]> Git Repo - linux.git/blob - include/net/tcp.h
Merge branch 'udp_tunnel-add-NIC-RX-port-offload-infrastructure'
[linux.git] / include / net / tcp.h
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET         An implementation of the TCP/IP protocol suite for the LINUX
4  *              operating system.  INET is implemented using the  BSD Socket
5  *              interface as the means of communication with the user level.
6  *
7  *              Definitions for the TCP module.
8  *
9  * Version:     @(#)tcp.h       1.0.5   05/23/93
10  *
11  * Authors:     Ross Biro
12  *              Fred N. van Kempen, <[email protected]>
13  */
14 #ifndef _TCP_H
15 #define _TCP_H
16
17 #define FASTRETRANS_DEBUG 1
18
19 #include <linux/list.h>
20 #include <linux/tcp.h>
21 #include <linux/bug.h>
22 #include <linux/slab.h>
23 #include <linux/cache.h>
24 #include <linux/percpu.h>
25 #include <linux/skbuff.h>
26 #include <linux/kref.h>
27 #include <linux/ktime.h>
28 #include <linux/indirect_call_wrapper.h>
29
30 #include <net/inet_connection_sock.h>
31 #include <net/inet_timewait_sock.h>
32 #include <net/inet_hashtables.h>
33 #include <net/checksum.h>
34 #include <net/request_sock.h>
35 #include <net/sock_reuseport.h>
36 #include <net/sock.h>
37 #include <net/snmp.h>
38 #include <net/ip.h>
39 #include <net/tcp_states.h>
40 #include <net/inet_ecn.h>
41 #include <net/dst.h>
42 #include <net/mptcp.h>
43
44 #include <linux/seq_file.h>
45 #include <linux/memcontrol.h>
46 #include <linux/bpf-cgroup.h>
47 #include <linux/siphash.h>
48
49 extern struct inet_hashinfo tcp_hashinfo;
50
51 extern struct percpu_counter tcp_orphan_count;
52 void tcp_time_wait(struct sock *sk, int state, int timeo);
53
54 #define MAX_TCP_HEADER  L1_CACHE_ALIGN(128 + MAX_HEADER)
55 #define MAX_TCP_OPTION_SPACE 40
56 #define TCP_MIN_SND_MSS         48
57 #define TCP_MIN_GSO_SIZE        (TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
58
59 /*
60  * Never offer a window over 32767 without using window scaling. Some
61  * poor stacks do signed 16bit maths!
62  */
63 #define MAX_TCP_WINDOW          32767U
64
65 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
66 #define TCP_MIN_MSS             88U
67
68 /* The initial MTU to use for probing */
69 #define TCP_BASE_MSS            1024
70
71 /* probing interval, default to 10 minutes as per RFC4821 */
72 #define TCP_PROBE_INTERVAL      600
73
74 /* Specify interval when tcp mtu probing will stop */
75 #define TCP_PROBE_THRESHOLD     8
76
77 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
78 #define TCP_FASTRETRANS_THRESH 3
79
80 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
81 #define TCP_MAX_QUICKACKS       16U
82
83 /* Maximal number of window scale according to RFC1323 */
84 #define TCP_MAX_WSCALE          14U
85
86 /* urg_data states */
87 #define TCP_URG_VALID   0x0100
88 #define TCP_URG_NOTYET  0x0200
89 #define TCP_URG_READ    0x0400
90
91 #define TCP_RETR1       3       /*
92                                  * This is how many retries it does before it
93                                  * tries to figure out if the gateway is
94                                  * down. Minimal RFC value is 3; it corresponds
95                                  * to ~3sec-8min depending on RTO.
96                                  */
97
98 #define TCP_RETR2       15      /*
99                                  * This should take at least
100                                  * 90 minutes to time out.
101                                  * RFC1122 says that the limit is 100 sec.
102                                  * 15 is ~13-30min depending on RTO.
103                                  */
104
105 #define TCP_SYN_RETRIES  6      /* This is how many retries are done
106                                  * when active opening a connection.
107                                  * RFC1122 says the minimum retry MUST
108                                  * be at least 180secs.  Nevertheless
109                                  * this value is corresponding to
110                                  * 63secs of retransmission with the
111                                  * current initial RTO.
112                                  */
113
114 #define TCP_SYNACK_RETRIES 5    /* This is how may retries are done
115                                  * when passive opening a connection.
116                                  * This is corresponding to 31secs of
117                                  * retransmission with the current
118                                  * initial RTO.
119                                  */
120
121 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
122                                   * state, about 60 seconds     */
123 #define TCP_FIN_TIMEOUT TCP_TIMEWAIT_LEN
124                                  /* BSD style FIN_WAIT2 deadlock breaker.
125                                   * It used to be 3min, new value is 60sec,
126                                   * to combine FIN-WAIT-2 timeout with
127                                   * TIME-WAIT timer.
128                                   */
129 #define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */
130
131 #define TCP_DELACK_MAX  ((unsigned)(HZ/5))      /* maximal time to delay before sending an ACK */
132 #if HZ >= 100
133 #define TCP_DELACK_MIN  ((unsigned)(HZ/25))     /* minimal time to delay before sending an ACK */
134 #define TCP_ATO_MIN     ((unsigned)(HZ/25))
135 #else
136 #define TCP_DELACK_MIN  4U
137 #define TCP_ATO_MIN     4U
138 #endif
139 #define TCP_RTO_MAX     ((unsigned)(120*HZ))
140 #define TCP_RTO_MIN     ((unsigned)(HZ/5))
141 #define TCP_TIMEOUT_MIN (2U) /* Min timeout for TCP timers in jiffies */
142 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))     /* RFC6298 2.1 initial RTO value        */
143 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ)) /* RFC 1122 initial RTO value, now
144                                                  * used as a fallback RTO for the
145                                                  * initial data transmission if no
146                                                  * valid RTT sample has been acquired,
147                                                  * most likely due to retrans in 3WHS.
148                                                  */
149
150 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
151                                                          * for local resources.
152                                                          */
153 #define TCP_KEEPALIVE_TIME      (120*60*HZ)     /* two hours */
154 #define TCP_KEEPALIVE_PROBES    9               /* Max of 9 keepalive probes    */
155 #define TCP_KEEPALIVE_INTVL     (75*HZ)
156
157 #define MAX_TCP_KEEPIDLE        32767
158 #define MAX_TCP_KEEPINTVL       32767
159 #define MAX_TCP_KEEPCNT         127
160 #define MAX_TCP_SYNCNT          127
161
162 #define TCP_SYNQ_INTERVAL       (HZ/5)  /* Period of SYNACK timer */
163
164 #define TCP_PAWS_24DAYS (60 * 60 * 24 * 24)
165 #define TCP_PAWS_MSL    60              /* Per-host timestamps are invalidated
166                                          * after this time. It should be equal
167                                          * (or greater than) TCP_TIMEWAIT_LEN
168                                          * to provide reliability equal to one
169                                          * provided by timewait state.
170                                          */
171 #define TCP_PAWS_WINDOW 1               /* Replay window for per-host
172                                          * timestamps. It must be less than
173                                          * minimal timewait lifetime.
174                                          */
175 /*
176  *      TCP option
177  */
178
179 #define TCPOPT_NOP              1       /* Padding */
180 #define TCPOPT_EOL              0       /* End of options */
181 #define TCPOPT_MSS              2       /* Segment size negotiating */
182 #define TCPOPT_WINDOW           3       /* Window scaling */
183 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
184 #define TCPOPT_SACK             5       /* SACK Block */
185 #define TCPOPT_TIMESTAMP        8       /* Better RTT estimations/PAWS */
186 #define TCPOPT_MD5SIG           19      /* MD5 Signature (RFC2385) */
187 #define TCPOPT_MPTCP            30      /* Multipath TCP (RFC6824) */
188 #define TCPOPT_FASTOPEN         34      /* Fast open (RFC7413) */
189 #define TCPOPT_EXP              254     /* Experimental */
190 /* Magic number to be after the option value for sharing TCP
191  * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
192  */
193 #define TCPOPT_FASTOPEN_MAGIC   0xF989
194 #define TCPOPT_SMC_MAGIC        0xE2D4C3D9
195
196 /*
197  *     TCP option lengths
198  */
199
200 #define TCPOLEN_MSS            4
201 #define TCPOLEN_WINDOW         3
202 #define TCPOLEN_SACK_PERM      2
203 #define TCPOLEN_TIMESTAMP      10
204 #define TCPOLEN_MD5SIG         18
205 #define TCPOLEN_FASTOPEN_BASE  2
206 #define TCPOLEN_EXP_FASTOPEN_BASE  4
207 #define TCPOLEN_EXP_SMC_BASE   6
208
209 /* But this is what stacks really send out. */
210 #define TCPOLEN_TSTAMP_ALIGNED          12
211 #define TCPOLEN_WSCALE_ALIGNED          4
212 #define TCPOLEN_SACKPERM_ALIGNED        4
213 #define TCPOLEN_SACK_BASE               2
214 #define TCPOLEN_SACK_BASE_ALIGNED       4
215 #define TCPOLEN_SACK_PERBLOCK           8
216 #define TCPOLEN_MD5SIG_ALIGNED          20
217 #define TCPOLEN_MSS_ALIGNED             4
218 #define TCPOLEN_EXP_SMC_BASE_ALIGNED    8
219
220 /* Flags in tp->nonagle */
221 #define TCP_NAGLE_OFF           1       /* Nagle's algo is disabled */
222 #define TCP_NAGLE_CORK          2       /* Socket is corked         */
223 #define TCP_NAGLE_PUSH          4       /* Cork is overridden for already queued data */
224
225 /* TCP thin-stream limits */
226 #define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
227
228 /* TCP initial congestion window as per rfc6928 */
229 #define TCP_INIT_CWND           10
230
231 /* Bit Flags for sysctl_tcp_fastopen */
232 #define TFO_CLIENT_ENABLE       1
233 #define TFO_SERVER_ENABLE       2
234 #define TFO_CLIENT_NO_COOKIE    4       /* Data in SYN w/o cookie option */
235
236 /* Accept SYN data w/o any cookie option */
237 #define TFO_SERVER_COOKIE_NOT_REQD      0x200
238
239 /* Force enable TFO on all listeners, i.e., not requiring the
240  * TCP_FASTOPEN socket option.
241  */
242 #define TFO_SERVER_WO_SOCKOPT1  0x400
243
244
245 /* sysctl variables for tcp */
246 extern int sysctl_tcp_max_orphans;
247 extern long sysctl_tcp_mem[3];
248
249 #define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
250 #define TCP_RACK_STATIC_REO_WND  0x2 /* Use static RACK reo wnd */
251 #define TCP_RACK_NO_DUPTHRESH    0x4 /* Do not use DUPACK threshold in RACK */
252
253 extern atomic_long_t tcp_memory_allocated;
254 extern struct percpu_counter tcp_sockets_allocated;
255 extern unsigned long tcp_memory_pressure;
256
257 /* optimized version of sk_under_memory_pressure() for TCP sockets */
258 static inline bool tcp_under_memory_pressure(const struct sock *sk)
259 {
260         if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
261             mem_cgroup_under_socket_pressure(sk->sk_memcg))
262                 return true;
263
264         return READ_ONCE(tcp_memory_pressure);
265 }
266 /*
267  * The next routines deal with comparing 32 bit unsigned ints
268  * and worry about wraparound (automatic with unsigned arithmetic).
269  */
270
271 static inline bool before(__u32 seq1, __u32 seq2)
272 {
273         return (__s32)(seq1-seq2) < 0;
274 }
275 #define after(seq2, seq1)       before(seq1, seq2)
276
277 /* is s2<=s1<=s3 ? */
278 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
279 {
280         return seq3 - seq2 >= seq1 - seq2;
281 }
282
283 static inline bool tcp_out_of_memory(struct sock *sk)
284 {
285         if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
286             sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
287                 return true;
288         return false;
289 }
290
291 void sk_forced_mem_schedule(struct sock *sk, int size);
292
293 static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
294 {
295         struct percpu_counter *ocp = sk->sk_prot->orphan_count;
296         int orphans = percpu_counter_read_positive(ocp);
297
298         if (orphans << shift > sysctl_tcp_max_orphans) {
299                 orphans = percpu_counter_sum_positive(ocp);
300                 if (orphans << shift > sysctl_tcp_max_orphans)
301                         return true;
302         }
303         return false;
304 }
305
306 bool tcp_check_oom(struct sock *sk, int shift);
307
308
309 extern struct proto tcp_prot;
310
311 #define TCP_INC_STATS(net, field)       SNMP_INC_STATS((net)->mib.tcp_statistics, field)
312 #define __TCP_INC_STATS(net, field)     __SNMP_INC_STATS((net)->mib.tcp_statistics, field)
313 #define TCP_DEC_STATS(net, field)       SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
314 #define TCP_ADD_STATS(net, field, val)  SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
315
316 void tcp_tasklet_init(void);
317
318 int tcp_v4_err(struct sk_buff *skb, u32);
319
320 void tcp_shutdown(struct sock *sk, int how);
321
322 int tcp_v4_early_demux(struct sk_buff *skb);
323 int tcp_v4_rcv(struct sk_buff *skb);
324
325 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
326 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
327 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
328 int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
329                  int flags);
330 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
331                         size_t size, int flags);
332 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
333                  size_t size, int flags);
334 int tcp_send_mss(struct sock *sk, int *size_goal, int flags);
335 void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle,
336               int size_goal);
337 void tcp_release_cb(struct sock *sk);
338 void tcp_wfree(struct sk_buff *skb);
339 void tcp_write_timer_handler(struct sock *sk);
340 void tcp_delack_timer_handler(struct sock *sk);
341 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
342 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
343 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
344 void tcp_rcv_space_adjust(struct sock *sk);
345 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
346 void tcp_twsk_destructor(struct sock *sk);
347 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
348                         struct pipe_inode_info *pipe, size_t len,
349                         unsigned int flags);
350
351 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks);
352 static inline void tcp_dec_quickack_mode(struct sock *sk,
353                                          const unsigned int pkts)
354 {
355         struct inet_connection_sock *icsk = inet_csk(sk);
356
357         if (icsk->icsk_ack.quick) {
358                 if (pkts >= icsk->icsk_ack.quick) {
359                         icsk->icsk_ack.quick = 0;
360                         /* Leaving quickack mode we deflate ATO. */
361                         icsk->icsk_ack.ato   = TCP_ATO_MIN;
362                 } else
363                         icsk->icsk_ack.quick -= pkts;
364         }
365 }
366
367 #define TCP_ECN_OK              1
368 #define TCP_ECN_QUEUE_CWR       2
369 #define TCP_ECN_DEMAND_CWR      4
370 #define TCP_ECN_SEEN            8
371
372 enum tcp_tw_status {
373         TCP_TW_SUCCESS = 0,
374         TCP_TW_RST = 1,
375         TCP_TW_ACK = 2,
376         TCP_TW_SYN = 3
377 };
378
379
380 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
381                                               struct sk_buff *skb,
382                                               const struct tcphdr *th);
383 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
384                            struct request_sock *req, bool fastopen,
385                            bool *lost_race);
386 int tcp_child_process(struct sock *parent, struct sock *child,
387                       struct sk_buff *skb);
388 void tcp_enter_loss(struct sock *sk);
389 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag);
390 void tcp_clear_retrans(struct tcp_sock *tp);
391 void tcp_update_metrics(struct sock *sk);
392 void tcp_init_metrics(struct sock *sk);
393 void tcp_metrics_init(void);
394 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
395 void tcp_close(struct sock *sk, long timeout);
396 void tcp_init_sock(struct sock *sk);
397 void tcp_init_transfer(struct sock *sk, int bpf_op);
398 __poll_t tcp_poll(struct file *file, struct socket *sock,
399                       struct poll_table_struct *wait);
400 int tcp_getsockopt(struct sock *sk, int level, int optname,
401                    char __user *optval, int __user *optlen);
402 int tcp_setsockopt(struct sock *sk, int level, int optname,
403                    char __user *optval, unsigned int optlen);
404 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
405                           char __user *optval, int __user *optlen);
406 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
407                           char __user *optval, unsigned int optlen);
408 void tcp_set_keepalive(struct sock *sk, int val);
409 void tcp_syn_ack_timeout(const struct request_sock *req);
410 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
411                 int flags, int *addr_len);
412 int tcp_set_rcvlowat(struct sock *sk, int val);
413 void tcp_data_ready(struct sock *sk);
414 #ifdef CONFIG_MMU
415 int tcp_mmap(struct file *file, struct socket *sock,
416              struct vm_area_struct *vma);
417 #endif
418 void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
419                        struct tcp_options_received *opt_rx,
420                        int estab, struct tcp_fastopen_cookie *foc);
421 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
422
423 /*
424  *      BPF SKB-less helpers
425  */
426 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
427                          struct tcphdr *th, u32 *cookie);
428 u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph,
429                          struct tcphdr *th, u32 *cookie);
430 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
431                           const struct tcp_request_sock_ops *af_ops,
432                           struct sock *sk, struct tcphdr *th);
433 /*
434  *      TCP v4 functions exported for the inet6 API
435  */
436
437 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
438 void tcp_v4_mtu_reduced(struct sock *sk);
439 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
440 void tcp_ld_RTO_revert(struct sock *sk, u32 seq);
441 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
442 struct sock *tcp_create_openreq_child(const struct sock *sk,
443                                       struct request_sock *req,
444                                       struct sk_buff *skb);
445 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
446 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
447                                   struct request_sock *req,
448                                   struct dst_entry *dst,
449                                   struct request_sock *req_unhash,
450                                   bool *own_req);
451 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
452 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
453 int tcp_connect(struct sock *sk);
454 enum tcp_synack_type {
455         TCP_SYNACK_NORMAL,
456         TCP_SYNACK_FASTOPEN,
457         TCP_SYNACK_COOKIE,
458 };
459 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
460                                 struct request_sock *req,
461                                 struct tcp_fastopen_cookie *foc,
462                                 enum tcp_synack_type synack_type);
463 int tcp_disconnect(struct sock *sk, int flags);
464
465 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
466 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
467 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
468
469 /* From syncookies.c */
470 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
471                                  struct request_sock *req,
472                                  struct dst_entry *dst, u32 tsoff);
473 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
474                       u32 cookie);
475 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
476 #ifdef CONFIG_SYN_COOKIES
477
478 /* Syncookies use a monotonic timer which increments every 60 seconds.
479  * This counter is used both as a hash input and partially encoded into
480  * the cookie value.  A cookie is only validated further if the delta
481  * between the current counter value and the encoded one is less than this,
482  * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
483  * the counter advances immediately after a cookie is generated).
484  */
485 #define MAX_SYNCOOKIE_AGE       2
486 #define TCP_SYNCOOKIE_PERIOD    (60 * HZ)
487 #define TCP_SYNCOOKIE_VALID     (MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
488
489 /* syncookies: remember time of last synqueue overflow
490  * But do not dirty this field too often (once per second is enough)
491  * It is racy as we do not hold a lock, but race is very minor.
492  */
493 static inline void tcp_synq_overflow(const struct sock *sk)
494 {
495         unsigned int last_overflow;
496         unsigned int now = jiffies;
497
498         if (sk->sk_reuseport) {
499                 struct sock_reuseport *reuse;
500
501                 reuse = rcu_dereference(sk->sk_reuseport_cb);
502                 if (likely(reuse)) {
503                         last_overflow = READ_ONCE(reuse->synq_overflow_ts);
504                         if (!time_between32(now, last_overflow,
505                                             last_overflow + HZ))
506                                 WRITE_ONCE(reuse->synq_overflow_ts, now);
507                         return;
508                 }
509         }
510
511         last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
512         if (!time_between32(now, last_overflow, last_overflow + HZ))
513                 WRITE_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp, now);
514 }
515
516 /* syncookies: no recent synqueue overflow on this listening socket? */
517 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
518 {
519         unsigned int last_overflow;
520         unsigned int now = jiffies;
521
522         if (sk->sk_reuseport) {
523                 struct sock_reuseport *reuse;
524
525                 reuse = rcu_dereference(sk->sk_reuseport_cb);
526                 if (likely(reuse)) {
527                         last_overflow = READ_ONCE(reuse->synq_overflow_ts);
528                         return !time_between32(now, last_overflow - HZ,
529                                                last_overflow +
530                                                TCP_SYNCOOKIE_VALID);
531                 }
532         }
533
534         last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
535
536         /* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID,
537          * then we're under synflood. However, we have to use
538          * 'last_overflow - HZ' as lower bound. That's because a concurrent
539          * tcp_synq_overflow() could update .ts_recent_stamp after we read
540          * jiffies but before we store .ts_recent_stamp into last_overflow,
541          * which could lead to rejecting a valid syncookie.
542          */
543         return !time_between32(now, last_overflow - HZ,
544                                last_overflow + TCP_SYNCOOKIE_VALID);
545 }
546
547 static inline u32 tcp_cookie_time(void)
548 {
549         u64 val = get_jiffies_64();
550
551         do_div(val, TCP_SYNCOOKIE_PERIOD);
552         return val;
553 }
554
555 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
556                               u16 *mssp);
557 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
558 u64 cookie_init_timestamp(struct request_sock *req, u64 now);
559 bool cookie_timestamp_decode(const struct net *net,
560                              struct tcp_options_received *opt);
561 bool cookie_ecn_ok(const struct tcp_options_received *opt,
562                    const struct net *net, const struct dst_entry *dst);
563
564 /* From net/ipv6/syncookies.c */
565 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
566                       u32 cookie);
567 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
568
569 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
570                               const struct tcphdr *th, u16 *mssp);
571 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
572 #endif
573 /* tcp_output.c */
574
575 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
576                                int nonagle);
577 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
578 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
579 void tcp_retransmit_timer(struct sock *sk);
580 void tcp_xmit_retransmit_queue(struct sock *);
581 void tcp_simple_retransmit(struct sock *);
582 void tcp_enter_recovery(struct sock *sk, bool ece_ack);
583 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
584 enum tcp_queue {
585         TCP_FRAG_IN_WRITE_QUEUE,
586         TCP_FRAG_IN_RTX_QUEUE,
587 };
588 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
589                  struct sk_buff *skb, u32 len,
590                  unsigned int mss_now, gfp_t gfp);
591
592 void tcp_send_probe0(struct sock *);
593 void tcp_send_partial(struct sock *);
594 int tcp_write_wakeup(struct sock *, int mib);
595 void tcp_send_fin(struct sock *sk);
596 void tcp_send_active_reset(struct sock *sk, gfp_t priority);
597 int tcp_send_synack(struct sock *);
598 void tcp_push_one(struct sock *, unsigned int mss_now);
599 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
600 void tcp_send_ack(struct sock *sk);
601 void tcp_send_delayed_ack(struct sock *sk);
602 void tcp_send_loss_probe(struct sock *sk);
603 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
604 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
605                              const struct sk_buff *next_skb);
606
607 /* tcp_input.c */
608 void tcp_rearm_rto(struct sock *sk);
609 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
610 void tcp_reset(struct sock *sk);
611 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
612 void tcp_fin(struct sock *sk);
613
614 /* tcp_timer.c */
615 void tcp_init_xmit_timers(struct sock *);
616 static inline void tcp_clear_xmit_timers(struct sock *sk)
617 {
618         if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
619                 __sock_put(sk);
620
621         if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
622                 __sock_put(sk);
623
624         inet_csk_clear_xmit_timers(sk);
625 }
626
627 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
628 unsigned int tcp_current_mss(struct sock *sk);
629
630 /* Bound MSS / TSO packet size with the half of the window */
631 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
632 {
633         int cutoff;
634
635         /* When peer uses tiny windows, there is no use in packetizing
636          * to sub-MSS pieces for the sake of SWS or making sure there
637          * are enough packets in the pipe for fast recovery.
638          *
639          * On the other hand, for extremely large MSS devices, handling
640          * smaller than MSS windows in this way does make sense.
641          */
642         if (tp->max_window > TCP_MSS_DEFAULT)
643                 cutoff = (tp->max_window >> 1);
644         else
645                 cutoff = tp->max_window;
646
647         if (cutoff && pktsize > cutoff)
648                 return max_t(int, cutoff, 68U - tp->tcp_header_len);
649         else
650                 return pktsize;
651 }
652
653 /* tcp.c */
654 void tcp_get_info(struct sock *, struct tcp_info *);
655
656 /* Read 'sendfile()'-style from a TCP socket */
657 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
658                   sk_read_actor_t recv_actor);
659
660 void tcp_initialize_rcv_mss(struct sock *sk);
661
662 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
663 int tcp_mss_to_mtu(struct sock *sk, int mss);
664 void tcp_mtup_init(struct sock *sk);
665
666 static inline void tcp_bound_rto(const struct sock *sk)
667 {
668         if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
669                 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
670 }
671
672 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
673 {
674         return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
675 }
676
677 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
678 {
679         tp->pred_flags = htonl((tp->tcp_header_len << 26) |
680                                ntohl(TCP_FLAG_ACK) |
681                                snd_wnd);
682 }
683
684 static inline void tcp_fast_path_on(struct tcp_sock *tp)
685 {
686         __tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
687 }
688
689 static inline void tcp_fast_path_check(struct sock *sk)
690 {
691         struct tcp_sock *tp = tcp_sk(sk);
692
693         if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
694             tp->rcv_wnd &&
695             atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
696             !tp->urg_data)
697                 tcp_fast_path_on(tp);
698 }
699
700 /* Compute the actual rto_min value */
701 static inline u32 tcp_rto_min(struct sock *sk)
702 {
703         const struct dst_entry *dst = __sk_dst_get(sk);
704         u32 rto_min = TCP_RTO_MIN;
705
706         if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
707                 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
708         return rto_min;
709 }
710
711 static inline u32 tcp_rto_min_us(struct sock *sk)
712 {
713         return jiffies_to_usecs(tcp_rto_min(sk));
714 }
715
716 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
717 {
718         return dst_metric_locked(dst, RTAX_CC_ALGO);
719 }
720
721 /* Minimum RTT in usec. ~0 means not available. */
722 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
723 {
724         return minmax_get(&tp->rtt_min);
725 }
726
727 /* Compute the actual receive window we are currently advertising.
728  * Rcv_nxt can be after the window if our peer push more data
729  * than the offered window.
730  */
731 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
732 {
733         s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
734
735         if (win < 0)
736                 win = 0;
737         return (u32) win;
738 }
739
740 /* Choose a new window, without checks for shrinking, and without
741  * scaling applied to the result.  The caller does these things
742  * if necessary.  This is a "raw" window selection.
743  */
744 u32 __tcp_select_window(struct sock *sk);
745
746 void tcp_send_window_probe(struct sock *sk);
747
748 /* TCP uses 32bit jiffies to save some space.
749  * Note that this is different from tcp_time_stamp, which
750  * historically has been the same until linux-4.13.
751  */
752 #define tcp_jiffies32 ((u32)jiffies)
753
754 /*
755  * Deliver a 32bit value for TCP timestamp option (RFC 7323)
756  * It is no longer tied to jiffies, but to 1 ms clock.
757  * Note: double check if you want to use tcp_jiffies32 instead of this.
758  */
759 #define TCP_TS_HZ       1000
760
761 static inline u64 tcp_clock_ns(void)
762 {
763         return ktime_get_ns();
764 }
765
766 static inline u64 tcp_clock_us(void)
767 {
768         return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
769 }
770
771 /* This should only be used in contexts where tp->tcp_mstamp is up to date */
772 static inline u32 tcp_time_stamp(const struct tcp_sock *tp)
773 {
774         return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ);
775 }
776
777 /* Convert a nsec timestamp into TCP TSval timestamp (ms based currently) */
778 static inline u32 tcp_ns_to_ts(u64 ns)
779 {
780         return div_u64(ns, NSEC_PER_SEC / TCP_TS_HZ);
781 }
782
783 /* Could use tcp_clock_us() / 1000, but this version uses a single divide */
784 static inline u32 tcp_time_stamp_raw(void)
785 {
786         return tcp_ns_to_ts(tcp_clock_ns());
787 }
788
789 void tcp_mstamp_refresh(struct tcp_sock *tp);
790
791 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
792 {
793         return max_t(s64, t1 - t0, 0);
794 }
795
796 static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
797 {
798         return tcp_ns_to_ts(skb->skb_mstamp_ns);
799 }
800
801 /* provide the departure time in us unit */
802 static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
803 {
804         return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
805 }
806
807
808 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
809
810 #define TCPHDR_FIN 0x01
811 #define TCPHDR_SYN 0x02
812 #define TCPHDR_RST 0x04
813 #define TCPHDR_PSH 0x08
814 #define TCPHDR_ACK 0x10
815 #define TCPHDR_URG 0x20
816 #define TCPHDR_ECE 0x40
817 #define TCPHDR_CWR 0x80
818
819 #define TCPHDR_SYN_ECN  (TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
820
821 /* This is what the send packet queuing engine uses to pass
822  * TCP per-packet control information to the transmission code.
823  * We also store the host-order sequence numbers in here too.
824  * This is 44 bytes if IPV6 is enabled.
825  * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
826  */
827 struct tcp_skb_cb {
828         __u32           seq;            /* Starting sequence number     */
829         __u32           end_seq;        /* SEQ + FIN + SYN + datalen    */
830         union {
831                 /* Note : tcp_tw_isn is used in input path only
832                  *        (isn chosen by tcp_timewait_state_process())
833                  *
834                  *        tcp_gso_segs/size are used in write queue only,
835                  *        cf tcp_skb_pcount()/tcp_skb_mss()
836                  */
837                 __u32           tcp_tw_isn;
838                 struct {
839                         u16     tcp_gso_segs;
840                         u16     tcp_gso_size;
841                 };
842         };
843         __u8            tcp_flags;      /* TCP header flags. (tcp[13])  */
844
845         __u8            sacked;         /* State flags for SACK.        */
846 #define TCPCB_SACKED_ACKED      0x01    /* SKB ACK'd by a SACK block    */
847 #define TCPCB_SACKED_RETRANS    0x02    /* SKB retransmitted            */
848 #define TCPCB_LOST              0x04    /* SKB is lost                  */
849 #define TCPCB_TAGBITS           0x07    /* All tag bits                 */
850 #define TCPCB_REPAIRED          0x10    /* SKB repaired (no skb_mstamp_ns)      */
851 #define TCPCB_EVER_RETRANS      0x80    /* Ever retransmitted frame     */
852 #define TCPCB_RETRANS           (TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
853                                 TCPCB_REPAIRED)
854
855         __u8            ip_dsfield;     /* IPv4 tos or IPv6 dsfield     */
856         __u8            txstamp_ack:1,  /* Record TX timestamp for ack? */
857                         eor:1,          /* Is skb MSG_EOR marked? */
858                         has_rxtstamp:1, /* SKB has a RX timestamp       */
859                         unused:5;
860         __u32           ack_seq;        /* Sequence number ACK'd        */
861         union {
862                 struct {
863                         /* There is space for up to 24 bytes */
864                         __u32 in_flight:30,/* Bytes in flight at transmit */
865                               is_app_limited:1, /* cwnd not fully used? */
866                               unused:1;
867                         /* pkts S/ACKed so far upon tx of skb, incl retrans: */
868                         __u32 delivered;
869                         /* start of send pipeline phase */
870                         u64 first_tx_mstamp;
871                         /* when we reached the "delivered" count */
872                         u64 delivered_mstamp;
873                 } tx;   /* only used for outgoing skbs */
874                 union {
875                         struct inet_skb_parm    h4;
876 #if IS_ENABLED(CONFIG_IPV6)
877                         struct inet6_skb_parm   h6;
878 #endif
879                 } header;       /* For incoming skbs */
880                 struct {
881                         __u32 flags;
882                         struct sock *sk_redir;
883                         void *data_end;
884                 } bpf;
885         };
886 };
887
888 #define TCP_SKB_CB(__skb)       ((struct tcp_skb_cb *)&((__skb)->cb[0]))
889
890 static inline void bpf_compute_data_end_sk_skb(struct sk_buff *skb)
891 {
892         TCP_SKB_CB(skb)->bpf.data_end = skb->data + skb_headlen(skb);
893 }
894
895 static inline bool tcp_skb_bpf_ingress(const struct sk_buff *skb)
896 {
897         return TCP_SKB_CB(skb)->bpf.flags & BPF_F_INGRESS;
898 }
899
900 static inline struct sock *tcp_skb_bpf_redirect_fetch(struct sk_buff *skb)
901 {
902         return TCP_SKB_CB(skb)->bpf.sk_redir;
903 }
904
905 static inline void tcp_skb_bpf_redirect_clear(struct sk_buff *skb)
906 {
907         TCP_SKB_CB(skb)->bpf.sk_redir = NULL;
908 }
909
910 extern const struct inet_connection_sock_af_ops ipv4_specific;
911
912 #if IS_ENABLED(CONFIG_IPV6)
913 /* This is the variant of inet6_iif() that must be used by TCP,
914  * as TCP moves IP6CB into a different location in skb->cb[]
915  */
916 static inline int tcp_v6_iif(const struct sk_buff *skb)
917 {
918         return TCP_SKB_CB(skb)->header.h6.iif;
919 }
920
921 static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
922 {
923         bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
924
925         return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
926 }
927
928 /* TCP_SKB_CB reference means this can not be used from early demux */
929 static inline int tcp_v6_sdif(const struct sk_buff *skb)
930 {
931 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
932         if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
933                 return TCP_SKB_CB(skb)->header.h6.iif;
934 #endif
935         return 0;
936 }
937
938 extern const struct inet_connection_sock_af_ops ipv6_specific;
939
940 INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb));
941 INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb));
942 INDIRECT_CALLABLE_DECLARE(void tcp_v6_early_demux(struct sk_buff *skb));
943
944 #endif
945
946 static inline bool inet_exact_dif_match(struct net *net, struct sk_buff *skb)
947 {
948 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
949         if (!net->ipv4.sysctl_tcp_l3mdev_accept &&
950             skb && ipv4_l3mdev_skb(IPCB(skb)->flags))
951                 return true;
952 #endif
953         return false;
954 }
955
956 /* TCP_SKB_CB reference means this can not be used from early demux */
957 static inline int tcp_v4_sdif(struct sk_buff *skb)
958 {
959 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
960         if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
961                 return TCP_SKB_CB(skb)->header.h4.iif;
962 #endif
963         return 0;
964 }
965
966 /* Due to TSO, an SKB can be composed of multiple actual
967  * packets.  To keep these tracked properly, we use this.
968  */
969 static inline int tcp_skb_pcount(const struct sk_buff *skb)
970 {
971         return TCP_SKB_CB(skb)->tcp_gso_segs;
972 }
973
974 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
975 {
976         TCP_SKB_CB(skb)->tcp_gso_segs = segs;
977 }
978
979 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
980 {
981         TCP_SKB_CB(skb)->tcp_gso_segs += segs;
982 }
983
984 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
985 static inline int tcp_skb_mss(const struct sk_buff *skb)
986 {
987         return TCP_SKB_CB(skb)->tcp_gso_size;
988 }
989
990 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
991 {
992         return likely(!TCP_SKB_CB(skb)->eor);
993 }
994
995 static inline bool tcp_skb_can_collapse(const struct sk_buff *to,
996                                         const struct sk_buff *from)
997 {
998         return likely(tcp_skb_can_collapse_to(to) &&
999                       mptcp_skb_can_collapse(to, from));
1000 }
1001
1002 /* Events passed to congestion control interface */
1003 enum tcp_ca_event {
1004         CA_EVENT_TX_START,      /* first transmit when no packets in flight */
1005         CA_EVENT_CWND_RESTART,  /* congestion window restart */
1006         CA_EVENT_COMPLETE_CWR,  /* end of congestion recovery */
1007         CA_EVENT_LOSS,          /* loss timeout */
1008         CA_EVENT_ECN_NO_CE,     /* ECT set, but not CE marked */
1009         CA_EVENT_ECN_IS_CE,     /* received CE marked IP packet */
1010 };
1011
1012 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
1013 enum tcp_ca_ack_event_flags {
1014         CA_ACK_SLOWPATH         = (1 << 0),     /* In slow path processing */
1015         CA_ACK_WIN_UPDATE       = (1 << 1),     /* ACK updated window */
1016         CA_ACK_ECE              = (1 << 2),     /* ECE bit is set on ack */
1017 };
1018
1019 /*
1020  * Interface for adding new TCP congestion control handlers
1021  */
1022 #define TCP_CA_NAME_MAX 16
1023 #define TCP_CA_MAX      128
1024 #define TCP_CA_BUF_MAX  (TCP_CA_NAME_MAX*TCP_CA_MAX)
1025
1026 #define TCP_CA_UNSPEC   0
1027
1028 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
1029 #define TCP_CONG_NON_RESTRICTED 0x1
1030 /* Requires ECN/ECT set on all packets */
1031 #define TCP_CONG_NEEDS_ECN      0x2
1032 #define TCP_CONG_MASK   (TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN)
1033
1034 union tcp_cc_info;
1035
1036 struct ack_sample {
1037         u32 pkts_acked;
1038         s32 rtt_us;
1039         u32 in_flight;
1040 };
1041
1042 /* A rate sample measures the number of (original/retransmitted) data
1043  * packets delivered "delivered" over an interval of time "interval_us".
1044  * The tcp_rate.c code fills in the rate sample, and congestion
1045  * control modules that define a cong_control function to run at the end
1046  * of ACK processing can optionally chose to consult this sample when
1047  * setting cwnd and pacing rate.
1048  * A sample is invalid if "delivered" or "interval_us" is negative.
1049  */
1050 struct rate_sample {
1051         u64  prior_mstamp; /* starting timestamp for interval */
1052         u32  prior_delivered;   /* tp->delivered at "prior_mstamp" */
1053         s32  delivered;         /* number of packets delivered over interval */
1054         long interval_us;       /* time for tp->delivered to incr "delivered" */
1055         u32 snd_interval_us;    /* snd interval for delivered packets */
1056         u32 rcv_interval_us;    /* rcv interval for delivered packets */
1057         long rtt_us;            /* RTT of last (S)ACKed packet (or -1) */
1058         int  losses;            /* number of packets marked lost upon ACK */
1059         u32  acked_sacked;      /* number of packets newly (S)ACKed upon ACK */
1060         u32  prior_in_flight;   /* in flight before this ACK */
1061         bool is_app_limited;    /* is sample from packet with bubble in pipe? */
1062         bool is_retrans;        /* is sample from retransmission? */
1063         bool is_ack_delayed;    /* is this (likely) a delayed ACK? */
1064 };
1065
1066 struct tcp_congestion_ops {
1067         struct list_head        list;
1068         u32 key;
1069         u32 flags;
1070
1071         /* initialize private data (optional) */
1072         void (*init)(struct sock *sk);
1073         /* cleanup private data  (optional) */
1074         void (*release)(struct sock *sk);
1075
1076         /* return slow start threshold (required) */
1077         u32 (*ssthresh)(struct sock *sk);
1078         /* do new cwnd calculation (required) */
1079         void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1080         /* call before changing ca_state (optional) */
1081         void (*set_state)(struct sock *sk, u8 new_state);
1082         /* call when cwnd event occurs (optional) */
1083         void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1084         /* call when ack arrives (optional) */
1085         void (*in_ack_event)(struct sock *sk, u32 flags);
1086         /* new value of cwnd after loss (required) */
1087         u32  (*undo_cwnd)(struct sock *sk);
1088         /* hook for packet ack accounting (optional) */
1089         void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1090         /* override sysctl_tcp_min_tso_segs */
1091         u32 (*min_tso_segs)(struct sock *sk);
1092         /* returns the multiplier used in tcp_sndbuf_expand (optional) */
1093         u32 (*sndbuf_expand)(struct sock *sk);
1094         /* call when packets are delivered to update cwnd and pacing rate,
1095          * after all the ca_state processing. (optional)
1096          */
1097         void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
1098         /* get info for inet_diag (optional) */
1099         size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1100                            union tcp_cc_info *info);
1101
1102         char            name[TCP_CA_NAME_MAX];
1103         struct module   *owner;
1104 };
1105
1106 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1107 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1108
1109 void tcp_assign_congestion_control(struct sock *sk);
1110 void tcp_init_congestion_control(struct sock *sk);
1111 void tcp_cleanup_congestion_control(struct sock *sk);
1112 int tcp_set_default_congestion_control(struct net *net, const char *name);
1113 void tcp_get_default_congestion_control(struct net *net, char *name);
1114 void tcp_get_available_congestion_control(char *buf, size_t len);
1115 void tcp_get_allowed_congestion_control(char *buf, size_t len);
1116 int tcp_set_allowed_congestion_control(char *allowed);
1117 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
1118                                bool reinit, bool cap_net_admin);
1119 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1120 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1121
1122 u32 tcp_reno_ssthresh(struct sock *sk);
1123 u32 tcp_reno_undo_cwnd(struct sock *sk);
1124 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1125 extern struct tcp_congestion_ops tcp_reno;
1126
1127 struct tcp_congestion_ops *tcp_ca_find(const char *name);
1128 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1129 u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca);
1130 #ifdef CONFIG_INET
1131 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1132 #else
1133 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1134 {
1135         return NULL;
1136 }
1137 #endif
1138
1139 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1140 {
1141         const struct inet_connection_sock *icsk = inet_csk(sk);
1142
1143         return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1144 }
1145
1146 static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
1147 {
1148         struct inet_connection_sock *icsk = inet_csk(sk);
1149
1150         if (icsk->icsk_ca_ops->set_state)
1151                 icsk->icsk_ca_ops->set_state(sk, ca_state);
1152         icsk->icsk_ca_state = ca_state;
1153 }
1154
1155 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1156 {
1157         const struct inet_connection_sock *icsk = inet_csk(sk);
1158
1159         if (icsk->icsk_ca_ops->cwnd_event)
1160                 icsk->icsk_ca_ops->cwnd_event(sk, event);
1161 }
1162
1163 /* From tcp_rate.c */
1164 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1165 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1166                             struct rate_sample *rs);
1167 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1168                   bool is_sack_reneg, struct rate_sample *rs);
1169 void tcp_rate_check_app_limited(struct sock *sk);
1170
1171 /* These functions determine how the current flow behaves in respect of SACK
1172  * handling. SACK is negotiated with the peer, and therefore it can vary
1173  * between different flows.
1174  *
1175  * tcp_is_sack - SACK enabled
1176  * tcp_is_reno - No SACK
1177  */
1178 static inline int tcp_is_sack(const struct tcp_sock *tp)
1179 {
1180         return likely(tp->rx_opt.sack_ok);
1181 }
1182
1183 static inline bool tcp_is_reno(const struct tcp_sock *tp)
1184 {
1185         return !tcp_is_sack(tp);
1186 }
1187
1188 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1189 {
1190         return tp->sacked_out + tp->lost_out;
1191 }
1192
1193 /* This determines how many packets are "in the network" to the best
1194  * of our knowledge.  In many cases it is conservative, but where
1195  * detailed information is available from the receiver (via SACK
1196  * blocks etc.) we can make more aggressive calculations.
1197  *
1198  * Use this for decisions involving congestion control, use just
1199  * tp->packets_out to determine if the send queue is empty or not.
1200  *
1201  * Read this equation as:
1202  *
1203  *      "Packets sent once on transmission queue" MINUS
1204  *      "Packets left network, but not honestly ACKed yet" PLUS
1205  *      "Packets fast retransmitted"
1206  */
1207 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1208 {
1209         return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1210 }
1211
1212 #define TCP_INFINITE_SSTHRESH   0x7fffffff
1213
1214 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1215 {
1216         return tp->snd_cwnd < tp->snd_ssthresh;
1217 }
1218
1219 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1220 {
1221         return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1222 }
1223
1224 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1225 {
1226         return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1227                (1 << inet_csk(sk)->icsk_ca_state);
1228 }
1229
1230 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1231  * The exception is cwnd reduction phase, when cwnd is decreasing towards
1232  * ssthresh.
1233  */
1234 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1235 {
1236         const struct tcp_sock *tp = tcp_sk(sk);
1237
1238         if (tcp_in_cwnd_reduction(sk))
1239                 return tp->snd_ssthresh;
1240         else
1241                 return max(tp->snd_ssthresh,
1242                            ((tp->snd_cwnd >> 1) +
1243                             (tp->snd_cwnd >> 2)));
1244 }
1245
1246 /* Use define here intentionally to get WARN_ON location shown at the caller */
1247 #define tcp_verify_left_out(tp) WARN_ON(tcp_left_out(tp) > tp->packets_out)
1248
1249 void tcp_enter_cwr(struct sock *sk);
1250 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1251
1252 /* The maximum number of MSS of available cwnd for which TSO defers
1253  * sending if not using sysctl_tcp_tso_win_divisor.
1254  */
1255 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1256 {
1257         return 3;
1258 }
1259
1260 /* Returns end sequence number of the receiver's advertised window */
1261 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1262 {
1263         return tp->snd_una + tp->snd_wnd;
1264 }
1265
1266 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1267  * flexible approach. The RFC suggests cwnd should not be raised unless
1268  * it was fully used previously. And that's exactly what we do in
1269  * congestion avoidance mode. But in slow start we allow cwnd to grow
1270  * as long as the application has used half the cwnd.
1271  * Example :
1272  *    cwnd is 10 (IW10), but application sends 9 frames.
1273  *    We allow cwnd to reach 18 when all frames are ACKed.
1274  * This check is safe because it's as aggressive as slow start which already
1275  * risks 100% overshoot. The advantage is that we discourage application to
1276  * either send more filler packets or data to artificially blow up the cwnd
1277  * usage, and allow application-limited process to probe bw more aggressively.
1278  */
1279 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1280 {
1281         const struct tcp_sock *tp = tcp_sk(sk);
1282
1283         /* If in slow start, ensure cwnd grows to twice what was ACKed. */
1284         if (tcp_in_slow_start(tp))
1285                 return tp->snd_cwnd < 2 * tp->max_packets_out;
1286
1287         return tp->is_cwnd_limited;
1288 }
1289
1290 /* BBR congestion control needs pacing.
1291  * Same remark for SO_MAX_PACING_RATE.
1292  * sch_fq packet scheduler is efficiently handling pacing,
1293  * but is not always installed/used.
1294  * Return true if TCP stack should pace packets itself.
1295  */
1296 static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1297 {
1298         return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1299 }
1300
1301 /* Estimates in how many jiffies next packet for this flow can be sent.
1302  * Scheduling a retransmit timer too early would be silly.
1303  */
1304 static inline unsigned long tcp_pacing_delay(const struct sock *sk)
1305 {
1306         s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache;
1307
1308         return delay > 0 ? nsecs_to_jiffies(delay) : 0;
1309 }
1310
1311 static inline void tcp_reset_xmit_timer(struct sock *sk,
1312                                         const int what,
1313                                         unsigned long when,
1314                                         const unsigned long max_when)
1315 {
1316         inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk),
1317                                   max_when);
1318 }
1319
1320 /* Something is really bad, we could not queue an additional packet,
1321  * because qdisc is full or receiver sent a 0 window, or we are paced.
1322  * We do not want to add fuel to the fire, or abort too early,
1323  * so make sure the timer we arm now is at least 200ms in the future,
1324  * regardless of current icsk_rto value (as it could be ~2ms)
1325  */
1326 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1327 {
1328         return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1329 }
1330
1331 /* Variant of inet_csk_rto_backoff() used for zero window probes */
1332 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1333                                             unsigned long max_when)
1334 {
1335         u64 when = (u64)tcp_probe0_base(sk) << inet_csk(sk)->icsk_backoff;
1336
1337         return (unsigned long)min_t(u64, when, max_when);
1338 }
1339
1340 static inline void tcp_check_probe_timer(struct sock *sk)
1341 {
1342         if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1343                 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1344                                      tcp_probe0_base(sk), TCP_RTO_MAX);
1345 }
1346
1347 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1348 {
1349         tp->snd_wl1 = seq;
1350 }
1351
1352 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1353 {
1354         tp->snd_wl1 = seq;
1355 }
1356
1357 /*
1358  * Calculate(/check) TCP checksum
1359  */
1360 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1361                                    __be32 daddr, __wsum base)
1362 {
1363         return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base);
1364 }
1365
1366 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1367 {
1368         return !skb_csum_unnecessary(skb) &&
1369                 __skb_checksum_complete(skb);
1370 }
1371
1372 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb);
1373 int tcp_filter(struct sock *sk, struct sk_buff *skb);
1374 void tcp_set_state(struct sock *sk, int state);
1375 void tcp_done(struct sock *sk);
1376 int tcp_abort(struct sock *sk, int err);
1377
1378 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1379 {
1380         rx_opt->dsack = 0;
1381         rx_opt->num_sacks = 0;
1382 }
1383
1384 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1385
1386 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1387 {
1388         const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1389         struct tcp_sock *tp = tcp_sk(sk);
1390         s32 delta;
1391
1392         if (!sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle || tp->packets_out ||
1393             ca_ops->cong_control)
1394                 return;
1395         delta = tcp_jiffies32 - tp->lsndtime;
1396         if (delta > inet_csk(sk)->icsk_rto)
1397                 tcp_cwnd_restart(sk, delta);
1398 }
1399
1400 /* Determine a window scaling and initial window to offer. */
1401 void tcp_select_initial_window(const struct sock *sk, int __space,
1402                                __u32 mss, __u32 *rcv_wnd,
1403                                __u32 *window_clamp, int wscale_ok,
1404                                __u8 *rcv_wscale, __u32 init_rcv_wnd);
1405
1406 static inline int tcp_win_from_space(const struct sock *sk, int space)
1407 {
1408         int tcp_adv_win_scale = sock_net(sk)->ipv4.sysctl_tcp_adv_win_scale;
1409
1410         return tcp_adv_win_scale <= 0 ?
1411                 (space>>(-tcp_adv_win_scale)) :
1412                 space - (space>>tcp_adv_win_scale);
1413 }
1414
1415 /* Note: caller must be prepared to deal with negative returns */
1416 static inline int tcp_space(const struct sock *sk)
1417 {
1418         return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) -
1419                                   READ_ONCE(sk->sk_backlog.len) -
1420                                   atomic_read(&sk->sk_rmem_alloc));
1421 }
1422
1423 static inline int tcp_full_space(const struct sock *sk)
1424 {
1425         return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf));
1426 }
1427
1428 /* We provision sk_rcvbuf around 200% of sk_rcvlowat.
1429  * If 87.5 % (7/8) of the space has been consumed, we want to override
1430  * SO_RCVLOWAT constraint, since we are receiving skbs with too small
1431  * len/truesize ratio.
1432  */
1433 static inline bool tcp_rmem_pressure(const struct sock *sk)
1434 {
1435         int rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1436         int threshold = rcvbuf - (rcvbuf >> 3);
1437
1438         return atomic_read(&sk->sk_rmem_alloc) > threshold;
1439 }
1440
1441 extern void tcp_openreq_init_rwin(struct request_sock *req,
1442                                   const struct sock *sk_listener,
1443                                   const struct dst_entry *dst);
1444
1445 void tcp_enter_memory_pressure(struct sock *sk);
1446 void tcp_leave_memory_pressure(struct sock *sk);
1447
1448 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1449 {
1450         struct net *net = sock_net((struct sock *)tp);
1451
1452         return tp->keepalive_intvl ? : net->ipv4.sysctl_tcp_keepalive_intvl;
1453 }
1454
1455 static inline int keepalive_time_when(const struct tcp_sock *tp)
1456 {
1457         struct net *net = sock_net((struct sock *)tp);
1458
1459         return tp->keepalive_time ? : net->ipv4.sysctl_tcp_keepalive_time;
1460 }
1461
1462 static inline int keepalive_probes(const struct tcp_sock *tp)
1463 {
1464         struct net *net = sock_net((struct sock *)tp);
1465
1466         return tp->keepalive_probes ? : net->ipv4.sysctl_tcp_keepalive_probes;
1467 }
1468
1469 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1470 {
1471         const struct inet_connection_sock *icsk = &tp->inet_conn;
1472
1473         return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1474                           tcp_jiffies32 - tp->rcv_tstamp);
1475 }
1476
1477 static inline int tcp_fin_time(const struct sock *sk)
1478 {
1479         int fin_timeout = tcp_sk(sk)->linger2 ? : sock_net(sk)->ipv4.sysctl_tcp_fin_timeout;
1480         const int rto = inet_csk(sk)->icsk_rto;
1481
1482         if (fin_timeout < (rto << 2) - (rto >> 1))
1483                 fin_timeout = (rto << 2) - (rto >> 1);
1484
1485         return fin_timeout;
1486 }
1487
1488 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1489                                   int paws_win)
1490 {
1491         if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1492                 return true;
1493         if (unlikely(!time_before32(ktime_get_seconds(),
1494                                     rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS)))
1495                 return true;
1496         /*
1497          * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1498          * then following tcp messages have valid values. Ignore 0 value,
1499          * or else 'negative' tsval might forbid us to accept their packets.
1500          */
1501         if (!rx_opt->ts_recent)
1502                 return true;
1503         return false;
1504 }
1505
1506 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1507                                    int rst)
1508 {
1509         if (tcp_paws_check(rx_opt, 0))
1510                 return false;
1511
1512         /* RST segments are not recommended to carry timestamp,
1513            and, if they do, it is recommended to ignore PAWS because
1514            "their cleanup function should take precedence over timestamps."
1515            Certainly, it is mistake. It is necessary to understand the reasons
1516            of this constraint to relax it: if peer reboots, clock may go
1517            out-of-sync and half-open connections will not be reset.
1518            Actually, the problem would be not existing if all
1519            the implementations followed draft about maintaining clock
1520            via reboots. Linux-2.2 DOES NOT!
1521
1522            However, we can relax time bounds for RST segments to MSL.
1523          */
1524         if (rst && !time_before32(ktime_get_seconds(),
1525                                   rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1526                 return false;
1527         return true;
1528 }
1529
1530 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1531                           int mib_idx, u32 *last_oow_ack_time);
1532
1533 static inline void tcp_mib_init(struct net *net)
1534 {
1535         /* See RFC 2012 */
1536         TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1537         TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1538         TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1539         TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1540 }
1541
1542 /* from STCP */
1543 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1544 {
1545         tp->lost_skb_hint = NULL;
1546 }
1547
1548 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1549 {
1550         tcp_clear_retrans_hints_partial(tp);
1551         tp->retransmit_skb_hint = NULL;
1552 }
1553
1554 union tcp_md5_addr {
1555         struct in_addr  a4;
1556 #if IS_ENABLED(CONFIG_IPV6)
1557         struct in6_addr a6;
1558 #endif
1559 };
1560
1561 /* - key database */
1562 struct tcp_md5sig_key {
1563         struct hlist_node       node;
1564         u8                      keylen;
1565         u8                      family; /* AF_INET or AF_INET6 */
1566         u8                      prefixlen;
1567         union tcp_md5_addr      addr;
1568         int                     l3index; /* set if key added with L3 scope */
1569         u8                      key[TCP_MD5SIG_MAXKEYLEN];
1570         struct rcu_head         rcu;
1571 };
1572
1573 /* - sock block */
1574 struct tcp_md5sig_info {
1575         struct hlist_head       head;
1576         struct rcu_head         rcu;
1577 };
1578
1579 /* - pseudo header */
1580 struct tcp4_pseudohdr {
1581         __be32          saddr;
1582         __be32          daddr;
1583         __u8            pad;
1584         __u8            protocol;
1585         __be16          len;
1586 };
1587
1588 struct tcp6_pseudohdr {
1589         struct in6_addr saddr;
1590         struct in6_addr daddr;
1591         __be32          len;
1592         __be32          protocol;       /* including padding */
1593 };
1594
1595 union tcp_md5sum_block {
1596         struct tcp4_pseudohdr ip4;
1597 #if IS_ENABLED(CONFIG_IPV6)
1598         struct tcp6_pseudohdr ip6;
1599 #endif
1600 };
1601
1602 /* - pool: digest algorithm, hash description and scratch buffer */
1603 struct tcp_md5sig_pool {
1604         struct ahash_request    *md5_req;
1605         void                    *scratch;
1606 };
1607
1608 /* - functions */
1609 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1610                         const struct sock *sk, const struct sk_buff *skb);
1611 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1612                    int family, u8 prefixlen, int l3index,
1613                    const u8 *newkey, u8 newkeylen, gfp_t gfp);
1614 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1615                    int family, u8 prefixlen, int l3index);
1616 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1617                                          const struct sock *addr_sk);
1618
1619 #ifdef CONFIG_TCP_MD5SIG
1620 #include <linux/jump_label.h>
1621 extern struct static_key_false tcp_md5_needed;
1622 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1623                                            const union tcp_md5_addr *addr,
1624                                            int family);
1625 static inline struct tcp_md5sig_key *
1626 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1627                   const union tcp_md5_addr *addr, int family)
1628 {
1629         if (!static_branch_unlikely(&tcp_md5_needed))
1630                 return NULL;
1631         return __tcp_md5_do_lookup(sk, l3index, addr, family);
1632 }
1633
1634 #define tcp_twsk_md5_key(twsk)  ((twsk)->tw_md5_key)
1635 #else
1636 static inline struct tcp_md5sig_key *
1637 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1638                   const union tcp_md5_addr *addr, int family)
1639 {
1640         return NULL;
1641 }
1642 #define tcp_twsk_md5_key(twsk)  NULL
1643 #endif
1644
1645 bool tcp_alloc_md5sig_pool(void);
1646
1647 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1648 static inline void tcp_put_md5sig_pool(void)
1649 {
1650         local_bh_enable();
1651 }
1652
1653 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1654                           unsigned int header_len);
1655 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1656                      const struct tcp_md5sig_key *key);
1657
1658 /* From tcp_fastopen.c */
1659 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1660                             struct tcp_fastopen_cookie *cookie);
1661 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1662                             struct tcp_fastopen_cookie *cookie, bool syn_lost,
1663                             u16 try_exp);
1664 struct tcp_fastopen_request {
1665         /* Fast Open cookie. Size 0 means a cookie request */
1666         struct tcp_fastopen_cookie      cookie;
1667         struct msghdr                   *data;  /* data in MSG_FASTOPEN */
1668         size_t                          size;
1669         int                             copied; /* queued in tcp_connect() */
1670         struct ubuf_info                *uarg;
1671 };
1672 void tcp_free_fastopen_req(struct tcp_sock *tp);
1673 void tcp_fastopen_destroy_cipher(struct sock *sk);
1674 void tcp_fastopen_ctx_destroy(struct net *net);
1675 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1676                               void *primary_key, void *backup_key);
1677 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1678 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1679                               struct request_sock *req,
1680                               struct tcp_fastopen_cookie *foc,
1681                               const struct dst_entry *dst);
1682 void tcp_fastopen_init_key_once(struct net *net);
1683 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1684                              struct tcp_fastopen_cookie *cookie);
1685 bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1686 #define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t)
1687 #define TCP_FASTOPEN_KEY_MAX 2
1688 #define TCP_FASTOPEN_KEY_BUF_LENGTH \
1689         (TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX)
1690
1691 /* Fastopen key context */
1692 struct tcp_fastopen_context {
1693         siphash_key_t   key[TCP_FASTOPEN_KEY_MAX];
1694         int             num;
1695         struct rcu_head rcu;
1696 };
1697
1698 extern unsigned int sysctl_tcp_fastopen_blackhole_timeout;
1699 void tcp_fastopen_active_disable(struct sock *sk);
1700 bool tcp_fastopen_active_should_disable(struct sock *sk);
1701 void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1702 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1703
1704 /* Caller needs to wrap with rcu_read_(un)lock() */
1705 static inline
1706 struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk)
1707 {
1708         struct tcp_fastopen_context *ctx;
1709
1710         ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
1711         if (!ctx)
1712                 ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
1713         return ctx;
1714 }
1715
1716 static inline
1717 bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc,
1718                                const struct tcp_fastopen_cookie *orig)
1719 {
1720         if (orig->len == TCP_FASTOPEN_COOKIE_SIZE &&
1721             orig->len == foc->len &&
1722             !memcmp(orig->val, foc->val, foc->len))
1723                 return true;
1724         return false;
1725 }
1726
1727 static inline
1728 int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx)
1729 {
1730         return ctx->num;
1731 }
1732
1733 /* Latencies incurred by various limits for a sender. They are
1734  * chronograph-like stats that are mutually exclusive.
1735  */
1736 enum tcp_chrono {
1737         TCP_CHRONO_UNSPEC,
1738         TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1739         TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1740         TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1741         __TCP_CHRONO_MAX,
1742 };
1743
1744 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1745 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1746
1747 /* This helper is needed, because skb->tcp_tsorted_anchor uses
1748  * the same memory storage than skb->destructor/_skb_refdst
1749  */
1750 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1751 {
1752         skb->destructor = NULL;
1753         skb->_skb_refdst = 0UL;
1754 }
1755
1756 #define tcp_skb_tsorted_save(skb) {             \
1757         unsigned long _save = skb->_skb_refdst; \
1758         skb->_skb_refdst = 0UL;
1759
1760 #define tcp_skb_tsorted_restore(skb)            \
1761         skb->_skb_refdst = _save;               \
1762 }
1763
1764 void tcp_write_queue_purge(struct sock *sk);
1765
1766 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1767 {
1768         return skb_rb_first(&sk->tcp_rtx_queue);
1769 }
1770
1771 static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
1772 {
1773         return skb_rb_last(&sk->tcp_rtx_queue);
1774 }
1775
1776 static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1777 {
1778         return skb_peek(&sk->sk_write_queue);
1779 }
1780
1781 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1782 {
1783         return skb_peek_tail(&sk->sk_write_queue);
1784 }
1785
1786 #define tcp_for_write_queue_from_safe(skb, tmp, sk)                     \
1787         skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1788
1789 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1790 {
1791         return skb_peek(&sk->sk_write_queue);
1792 }
1793
1794 static inline bool tcp_skb_is_last(const struct sock *sk,
1795                                    const struct sk_buff *skb)
1796 {
1797         return skb_queue_is_last(&sk->sk_write_queue, skb);
1798 }
1799
1800 /**
1801  * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue
1802  * @sk: socket
1803  *
1804  * Since the write queue can have a temporary empty skb in it,
1805  * we must not use "return skb_queue_empty(&sk->sk_write_queue)"
1806  */
1807 static inline bool tcp_write_queue_empty(const struct sock *sk)
1808 {
1809         const struct tcp_sock *tp = tcp_sk(sk);
1810
1811         return tp->write_seq == tp->snd_nxt;
1812 }
1813
1814 static inline bool tcp_rtx_queue_empty(const struct sock *sk)
1815 {
1816         return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
1817 }
1818
1819 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
1820 {
1821         return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
1822 }
1823
1824 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1825 {
1826         __skb_queue_tail(&sk->sk_write_queue, skb);
1827
1828         /* Queue it, remembering where we must start sending. */
1829         if (sk->sk_write_queue.next == skb)
1830                 tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1831 }
1832
1833 /* Insert new before skb on the write queue of sk.  */
1834 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1835                                                   struct sk_buff *skb,
1836                                                   struct sock *sk)
1837 {
1838         __skb_queue_before(&sk->sk_write_queue, skb, new);
1839 }
1840
1841 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1842 {
1843         tcp_skb_tsorted_anchor_cleanup(skb);
1844         __skb_unlink(skb, &sk->sk_write_queue);
1845 }
1846
1847 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
1848
1849 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
1850 {
1851         tcp_skb_tsorted_anchor_cleanup(skb);
1852         rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
1853 }
1854
1855 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
1856 {
1857         list_del(&skb->tcp_tsorted_anchor);
1858         tcp_rtx_queue_unlink(skb, sk);
1859         sk_wmem_free_skb(sk, skb);
1860 }
1861
1862 static inline void tcp_push_pending_frames(struct sock *sk)
1863 {
1864         if (tcp_send_head(sk)) {
1865                 struct tcp_sock *tp = tcp_sk(sk);
1866
1867                 __tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1868         }
1869 }
1870
1871 /* Start sequence of the skb just after the highest skb with SACKed
1872  * bit, valid only if sacked_out > 0 or when the caller has ensured
1873  * validity by itself.
1874  */
1875 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1876 {
1877         if (!tp->sacked_out)
1878                 return tp->snd_una;
1879
1880         if (tp->highest_sack == NULL)
1881                 return tp->snd_nxt;
1882
1883         return TCP_SKB_CB(tp->highest_sack)->seq;
1884 }
1885
1886 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1887 {
1888         tcp_sk(sk)->highest_sack = skb_rb_next(skb);
1889 }
1890
1891 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1892 {
1893         return tcp_sk(sk)->highest_sack;
1894 }
1895
1896 static inline void tcp_highest_sack_reset(struct sock *sk)
1897 {
1898         tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
1899 }
1900
1901 /* Called when old skb is about to be deleted and replaced by new skb */
1902 static inline void tcp_highest_sack_replace(struct sock *sk,
1903                                             struct sk_buff *old,
1904                                             struct sk_buff *new)
1905 {
1906         if (old == tcp_highest_sack(sk))
1907                 tcp_sk(sk)->highest_sack = new;
1908 }
1909
1910 /* This helper checks if socket has IP_TRANSPARENT set */
1911 static inline bool inet_sk_transparent(const struct sock *sk)
1912 {
1913         switch (sk->sk_state) {
1914         case TCP_TIME_WAIT:
1915                 return inet_twsk(sk)->tw_transparent;
1916         case TCP_NEW_SYN_RECV:
1917                 return inet_rsk(inet_reqsk(sk))->no_srccheck;
1918         }
1919         return inet_sk(sk)->transparent;
1920 }
1921
1922 /* Determines whether this is a thin stream (which may suffer from
1923  * increased latency). Used to trigger latency-reducing mechanisms.
1924  */
1925 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1926 {
1927         return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1928 }
1929
1930 /* /proc */
1931 enum tcp_seq_states {
1932         TCP_SEQ_STATE_LISTENING,
1933         TCP_SEQ_STATE_ESTABLISHED,
1934 };
1935
1936 void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
1937 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
1938 void tcp_seq_stop(struct seq_file *seq, void *v);
1939
1940 struct tcp_seq_afinfo {
1941         sa_family_t                     family;
1942 };
1943
1944 struct tcp_iter_state {
1945         struct seq_net_private  p;
1946         enum tcp_seq_states     state;
1947         struct sock             *syn_wait_sk;
1948         struct tcp_seq_afinfo   *bpf_seq_afinfo;
1949         int                     bucket, offset, sbucket, num;
1950         loff_t                  last_pos;
1951 };
1952
1953 extern struct request_sock_ops tcp_request_sock_ops;
1954 extern struct request_sock_ops tcp6_request_sock_ops;
1955
1956 void tcp_v4_destroy_sock(struct sock *sk);
1957
1958 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
1959                                 netdev_features_t features);
1960 struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb);
1961 INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff));
1962 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb));
1963 INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff));
1964 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb));
1965 int tcp_gro_complete(struct sk_buff *skb);
1966
1967 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
1968
1969 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
1970 {
1971         struct net *net = sock_net((struct sock *)tp);
1972         return tp->notsent_lowat ?: net->ipv4.sysctl_tcp_notsent_lowat;
1973 }
1974
1975 /* @wake is one when sk_stream_write_space() calls us.
1976  * This sends EPOLLOUT only if notsent_bytes is half the limit.
1977  * This mimics the strategy used in sock_def_write_space().
1978  */
1979 static inline bool tcp_stream_memory_free(const struct sock *sk, int wake)
1980 {
1981         const struct tcp_sock *tp = tcp_sk(sk);
1982         u32 notsent_bytes = READ_ONCE(tp->write_seq) -
1983                             READ_ONCE(tp->snd_nxt);
1984
1985         return (notsent_bytes << wake) < tcp_notsent_lowat(tp);
1986 }
1987
1988 #ifdef CONFIG_PROC_FS
1989 int tcp4_proc_init(void);
1990 void tcp4_proc_exit(void);
1991 #endif
1992
1993 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
1994 int tcp_conn_request(struct request_sock_ops *rsk_ops,
1995                      const struct tcp_request_sock_ops *af_ops,
1996                      struct sock *sk, struct sk_buff *skb);
1997
1998 /* TCP af-specific functions */
1999 struct tcp_sock_af_ops {
2000 #ifdef CONFIG_TCP_MD5SIG
2001         struct tcp_md5sig_key   *(*md5_lookup) (const struct sock *sk,
2002                                                 const struct sock *addr_sk);
2003         int             (*calc_md5_hash)(char *location,
2004                                          const struct tcp_md5sig_key *md5,
2005                                          const struct sock *sk,
2006                                          const struct sk_buff *skb);
2007         int             (*md5_parse)(struct sock *sk,
2008                                      int optname,
2009                                      char __user *optval,
2010                                      int optlen);
2011 #endif
2012 };
2013
2014 struct tcp_request_sock_ops {
2015         u16 mss_clamp;
2016 #ifdef CONFIG_TCP_MD5SIG
2017         struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
2018                                                  const struct sock *addr_sk);
2019         int             (*calc_md5_hash) (char *location,
2020                                           const struct tcp_md5sig_key *md5,
2021                                           const struct sock *sk,
2022                                           const struct sk_buff *skb);
2023 #endif
2024         void (*init_req)(struct request_sock *req,
2025                          const struct sock *sk_listener,
2026                          struct sk_buff *skb);
2027 #ifdef CONFIG_SYN_COOKIES
2028         __u32 (*cookie_init_seq)(const struct sk_buff *skb,
2029                                  __u16 *mss);
2030 #endif
2031         struct dst_entry *(*route_req)(const struct sock *sk, struct flowi *fl,
2032                                        const struct request_sock *req);
2033         u32 (*init_seq)(const struct sk_buff *skb);
2034         u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
2035         int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
2036                            struct flowi *fl, struct request_sock *req,
2037                            struct tcp_fastopen_cookie *foc,
2038                            enum tcp_synack_type synack_type);
2039 };
2040
2041 extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops;
2042 #if IS_ENABLED(CONFIG_IPV6)
2043 extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops;
2044 #endif
2045
2046 #ifdef CONFIG_SYN_COOKIES
2047 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2048                                          const struct sock *sk, struct sk_buff *skb,
2049                                          __u16 *mss)
2050 {
2051         tcp_synq_overflow(sk);
2052         __NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
2053         return ops->cookie_init_seq(skb, mss);
2054 }
2055 #else
2056 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2057                                          const struct sock *sk, struct sk_buff *skb,
2058                                          __u16 *mss)
2059 {
2060         return 0;
2061 }
2062 #endif
2063
2064 int tcpv4_offload_init(void);
2065
2066 void tcp_v4_init(void);
2067 void tcp_init(void);
2068
2069 /* tcp_recovery.c */
2070 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
2071 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
2072 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
2073                                 u32 reo_wnd);
2074 extern void tcp_rack_mark_lost(struct sock *sk);
2075 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
2076                              u64 xmit_time);
2077 extern void tcp_rack_reo_timeout(struct sock *sk);
2078 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
2079
2080 /* At how many usecs into the future should the RTO fire? */
2081 static inline s64 tcp_rto_delta_us(const struct sock *sk)
2082 {
2083         const struct sk_buff *skb = tcp_rtx_queue_head(sk);
2084         u32 rto = inet_csk(sk)->icsk_rto;
2085         u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
2086
2087         return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
2088 }
2089
2090 /*
2091  * Save and compile IPv4 options, return a pointer to it
2092  */
2093 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
2094                                                          struct sk_buff *skb)
2095 {
2096         const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
2097         struct ip_options_rcu *dopt = NULL;
2098
2099         if (opt->optlen) {
2100                 int opt_size = sizeof(*dopt) + opt->optlen;
2101
2102                 dopt = kmalloc(opt_size, GFP_ATOMIC);
2103                 if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
2104                         kfree(dopt);
2105                         dopt = NULL;
2106                 }
2107         }
2108         return dopt;
2109 }
2110
2111 /* locally generated TCP pure ACKs have skb->truesize == 2
2112  * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2113  * This is much faster than dissecting the packet to find out.
2114  * (Think of GRE encapsulations, IPv4, IPv6, ...)
2115  */
2116 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2117 {
2118         return skb->truesize == 2;
2119 }
2120
2121 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2122 {
2123         skb->truesize = 2;
2124 }
2125
2126 static inline int tcp_inq(struct sock *sk)
2127 {
2128         struct tcp_sock *tp = tcp_sk(sk);
2129         int answ;
2130
2131         if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2132                 answ = 0;
2133         } else if (sock_flag(sk, SOCK_URGINLINE) ||
2134                    !tp->urg_data ||
2135                    before(tp->urg_seq, tp->copied_seq) ||
2136                    !before(tp->urg_seq, tp->rcv_nxt)) {
2137
2138                 answ = tp->rcv_nxt - tp->copied_seq;
2139
2140                 /* Subtract 1, if FIN was received */
2141                 if (answ && sock_flag(sk, SOCK_DONE))
2142                         answ--;
2143         } else {
2144                 answ = tp->urg_seq - tp->copied_seq;
2145         }
2146
2147         return answ;
2148 }
2149
2150 int tcp_peek_len(struct socket *sock);
2151
2152 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2153 {
2154         u16 segs_in;
2155
2156         segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2157         tp->segs_in += segs_in;
2158         if (skb->len > tcp_hdrlen(skb))
2159                 tp->data_segs_in += segs_in;
2160 }
2161
2162 /*
2163  * TCP listen path runs lockless.
2164  * We forced "struct sock" to be const qualified to make sure
2165  * we don't modify one of its field by mistake.
2166  * Here, we increment sk_drops which is an atomic_t, so we can safely
2167  * make sock writable again.
2168  */
2169 static inline void tcp_listendrop(const struct sock *sk)
2170 {
2171         atomic_inc(&((struct sock *)sk)->sk_drops);
2172         __NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2173 }
2174
2175 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2176
2177 /*
2178  * Interface for adding Upper Level Protocols over TCP
2179  */
2180
2181 #define TCP_ULP_NAME_MAX        16
2182 #define TCP_ULP_MAX             128
2183 #define TCP_ULP_BUF_MAX         (TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2184
2185 struct tcp_ulp_ops {
2186         struct list_head        list;
2187
2188         /* initialize ulp */
2189         int (*init)(struct sock *sk);
2190         /* update ulp */
2191         void (*update)(struct sock *sk, struct proto *p,
2192                        void (*write_space)(struct sock *sk));
2193         /* cleanup ulp */
2194         void (*release)(struct sock *sk);
2195         /* diagnostic */
2196         int (*get_info)(const struct sock *sk, struct sk_buff *skb);
2197         size_t (*get_info_size)(const struct sock *sk);
2198         /* clone ulp */
2199         void (*clone)(const struct request_sock *req, struct sock *newsk,
2200                       const gfp_t priority);
2201
2202         char            name[TCP_ULP_NAME_MAX];
2203         struct module   *owner;
2204 };
2205 int tcp_register_ulp(struct tcp_ulp_ops *type);
2206 void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2207 int tcp_set_ulp(struct sock *sk, const char *name);
2208 void tcp_get_available_ulp(char *buf, size_t len);
2209 void tcp_cleanup_ulp(struct sock *sk);
2210 void tcp_update_ulp(struct sock *sk, struct proto *p,
2211                     void (*write_space)(struct sock *sk));
2212
2213 #define MODULE_ALIAS_TCP_ULP(name)                              \
2214         __MODULE_INFO(alias, alias_userspace, name);            \
2215         __MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
2216
2217 struct sk_msg;
2218 struct sk_psock;
2219
2220 #ifdef CONFIG_BPF_STREAM_PARSER
2221 struct proto *tcp_bpf_get_proto(struct sock *sk, struct sk_psock *psock);
2222 void tcp_bpf_clone(const struct sock *sk, struct sock *newsk);
2223 #else
2224 static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk)
2225 {
2226 }
2227 #endif /* CONFIG_BPF_STREAM_PARSER */
2228
2229 #ifdef CONFIG_NET_SOCK_MSG
2230 int tcp_bpf_sendmsg_redir(struct sock *sk, struct sk_msg *msg, u32 bytes,
2231                           int flags);
2232 int __tcp_bpf_recvmsg(struct sock *sk, struct sk_psock *psock,
2233                       struct msghdr *msg, int len, int flags);
2234 #endif /* CONFIG_NET_SOCK_MSG */
2235
2236 /* Call BPF_SOCK_OPS program that returns an int. If the return value
2237  * is < 0, then the BPF op failed (for example if the loaded BPF
2238  * program does not support the chosen operation or there is no BPF
2239  * program loaded).
2240  */
2241 #ifdef CONFIG_BPF
2242 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2243 {
2244         struct bpf_sock_ops_kern sock_ops;
2245         int ret;
2246
2247         memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2248         if (sk_fullsock(sk)) {
2249                 sock_ops.is_fullsock = 1;
2250                 sock_owned_by_me(sk);
2251         }
2252
2253         sock_ops.sk = sk;
2254         sock_ops.op = op;
2255         if (nargs > 0)
2256                 memcpy(sock_ops.args, args, nargs * sizeof(*args));
2257
2258         ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2259         if (ret == 0)
2260                 ret = sock_ops.reply;
2261         else
2262                 ret = -1;
2263         return ret;
2264 }
2265
2266 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2267 {
2268         u32 args[2] = {arg1, arg2};
2269
2270         return tcp_call_bpf(sk, op, 2, args);
2271 }
2272
2273 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2274                                     u32 arg3)
2275 {
2276         u32 args[3] = {arg1, arg2, arg3};
2277
2278         return tcp_call_bpf(sk, op, 3, args);
2279 }
2280
2281 #else
2282 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2283 {
2284         return -EPERM;
2285 }
2286
2287 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2288 {
2289         return -EPERM;
2290 }
2291
2292 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2293                                     u32 arg3)
2294 {
2295         return -EPERM;
2296 }
2297
2298 #endif
2299
2300 static inline u32 tcp_timeout_init(struct sock *sk)
2301 {
2302         int timeout;
2303
2304         timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2305
2306         if (timeout <= 0)
2307                 timeout = TCP_TIMEOUT_INIT;
2308         return timeout;
2309 }
2310
2311 static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2312 {
2313         int rwnd;
2314
2315         rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2316
2317         if (rwnd < 0)
2318                 rwnd = 0;
2319         return rwnd;
2320 }
2321
2322 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2323 {
2324         return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2325 }
2326
2327 static inline void tcp_bpf_rtt(struct sock *sk)
2328 {
2329         if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG))
2330                 tcp_call_bpf(sk, BPF_SOCK_OPS_RTT_CB, 0, NULL);
2331 }
2332
2333 #if IS_ENABLED(CONFIG_SMC)
2334 extern struct static_key_false tcp_have_smc;
2335 #endif
2336
2337 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2338 void clean_acked_data_enable(struct inet_connection_sock *icsk,
2339                              void (*cad)(struct sock *sk, u32 ack_seq));
2340 void clean_acked_data_disable(struct inet_connection_sock *icsk);
2341 void clean_acked_data_flush(void);
2342 #endif
2343
2344 DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
2345 static inline void tcp_add_tx_delay(struct sk_buff *skb,
2346                                     const struct tcp_sock *tp)
2347 {
2348         if (static_branch_unlikely(&tcp_tx_delay_enabled))
2349                 skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC;
2350 }
2351
2352 /* Compute Earliest Departure Time for some control packets
2353  * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets.
2354  */
2355 static inline u64 tcp_transmit_time(const struct sock *sk)
2356 {
2357         if (static_branch_unlikely(&tcp_tx_delay_enabled)) {
2358                 u32 delay = (sk->sk_state == TCP_TIME_WAIT) ?
2359                         tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay;
2360
2361                 return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC;
2362         }
2363         return 0;
2364 }
2365
2366 #endif  /* _TCP_H */
This page took 0.161708 seconds and 4 git commands to generate.