]> Git Repo - linux.git/blob - mm/mmap.c
vmstat: make vmstat_updater deferrable again and shut down on idle
[linux.git] / mm / mmap.c
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code        <[email protected]>
7  */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
14 #include <linux/mm.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/profile.h>
29 #include <linux/export.h>
30 #include <linux/mount.h>
31 #include <linux/mempolicy.h>
32 #include <linux/rmap.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/mmdebug.h>
35 #include <linux/perf_event.h>
36 #include <linux/audit.h>
37 #include <linux/khugepaged.h>
38 #include <linux/uprobes.h>
39 #include <linux/rbtree_augmented.h>
40 #include <linux/sched/sysctl.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45
46 #include <asm/uaccess.h>
47 #include <asm/cacheflush.h>
48 #include <asm/tlb.h>
49 #include <asm/mmu_context.h>
50
51 #include "internal.h"
52
53 #ifndef arch_mmap_check
54 #define arch_mmap_check(addr, len, flags)       (0)
55 #endif
56
57 #ifndef arch_rebalance_pgtables
58 #define arch_rebalance_pgtables(addr, len)              (addr)
59 #endif
60
61 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
62 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
63 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
64 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
65 #endif
66 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
67 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
68 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
69 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
70 #endif
71
72
73 static void unmap_region(struct mm_struct *mm,
74                 struct vm_area_struct *vma, struct vm_area_struct *prev,
75                 unsigned long start, unsigned long end);
76
77 /* description of effects of mapping type and prot in current implementation.
78  * this is due to the limited x86 page protection hardware.  The expected
79  * behavior is in parens:
80  *
81  * map_type     prot
82  *              PROT_NONE       PROT_READ       PROT_WRITE      PROT_EXEC
83  * MAP_SHARED   r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
84  *              w: (no) no      w: (no) no      w: (yes) yes    w: (no) no
85  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
86  *
87  * MAP_PRIVATE  r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
88  *              w: (no) no      w: (no) no      w: (copy) copy  w: (no) no
89  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
90  *
91  */
92 pgprot_t protection_map[16] = {
93         __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
94         __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
95 };
96
97 pgprot_t vm_get_page_prot(unsigned long vm_flags)
98 {
99         return __pgprot(pgprot_val(protection_map[vm_flags &
100                                 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
101                         pgprot_val(arch_vm_get_page_prot(vm_flags)));
102 }
103 EXPORT_SYMBOL(vm_get_page_prot);
104
105 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
106 {
107         return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
108 }
109
110 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
111 void vma_set_page_prot(struct vm_area_struct *vma)
112 {
113         unsigned long vm_flags = vma->vm_flags;
114
115         vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
116         if (vma_wants_writenotify(vma)) {
117                 vm_flags &= ~VM_SHARED;
118                 vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot,
119                                                      vm_flags);
120         }
121 }
122
123
124 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;  /* heuristic overcommit */
125 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */
126 unsigned long sysctl_overcommit_kbytes __read_mostly;
127 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
128 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
129 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
130 /*
131  * Make sure vm_committed_as in one cacheline and not cacheline shared with
132  * other variables. It can be updated by several CPUs frequently.
133  */
134 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
135
136 /*
137  * The global memory commitment made in the system can be a metric
138  * that can be used to drive ballooning decisions when Linux is hosted
139  * as a guest. On Hyper-V, the host implements a policy engine for dynamically
140  * balancing memory across competing virtual machines that are hosted.
141  * Several metrics drive this policy engine including the guest reported
142  * memory commitment.
143  */
144 unsigned long vm_memory_committed(void)
145 {
146         return percpu_counter_read_positive(&vm_committed_as);
147 }
148 EXPORT_SYMBOL_GPL(vm_memory_committed);
149
150 /*
151  * Check that a process has enough memory to allocate a new virtual
152  * mapping. 0 means there is enough memory for the allocation to
153  * succeed and -ENOMEM implies there is not.
154  *
155  * We currently support three overcommit policies, which are set via the
156  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
157  *
158  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
159  * Additional code 2002 Jul 20 by Robert Love.
160  *
161  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
162  *
163  * Note this is a helper function intended to be used by LSMs which
164  * wish to use this logic.
165  */
166 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
167 {
168         long free, allowed, reserve;
169
170         VM_WARN_ONCE(percpu_counter_read(&vm_committed_as) <
171                         -(s64)vm_committed_as_batch * num_online_cpus(),
172                         "memory commitment underflow");
173
174         vm_acct_memory(pages);
175
176         /*
177          * Sometimes we want to use more memory than we have
178          */
179         if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
180                 return 0;
181
182         if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
183                 free = global_page_state(NR_FREE_PAGES);
184                 free += global_page_state(NR_FILE_PAGES);
185
186                 /*
187                  * shmem pages shouldn't be counted as free in this
188                  * case, they can't be purged, only swapped out, and
189                  * that won't affect the overall amount of available
190                  * memory in the system.
191                  */
192                 free -= global_page_state(NR_SHMEM);
193
194                 free += get_nr_swap_pages();
195
196                 /*
197                  * Any slabs which are created with the
198                  * SLAB_RECLAIM_ACCOUNT flag claim to have contents
199                  * which are reclaimable, under pressure.  The dentry
200                  * cache and most inode caches should fall into this
201                  */
202                 free += global_page_state(NR_SLAB_RECLAIMABLE);
203
204                 /*
205                  * Leave reserved pages. The pages are not for anonymous pages.
206                  */
207                 if (free <= totalreserve_pages)
208                         goto error;
209                 else
210                         free -= totalreserve_pages;
211
212                 /*
213                  * Reserve some for root
214                  */
215                 if (!cap_sys_admin)
216                         free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
217
218                 if (free > pages)
219                         return 0;
220
221                 goto error;
222         }
223
224         allowed = vm_commit_limit();
225         /*
226          * Reserve some for root
227          */
228         if (!cap_sys_admin)
229                 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
230
231         /*
232          * Don't let a single process grow so big a user can't recover
233          */
234         if (mm) {
235                 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
236                 allowed -= min_t(long, mm->total_vm / 32, reserve);
237         }
238
239         if (percpu_counter_read_positive(&vm_committed_as) < allowed)
240                 return 0;
241 error:
242         vm_unacct_memory(pages);
243
244         return -ENOMEM;
245 }
246
247 /*
248  * Requires inode->i_mapping->i_mmap_rwsem
249  */
250 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
251                 struct file *file, struct address_space *mapping)
252 {
253         if (vma->vm_flags & VM_DENYWRITE)
254                 atomic_inc(&file_inode(file)->i_writecount);
255         if (vma->vm_flags & VM_SHARED)
256                 mapping_unmap_writable(mapping);
257
258         flush_dcache_mmap_lock(mapping);
259         vma_interval_tree_remove(vma, &mapping->i_mmap);
260         flush_dcache_mmap_unlock(mapping);
261 }
262
263 /*
264  * Unlink a file-based vm structure from its interval tree, to hide
265  * vma from rmap and vmtruncate before freeing its page tables.
266  */
267 void unlink_file_vma(struct vm_area_struct *vma)
268 {
269         struct file *file = vma->vm_file;
270
271         if (file) {
272                 struct address_space *mapping = file->f_mapping;
273                 i_mmap_lock_write(mapping);
274                 __remove_shared_vm_struct(vma, file, mapping);
275                 i_mmap_unlock_write(mapping);
276         }
277 }
278
279 /*
280  * Close a vm structure and free it, returning the next.
281  */
282 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
283 {
284         struct vm_area_struct *next = vma->vm_next;
285
286         might_sleep();
287         if (vma->vm_ops && vma->vm_ops->close)
288                 vma->vm_ops->close(vma);
289         if (vma->vm_file)
290                 fput(vma->vm_file);
291         mpol_put(vma_policy(vma));
292         kmem_cache_free(vm_area_cachep, vma);
293         return next;
294 }
295
296 static unsigned long do_brk(unsigned long addr, unsigned long len);
297
298 SYSCALL_DEFINE1(brk, unsigned long, brk)
299 {
300         unsigned long retval;
301         unsigned long newbrk, oldbrk;
302         struct mm_struct *mm = current->mm;
303         unsigned long min_brk;
304         bool populate;
305
306         down_write(&mm->mmap_sem);
307
308 #ifdef CONFIG_COMPAT_BRK
309         /*
310          * CONFIG_COMPAT_BRK can still be overridden by setting
311          * randomize_va_space to 2, which will still cause mm->start_brk
312          * to be arbitrarily shifted
313          */
314         if (current->brk_randomized)
315                 min_brk = mm->start_brk;
316         else
317                 min_brk = mm->end_data;
318 #else
319         min_brk = mm->start_brk;
320 #endif
321         if (brk < min_brk)
322                 goto out;
323
324         /*
325          * Check against rlimit here. If this check is done later after the test
326          * of oldbrk with newbrk then it can escape the test and let the data
327          * segment grow beyond its set limit the in case where the limit is
328          * not page aligned -Ram Gupta
329          */
330         if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
331                               mm->end_data, mm->start_data))
332                 goto out;
333
334         newbrk = PAGE_ALIGN(brk);
335         oldbrk = PAGE_ALIGN(mm->brk);
336         if (oldbrk == newbrk)
337                 goto set_brk;
338
339         /* Always allow shrinking brk. */
340         if (brk <= mm->brk) {
341                 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
342                         goto set_brk;
343                 goto out;
344         }
345
346         /* Check against existing mmap mappings. */
347         if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
348                 goto out;
349
350         /* Ok, looks good - let it rip. */
351         if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
352                 goto out;
353
354 set_brk:
355         mm->brk = brk;
356         populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
357         up_write(&mm->mmap_sem);
358         if (populate)
359                 mm_populate(oldbrk, newbrk - oldbrk);
360         return brk;
361
362 out:
363         retval = mm->brk;
364         up_write(&mm->mmap_sem);
365         return retval;
366 }
367
368 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
369 {
370         unsigned long max, subtree_gap;
371         max = vma->vm_start;
372         if (vma->vm_prev)
373                 max -= vma->vm_prev->vm_end;
374         if (vma->vm_rb.rb_left) {
375                 subtree_gap = rb_entry(vma->vm_rb.rb_left,
376                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
377                 if (subtree_gap > max)
378                         max = subtree_gap;
379         }
380         if (vma->vm_rb.rb_right) {
381                 subtree_gap = rb_entry(vma->vm_rb.rb_right,
382                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
383                 if (subtree_gap > max)
384                         max = subtree_gap;
385         }
386         return max;
387 }
388
389 #ifdef CONFIG_DEBUG_VM_RB
390 static int browse_rb(struct rb_root *root)
391 {
392         int i = 0, j, bug = 0;
393         struct rb_node *nd, *pn = NULL;
394         unsigned long prev = 0, pend = 0;
395
396         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
397                 struct vm_area_struct *vma;
398                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
399                 if (vma->vm_start < prev) {
400                         pr_emerg("vm_start %lx < prev %lx\n",
401                                   vma->vm_start, prev);
402                         bug = 1;
403                 }
404                 if (vma->vm_start < pend) {
405                         pr_emerg("vm_start %lx < pend %lx\n",
406                                   vma->vm_start, pend);
407                         bug = 1;
408                 }
409                 if (vma->vm_start > vma->vm_end) {
410                         pr_emerg("vm_start %lx > vm_end %lx\n",
411                                   vma->vm_start, vma->vm_end);
412                         bug = 1;
413                 }
414                 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
415                         pr_emerg("free gap %lx, correct %lx\n",
416                                vma->rb_subtree_gap,
417                                vma_compute_subtree_gap(vma));
418                         bug = 1;
419                 }
420                 i++;
421                 pn = nd;
422                 prev = vma->vm_start;
423                 pend = vma->vm_end;
424         }
425         j = 0;
426         for (nd = pn; nd; nd = rb_prev(nd))
427                 j++;
428         if (i != j) {
429                 pr_emerg("backwards %d, forwards %d\n", j, i);
430                 bug = 1;
431         }
432         return bug ? -1 : i;
433 }
434
435 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
436 {
437         struct rb_node *nd;
438
439         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
440                 struct vm_area_struct *vma;
441                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
442                 VM_BUG_ON_VMA(vma != ignore &&
443                         vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
444                         vma);
445         }
446 }
447
448 static void validate_mm(struct mm_struct *mm)
449 {
450         int bug = 0;
451         int i = 0;
452         unsigned long highest_address = 0;
453         struct vm_area_struct *vma = mm->mmap;
454
455         while (vma) {
456                 struct anon_vma_chain *avc;
457
458                 vma_lock_anon_vma(vma);
459                 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
460                         anon_vma_interval_tree_verify(avc);
461                 vma_unlock_anon_vma(vma);
462                 highest_address = vma->vm_end;
463                 vma = vma->vm_next;
464                 i++;
465         }
466         if (i != mm->map_count) {
467                 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
468                 bug = 1;
469         }
470         if (highest_address != mm->highest_vm_end) {
471                 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
472                           mm->highest_vm_end, highest_address);
473                 bug = 1;
474         }
475         i = browse_rb(&mm->mm_rb);
476         if (i != mm->map_count) {
477                 if (i != -1)
478                         pr_emerg("map_count %d rb %d\n", mm->map_count, i);
479                 bug = 1;
480         }
481         VM_BUG_ON_MM(bug, mm);
482 }
483 #else
484 #define validate_mm_rb(root, ignore) do { } while (0)
485 #define validate_mm(mm) do { } while (0)
486 #endif
487
488 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
489                      unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
490
491 /*
492  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
493  * vma->vm_prev->vm_end values changed, without modifying the vma's position
494  * in the rbtree.
495  */
496 static void vma_gap_update(struct vm_area_struct *vma)
497 {
498         /*
499          * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
500          * function that does exacltly what we want.
501          */
502         vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
503 }
504
505 static inline void vma_rb_insert(struct vm_area_struct *vma,
506                                  struct rb_root *root)
507 {
508         /* All rb_subtree_gap values must be consistent prior to insertion */
509         validate_mm_rb(root, NULL);
510
511         rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
512 }
513
514 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
515 {
516         /*
517          * All rb_subtree_gap values must be consistent prior to erase,
518          * with the possible exception of the vma being erased.
519          */
520         validate_mm_rb(root, vma);
521
522         /*
523          * Note rb_erase_augmented is a fairly large inline function,
524          * so make sure we instantiate it only once with our desired
525          * augmented rbtree callbacks.
526          */
527         rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
528 }
529
530 /*
531  * vma has some anon_vma assigned, and is already inserted on that
532  * anon_vma's interval trees.
533  *
534  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
535  * vma must be removed from the anon_vma's interval trees using
536  * anon_vma_interval_tree_pre_update_vma().
537  *
538  * After the update, the vma will be reinserted using
539  * anon_vma_interval_tree_post_update_vma().
540  *
541  * The entire update must be protected by exclusive mmap_sem and by
542  * the root anon_vma's mutex.
543  */
544 static inline void
545 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
546 {
547         struct anon_vma_chain *avc;
548
549         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
550                 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
551 }
552
553 static inline void
554 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
555 {
556         struct anon_vma_chain *avc;
557
558         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
559                 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
560 }
561
562 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
563                 unsigned long end, struct vm_area_struct **pprev,
564                 struct rb_node ***rb_link, struct rb_node **rb_parent)
565 {
566         struct rb_node **__rb_link, *__rb_parent, *rb_prev;
567
568         __rb_link = &mm->mm_rb.rb_node;
569         rb_prev = __rb_parent = NULL;
570
571         while (*__rb_link) {
572                 struct vm_area_struct *vma_tmp;
573
574                 __rb_parent = *__rb_link;
575                 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
576
577                 if (vma_tmp->vm_end > addr) {
578                         /* Fail if an existing vma overlaps the area */
579                         if (vma_tmp->vm_start < end)
580                                 return -ENOMEM;
581                         __rb_link = &__rb_parent->rb_left;
582                 } else {
583                         rb_prev = __rb_parent;
584                         __rb_link = &__rb_parent->rb_right;
585                 }
586         }
587
588         *pprev = NULL;
589         if (rb_prev)
590                 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
591         *rb_link = __rb_link;
592         *rb_parent = __rb_parent;
593         return 0;
594 }
595
596 static unsigned long count_vma_pages_range(struct mm_struct *mm,
597                 unsigned long addr, unsigned long end)
598 {
599         unsigned long nr_pages = 0;
600         struct vm_area_struct *vma;
601
602         /* Find first overlaping mapping */
603         vma = find_vma_intersection(mm, addr, end);
604         if (!vma)
605                 return 0;
606
607         nr_pages = (min(end, vma->vm_end) -
608                 max(addr, vma->vm_start)) >> PAGE_SHIFT;
609
610         /* Iterate over the rest of the overlaps */
611         for (vma = vma->vm_next; vma; vma = vma->vm_next) {
612                 unsigned long overlap_len;
613
614                 if (vma->vm_start > end)
615                         break;
616
617                 overlap_len = min(end, vma->vm_end) - vma->vm_start;
618                 nr_pages += overlap_len >> PAGE_SHIFT;
619         }
620
621         return nr_pages;
622 }
623
624 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
625                 struct rb_node **rb_link, struct rb_node *rb_parent)
626 {
627         /* Update tracking information for the gap following the new vma. */
628         if (vma->vm_next)
629                 vma_gap_update(vma->vm_next);
630         else
631                 mm->highest_vm_end = vma->vm_end;
632
633         /*
634          * vma->vm_prev wasn't known when we followed the rbtree to find the
635          * correct insertion point for that vma. As a result, we could not
636          * update the vma vm_rb parents rb_subtree_gap values on the way down.
637          * So, we first insert the vma with a zero rb_subtree_gap value
638          * (to be consistent with what we did on the way down), and then
639          * immediately update the gap to the correct value. Finally we
640          * rebalance the rbtree after all augmented values have been set.
641          */
642         rb_link_node(&vma->vm_rb, rb_parent, rb_link);
643         vma->rb_subtree_gap = 0;
644         vma_gap_update(vma);
645         vma_rb_insert(vma, &mm->mm_rb);
646 }
647
648 static void __vma_link_file(struct vm_area_struct *vma)
649 {
650         struct file *file;
651
652         file = vma->vm_file;
653         if (file) {
654                 struct address_space *mapping = file->f_mapping;
655
656                 if (vma->vm_flags & VM_DENYWRITE)
657                         atomic_dec(&file_inode(file)->i_writecount);
658                 if (vma->vm_flags & VM_SHARED)
659                         atomic_inc(&mapping->i_mmap_writable);
660
661                 flush_dcache_mmap_lock(mapping);
662                 vma_interval_tree_insert(vma, &mapping->i_mmap);
663                 flush_dcache_mmap_unlock(mapping);
664         }
665 }
666
667 static void
668 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
669         struct vm_area_struct *prev, struct rb_node **rb_link,
670         struct rb_node *rb_parent)
671 {
672         __vma_link_list(mm, vma, prev, rb_parent);
673         __vma_link_rb(mm, vma, rb_link, rb_parent);
674 }
675
676 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
677                         struct vm_area_struct *prev, struct rb_node **rb_link,
678                         struct rb_node *rb_parent)
679 {
680         struct address_space *mapping = NULL;
681
682         if (vma->vm_file) {
683                 mapping = vma->vm_file->f_mapping;
684                 i_mmap_lock_write(mapping);
685         }
686
687         __vma_link(mm, vma, prev, rb_link, rb_parent);
688         __vma_link_file(vma);
689
690         if (mapping)
691                 i_mmap_unlock_write(mapping);
692
693         mm->map_count++;
694         validate_mm(mm);
695 }
696
697 /*
698  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
699  * mm's list and rbtree.  It has already been inserted into the interval tree.
700  */
701 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
702 {
703         struct vm_area_struct *prev;
704         struct rb_node **rb_link, *rb_parent;
705
706         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
707                            &prev, &rb_link, &rb_parent))
708                 BUG();
709         __vma_link(mm, vma, prev, rb_link, rb_parent);
710         mm->map_count++;
711 }
712
713 static inline void
714 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
715                 struct vm_area_struct *prev)
716 {
717         struct vm_area_struct *next;
718
719         vma_rb_erase(vma, &mm->mm_rb);
720         prev->vm_next = next = vma->vm_next;
721         if (next)
722                 next->vm_prev = prev;
723
724         /* Kill the cache */
725         vmacache_invalidate(mm);
726 }
727
728 /*
729  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
730  * is already present in an i_mmap tree without adjusting the tree.
731  * The following helper function should be used when such adjustments
732  * are necessary.  The "insert" vma (if any) is to be inserted
733  * before we drop the necessary locks.
734  */
735 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
736         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
737 {
738         struct mm_struct *mm = vma->vm_mm;
739         struct vm_area_struct *next = vma->vm_next;
740         struct vm_area_struct *importer = NULL;
741         struct address_space *mapping = NULL;
742         struct rb_root *root = NULL;
743         struct anon_vma *anon_vma = NULL;
744         struct file *file = vma->vm_file;
745         bool start_changed = false, end_changed = false;
746         long adjust_next = 0;
747         int remove_next = 0;
748
749         if (next && !insert) {
750                 struct vm_area_struct *exporter = NULL;
751
752                 if (end >= next->vm_end) {
753                         /*
754                          * vma expands, overlapping all the next, and
755                          * perhaps the one after too (mprotect case 6).
756                          */
757 again:                  remove_next = 1 + (end > next->vm_end);
758                         end = next->vm_end;
759                         exporter = next;
760                         importer = vma;
761                 } else if (end > next->vm_start) {
762                         /*
763                          * vma expands, overlapping part of the next:
764                          * mprotect case 5 shifting the boundary up.
765                          */
766                         adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
767                         exporter = next;
768                         importer = vma;
769                 } else if (end < vma->vm_end) {
770                         /*
771                          * vma shrinks, and !insert tells it's not
772                          * split_vma inserting another: so it must be
773                          * mprotect case 4 shifting the boundary down.
774                          */
775                         adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
776                         exporter = vma;
777                         importer = next;
778                 }
779
780                 /*
781                  * Easily overlooked: when mprotect shifts the boundary,
782                  * make sure the expanding vma has anon_vma set if the
783                  * shrinking vma had, to cover any anon pages imported.
784                  */
785                 if (exporter && exporter->anon_vma && !importer->anon_vma) {
786                         int error;
787
788                         importer->anon_vma = exporter->anon_vma;
789                         error = anon_vma_clone(importer, exporter);
790                         if (error)
791                                 return error;
792                 }
793         }
794
795         if (file) {
796                 mapping = file->f_mapping;
797                 root = &mapping->i_mmap;
798                 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
799
800                 if (adjust_next)
801                         uprobe_munmap(next, next->vm_start, next->vm_end);
802
803                 i_mmap_lock_write(mapping);
804                 if (insert) {
805                         /*
806                          * Put into interval tree now, so instantiated pages
807                          * are visible to arm/parisc __flush_dcache_page
808                          * throughout; but we cannot insert into address
809                          * space until vma start or end is updated.
810                          */
811                         __vma_link_file(insert);
812                 }
813         }
814
815         vma_adjust_trans_huge(vma, start, end, adjust_next);
816
817         anon_vma = vma->anon_vma;
818         if (!anon_vma && adjust_next)
819                 anon_vma = next->anon_vma;
820         if (anon_vma) {
821                 VM_BUG_ON_VMA(adjust_next && next->anon_vma &&
822                           anon_vma != next->anon_vma, next);
823                 anon_vma_lock_write(anon_vma);
824                 anon_vma_interval_tree_pre_update_vma(vma);
825                 if (adjust_next)
826                         anon_vma_interval_tree_pre_update_vma(next);
827         }
828
829         if (root) {
830                 flush_dcache_mmap_lock(mapping);
831                 vma_interval_tree_remove(vma, root);
832                 if (adjust_next)
833                         vma_interval_tree_remove(next, root);
834         }
835
836         if (start != vma->vm_start) {
837                 vma->vm_start = start;
838                 start_changed = true;
839         }
840         if (end != vma->vm_end) {
841                 vma->vm_end = end;
842                 end_changed = true;
843         }
844         vma->vm_pgoff = pgoff;
845         if (adjust_next) {
846                 next->vm_start += adjust_next << PAGE_SHIFT;
847                 next->vm_pgoff += adjust_next;
848         }
849
850         if (root) {
851                 if (adjust_next)
852                         vma_interval_tree_insert(next, root);
853                 vma_interval_tree_insert(vma, root);
854                 flush_dcache_mmap_unlock(mapping);
855         }
856
857         if (remove_next) {
858                 /*
859                  * vma_merge has merged next into vma, and needs
860                  * us to remove next before dropping the locks.
861                  */
862                 __vma_unlink(mm, next, vma);
863                 if (file)
864                         __remove_shared_vm_struct(next, file, mapping);
865         } else if (insert) {
866                 /*
867                  * split_vma has split insert from vma, and needs
868                  * us to insert it before dropping the locks
869                  * (it may either follow vma or precede it).
870                  */
871                 __insert_vm_struct(mm, insert);
872         } else {
873                 if (start_changed)
874                         vma_gap_update(vma);
875                 if (end_changed) {
876                         if (!next)
877                                 mm->highest_vm_end = end;
878                         else if (!adjust_next)
879                                 vma_gap_update(next);
880                 }
881         }
882
883         if (anon_vma) {
884                 anon_vma_interval_tree_post_update_vma(vma);
885                 if (adjust_next)
886                         anon_vma_interval_tree_post_update_vma(next);
887                 anon_vma_unlock_write(anon_vma);
888         }
889         if (mapping)
890                 i_mmap_unlock_write(mapping);
891
892         if (root) {
893                 uprobe_mmap(vma);
894
895                 if (adjust_next)
896                         uprobe_mmap(next);
897         }
898
899         if (remove_next) {
900                 if (file) {
901                         uprobe_munmap(next, next->vm_start, next->vm_end);
902                         fput(file);
903                 }
904                 if (next->anon_vma)
905                         anon_vma_merge(vma, next);
906                 mm->map_count--;
907                 mpol_put(vma_policy(next));
908                 kmem_cache_free(vm_area_cachep, next);
909                 /*
910                  * In mprotect's case 6 (see comments on vma_merge),
911                  * we must remove another next too. It would clutter
912                  * up the code too much to do both in one go.
913                  */
914                 next = vma->vm_next;
915                 if (remove_next == 2)
916                         goto again;
917                 else if (next)
918                         vma_gap_update(next);
919                 else
920                         mm->highest_vm_end = end;
921         }
922         if (insert && file)
923                 uprobe_mmap(insert);
924
925         validate_mm(mm);
926
927         return 0;
928 }
929
930 /*
931  * If the vma has a ->close operation then the driver probably needs to release
932  * per-vma resources, so we don't attempt to merge those.
933  */
934 static inline int is_mergeable_vma(struct vm_area_struct *vma,
935                                 struct file *file, unsigned long vm_flags,
936                                 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
937 {
938         /*
939          * VM_SOFTDIRTY should not prevent from VMA merging, if we
940          * match the flags but dirty bit -- the caller should mark
941          * merged VMA as dirty. If dirty bit won't be excluded from
942          * comparison, we increase pressue on the memory system forcing
943          * the kernel to generate new VMAs when old one could be
944          * extended instead.
945          */
946         if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
947                 return 0;
948         if (vma->vm_file != file)
949                 return 0;
950         if (vma->vm_ops && vma->vm_ops->close)
951                 return 0;
952         if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
953                 return 0;
954         return 1;
955 }
956
957 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
958                                         struct anon_vma *anon_vma2,
959                                         struct vm_area_struct *vma)
960 {
961         /*
962          * The list_is_singular() test is to avoid merging VMA cloned from
963          * parents. This can improve scalability caused by anon_vma lock.
964          */
965         if ((!anon_vma1 || !anon_vma2) && (!vma ||
966                 list_is_singular(&vma->anon_vma_chain)))
967                 return 1;
968         return anon_vma1 == anon_vma2;
969 }
970
971 /*
972  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
973  * in front of (at a lower virtual address and file offset than) the vma.
974  *
975  * We cannot merge two vmas if they have differently assigned (non-NULL)
976  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
977  *
978  * We don't check here for the merged mmap wrapping around the end of pagecache
979  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
980  * wrap, nor mmaps which cover the final page at index -1UL.
981  */
982 static int
983 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
984                      struct anon_vma *anon_vma, struct file *file,
985                      pgoff_t vm_pgoff,
986                      struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
987 {
988         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
989             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
990                 if (vma->vm_pgoff == vm_pgoff)
991                         return 1;
992         }
993         return 0;
994 }
995
996 /*
997  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
998  * beyond (at a higher virtual address and file offset than) the vma.
999  *
1000  * We cannot merge two vmas if they have differently assigned (non-NULL)
1001  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1002  */
1003 static int
1004 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1005                     struct anon_vma *anon_vma, struct file *file,
1006                     pgoff_t vm_pgoff,
1007                     struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1008 {
1009         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1010             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1011                 pgoff_t vm_pglen;
1012                 vm_pglen = vma_pages(vma);
1013                 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1014                         return 1;
1015         }
1016         return 0;
1017 }
1018
1019 /*
1020  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1021  * whether that can be merged with its predecessor or its successor.
1022  * Or both (it neatly fills a hole).
1023  *
1024  * In most cases - when called for mmap, brk or mremap - [addr,end) is
1025  * certain not to be mapped by the time vma_merge is called; but when
1026  * called for mprotect, it is certain to be already mapped (either at
1027  * an offset within prev, or at the start of next), and the flags of
1028  * this area are about to be changed to vm_flags - and the no-change
1029  * case has already been eliminated.
1030  *
1031  * The following mprotect cases have to be considered, where AAAA is
1032  * the area passed down from mprotect_fixup, never extending beyond one
1033  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1034  *
1035  *     AAAA             AAAA                AAAA          AAAA
1036  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
1037  *    cannot merge    might become    might become    might become
1038  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
1039  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
1040  *    mremap move:                                    PPPPNNNNNNNN 8
1041  *        AAAA
1042  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
1043  *    might become    case 1 below    case 2 below    case 3 below
1044  *
1045  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
1046  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
1047  */
1048 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1049                         struct vm_area_struct *prev, unsigned long addr,
1050                         unsigned long end, unsigned long vm_flags,
1051                         struct anon_vma *anon_vma, struct file *file,
1052                         pgoff_t pgoff, struct mempolicy *policy,
1053                         struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1054 {
1055         pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1056         struct vm_area_struct *area, *next;
1057         int err;
1058
1059         /*
1060          * We later require that vma->vm_flags == vm_flags,
1061          * so this tests vma->vm_flags & VM_SPECIAL, too.
1062          */
1063         if (vm_flags & VM_SPECIAL)
1064                 return NULL;
1065
1066         if (prev)
1067                 next = prev->vm_next;
1068         else
1069                 next = mm->mmap;
1070         area = next;
1071         if (next && next->vm_end == end)                /* cases 6, 7, 8 */
1072                 next = next->vm_next;
1073
1074         /*
1075          * Can it merge with the predecessor?
1076          */
1077         if (prev && prev->vm_end == addr &&
1078                         mpol_equal(vma_policy(prev), policy) &&
1079                         can_vma_merge_after(prev, vm_flags,
1080                                             anon_vma, file, pgoff,
1081                                             vm_userfaultfd_ctx)) {
1082                 /*
1083                  * OK, it can.  Can we now merge in the successor as well?
1084                  */
1085                 if (next && end == next->vm_start &&
1086                                 mpol_equal(policy, vma_policy(next)) &&
1087                                 can_vma_merge_before(next, vm_flags,
1088                                                      anon_vma, file,
1089                                                      pgoff+pglen,
1090                                                      vm_userfaultfd_ctx) &&
1091                                 is_mergeable_anon_vma(prev->anon_vma,
1092                                                       next->anon_vma, NULL)) {
1093                                                         /* cases 1, 6 */
1094                         err = vma_adjust(prev, prev->vm_start,
1095                                 next->vm_end, prev->vm_pgoff, NULL);
1096                 } else                                  /* cases 2, 5, 7 */
1097                         err = vma_adjust(prev, prev->vm_start,
1098                                 end, prev->vm_pgoff, NULL);
1099                 if (err)
1100                         return NULL;
1101                 khugepaged_enter_vma_merge(prev, vm_flags);
1102                 return prev;
1103         }
1104
1105         /*
1106          * Can this new request be merged in front of next?
1107          */
1108         if (next && end == next->vm_start &&
1109                         mpol_equal(policy, vma_policy(next)) &&
1110                         can_vma_merge_before(next, vm_flags,
1111                                              anon_vma, file, pgoff+pglen,
1112                                              vm_userfaultfd_ctx)) {
1113                 if (prev && addr < prev->vm_end)        /* case 4 */
1114                         err = vma_adjust(prev, prev->vm_start,
1115                                 addr, prev->vm_pgoff, NULL);
1116                 else                                    /* cases 3, 8 */
1117                         err = vma_adjust(area, addr, next->vm_end,
1118                                 next->vm_pgoff - pglen, NULL);
1119                 if (err)
1120                         return NULL;
1121                 khugepaged_enter_vma_merge(area, vm_flags);
1122                 return area;
1123         }
1124
1125         return NULL;
1126 }
1127
1128 /*
1129  * Rough compatbility check to quickly see if it's even worth looking
1130  * at sharing an anon_vma.
1131  *
1132  * They need to have the same vm_file, and the flags can only differ
1133  * in things that mprotect may change.
1134  *
1135  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1136  * we can merge the two vma's. For example, we refuse to merge a vma if
1137  * there is a vm_ops->close() function, because that indicates that the
1138  * driver is doing some kind of reference counting. But that doesn't
1139  * really matter for the anon_vma sharing case.
1140  */
1141 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1142 {
1143         return a->vm_end == b->vm_start &&
1144                 mpol_equal(vma_policy(a), vma_policy(b)) &&
1145                 a->vm_file == b->vm_file &&
1146                 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1147                 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1148 }
1149
1150 /*
1151  * Do some basic sanity checking to see if we can re-use the anon_vma
1152  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1153  * the same as 'old', the other will be the new one that is trying
1154  * to share the anon_vma.
1155  *
1156  * NOTE! This runs with mm_sem held for reading, so it is possible that
1157  * the anon_vma of 'old' is concurrently in the process of being set up
1158  * by another page fault trying to merge _that_. But that's ok: if it
1159  * is being set up, that automatically means that it will be a singleton
1160  * acceptable for merging, so we can do all of this optimistically. But
1161  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1162  *
1163  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1164  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1165  * is to return an anon_vma that is "complex" due to having gone through
1166  * a fork).
1167  *
1168  * We also make sure that the two vma's are compatible (adjacent,
1169  * and with the same memory policies). That's all stable, even with just
1170  * a read lock on the mm_sem.
1171  */
1172 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1173 {
1174         if (anon_vma_compatible(a, b)) {
1175                 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1176
1177                 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1178                         return anon_vma;
1179         }
1180         return NULL;
1181 }
1182
1183 /*
1184  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1185  * neighbouring vmas for a suitable anon_vma, before it goes off
1186  * to allocate a new anon_vma.  It checks because a repetitive
1187  * sequence of mprotects and faults may otherwise lead to distinct
1188  * anon_vmas being allocated, preventing vma merge in subsequent
1189  * mprotect.
1190  */
1191 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1192 {
1193         struct anon_vma *anon_vma;
1194         struct vm_area_struct *near;
1195
1196         near = vma->vm_next;
1197         if (!near)
1198                 goto try_prev;
1199
1200         anon_vma = reusable_anon_vma(near, vma, near);
1201         if (anon_vma)
1202                 return anon_vma;
1203 try_prev:
1204         near = vma->vm_prev;
1205         if (!near)
1206                 goto none;
1207
1208         anon_vma = reusable_anon_vma(near, near, vma);
1209         if (anon_vma)
1210                 return anon_vma;
1211 none:
1212         /*
1213          * There's no absolute need to look only at touching neighbours:
1214          * we could search further afield for "compatible" anon_vmas.
1215          * But it would probably just be a waste of time searching,
1216          * or lead to too many vmas hanging off the same anon_vma.
1217          * We're trying to allow mprotect remerging later on,
1218          * not trying to minimize memory used for anon_vmas.
1219          */
1220         return NULL;
1221 }
1222
1223 #ifdef CONFIG_PROC_FS
1224 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
1225                                                 struct file *file, long pages)
1226 {
1227         const unsigned long stack_flags
1228                 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
1229
1230         mm->total_vm += pages;
1231
1232         if (file) {
1233                 mm->shared_vm += pages;
1234                 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
1235                         mm->exec_vm += pages;
1236         } else if (flags & stack_flags)
1237                 mm->stack_vm += pages;
1238 }
1239 #endif /* CONFIG_PROC_FS */
1240
1241 /*
1242  * If a hint addr is less than mmap_min_addr change hint to be as
1243  * low as possible but still greater than mmap_min_addr
1244  */
1245 static inline unsigned long round_hint_to_min(unsigned long hint)
1246 {
1247         hint &= PAGE_MASK;
1248         if (((void *)hint != NULL) &&
1249             (hint < mmap_min_addr))
1250                 return PAGE_ALIGN(mmap_min_addr);
1251         return hint;
1252 }
1253
1254 static inline int mlock_future_check(struct mm_struct *mm,
1255                                      unsigned long flags,
1256                                      unsigned long len)
1257 {
1258         unsigned long locked, lock_limit;
1259
1260         /*  mlock MCL_FUTURE? */
1261         if (flags & VM_LOCKED) {
1262                 locked = len >> PAGE_SHIFT;
1263                 locked += mm->locked_vm;
1264                 lock_limit = rlimit(RLIMIT_MEMLOCK);
1265                 lock_limit >>= PAGE_SHIFT;
1266                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1267                         return -EAGAIN;
1268         }
1269         return 0;
1270 }
1271
1272 /*
1273  * The caller must hold down_write(&current->mm->mmap_sem).
1274  */
1275 unsigned long do_mmap(struct file *file, unsigned long addr,
1276                         unsigned long len, unsigned long prot,
1277                         unsigned long flags, vm_flags_t vm_flags,
1278                         unsigned long pgoff, unsigned long *populate)
1279 {
1280         struct mm_struct *mm = current->mm;
1281
1282         *populate = 0;
1283
1284         if (!len)
1285                 return -EINVAL;
1286
1287         /*
1288          * Does the application expect PROT_READ to imply PROT_EXEC?
1289          *
1290          * (the exception is when the underlying filesystem is noexec
1291          *  mounted, in which case we dont add PROT_EXEC.)
1292          */
1293         if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1294                 if (!(file && path_noexec(&file->f_path)))
1295                         prot |= PROT_EXEC;
1296
1297         if (!(flags & MAP_FIXED))
1298                 addr = round_hint_to_min(addr);
1299
1300         /* Careful about overflows.. */
1301         len = PAGE_ALIGN(len);
1302         if (!len)
1303                 return -ENOMEM;
1304
1305         /* offset overflow? */
1306         if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1307                 return -EOVERFLOW;
1308
1309         /* Too many mappings? */
1310         if (mm->map_count > sysctl_max_map_count)
1311                 return -ENOMEM;
1312
1313         /* Obtain the address to map to. we verify (or select) it and ensure
1314          * that it represents a valid section of the address space.
1315          */
1316         addr = get_unmapped_area(file, addr, len, pgoff, flags);
1317         if (offset_in_page(addr))
1318                 return addr;
1319
1320         /* Do simple checking here so the lower-level routines won't have
1321          * to. we assume access permissions have been handled by the open
1322          * of the memory object, so we don't do any here.
1323          */
1324         vm_flags |= calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1325                         mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1326
1327         if (flags & MAP_LOCKED)
1328                 if (!can_do_mlock())
1329                         return -EPERM;
1330
1331         if (mlock_future_check(mm, vm_flags, len))
1332                 return -EAGAIN;
1333
1334         if (file) {
1335                 struct inode *inode = file_inode(file);
1336
1337                 switch (flags & MAP_TYPE) {
1338                 case MAP_SHARED:
1339                         if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1340                                 return -EACCES;
1341
1342                         /*
1343                          * Make sure we don't allow writing to an append-only
1344                          * file..
1345                          */
1346                         if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1347                                 return -EACCES;
1348
1349                         /*
1350                          * Make sure there are no mandatory locks on the file.
1351                          */
1352                         if (locks_verify_locked(file))
1353                                 return -EAGAIN;
1354
1355                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1356                         if (!(file->f_mode & FMODE_WRITE))
1357                                 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1358
1359                         /* fall through */
1360                 case MAP_PRIVATE:
1361                         if (!(file->f_mode & FMODE_READ))
1362                                 return -EACCES;
1363                         if (path_noexec(&file->f_path)) {
1364                                 if (vm_flags & VM_EXEC)
1365                                         return -EPERM;
1366                                 vm_flags &= ~VM_MAYEXEC;
1367                         }
1368
1369                         if (!file->f_op->mmap)
1370                                 return -ENODEV;
1371                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1372                                 return -EINVAL;
1373                         break;
1374
1375                 default:
1376                         return -EINVAL;
1377                 }
1378         } else {
1379                 switch (flags & MAP_TYPE) {
1380                 case MAP_SHARED:
1381                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1382                                 return -EINVAL;
1383                         /*
1384                          * Ignore pgoff.
1385                          */
1386                         pgoff = 0;
1387                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1388                         break;
1389                 case MAP_PRIVATE:
1390                         /*
1391                          * Set pgoff according to addr for anon_vma.
1392                          */
1393                         pgoff = addr >> PAGE_SHIFT;
1394                         break;
1395                 default:
1396                         return -EINVAL;
1397                 }
1398         }
1399
1400         /*
1401          * Set 'VM_NORESERVE' if we should not account for the
1402          * memory use of this mapping.
1403          */
1404         if (flags & MAP_NORESERVE) {
1405                 /* We honor MAP_NORESERVE if allowed to overcommit */
1406                 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1407                         vm_flags |= VM_NORESERVE;
1408
1409                 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1410                 if (file && is_file_hugepages(file))
1411                         vm_flags |= VM_NORESERVE;
1412         }
1413
1414         addr = mmap_region(file, addr, len, vm_flags, pgoff);
1415         if (!IS_ERR_VALUE(addr) &&
1416             ((vm_flags & VM_LOCKED) ||
1417              (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1418                 *populate = len;
1419         return addr;
1420 }
1421
1422 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1423                 unsigned long, prot, unsigned long, flags,
1424                 unsigned long, fd, unsigned long, pgoff)
1425 {
1426         struct file *file = NULL;
1427         unsigned long retval;
1428
1429         if (!(flags & MAP_ANONYMOUS)) {
1430                 audit_mmap_fd(fd, flags);
1431                 file = fget(fd);
1432                 if (!file)
1433                         return -EBADF;
1434                 if (is_file_hugepages(file))
1435                         len = ALIGN(len, huge_page_size(hstate_file(file)));
1436                 retval = -EINVAL;
1437                 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1438                         goto out_fput;
1439         } else if (flags & MAP_HUGETLB) {
1440                 struct user_struct *user = NULL;
1441                 struct hstate *hs;
1442
1443                 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
1444                 if (!hs)
1445                         return -EINVAL;
1446
1447                 len = ALIGN(len, huge_page_size(hs));
1448                 /*
1449                  * VM_NORESERVE is used because the reservations will be
1450                  * taken when vm_ops->mmap() is called
1451                  * A dummy user value is used because we are not locking
1452                  * memory so no accounting is necessary
1453                  */
1454                 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1455                                 VM_NORESERVE,
1456                                 &user, HUGETLB_ANONHUGE_INODE,
1457                                 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1458                 if (IS_ERR(file))
1459                         return PTR_ERR(file);
1460         }
1461
1462         flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1463
1464         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1465 out_fput:
1466         if (file)
1467                 fput(file);
1468         return retval;
1469 }
1470
1471 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1472 struct mmap_arg_struct {
1473         unsigned long addr;
1474         unsigned long len;
1475         unsigned long prot;
1476         unsigned long flags;
1477         unsigned long fd;
1478         unsigned long offset;
1479 };
1480
1481 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1482 {
1483         struct mmap_arg_struct a;
1484
1485         if (copy_from_user(&a, arg, sizeof(a)))
1486                 return -EFAULT;
1487         if (offset_in_page(a.offset))
1488                 return -EINVAL;
1489
1490         return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1491                               a.offset >> PAGE_SHIFT);
1492 }
1493 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1494
1495 /*
1496  * Some shared mappigns will want the pages marked read-only
1497  * to track write events. If so, we'll downgrade vm_page_prot
1498  * to the private version (using protection_map[] without the
1499  * VM_SHARED bit).
1500  */
1501 int vma_wants_writenotify(struct vm_area_struct *vma)
1502 {
1503         vm_flags_t vm_flags = vma->vm_flags;
1504         const struct vm_operations_struct *vm_ops = vma->vm_ops;
1505
1506         /* If it was private or non-writable, the write bit is already clear */
1507         if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1508                 return 0;
1509
1510         /* The backer wishes to know when pages are first written to? */
1511         if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1512                 return 1;
1513
1514         /* The open routine did something to the protections that pgprot_modify
1515          * won't preserve? */
1516         if (pgprot_val(vma->vm_page_prot) !=
1517             pgprot_val(vm_pgprot_modify(vma->vm_page_prot, vm_flags)))
1518                 return 0;
1519
1520         /* Do we need to track softdirty? */
1521         if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1522                 return 1;
1523
1524         /* Specialty mapping? */
1525         if (vm_flags & VM_PFNMAP)
1526                 return 0;
1527
1528         /* Can the mapping track the dirty pages? */
1529         return vma->vm_file && vma->vm_file->f_mapping &&
1530                 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1531 }
1532
1533 /*
1534  * We account for memory if it's a private writeable mapping,
1535  * not hugepages and VM_NORESERVE wasn't set.
1536  */
1537 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1538 {
1539         /*
1540          * hugetlb has its own accounting separate from the core VM
1541          * VM_HUGETLB may not be set yet so we cannot check for that flag.
1542          */
1543         if (file && is_file_hugepages(file))
1544                 return 0;
1545
1546         return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1547 }
1548
1549 unsigned long mmap_region(struct file *file, unsigned long addr,
1550                 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1551 {
1552         struct mm_struct *mm = current->mm;
1553         struct vm_area_struct *vma, *prev;
1554         int error;
1555         struct rb_node **rb_link, *rb_parent;
1556         unsigned long charged = 0;
1557
1558         /* Check against address space limit. */
1559         if (!may_expand_vm(mm, len >> PAGE_SHIFT)) {
1560                 unsigned long nr_pages;
1561
1562                 /*
1563                  * MAP_FIXED may remove pages of mappings that intersects with
1564                  * requested mapping. Account for the pages it would unmap.
1565                  */
1566                 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1567
1568                 if (!may_expand_vm(mm, (len >> PAGE_SHIFT) - nr_pages))
1569                         return -ENOMEM;
1570         }
1571
1572         /* Clear old maps */
1573         while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1574                               &rb_parent)) {
1575                 if (do_munmap(mm, addr, len))
1576                         return -ENOMEM;
1577         }
1578
1579         /*
1580          * Private writable mapping: check memory availability
1581          */
1582         if (accountable_mapping(file, vm_flags)) {
1583                 charged = len >> PAGE_SHIFT;
1584                 if (security_vm_enough_memory_mm(mm, charged))
1585                         return -ENOMEM;
1586                 vm_flags |= VM_ACCOUNT;
1587         }
1588
1589         /*
1590          * Can we just expand an old mapping?
1591          */
1592         vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1593                         NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1594         if (vma)
1595                 goto out;
1596
1597         /*
1598          * Determine the object being mapped and call the appropriate
1599          * specific mapper. the address has already been validated, but
1600          * not unmapped, but the maps are removed from the list.
1601          */
1602         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1603         if (!vma) {
1604                 error = -ENOMEM;
1605                 goto unacct_error;
1606         }
1607
1608         vma->vm_mm = mm;
1609         vma->vm_start = addr;
1610         vma->vm_end = addr + len;
1611         vma->vm_flags = vm_flags;
1612         vma->vm_page_prot = vm_get_page_prot(vm_flags);
1613         vma->vm_pgoff = pgoff;
1614         INIT_LIST_HEAD(&vma->anon_vma_chain);
1615
1616         if (file) {
1617                 if (vm_flags & VM_DENYWRITE) {
1618                         error = deny_write_access(file);
1619                         if (error)
1620                                 goto free_vma;
1621                 }
1622                 if (vm_flags & VM_SHARED) {
1623                         error = mapping_map_writable(file->f_mapping);
1624                         if (error)
1625                                 goto allow_write_and_free_vma;
1626                 }
1627
1628                 /* ->mmap() can change vma->vm_file, but must guarantee that
1629                  * vma_link() below can deny write-access if VM_DENYWRITE is set
1630                  * and map writably if VM_SHARED is set. This usually means the
1631                  * new file must not have been exposed to user-space, yet.
1632                  */
1633                 vma->vm_file = get_file(file);
1634                 error = file->f_op->mmap(file, vma);
1635                 if (error)
1636                         goto unmap_and_free_vma;
1637
1638                 /* Can addr have changed??
1639                  *
1640                  * Answer: Yes, several device drivers can do it in their
1641                  *         f_op->mmap method. -DaveM
1642                  * Bug: If addr is changed, prev, rb_link, rb_parent should
1643                  *      be updated for vma_link()
1644                  */
1645                 WARN_ON_ONCE(addr != vma->vm_start);
1646
1647                 addr = vma->vm_start;
1648                 vm_flags = vma->vm_flags;
1649         } else if (vm_flags & VM_SHARED) {
1650                 error = shmem_zero_setup(vma);
1651                 if (error)
1652                         goto free_vma;
1653         }
1654
1655         vma_link(mm, vma, prev, rb_link, rb_parent);
1656         /* Once vma denies write, undo our temporary denial count */
1657         if (file) {
1658                 if (vm_flags & VM_SHARED)
1659                         mapping_unmap_writable(file->f_mapping);
1660                 if (vm_flags & VM_DENYWRITE)
1661                         allow_write_access(file);
1662         }
1663         file = vma->vm_file;
1664 out:
1665         perf_event_mmap(vma);
1666
1667         vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1668         if (vm_flags & VM_LOCKED) {
1669                 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1670                                         vma == get_gate_vma(current->mm)))
1671                         mm->locked_vm += (len >> PAGE_SHIFT);
1672                 else
1673                         vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1674         }
1675
1676         if (file)
1677                 uprobe_mmap(vma);
1678
1679         /*
1680          * New (or expanded) vma always get soft dirty status.
1681          * Otherwise user-space soft-dirty page tracker won't
1682          * be able to distinguish situation when vma area unmapped,
1683          * then new mapped in-place (which must be aimed as
1684          * a completely new data area).
1685          */
1686         vma->vm_flags |= VM_SOFTDIRTY;
1687
1688         vma_set_page_prot(vma);
1689
1690         return addr;
1691
1692 unmap_and_free_vma:
1693         vma->vm_file = NULL;
1694         fput(file);
1695
1696         /* Undo any partial mapping done by a device driver. */
1697         unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1698         charged = 0;
1699         if (vm_flags & VM_SHARED)
1700                 mapping_unmap_writable(file->f_mapping);
1701 allow_write_and_free_vma:
1702         if (vm_flags & VM_DENYWRITE)
1703                 allow_write_access(file);
1704 free_vma:
1705         kmem_cache_free(vm_area_cachep, vma);
1706 unacct_error:
1707         if (charged)
1708                 vm_unacct_memory(charged);
1709         return error;
1710 }
1711
1712 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1713 {
1714         /*
1715          * We implement the search by looking for an rbtree node that
1716          * immediately follows a suitable gap. That is,
1717          * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1718          * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1719          * - gap_end - gap_start >= length
1720          */
1721
1722         struct mm_struct *mm = current->mm;
1723         struct vm_area_struct *vma;
1724         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1725
1726         /* Adjust search length to account for worst case alignment overhead */
1727         length = info->length + info->align_mask;
1728         if (length < info->length)
1729                 return -ENOMEM;
1730
1731         /* Adjust search limits by the desired length */
1732         if (info->high_limit < length)
1733                 return -ENOMEM;
1734         high_limit = info->high_limit - length;
1735
1736         if (info->low_limit > high_limit)
1737                 return -ENOMEM;
1738         low_limit = info->low_limit + length;
1739
1740         /* Check if rbtree root looks promising */
1741         if (RB_EMPTY_ROOT(&mm->mm_rb))
1742                 goto check_highest;
1743         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1744         if (vma->rb_subtree_gap < length)
1745                 goto check_highest;
1746
1747         while (true) {
1748                 /* Visit left subtree if it looks promising */
1749                 gap_end = vma->vm_start;
1750                 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1751                         struct vm_area_struct *left =
1752                                 rb_entry(vma->vm_rb.rb_left,
1753                                          struct vm_area_struct, vm_rb);
1754                         if (left->rb_subtree_gap >= length) {
1755                                 vma = left;
1756                                 continue;
1757                         }
1758                 }
1759
1760                 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1761 check_current:
1762                 /* Check if current node has a suitable gap */
1763                 if (gap_start > high_limit)
1764                         return -ENOMEM;
1765                 if (gap_end >= low_limit && gap_end - gap_start >= length)
1766                         goto found;
1767
1768                 /* Visit right subtree if it looks promising */
1769                 if (vma->vm_rb.rb_right) {
1770                         struct vm_area_struct *right =
1771                                 rb_entry(vma->vm_rb.rb_right,
1772                                          struct vm_area_struct, vm_rb);
1773                         if (right->rb_subtree_gap >= length) {
1774                                 vma = right;
1775                                 continue;
1776                         }
1777                 }
1778
1779                 /* Go back up the rbtree to find next candidate node */
1780                 while (true) {
1781                         struct rb_node *prev = &vma->vm_rb;
1782                         if (!rb_parent(prev))
1783                                 goto check_highest;
1784                         vma = rb_entry(rb_parent(prev),
1785                                        struct vm_area_struct, vm_rb);
1786                         if (prev == vma->vm_rb.rb_left) {
1787                                 gap_start = vma->vm_prev->vm_end;
1788                                 gap_end = vma->vm_start;
1789                                 goto check_current;
1790                         }
1791                 }
1792         }
1793
1794 check_highest:
1795         /* Check highest gap, which does not precede any rbtree node */
1796         gap_start = mm->highest_vm_end;
1797         gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1798         if (gap_start > high_limit)
1799                 return -ENOMEM;
1800
1801 found:
1802         /* We found a suitable gap. Clip it with the original low_limit. */
1803         if (gap_start < info->low_limit)
1804                 gap_start = info->low_limit;
1805
1806         /* Adjust gap address to the desired alignment */
1807         gap_start += (info->align_offset - gap_start) & info->align_mask;
1808
1809         VM_BUG_ON(gap_start + info->length > info->high_limit);
1810         VM_BUG_ON(gap_start + info->length > gap_end);
1811         return gap_start;
1812 }
1813
1814 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1815 {
1816         struct mm_struct *mm = current->mm;
1817         struct vm_area_struct *vma;
1818         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1819
1820         /* Adjust search length to account for worst case alignment overhead */
1821         length = info->length + info->align_mask;
1822         if (length < info->length)
1823                 return -ENOMEM;
1824
1825         /*
1826          * Adjust search limits by the desired length.
1827          * See implementation comment at top of unmapped_area().
1828          */
1829         gap_end = info->high_limit;
1830         if (gap_end < length)
1831                 return -ENOMEM;
1832         high_limit = gap_end - length;
1833
1834         if (info->low_limit > high_limit)
1835                 return -ENOMEM;
1836         low_limit = info->low_limit + length;
1837
1838         /* Check highest gap, which does not precede any rbtree node */
1839         gap_start = mm->highest_vm_end;
1840         if (gap_start <= high_limit)
1841                 goto found_highest;
1842
1843         /* Check if rbtree root looks promising */
1844         if (RB_EMPTY_ROOT(&mm->mm_rb))
1845                 return -ENOMEM;
1846         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1847         if (vma->rb_subtree_gap < length)
1848                 return -ENOMEM;
1849
1850         while (true) {
1851                 /* Visit right subtree if it looks promising */
1852                 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1853                 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1854                         struct vm_area_struct *right =
1855                                 rb_entry(vma->vm_rb.rb_right,
1856                                          struct vm_area_struct, vm_rb);
1857                         if (right->rb_subtree_gap >= length) {
1858                                 vma = right;
1859                                 continue;
1860                         }
1861                 }
1862
1863 check_current:
1864                 /* Check if current node has a suitable gap */
1865                 gap_end = vma->vm_start;
1866                 if (gap_end < low_limit)
1867                         return -ENOMEM;
1868                 if (gap_start <= high_limit && gap_end - gap_start >= length)
1869                         goto found;
1870
1871                 /* Visit left subtree if it looks promising */
1872                 if (vma->vm_rb.rb_left) {
1873                         struct vm_area_struct *left =
1874                                 rb_entry(vma->vm_rb.rb_left,
1875                                          struct vm_area_struct, vm_rb);
1876                         if (left->rb_subtree_gap >= length) {
1877                                 vma = left;
1878                                 continue;
1879                         }
1880                 }
1881
1882                 /* Go back up the rbtree to find next candidate node */
1883                 while (true) {
1884                         struct rb_node *prev = &vma->vm_rb;
1885                         if (!rb_parent(prev))
1886                                 return -ENOMEM;
1887                         vma = rb_entry(rb_parent(prev),
1888                                        struct vm_area_struct, vm_rb);
1889                         if (prev == vma->vm_rb.rb_right) {
1890                                 gap_start = vma->vm_prev ?
1891                                         vma->vm_prev->vm_end : 0;
1892                                 goto check_current;
1893                         }
1894                 }
1895         }
1896
1897 found:
1898         /* We found a suitable gap. Clip it with the original high_limit. */
1899         if (gap_end > info->high_limit)
1900                 gap_end = info->high_limit;
1901
1902 found_highest:
1903         /* Compute highest gap address at the desired alignment */
1904         gap_end -= info->length;
1905         gap_end -= (gap_end - info->align_offset) & info->align_mask;
1906
1907         VM_BUG_ON(gap_end < info->low_limit);
1908         VM_BUG_ON(gap_end < gap_start);
1909         return gap_end;
1910 }
1911
1912 /* Get an address range which is currently unmapped.
1913  * For shmat() with addr=0.
1914  *
1915  * Ugly calling convention alert:
1916  * Return value with the low bits set means error value,
1917  * ie
1918  *      if (ret & ~PAGE_MASK)
1919  *              error = ret;
1920  *
1921  * This function "knows" that -ENOMEM has the bits set.
1922  */
1923 #ifndef HAVE_ARCH_UNMAPPED_AREA
1924 unsigned long
1925 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1926                 unsigned long len, unsigned long pgoff, unsigned long flags)
1927 {
1928         struct mm_struct *mm = current->mm;
1929         struct vm_area_struct *vma;
1930         struct vm_unmapped_area_info info;
1931
1932         if (len > TASK_SIZE - mmap_min_addr)
1933                 return -ENOMEM;
1934
1935         if (flags & MAP_FIXED)
1936                 return addr;
1937
1938         if (addr) {
1939                 addr = PAGE_ALIGN(addr);
1940                 vma = find_vma(mm, addr);
1941                 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1942                     (!vma || addr + len <= vma->vm_start))
1943                         return addr;
1944         }
1945
1946         info.flags = 0;
1947         info.length = len;
1948         info.low_limit = mm->mmap_base;
1949         info.high_limit = TASK_SIZE;
1950         info.align_mask = 0;
1951         return vm_unmapped_area(&info);
1952 }
1953 #endif
1954
1955 /*
1956  * This mmap-allocator allocates new areas top-down from below the
1957  * stack's low limit (the base):
1958  */
1959 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1960 unsigned long
1961 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1962                           const unsigned long len, const unsigned long pgoff,
1963                           const unsigned long flags)
1964 {
1965         struct vm_area_struct *vma;
1966         struct mm_struct *mm = current->mm;
1967         unsigned long addr = addr0;
1968         struct vm_unmapped_area_info info;
1969
1970         /* requested length too big for entire address space */
1971         if (len > TASK_SIZE - mmap_min_addr)
1972                 return -ENOMEM;
1973
1974         if (flags & MAP_FIXED)
1975                 return addr;
1976
1977         /* requesting a specific address */
1978         if (addr) {
1979                 addr = PAGE_ALIGN(addr);
1980                 vma = find_vma(mm, addr);
1981                 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1982                                 (!vma || addr + len <= vma->vm_start))
1983                         return addr;
1984         }
1985
1986         info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1987         info.length = len;
1988         info.low_limit = max(PAGE_SIZE, mmap_min_addr);
1989         info.high_limit = mm->mmap_base;
1990         info.align_mask = 0;
1991         addr = vm_unmapped_area(&info);
1992
1993         /*
1994          * A failed mmap() very likely causes application failure,
1995          * so fall back to the bottom-up function here. This scenario
1996          * can happen with large stack limits and large mmap()
1997          * allocations.
1998          */
1999         if (offset_in_page(addr)) {
2000                 VM_BUG_ON(addr != -ENOMEM);
2001                 info.flags = 0;
2002                 info.low_limit = TASK_UNMAPPED_BASE;
2003                 info.high_limit = TASK_SIZE;
2004                 addr = vm_unmapped_area(&info);
2005         }
2006
2007         return addr;
2008 }
2009 #endif
2010
2011 unsigned long
2012 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2013                 unsigned long pgoff, unsigned long flags)
2014 {
2015         unsigned long (*get_area)(struct file *, unsigned long,
2016                                   unsigned long, unsigned long, unsigned long);
2017
2018         unsigned long error = arch_mmap_check(addr, len, flags);
2019         if (error)
2020                 return error;
2021
2022         /* Careful about overflows.. */
2023         if (len > TASK_SIZE)
2024                 return -ENOMEM;
2025
2026         get_area = current->mm->get_unmapped_area;
2027         if (file && file->f_op->get_unmapped_area)
2028                 get_area = file->f_op->get_unmapped_area;
2029         addr = get_area(file, addr, len, pgoff, flags);
2030         if (IS_ERR_VALUE(addr))
2031                 return addr;
2032
2033         if (addr > TASK_SIZE - len)
2034                 return -ENOMEM;
2035         if (offset_in_page(addr))
2036                 return -EINVAL;
2037
2038         addr = arch_rebalance_pgtables(addr, len);
2039         error = security_mmap_addr(addr);
2040         return error ? error : addr;
2041 }
2042
2043 EXPORT_SYMBOL(get_unmapped_area);
2044
2045 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2046 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2047 {
2048         struct rb_node *rb_node;
2049         struct vm_area_struct *vma;
2050
2051         /* Check the cache first. */
2052         vma = vmacache_find(mm, addr);
2053         if (likely(vma))
2054                 return vma;
2055
2056         rb_node = mm->mm_rb.rb_node;
2057
2058         while (rb_node) {
2059                 struct vm_area_struct *tmp;
2060
2061                 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2062
2063                 if (tmp->vm_end > addr) {
2064                         vma = tmp;
2065                         if (tmp->vm_start <= addr)
2066                                 break;
2067                         rb_node = rb_node->rb_left;
2068                 } else
2069                         rb_node = rb_node->rb_right;
2070         }
2071
2072         if (vma)
2073                 vmacache_update(addr, vma);
2074         return vma;
2075 }
2076
2077 EXPORT_SYMBOL(find_vma);
2078
2079 /*
2080  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2081  */
2082 struct vm_area_struct *
2083 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2084                         struct vm_area_struct **pprev)
2085 {
2086         struct vm_area_struct *vma;
2087
2088         vma = find_vma(mm, addr);
2089         if (vma) {
2090                 *pprev = vma->vm_prev;
2091         } else {
2092                 struct rb_node *rb_node = mm->mm_rb.rb_node;
2093                 *pprev = NULL;
2094                 while (rb_node) {
2095                         *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2096                         rb_node = rb_node->rb_right;
2097                 }
2098         }
2099         return vma;
2100 }
2101
2102 /*
2103  * Verify that the stack growth is acceptable and
2104  * update accounting. This is shared with both the
2105  * grow-up and grow-down cases.
2106  */
2107 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
2108 {
2109         struct mm_struct *mm = vma->vm_mm;
2110         struct rlimit *rlim = current->signal->rlim;
2111         unsigned long new_start, actual_size;
2112
2113         /* address space limit tests */
2114         if (!may_expand_vm(mm, grow))
2115                 return -ENOMEM;
2116
2117         /* Stack limit test */
2118         actual_size = size;
2119         if (size && (vma->vm_flags & (VM_GROWSUP | VM_GROWSDOWN)))
2120                 actual_size -= PAGE_SIZE;
2121         if (actual_size > READ_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2122                 return -ENOMEM;
2123
2124         /* mlock limit tests */
2125         if (vma->vm_flags & VM_LOCKED) {
2126                 unsigned long locked;
2127                 unsigned long limit;
2128                 locked = mm->locked_vm + grow;
2129                 limit = READ_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2130                 limit >>= PAGE_SHIFT;
2131                 if (locked > limit && !capable(CAP_IPC_LOCK))
2132                         return -ENOMEM;
2133         }
2134
2135         /* Check to ensure the stack will not grow into a hugetlb-only region */
2136         new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2137                         vma->vm_end - size;
2138         if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2139                 return -EFAULT;
2140
2141         /*
2142          * Overcommit..  This must be the final test, as it will
2143          * update security statistics.
2144          */
2145         if (security_vm_enough_memory_mm(mm, grow))
2146                 return -ENOMEM;
2147
2148         return 0;
2149 }
2150
2151 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2152 /*
2153  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2154  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2155  */
2156 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2157 {
2158         struct mm_struct *mm = vma->vm_mm;
2159         int error;
2160
2161         if (!(vma->vm_flags & VM_GROWSUP))
2162                 return -EFAULT;
2163
2164         /*
2165          * We must make sure the anon_vma is allocated
2166          * so that the anon_vma locking is not a noop.
2167          */
2168         if (unlikely(anon_vma_prepare(vma)))
2169                 return -ENOMEM;
2170         vma_lock_anon_vma(vma);
2171
2172         /*
2173          * vma->vm_start/vm_end cannot change under us because the caller
2174          * is required to hold the mmap_sem in read mode.  We need the
2175          * anon_vma lock to serialize against concurrent expand_stacks.
2176          * Also guard against wrapping around to address 0.
2177          */
2178         if (address < PAGE_ALIGN(address+4))
2179                 address = PAGE_ALIGN(address+4);
2180         else {
2181                 vma_unlock_anon_vma(vma);
2182                 return -ENOMEM;
2183         }
2184         error = 0;
2185
2186         /* Somebody else might have raced and expanded it already */
2187         if (address > vma->vm_end) {
2188                 unsigned long size, grow;
2189
2190                 size = address - vma->vm_start;
2191                 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2192
2193                 error = -ENOMEM;
2194                 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2195                         error = acct_stack_growth(vma, size, grow);
2196                         if (!error) {
2197                                 /*
2198                                  * vma_gap_update() doesn't support concurrent
2199                                  * updates, but we only hold a shared mmap_sem
2200                                  * lock here, so we need to protect against
2201                                  * concurrent vma expansions.
2202                                  * vma_lock_anon_vma() doesn't help here, as
2203                                  * we don't guarantee that all growable vmas
2204                                  * in a mm share the same root anon vma.
2205                                  * So, we reuse mm->page_table_lock to guard
2206                                  * against concurrent vma expansions.
2207                                  */
2208                                 spin_lock(&mm->page_table_lock);
2209                                 if (vma->vm_flags & VM_LOCKED)
2210                                         mm->locked_vm += grow;
2211                                 vm_stat_account(mm, vma->vm_flags,
2212                                                 vma->vm_file, grow);
2213                                 anon_vma_interval_tree_pre_update_vma(vma);
2214                                 vma->vm_end = address;
2215                                 anon_vma_interval_tree_post_update_vma(vma);
2216                                 if (vma->vm_next)
2217                                         vma_gap_update(vma->vm_next);
2218                                 else
2219                                         mm->highest_vm_end = address;
2220                                 spin_unlock(&mm->page_table_lock);
2221
2222                                 perf_event_mmap(vma);
2223                         }
2224                 }
2225         }
2226         vma_unlock_anon_vma(vma);
2227         khugepaged_enter_vma_merge(vma, vma->vm_flags);
2228         validate_mm(mm);
2229         return error;
2230 }
2231 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2232
2233 /*
2234  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2235  */
2236 int expand_downwards(struct vm_area_struct *vma,
2237                                    unsigned long address)
2238 {
2239         struct mm_struct *mm = vma->vm_mm;
2240         int error;
2241
2242         /*
2243          * We must make sure the anon_vma is allocated
2244          * so that the anon_vma locking is not a noop.
2245          */
2246         if (unlikely(anon_vma_prepare(vma)))
2247                 return -ENOMEM;
2248
2249         address &= PAGE_MASK;
2250         error = security_mmap_addr(address);
2251         if (error)
2252                 return error;
2253
2254         vma_lock_anon_vma(vma);
2255
2256         /*
2257          * vma->vm_start/vm_end cannot change under us because the caller
2258          * is required to hold the mmap_sem in read mode.  We need the
2259          * anon_vma lock to serialize against concurrent expand_stacks.
2260          */
2261
2262         /* Somebody else might have raced and expanded it already */
2263         if (address < vma->vm_start) {
2264                 unsigned long size, grow;
2265
2266                 size = vma->vm_end - address;
2267                 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2268
2269                 error = -ENOMEM;
2270                 if (grow <= vma->vm_pgoff) {
2271                         error = acct_stack_growth(vma, size, grow);
2272                         if (!error) {
2273                                 /*
2274                                  * vma_gap_update() doesn't support concurrent
2275                                  * updates, but we only hold a shared mmap_sem
2276                                  * lock here, so we need to protect against
2277                                  * concurrent vma expansions.
2278                                  * vma_lock_anon_vma() doesn't help here, as
2279                                  * we don't guarantee that all growable vmas
2280                                  * in a mm share the same root anon vma.
2281                                  * So, we reuse mm->page_table_lock to guard
2282                                  * against concurrent vma expansions.
2283                                  */
2284                                 spin_lock(&mm->page_table_lock);
2285                                 if (vma->vm_flags & VM_LOCKED)
2286                                         mm->locked_vm += grow;
2287                                 vm_stat_account(mm, vma->vm_flags,
2288                                                 vma->vm_file, grow);
2289                                 anon_vma_interval_tree_pre_update_vma(vma);
2290                                 vma->vm_start = address;
2291                                 vma->vm_pgoff -= grow;
2292                                 anon_vma_interval_tree_post_update_vma(vma);
2293                                 vma_gap_update(vma);
2294                                 spin_unlock(&mm->page_table_lock);
2295
2296                                 perf_event_mmap(vma);
2297                         }
2298                 }
2299         }
2300         vma_unlock_anon_vma(vma);
2301         khugepaged_enter_vma_merge(vma, vma->vm_flags);
2302         validate_mm(mm);
2303         return error;
2304 }
2305
2306 /*
2307  * Note how expand_stack() refuses to expand the stack all the way to
2308  * abut the next virtual mapping, *unless* that mapping itself is also
2309  * a stack mapping. We want to leave room for a guard page, after all
2310  * (the guard page itself is not added here, that is done by the
2311  * actual page faulting logic)
2312  *
2313  * This matches the behavior of the guard page logic (see mm/memory.c:
2314  * check_stack_guard_page()), which only allows the guard page to be
2315  * removed under these circumstances.
2316  */
2317 #ifdef CONFIG_STACK_GROWSUP
2318 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2319 {
2320         struct vm_area_struct *next;
2321
2322         address &= PAGE_MASK;
2323         next = vma->vm_next;
2324         if (next && next->vm_start == address + PAGE_SIZE) {
2325                 if (!(next->vm_flags & VM_GROWSUP))
2326                         return -ENOMEM;
2327         }
2328         return expand_upwards(vma, address);
2329 }
2330
2331 struct vm_area_struct *
2332 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2333 {
2334         struct vm_area_struct *vma, *prev;
2335
2336         addr &= PAGE_MASK;
2337         vma = find_vma_prev(mm, addr, &prev);
2338         if (vma && (vma->vm_start <= addr))
2339                 return vma;
2340         if (!prev || expand_stack(prev, addr))
2341                 return NULL;
2342         if (prev->vm_flags & VM_LOCKED)
2343                 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2344         return prev;
2345 }
2346 #else
2347 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2348 {
2349         struct vm_area_struct *prev;
2350
2351         address &= PAGE_MASK;
2352         prev = vma->vm_prev;
2353         if (prev && prev->vm_end == address) {
2354                 if (!(prev->vm_flags & VM_GROWSDOWN))
2355                         return -ENOMEM;
2356         }
2357         return expand_downwards(vma, address);
2358 }
2359
2360 struct vm_area_struct *
2361 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2362 {
2363         struct vm_area_struct *vma;
2364         unsigned long start;
2365
2366         addr &= PAGE_MASK;
2367         vma = find_vma(mm, addr);
2368         if (!vma)
2369                 return NULL;
2370         if (vma->vm_start <= addr)
2371                 return vma;
2372         if (!(vma->vm_flags & VM_GROWSDOWN))
2373                 return NULL;
2374         start = vma->vm_start;
2375         if (expand_stack(vma, addr))
2376                 return NULL;
2377         if (vma->vm_flags & VM_LOCKED)
2378                 populate_vma_page_range(vma, addr, start, NULL);
2379         return vma;
2380 }
2381 #endif
2382
2383 EXPORT_SYMBOL_GPL(find_extend_vma);
2384
2385 /*
2386  * Ok - we have the memory areas we should free on the vma list,
2387  * so release them, and do the vma updates.
2388  *
2389  * Called with the mm semaphore held.
2390  */
2391 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2392 {
2393         unsigned long nr_accounted = 0;
2394
2395         /* Update high watermark before we lower total_vm */
2396         update_hiwater_vm(mm);
2397         do {
2398                 long nrpages = vma_pages(vma);
2399
2400                 if (vma->vm_flags & VM_ACCOUNT)
2401                         nr_accounted += nrpages;
2402                 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
2403                 vma = remove_vma(vma);
2404         } while (vma);
2405         vm_unacct_memory(nr_accounted);
2406         validate_mm(mm);
2407 }
2408
2409 /*
2410  * Get rid of page table information in the indicated region.
2411  *
2412  * Called with the mm semaphore held.
2413  */
2414 static void unmap_region(struct mm_struct *mm,
2415                 struct vm_area_struct *vma, struct vm_area_struct *prev,
2416                 unsigned long start, unsigned long end)
2417 {
2418         struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2419         struct mmu_gather tlb;
2420
2421         lru_add_drain();
2422         tlb_gather_mmu(&tlb, mm, start, end);
2423         update_hiwater_rss(mm);
2424         unmap_vmas(&tlb, vma, start, end);
2425         free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2426                                  next ? next->vm_start : USER_PGTABLES_CEILING);
2427         tlb_finish_mmu(&tlb, start, end);
2428 }
2429
2430 /*
2431  * Create a list of vma's touched by the unmap, removing them from the mm's
2432  * vma list as we go..
2433  */
2434 static void
2435 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2436         struct vm_area_struct *prev, unsigned long end)
2437 {
2438         struct vm_area_struct **insertion_point;
2439         struct vm_area_struct *tail_vma = NULL;
2440
2441         insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2442         vma->vm_prev = NULL;
2443         do {
2444                 vma_rb_erase(vma, &mm->mm_rb);
2445                 mm->map_count--;
2446                 tail_vma = vma;
2447                 vma = vma->vm_next;
2448         } while (vma && vma->vm_start < end);
2449         *insertion_point = vma;
2450         if (vma) {
2451                 vma->vm_prev = prev;
2452                 vma_gap_update(vma);
2453         } else
2454                 mm->highest_vm_end = prev ? prev->vm_end : 0;
2455         tail_vma->vm_next = NULL;
2456
2457         /* Kill the cache */
2458         vmacache_invalidate(mm);
2459 }
2460
2461 /*
2462  * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
2463  * munmap path where it doesn't make sense to fail.
2464  */
2465 static int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2466               unsigned long addr, int new_below)
2467 {
2468         struct vm_area_struct *new;
2469         int err;
2470
2471         if (is_vm_hugetlb_page(vma) && (addr &
2472                                         ~(huge_page_mask(hstate_vma(vma)))))
2473                 return -EINVAL;
2474
2475         new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2476         if (!new)
2477                 return -ENOMEM;
2478
2479         /* most fields are the same, copy all, and then fixup */
2480         *new = *vma;
2481
2482         INIT_LIST_HEAD(&new->anon_vma_chain);
2483
2484         if (new_below)
2485                 new->vm_end = addr;
2486         else {
2487                 new->vm_start = addr;
2488                 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2489         }
2490
2491         err = vma_dup_policy(vma, new);
2492         if (err)
2493                 goto out_free_vma;
2494
2495         err = anon_vma_clone(new, vma);
2496         if (err)
2497                 goto out_free_mpol;
2498
2499         if (new->vm_file)
2500                 get_file(new->vm_file);
2501
2502         if (new->vm_ops && new->vm_ops->open)
2503                 new->vm_ops->open(new);
2504
2505         if (new_below)
2506                 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2507                         ((addr - new->vm_start) >> PAGE_SHIFT), new);
2508         else
2509                 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2510
2511         /* Success. */
2512         if (!err)
2513                 return 0;
2514
2515         /* Clean everything up if vma_adjust failed. */
2516         if (new->vm_ops && new->vm_ops->close)
2517                 new->vm_ops->close(new);
2518         if (new->vm_file)
2519                 fput(new->vm_file);
2520         unlink_anon_vmas(new);
2521  out_free_mpol:
2522         mpol_put(vma_policy(new));
2523  out_free_vma:
2524         kmem_cache_free(vm_area_cachep, new);
2525         return err;
2526 }
2527
2528 /*
2529  * Split a vma into two pieces at address 'addr', a new vma is allocated
2530  * either for the first part or the tail.
2531  */
2532 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2533               unsigned long addr, int new_below)
2534 {
2535         if (mm->map_count >= sysctl_max_map_count)
2536                 return -ENOMEM;
2537
2538         return __split_vma(mm, vma, addr, new_below);
2539 }
2540
2541 /* Munmap is split into 2 main parts -- this part which finds
2542  * what needs doing, and the areas themselves, which do the
2543  * work.  This now handles partial unmappings.
2544  * Jeremy Fitzhardinge <[email protected]>
2545  */
2546 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2547 {
2548         unsigned long end;
2549         struct vm_area_struct *vma, *prev, *last;
2550
2551         if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2552                 return -EINVAL;
2553
2554         len = PAGE_ALIGN(len);
2555         if (len == 0)
2556                 return -EINVAL;
2557
2558         /* Find the first overlapping VMA */
2559         vma = find_vma(mm, start);
2560         if (!vma)
2561                 return 0;
2562         prev = vma->vm_prev;
2563         /* we have  start < vma->vm_end  */
2564
2565         /* if it doesn't overlap, we have nothing.. */
2566         end = start + len;
2567         if (vma->vm_start >= end)
2568                 return 0;
2569
2570         /*
2571          * If we need to split any vma, do it now to save pain later.
2572          *
2573          * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2574          * unmapped vm_area_struct will remain in use: so lower split_vma
2575          * places tmp vma above, and higher split_vma places tmp vma below.
2576          */
2577         if (start > vma->vm_start) {
2578                 int error;
2579
2580                 /*
2581                  * Make sure that map_count on return from munmap() will
2582                  * not exceed its limit; but let map_count go just above
2583                  * its limit temporarily, to help free resources as expected.
2584                  */
2585                 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2586                         return -ENOMEM;
2587
2588                 error = __split_vma(mm, vma, start, 0);
2589                 if (error)
2590                         return error;
2591                 prev = vma;
2592         }
2593
2594         /* Does it split the last one? */
2595         last = find_vma(mm, end);
2596         if (last && end > last->vm_start) {
2597                 int error = __split_vma(mm, last, end, 1);
2598                 if (error)
2599                         return error;
2600         }
2601         vma = prev ? prev->vm_next : mm->mmap;
2602
2603         /*
2604          * unlock any mlock()ed ranges before detaching vmas
2605          */
2606         if (mm->locked_vm) {
2607                 struct vm_area_struct *tmp = vma;
2608                 while (tmp && tmp->vm_start < end) {
2609                         if (tmp->vm_flags & VM_LOCKED) {
2610                                 mm->locked_vm -= vma_pages(tmp);
2611                                 munlock_vma_pages_all(tmp);
2612                         }
2613                         tmp = tmp->vm_next;
2614                 }
2615         }
2616
2617         /*
2618          * Remove the vma's, and unmap the actual pages
2619          */
2620         detach_vmas_to_be_unmapped(mm, vma, prev, end);
2621         unmap_region(mm, vma, prev, start, end);
2622
2623         arch_unmap(mm, vma, start, end);
2624
2625         /* Fix up all other VM information */
2626         remove_vma_list(mm, vma);
2627
2628         return 0;
2629 }
2630
2631 int vm_munmap(unsigned long start, size_t len)
2632 {
2633         int ret;
2634         struct mm_struct *mm = current->mm;
2635
2636         down_write(&mm->mmap_sem);
2637         ret = do_munmap(mm, start, len);
2638         up_write(&mm->mmap_sem);
2639         return ret;
2640 }
2641 EXPORT_SYMBOL(vm_munmap);
2642
2643 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2644 {
2645         profile_munmap(addr);
2646         return vm_munmap(addr, len);
2647 }
2648
2649
2650 /*
2651  * Emulation of deprecated remap_file_pages() syscall.
2652  */
2653 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2654                 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2655 {
2656
2657         struct mm_struct *mm = current->mm;
2658         struct vm_area_struct *vma;
2659         unsigned long populate = 0;
2660         unsigned long ret = -EINVAL;
2661         struct file *file;
2662
2663         pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. "
2664                         "See Documentation/vm/remap_file_pages.txt.\n",
2665                         current->comm, current->pid);
2666
2667         if (prot)
2668                 return ret;
2669         start = start & PAGE_MASK;
2670         size = size & PAGE_MASK;
2671
2672         if (start + size <= start)
2673                 return ret;
2674
2675         /* Does pgoff wrap? */
2676         if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2677                 return ret;
2678
2679         down_write(&mm->mmap_sem);
2680         vma = find_vma(mm, start);
2681
2682         if (!vma || !(vma->vm_flags & VM_SHARED))
2683                 goto out;
2684
2685         if (start < vma->vm_start || start + size > vma->vm_end)
2686                 goto out;
2687
2688         if (pgoff == linear_page_index(vma, start)) {
2689                 ret = 0;
2690                 goto out;
2691         }
2692
2693         prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2694         prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2695         prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2696
2697         flags &= MAP_NONBLOCK;
2698         flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2699         if (vma->vm_flags & VM_LOCKED) {
2700                 flags |= MAP_LOCKED;
2701                 /* drop PG_Mlocked flag for over-mapped range */
2702                 munlock_vma_pages_range(vma, start, start + size);
2703         }
2704
2705         file = get_file(vma->vm_file);
2706         ret = do_mmap_pgoff(vma->vm_file, start, size,
2707                         prot, flags, pgoff, &populate);
2708         fput(file);
2709 out:
2710         up_write(&mm->mmap_sem);
2711         if (populate)
2712                 mm_populate(ret, populate);
2713         if (!IS_ERR_VALUE(ret))
2714                 ret = 0;
2715         return ret;
2716 }
2717
2718 static inline void verify_mm_writelocked(struct mm_struct *mm)
2719 {
2720 #ifdef CONFIG_DEBUG_VM
2721         if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2722                 WARN_ON(1);
2723                 up_read(&mm->mmap_sem);
2724         }
2725 #endif
2726 }
2727
2728 /*
2729  *  this is really a simplified "do_mmap".  it only handles
2730  *  anonymous maps.  eventually we may be able to do some
2731  *  brk-specific accounting here.
2732  */
2733 static unsigned long do_brk(unsigned long addr, unsigned long len)
2734 {
2735         struct mm_struct *mm = current->mm;
2736         struct vm_area_struct *vma, *prev;
2737         unsigned long flags;
2738         struct rb_node **rb_link, *rb_parent;
2739         pgoff_t pgoff = addr >> PAGE_SHIFT;
2740         int error;
2741
2742         len = PAGE_ALIGN(len);
2743         if (!len)
2744                 return addr;
2745
2746         flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2747
2748         error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2749         if (offset_in_page(error))
2750                 return error;
2751
2752         error = mlock_future_check(mm, mm->def_flags, len);
2753         if (error)
2754                 return error;
2755
2756         /*
2757          * mm->mmap_sem is required to protect against another thread
2758          * changing the mappings in case we sleep.
2759          */
2760         verify_mm_writelocked(mm);
2761
2762         /*
2763          * Clear old maps.  this also does some error checking for us
2764          */
2765         while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
2766                               &rb_parent)) {
2767                 if (do_munmap(mm, addr, len))
2768                         return -ENOMEM;
2769         }
2770
2771         /* Check against address space limits *after* clearing old maps... */
2772         if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2773                 return -ENOMEM;
2774
2775         if (mm->map_count > sysctl_max_map_count)
2776                 return -ENOMEM;
2777
2778         if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2779                 return -ENOMEM;
2780
2781         /* Can we just expand an old private anonymous mapping? */
2782         vma = vma_merge(mm, prev, addr, addr + len, flags,
2783                         NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
2784         if (vma)
2785                 goto out;
2786
2787         /*
2788          * create a vma struct for an anonymous mapping
2789          */
2790         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2791         if (!vma) {
2792                 vm_unacct_memory(len >> PAGE_SHIFT);
2793                 return -ENOMEM;
2794         }
2795
2796         INIT_LIST_HEAD(&vma->anon_vma_chain);
2797         vma->vm_mm = mm;
2798         vma->vm_start = addr;
2799         vma->vm_end = addr + len;
2800         vma->vm_pgoff = pgoff;
2801         vma->vm_flags = flags;
2802         vma->vm_page_prot = vm_get_page_prot(flags);
2803         vma_link(mm, vma, prev, rb_link, rb_parent);
2804 out:
2805         perf_event_mmap(vma);
2806         mm->total_vm += len >> PAGE_SHIFT;
2807         if (flags & VM_LOCKED)
2808                 mm->locked_vm += (len >> PAGE_SHIFT);
2809         vma->vm_flags |= VM_SOFTDIRTY;
2810         return addr;
2811 }
2812
2813 unsigned long vm_brk(unsigned long addr, unsigned long len)
2814 {
2815         struct mm_struct *mm = current->mm;
2816         unsigned long ret;
2817         bool populate;
2818
2819         down_write(&mm->mmap_sem);
2820         ret = do_brk(addr, len);
2821         populate = ((mm->def_flags & VM_LOCKED) != 0);
2822         up_write(&mm->mmap_sem);
2823         if (populate)
2824                 mm_populate(addr, len);
2825         return ret;
2826 }
2827 EXPORT_SYMBOL(vm_brk);
2828
2829 /* Release all mmaps. */
2830 void exit_mmap(struct mm_struct *mm)
2831 {
2832         struct mmu_gather tlb;
2833         struct vm_area_struct *vma;
2834         unsigned long nr_accounted = 0;
2835
2836         /* mm's last user has gone, and its about to be pulled down */
2837         mmu_notifier_release(mm);
2838
2839         if (mm->locked_vm) {
2840                 vma = mm->mmap;
2841                 while (vma) {
2842                         if (vma->vm_flags & VM_LOCKED)
2843                                 munlock_vma_pages_all(vma);
2844                         vma = vma->vm_next;
2845                 }
2846         }
2847
2848         arch_exit_mmap(mm);
2849
2850         vma = mm->mmap;
2851         if (!vma)       /* Can happen if dup_mmap() received an OOM */
2852                 return;
2853
2854         lru_add_drain();
2855         flush_cache_mm(mm);
2856         tlb_gather_mmu(&tlb, mm, 0, -1);
2857         /* update_hiwater_rss(mm) here? but nobody should be looking */
2858         /* Use -1 here to ensure all VMAs in the mm are unmapped */
2859         unmap_vmas(&tlb, vma, 0, -1);
2860
2861         free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2862         tlb_finish_mmu(&tlb, 0, -1);
2863
2864         /*
2865          * Walk the list again, actually closing and freeing it,
2866          * with preemption enabled, without holding any MM locks.
2867          */
2868         while (vma) {
2869                 if (vma->vm_flags & VM_ACCOUNT)
2870                         nr_accounted += vma_pages(vma);
2871                 vma = remove_vma(vma);
2872         }
2873         vm_unacct_memory(nr_accounted);
2874 }
2875
2876 /* Insert vm structure into process list sorted by address
2877  * and into the inode's i_mmap tree.  If vm_file is non-NULL
2878  * then i_mmap_rwsem is taken here.
2879  */
2880 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2881 {
2882         struct vm_area_struct *prev;
2883         struct rb_node **rb_link, *rb_parent;
2884
2885         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2886                            &prev, &rb_link, &rb_parent))
2887                 return -ENOMEM;
2888         if ((vma->vm_flags & VM_ACCOUNT) &&
2889              security_vm_enough_memory_mm(mm, vma_pages(vma)))
2890                 return -ENOMEM;
2891
2892         /*
2893          * The vm_pgoff of a purely anonymous vma should be irrelevant
2894          * until its first write fault, when page's anon_vma and index
2895          * are set.  But now set the vm_pgoff it will almost certainly
2896          * end up with (unless mremap moves it elsewhere before that
2897          * first wfault), so /proc/pid/maps tells a consistent story.
2898          *
2899          * By setting it to reflect the virtual start address of the
2900          * vma, merges and splits can happen in a seamless way, just
2901          * using the existing file pgoff checks and manipulations.
2902          * Similarly in do_mmap_pgoff and in do_brk.
2903          */
2904         if (vma_is_anonymous(vma)) {
2905                 BUG_ON(vma->anon_vma);
2906                 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2907         }
2908
2909         vma_link(mm, vma, prev, rb_link, rb_parent);
2910         return 0;
2911 }
2912
2913 /*
2914  * Copy the vma structure to a new location in the same mm,
2915  * prior to moving page table entries, to effect an mremap move.
2916  */
2917 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2918         unsigned long addr, unsigned long len, pgoff_t pgoff,
2919         bool *need_rmap_locks)
2920 {
2921         struct vm_area_struct *vma = *vmap;
2922         unsigned long vma_start = vma->vm_start;
2923         struct mm_struct *mm = vma->vm_mm;
2924         struct vm_area_struct *new_vma, *prev;
2925         struct rb_node **rb_link, *rb_parent;
2926         bool faulted_in_anon_vma = true;
2927
2928         /*
2929          * If anonymous vma has not yet been faulted, update new pgoff
2930          * to match new location, to increase its chance of merging.
2931          */
2932         if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
2933                 pgoff = addr >> PAGE_SHIFT;
2934                 faulted_in_anon_vma = false;
2935         }
2936
2937         if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2938                 return NULL;    /* should never get here */
2939         new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2940                             vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
2941                             vma->vm_userfaultfd_ctx);
2942         if (new_vma) {
2943                 /*
2944                  * Source vma may have been merged into new_vma
2945                  */
2946                 if (unlikely(vma_start >= new_vma->vm_start &&
2947                              vma_start < new_vma->vm_end)) {
2948                         /*
2949                          * The only way we can get a vma_merge with
2950                          * self during an mremap is if the vma hasn't
2951                          * been faulted in yet and we were allowed to
2952                          * reset the dst vma->vm_pgoff to the
2953                          * destination address of the mremap to allow
2954                          * the merge to happen. mremap must change the
2955                          * vm_pgoff linearity between src and dst vmas
2956                          * (in turn preventing a vma_merge) to be
2957                          * safe. It is only safe to keep the vm_pgoff
2958                          * linear if there are no pages mapped yet.
2959                          */
2960                         VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
2961                         *vmap = vma = new_vma;
2962                 }
2963                 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2964         } else {
2965                 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2966                 if (!new_vma)
2967                         goto out;
2968                 *new_vma = *vma;
2969                 new_vma->vm_start = addr;
2970                 new_vma->vm_end = addr + len;
2971                 new_vma->vm_pgoff = pgoff;
2972                 if (vma_dup_policy(vma, new_vma))
2973                         goto out_free_vma;
2974                 INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2975                 if (anon_vma_clone(new_vma, vma))
2976                         goto out_free_mempol;
2977                 if (new_vma->vm_file)
2978                         get_file(new_vma->vm_file);
2979                 if (new_vma->vm_ops && new_vma->vm_ops->open)
2980                         new_vma->vm_ops->open(new_vma);
2981                 vma_link(mm, new_vma, prev, rb_link, rb_parent);
2982                 *need_rmap_locks = false;
2983         }
2984         return new_vma;
2985
2986 out_free_mempol:
2987         mpol_put(vma_policy(new_vma));
2988 out_free_vma:
2989         kmem_cache_free(vm_area_cachep, new_vma);
2990 out:
2991         return NULL;
2992 }
2993
2994 /*
2995  * Return true if the calling process may expand its vm space by the passed
2996  * number of pages
2997  */
2998 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2999 {
3000         return mm->total_vm + npages <= rlimit(RLIMIT_AS) >> PAGE_SHIFT;
3001 }
3002
3003 static int special_mapping_fault(struct vm_area_struct *vma,
3004                                  struct vm_fault *vmf);
3005
3006 /*
3007  * Having a close hook prevents vma merging regardless of flags.
3008  */
3009 static void special_mapping_close(struct vm_area_struct *vma)
3010 {
3011 }
3012
3013 static const char *special_mapping_name(struct vm_area_struct *vma)
3014 {
3015         return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3016 }
3017
3018 static const struct vm_operations_struct special_mapping_vmops = {
3019         .close = special_mapping_close,
3020         .fault = special_mapping_fault,
3021         .name = special_mapping_name,
3022 };
3023
3024 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3025         .close = special_mapping_close,
3026         .fault = special_mapping_fault,
3027 };
3028
3029 static int special_mapping_fault(struct vm_area_struct *vma,
3030                                 struct vm_fault *vmf)
3031 {
3032         pgoff_t pgoff;
3033         struct page **pages;
3034
3035         if (vma->vm_ops == &legacy_special_mapping_vmops)
3036                 pages = vma->vm_private_data;
3037         else
3038                 pages = ((struct vm_special_mapping *)vma->vm_private_data)->
3039                         pages;
3040
3041         for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3042                 pgoff--;
3043
3044         if (*pages) {
3045                 struct page *page = *pages;
3046                 get_page(page);
3047                 vmf->page = page;
3048                 return 0;
3049         }
3050
3051         return VM_FAULT_SIGBUS;
3052 }
3053
3054 static struct vm_area_struct *__install_special_mapping(
3055         struct mm_struct *mm,
3056         unsigned long addr, unsigned long len,
3057         unsigned long vm_flags, void *priv,
3058         const struct vm_operations_struct *ops)
3059 {
3060         int ret;
3061         struct vm_area_struct *vma;
3062
3063         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
3064         if (unlikely(vma == NULL))
3065                 return ERR_PTR(-ENOMEM);
3066
3067         INIT_LIST_HEAD(&vma->anon_vma_chain);
3068         vma->vm_mm = mm;
3069         vma->vm_start = addr;
3070         vma->vm_end = addr + len;
3071
3072         vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3073         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3074
3075         vma->vm_ops = ops;
3076         vma->vm_private_data = priv;
3077
3078         ret = insert_vm_struct(mm, vma);
3079         if (ret)
3080                 goto out;
3081
3082         mm->total_vm += len >> PAGE_SHIFT;
3083
3084         perf_event_mmap(vma);
3085
3086         return vma;
3087
3088 out:
3089         kmem_cache_free(vm_area_cachep, vma);
3090         return ERR_PTR(ret);
3091 }
3092
3093 /*
3094  * Called with mm->mmap_sem held for writing.
3095  * Insert a new vma covering the given region, with the given flags.
3096  * Its pages are supplied by the given array of struct page *.
3097  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3098  * The region past the last page supplied will always produce SIGBUS.
3099  * The array pointer and the pages it points to are assumed to stay alive
3100  * for as long as this mapping might exist.
3101  */
3102 struct vm_area_struct *_install_special_mapping(
3103         struct mm_struct *mm,
3104         unsigned long addr, unsigned long len,
3105         unsigned long vm_flags, const struct vm_special_mapping *spec)
3106 {
3107         return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3108                                         &special_mapping_vmops);
3109 }
3110
3111 int install_special_mapping(struct mm_struct *mm,
3112                             unsigned long addr, unsigned long len,
3113                             unsigned long vm_flags, struct page **pages)
3114 {
3115         struct vm_area_struct *vma = __install_special_mapping(
3116                 mm, addr, len, vm_flags, (void *)pages,
3117                 &legacy_special_mapping_vmops);
3118
3119         return PTR_ERR_OR_ZERO(vma);
3120 }
3121
3122 static DEFINE_MUTEX(mm_all_locks_mutex);
3123
3124 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3125 {
3126         if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3127                 /*
3128                  * The LSB of head.next can't change from under us
3129                  * because we hold the mm_all_locks_mutex.
3130                  */
3131                 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3132                 /*
3133                  * We can safely modify head.next after taking the
3134                  * anon_vma->root->rwsem. If some other vma in this mm shares
3135                  * the same anon_vma we won't take it again.
3136                  *
3137                  * No need of atomic instructions here, head.next
3138                  * can't change from under us thanks to the
3139                  * anon_vma->root->rwsem.
3140                  */
3141                 if (__test_and_set_bit(0, (unsigned long *)
3142                                        &anon_vma->root->rb_root.rb_node))
3143                         BUG();
3144         }
3145 }
3146
3147 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3148 {
3149         if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3150                 /*
3151                  * AS_MM_ALL_LOCKS can't change from under us because
3152                  * we hold the mm_all_locks_mutex.
3153                  *
3154                  * Operations on ->flags have to be atomic because
3155                  * even if AS_MM_ALL_LOCKS is stable thanks to the
3156                  * mm_all_locks_mutex, there may be other cpus
3157                  * changing other bitflags in parallel to us.
3158                  */
3159                 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3160                         BUG();
3161                 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3162         }
3163 }
3164
3165 /*
3166  * This operation locks against the VM for all pte/vma/mm related
3167  * operations that could ever happen on a certain mm. This includes
3168  * vmtruncate, try_to_unmap, and all page faults.
3169  *
3170  * The caller must take the mmap_sem in write mode before calling
3171  * mm_take_all_locks(). The caller isn't allowed to release the
3172  * mmap_sem until mm_drop_all_locks() returns.
3173  *
3174  * mmap_sem in write mode is required in order to block all operations
3175  * that could modify pagetables and free pages without need of
3176  * altering the vma layout. It's also needed in write mode to avoid new
3177  * anon_vmas to be associated with existing vmas.
3178  *
3179  * A single task can't take more than one mm_take_all_locks() in a row
3180  * or it would deadlock.
3181  *
3182  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3183  * mapping->flags avoid to take the same lock twice, if more than one
3184  * vma in this mm is backed by the same anon_vma or address_space.
3185  *
3186  * We can take all the locks in random order because the VM code
3187  * taking i_mmap_rwsem or anon_vma->rwsem outside the mmap_sem never
3188  * takes more than one of them in a row. Secondly we're protected
3189  * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
3190  *
3191  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3192  * that may have to take thousand of locks.
3193  *
3194  * mm_take_all_locks() can fail if it's interrupted by signals.
3195  */
3196 int mm_take_all_locks(struct mm_struct *mm)
3197 {
3198         struct vm_area_struct *vma;
3199         struct anon_vma_chain *avc;
3200
3201         BUG_ON(down_read_trylock(&mm->mmap_sem));
3202
3203         mutex_lock(&mm_all_locks_mutex);
3204
3205         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3206                 if (signal_pending(current))
3207                         goto out_unlock;
3208                 if (vma->vm_file && vma->vm_file->f_mapping)
3209                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3210         }
3211
3212         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3213                 if (signal_pending(current))
3214                         goto out_unlock;
3215                 if (vma->anon_vma)
3216                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3217                                 vm_lock_anon_vma(mm, avc->anon_vma);
3218         }
3219
3220         return 0;
3221
3222 out_unlock:
3223         mm_drop_all_locks(mm);
3224         return -EINTR;
3225 }
3226
3227 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3228 {
3229         if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3230                 /*
3231                  * The LSB of head.next can't change to 0 from under
3232                  * us because we hold the mm_all_locks_mutex.
3233                  *
3234                  * We must however clear the bitflag before unlocking
3235                  * the vma so the users using the anon_vma->rb_root will
3236                  * never see our bitflag.
3237                  *
3238                  * No need of atomic instructions here, head.next
3239                  * can't change from under us until we release the
3240                  * anon_vma->root->rwsem.
3241                  */
3242                 if (!__test_and_clear_bit(0, (unsigned long *)
3243                                           &anon_vma->root->rb_root.rb_node))
3244                         BUG();
3245                 anon_vma_unlock_write(anon_vma);
3246         }
3247 }
3248
3249 static void vm_unlock_mapping(struct address_space *mapping)
3250 {
3251         if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3252                 /*
3253                  * AS_MM_ALL_LOCKS can't change to 0 from under us
3254                  * because we hold the mm_all_locks_mutex.
3255                  */
3256                 i_mmap_unlock_write(mapping);
3257                 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3258                                         &mapping->flags))
3259                         BUG();
3260         }
3261 }
3262
3263 /*
3264  * The mmap_sem cannot be released by the caller until
3265  * mm_drop_all_locks() returns.
3266  */
3267 void mm_drop_all_locks(struct mm_struct *mm)
3268 {
3269         struct vm_area_struct *vma;
3270         struct anon_vma_chain *avc;
3271
3272         BUG_ON(down_read_trylock(&mm->mmap_sem));
3273         BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3274
3275         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3276                 if (vma->anon_vma)
3277                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3278                                 vm_unlock_anon_vma(avc->anon_vma);
3279                 if (vma->vm_file && vma->vm_file->f_mapping)
3280                         vm_unlock_mapping(vma->vm_file->f_mapping);
3281         }
3282
3283         mutex_unlock(&mm_all_locks_mutex);
3284 }
3285
3286 /*
3287  * initialise the VMA slab
3288  */
3289 void __init mmap_init(void)
3290 {
3291         int ret;
3292
3293         ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3294         VM_BUG_ON(ret);
3295 }
3296
3297 /*
3298  * Initialise sysctl_user_reserve_kbytes.
3299  *
3300  * This is intended to prevent a user from starting a single memory hogging
3301  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3302  * mode.
3303  *
3304  * The default value is min(3% of free memory, 128MB)
3305  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3306  */
3307 static int init_user_reserve(void)
3308 {
3309         unsigned long free_kbytes;
3310
3311         free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3312
3313         sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3314         return 0;
3315 }
3316 subsys_initcall(init_user_reserve);
3317
3318 /*
3319  * Initialise sysctl_admin_reserve_kbytes.
3320  *
3321  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3322  * to log in and kill a memory hogging process.
3323  *
3324  * Systems with more than 256MB will reserve 8MB, enough to recover
3325  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3326  * only reserve 3% of free pages by default.
3327  */
3328 static int init_admin_reserve(void)
3329 {
3330         unsigned long free_kbytes;
3331
3332         free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3333
3334         sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3335         return 0;
3336 }
3337 subsys_initcall(init_admin_reserve);
3338
3339 /*
3340  * Reinititalise user and admin reserves if memory is added or removed.
3341  *
3342  * The default user reserve max is 128MB, and the default max for the
3343  * admin reserve is 8MB. These are usually, but not always, enough to
3344  * enable recovery from a memory hogging process using login/sshd, a shell,
3345  * and tools like top. It may make sense to increase or even disable the
3346  * reserve depending on the existence of swap or variations in the recovery
3347  * tools. So, the admin may have changed them.
3348  *
3349  * If memory is added and the reserves have been eliminated or increased above
3350  * the default max, then we'll trust the admin.
3351  *
3352  * If memory is removed and there isn't enough free memory, then we
3353  * need to reset the reserves.
3354  *
3355  * Otherwise keep the reserve set by the admin.
3356  */
3357 static int reserve_mem_notifier(struct notifier_block *nb,
3358                              unsigned long action, void *data)
3359 {
3360         unsigned long tmp, free_kbytes;
3361
3362         switch (action) {
3363         case MEM_ONLINE:
3364                 /* Default max is 128MB. Leave alone if modified by operator. */
3365                 tmp = sysctl_user_reserve_kbytes;
3366                 if (0 < tmp && tmp < (1UL << 17))
3367                         init_user_reserve();
3368
3369                 /* Default max is 8MB.  Leave alone if modified by operator. */
3370                 tmp = sysctl_admin_reserve_kbytes;
3371                 if (0 < tmp && tmp < (1UL << 13))
3372                         init_admin_reserve();
3373
3374                 break;
3375         case MEM_OFFLINE:
3376                 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3377
3378                 if (sysctl_user_reserve_kbytes > free_kbytes) {
3379                         init_user_reserve();
3380                         pr_info("vm.user_reserve_kbytes reset to %lu\n",
3381                                 sysctl_user_reserve_kbytes);
3382                 }
3383
3384                 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3385                         init_admin_reserve();
3386                         pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3387                                 sysctl_admin_reserve_kbytes);
3388                 }
3389                 break;
3390         default:
3391                 break;
3392         }
3393         return NOTIFY_OK;
3394 }
3395
3396 static struct notifier_block reserve_mem_nb = {
3397         .notifier_call = reserve_mem_notifier,
3398 };
3399
3400 static int __meminit init_reserve_notifier(void)
3401 {
3402         if (register_hotmemory_notifier(&reserve_mem_nb))
3403                 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3404
3405         return 0;
3406 }
3407 subsys_initcall(init_reserve_notifier);
This page took 0.229275 seconds and 4 git commands to generate.