sk_buff *skb)
911 trace_consume_skb(skb);
914 EXPORT_SYMBOL(consume_skb);
918 * __consume_stateless_skb - free an skbuff, assuming it is stateless
919 * @skb: buffer to free
921 * Alike consume_skb(), but this variant assumes that this is the last
922 * skb reference and all the head states have been already dropped
924 void __consume_stateless_skb(struct sk_buff *skb)
926 trace_consume_skb(skb);
927 skb_release_data(skb);
931 static void napi_skb_cache_put(struct sk_buff *skb)
933 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
936 kasan_poison_object_data(skbuff_head_cache, skb);
937 nc->skb_cache[nc->skb_count++] = skb;
939 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
940 for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++)
941 kasan_unpoison_object_data(skbuff_head_cache,
944 kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_HALF,
945 nc->skb_cache + NAPI_SKB_CACHE_HALF);
946 nc->skb_count = NAPI_SKB_CACHE_HALF;
950 void __kfree_skb_defer(struct sk_buff *skb)
952 skb_release_all(skb);
953 napi_skb_cache_put(skb);
956 void napi_skb_free_stolen_head(struct sk_buff *skb)
958 if (unlikely(skb->slow_gro)) {
965 napi_skb_cache_put(skb);
968 void napi_consume_skb(struct sk_buff *skb, int budget)
970 /* Zero budget indicate non-NAPI context called us, like netpoll */
971 if (unlikely(!budget)) {
972 dev_consume_skb_any(skb);
976 lockdep_assert_in_softirq();
981 /* if reaching here SKB is ready to free */
982 trace_consume_skb(skb);
984 /* if SKB is a clone, don't handle this case */
985 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
990 skb_release_all(skb);
991 napi_skb_cache_put(skb);
993 EXPORT_SYMBOL(napi_consume_skb);
995 /* Make sure a field is enclosed inside headers_start/headers_end section */
996 #define CHECK_SKB_FIELD(field) \
997 BUILD_BUG_ON(offsetof(struct sk_buff, field) < \
998 offsetof(struct sk_buff, headers_start)); \
999 BUILD_BUG_ON(offsetof(struct sk_buff, field) > \
1000 offsetof(struct sk_buff, headers_end)); \
1002 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1004 new->tstamp = old->tstamp;
1005 /* We do not copy old->sk */
1006 new->dev = old->dev;
1007 memcpy(new->cb, old->cb, sizeof(old->cb));
1008 skb_dst_copy(new, old);
1009 __skb_ext_copy(new, old);
1010 __nf_copy(new, old, false);
1012 /* Note : this field could be in headers_start/headers_end section
1013 * It is not yet because we do not want to have a 16 bit hole
1015 new->queue_mapping = old->queue_mapping;
1017 memcpy(&new->headers_start, &old->headers_start,
1018 offsetof(struct sk_buff, headers_end) -
1019 offsetof(struct sk_buff, headers_start));
1020 CHECK_SKB_FIELD(protocol);
1021 CHECK_SKB_FIELD(csum);
1022 CHECK_SKB_FIELD(hash);
1023 CHECK_SKB_FIELD(priority);
1024 CHECK_SKB_FIELD(skb_iif);
1025 CHECK_SKB_FIELD(vlan_proto);
1026 CHECK_SKB_FIELD(vlan_tci);
1027 CHECK_SKB_FIELD(transport_header);
1028 CHECK_SKB_FIELD(network_header);
1029 CHECK_SKB_FIELD(mac_header);
1030 CHECK_SKB_FIELD(inner_protocol);
1031 CHECK_SKB_FIELD(inner_transport_header);
1032 CHECK_SKB_FIELD(inner_network_header);
1033 CHECK_SKB_FIELD(inner_mac_header);
1034 CHECK_SKB_FIELD(mark);
1035 #ifdef CONFIG_NETWORK_SECMARK
1036 CHECK_SKB_FIELD(secmark);
1038 #ifdef CONFIG_NET_RX_BUSY_POLL
1039 CHECK_SKB_FIELD(napi_id);
1042 CHECK_SKB_FIELD(sender_cpu);
1044 #ifdef CONFIG_NET_SCHED
1045 CHECK_SKB_FIELD(tc_index);
1051 * You should not add any new code to this function. Add it to
1052 * __copy_skb_header above instead.
1054 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
1056 #define C(x) n->x = skb->x
1058 n->next = n->prev = NULL;
1060 __copy_skb_header(n, skb);
1065 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
1071 n->destructor = NULL;
1078 refcount_set(&n->users, 1);
1080 atomic_inc(&(skb_shinfo(skb)->dataref));
1088 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1089 * @first: first sk_buff of the msg
1091 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1095 n = alloc_skb(0, GFP_ATOMIC);
1099 n->len = first->len;
1100 n->data_len = first->len;
1101 n->truesize = first->truesize;
1103 skb_shinfo(n)->frag_list = first;
1105 __copy_skb_header(n, first);
1106 n->destructor = NULL;
1110 EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1113 * skb_morph - morph one skb into another
1114 * @dst: the skb to receive the contents
1115 * @src: the skb to supply the contents
1117 * This is identical to skb_clone except that the target skb is
1118 * supplied by the user.
1120 * The target skb is returned upon exit.
1122 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1124 skb_release_all(dst);
1125 return __skb_clone(dst, src);
1127 EXPORT_SYMBOL_GPL(skb_morph);
1129 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1131 unsigned long max_pg, num_pg, new_pg, old_pg;
1132 struct user_struct *user;
1134 if (capable(CAP_IPC_LOCK) || !size)
1137 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */
1138 max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1139 user = mmp->user ? : current_user();
1142 old_pg = atomic_long_read(&user->locked_vm);
1143 new_pg = old_pg + num_pg;
1144 if (new_pg > max_pg)
1146 } while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) !=
1150 mmp->user = get_uid(user);
1151 mmp->num_pg = num_pg;
1153 mmp->num_pg += num_pg;
1158 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1160 void mm_unaccount_pinned_pages(struct mmpin *mmp)
1163 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1164 free_uid(mmp->user);
1167 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1169 struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size)
1171 struct ubuf_info *uarg;
1172 struct sk_buff *skb;
1174 WARN_ON_ONCE(!in_task());
1176 skb = sock_omalloc(sk, 0, GFP_KERNEL);
1180 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1181 uarg = (void *)skb->cb;
1182 uarg->mmp.user = NULL;
1184 if (mm_account_pinned_pages(&uarg->mmp, size)) {
1189 uarg->callback = msg_zerocopy_callback;
1190 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1192 uarg->bytelen = size;
1194 uarg->flags = SKBFL_ZEROCOPY_FRAG;
1195 refcount_set(&uarg->refcnt, 1);
1200 EXPORT_SYMBOL_GPL(msg_zerocopy_alloc);
1202 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg)
1204 return container_of((void *)uarg, struct sk_buff, cb);
1207 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1208 struct ubuf_info *uarg)
1211 const u32 byte_limit = 1 << 19; /* limit to a few TSO */
1214 /* realloc only when socket is locked (TCP, UDP cork),
1215 * so uarg->len and sk_zckey access is serialized
1217 if (!sock_owned_by_user(sk)) {
1222 bytelen = uarg->bytelen + size;
1223 if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1224 /* TCP can create new skb to attach new uarg */
1225 if (sk->sk_type == SOCK_STREAM)
1230 next = (u32)atomic_read(&sk->sk_zckey);
1231 if ((u32)(uarg->id + uarg->len) == next) {
1232 if (mm_account_pinned_pages(&uarg->mmp, size))
1235 uarg->bytelen = bytelen;
1236 atomic_set(&sk->sk_zckey, ++next);
1238 /* no extra ref when appending to datagram (MSG_MORE) */
1239 if (sk->sk_type == SOCK_STREAM)
1240 net_zcopy_get(uarg);
1247 return msg_zerocopy_alloc(sk, size);
1249 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc);
1251 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1253 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1257 old_lo = serr->ee.ee_info;
1258 old_hi = serr->ee.ee_data;
1259 sum_len = old_hi - old_lo + 1ULL + len;
1261 if (sum_len >= (1ULL << 32))
1264 if (lo != old_hi + 1)
1267 serr->ee.ee_data += len;
1271 static void __msg_zerocopy_callback(struct ubuf_info *uarg)
1273 struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1274 struct sock_exterr_skb *serr;
1275 struct sock *sk = skb->sk;
1276 struct sk_buff_head *q;
1277 unsigned long flags;
1282 mm_unaccount_pinned_pages(&uarg->mmp);
1284 /* if !len, there was only 1 call, and it was aborted
1285 * so do not queue a completion notification
1287 if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1292 hi = uarg->id + len - 1;
1293 is_zerocopy = uarg->zerocopy;
1295 serr = SKB_EXT_ERR(skb);
1296 memset(serr, 0, sizeof(*serr));
1297 serr->ee.ee_errno = 0;
1298 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1299 serr->ee.ee_data = hi;
1300 serr->ee.ee_info = lo;
1302 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1304 q = &sk->sk_error_queue;
1305 spin_lock_irqsave(&q->lock, flags);
1306 tail = skb_peek_tail(q);
1307 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1308 !skb_zerocopy_notify_extend(tail, lo, len)) {
1309 __skb_queue_tail(q, skb);
1312 spin_unlock_irqrestore(&q->lock, flags);
1314 sk_error_report(sk);
1321 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1324 uarg->zerocopy = uarg->zerocopy & success;
1326 if (refcount_dec_and_test(&uarg->refcnt))
1327 __msg_zerocopy_callback(uarg);
1329 EXPORT_SYMBOL_GPL(msg_zerocopy_callback);
1331 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1333 struct sock *sk = skb_from_uarg(uarg)->sk;
1335 atomic_dec(&sk->sk_zckey);
1339 msg_zerocopy_callback(NULL, uarg, true);
1341 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort);
1343 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len)
1345 return __zerocopy_sg_from_iter(skb->sk, skb, &msg->msg_iter, len);
1347 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_dgram);
1349 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1350 struct msghdr *msg, int len,
1351 struct ubuf_info *uarg)
1353 struct ubuf_info *orig_uarg = skb_zcopy(skb);
1354 struct iov_iter orig_iter = msg->msg_iter;
1355 int err, orig_len = skb->len;
1357 /* An skb can only point to one uarg. This edge case happens when
1358 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1360 if (orig_uarg && uarg != orig_uarg)
1363 err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len);
1364 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1365 struct sock *save_sk = skb->sk;
1367 /* Streams do not free skb on error. Reset to prev state. */
1368 msg->msg_iter = orig_iter;
1370 ___pskb_trim(skb, orig_len);
1375 skb_zcopy_set(skb, uarg, NULL);
1376 return skb->len - orig_len;
1378 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1380 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1383 if (skb_zcopy(orig)) {
1384 if (skb_zcopy(nskb)) {
1385 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1390 if (skb_uarg(nskb) == skb_uarg(orig))
1392 if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1395 skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1401 * skb_copy_ubufs - copy userspace skb frags buffers to kernel
1402 * @skb: the skb to modify
1403 * @gfp_mask: allocation priority
1405 * This must be called on skb with SKBFL_ZEROCOPY_ENABLE.
1406 * It will copy all frags into kernel and drop the reference
1407 * to userspace pages.
1409 * If this function is called from an interrupt gfp_mask() must be
1412 * Returns 0 on success or a negative error code on failure
1413 * to allocate kernel memory to copy to.
1415 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1417 int num_frags = skb_shinfo(skb)->nr_frags;
1418 struct page *page, *head = NULL;
1422 if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1428 new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1429 for (i = 0; i < new_frags; i++) {
1430 page = alloc_page(gfp_mask);
1433 struct page *next = (struct page *)page_private(head);
1439 set_page_private(page, (unsigned long)head);
1445 for (i = 0; i < num_frags; i++) {
1446 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1447 u32 p_off, p_len, copied;
1451 skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1452 p, p_off, p_len, copied) {
1454 vaddr = kmap_atomic(p);
1456 while (done < p_len) {
1457 if (d_off == PAGE_SIZE) {
1459 page = (struct page *)page_private(page);
1461 copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1462 memcpy(page_address(page) + d_off,
1463 vaddr + p_off + done, copy);
1467 kunmap_atomic(vaddr);
1471 /* skb frags release userspace buffers */
1472 for (i = 0; i < num_frags; i++)
1473 skb_frag_unref(skb, i);
1475 /* skb frags point to kernel buffers */
1476 for (i = 0; i < new_frags - 1; i++) {
1477 __skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1478 head = (struct page *)page_private(head);
1480 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1481 skb_shinfo(skb)->nr_frags = new_frags;
1484 skb_zcopy_clear(skb, false);
1487 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1490 * skb_clone - duplicate an sk_buff
1491 * @skb: buffer to clone
1492 * @gfp_mask: allocation priority
1494 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
1495 * copies share the same packet data but not structure. The new
1496 * buffer has a reference count of 1. If the allocation fails the
1497 * function returns %NULL otherwise the new buffer is returned.
1499 * If this function is called from an interrupt gfp_mask() must be
1503 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1505 struct sk_buff_fclones *fclones = container_of(skb,
1506 struct sk_buff_fclones,
1510 if (skb_orphan_frags(skb, gfp_mask))
1513 if (skb->fclone == SKB_FCLONE_ORIG &&
1514 refcount_read(&fclones->fclone_ref) == 1) {
1516 refcount_set(&fclones->fclone_ref, 2);
1518 if (skb_pfmemalloc(skb))
1519 gfp_mask |= __GFP_MEMALLOC;
1521 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1525 n->fclone = SKB_FCLONE_UNAVAILABLE;
1528 return __skb_clone(n, skb);
1530 EXPORT_SYMBOL(skb_clone);
1532 void skb_headers_offset_update(struct sk_buff *skb, int off)
1534 /* Only adjust this if it actually is csum_start rather than csum */
1535 if (skb->ip_summed == CHECKSUM_PARTIAL)
1536 skb->csum_start += off;
1537 /* {transport,network,mac}_header and tail are relative to skb->head */
1538 skb->transport_header += off;
1539 skb->network_header += off;
1540 if (skb_mac_header_was_set(skb))
1541 skb->mac_header += off;
1542 skb->inner_transport_header += off;
1543 skb->inner_network_header += off;
1544 skb->inner_mac_header += off;
1546 EXPORT_SYMBOL(skb_headers_offset_update);
1548 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1550 __copy_skb_header(new, old);
1552 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1553 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1554 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1556 EXPORT_SYMBOL(skb_copy_header);
1558 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1560 if (skb_pfmemalloc(skb))
1561 return SKB_ALLOC_RX;
1566 * skb_copy - create private copy of an sk_buff
1567 * @skb: buffer to copy
1568 * @gfp_mask: allocation priority
1570 * Make a copy of both an &sk_buff and its data. This is used when the
1571 * caller wishes to modify the data and needs a private copy of the
1572 * data to alter. Returns %NULL on failure or the pointer to the buffer
1573 * on success. The returned buffer has a reference count of 1.
1575 * As by-product this function converts non-linear &sk_buff to linear
1576 * one, so that &sk_buff becomes completely private and caller is allowed
1577 * to modify all the data of returned buffer. This means that this
1578 * function is not recommended for use in circumstances when only
1579 * header is going to be modified. Use pskb_copy() instead.
1582 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1584 int headerlen = skb_headroom(skb);
1585 unsigned int size = skb_end_offset(skb) + skb->data_len;
1586 struct sk_buff *n = __alloc_skb(size, gfp_mask,
1587 skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1592 /* Set the data pointer */
1593 skb_reserve(n, headerlen);
1594 /* Set the tail pointer and length */
1595 skb_put(n, skb->len);
1597 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1599 skb_copy_header(n, skb);
1602 EXPORT_SYMBOL(skb_copy);
1605 * __pskb_copy_fclone - create copy of an sk_buff with private head.
1606 * @skb: buffer to copy
1607 * @headroom: headroom of new skb
1608 * @gfp_mask: allocation priority
1609 * @fclone: if true allocate the copy of the skb from the fclone
1610 * cache instead of the head cache; it is recommended to set this
1611 * to true for the cases where the copy will likely be cloned
1613 * Make a copy of both an &sk_buff and part of its data, located
1614 * in header. Fragmented data remain shared. This is used when
1615 * the caller wishes to modify only header of &sk_buff and needs
1616 * private copy of the header to alter. Returns %NULL on failure
1617 * or the pointer to the buffer on success.
1618 * The returned buffer has a reference count of 1.
1621 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1622 gfp_t gfp_mask, bool fclone)
1624 unsigned int size = skb_headlen(skb) + headroom;
1625 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1626 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1631 /* Set the data pointer */
1632 skb_reserve(n, headroom);
1633 /* Set the tail pointer and length */
1634 skb_put(n, skb_headlen(skb));
1635 /* Copy the bytes */
1636 skb_copy_from_linear_data(skb, n->data, n->len);
1638 n->truesize += skb->data_len;
1639 n->data_len = skb->data_len;
1642 if (skb_shinfo(skb)->nr_frags) {
1645 if (skb_orphan_frags(skb, gfp_mask) ||
1646 skb_zerocopy_clone(n, skb, gfp_mask)) {
1651 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1652 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1653 skb_frag_ref(skb, i);
1655 skb_shinfo(n)->nr_frags = i;
1658 if (skb_has_frag_list(skb)) {
1659 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1660 skb_clone_fraglist(n);
1663 skb_copy_header(n, skb);
1667 EXPORT_SYMBOL(__pskb_copy_fclone);
1670 * pskb_expand_head - reallocate header of &sk_buff
1671 * @skb: buffer to reallocate
1672 * @nhead: room to add at head
1673 * @ntail: room to add at tail
1674 * @gfp_mask: allocation priority
1676 * Expands (or creates identical copy, if @nhead and @ntail are zero)
1677 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1678 * reference count of 1. Returns zero in the case of success or error,
1679 * if expansion failed. In the last case, &sk_buff is not changed.
1681 * All the pointers pointing into skb header may change and must be
1682 * reloaded after call to this function.
1685 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1688 int i, osize = skb_end_offset(skb);
1689 int size = osize + nhead + ntail;
1695 BUG_ON(skb_shared(skb));
1697 size = SKB_DATA_ALIGN(size);
1699 if (skb_pfmemalloc(skb))
1700 gfp_mask |= __GFP_MEMALLOC;
1701 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1702 gfp_mask, NUMA_NO_NODE, NULL);
1705 size = SKB_WITH_OVERHEAD(ksize(data));
1707 /* Copy only real data... and, alas, header. This should be
1708 * optimized for the cases when header is void.
1710 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1712 memcpy((struct skb_shared_info *)(data + size),
1714 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1717 * if shinfo is shared we must drop the old head gracefully, but if it
1718 * is not we can just drop the old head and let the existing refcount
1719 * be since all we did is relocate the values
1721 if (skb_cloned(skb)) {
1722 if (skb_orphan_frags(skb, gfp_mask))
1725 refcount_inc(&skb_uarg(skb)->refcnt);
1726 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1727 skb_frag_ref(skb, i);
1729 if (skb_has_frag_list(skb))
1730 skb_clone_fraglist(skb);
1732 skb_release_data(skb);
1736 off = (data + nhead) - skb->head;
1741 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1745 skb->end = skb->head + size;
1748 skb_headers_offset_update(skb, nhead);
1752 atomic_set(&skb_shinfo(skb)->dataref, 1);
1754 skb_metadata_clear(skb);
1756 /* It is not generally safe to change skb->truesize.
1757 * For the moment, we really care of rx path, or
1758 * when skb is orphaned (not attached to a socket).
1760 if (!skb->sk || skb->destructor == sock_edemux)
1761 skb->truesize += size - osize;
1770 EXPORT_SYMBOL(pskb_expand_head);
1772 /* Make private copy of skb with writable head and some headroom */
1774 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1776 struct sk_buff *skb2;
1777 int delta = headroom - skb_headroom(skb);
1780 skb2 = pskb_copy(skb, GFP_ATOMIC);
1782 skb2 = skb_clone(skb, GFP_ATOMIC);
1783 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1791 EXPORT_SYMBOL(skb_realloc_headroom);
1794 * skb_expand_head - reallocate header of &sk_buff
1795 * @skb: buffer to reallocate
1796 * @headroom: needed headroom
1798 * Unlike skb_realloc_headroom, this one does not allocate a new skb
1799 * if possible; copies skb->sk to new skb as needed
1800 * and frees original skb in case of failures.
1802 * It expect increased headroom and generates warning otherwise.
1805 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom)
1807 int delta = headroom - skb_headroom(skb);
1808 int osize = skb_end_offset(skb);
1809 struct sock *sk = skb->sk;
1811 if (WARN_ONCE(delta <= 0,
1812 "%s is expecting an increase in the headroom", __func__))
1815 delta = SKB_DATA_ALIGN(delta);
1816 /* pskb_expand_head() might crash, if skb is shared. */
1817 if (skb_shared(skb) || !is_skb_wmem(skb)) {
1818 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
1820 if (unlikely(!nskb))
1824 skb_set_owner_w(nskb, sk);
1828 if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC))
1831 if (sk && is_skb_wmem(skb)) {
1832 delta = skb_end_offset(skb) - osize;
1833 refcount_add(delta, &sk->sk_wmem_alloc);
1834 skb->truesize += delta;
1842 EXPORT_SYMBOL(skb_expand_head);
1845 * skb_copy_expand - copy and expand sk_buff
1846 * @skb: buffer to copy
1847 * @newheadroom: new free bytes at head
1848 * @newtailroom: new free bytes at tail
1849 * @gfp_mask: allocation priority
1851 * Make a copy of both an &sk_buff and its data and while doing so
1852 * allocate additional space.
1854 * This is used when the caller wishes to modify the data and needs a
1855 * private copy of the data to alter as well as more space for new fields.
1856 * Returns %NULL on failure or the pointer to the buffer
1857 * on success. The returned buffer has a reference count of 1.
1859 * You must pass %GFP_ATOMIC as the allocation priority if this function
1860 * is called from an interrupt.
1862 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1863 int newheadroom, int newtailroom,
1867 * Allocate the copy buffer
1869 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1870 gfp_mask, skb_alloc_rx_flag(skb),
1872 int oldheadroom = skb_headroom(skb);
1873 int head_copy_len, head_copy_off;
1878 skb_reserve(n, newheadroom);
1880 /* Set the tail pointer and length */
1881 skb_put(n, skb->len);
1883 head_copy_len = oldheadroom;
1885 if (newheadroom <= head_copy_len)
1886 head_copy_len = newheadroom;
1888 head_copy_off = newheadroom - head_copy_len;
1890 /* Copy the linear header and data. */
1891 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1892 skb->len + head_copy_len));
1894 skb_copy_header(n, skb);
1896 skb_headers_offset_update(n, newheadroom - oldheadroom);
1900 EXPORT_SYMBOL(skb_copy_expand);
1903 * __skb_pad - zero pad the tail of an skb
1904 * @skb: buffer to pad
1905 * @pad: space to pad
1906 * @free_on_error: free buffer on error
1908 * Ensure that a buffer is followed by a padding area that is zero
1909 * filled. Used by network drivers which may DMA or transfer data
1910 * beyond the buffer end onto the wire.
1912 * May return error in out of memory cases. The skb is freed on error
1913 * if @free_on_error is true.
1916 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
1921 /* If the skbuff is non linear tailroom is always zero.. */
1922 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1923 memset(skb->data+skb->len, 0, pad);
1927 ntail = skb->data_len + pad - (skb->end - skb->tail);
1928 if (likely(skb_cloned(skb) || ntail > 0)) {
1929 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1934 /* FIXME: The use of this function with non-linear skb's really needs
1937 err = skb_linearize(skb);
1941 memset(skb->data + skb->len, 0, pad);
1949 EXPORT_SYMBOL(__skb_pad);
1952 * pskb_put - add data to the tail of a potentially fragmented buffer
1953 * @skb: start of the buffer to use
1954 * @tail: tail fragment of the buffer to use
1955 * @len: amount of data to add
1957 * This function extends the used data area of the potentially
1958 * fragmented buffer. @tail must be the last fragment of @skb -- or
1959 * @skb itself. If this would exceed the total buffer size the kernel
1960 * will panic. A pointer to the first byte of the extra data is
1964 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1967 skb->data_len += len;
1970 return skb_put(tail, len);
1972 EXPORT_SYMBOL_GPL(pskb_put);
1975 * skb_put - add data to a buffer
1976 * @skb: buffer to use
1977 * @len: amount of data to add
1979 * This function extends the used data area of the buffer. If this would
1980 * exceed the total buffer size the kernel will panic. A pointer to the
1981 * first byte of the extra data is returned.
1983 void *skb_put(struct sk_buff *skb, unsigned int len)
1985 void *tmp = skb_tail_pointer(skb);
1986 SKB_LINEAR_ASSERT(skb);
1989 if (unlikely(skb->tail > skb->end))
1990 skb_over_panic(skb, len, __builtin_return_address(0));
1993 EXPORT_SYMBOL(skb_put);
1996 * skb_push - add data to the start of a buffer
1997 * @skb: buffer to use
1998 * @len: amount of data to add
2000 * This function extends the used data area of the buffer at the buffer
2001 * start. If this would exceed the total buffer headroom the kernel will
2002 * panic. A pointer to the first byte of the extra data is returned.
2004 void *skb_push(struct sk_buff *skb, unsigned int len)
2008 if (unlikely(skb->data < skb->head))
2009 skb_under_panic(skb, len, __builtin_return_address(0));
2012 EXPORT_SYMBOL(skb_push);
2015 * skb_pull - remove data from the start of a buffer
2016 * @skb: buffer to use
2017 * @len: amount of data to remove
2019 * This function removes data from the start of a buffer, returning
2020 * the memory to the headroom. A pointer to the next data in the buffer
2021 * is returned. Once the data has been pulled future pushes will overwrite
2024 void *skb_pull(struct sk_buff *skb, unsigned int len)
2026 return skb_pull_inline(skb, len);
2028 EXPORT_SYMBOL(skb_pull);
2031 * skb_trim - remove end from a buffer
2032 * @skb: buffer to alter
2035 * Cut the length of a buffer down by removing data from the tail. If
2036 * the buffer is already under the length specified it is not modified.
2037 * The skb must be linear.
2039 void skb_trim(struct sk_buff *skb, unsigned int len)
2042 __skb_trim(skb, len);
2044 EXPORT_SYMBOL(skb_trim);
2046 /* Trims skb to length len. It can change skb pointers.
2049 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
2051 struct sk_buff **fragp;
2052 struct sk_buff *frag;
2053 int offset = skb_headlen(skb);
2054 int nfrags = skb_shinfo(skb)->nr_frags;
2058 if (skb_cloned(skb) &&
2059 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
2066 for (; i < nfrags; i++) {
2067 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2074 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
2077 skb_shinfo(skb)->nr_frags = i;
2079 for (; i < nfrags; i++)
2080 skb_frag_unref(skb, i);
2082 if (skb_has_frag_list(skb))
2083 skb_drop_fraglist(skb);
2087 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
2088 fragp = &frag->next) {
2089 int end = offset + frag->len;
2091 if (skb_shared(frag)) {
2092 struct sk_buff *nfrag;
2094 nfrag = skb_clone(frag, GFP_ATOMIC);
2095 if (unlikely(!nfrag))
2098 nfrag->next = frag->next;
2110 unlikely((err = pskb_trim(frag, len - offset))))
2114 skb_drop_list(&frag->next);
2119 if (len > skb_headlen(skb)) {
2120 skb->data_len -= skb->len - len;
2125 skb_set_tail_pointer(skb, len);
2128 if (!skb->sk || skb->destructor == sock_edemux)
2132 EXPORT_SYMBOL(___pskb_trim);
2134 /* Note : use pskb_trim_rcsum() instead of calling this directly
2136 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2138 if (skb->ip_summed == CHECKSUM_COMPLETE) {
2139 int delta = skb->len - len;
2141 skb->csum = csum_block_sub(skb->csum,
2142 skb_checksum(skb, len, delta, 0),
2144 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2145 int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
2146 int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
2148 if (offset + sizeof(__sum16) > hdlen)
2151 return __pskb_trim(skb, len);
2153 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2156 * __pskb_pull_tail - advance tail of skb header
2157 * @skb: buffer to reallocate
2158 * @delta: number of bytes to advance tail
2160 * The function makes a sense only on a fragmented &sk_buff,
2161 * it expands header moving its tail forward and copying necessary
2162 * data from fragmented part.
2164 * &sk_buff MUST have reference count of 1.
2166 * Returns %NULL (and &sk_buff does not change) if pull failed
2167 * or value of new tail of skb in the case of success.
2169 * All the pointers pointing into skb header may change and must be
2170 * reloaded after call to this function.
2173 /* Moves tail of skb head forward, copying data from fragmented part,
2174 * when it is necessary.
2175 * 1. It may fail due to malloc failure.
2176 * 2. It may change skb pointers.
2178 * It is pretty complicated. Luckily, it is called only in exceptional cases.
2180 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2182 /* If skb has not enough free space at tail, get new one
2183 * plus 128 bytes for future expansions. If we have enough
2184 * room at tail, reallocate without expansion only if skb is cloned.
2186 int i, k, eat = (skb->tail + delta) - skb->end;
2188 if (eat > 0 || skb_cloned(skb)) {
2189 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2194 BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2195 skb_tail_pointer(skb), delta));
2197 /* Optimization: no fragments, no reasons to preestimate
2198 * size of pulled pages. Superb.
2200 if (!skb_has_frag_list(skb))
2203 /* Estimate size of pulled pages. */
2205 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2206 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2213 /* If we need update frag list, we are in troubles.
2214 * Certainly, it is possible to add an offset to skb data,
2215 * but taking into account that pulling is expected to
2216 * be very rare operation, it is worth to fight against
2217 * further bloating skb head and crucify ourselves here instead.
2218 * Pure masohism, indeed. 8)8)
2221 struct sk_buff *list = skb_shinfo(skb)->frag_list;
2222 struct sk_buff *clone = NULL;
2223 struct sk_buff *insp = NULL;
2226 if (list->len <= eat) {
2227 /* Eaten as whole. */
2232 /* Eaten partially. */
2234 if (skb_shared(list)) {
2235 /* Sucks! We need to fork list. :-( */
2236 clone = skb_clone(list, GFP_ATOMIC);
2242 /* This may be pulled without
2246 if (!pskb_pull(list, eat)) {
2254 /* Free pulled out fragments. */
2255 while ((list = skb_shinfo(skb)->frag_list) != insp) {
2256 skb_shinfo(skb)->frag_list = list->next;
2259 /* And insert new clone at head. */
2262 skb_shinfo(skb)->frag_list = clone;
2265 /* Success! Now we may commit changes to skb data. */
2270 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2271 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2274 skb_frag_unref(skb, i);
2277 skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2279 *frag = skb_shinfo(skb)->frags[i];
2281 skb_frag_off_add(frag, eat);
2282 skb_frag_size_sub(frag, eat);
2290 skb_shinfo(skb)->nr_frags = k;
2294 skb->data_len -= delta;
2297 skb_zcopy_clear(skb, false);
2299 return skb_tail_pointer(skb);
2301 EXPORT_SYMBOL(__pskb_pull_tail);
2304 * skb_copy_bits - copy bits from skb to kernel buffer
2306 * @offset: offset in source
2307 * @to: destination buffer
2308 * @len: number of bytes to copy
2310 * Copy the specified number of bytes from the source skb to the
2311 * destination buffer.
2314 * If its prototype is ever changed,
2315 * check arch/{*}/net/{*}.S files,
2316 * since it is called from BPF assembly code.
2318 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2320 int start = skb_headlen(skb);
2321 struct sk_buff *frag_iter;
2324 if (offset > (int)skb->len - len)
2328 if ((copy = start - offset) > 0) {
2331 skb_copy_from_linear_data_offset(skb, offset, to, copy);
2332 if ((len -= copy) == 0)
2338 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2340 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2342 WARN_ON(start > offset + len);
2344 end = start + skb_frag_size(f);
2345 if ((copy = end - offset) > 0) {
2346 u32 p_off, p_len, copied;
2353 skb_frag_foreach_page(f,
2354 skb_frag_off(f) + offset - start,
2355 copy, p, p_off, p_len, copied) {
2356 vaddr = kmap_atomic(p);
2357 memcpy(to + copied, vaddr + p_off, p_len);
2358 kunmap_atomic(vaddr);
2361 if ((len -= copy) == 0)
2369 skb_walk_frags(skb, frag_iter) {
2372 WARN_ON(start > offset + len);
2374 end = start + frag_iter->len;
2375 if ((copy = end - offset) > 0) {
2378 if (skb_copy_bits(frag_iter, offset - start, to, copy))
2380 if ((len -= copy) == 0)
2394 EXPORT_SYMBOL(skb_copy_bits);
2397 * Callback from splice_to_pipe(), if we need to release some pages
2398 * at the end of the spd in case we error'ed out in filling the pipe.
2400 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2402 put_page(spd->pages[i]);
2405 static struct page *linear_to_page(struct page *page, unsigned int *len,
2406 unsigned int *offset,
2409 struct page_frag *pfrag = sk_page_frag(sk);
2411 if (!sk_page_frag_refill(sk, pfrag))
2414 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2416 memcpy(page_address(pfrag->page) + pfrag->offset,
2417 page_address(page) + *offset, *len);
2418 *offset = pfrag->offset;
2419 pfrag->offset += *len;
2424 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2426 unsigned int offset)
2428 return spd->nr_pages &&
2429 spd->pages[spd->nr_pages - 1] == page &&
2430 (spd->partial[spd->nr_pages - 1].offset +
2431 spd->partial[spd->nr_pages - 1].len == offset);
2435 * Fill page/offset/length into spd, if it can hold more pages.
2437 static bool spd_fill_page(struct splice_pipe_desc *spd,
2438 struct pipe_inode_info *pipe, struct page *page,
2439 unsigned int *len, unsigned int offset,
2443 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2447 page = linear_to_page(page, len, &offset, sk);
2451 if (spd_can_coalesce(spd, page, offset)) {
2452 spd->partial[spd->nr_pages - 1].len += *len;
2456 spd->pages[spd->nr_pages] = page;
2457 spd->partial[spd->nr_pages].len = *len;
2458 spd->partial[spd->nr_pages].offset = offset;
2464 static bool __splice_segment(struct page *page, unsigned int poff,
2465 unsigned int plen, unsigned int *off,
2467 struct splice_pipe_desc *spd, bool linear,
2469 struct pipe_inode_info *pipe)
2474 /* skip this segment if already processed */
2480 /* ignore any bits we already processed */
2486 unsigned int flen = min(*len, plen);
2488 if (spd_fill_page(spd, pipe, page, &flen, poff,
2494 } while (*len && plen);
2500 * Map linear and fragment data from the skb to spd. It reports true if the
2501 * pipe is full or if we already spliced the requested length.
2503 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2504 unsigned int *offset, unsigned int *len,
2505 struct splice_pipe_desc *spd, struct sock *sk)
2508 struct sk_buff *iter;
2510 /* map the linear part :
2511 * If skb->head_frag is set, this 'linear' part is backed by a
2512 * fragment, and if the head is not shared with any clones then
2513 * we can avoid a copy since we own the head portion of this page.
2515 if (__splice_segment(virt_to_page(skb->data),
2516 (unsigned long) skb->data & (PAGE_SIZE - 1),
2519 skb_head_is_locked(skb),
2524 * then map the fragments
2526 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2527 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2529 if (__splice_segment(skb_frag_page(f),
2530 skb_frag_off(f), skb_frag_size(f),
2531 offset, len, spd, false, sk, pipe))
2535 skb_walk_frags(skb, iter) {
2536 if (*offset >= iter->len) {
2537 *offset -= iter->len;
2540 /* __skb_splice_bits() only fails if the output has no room
2541 * left, so no point in going over the frag_list for the error
2544 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2552 * Map data from the skb to a pipe. Should handle both the linear part,
2553 * the fragments, and the frag list.
2555 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2556 struct pipe_inode_info *pipe, unsigned int tlen,
2559 struct partial_page partial[MAX_SKB_FRAGS];
2560 struct page *pages[MAX_SKB_FRAGS];
2561 struct splice_pipe_desc spd = {
2564 .nr_pages_max = MAX_SKB_FRAGS,
2565 .ops = &nosteal_pipe_buf_ops,
2566 .spd_release = sock_spd_release,
2570 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2573 ret = splice_to_pipe(pipe, &spd);
2577 EXPORT_SYMBOL_GPL(skb_splice_bits);
2579 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg,
2580 struct kvec *vec, size_t num, size_t size)
2582 struct socket *sock = sk->sk_socket;
2586 return kernel_sendmsg(sock, msg, vec, num, size);
2589 static int sendpage_unlocked(struct sock *sk, struct page *page, int offset,
2590 size_t size, int flags)
2592 struct socket *sock = sk->sk_socket;
2596 return kernel_sendpage(sock, page, offset, size, flags);
2599 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg,
2600 struct kvec *vec, size_t num, size_t size);
2601 typedef int (*sendpage_func)(struct sock *sk, struct page *page, int offset,
2602 size_t size, int flags);
2603 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset,
2604 int len, sendmsg_func sendmsg, sendpage_func sendpage)
2606 unsigned int orig_len = len;
2607 struct sk_buff *head = skb;
2608 unsigned short fragidx;
2613 /* Deal with head data */
2614 while (offset < skb_headlen(skb) && len) {
2618 slen = min_t(int, len, skb_headlen(skb) - offset);
2619 kv.iov_base = skb->data + offset;
2621 memset(&msg, 0, sizeof(msg));
2622 msg.msg_flags = MSG_DONTWAIT;
2624 ret = INDIRECT_CALL_2(sendmsg, kernel_sendmsg_locked,
2625 sendmsg_unlocked, sk, &msg, &kv, 1, slen);
2633 /* All the data was skb head? */
2637 /* Make offset relative to start of frags */
2638 offset -= skb_headlen(skb);
2640 /* Find where we are in frag list */
2641 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2642 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
2644 if (offset < skb_frag_size(frag))
2647 offset -= skb_frag_size(frag);
2650 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2651 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
2653 slen = min_t(size_t, len, skb_frag_size(frag) - offset);
2656 ret = INDIRECT_CALL_2(sendpage, kernel_sendpage_locked,
2657 sendpage_unlocked, sk,
2658 skb_frag_page(frag),
2659 skb_frag_off(frag) + offset,
2660 slen, MSG_DONTWAIT);
2673 /* Process any frag lists */
2676 if (skb_has_frag_list(skb)) {
2677 skb = skb_shinfo(skb)->frag_list;
2680 } else if (skb->next) {
2687 return orig_len - len;
2690 return orig_len == len ? ret : orig_len - len;
2693 /* Send skb data on a socket. Socket must be locked. */
2694 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
2697 return __skb_send_sock(sk, skb, offset, len, kernel_sendmsg_locked,
2698 kernel_sendpage_locked);
2700 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
2702 /* Send skb data on a socket. Socket must be unlocked. */
2703 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
2705 return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked,
2710 * skb_store_bits - store bits from kernel buffer to skb
2711 * @skb: destination buffer
2712 * @offset: offset in destination
2713 * @from: source buffer
2714 * @len: number of bytes to copy
2716 * Copy the specified number of bytes from the source buffer to the
2717 * destination skb. This function handles all the messy bits of
2718 * traversing fragment lists and such.
2721 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2723 int start = skb_headlen(skb);
2724 struct sk_buff *frag_iter;
2727 if (offset > (int)skb->len - len)
2730 if ((copy = start - offset) > 0) {
2733 skb_copy_to_linear_data_offset(skb, offset, from, copy);
2734 if ((len -= copy) == 0)
2740 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2741 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2744 WARN_ON(start > offset + len);
2746 end = start + skb_frag_size(frag);
2747 if ((copy = end - offset) > 0) {
2748 u32 p_off, p_len, copied;
2755 skb_frag_foreach_page(frag,
2756 skb_frag_off(frag) + offset - start,
2757 copy, p, p_off, p_len, copied) {
2758 vaddr = kmap_atomic(p);
2759 memcpy(vaddr + p_off, from + copied, p_len);
2760 kunmap_atomic(vaddr);
2763 if ((len -= copy) == 0)
2771 skb_walk_frags(skb, frag_iter) {
2774 WARN_ON(start > offset + len);
2776 end = start + frag_iter->len;
2777 if ((copy = end - offset) > 0) {
2780 if (skb_store_bits(frag_iter, offset - start,
2783 if ((len -= copy) == 0)
2796 EXPORT_SYMBOL(skb_store_bits);
2798 /* Checksum skb data. */
2799 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2800 __wsum csum, const struct skb_checksum_ops *ops)
2802 int start = skb_headlen(skb);
2803 int i, copy = start - offset;
2804 struct sk_buff *frag_iter;
2807 /* Checksum header. */
2811 csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
2812 skb->data + offset, copy, csum);
2813 if ((len -= copy) == 0)
2819 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2821 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2823 WARN_ON(start > offset + len);
2825 end = start + skb_frag_size(frag);
2826 if ((copy = end - offset) > 0) {
2827 u32 p_off, p_len, copied;
2835 skb_frag_foreach_page(frag,
2836 skb_frag_off(frag) + offset - start,
2837 copy, p, p_off, p_len, copied) {
2838 vaddr = kmap_atomic(p);
2839 csum2 = INDIRECT_CALL_1(ops->update,
2841 vaddr + p_off, p_len, 0);
2842 kunmap_atomic(vaddr);
2843 csum = INDIRECT_CALL_1(ops->combine,
2844 csum_block_add_ext, csum,
2856 skb_walk_frags(skb, frag_iter) {
2859 WARN_ON(start > offset + len);
2861 end = start + frag_iter->len;
2862 if ((copy = end - offset) > 0) {
2866 csum2 = __skb_checksum(frag_iter, offset - start,
2868 csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
2869 csum, csum2, pos, copy);
2870 if ((len -= copy) == 0)
2881 EXPORT_SYMBOL(__skb_checksum);
2883 __wsum skb_checksum(const struct sk_buff *skb, int offset,
2884 int len, __wsum csum)
2886 const struct skb_checksum_ops ops = {
2887 .update = csum_partial_ext,
2888 .combine = csum_block_add_ext,
2891 return __skb_checksum(skb, offset, len, csum, &ops);
2893 EXPORT_SYMBOL(skb_checksum);
2895 /* Both of above in one bottle. */
2897 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2900 int start = skb_headlen(skb);
2901 int i, copy = start - offset;
2902 struct sk_buff *frag_iter;
2910 csum = csum_partial_copy_nocheck(skb->data + offset, to,
2912 if ((len -= copy) == 0)
2919 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2922 WARN_ON(start > offset + len);
2924 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2925 if ((copy = end - offset) > 0) {
2926 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2927 u32 p_off, p_len, copied;
2935 skb_frag_foreach_page(frag,
2936 skb_frag_off(frag) + offset - start,
2937 copy, p, p_off, p_len, copied) {
2938 vaddr = kmap_atomic(p);
2939 csum2 = csum_partial_copy_nocheck(vaddr + p_off,
2942 kunmap_atomic(vaddr);
2943 csum = csum_block_add(csum, csum2, pos);
2955 skb_walk_frags(skb, frag_iter) {
2959 WARN_ON(start > offset + len);
2961 end = start + frag_iter->len;
2962 if ((copy = end - offset) > 0) {
2965 csum2 = skb_copy_and_csum_bits(frag_iter,
2968 csum = csum_block_add(csum, csum2, pos);
2969 if ((len -= copy) == 0)
2980 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2982 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
2986 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
2987 /* See comments in __skb_checksum_complete(). */
2989 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
2990 !skb->csum_complete_sw)
2991 netdev_rx_csum_fault(skb->dev, skb);
2993 if (!skb_shared(skb))
2994 skb->csum_valid = !sum;
2997 EXPORT_SYMBOL(__skb_checksum_complete_head);
2999 /* This function assumes skb->csum already holds pseudo header's checksum,
3000 * which has been changed from the hardware checksum, for example, by
3001 * __skb_checksum_validate_complete(). And, the original skb->csum must
3002 * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
3004 * It returns non-zero if the recomputed checksum is still invalid, otherwise
3005 * zero. The new checksum is stored back into skb->csum unless the skb is
3008 __sum16 __skb_checksum_complete(struct sk_buff *skb)
3013 csum = skb_checksum(skb, 0, skb->len, 0);
3015 sum = csum_fold(csum_add(skb->csum, csum));
3016 /* This check is inverted, because we already knew the hardware
3017 * checksum is invalid before calling this function. So, if the
3018 * re-computed checksum is valid instead, then we have a mismatch
3019 * between the original skb->csum and skb_checksum(). This means either
3020 * the original hardware checksum is incorrect or we screw up skb->csum
3021 * when moving skb->data around.
3024 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3025 !skb->csum_complete_sw)
3026 netdev_rx_csum_fault(skb->dev, skb);
3029 if (!skb_shared(skb)) {
3030 /* Save full packet checksum */
3032 skb->ip_summed = CHECKSUM_COMPLETE;
3033 skb->csum_complete_sw = 1;
3034 skb->csum_valid = !sum;
3039 EXPORT_SYMBOL(__skb_checksum_complete);
3041 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
3043 net_warn_ratelimited(
3044 "%s: attempt to compute crc32c without libcrc32c.ko\n",
3049 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
3050 int offset, int len)
3052 net_warn_ratelimited(
3053 "%s: attempt to compute crc32c without libcrc32c.ko\n",
3058 static const struct skb_checksum_ops default_crc32c_ops = {
3059 .update = warn_crc32c_csum_update,
3060 .combine = warn_crc32c_csum_combine,
3063 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
3064 &default_crc32c_ops;
3065 EXPORT_SYMBOL(crc32c_csum_stub);
3068 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
3069 * @from: source buffer
3071 * Calculates the amount of linear headroom needed in the 'to' skb passed
3072 * into skb_zerocopy().
3075 skb_zerocopy_headlen(const struct sk_buff *from)
3077 unsigned int hlen = 0;
3079 if (!from->head_frag ||
3080 skb_headlen(from) < L1_CACHE_BYTES ||
3081 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) {
3082 hlen = skb_headlen(from);
3087 if (skb_has_frag_list(from))
3092 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
3095 * skb_zerocopy - Zero copy skb to skb
3096 * @to: destination buffer
3097 * @from: source buffer
3098 * @len: number of bytes to copy from source buffer
3099 * @hlen: size of linear headroom in destination buffer
3101 * Copies up to `len` bytes from `from` to `to` by creating references
3102 * to the frags in the source buffer.
3104 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the
3105 * headroom in the `to` buffer.
3108 * 0: everything is OK
3109 * -ENOMEM: couldn't orphan frags of @from due to lack of memory
3110 * -EFAULT: skb_copy_bits() found some problem with skb geometry
3113 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
3116 int plen = 0; /* length of skb->head fragment */
3119 unsigned int offset;
3121 BUG_ON(!from->head_frag && !hlen);
3123 /* dont bother with small payloads */
3124 if (len <= skb_tailroom(to))
3125 return skb_copy_bits(from, 0, skb_put(to, len), len);
3128 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
3133 plen = min_t(int, skb_headlen(from), len);
3135 page = virt_to_head_page(from->head);
3136 offset = from->data - (unsigned char *)page_address(page);
3137 __skb_fill_page_desc(to, 0, page, offset, plen);
3144 to->truesize += len + plen;
3145 to->len += len + plen;
3146 to->data_len += len + plen;
3148 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
3152 skb_zerocopy_clone(to, from, GFP_ATOMIC);
3154 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
3159 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
3160 size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
3162 skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
3164 skb_frag_ref(to, j);
3167 skb_shinfo(to)->nr_frags = j;
3171 EXPORT_SYMBOL_GPL(skb_zerocopy);
3173 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3178 if (skb->ip_summed == CHECKSUM_PARTIAL)
3179 csstart = skb_checksum_start_offset(skb);
3181 csstart = skb_headlen(skb);
3183 BUG_ON(csstart > skb_headlen(skb));
3185 skb_copy_from_linear_data(skb, to, csstart);
3188 if (csstart != skb->len)
3189 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3190 skb->len - csstart);
3192 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3193 long csstuff = csstart + skb->csum_offset;
3195 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
3198 EXPORT_SYMBOL(skb_copy_and_csum_dev);
3201 * skb_dequeue - remove from the head of the queue
3202 * @list: list to dequeue from
3204 * Remove the head of the list. The list lock is taken so the function
3205 * may be used safely with other locking list functions. The head item is
3206 * returned or %NULL if the list is empty.
3209 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3211 unsigned long flags;
3212 struct sk_buff *result;
3214 spin_lock_irqsave(&list->lock, flags);
3215 result = __skb_dequeue(list);
3216 spin_unlock_irqrestore(&list->lock, flags);
3219 EXPORT_SYMBOL(skb_dequeue);
3222 * skb_dequeue_tail - remove from the tail of the queue
3223 * @list: list to dequeue from
3225 * Remove the tail of the list. The list lock is taken so the function
3226 * may be used safely with other locking list functions. The tail item is
3227 * returned or %NULL if the list is empty.
3229 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3231 unsigned long flags;
3232 struct sk_buff *result;
3234 spin_lock_irqsave(&list->lock, flags);
3235 result = __skb_dequeue_tail(list);
3236 spin_unlock_irqrestore(&list->lock, flags);
3239 EXPORT_SYMBOL(skb_dequeue_tail);
3242 * skb_queue_purge - empty a list
3243 * @list: list to empty
3245 * Delete all buffers on an &sk_buff list. Each buffer is removed from
3246 * the list and one reference dropped. This function takes the list
3247 * lock and is atomic with respect to other list locking functions.
3249 void skb_queue_purge(struct sk_buff_head *list)
3251 struct sk_buff *skb;
3252 while ((skb = skb_dequeue(list)) != NULL)
3255 EXPORT_SYMBOL(skb_queue_purge);
3258 * skb_rbtree_purge - empty a skb rbtree
3259 * @root: root of the rbtree to empty
3260 * Return value: the sum of truesizes of all purged skbs.
3262 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3263 * the list and one reference dropped. This function does not take
3264 * any lock. Synchronization should be handled by the caller (e.g., TCP
3265 * out-of-order queue is protected by the socket lock).
3267 unsigned int skb_rbtree_purge(struct rb_root *root)
3269 struct rb_node *p = rb_first(root);
3270 unsigned int sum = 0;
3273 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3276 rb_erase(&skb->rbnode, root);
3277 sum += skb->truesize;
3284 * skb_queue_head - queue a buffer at the list head
3285 * @list: list to use
3286 * @newsk: buffer to queue
3288 * Queue a buffer at the start of the list. This function takes the
3289 * list lock and can be used safely with other locking &sk_buff functions
3292 * A buffer cannot be placed on two lists at the same time.
3294 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3296 unsigned long flags;
3298 spin_lock_irqsave(&list->lock, flags);
3299 __skb_queue_head(list, newsk);
3300 spin_unlock_irqrestore(&list->lock, flags);
3302 EXPORT_SYMBOL(skb_queue_head);
3305 * skb_queue_tail - queue a buffer at the list tail
3306 * @list: list to use
3307 * @newsk: buffer to queue
3309 * Queue a buffer at the tail of the list. This function takes the
3310 * list lock and can be used safely with other locking &sk_buff functions
3313 * A buffer cannot be placed on two lists at the same time.
3315 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3317 unsigned long flags;
3319 spin_lock_irqsave(&list->lock, flags);
3320 __skb_queue_tail(list, newsk);
3321 spin_unlock_irqrestore(&list->lock, flags);
3323 EXPORT_SYMBOL(skb_queue_tail);
3326 * skb_unlink - remove a buffer from a list
3327 * @skb: buffer to remove
3328 * @list: list to use
3330 * Remove a packet from a list. The list locks are taken and this
3331 * function is atomic with respect to other list locked calls
3333 * You must know what list the SKB is on.
3335 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
3337 unsigned long flags;
3339 spin_lock_irqsave(&list->lock, flags);
3340 __skb_unlink(skb, list);
3341 spin_unlock_irqrestore(&list->lock, flags);
3343 EXPORT_SYMBOL(skb_unlink);
3346 * skb_append - append a buffer
3347 * @old: buffer to insert after
3348 * @newsk: buffer to insert
3349 * @list: list to use
3351 * Place a packet after a given packet in a list. The list locks are taken
3352 * and this function is atomic with respect to other list locked calls.
3353 * A buffer cannot be placed on two lists at the same time.
3355 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3357 unsigned long flags;
3359 spin_lock_irqsave(&list->lock, flags);
3360 __skb_queue_after(list, old, newsk);
3361 spin_unlock_irqrestore(&list->lock, flags);
3363 EXPORT_SYMBOL(skb_append);
3365 static inline void skb_split_inside_header(struct sk_buff *skb,
3366 struct sk_buff* skb1,
3367 const u32 len, const int pos)
3371 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
3373 /* And move data appendix as is. */
3374 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
3375 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3377 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3378 skb_shinfo(skb)->nr_frags = 0;
3379 skb1->data_len = skb->data_len;
3380 skb1->len += skb1->data_len;
3383 skb_set_tail_pointer(skb, len);
3386 static inline void skb_split_no_header(struct sk_buff *skb,
3387 struct sk_buff* skb1,
3388 const u32 len, int pos)
3391 const int nfrags = skb_shinfo(skb)->nr_frags;
3393 skb_shinfo(skb)->nr_frags = 0;
3394 skb1->len = skb1->data_len = skb->len - len;
3396 skb->data_len = len - pos;
3398 for (i = 0; i < nfrags; i++) {
3399 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3401 if (pos + size > len) {
3402 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3406 * We have two variants in this case:
3407 * 1. Move all the frag to the second
3408 * part, if it is possible. F.e.
3409 * this approach is mandatory for TUX,
3410 * where splitting is expensive.
3411 * 2. Split is accurately. We make this.
3413 skb_frag_ref(skb, i);
3414 skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
3415 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3416 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3417 skb_shinfo(skb)->nr_frags++;
3421 skb_shinfo(skb)->nr_frags++;
3424 skb_shinfo(skb1)->nr_frags = k;
3428 * skb_split - Split fragmented skb to two parts at length len.
3429 * @skb: the buffer to split
3430 * @skb1: the buffer to receive the second part
3431 * @len: new length for skb
3433 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3435 int pos = skb_headlen(skb);
3437 skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG;
3438 skb_zerocopy_clone(skb1, skb, 0);
3439 if (len < pos) /* Split line is inside header. */
3440 skb_split_inside_header(skb, skb1, len, pos);
3441 else /* Second chunk has no header, nothing to copy. */
3442 skb_split_no_header(skb, skb1, len, pos);
3444 EXPORT_SYMBOL(skb_split);
3446 /* Shifting from/to a cloned skb is a no-go.
3448 * Caller cannot keep skb_shinfo related pointers past calling here!
3450 static int skb_prepare_for_shift(struct sk_buff *skb)
3454 if (skb_cloned(skb)) {
3455 /* Save and restore truesize: pskb_expand_head() may reallocate
3456 * memory where ksize(kmalloc(S)) != ksize(kmalloc(S)), but we
3457 * cannot change truesize at this point.
3459 unsigned int save_truesize = skb->truesize;
3461 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3462 skb->truesize = save_truesize;
3468 * skb_shift - Shifts paged data partially from skb to another
3469 * @tgt: buffer into which tail data gets added
3470 * @skb: buffer from which the paged data comes from
3471 * @shiftlen: shift up to this many bytes
3473 * Attempts to shift up to shiftlen worth of bytes, which may be less than
3474 * the length of the skb, from skb to tgt. Returns number bytes shifted.
3475 * It's up to caller to free skb if everything was shifted.
3477 * If @tgt runs out of frags, the whole operation is aborted.
3479 * Skb cannot include anything else but paged data while tgt is allowed
3480 * to have non-paged data as well.
3482 * TODO: full sized shift could be optimized but that would need
3483 * specialized skb free'er to handle frags without up-to-date nr_frags.
3485 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3487 int from, to, merge, todo;
3488 skb_frag_t *fragfrom, *fragto;
3490 BUG_ON(shiftlen > skb->len);
3492 if (skb_headlen(skb))
3494 if (skb_zcopy(tgt) || skb_zcopy(skb))
3499 to = skb_shinfo(tgt)->nr_frags;
3500 fragfrom = &skb_shinfo(skb)->frags[from];
3502 /* Actual merge is delayed until the point when we know we can
3503 * commit all, so that we don't have to undo partial changes
3506 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3507 skb_frag_off(fragfrom))) {
3512 todo -= skb_frag_size(fragfrom);
3514 if (skb_prepare_for_shift(skb) ||
3515 skb_prepare_for_shift(tgt))
3518 /* All previous frag pointers might be stale! */
3519 fragfrom = &skb_shinfo(skb)->frags[from];
3520 fragto = &skb_shinfo(tgt)->frags[merge];
3522 skb_frag_size_add(fragto, shiftlen);
3523 skb_frag_size_sub(fragfrom, shiftlen);
3524 skb_frag_off_add(fragfrom, shiftlen);
3532 /* Skip full, not-fitting skb to avoid expensive operations */
3533 if ((shiftlen == skb->len) &&
3534 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3537 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3540 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3541 if (to == MAX_SKB_FRAGS)
3544 fragfrom = &skb_shinfo(skb)->frags[from];
3545 fragto = &skb_shinfo(tgt)->frags[to];
3547 if (todo >= skb_frag_size(fragfrom)) {
3548 *fragto = *fragfrom;
3549 todo -= skb_frag_size(fragfrom);
3554 __skb_frag_ref(fragfrom);
3555 skb_frag_page_copy(fragto, fragfrom);
3556 skb_frag_off_copy(fragto, fragfrom);
3557 skb_frag_size_set(fragto, todo);
3559 skb_frag_off_add(fragfrom, todo);
3560 skb_frag_size_sub(fragfrom, todo);
3568 /* Ready to "commit" this state change to tgt */
3569 skb_shinfo(tgt)->nr_frags = to;
3572 fragfrom = &skb_shinfo(skb)->frags[0];
3573 fragto = &skb_shinfo(tgt)->frags[merge];
3575 skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3576 __skb_frag_unref(fragfrom, skb->pp_recycle);
3579 /* Reposition in the original skb */
3581 while (from < skb_shinfo(skb)->nr_frags)
3582 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3583 skb_shinfo(skb)->nr_frags = to;
3585 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3588 /* Most likely the tgt won't ever need its checksum anymore, skb on
3589 * the other hand might need it if it needs to be resent
3591 tgt->ip_summed = CHECKSUM_PARTIAL;
3592 skb->ip_summed = CHECKSUM_PARTIAL;
3594 /* Yak, is it really working this way? Some helper please? */
3595 skb->len -= shiftlen;
3596 skb->data_len -= shiftlen;
3597 skb->truesize -= shiftlen;
3598 tgt->len += shiftlen;
3599 tgt->data_len += shiftlen;
3600 tgt->truesize += shiftlen;
3606 * skb_prepare_seq_read - Prepare a sequential read of skb data
3607 * @skb: the buffer to read
3608 * @from: lower offset of data to be read
3609 * @to: upper offset of data to be read
3610 * @st: state variable
3612 * Initializes the specified state variable. Must be called before
3613 * invoking skb_seq_read() for the first time.
3615 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3616 unsigned int to, struct skb_seq_state *st)
3618 st->lower_offset = from;
3619 st->upper_offset = to;
3620 st->root_skb = st->cur_skb = skb;
3621 st->frag_idx = st->stepped_offset = 0;
3622 st->frag_data = NULL;
3625 EXPORT_SYMBOL(skb_prepare_seq_read);
3628 * skb_seq_read - Sequentially read skb data
3629 * @consumed: number of bytes consumed by the caller so far
3630 * @data: destination pointer for data to be returned
3631 * @st: state variable
3633 * Reads a block of skb data at @consumed relative to the
3634 * lower offset specified to skb_prepare_seq_read(). Assigns
3635 * the head of the data block to @data and returns the length
3636 * of the block or 0 if the end of the skb data or the upper
3637 * offset has been reached.
3639 * The caller is not required to consume all of the data
3640 * returned, i.e. @consumed is typically set to the number
3641 * of bytes already consumed and the next call to
3642 * skb_seq_read() will return the remaining part of the block.
3644 * Note 1: The size of each block of data returned can be arbitrary,
3645 * this limitation is the cost for zerocopy sequential
3646 * reads of potentially non linear data.
3648 * Note 2: Fragment lists within fragments are not implemented
3649 * at the moment, state->root_skb could be replaced with
3650 * a stack for this purpose.
3652 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
3653 struct skb_seq_state *st)
3655 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
3658 if (unlikely(abs_offset >= st->upper_offset)) {
3659 if (st->frag_data) {
3660 kunmap_atomic(st->frag_data);
3661 st->frag_data = NULL;
3667 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
3669 if (abs_offset < block_limit && !st->frag_data) {
3670 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
3671 return block_limit - abs_offset;
3674 if (st->frag_idx == 0 && !st->frag_data)
3675 st->stepped_offset += skb_headlen(st->cur_skb);
3677 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
3678 unsigned int pg_idx, pg_off, pg_sz;
3680 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
3683 pg_off = skb_frag_off(frag);
3684 pg_sz = skb_frag_size(frag);
3686 if (skb_frag_must_loop(skb_frag_page(frag))) {
3687 pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT;
3688 pg_off = offset_in_page(pg_off + st->frag_off);
3689 pg_sz = min_t(unsigned int, pg_sz - st->frag_off,
3690 PAGE_SIZE - pg_off);
3693 block_limit = pg_sz + st->stepped_offset;
3694 if (abs_offset < block_limit) {
3696 st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx);
3698 *data = (u8 *)st->frag_data + pg_off +
3699 (abs_offset - st->stepped_offset);
3701 return block_limit - abs_offset;
3704 if (st->frag_data) {
3705 kunmap_atomic(st->frag_data);
3706 st->frag_data = NULL;
3709 st->stepped_offset += pg_sz;
3710 st->frag_off += pg_sz;
3711 if (st->frag_off == skb_frag_size(frag)) {
3717 if (st->frag_data) {
3718 kunmap_atomic(st->frag_data);
3719 st->frag_data = NULL;
3722 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
3723 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
3726 } else if (st->cur_skb->next) {
3727 st->cur_skb = st->cur_skb->next;
3734 EXPORT_SYMBOL(skb_seq_read);
3737 * skb_abort_seq_read - Abort a sequential read of skb data
3738 * @st: state variable
3740 * Must be called if skb_seq_read() was not called until it
3743 void skb_abort_seq_read(struct skb_seq_state *st)
3746 kunmap_atomic(st->frag_data);
3748 EXPORT_SYMBOL(skb_abort_seq_read);
3750 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
3752 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
3753 struct ts_config *conf,
3754 struct ts_state *state)
3756 return skb_seq_read(offset, text, TS_SKB_CB(state));
3759 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
3761 skb_abort_seq_read(TS_SKB_CB(state));
3765 * skb_find_text - Find a text pattern in skb data
3766 * @skb: the buffer to look in
3767 * @from: search offset
3769 * @config: textsearch configuration
3771 * Finds a pattern in the skb data according to the specified
3772 * textsearch configuration. Use textsearch_next() to retrieve
3773 * subsequent occurrences of the pattern. Returns the offset
3774 * to the first occurrence or UINT_MAX if no match was found.
3776 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
3777 unsigned int to, struct ts_config *config)
3779 struct ts_state state;
3782 BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb));
3784 config->get_next_block = skb_ts_get_next_block;
3785 config->finish = skb_ts_finish;
3787 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
3789 ret = textsearch_find(config, &state);
3790 return (ret <= to - from ? ret : UINT_MAX);
3792 EXPORT_SYMBOL(skb_find_text);
3794 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3795 int offset, size_t size)
3797 int i = skb_shinfo(skb)->nr_frags;
3799 if (skb_can_coalesce(skb, i, page, offset)) {
3800 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3801 } else if (i < MAX_SKB_FRAGS) {
3803 skb_fill_page_desc(skb, i, page, offset, size);
3810 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3813 * skb_pull_rcsum - pull skb and update receive checksum
3814 * @skb: buffer to update
3815 * @len: length of data pulled
3817 * This function performs an skb_pull on the packet and updates
3818 * the CHECKSUM_COMPLETE checksum. It should be used on
3819 * receive path processing instead of skb_pull unless you know
3820 * that the checksum difference is zero (e.g., a valid IP header)
3821 * or you are setting ip_summed to CHECKSUM_NONE.
3823 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3825 unsigned char *data = skb->data;
3827 BUG_ON(len > skb->len);
3828 __skb_pull(skb, len);
3829 skb_postpull_rcsum(skb, data, len);
3832 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3834 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
3836 skb_frag_t head_frag;
3839 page = virt_to_head_page(frag_skb->head);
3840 __skb_frag_set_page(&head_frag, page);
3841 skb_frag_off_set(&head_frag, frag_skb->data -
3842 (unsigned char *)page_address(page));
3843 skb_frag_size_set(&head_frag, skb_headlen(frag_skb));
3847 struct sk_buff *skb_segment_list(struct sk_buff *skb,
3848 netdev_features_t features,
3849 unsigned int offset)
3851 struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
3852 unsigned int tnl_hlen = skb_tnl_header_len(skb);
3853 unsigned int delta_truesize = 0;
3854 unsigned int delta_len = 0;
3855 struct sk_buff *tail = NULL;
3856 struct sk_buff *nskb, *tmp;
3859 skb_push(skb, -skb_network_offset(skb) + offset);
3861 skb_shinfo(skb)->frag_list = NULL;
3865 list_skb = list_skb->next;
3868 if (skb_shared(nskb)) {
3869 tmp = skb_clone(nskb, GFP_ATOMIC);
3873 err = skb_unclone(nskb, GFP_ATOMIC);
3884 if (unlikely(err)) {
3885 nskb->next = list_skb;
3891 delta_len += nskb->len;
3892 delta_truesize += nskb->truesize;
3894 skb_push(nskb, -skb_network_offset(nskb) + offset);
3896 skb_release_head_state(nskb);
3897 __copy_skb_header(nskb, skb);
3899 skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
3900 skb_copy_from_linear_data_offset(skb, -tnl_hlen,
3901 nskb->data - tnl_hlen,
3904 if (skb_needs_linearize(nskb, features) &&
3905 __skb_linearize(nskb))
3910 skb->truesize = skb->truesize - delta_truesize;
3911 skb->data_len = skb->data_len - delta_len;
3912 skb->len = skb->len - delta_len;
3918 if (skb_needs_linearize(skb, features) &&
3919 __skb_linearize(skb))
3927 kfree_skb_list(skb->next);
3929 return ERR_PTR(-ENOMEM);
3931 EXPORT_SYMBOL_GPL(skb_segment_list);
3933 int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb)
3935 if (unlikely(p->len + skb->len >= 65536))
3938 if (NAPI_GRO_CB(p)->last == p)
3939 skb_shinfo(p)->frag_list = skb;
3941 NAPI_GRO_CB(p)->last->next = skb;
3943 skb_pull(skb, skb_gro_offset(skb));
3945 NAPI_GRO_CB(p)->last = skb;
3946 NAPI_GRO_CB(p)->count++;
3947 p->data_len += skb->len;
3949 /* sk owenrship - if any - completely transferred to the aggregated packet */
3950 skb->destructor = NULL;
3951 p->truesize += skb->truesize;
3954 NAPI_GRO_CB(skb)->same_flow = 1;
3960 * skb_segment - Perform protocol segmentation on skb.
3961 * @head_skb: buffer to segment
3962 * @features: features for the output path (see dev->features)
3964 * This function performs segmentation on the given skb. It returns
3965 * a pointer to the first in a list of new skbs for the segments.
3966 * In case of error it returns ERR_PTR(err).
3968 struct sk_buff *skb_segment(struct sk_buff *head_skb,
3969 netdev_features_t features)
3971 struct sk_buff *segs = NULL;
3972 struct sk_buff *tail = NULL;
3973 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3974 skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3975 unsigned int mss = skb_shinfo(head_skb)->gso_size;
3976 unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3977 struct sk_buff *frag_skb = head_skb;
3978 unsigned int offset = doffset;
3979 unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3980 unsigned int partial_segs = 0;
3981 unsigned int headroom;
3982 unsigned int len = head_skb->len;
3985 int nfrags = skb_shinfo(head_skb)->nr_frags;
3990 if (list_skb && !list_skb->head_frag && skb_headlen(list_skb) &&
3991 (skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY)) {
3992 /* gso_size is untrusted, and we have a frag_list with a linear
3993 * non head_frag head.
3995 * (we assume checking the first list_skb member suffices;
3996 * i.e if either of the list_skb members have non head_frag
3997 * head, then the first one has too).
3999 * If head_skb's headlen does not fit requested gso_size, it
4000 * means that the frag_list members do NOT terminate on exact
4001 * gso_size boundaries. Hence we cannot perform skb_frag_t page
4002 * sharing. Therefore we must fallback to copying the frag_list
4003 * skbs; we do so by disabling SG.
4005 if (mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb))
4006 features &= ~NETIF_F_SG;
4009 __skb_push(head_skb, doffset);
4010 proto = skb_network_protocol(head_skb, NULL);
4011 if (unlikely(!proto))
4012 return ERR_PTR(-EINVAL);
4014 sg = !!(features & NETIF_F_SG);
4015 csum = !!can_checksum_protocol(features, proto);
4017 if (sg && csum && (mss != GSO_BY_FRAGS)) {
4018 if (!(features & NETIF_F_GSO_PARTIAL)) {
4019 struct sk_buff *iter;
4020 unsigned int frag_len;
4023 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
4026 /* If we get here then all the required
4027 * GSO features except frag_list are supported.
4028 * Try to split the SKB to multiple GSO SKBs
4029 * with no frag_list.
4030 * Currently we can do that only when the buffers don't
4031 * have a linear part and all the buffers except
4032 * the last are of the same length.
4034 frag_len = list_skb->len;
4035 skb_walk_frags(head_skb, iter) {
4036 if (frag_len != iter->len && iter->next)
4038 if (skb_headlen(iter) && !iter->head_frag)
4044 if (len != frag_len)
4048 /* GSO partial only requires that we trim off any excess that
4049 * doesn't fit into an MSS sized block, so take care of that
4052 partial_segs = len / mss;
4053 if (partial_segs > 1)
4054 mss *= partial_segs;
4060 headroom = skb_headroom(head_skb);
4061 pos = skb_headlen(head_skb);
4064 struct sk_buff *nskb;
4065 skb_frag_t *nskb_frag;
4069 if (unlikely(mss == GSO_BY_FRAGS)) {
4070 len = list_skb->len;
4072 len = head_skb->len - offset;
4077 hsize = skb_headlen(head_skb) - offset;
4079 if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) &&
4080 (skb_headlen(list_skb) == len || sg)) {
4081 BUG_ON(skb_headlen(list_skb) > len);
4084 nfrags = skb_shinfo(list_skb)->nr_frags;
4085 frag = skb_shinfo(list_skb)->frags;
4086 frag_skb = list_skb;
4087 pos += skb_headlen(list_skb);
4089 while (pos < offset + len) {
4090 BUG_ON(i >= nfrags);
4092 size = skb_frag_size(frag);
4093 if (pos + size > offset + len)
4101 nskb = skb_clone(list_skb, GFP_ATOMIC);
4102 list_skb = list_skb->next;
4104 if (unlikely(!nskb))
4107 if (unlikely(pskb_trim(nskb, len))) {
4112 hsize = skb_end_offset(nskb);
4113 if (skb_cow_head(nskb, doffset + headroom)) {
4118 nskb->truesize += skb_end_offset(nskb) - hsize;
4119 skb_release_head_state(nskb);
4120 __skb_push(nskb, doffset);
4124 if (hsize > len || !sg)
4127 nskb = __alloc_skb(hsize + doffset + headroom,
4128 GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
4131 if (unlikely(!nskb))
4134 skb_reserve(nskb, headroom);
4135 __skb_put(nskb, doffset);
4144 __copy_skb_header(nskb, head_skb);
4146 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
4147 skb_reset_mac_len(nskb);
4149 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
4150 nskb->data - tnl_hlen,
4151 doffset + tnl_hlen);
4153 if (nskb->len == len + doffset)
4154 goto perform_csum_check;
4158 if (!nskb->remcsum_offload)
4159 nskb->ip_summed = CHECKSUM_NONE;
4160 SKB_GSO_CB(nskb)->csum =
4161 skb_copy_and_csum_bits(head_skb, offset,
4165 SKB_GSO_CB(nskb)->csum_start =
4166 skb_headroom(nskb) + doffset;
4168 skb_copy_bits(head_skb, offset,
4175 nskb_frag = skb_shinfo(nskb)->frags;
4177 skb_copy_from_linear_data_offset(head_skb, offset,
4178 skb_put(nskb, hsize), hsize);
4180 skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags &
4183 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
4184 skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
4187 while (pos < offset + len) {
4190 nfrags = skb_shinfo(list_skb)->nr_frags;
4191 frag = skb_shinfo(list_skb)->frags;
4192 frag_skb = list_skb;
4193 if (!skb_headlen(list_skb)) {
4196 BUG_ON(!list_skb->head_frag);
4198 /* to make room for head_frag. */
4202 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
4203 skb_zerocopy_clone(nskb, frag_skb,
4207 list_skb = list_skb->next;
4210 if (unlikely(skb_shinfo(nskb)->nr_frags >=
4212 net_warn_ratelimited(
4213 "skb_segment: too many frags: %u %u\n",
4219 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
4220 __skb_frag_ref(nskb_frag);
4221 size = skb_frag_size(nskb_frag);
4224 skb_frag_off_add(nskb_frag, offset - pos);
4225 skb_frag_size_sub(nskb_frag, offset - pos);
4228 skb_shinfo(nskb)->nr_frags++;
4230 if (pos + size <= offset + len) {
4235 skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4243 nskb->data_len = len - hsize;
4244 nskb->len += nskb->data_len;
4245 nskb->truesize += nskb->data_len;
4249 if (skb_has_shared_frag(nskb) &&
4250 __skb_linearize(nskb))
4253 if (!nskb->remcsum_offload)
4254 nskb->ip_summed = CHECKSUM_NONE;
4255 SKB_GSO_CB(nskb)->csum =
4256 skb_checksum(nskb, doffset,
4257 nskb->len - doffset, 0);
4258 SKB_GSO_CB(nskb)->csum_start =
4259 skb_headroom(nskb) + doffset;
4261 } while ((offset += len) < head_skb->len);
4263 /* Some callers want to get the end of the list.
4264 * Put it in segs->prev to avoid walking the list.
4265 * (see validate_xmit_skb_list() for example)
4270 struct sk_buff *iter;
4271 int type = skb_shinfo(head_skb)->gso_type;
4272 unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
4274 /* Update type to add partial and then remove dodgy if set */
4275 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
4276 type &= ~SKB_GSO_DODGY;
4278 /* Update GSO info and prepare to start updating headers on
4279 * our way back down the stack of protocols.
4281 for (iter = segs; iter; iter = iter->next) {
4282 skb_shinfo(iter)->gso_size = gso_size;
4283 skb_shinfo(iter)->gso_segs = partial_segs;
4284 skb_shinfo(iter)->gso_type = type;
4285 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
4288 if (tail->len - doffset <= gso_size)
4289 skb_shinfo(tail)->gso_size = 0;
4290 else if (tail != segs)
4291 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
4294 /* Following permits correct backpressure, for protocols
4295 * using skb_set_owner_w().
4296 * Idea is to tranfert ownership from head_skb to last segment.
4298 if (head_skb->destructor == sock_wfree) {
4299 swap(tail->truesize, head_skb->truesize);
4300 swap(tail->destructor, head_skb->destructor);
4301 swap(tail->sk, head_skb->sk);
4306 kfree_skb_list(segs);
4307 return ERR_PTR(err);
4309 EXPORT_SYMBOL_GPL(skb_segment);
4311 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb)
4313 struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
4314 unsigned int offset = skb_gro_offset(skb);
4315 unsigned int headlen = skb_headlen(skb);
4316 unsigned int len = skb_gro_len(skb);
4317 unsigned int delta_truesize;
4318 unsigned int new_truesize;
4321 if (unlikely(p->len + len >= 65536 || NAPI_GRO_CB(skb)->flush))
4324 lp = NAPI_GRO_CB(p)->last;
4325 pinfo = skb_shinfo(lp);
4327 if (headlen <= offset) {
4330 int i = skbinfo->nr_frags;
4331 int nr_frags = pinfo->nr_frags + i;
4333 if (nr_frags > MAX_SKB_FRAGS)
4337 pinfo->nr_frags = nr_frags;
4338 skbinfo->nr_frags = 0;
4340 frag = pinfo->frags + nr_frags;
4341 frag2 = skbinfo->frags + i;
4346 skb_frag_off_add(frag, offset);
4347 skb_frag_size_sub(frag, offset);
4349 /* all fragments truesize : remove (head size + sk_buff) */
4350 new_truesize = SKB_TRUESIZE(skb_end_offset(skb));
4351 delta_truesize = skb->truesize - new_truesize;
4353 skb->truesize = new_truesize;
4354 skb->len -= skb->data_len;
4357 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
4359 } else if (skb->head_frag) {
4360 int nr_frags = pinfo->nr_frags;
4361 skb_frag_t *frag = pinfo->frags + nr_frags;
4362 struct page *page = virt_to_head_page(skb->head);
4363 unsigned int first_size = headlen - offset;
4364 unsigned int first_offset;
4366 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
4369 first_offset = skb->data -
4370 (unsigned char *)page_address(page) +
4373 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
4375 __skb_frag_set_page(frag, page);
4376 skb_frag_off_set(frag, first_offset);
4377 skb_frag_size_set(frag, first_size);
4379 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
4380 /* We dont need to clear skbinfo->nr_frags here */
4382 new_truesize = SKB_DATA_ALIGN(sizeof(struct sk_buff));
4383 delta_truesize = skb->truesize - new_truesize;
4384 skb->truesize = new_truesize;
4385 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
4390 /* sk owenrship - if any - completely transferred to the aggregated packet */
4391 skb->destructor = NULL;
4392 delta_truesize = skb->truesize;
4393 if (offset > headlen) {
4394 unsigned int eat = offset - headlen;
4396 skb_frag_off_add(&skbinfo->frags[0], eat);
4397 skb_frag_size_sub(&skbinfo->frags[0], eat);
4398 skb->data_len -= eat;
4403 __skb_pull(skb, offset);
4405 if (NAPI_GRO_CB(p)->last == p)
4406 skb_shinfo(p)->frag_list = skb;
4408 NAPI_GRO_CB(p)->last->next = skb;
4409 NAPI_GRO_CB(p)->last = skb;
4410 __skb_header_release(skb);
4414 NAPI_GRO_CB(p)->count++;
4416 p->truesize += delta_truesize;
4419 lp->data_len += len;
4420 lp->truesize += delta_truesize;
4423 NAPI_GRO_CB(skb)->same_flow = 1;
4427 #ifdef CONFIG_SKB_EXTENSIONS
4428 #define SKB_EXT_ALIGN_VALUE 8
4429 #define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4431 static const u8 skb_ext_type_len[] = {
4432 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4433 [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4436 [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4438 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4439 [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
4441 #if IS_ENABLED(CONFIG_MPTCP)
4442 [SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
4446 static __always_inline unsigned int skb_ext_total_length(void)
4448 return SKB_EXT_CHUNKSIZEOF(struct skb_ext) +
4449 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4450 skb_ext_type_len[SKB_EXT_BRIDGE_NF] +
4453 skb_ext_type_len[SKB_EXT_SEC_PATH] +
4455 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4456 skb_ext_type_len[TC_SKB_EXT] +
4458 #if IS_ENABLED(CONFIG_MPTCP)
4459 skb_ext_type_len[SKB_EXT_MPTCP] +
4464 static void skb_extensions_init(void)
4466 BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4467 BUILD_BUG_ON(skb_ext_total_length() > 255);
4469 skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4470 SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4472 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4476 static void skb_extensions_init(void) {}
4479 void __init skb_init(void)
4481 skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache",
4482 sizeof(struct sk_buff),
4484 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4485 offsetof(struct sk_buff, cb),
4486 sizeof_field(struct sk_buff, cb),
4488 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
4489 sizeof(struct sk_buff_fclones),
4491 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4493 skb_extensions_init();
4497 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
4498 unsigned int recursion_level)
4500 int start = skb_headlen(skb);
4501 int i, copy = start - offset;
4502 struct sk_buff *frag_iter;
4505 if (unlikely(recursion_level >= 24))
4511 sg_set_buf(sg, skb->data + offset, copy);
4513 if ((len -= copy) == 0)
4518 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4521 WARN_ON(start > offset + len);
4523 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
4524 if ((copy = end - offset) > 0) {
4525 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4526 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4531 sg_set_page(&sg[elt], skb_frag_page(frag), copy,
4532 skb_frag_off(frag) + offset - start);
4541 skb_walk_frags(skb, frag_iter) {
4544 WARN_ON(start > offset + len);
4546 end = start + frag_iter->len;
4547 if ((copy = end - offset) > 0) {
4548 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4553 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4554 copy, recursion_level + 1);
4555 if (unlikely(ret < 0))
4558 if ((len -= copy) == 0)
4569 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4570 * @skb: Socket buffer containing the buffers to be mapped
4571 * @sg: The scatter-gather list to map into
4572 * @offset: The offset into the buffer's contents to start mapping
4573 * @len: Length of buffer space to be mapped
4575 * Fill the specified scatter-gather list with mappings/pointers into a
4576 * region of the buffer space attached to a socket buffer. Returns either
4577 * the number of scatterlist items used, or -EMSGSIZE if the contents
4580 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4582 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4587 sg_mark_end(&sg[nsg - 1]);
4591 EXPORT_SYMBOL_GPL(skb_to_sgvec);
4593 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4594 * sglist without mark the sg which contain last skb data as the end.
4595 * So the caller can mannipulate sg list as will when padding new data after
4596 * the first call without calling sg_unmark_end to expend sg list.
4598 * Scenario to use skb_to_sgvec_nomark:
4600 * 2. skb_to_sgvec_nomark(payload1)
4601 * 3. skb_to_sgvec_nomark(payload2)
4603 * This is equivalent to:
4605 * 2. skb_to_sgvec(payload1)
4607 * 4. skb_to_sgvec(payload2)
4609 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4610 * is more preferable.
4612 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4613 int offset, int len)
4615 return __skb_to_sgvec(skb, sg, offset, len, 0);
4617 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4622 * skb_cow_data - Check that a socket buffer's data buffers are writable
4623 * @skb: The socket buffer to check.
4624 * @tailbits: Amount of trailing space to be added
4625 * @trailer: Returned pointer to the skb where the @tailbits space begins
4627 * Make sure that the data buffers attached to a socket buffer are
4628 * writable. If they are not, private copies are made of the data buffers
4629 * and the socket buffer is set to use these instead.
4631 * If @tailbits is given, make sure that there is space to write @tailbits
4632 * bytes of data beyond current end of socket buffer. @trailer will be
4633 * set to point to the skb in which this space begins.
4635 * The number of scatterlist elements required to completely map the
4636 * COW'd and extended socket buffer will be returned.
4638 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4642 struct sk_buff *skb1, **skb_p;
4644 /* If skb is cloned or its head is paged, reallocate
4645 * head pulling out all the pages (pages are considered not writable
4646 * at the moment even if they are anonymous).
4648 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4649 !__pskb_pull_tail(skb, __skb_pagelen(skb)))
4652 /* Easy case. Most of packets will go this way. */
4653 if (!skb_has_frag_list(skb)) {
4654 /* A little of trouble, not enough of space for trailer.
4655 * This should not happen, when stack is tuned to generate
4656 * good frames. OK, on miss we reallocate and reserve even more
4657 * space, 128 bytes is fair. */
4659 if (skb_tailroom(skb) < tailbits &&
4660 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4668 /* Misery. We are in troubles, going to mincer fragments... */
4671 skb_p = &skb_shinfo(skb)->frag_list;
4674 while ((skb1 = *skb_p) != NULL) {
4677 /* The fragment is partially pulled by someone,
4678 * this can happen on input. Copy it and everything
4681 if (skb_shared(skb1))
4684 /* If the skb is the last, worry about trailer. */
4686 if (skb1->next == NULL && tailbits) {
4687 if (skb_shinfo(skb1)->nr_frags ||
4688 skb_has_frag_list(skb1) ||
4689 skb_tailroom(skb1) < tailbits)
4690 ntail = tailbits + 128;
4696 skb_shinfo(skb1)->nr_frags ||
4697 skb_has_frag_list(skb1)) {
4698 struct sk_buff *skb2;
4700 /* Fuck, we are miserable poor guys... */
4702 skb2 = skb_copy(skb1, GFP_ATOMIC);
4704 skb2 = skb_copy_expand(skb1,
4708 if (unlikely(skb2 == NULL))
4712 skb_set_owner_w(skb2, skb1->sk);
4714 /* Looking around. Are we still alive?
4715 * OK, link new skb, drop old one */
4717 skb2->next = skb1->next;
4724 skb_p = &skb1->next;
4729 EXPORT_SYMBOL_GPL(skb_cow_data);
4731 static void sock_rmem_free(struct sk_buff *skb)
4733 struct sock *sk = skb->sk;
4735 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4738 static void skb_set_err_queue(struct sk_buff *skb)
4740 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4741 * So, it is safe to (mis)use it to mark skbs on the error queue.
4743 skb->pkt_type = PACKET_OUTGOING;
4744 BUILD_BUG_ON(PACKET_OUTGOING == 0);
4748 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4750 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4752 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4753 (unsigned int)READ_ONCE(sk->sk_rcvbuf))
4758 skb->destructor = sock_rmem_free;
4759 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4760 skb_set_err_queue(skb);
4762 /* before exiting rcu section, make sure dst is refcounted */
4765 skb_queue_tail(&sk->sk_error_queue, skb);
4766 if (!sock_flag(sk, SOCK_DEAD))
4767 sk_error_report(sk);
4770 EXPORT_SYMBOL(sock_queue_err_skb);
4772 static bool is_icmp_err_skb(const struct sk_buff *skb)
4774 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
4775 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
4778 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
4780 struct sk_buff_head *q = &sk->sk_error_queue;
4781 struct sk_buff *skb, *skb_next = NULL;
4782 bool icmp_next = false;
4783 unsigned long flags;
4785 spin_lock_irqsave(&q->lock, flags);
4786 skb = __skb_dequeue(q);
4787 if (skb && (skb_next = skb_peek(q))) {
4788 icmp_next = is_icmp_err_skb(skb_next);
4790 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
4792 spin_unlock_irqrestore(&q->lock, flags);
4794 if (is_icmp_err_skb(skb) && !icmp_next)
4798 sk_error_report(sk);
4802 EXPORT_SYMBOL(sock_dequeue_err_skb);
4805 * skb_clone_sk - create clone of skb, and take reference to socket
4806 * @skb: the skb to clone
4808 * This function creates a clone of a buffer that holds a reference on
4809 * sk_refcnt. Buffers created via this function are meant to be
4810 * returned using sock_queue_err_skb, or free via kfree_skb.
4812 * When passing buffers allocated with this function to sock_queue_err_skb
4813 * it is necessary to wrap the call with sock_hold/sock_put in order to
4814 * prevent the socket from being released prior to being enqueued on
4815 * the sk_error_queue.
4817 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
4819 struct sock *sk = skb->sk;
4820 struct sk_buff *clone;
4822 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
4825 clone = skb_clone(skb, GFP_ATOMIC);
4832 clone->destructor = sock_efree;
4836 EXPORT_SYMBOL(skb_clone_sk);
4838 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
4843 struct sock_exterr_skb *serr;
4846 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
4848 serr = SKB_EXT_ERR(skb);
4849 memset(serr, 0, sizeof(*serr));
4850 serr->ee.ee_errno = ENOMSG;
4851 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
4852 serr->ee.ee_info = tstype;
4853 serr->opt_stats = opt_stats;
4854 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
4855 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
4856 serr->ee.ee_data = skb_shinfo(skb)->tskey;
4857 if (sk->sk_protocol == IPPROTO_TCP &&
4858 sk->sk_type == SOCK_STREAM)
4859 serr->ee.ee_data -= sk->sk_tskey;
4862 err = sock_queue_err_skb(sk, skb);
4868 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
4872 if (likely(sysctl_tstamp_allow_data || tsonly))
4875 read_lock_bh(&sk->sk_callback_lock);
4876 ret = sk->sk_socket && sk->sk_socket->file &&
4877 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
4878 read_unlock_bh(&sk->sk_callback_lock);
4882 void skb_complete_tx_timestamp(struct sk_buff *skb,
4883 struct skb_shared_hwtstamps *hwtstamps)
4885 struct sock *sk = skb->sk;
4887 if (!skb_may_tx_timestamp(sk, false))
4890 /* Take a reference to prevent skb_orphan() from freeing the socket,
4891 * but only if the socket refcount is not zero.
4893 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4894 *skb_hwtstamps(skb) = *hwtstamps;
4895 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
4903 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
4905 void __skb_tstamp_tx(struct sk_buff *orig_skb,
4906 const struct sk_buff *ack_skb,
4907 struct skb_shared_hwtstamps *hwtstamps,
4908 struct sock *sk, int tstype)
4910 struct sk_buff *skb;
4911 bool tsonly, opt_stats = false;
4916 if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
4917 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
4920 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
4921 if (!skb_may_tx_timestamp(sk, tsonly))
4926 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
4927 sk->sk_protocol == IPPROTO_TCP &&
4928 sk->sk_type == SOCK_STREAM) {
4929 skb = tcp_get_timestamping_opt_stats(sk, orig_skb,
4934 skb = alloc_skb(0, GFP_ATOMIC);
4936 skb = skb_clone(orig_skb, GFP_ATOMIC);
4942 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
4944 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
4948 *skb_hwtstamps(skb) = *hwtstamps;
4950 skb->tstamp = ktime_get_real();
4952 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
4954 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
4956 void skb_tstamp_tx(struct sk_buff *orig_skb,
4957 struct skb_shared_hwtstamps *hwtstamps)
4959 return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk,
4962 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
4964 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
4966 struct sock *sk = skb->sk;
4967 struct sock_exterr_skb *serr;
4970 skb->wifi_acked_valid = 1;
4971 skb->wifi_acked = acked;
4973 serr = SKB_EXT_ERR(skb);
4974 memset(serr, 0, sizeof(*serr));
4975 serr->ee.ee_errno = ENOMSG;
4976 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
4978 /* Take a reference to prevent skb_orphan() from freeing the socket,
4979 * but only if the socket refcount is not zero.
4981 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4982 err = sock_queue_err_skb(sk, skb);
4988 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
4991 * skb_partial_csum_set - set up and verify partial csum values for packet
4992 * @skb: the skb to set
4993 * @start: the number of bytes after skb->data to start checksumming.
4994 * @off: the offset from start to place the checksum.
4996 * For untrusted partially-checksummed packets, we need to make sure the values
4997 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
4999 * This function checks and sets those values and skb->ip_summed: if this
5000 * returns false you should drop the packet.
5002 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
5004 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
5005 u32 csum_start = skb_headroom(skb) + (u32)start;
5007 if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) {
5008 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
5009 start, off, skb_headroom(skb), skb_headlen(skb));
5012 skb->ip_summed = CHECKSUM_PARTIAL;
5013 skb->csum_start = csum_start;
5014 skb->csum_offset = off;
5015 skb_set_transport_header(skb, start);
5018 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
5020 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
5023 if (skb_headlen(skb) >= len)
5026 /* If we need to pullup then pullup to the max, so we
5027 * won't need to do it again.
5032 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
5035 if (skb_headlen(skb) < len)
5041 #define MAX_TCP_HDR_LEN (15 * 4)
5043 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
5044 typeof(IPPROTO_IP) proto,
5051 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
5052 off + MAX_TCP_HDR_LEN);
5053 if (!err && !skb_partial_csum_set(skb, off,
5054 offsetof(struct tcphdr,
5057 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
5060 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
5061 off + sizeof(struct udphdr));
5062 if (!err && !skb_partial_csum_set(skb, off,
5063 offsetof(struct udphdr,
5066 return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
5069 return ERR_PTR(-EPROTO);
5072 /* This value should be large enough to cover a tagged ethernet header plus
5073 * maximally sized IP and TCP or UDP headers.
5075 #define MAX_IP_HDR_LEN 128
5077 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
5086 err = skb_maybe_pull_tail(skb,
5087 sizeof(struct iphdr),
5092 if (ip_is_fragment(ip_hdr(skb)))
5095 off = ip_hdrlen(skb);
5102 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
5104 return PTR_ERR(csum);
5107 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
5110 ip_hdr(skb)->protocol, 0);
5117 /* This value should be large enough to cover a tagged ethernet header plus
5118 * an IPv6 header, all options, and a maximal TCP or UDP header.
5120 #define MAX_IPV6_HDR_LEN 256
5122 #define OPT_HDR(type, skb, off) \
5123 (type *)(skb_network_header(skb) + (off))
5125 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
5138 off = sizeof(struct ipv6hdr);
5140 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
5144 nexthdr = ipv6_hdr(skb)->nexthdr;
5146 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
5147 while (off <= len && !done) {
5149 case IPPROTO_DSTOPTS:
5150 case IPPROTO_HOPOPTS:
5151 case IPPROTO_ROUTING: {
5152 struct ipv6_opt_hdr *hp;
5154 err = skb_maybe_pull_tail(skb,
5156 sizeof(struct ipv6_opt_hdr),
5161 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
5162 nexthdr = hp->nexthdr;
5163 off += ipv6_optlen(hp);
5167 struct ip_auth_hdr *hp;
5169 err = skb_maybe_pull_tail(skb,
5171 sizeof(struct ip_auth_hdr),
5176 hp = OPT_HDR(struct ip_auth_hdr, skb, off);
5177 nexthdr = hp->nexthdr;
5178 off += ipv6_authlen(hp);
5181 case IPPROTO_FRAGMENT: {
5182 struct frag_hdr *hp;
5184 err = skb_maybe_pull_tail(skb,
5186 sizeof(struct frag_hdr),
5191 hp = OPT_HDR(struct frag_hdr, skb, off);
5193 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
5196 nexthdr = hp->nexthdr;
5197 off += sizeof(struct frag_hdr);
5208 if (!done || fragment)
5211 csum = skb_checksum_setup_ip(skb, nexthdr, off);
5213 return PTR_ERR(csum);
5216 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5217 &ipv6_hdr(skb)->daddr,
5218 skb->len - off, nexthdr, 0);
5226 * skb_checksum_setup - set up partial checksum offset
5227 * @skb: the skb to set up
5228 * @recalculate: if true the pseudo-header checksum will be recalculated
5230 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
5234 switch (skb->protocol) {
5235 case htons(ETH_P_IP):
5236 err = skb_checksum_setup_ipv4(skb, recalculate);
5239 case htons(ETH_P_IPV6):
5240 err = skb_checksum_setup_ipv6(skb, recalculate);
5250 EXPORT_SYMBOL(skb_checksum_setup);
5253 * skb_checksum_maybe_trim - maybe trims the given skb
5254 * @skb: the skb to check
5255 * @transport_len: the data length beyond the network header
5257 * Checks whether the given skb has data beyond the given transport length.
5258 * If so, returns a cloned skb trimmed to this transport length.
5259 * Otherwise returns the provided skb. Returns NULL in error cases
5260 * (e.g. transport_len exceeds skb length or out-of-memory).
5262 * Caller needs to set the skb transport header and free any returned skb if it
5263 * differs from the provided skb.
5265 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5266 unsigned int transport_len)
5268 struct sk_buff *skb_chk;
5269 unsigned int len = skb_transport_offset(skb) + transport_len;
5274 else if (skb->len == len)
5277 skb_chk = skb_clone(skb, GFP_ATOMIC);
5281 ret = pskb_trim_rcsum(skb_chk, len);
5291 * skb_checksum_trimmed - validate checksum of an skb
5292 * @skb: the skb to check
5293 * @transport_len: the data length beyond the network header
5294 * @skb_chkf: checksum function to use
5296 * Applies the given checksum function skb_chkf to the provided skb.
5297 * Returns a checked and maybe trimmed skb. Returns NULL on error.
5299 * If the skb has data beyond the given transport length, then a
5300 * trimmed & cloned skb is checked and returned.
5302 * Caller needs to set the skb transport header and free any returned skb if it
5303 * differs from the provided skb.
5305 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5306 unsigned int transport_len,
5307 __sum16(*skb_chkf)(struct sk_buff *skb))
5309 struct sk_buff *skb_chk;
5310 unsigned int offset = skb_transport_offset(skb);
5313 skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5317 if (!pskb_may_pull(skb_chk, offset))
5320 skb_pull_rcsum(skb_chk, offset);
5321 ret = skb_chkf(skb_chk);
5322 skb_push_rcsum(skb_chk, offset);
5330 if (skb_chk && skb_chk != skb)
5336 EXPORT_SYMBOL(skb_checksum_trimmed);
5338 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5340 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5343 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5345 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5348 skb_release_head_state(skb);
5349 kmem_cache_free(skbuff_head_cache, skb);
5354 EXPORT_SYMBOL(kfree_skb_partial);
5357 * skb_try_coalesce - try to merge skb to prior one
5359 * @from: buffer to add
5360 * @fragstolen: pointer to boolean
5361 * @delta_truesize: how much more was allocated than was requested
5363 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5364 bool *fragstolen, int *delta_truesize)
5366 struct skb_shared_info *to_shinfo, *from_shinfo;
5367 int i, delta, len = from->len;
5369 *fragstolen = false;
5374 /* The page pool signature of struct page will eventually figure out
5375 * which pages can be recycled or not but for now let's prohibit slab
5376 * allocated and page_pool allocated SKBs from being coalesced.
5378 if (to->pp_recycle != from->pp_recycle)
5381 if (len <= skb_tailroom(to)) {
5383 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5384 *delta_truesize = 0;
5388 to_shinfo = skb_shinfo(to);
5389 from_shinfo = skb_shinfo(from);
5390 if (to_shinfo->frag_list || from_shinfo->frag_list)
5392 if (skb_zcopy(to) || skb_zcopy(from))
5395 if (skb_headlen(from) != 0) {
5397 unsigned int offset;
5399 if (to_shinfo->nr_frags +
5400 from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5403 if (skb_head_is_locked(from))
5406 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5408 page = virt_to_head_page(from->head);
5409 offset = from->data - (unsigned char *)page_address(page);
5411 skb_fill_page_desc(to, to_shinfo->nr_frags,
5412 page, offset, skb_headlen(from));
5415 if (to_shinfo->nr_frags +
5416 from_shinfo->nr_frags > MAX_SKB_FRAGS)
5419 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5422 WARN_ON_ONCE(delta < len);
5424 memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5426 from_shinfo->nr_frags * sizeof(skb_frag_t));
5427 to_shinfo->nr_frags += from_shinfo->nr_frags;
5429 if (!skb_cloned(from))
5430 from_shinfo->nr_frags = 0;
5432 /* if the skb is not cloned this does nothing
5433 * since we set nr_frags to 0.
5435 for (i = 0; i < from_shinfo->nr_frags; i++)
5436 __skb_frag_ref(&from_shinfo->frags[i]);
5438 to->truesize += delta;
5440 to->data_len += len;
5442 *delta_truesize = delta;
5445 EXPORT_SYMBOL(skb_try_coalesce);
5448 * skb_scrub_packet - scrub an skb
5450 * @skb: buffer to clean
5451 * @xnet: packet is crossing netns
5453 * skb_scrub_packet can be used after encapsulating or decapsulting a packet
5454 * into/from a tunnel. Some information have to be cleared during these
5456 * skb_scrub_packet can also be used to clean a skb before injecting it in
5457 * another namespace (@xnet == true). We have to clear all information in the
5458 * skb that could impact namespace isolation.
5460 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
5462 skb->pkt_type = PACKET_HOST;
5468 nf_reset_trace(skb);
5470 #ifdef CONFIG_NET_SWITCHDEV
5471 skb->offload_fwd_mark = 0;
5472 skb->offload_l3_fwd_mark = 0;
5482 EXPORT_SYMBOL_GPL(skb_scrub_packet);
5485 * skb_gso_transport_seglen - Return length of individual segments of a gso packet
5489 * skb_gso_transport_seglen is used to determine the real size of the
5490 * individual segments, including Layer4 headers (TCP/UDP).
5492 * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
5494 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
5496 const struct skb_shared_info *shinfo = skb_shinfo(skb);
5497 unsigned int thlen = 0;
5499 if (skb->encapsulation) {
5500 thlen = skb_inner_transport_header(skb) -
5501 skb_transport_header(skb);
5503 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
5504 thlen += inner_tcp_hdrlen(skb);
5505 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
5506 thlen = tcp_hdrlen(skb);
5507 } else if (unlikely(skb_is_gso_sctp(skb))) {
5508 thlen = sizeof(struct sctphdr);
5509 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
5510 thlen = sizeof(struct udphdr);
5512 /* UFO sets gso_size to the size of the fragmentation
5513 * payload, i.e. the size of the L4 (UDP) header is already
5516 return thlen + shinfo->gso_size;
5520 * skb_gso_network_seglen - Return length of individual segments of a gso packet
5524 * skb_gso_network_seglen is used to determine the real size of the
5525 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
5527 * The MAC/L2 header is not accounted for.
5529 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
5531 unsigned int hdr_len = skb_transport_header(skb) -
5532 skb_network_header(skb);
5534 return hdr_len + skb_gso_transport_seglen(skb);
5538 * skb_gso_mac_seglen - Return length of individual segments of a gso packet
5542 * skb_gso_mac_seglen is used to determine the real size of the
5543 * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
5544 * headers (TCP/UDP).
5546 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
5548 unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
5550 return hdr_len + skb_gso_transport_seglen(skb);
5554 * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS
5556 * There are a couple of instances where we have a GSO skb, and we
5557 * want to determine what size it would be after it is segmented.
5559 * We might want to check:
5560 * - L3+L4+payload size (e.g. IP forwarding)
5561 * - L2+L3+L4+payload size (e.g. sanity check before passing to driver)
5563 * This is a helper to do that correctly considering GSO_BY_FRAGS.
5567 * @seg_len: The segmented length (from skb_gso_*_seglen). In the
5568 * GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS].
5570 * @max_len: The maximum permissible length.
5572 * Returns true if the segmented length <= max length.
5574 static inline bool skb_gso_size_check(const struct sk_buff *skb,
5575 unsigned int seg_len,
5576 unsigned int max_len) {
5577 const struct skb_shared_info *shinfo = skb_shinfo(skb);
5578 const struct sk_buff *iter;
5580 if (shinfo->gso_size != GSO_BY_FRAGS)
5581 return seg_len <= max_len;
5583 /* Undo this so we can re-use header sizes */
5584 seg_len -= GSO_BY_FRAGS;
5586 skb_walk_frags(skb, iter) {
5587 if (seg_len + skb_headlen(iter) > max_len)
5595 * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU?
5598 * @mtu: MTU to validate against
5600 * skb_gso_validate_network_len validates if a given skb will fit a
5601 * wanted MTU once split. It considers L3 headers, L4 headers, and the
5604 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu)
5606 return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu);
5608 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len);
5611 * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length?
5614 * @len: length to validate against
5616 * skb_gso_validate_mac_len validates if a given skb will fit a wanted
5617 * length once split, including L2, L3 and L4 headers and the payload.
5619 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len)
5621 return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len);
5623 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len);
5625 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5627 int mac_len, meta_len;
5630 if (skb_cow(skb, skb_headroom(skb)) < 0) {
5635 mac_len = skb->data - skb_mac_header(skb);
5636 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5637 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5638 mac_len - VLAN_HLEN - ETH_TLEN);
5641 meta_len = skb_metadata_len(skb);
5643 meta = skb_metadata_end(skb) - meta_len;
5644 memmove(meta + VLAN_HLEN, meta, meta_len);
5647 skb->mac_header += VLAN_HLEN;
5651 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5653 struct vlan_hdr *vhdr;
5656 if (unlikely(skb_vlan_tag_present(skb))) {
5657 /* vlan_tci is already set-up so leave this for another time */
5661 skb = skb_share_check(skb, GFP_ATOMIC);
5664 /* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
5665 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
5668 vhdr = (struct vlan_hdr *)skb->data;
5669 vlan_tci = ntohs(vhdr->h_vlan_TCI);
5670 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5672 skb_pull_rcsum(skb, VLAN_HLEN);
5673 vlan_set_encap_proto(skb, vhdr);
5675 skb = skb_reorder_vlan_header(skb);
5679 skb_reset_network_header(skb);
5680 if (!skb_transport_header_was_set(skb))
5681 skb_reset_transport_header(skb);
5682 skb_reset_mac_len(skb);
5690 EXPORT_SYMBOL(skb_vlan_untag);
5692 int skb_ensure_writable(struct sk_buff *skb, int write_len)
5694 if (!pskb_may_pull(skb, write_len))
5697 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5700 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5702 EXPORT_SYMBOL(skb_ensure_writable);
5704 /* remove VLAN header from packet and update csum accordingly.
5705 * expects a non skb_vlan_tag_present skb with a vlan tag payload
5707 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5709 struct vlan_hdr *vhdr;
5710 int offset = skb->data - skb_mac_header(skb);
5713 if (WARN_ONCE(offset,
5714 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5719 err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5723 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5725 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5726 *vlan_tci = ntohs(vhdr->h_vlan_TCI);
5728 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5729 __skb_pull(skb, VLAN_HLEN);
5731 vlan_set_encap_proto(skb, vhdr);
5732 skb->mac_header += VLAN_HLEN;
5734 if (skb_network_offset(skb) < ETH_HLEN)
5735 skb_set_network_header(skb, ETH_HLEN);
5737 skb_reset_mac_len(skb);
5741 EXPORT_SYMBOL(__skb_vlan_pop);
5743 /* Pop a vlan tag either from hwaccel or from payload.
5744 * Expects skb->data at mac header.
5746 int skb_vlan_pop(struct sk_buff *skb)
5752 if (likely(skb_vlan_tag_present(skb))) {
5753 __vlan_hwaccel_clear_tag(skb);
5755 if (unlikely(!eth_type_vlan(skb->protocol)))
5758 err = __skb_vlan_pop(skb, &vlan_tci);
5762 /* move next vlan tag to hw accel tag */
5763 if (likely(!eth_type_vlan(skb->protocol)))
5766 vlan_proto = skb->protocol;
5767 err = __skb_vlan_pop(skb, &vlan_tci);
5771 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5774 EXPORT_SYMBOL(skb_vlan_pop);
5776 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5777 * Expects skb->data at mac header.
5779 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5781 if (skb_vlan_tag_present(skb)) {
5782 int offset = skb->data - skb_mac_header(skb);
5785 if (WARN_ONCE(offset,
5786 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5791 err = __vlan_insert_tag(skb, skb->vlan_proto,
5792 skb_vlan_tag_get(skb));
5796 skb->protocol = skb->vlan_proto;
5797 skb->mac_len += VLAN_HLEN;
5799 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5801 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5804 EXPORT_SYMBOL(skb_vlan_push);
5807 * skb_eth_pop() - Drop the Ethernet header at the head of a packet
5809 * @skb: Socket buffer to modify
5811 * Drop the Ethernet header of @skb.
5813 * Expects that skb->data points to the mac header and that no VLAN tags are
5816 * Returns 0 on success, -errno otherwise.
5818 int skb_eth_pop(struct sk_buff *skb)
5820 if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) ||
5821 skb_network_offset(skb) < ETH_HLEN)
5824 skb_pull_rcsum(skb, ETH_HLEN);
5825 skb_reset_mac_header(skb);
5826 skb_reset_mac_len(skb);
5830 EXPORT_SYMBOL(skb_eth_pop);
5833 * skb_eth_push() - Add a new Ethernet header at the head of a packet
5835 * @skb: Socket buffer to modify
5836 * @dst: Destination MAC address of the new header
5837 * @src: Source MAC address of the new header
5839 * Prepend @skb with a new Ethernet header.
5841 * Expects that skb->data points to the mac header, which must be empty.
5843 * Returns 0 on success, -errno otherwise.
5845 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
5846 const unsigned char *src)
5851 if (skb_network_offset(skb) || skb_vlan_tag_present(skb))
5854 err = skb_cow_head(skb, sizeof(*eth));
5858 skb_push(skb, sizeof(*eth));
5859 skb_reset_mac_header(skb);
5860 skb_reset_mac_len(skb);
5863 ether_addr_copy(eth->h_dest, dst);
5864 ether_addr_copy(eth->h_source, src);
5865 eth->h_proto = skb->protocol;
5867 skb_postpush_rcsum(skb, eth, sizeof(*eth));
5871 EXPORT_SYMBOL(skb_eth_push);
5873 /* Update the ethertype of hdr and the skb csum value if required. */
5874 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
5877 if (skb->ip_summed == CHECKSUM_COMPLETE) {
5878 __be16 diff[] = { ~hdr->h_proto, ethertype };
5880 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5883 hdr->h_proto = ethertype;
5887 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
5891 * @mpls_lse: MPLS label stack entry to push
5892 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
5893 * @mac_len: length of the MAC header
5894 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
5897 * Expects skb->data at mac header.
5899 * Returns 0 on success, -errno otherwise.
5901 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
5902 int mac_len, bool ethernet)
5904 struct mpls_shim_hdr *lse;
5907 if (unlikely(!eth_p_mpls(mpls_proto)))
5910 /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
5911 if (skb->encapsulation)
5914 err = skb_cow_head(skb, MPLS_HLEN);
5918 if (!skb->inner_protocol) {
5919 skb_set_inner_network_header(skb, skb_network_offset(skb));
5920 skb_set_inner_protocol(skb, skb->protocol);
5923 skb_push(skb, MPLS_HLEN);
5924 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
5926 skb_reset_mac_header(skb);
5927 skb_set_network_header(skb, mac_len);
5928 skb_reset_mac_len(skb);
5930 lse = mpls_hdr(skb);
5931 lse->label_stack_entry = mpls_lse;
5932 skb_postpush_rcsum(skb, lse, MPLS_HLEN);
5934 if (ethernet && mac_len >= ETH_HLEN)
5935 skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
5936 skb->protocol = mpls_proto;
5940 EXPORT_SYMBOL_GPL(skb_mpls_push);
5943 * skb_mpls_pop() - pop the outermost MPLS header
5946 * @next_proto: ethertype of header after popped MPLS header
5947 * @mac_len: length of the MAC header
5948 * @ethernet: flag to indicate if the packet is ethernet
5950 * Expects skb->data at mac header.
5952 * Returns 0 on success, -errno otherwise.
5954 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
5959 if (unlikely(!eth_p_mpls(skb->protocol)))
5962 err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
5966 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
5967 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
5970 __skb_pull(skb, MPLS_HLEN);
5971 skb_reset_mac_header(skb);
5972 skb_set_network_header(skb, mac_len);
5974 if (ethernet && mac_len >= ETH_HLEN) {
5977 /* use mpls_hdr() to get ethertype to account for VLANs. */
5978 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
5979 skb_mod_eth_type(skb, hdr, next_proto);
5981 skb->protocol = next_proto;
5985 EXPORT_SYMBOL_GPL(skb_mpls_pop);
5988 * skb_mpls_update_lse() - modify outermost MPLS header and update csum
5991 * @mpls_lse: new MPLS label stack entry to update to
5993 * Expects skb->data at mac header.
5995 * Returns 0 on success, -errno otherwise.
5997 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
6001 if (unlikely(!eth_p_mpls(skb->protocol)))
6004 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
6008 if (skb->ip_summed == CHECKSUM_COMPLETE) {
6009 __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
6011 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6014 mpls_hdr(skb)->label_stack_entry = mpls_lse;
6018 EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
6021 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
6025 * Expects skb->data at mac header.
6027 * Returns 0 on success, -errno otherwise.
6029 int skb_mpls_dec_ttl(struct sk_buff *skb)
6034 if (unlikely(!eth_p_mpls(skb->protocol)))
6037 if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
6040 lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
6041 ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
6045 lse &= ~MPLS_LS_TTL_MASK;
6046 lse |= ttl << MPLS_LS_TTL_SHIFT;
6048 return skb_mpls_update_lse(skb, cpu_to_be32(lse));
6050 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
6053 * alloc_skb_with_frags - allocate skb with page frags
6055 * @header_len: size of linear part
6056 * @data_len: needed length in frags
6057 * @max_page_order: max page order desired.
6058 * @errcode: pointer to error code if any
6059 * @gfp_mask: allocation mask
6061 * This can be used to allocate a paged skb, given a maximal order for frags.
6063 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
6064 unsigned long data_len,
6069 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
6070 unsigned long chunk;
6071 struct sk_buff *skb;
6075 *errcode = -EMSGSIZE;
6076 /* Note this test could be relaxed, if we succeed to allocate
6077 * high order pages...
6079 if (npages > MAX_SKB_FRAGS)
6082 *errcode = -ENOBUFS;
6083 skb = alloc_skb(header_len, gfp_mask);
6087 skb->truesize += npages << PAGE_SHIFT;
6089 for (i = 0; npages > 0; i++) {
6090 int order = max_page_order;
6093 if (npages >= 1 << order) {
6094 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
6100 /* Do not retry other high order allocations */
6106 page = alloc_page(gfp_mask);
6110 chunk = min_t(unsigned long, data_len,
6111 PAGE_SIZE << order);
6112 skb_fill_page_desc(skb, i, page, 0, chunk);
6114 npages -= 1 << order;
6122 EXPORT_SYMBOL(alloc_skb_with_frags);
6124 /* carve out the first off bytes from skb when off < headlen */
6125 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
6126 const int headlen, gfp_t gfp_mask)
6129 int size = skb_end_offset(skb);
6130 int new_hlen = headlen - off;
6133 size = SKB_DATA_ALIGN(size);
6135 if (skb_pfmemalloc(skb))
6136 gfp_mask |= __GFP_MEMALLOC;
6137 data = kmalloc_reserve(size +
6138 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
6139 gfp_mask, NUMA_NO_NODE, NULL);
6143 size = SKB_WITH_OVERHEAD(ksize(data));
6145 /* Copy real data, and all frags */
6146 skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
6149 memcpy((struct skb_shared_info *)(data + size),
6151 offsetof(struct skb_shared_info,
6152 frags[skb_shinfo(skb)->nr_frags]));
6153 if (skb_cloned(skb)) {
6154 /* drop the old head gracefully */
6155 if (skb_orphan_frags(skb, gfp_mask)) {
6159 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
6160 skb_frag_ref(skb, i);
6161 if (skb_has_frag_list(skb))
6162 skb_clone_fraglist(skb);
6163 skb_release_data(skb);
6165 /* we can reuse existing recount- all we did was
6174 #ifdef NET_SKBUFF_DATA_USES_OFFSET
6177 skb->end = skb->head + size;
6179 skb_set_tail_pointer(skb, skb_headlen(skb));
6180 skb_headers_offset_update(skb, 0);
6184 atomic_set(&skb_shinfo(skb)->dataref, 1);
6189 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
6191 /* carve out the first eat bytes from skb's frag_list. May recurse into
6194 static int pskb_carve_frag_list(struct sk_buff *skb,
6195 struct skb_shared_info *shinfo, int eat,
6198 struct sk_buff *list = shinfo->frag_list;
6199 struct sk_buff *clone = NULL;
6200 struct sk_buff *insp = NULL;
6204 pr_err("Not enough bytes to eat. Want %d\n", eat);
6207 if (list->len <= eat) {
6208 /* Eaten as whole. */
6213 /* Eaten partially. */
6214 if (skb_shared(list)) {
6215 clone = skb_clone(list, gfp_mask);
6221 /* This may be pulled without problems. */
6224 if (pskb_carve(list, eat, gfp_mask) < 0) {
6232 /* Free pulled out fragments. */
6233 while ((list = shinfo->frag_list) != insp) {
6234 shinfo->frag_list = list->next;
6237 /* And insert new clone at head. */
6240 shinfo->frag_list = clone;
6245 /* carve off first len bytes from skb. Split line (off) is in the
6246 * non-linear part of skb
6248 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
6249 int pos, gfp_t gfp_mask)
6252 int size = skb_end_offset(skb);
6254 const int nfrags = skb_shinfo(skb)->nr_frags;
6255 struct skb_shared_info *shinfo;
6257 size = SKB_DATA_ALIGN(size);
6259 if (skb_pfmemalloc(skb))
6260 gfp_mask |= __GFP_MEMALLOC;
6261 data = kmalloc_reserve(size +
6262 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
6263 gfp_mask, NUMA_NO_NODE, NULL);
6267 size = SKB_WITH_OVERHEAD(ksize(data));
6269 memcpy((struct skb_shared_info *)(data + size),
6270 skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
6271 if (skb_orphan_frags(skb, gfp_mask)) {
6275 shinfo = (struct skb_shared_info *)(data + size);
6276 for (i = 0; i < nfrags; i++) {
6277 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6279 if (pos + fsize > off) {
6280 shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6284 * We have two variants in this case:
6285 * 1. Move all the frag to the second
6286 * part, if it is possible. F.e.
6287 * this approach is mandatory for TUX,
6288 * where splitting is expensive.
6289 * 2. Split is accurately. We make this.
6291 skb_frag_off_add(&shinfo->frags[0], off - pos);
6292 skb_frag_size_sub(&shinfo->frags[0], off - pos);
6294 skb_frag_ref(skb, i);
6299 shinfo->nr_frags = k;
6300 if (skb_has_frag_list(skb))
6301 skb_clone_fraglist(skb);
6303 /* split line is in frag list */
6304 if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
6305 /* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6306 if (skb_has_frag_list(skb))
6307 kfree_skb_list(skb_shinfo(skb)->frag_list);
6311 skb_release_data(skb);
6316 #ifdef NET_SKBUFF_DATA_USES_OFFSET
6319 skb->end = skb->head + size;
6321 skb_reset_tail_pointer(skb);
6322 skb_headers_offset_update(skb, 0);
6327 skb->data_len = skb->len;
6328 atomic_set(&skb_shinfo(skb)->dataref, 1);
6332 /* remove len bytes from the beginning of the skb */
6333 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6335 int headlen = skb_headlen(skb);
6338 return pskb_carve_inside_header(skb, len, headlen, gfp);
6340 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6343 /* Extract to_copy bytes starting at off from skb, and return this in
6346 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6347 int to_copy, gfp_t gfp)
6349 struct sk_buff *clone = skb_clone(skb, gfp);
6354 if (pskb_carve(clone, off, gfp) < 0 ||
6355 pskb_trim(clone, to_copy)) {
6361 EXPORT_SYMBOL(pskb_extract);
6364 * skb_condense - try to get rid of fragments/frag_list if possible
6367 * Can be used to save memory before skb is added to a busy queue.
6368 * If packet has bytes in frags and enough tail room in skb->head,
6369 * pull all of them, so that we can free the frags right now and adjust
6372 * We do not reallocate skb->head thus can not fail.
6373 * Caller must re-evaluate skb->truesize if needed.
6375 void skb_condense(struct sk_buff *skb)
6377 if (skb->data_len) {
6378 if (skb->data_len > skb->end - skb->tail ||
6382 /* Nice, we can free page frag(s) right now */
6383 __pskb_pull_tail(skb, skb->data_len);
6385 /* At this point, skb->truesize might be over estimated,
6386 * because skb had a fragment, and fragments do not tell
6388 * When we pulled its content into skb->head, fragment
6389 * was freed, but __pskb_pull_tail() could not possibly
6390 * adjust skb->truesize, not knowing the frag truesize.
6392 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6395 #ifdef CONFIG_SKB_EXTENSIONS
6396 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6398 return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6402 * __skb_ext_alloc - allocate a new skb extensions storage
6404 * @flags: See kmalloc().
6406 * Returns the newly allocated pointer. The pointer can later attached to a
6407 * skb via __skb_ext_set().
6408 * Note: caller must handle the skb_ext as an opaque data.
6410 struct skb_ext *__skb_ext_alloc(gfp_t flags)
6412 struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6415 memset(new->offset, 0, sizeof(new->offset));
6416 refcount_set(&new->refcnt, 1);
6422 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6423 unsigned int old_active)
6425 struct skb_ext *new;
6427 if (refcount_read(&old->refcnt) == 1)
6430 new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6434 memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6435 refcount_set(&new->refcnt, 1);
6438 if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6439 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6442 for (i = 0; i < sp->len; i++)
6443 xfrm_state_hold(sp->xvec[i]);
6451 * __skb_ext_set - attach the specified extension storage to this skb
6454 * @ext: extension storage previously allocated via __skb_ext_alloc()
6456 * Existing extensions, if any, are cleared.
6458 * Returns the pointer to the extension.
6460 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
6461 struct skb_ext *ext)
6463 unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
6466 newlen = newoff + skb_ext_type_len[id];
6467 ext->chunks = newlen;
6468 ext->offset[id] = newoff;
6469 skb->extensions = ext;
6470 skb->active_extensions = 1 << id;
6471 return skb_ext_get_ptr(ext, id);
6475 * skb_ext_add - allocate space for given extension, COW if needed
6477 * @id: extension to allocate space for
6479 * Allocates enough space for the given extension.
6480 * If the extension is already present, a pointer to that extension
6483 * If the skb was cloned, COW applies and the returned memory can be
6484 * modified without changing the extension space of clones buffers.
6486 * Returns pointer to the extension or NULL on allocation failure.
6488 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6490 struct skb_ext *new, *old = NULL;
6491 unsigned int newlen, newoff;
6493 if (skb->active_extensions) {
6494 old = skb->extensions;
6496 new = skb_ext_maybe_cow(old, skb->active_extensions);
6500 if (__skb_ext_exist(new, id))
6503 newoff = new->chunks;
6505 newoff = SKB_EXT_CHUNKSIZEOF(*new);
6507 new = __skb_ext_alloc(GFP_ATOMIC);
6512 newlen = newoff + skb_ext_type_len[id];
6513 new->chunks = newlen;
6514 new->offset[id] = newoff;
6517 skb->extensions = new;
6518 skb->active_extensions |= 1 << id;
6519 return skb_ext_get_ptr(new, id);
6521 EXPORT_SYMBOL(skb_ext_add);
6524 static void skb_ext_put_sp(struct sec_path *sp)
6528 for (i = 0; i < sp->len; i++)
6529 xfrm_state_put(sp->xvec[i]);
6533 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6535 struct skb_ext *ext = skb->extensions;
6537 skb->active_extensions &= ~(1 << id);
6538 if (skb->active_extensions == 0) {
6539 skb->extensions = NULL;
6542 } else if (id == SKB_EXT_SEC_PATH &&
6543 refcount_read(&ext->refcnt) == 1) {
6544 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6551 EXPORT_SYMBOL(__skb_ext_del);
6553 void __skb_ext_put(struct skb_ext *ext)
6555 /* If this is last clone, nothing can increment
6556 * it after check passes. Avoids one atomic op.
6558 if (refcount_read(&ext->refcnt) == 1)
6561 if (!refcount_dec_and_test(&ext->refcnt))
6565 if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
6566 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
6569 kmem_cache_free(skbuff_ext_cache, ext);
6571 EXPORT_SYMBOL(__skb_ext_put);
6572 #endif /* CONFIG_SKB_EXTENSIONS */