]> Git Repo - linux.git/blob - arch/x86/kvm/x86.c
ACPI: EC: Evaluate orphan _REG under EC device
[linux.git] / arch / x86 / kvm / x86.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <[email protected]>
14  *   Yaniv Kamay  <[email protected]>
15  *   Amit Shah    <[email protected]>
16  *   Ben-Ami Yassour <[email protected]>
17  */
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20 #include <linux/kvm_host.h>
21 #include "irq.h"
22 #include "ioapic.h"
23 #include "mmu.h"
24 #include "i8254.h"
25 #include "tss.h"
26 #include "kvm_cache_regs.h"
27 #include "kvm_emulate.h"
28 #include "mmu/page_track.h"
29 #include "x86.h"
30 #include "cpuid.h"
31 #include "pmu.h"
32 #include "hyperv.h"
33 #include "lapic.h"
34 #include "xen.h"
35 #include "smm.h"
36
37 #include <linux/clocksource.h>
38 #include <linux/interrupt.h>
39 #include <linux/kvm.h>
40 #include <linux/fs.h>
41 #include <linux/vmalloc.h>
42 #include <linux/export.h>
43 #include <linux/moduleparam.h>
44 #include <linux/mman.h>
45 #include <linux/highmem.h>
46 #include <linux/iommu.h>
47 #include <linux/cpufreq.h>
48 #include <linux/user-return-notifier.h>
49 #include <linux/srcu.h>
50 #include <linux/slab.h>
51 #include <linux/perf_event.h>
52 #include <linux/uaccess.h>
53 #include <linux/hash.h>
54 #include <linux/pci.h>
55 #include <linux/timekeeper_internal.h>
56 #include <linux/pvclock_gtod.h>
57 #include <linux/kvm_irqfd.h>
58 #include <linux/irqbypass.h>
59 #include <linux/sched/stat.h>
60 #include <linux/sched/isolation.h>
61 #include <linux/mem_encrypt.h>
62 #include <linux/entry-kvm.h>
63 #include <linux/suspend.h>
64 #include <linux/smp.h>
65
66 #include <trace/events/ipi.h>
67 #include <trace/events/kvm.h>
68
69 #include <asm/debugreg.h>
70 #include <asm/msr.h>
71 #include <asm/desc.h>
72 #include <asm/mce.h>
73 #include <asm/pkru.h>
74 #include <linux/kernel_stat.h>
75 #include <asm/fpu/api.h>
76 #include <asm/fpu/xcr.h>
77 #include <asm/fpu/xstate.h>
78 #include <asm/pvclock.h>
79 #include <asm/div64.h>
80 #include <asm/irq_remapping.h>
81 #include <asm/mshyperv.h>
82 #include <asm/hypervisor.h>
83 #include <asm/tlbflush.h>
84 #include <asm/intel_pt.h>
85 #include <asm/emulate_prefix.h>
86 #include <asm/sgx.h>
87 #include <clocksource/hyperv_timer.h>
88
89 #define CREATE_TRACE_POINTS
90 #include "trace.h"
91
92 #define MAX_IO_MSRS 256
93 #define KVM_MAX_MCE_BANKS 32
94
95 /*
96  * Note, kvm_caps fields should *never* have default values, all fields must be
97  * recomputed from scratch during vendor module load, e.g. to account for a
98  * vendor module being reloaded with different module parameters.
99  */
100 struct kvm_caps kvm_caps __read_mostly;
101 EXPORT_SYMBOL_GPL(kvm_caps);
102
103 #define  ERR_PTR_USR(e)  ((void __user *)ERR_PTR(e))
104
105 #define emul_to_vcpu(ctxt) \
106         ((struct kvm_vcpu *)(ctxt)->vcpu)
107
108 /* EFER defaults:
109  * - enable syscall per default because its emulated by KVM
110  * - enable LME and LMA per default on 64 bit KVM
111  */
112 #ifdef CONFIG_X86_64
113 static
114 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
115 #else
116 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
117 #endif
118
119 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
120
121 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
122
123 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE
124
125 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
126                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
127
128 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
129 static void process_nmi(struct kvm_vcpu *vcpu);
130 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
131 static void store_regs(struct kvm_vcpu *vcpu);
132 static int sync_regs(struct kvm_vcpu *vcpu);
133 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu);
134
135 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
136 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
137
138 static DEFINE_MUTEX(vendor_module_lock);
139 struct kvm_x86_ops kvm_x86_ops __read_mostly;
140
141 #define KVM_X86_OP(func)                                             \
142         DEFINE_STATIC_CALL_NULL(kvm_x86_##func,                      \
143                                 *(((struct kvm_x86_ops *)0)->func));
144 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
145 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
146 #include <asm/kvm-x86-ops.h>
147 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
148 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
149
150 static bool __read_mostly ignore_msrs = 0;
151 module_param(ignore_msrs, bool, 0644);
152
153 bool __read_mostly report_ignored_msrs = true;
154 module_param(report_ignored_msrs, bool, 0644);
155 EXPORT_SYMBOL_GPL(report_ignored_msrs);
156
157 unsigned int min_timer_period_us = 200;
158 module_param(min_timer_period_us, uint, 0644);
159
160 static bool __read_mostly kvmclock_periodic_sync = true;
161 module_param(kvmclock_periodic_sync, bool, 0444);
162
163 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
164 static u32 __read_mostly tsc_tolerance_ppm = 250;
165 module_param(tsc_tolerance_ppm, uint, 0644);
166
167 static bool __read_mostly vector_hashing = true;
168 module_param(vector_hashing, bool, 0444);
169
170 bool __read_mostly enable_vmware_backdoor = false;
171 module_param(enable_vmware_backdoor, bool, 0444);
172 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
173
174 /*
175  * Flags to manipulate forced emulation behavior (any non-zero value will
176  * enable forced emulation).
177  */
178 #define KVM_FEP_CLEAR_RFLAGS_RF BIT(1)
179 static int __read_mostly force_emulation_prefix;
180 module_param(force_emulation_prefix, int, 0644);
181
182 int __read_mostly pi_inject_timer = -1;
183 module_param(pi_inject_timer, bint, 0644);
184
185 /* Enable/disable PMU virtualization */
186 bool __read_mostly enable_pmu = true;
187 EXPORT_SYMBOL_GPL(enable_pmu);
188 module_param(enable_pmu, bool, 0444);
189
190 bool __read_mostly eager_page_split = true;
191 module_param(eager_page_split, bool, 0644);
192
193 /* Enable/disable SMT_RSB bug mitigation */
194 static bool __read_mostly mitigate_smt_rsb;
195 module_param(mitigate_smt_rsb, bool, 0444);
196
197 /*
198  * Restoring the host value for MSRs that are only consumed when running in
199  * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
200  * returns to userspace, i.e. the kernel can run with the guest's value.
201  */
202 #define KVM_MAX_NR_USER_RETURN_MSRS 16
203
204 struct kvm_user_return_msrs {
205         struct user_return_notifier urn;
206         bool registered;
207         struct kvm_user_return_msr_values {
208                 u64 host;
209                 u64 curr;
210         } values[KVM_MAX_NR_USER_RETURN_MSRS];
211 };
212
213 u32 __read_mostly kvm_nr_uret_msrs;
214 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
215 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
216 static struct kvm_user_return_msrs __percpu *user_return_msrs;
217
218 #define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
219                                 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
220                                 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
221                                 | XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE)
222
223 u64 __read_mostly host_efer;
224 EXPORT_SYMBOL_GPL(host_efer);
225
226 bool __read_mostly allow_smaller_maxphyaddr = 0;
227 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
228
229 bool __read_mostly enable_apicv = true;
230 EXPORT_SYMBOL_GPL(enable_apicv);
231
232 u64 __read_mostly host_xss;
233 EXPORT_SYMBOL_GPL(host_xss);
234
235 u64 __read_mostly host_arch_capabilities;
236 EXPORT_SYMBOL_GPL(host_arch_capabilities);
237
238 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
239         KVM_GENERIC_VM_STATS(),
240         STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
241         STATS_DESC_COUNTER(VM, mmu_pte_write),
242         STATS_DESC_COUNTER(VM, mmu_pde_zapped),
243         STATS_DESC_COUNTER(VM, mmu_flooded),
244         STATS_DESC_COUNTER(VM, mmu_recycled),
245         STATS_DESC_COUNTER(VM, mmu_cache_miss),
246         STATS_DESC_ICOUNTER(VM, mmu_unsync),
247         STATS_DESC_ICOUNTER(VM, pages_4k),
248         STATS_DESC_ICOUNTER(VM, pages_2m),
249         STATS_DESC_ICOUNTER(VM, pages_1g),
250         STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
251         STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
252         STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
253 };
254
255 const struct kvm_stats_header kvm_vm_stats_header = {
256         .name_size = KVM_STATS_NAME_SIZE,
257         .num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
258         .id_offset = sizeof(struct kvm_stats_header),
259         .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
260         .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
261                        sizeof(kvm_vm_stats_desc),
262 };
263
264 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
265         KVM_GENERIC_VCPU_STATS(),
266         STATS_DESC_COUNTER(VCPU, pf_taken),
267         STATS_DESC_COUNTER(VCPU, pf_fixed),
268         STATS_DESC_COUNTER(VCPU, pf_emulate),
269         STATS_DESC_COUNTER(VCPU, pf_spurious),
270         STATS_DESC_COUNTER(VCPU, pf_fast),
271         STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created),
272         STATS_DESC_COUNTER(VCPU, pf_guest),
273         STATS_DESC_COUNTER(VCPU, tlb_flush),
274         STATS_DESC_COUNTER(VCPU, invlpg),
275         STATS_DESC_COUNTER(VCPU, exits),
276         STATS_DESC_COUNTER(VCPU, io_exits),
277         STATS_DESC_COUNTER(VCPU, mmio_exits),
278         STATS_DESC_COUNTER(VCPU, signal_exits),
279         STATS_DESC_COUNTER(VCPU, irq_window_exits),
280         STATS_DESC_COUNTER(VCPU, nmi_window_exits),
281         STATS_DESC_COUNTER(VCPU, l1d_flush),
282         STATS_DESC_COUNTER(VCPU, halt_exits),
283         STATS_DESC_COUNTER(VCPU, request_irq_exits),
284         STATS_DESC_COUNTER(VCPU, irq_exits),
285         STATS_DESC_COUNTER(VCPU, host_state_reload),
286         STATS_DESC_COUNTER(VCPU, fpu_reload),
287         STATS_DESC_COUNTER(VCPU, insn_emulation),
288         STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
289         STATS_DESC_COUNTER(VCPU, hypercalls),
290         STATS_DESC_COUNTER(VCPU, irq_injections),
291         STATS_DESC_COUNTER(VCPU, nmi_injections),
292         STATS_DESC_COUNTER(VCPU, req_event),
293         STATS_DESC_COUNTER(VCPU, nested_run),
294         STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
295         STATS_DESC_COUNTER(VCPU, directed_yield_successful),
296         STATS_DESC_COUNTER(VCPU, preemption_reported),
297         STATS_DESC_COUNTER(VCPU, preemption_other),
298         STATS_DESC_IBOOLEAN(VCPU, guest_mode),
299         STATS_DESC_COUNTER(VCPU, notify_window_exits),
300 };
301
302 const struct kvm_stats_header kvm_vcpu_stats_header = {
303         .name_size = KVM_STATS_NAME_SIZE,
304         .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
305         .id_offset = sizeof(struct kvm_stats_header),
306         .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
307         .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
308                        sizeof(kvm_vcpu_stats_desc),
309 };
310
311 u64 __read_mostly host_xcr0;
312
313 static struct kmem_cache *x86_emulator_cache;
314
315 /*
316  * When called, it means the previous get/set msr reached an invalid msr.
317  * Return true if we want to ignore/silent this failed msr access.
318  */
319 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write)
320 {
321         const char *op = write ? "wrmsr" : "rdmsr";
322
323         if (ignore_msrs) {
324                 if (report_ignored_msrs)
325                         kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
326                                       op, msr, data);
327                 /* Mask the error */
328                 return true;
329         } else {
330                 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
331                                       op, msr, data);
332                 return false;
333         }
334 }
335
336 static struct kmem_cache *kvm_alloc_emulator_cache(void)
337 {
338         unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
339         unsigned int size = sizeof(struct x86_emulate_ctxt);
340
341         return kmem_cache_create_usercopy("x86_emulator", size,
342                                           __alignof__(struct x86_emulate_ctxt),
343                                           SLAB_ACCOUNT, useroffset,
344                                           size - useroffset, NULL);
345 }
346
347 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
348
349 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
350 {
351         int i;
352         for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
353                 vcpu->arch.apf.gfns[i] = ~0;
354 }
355
356 static void kvm_on_user_return(struct user_return_notifier *urn)
357 {
358         unsigned slot;
359         struct kvm_user_return_msrs *msrs
360                 = container_of(urn, struct kvm_user_return_msrs, urn);
361         struct kvm_user_return_msr_values *values;
362         unsigned long flags;
363
364         /*
365          * Disabling irqs at this point since the following code could be
366          * interrupted and executed through kvm_arch_hardware_disable()
367          */
368         local_irq_save(flags);
369         if (msrs->registered) {
370                 msrs->registered = false;
371                 user_return_notifier_unregister(urn);
372         }
373         local_irq_restore(flags);
374         for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
375                 values = &msrs->values[slot];
376                 if (values->host != values->curr) {
377                         wrmsrl(kvm_uret_msrs_list[slot], values->host);
378                         values->curr = values->host;
379                 }
380         }
381 }
382
383 static int kvm_probe_user_return_msr(u32 msr)
384 {
385         u64 val;
386         int ret;
387
388         preempt_disable();
389         ret = rdmsrl_safe(msr, &val);
390         if (ret)
391                 goto out;
392         ret = wrmsrl_safe(msr, val);
393 out:
394         preempt_enable();
395         return ret;
396 }
397
398 int kvm_add_user_return_msr(u32 msr)
399 {
400         BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
401
402         if (kvm_probe_user_return_msr(msr))
403                 return -1;
404
405         kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
406         return kvm_nr_uret_msrs++;
407 }
408 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
409
410 int kvm_find_user_return_msr(u32 msr)
411 {
412         int i;
413
414         for (i = 0; i < kvm_nr_uret_msrs; ++i) {
415                 if (kvm_uret_msrs_list[i] == msr)
416                         return i;
417         }
418         return -1;
419 }
420 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
421
422 static void kvm_user_return_msr_cpu_online(void)
423 {
424         unsigned int cpu = smp_processor_id();
425         struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
426         u64 value;
427         int i;
428
429         for (i = 0; i < kvm_nr_uret_msrs; ++i) {
430                 rdmsrl_safe(kvm_uret_msrs_list[i], &value);
431                 msrs->values[i].host = value;
432                 msrs->values[i].curr = value;
433         }
434 }
435
436 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
437 {
438         unsigned int cpu = smp_processor_id();
439         struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
440         int err;
441
442         value = (value & mask) | (msrs->values[slot].host & ~mask);
443         if (value == msrs->values[slot].curr)
444                 return 0;
445         err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
446         if (err)
447                 return 1;
448
449         msrs->values[slot].curr = value;
450         if (!msrs->registered) {
451                 msrs->urn.on_user_return = kvm_on_user_return;
452                 user_return_notifier_register(&msrs->urn);
453                 msrs->registered = true;
454         }
455         return 0;
456 }
457 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
458
459 static void drop_user_return_notifiers(void)
460 {
461         unsigned int cpu = smp_processor_id();
462         struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
463
464         if (msrs->registered)
465                 kvm_on_user_return(&msrs->urn);
466 }
467
468 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
469 {
470         return vcpu->arch.apic_base;
471 }
472
473 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
474 {
475         return kvm_apic_mode(kvm_get_apic_base(vcpu));
476 }
477 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
478
479 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
480 {
481         enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
482         enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
483         u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
484                 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
485
486         if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
487                 return 1;
488         if (!msr_info->host_initiated) {
489                 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
490                         return 1;
491                 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
492                         return 1;
493         }
494
495         kvm_lapic_set_base(vcpu, msr_info->data);
496         kvm_recalculate_apic_map(vcpu->kvm);
497         return 0;
498 }
499
500 /*
501  * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
502  *
503  * Hardware virtualization extension instructions may fault if a reboot turns
504  * off virtualization while processes are running.  Usually after catching the
505  * fault we just panic; during reboot instead the instruction is ignored.
506  */
507 noinstr void kvm_spurious_fault(void)
508 {
509         /* Fault while not rebooting.  We want the trace. */
510         BUG_ON(!kvm_rebooting);
511 }
512 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
513
514 #define EXCPT_BENIGN            0
515 #define EXCPT_CONTRIBUTORY      1
516 #define EXCPT_PF                2
517
518 static int exception_class(int vector)
519 {
520         switch (vector) {
521         case PF_VECTOR:
522                 return EXCPT_PF;
523         case DE_VECTOR:
524         case TS_VECTOR:
525         case NP_VECTOR:
526         case SS_VECTOR:
527         case GP_VECTOR:
528                 return EXCPT_CONTRIBUTORY;
529         default:
530                 break;
531         }
532         return EXCPT_BENIGN;
533 }
534
535 #define EXCPT_FAULT             0
536 #define EXCPT_TRAP              1
537 #define EXCPT_ABORT             2
538 #define EXCPT_INTERRUPT         3
539 #define EXCPT_DB                4
540
541 static int exception_type(int vector)
542 {
543         unsigned int mask;
544
545         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
546                 return EXCPT_INTERRUPT;
547
548         mask = 1 << vector;
549
550         /*
551          * #DBs can be trap-like or fault-like, the caller must check other CPU
552          * state, e.g. DR6, to determine whether a #DB is a trap or fault.
553          */
554         if (mask & (1 << DB_VECTOR))
555                 return EXCPT_DB;
556
557         if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR)))
558                 return EXCPT_TRAP;
559
560         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
561                 return EXCPT_ABORT;
562
563         /* Reserved exceptions will result in fault */
564         return EXCPT_FAULT;
565 }
566
567 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu,
568                                    struct kvm_queued_exception *ex)
569 {
570         if (!ex->has_payload)
571                 return;
572
573         switch (ex->vector) {
574         case DB_VECTOR:
575                 /*
576                  * "Certain debug exceptions may clear bit 0-3.  The
577                  * remaining contents of the DR6 register are never
578                  * cleared by the processor".
579                  */
580                 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
581                 /*
582                  * In order to reflect the #DB exception payload in guest
583                  * dr6, three components need to be considered: active low
584                  * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
585                  * DR6_BS and DR6_BT)
586                  * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
587                  * In the target guest dr6:
588                  * FIXED_1 bits should always be set.
589                  * Active low bits should be cleared if 1-setting in payload.
590                  * Active high bits should be set if 1-setting in payload.
591                  *
592                  * Note, the payload is compatible with the pending debug
593                  * exceptions/exit qualification under VMX, that active_low bits
594                  * are active high in payload.
595                  * So they need to be flipped for DR6.
596                  */
597                 vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
598                 vcpu->arch.dr6 |= ex->payload;
599                 vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW;
600
601                 /*
602                  * The #DB payload is defined as compatible with the 'pending
603                  * debug exceptions' field under VMX, not DR6. While bit 12 is
604                  * defined in the 'pending debug exceptions' field (enabled
605                  * breakpoint), it is reserved and must be zero in DR6.
606                  */
607                 vcpu->arch.dr6 &= ~BIT(12);
608                 break;
609         case PF_VECTOR:
610                 vcpu->arch.cr2 = ex->payload;
611                 break;
612         }
613
614         ex->has_payload = false;
615         ex->payload = 0;
616 }
617 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
618
619 static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector,
620                                        bool has_error_code, u32 error_code,
621                                        bool has_payload, unsigned long payload)
622 {
623         struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit;
624
625         ex->vector = vector;
626         ex->injected = false;
627         ex->pending = true;
628         ex->has_error_code = has_error_code;
629         ex->error_code = error_code;
630         ex->has_payload = has_payload;
631         ex->payload = payload;
632 }
633
634 /* Forcibly leave the nested mode in cases like a vCPU reset */
635 static void kvm_leave_nested(struct kvm_vcpu *vcpu)
636 {
637         kvm_x86_ops.nested_ops->leave_nested(vcpu);
638 }
639
640 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
641                 unsigned nr, bool has_error, u32 error_code,
642                 bool has_payload, unsigned long payload, bool reinject)
643 {
644         u32 prev_nr;
645         int class1, class2;
646
647         kvm_make_request(KVM_REQ_EVENT, vcpu);
648
649         /*
650          * If the exception is destined for L2 and isn't being reinjected,
651          * morph it to a VM-Exit if L1 wants to intercept the exception.  A
652          * previously injected exception is not checked because it was checked
653          * when it was original queued, and re-checking is incorrect if _L1_
654          * injected the exception, in which case it's exempt from interception.
655          */
656         if (!reinject && is_guest_mode(vcpu) &&
657             kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) {
658                 kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code,
659                                            has_payload, payload);
660                 return;
661         }
662
663         if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
664         queue:
665                 if (reinject) {
666                         /*
667                          * On VM-Entry, an exception can be pending if and only
668                          * if event injection was blocked by nested_run_pending.
669                          * In that case, however, vcpu_enter_guest() requests an
670                          * immediate exit, and the guest shouldn't proceed far
671                          * enough to need reinjection.
672                          */
673                         WARN_ON_ONCE(kvm_is_exception_pending(vcpu));
674                         vcpu->arch.exception.injected = true;
675                         if (WARN_ON_ONCE(has_payload)) {
676                                 /*
677                                  * A reinjected event has already
678                                  * delivered its payload.
679                                  */
680                                 has_payload = false;
681                                 payload = 0;
682                         }
683                 } else {
684                         vcpu->arch.exception.pending = true;
685                         vcpu->arch.exception.injected = false;
686                 }
687                 vcpu->arch.exception.has_error_code = has_error;
688                 vcpu->arch.exception.vector = nr;
689                 vcpu->arch.exception.error_code = error_code;
690                 vcpu->arch.exception.has_payload = has_payload;
691                 vcpu->arch.exception.payload = payload;
692                 if (!is_guest_mode(vcpu))
693                         kvm_deliver_exception_payload(vcpu,
694                                                       &vcpu->arch.exception);
695                 return;
696         }
697
698         /* to check exception */
699         prev_nr = vcpu->arch.exception.vector;
700         if (prev_nr == DF_VECTOR) {
701                 /* triple fault -> shutdown */
702                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
703                 return;
704         }
705         class1 = exception_class(prev_nr);
706         class2 = exception_class(nr);
707         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) ||
708             (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
709                 /*
710                  * Synthesize #DF.  Clear the previously injected or pending
711                  * exception so as not to incorrectly trigger shutdown.
712                  */
713                 vcpu->arch.exception.injected = false;
714                 vcpu->arch.exception.pending = false;
715
716                 kvm_queue_exception_e(vcpu, DF_VECTOR, 0);
717         } else {
718                 /* replace previous exception with a new one in a hope
719                    that instruction re-execution will regenerate lost
720                    exception */
721                 goto queue;
722         }
723 }
724
725 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
726 {
727         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
728 }
729 EXPORT_SYMBOL_GPL(kvm_queue_exception);
730
731 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
732 {
733         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
734 }
735 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
736
737 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
738                            unsigned long payload)
739 {
740         kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
741 }
742 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
743
744 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
745                                     u32 error_code, unsigned long payload)
746 {
747         kvm_multiple_exception(vcpu, nr, true, error_code,
748                                true, payload, false);
749 }
750
751 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
752 {
753         if (err)
754                 kvm_inject_gp(vcpu, 0);
755         else
756                 return kvm_skip_emulated_instruction(vcpu);
757
758         return 1;
759 }
760 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
761
762 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err)
763 {
764         if (err) {
765                 kvm_inject_gp(vcpu, 0);
766                 return 1;
767         }
768
769         return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
770                                        EMULTYPE_COMPLETE_USER_EXIT);
771 }
772
773 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
774 {
775         ++vcpu->stat.pf_guest;
776
777         /*
778          * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of
779          * whether or not L1 wants to intercept "regular" #PF.
780          */
781         if (is_guest_mode(vcpu) && fault->async_page_fault)
782                 kvm_queue_exception_vmexit(vcpu, PF_VECTOR,
783                                            true, fault->error_code,
784                                            true, fault->address);
785         else
786                 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
787                                         fault->address);
788 }
789
790 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
791                                     struct x86_exception *fault)
792 {
793         struct kvm_mmu *fault_mmu;
794         WARN_ON_ONCE(fault->vector != PF_VECTOR);
795
796         fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
797                                                vcpu->arch.walk_mmu;
798
799         /*
800          * Invalidate the TLB entry for the faulting address, if it exists,
801          * else the access will fault indefinitely (and to emulate hardware).
802          */
803         if ((fault->error_code & PFERR_PRESENT_MASK) &&
804             !(fault->error_code & PFERR_RSVD_MASK))
805                 kvm_mmu_invalidate_addr(vcpu, fault_mmu, fault->address,
806                                         KVM_MMU_ROOT_CURRENT);
807
808         fault_mmu->inject_page_fault(vcpu, fault);
809 }
810 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
811
812 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
813 {
814         atomic_inc(&vcpu->arch.nmi_queued);
815         kvm_make_request(KVM_REQ_NMI, vcpu);
816 }
817
818 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
819 {
820         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
821 }
822 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
823
824 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
825 {
826         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
827 }
828 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
829
830 /*
831  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
832  * a #GP and return false.
833  */
834 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
835 {
836         if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
837                 return true;
838         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
839         return false;
840 }
841
842 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
843 {
844         if ((dr != 4 && dr != 5) || !kvm_is_cr4_bit_set(vcpu, X86_CR4_DE))
845                 return true;
846
847         kvm_queue_exception(vcpu, UD_VECTOR);
848         return false;
849 }
850 EXPORT_SYMBOL_GPL(kvm_require_dr);
851
852 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
853 {
854         return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
855 }
856
857 /*
858  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
859  */
860 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
861 {
862         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
863         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
864         gpa_t real_gpa;
865         int i;
866         int ret;
867         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
868
869         /*
870          * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated
871          * to an L1 GPA.
872          */
873         real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn),
874                                      PFERR_USER_MASK | PFERR_WRITE_MASK, NULL);
875         if (real_gpa == INVALID_GPA)
876                 return 0;
877
878         /* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */
879         ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte,
880                                        cr3 & GENMASK(11, 5), sizeof(pdpte));
881         if (ret < 0)
882                 return 0;
883
884         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
885                 if ((pdpte[i] & PT_PRESENT_MASK) &&
886                     (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
887                         return 0;
888                 }
889         }
890
891         /*
892          * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled.
893          * Shadow page roots need to be reconstructed instead.
894          */
895         if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)))
896                 kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT);
897
898         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
899         kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
900         kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
901         vcpu->arch.pdptrs_from_userspace = false;
902
903         return 1;
904 }
905 EXPORT_SYMBOL_GPL(load_pdptrs);
906
907 static bool kvm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
908 {
909 #ifdef CONFIG_X86_64
910         if (cr0 & 0xffffffff00000000UL)
911                 return false;
912 #endif
913
914         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
915                 return false;
916
917         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
918                 return false;
919
920         return static_call(kvm_x86_is_valid_cr0)(vcpu, cr0);
921 }
922
923 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
924 {
925         /*
926          * CR0.WP is incorporated into the MMU role, but only for non-nested,
927          * indirect shadow MMUs.  If paging is disabled, no updates are needed
928          * as there are no permission bits to emulate.  If TDP is enabled, the
929          * MMU's metadata needs to be updated, e.g. so that emulating guest
930          * translations does the right thing, but there's no need to unload the
931          * root as CR0.WP doesn't affect SPTEs.
932          */
933         if ((cr0 ^ old_cr0) == X86_CR0_WP) {
934                 if (!(cr0 & X86_CR0_PG))
935                         return;
936
937                 if (tdp_enabled) {
938                         kvm_init_mmu(vcpu);
939                         return;
940                 }
941         }
942
943         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
944                 kvm_clear_async_pf_completion_queue(vcpu);
945                 kvm_async_pf_hash_reset(vcpu);
946
947                 /*
948                  * Clearing CR0.PG is defined to flush the TLB from the guest's
949                  * perspective.
950                  */
951                 if (!(cr0 & X86_CR0_PG))
952                         kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
953         }
954
955         if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
956                 kvm_mmu_reset_context(vcpu);
957
958         if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
959             kvm_mmu_honors_guest_mtrrs(vcpu->kvm) &&
960             !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
961                 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
962 }
963 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
964
965 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
966 {
967         unsigned long old_cr0 = kvm_read_cr0(vcpu);
968
969         if (!kvm_is_valid_cr0(vcpu, cr0))
970                 return 1;
971
972         cr0 |= X86_CR0_ET;
973
974         /* Write to CR0 reserved bits are ignored, even on Intel. */
975         cr0 &= ~CR0_RESERVED_BITS;
976
977 #ifdef CONFIG_X86_64
978         if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
979             (cr0 & X86_CR0_PG)) {
980                 int cs_db, cs_l;
981
982                 if (!is_pae(vcpu))
983                         return 1;
984                 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
985                 if (cs_l)
986                         return 1;
987         }
988 #endif
989         if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
990             is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) &&
991             !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
992                 return 1;
993
994         if (!(cr0 & X86_CR0_PG) &&
995             (is_64_bit_mode(vcpu) || kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)))
996                 return 1;
997
998         static_call(kvm_x86_set_cr0)(vcpu, cr0);
999
1000         kvm_post_set_cr0(vcpu, old_cr0, cr0);
1001
1002         return 0;
1003 }
1004 EXPORT_SYMBOL_GPL(kvm_set_cr0);
1005
1006 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
1007 {
1008         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
1009 }
1010 EXPORT_SYMBOL_GPL(kvm_lmsw);
1011
1012 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
1013 {
1014         if (vcpu->arch.guest_state_protected)
1015                 return;
1016
1017         if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) {
1018
1019                 if (vcpu->arch.xcr0 != host_xcr0)
1020                         xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
1021
1022                 if (guest_can_use(vcpu, X86_FEATURE_XSAVES) &&
1023                     vcpu->arch.ia32_xss != host_xss)
1024                         wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
1025         }
1026
1027         if (cpu_feature_enabled(X86_FEATURE_PKU) &&
1028             vcpu->arch.pkru != vcpu->arch.host_pkru &&
1029             ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1030              kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE)))
1031                 write_pkru(vcpu->arch.pkru);
1032 }
1033 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
1034
1035 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
1036 {
1037         if (vcpu->arch.guest_state_protected)
1038                 return;
1039
1040         if (cpu_feature_enabled(X86_FEATURE_PKU) &&
1041             ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1042              kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) {
1043                 vcpu->arch.pkru = rdpkru();
1044                 if (vcpu->arch.pkru != vcpu->arch.host_pkru)
1045                         write_pkru(vcpu->arch.host_pkru);
1046         }
1047
1048         if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) {
1049
1050                 if (vcpu->arch.xcr0 != host_xcr0)
1051                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
1052
1053                 if (guest_can_use(vcpu, X86_FEATURE_XSAVES) &&
1054                     vcpu->arch.ia32_xss != host_xss)
1055                         wrmsrl(MSR_IA32_XSS, host_xss);
1056         }
1057
1058 }
1059 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
1060
1061 #ifdef CONFIG_X86_64
1062 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu)
1063 {
1064         return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC;
1065 }
1066 #endif
1067
1068 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
1069 {
1070         u64 xcr0 = xcr;
1071         u64 old_xcr0 = vcpu->arch.xcr0;
1072         u64 valid_bits;
1073
1074         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
1075         if (index != XCR_XFEATURE_ENABLED_MASK)
1076                 return 1;
1077         if (!(xcr0 & XFEATURE_MASK_FP))
1078                 return 1;
1079         if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
1080                 return 1;
1081
1082         /*
1083          * Do not allow the guest to set bits that we do not support
1084          * saving.  However, xcr0 bit 0 is always set, even if the
1085          * emulated CPU does not support XSAVE (see kvm_vcpu_reset()).
1086          */
1087         valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
1088         if (xcr0 & ~valid_bits)
1089                 return 1;
1090
1091         if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1092             (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1093                 return 1;
1094
1095         if (xcr0 & XFEATURE_MASK_AVX512) {
1096                 if (!(xcr0 & XFEATURE_MASK_YMM))
1097                         return 1;
1098                 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1099                         return 1;
1100         }
1101
1102         if ((xcr0 & XFEATURE_MASK_XTILE) &&
1103             ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE))
1104                 return 1;
1105
1106         vcpu->arch.xcr0 = xcr0;
1107
1108         if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1109                 kvm_update_cpuid_runtime(vcpu);
1110         return 0;
1111 }
1112
1113 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1114 {
1115         /* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */
1116         if (static_call(kvm_x86_get_cpl)(vcpu) != 0 ||
1117             __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1118                 kvm_inject_gp(vcpu, 0);
1119                 return 1;
1120         }
1121
1122         return kvm_skip_emulated_instruction(vcpu);
1123 }
1124 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1125
1126 bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1127 {
1128         if (cr4 & cr4_reserved_bits)
1129                 return false;
1130
1131         if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1132                 return false;
1133
1134         return true;
1135 }
1136 EXPORT_SYMBOL_GPL(__kvm_is_valid_cr4);
1137
1138 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1139 {
1140         return __kvm_is_valid_cr4(vcpu, cr4) &&
1141                static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1142 }
1143
1144 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1145 {
1146         if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS)
1147                 kvm_mmu_reset_context(vcpu);
1148
1149         /*
1150          * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB
1151          * according to the SDM; however, stale prev_roots could be reused
1152          * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we
1153          * free them all.  This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST
1154          * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed,
1155          * so fall through.
1156          */
1157         if (!tdp_enabled &&
1158             (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE))
1159                 kvm_mmu_unload(vcpu);
1160
1161         /*
1162          * The TLB has to be flushed for all PCIDs if any of the following
1163          * (architecturally required) changes happen:
1164          * - CR4.PCIDE is changed from 1 to 0
1165          * - CR4.PGE is toggled
1166          *
1167          * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT.
1168          */
1169         if (((cr4 ^ old_cr4) & X86_CR4_PGE) ||
1170             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1171                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1172
1173         /*
1174          * The TLB has to be flushed for the current PCID if any of the
1175          * following (architecturally required) changes happen:
1176          * - CR4.SMEP is changed from 0 to 1
1177          * - CR4.PAE is toggled
1178          */
1179         else if (((cr4 ^ old_cr4) & X86_CR4_PAE) ||
1180                  ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP)))
1181                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1182
1183 }
1184 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1185
1186 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1187 {
1188         unsigned long old_cr4 = kvm_read_cr4(vcpu);
1189
1190         if (!kvm_is_valid_cr4(vcpu, cr4))
1191                 return 1;
1192
1193         if (is_long_mode(vcpu)) {
1194                 if (!(cr4 & X86_CR4_PAE))
1195                         return 1;
1196                 if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1197                         return 1;
1198         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1199                    && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS)
1200                    && !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1201                 return 1;
1202
1203         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1204                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1205                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1206                         return 1;
1207         }
1208
1209         static_call(kvm_x86_set_cr4)(vcpu, cr4);
1210
1211         kvm_post_set_cr4(vcpu, old_cr4, cr4);
1212
1213         return 0;
1214 }
1215 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1216
1217 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1218 {
1219         struct kvm_mmu *mmu = vcpu->arch.mmu;
1220         unsigned long roots_to_free = 0;
1221         int i;
1222
1223         /*
1224          * MOV CR3 and INVPCID are usually not intercepted when using TDP, but
1225          * this is reachable when running EPT=1 and unrestricted_guest=0,  and
1226          * also via the emulator.  KVM's TDP page tables are not in the scope of
1227          * the invalidation, but the guest's TLB entries need to be flushed as
1228          * the CPU may have cached entries in its TLB for the target PCID.
1229          */
1230         if (unlikely(tdp_enabled)) {
1231                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1232                 return;
1233         }
1234
1235         /*
1236          * If neither the current CR3 nor any of the prev_roots use the given
1237          * PCID, then nothing needs to be done here because a resync will
1238          * happen anyway before switching to any other CR3.
1239          */
1240         if (kvm_get_active_pcid(vcpu) == pcid) {
1241                 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1242                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1243         }
1244
1245         /*
1246          * If PCID is disabled, there is no need to free prev_roots even if the
1247          * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB
1248          * with PCIDE=0.
1249          */
1250         if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE))
1251                 return;
1252
1253         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1254                 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1255                         roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1256
1257         kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
1258 }
1259
1260 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1261 {
1262         bool skip_tlb_flush = false;
1263         unsigned long pcid = 0;
1264 #ifdef CONFIG_X86_64
1265         if (kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) {
1266                 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1267                 cr3 &= ~X86_CR3_PCID_NOFLUSH;
1268                 pcid = cr3 & X86_CR3_PCID_MASK;
1269         }
1270 #endif
1271
1272         /* PDPTRs are always reloaded for PAE paging. */
1273         if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1274                 goto handle_tlb_flush;
1275
1276         /*
1277          * Do not condition the GPA check on long mode, this helper is used to
1278          * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1279          * the current vCPU mode is accurate.
1280          */
1281         if (!kvm_vcpu_is_legal_cr3(vcpu, cr3))
1282                 return 1;
1283
1284         if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3))
1285                 return 1;
1286
1287         if (cr3 != kvm_read_cr3(vcpu))
1288                 kvm_mmu_new_pgd(vcpu, cr3);
1289
1290         vcpu->arch.cr3 = cr3;
1291         kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1292         /* Do not call post_set_cr3, we do not get here for confidential guests.  */
1293
1294 handle_tlb_flush:
1295         /*
1296          * A load of CR3 that flushes the TLB flushes only the current PCID,
1297          * even if PCID is disabled, in which case PCID=0 is flushed.  It's a
1298          * moot point in the end because _disabling_ PCID will flush all PCIDs,
1299          * and it's impossible to use a non-zero PCID when PCID is disabled,
1300          * i.e. only PCID=0 can be relevant.
1301          */
1302         if (!skip_tlb_flush)
1303                 kvm_invalidate_pcid(vcpu, pcid);
1304
1305         return 0;
1306 }
1307 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1308
1309 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1310 {
1311         if (cr8 & CR8_RESERVED_BITS)
1312                 return 1;
1313         if (lapic_in_kernel(vcpu))
1314                 kvm_lapic_set_tpr(vcpu, cr8);
1315         else
1316                 vcpu->arch.cr8 = cr8;
1317         return 0;
1318 }
1319 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1320
1321 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1322 {
1323         if (lapic_in_kernel(vcpu))
1324                 return kvm_lapic_get_cr8(vcpu);
1325         else
1326                 return vcpu->arch.cr8;
1327 }
1328 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1329
1330 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1331 {
1332         int i;
1333
1334         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1335                 for (i = 0; i < KVM_NR_DB_REGS; i++)
1336                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1337         }
1338 }
1339
1340 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1341 {
1342         unsigned long dr7;
1343
1344         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1345                 dr7 = vcpu->arch.guest_debug_dr7;
1346         else
1347                 dr7 = vcpu->arch.dr7;
1348         static_call(kvm_x86_set_dr7)(vcpu, dr7);
1349         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1350         if (dr7 & DR7_BP_EN_MASK)
1351                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1352 }
1353 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1354
1355 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1356 {
1357         u64 fixed = DR6_FIXED_1;
1358
1359         if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1360                 fixed |= DR6_RTM;
1361
1362         if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1363                 fixed |= DR6_BUS_LOCK;
1364         return fixed;
1365 }
1366
1367 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1368 {
1369         size_t size = ARRAY_SIZE(vcpu->arch.db);
1370
1371         switch (dr) {
1372         case 0 ... 3:
1373                 vcpu->arch.db[array_index_nospec(dr, size)] = val;
1374                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1375                         vcpu->arch.eff_db[dr] = val;
1376                 break;
1377         case 4:
1378         case 6:
1379                 if (!kvm_dr6_valid(val))
1380                         return 1; /* #GP */
1381                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1382                 break;
1383         case 5:
1384         default: /* 7 */
1385                 if (!kvm_dr7_valid(val))
1386                         return 1; /* #GP */
1387                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1388                 kvm_update_dr7(vcpu);
1389                 break;
1390         }
1391
1392         return 0;
1393 }
1394 EXPORT_SYMBOL_GPL(kvm_set_dr);
1395
1396 unsigned long kvm_get_dr(struct kvm_vcpu *vcpu, int dr)
1397 {
1398         size_t size = ARRAY_SIZE(vcpu->arch.db);
1399
1400         switch (dr) {
1401         case 0 ... 3:
1402                 return vcpu->arch.db[array_index_nospec(dr, size)];
1403         case 4:
1404         case 6:
1405                 return vcpu->arch.dr6;
1406         case 5:
1407         default: /* 7 */
1408                 return vcpu->arch.dr7;
1409         }
1410 }
1411 EXPORT_SYMBOL_GPL(kvm_get_dr);
1412
1413 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1414 {
1415         u32 ecx = kvm_rcx_read(vcpu);
1416         u64 data;
1417
1418         if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1419                 kvm_inject_gp(vcpu, 0);
1420                 return 1;
1421         }
1422
1423         kvm_rax_write(vcpu, (u32)data);
1424         kvm_rdx_write(vcpu, data >> 32);
1425         return kvm_skip_emulated_instruction(vcpu);
1426 }
1427 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1428
1429 /*
1430  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) track
1431  * the set of MSRs that KVM exposes to userspace through KVM_GET_MSRS,
1432  * KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.  msrs_to_save holds MSRs that
1433  * require host support, i.e. should be probed via RDMSR.  emulated_msrs holds
1434  * MSRs that KVM emulates without strictly requiring host support.
1435  * msr_based_features holds MSRs that enumerate features, i.e. are effectively
1436  * CPUID leafs.  Note, msr_based_features isn't mutually exclusive with
1437  * msrs_to_save and emulated_msrs.
1438  */
1439
1440 static const u32 msrs_to_save_base[] = {
1441         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1442         MSR_STAR,
1443 #ifdef CONFIG_X86_64
1444         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1445 #endif
1446         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1447         MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1448         MSR_IA32_SPEC_CTRL, MSR_IA32_TSX_CTRL,
1449         MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1450         MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1451         MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1452         MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1453         MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1454         MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1455         MSR_IA32_UMWAIT_CONTROL,
1456
1457         MSR_IA32_XFD, MSR_IA32_XFD_ERR,
1458 };
1459
1460 static const u32 msrs_to_save_pmu[] = {
1461         MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1462         MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
1463         MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1464         MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1465         MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG,
1466
1467         /* This part of MSRs should match KVM_INTEL_PMC_MAX_GENERIC. */
1468         MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1469         MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1470         MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1471         MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1472         MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1473         MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1474         MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1475         MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1476
1477         MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
1478         MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
1479
1480         /* This part of MSRs should match KVM_AMD_PMC_MAX_GENERIC. */
1481         MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
1482         MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
1483         MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
1484         MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
1485
1486         MSR_AMD64_PERF_CNTR_GLOBAL_CTL,
1487         MSR_AMD64_PERF_CNTR_GLOBAL_STATUS,
1488         MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR,
1489 };
1490
1491 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_base) +
1492                         ARRAY_SIZE(msrs_to_save_pmu)];
1493 static unsigned num_msrs_to_save;
1494
1495 static const u32 emulated_msrs_all[] = {
1496         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1497         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1498
1499 #ifdef CONFIG_KVM_HYPERV
1500         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1501         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1502         HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1503         HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1504         HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1505         HV_X64_MSR_RESET,
1506         HV_X64_MSR_VP_INDEX,
1507         HV_X64_MSR_VP_RUNTIME,
1508         HV_X64_MSR_SCONTROL,
1509         HV_X64_MSR_STIMER0_CONFIG,
1510         HV_X64_MSR_VP_ASSIST_PAGE,
1511         HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1512         HV_X64_MSR_TSC_EMULATION_STATUS, HV_X64_MSR_TSC_INVARIANT_CONTROL,
1513         HV_X64_MSR_SYNDBG_OPTIONS,
1514         HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1515         HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1516         HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1517 #endif
1518
1519         MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1520         MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1521
1522         MSR_IA32_TSC_ADJUST,
1523         MSR_IA32_TSC_DEADLINE,
1524         MSR_IA32_ARCH_CAPABILITIES,
1525         MSR_IA32_PERF_CAPABILITIES,
1526         MSR_IA32_MISC_ENABLE,
1527         MSR_IA32_MCG_STATUS,
1528         MSR_IA32_MCG_CTL,
1529         MSR_IA32_MCG_EXT_CTL,
1530         MSR_IA32_SMBASE,
1531         MSR_SMI_COUNT,
1532         MSR_PLATFORM_INFO,
1533         MSR_MISC_FEATURES_ENABLES,
1534         MSR_AMD64_VIRT_SPEC_CTRL,
1535         MSR_AMD64_TSC_RATIO,
1536         MSR_IA32_POWER_CTL,
1537         MSR_IA32_UCODE_REV,
1538
1539         /*
1540          * KVM always supports the "true" VMX control MSRs, even if the host
1541          * does not.  The VMX MSRs as a whole are considered "emulated" as KVM
1542          * doesn't strictly require them to exist in the host (ignoring that
1543          * KVM would refuse to load in the first place if the core set of MSRs
1544          * aren't supported).
1545          */
1546         MSR_IA32_VMX_BASIC,
1547         MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1548         MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1549         MSR_IA32_VMX_TRUE_EXIT_CTLS,
1550         MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1551         MSR_IA32_VMX_MISC,
1552         MSR_IA32_VMX_CR0_FIXED0,
1553         MSR_IA32_VMX_CR4_FIXED0,
1554         MSR_IA32_VMX_VMCS_ENUM,
1555         MSR_IA32_VMX_PROCBASED_CTLS2,
1556         MSR_IA32_VMX_EPT_VPID_CAP,
1557         MSR_IA32_VMX_VMFUNC,
1558
1559         MSR_K7_HWCR,
1560         MSR_KVM_POLL_CONTROL,
1561 };
1562
1563 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1564 static unsigned num_emulated_msrs;
1565
1566 /*
1567  * List of MSRs that control the existence of MSR-based features, i.e. MSRs
1568  * that are effectively CPUID leafs.  VMX MSRs are also included in the set of
1569  * feature MSRs, but are handled separately to allow expedited lookups.
1570  */
1571 static const u32 msr_based_features_all_except_vmx[] = {
1572         MSR_AMD64_DE_CFG,
1573         MSR_IA32_UCODE_REV,
1574         MSR_IA32_ARCH_CAPABILITIES,
1575         MSR_IA32_PERF_CAPABILITIES,
1576 };
1577
1578 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all_except_vmx) +
1579                               (KVM_LAST_EMULATED_VMX_MSR - KVM_FIRST_EMULATED_VMX_MSR + 1)];
1580 static unsigned int num_msr_based_features;
1581
1582 /*
1583  * All feature MSRs except uCode revID, which tracks the currently loaded uCode
1584  * patch, are immutable once the vCPU model is defined.
1585  */
1586 static bool kvm_is_immutable_feature_msr(u32 msr)
1587 {
1588         int i;
1589
1590         if (msr >= KVM_FIRST_EMULATED_VMX_MSR && msr <= KVM_LAST_EMULATED_VMX_MSR)
1591                 return true;
1592
1593         for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) {
1594                 if (msr == msr_based_features_all_except_vmx[i])
1595                         return msr != MSR_IA32_UCODE_REV;
1596         }
1597
1598         return false;
1599 }
1600
1601 /*
1602  * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM
1603  * does not yet virtualize. These include:
1604  *   10 - MISC_PACKAGE_CTRLS
1605  *   11 - ENERGY_FILTERING_CTL
1606  *   12 - DOITM
1607  *   18 - FB_CLEAR_CTRL
1608  *   21 - XAPIC_DISABLE_STATUS
1609  *   23 - OVERCLOCKING_STATUS
1610  */
1611
1612 #define KVM_SUPPORTED_ARCH_CAP \
1613         (ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \
1614          ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \
1615          ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \
1616          ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \
1617          ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO | ARCH_CAP_GDS_NO | \
1618          ARCH_CAP_RFDS_NO | ARCH_CAP_RFDS_CLEAR | ARCH_CAP_BHI_NO)
1619
1620 static u64 kvm_get_arch_capabilities(void)
1621 {
1622         u64 data = host_arch_capabilities & KVM_SUPPORTED_ARCH_CAP;
1623
1624         /*
1625          * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1626          * the nested hypervisor runs with NX huge pages.  If it is not,
1627          * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1628          * L1 guests, so it need not worry about its own (L2) guests.
1629          */
1630         data |= ARCH_CAP_PSCHANGE_MC_NO;
1631
1632         /*
1633          * If we're doing cache flushes (either "always" or "cond")
1634          * we will do one whenever the guest does a vmlaunch/vmresume.
1635          * If an outer hypervisor is doing the cache flush for us
1636          * (ARCH_CAP_SKIP_VMENTRY_L1DFLUSH), we can safely pass that
1637          * capability to the guest too, and if EPT is disabled we're not
1638          * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1639          * require a nested hypervisor to do a flush of its own.
1640          */
1641         if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1642                 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1643
1644         if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1645                 data |= ARCH_CAP_RDCL_NO;
1646         if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1647                 data |= ARCH_CAP_SSB_NO;
1648         if (!boot_cpu_has_bug(X86_BUG_MDS))
1649                 data |= ARCH_CAP_MDS_NO;
1650         if (!boot_cpu_has_bug(X86_BUG_RFDS))
1651                 data |= ARCH_CAP_RFDS_NO;
1652
1653         if (!boot_cpu_has(X86_FEATURE_RTM)) {
1654                 /*
1655                  * If RTM=0 because the kernel has disabled TSX, the host might
1656                  * have TAA_NO or TSX_CTRL.  Clear TAA_NO (the guest sees RTM=0
1657                  * and therefore knows that there cannot be TAA) but keep
1658                  * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1659                  * and we want to allow migrating those guests to tsx=off hosts.
1660                  */
1661                 data &= ~ARCH_CAP_TAA_NO;
1662         } else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1663                 data |= ARCH_CAP_TAA_NO;
1664         } else {
1665                 /*
1666                  * Nothing to do here; we emulate TSX_CTRL if present on the
1667                  * host so the guest can choose between disabling TSX or
1668                  * using VERW to clear CPU buffers.
1669                  */
1670         }
1671
1672         if (!boot_cpu_has_bug(X86_BUG_GDS) || gds_ucode_mitigated())
1673                 data |= ARCH_CAP_GDS_NO;
1674
1675         return data;
1676 }
1677
1678 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1679 {
1680         switch (msr->index) {
1681         case MSR_IA32_ARCH_CAPABILITIES:
1682                 msr->data = kvm_get_arch_capabilities();
1683                 break;
1684         case MSR_IA32_PERF_CAPABILITIES:
1685                 msr->data = kvm_caps.supported_perf_cap;
1686                 break;
1687         case MSR_IA32_UCODE_REV:
1688                 rdmsrl_safe(msr->index, &msr->data);
1689                 break;
1690         default:
1691                 return static_call(kvm_x86_get_msr_feature)(msr);
1692         }
1693         return 0;
1694 }
1695
1696 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1697 {
1698         struct kvm_msr_entry msr;
1699         int r;
1700
1701         /* Unconditionally clear the output for simplicity */
1702         msr.data = 0;
1703         msr.index = index;
1704         r = kvm_get_msr_feature(&msr);
1705
1706         if (r == KVM_MSR_RET_INVALID && kvm_msr_ignored_check(index, 0, false))
1707                 r = 0;
1708
1709         *data = msr.data;
1710
1711         return r;
1712 }
1713
1714 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1715 {
1716         if (efer & EFER_AUTOIBRS && !guest_cpuid_has(vcpu, X86_FEATURE_AUTOIBRS))
1717                 return false;
1718
1719         if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1720                 return false;
1721
1722         if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1723                 return false;
1724
1725         if (efer & (EFER_LME | EFER_LMA) &&
1726             !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1727                 return false;
1728
1729         if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1730                 return false;
1731
1732         return true;
1733
1734 }
1735 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1736 {
1737         if (efer & efer_reserved_bits)
1738                 return false;
1739
1740         return __kvm_valid_efer(vcpu, efer);
1741 }
1742 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1743
1744 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1745 {
1746         u64 old_efer = vcpu->arch.efer;
1747         u64 efer = msr_info->data;
1748         int r;
1749
1750         if (efer & efer_reserved_bits)
1751                 return 1;
1752
1753         if (!msr_info->host_initiated) {
1754                 if (!__kvm_valid_efer(vcpu, efer))
1755                         return 1;
1756
1757                 if (is_paging(vcpu) &&
1758                     (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1759                         return 1;
1760         }
1761
1762         efer &= ~EFER_LMA;
1763         efer |= vcpu->arch.efer & EFER_LMA;
1764
1765         r = static_call(kvm_x86_set_efer)(vcpu, efer);
1766         if (r) {
1767                 WARN_ON(r > 0);
1768                 return r;
1769         }
1770
1771         if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS)
1772                 kvm_mmu_reset_context(vcpu);
1773
1774         if (!static_cpu_has(X86_FEATURE_XSAVES) &&
1775             (efer & EFER_SVME))
1776                 kvm_hv_xsaves_xsavec_maybe_warn(vcpu);
1777
1778         return 0;
1779 }
1780
1781 void kvm_enable_efer_bits(u64 mask)
1782 {
1783        efer_reserved_bits &= ~mask;
1784 }
1785 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1786
1787 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1788 {
1789         struct kvm_x86_msr_filter *msr_filter;
1790         struct msr_bitmap_range *ranges;
1791         struct kvm *kvm = vcpu->kvm;
1792         bool allowed;
1793         int idx;
1794         u32 i;
1795
1796         /* x2APIC MSRs do not support filtering. */
1797         if (index >= 0x800 && index <= 0x8ff)
1798                 return true;
1799
1800         idx = srcu_read_lock(&kvm->srcu);
1801
1802         msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1803         if (!msr_filter) {
1804                 allowed = true;
1805                 goto out;
1806         }
1807
1808         allowed = msr_filter->default_allow;
1809         ranges = msr_filter->ranges;
1810
1811         for (i = 0; i < msr_filter->count; i++) {
1812                 u32 start = ranges[i].base;
1813                 u32 end = start + ranges[i].nmsrs;
1814                 u32 flags = ranges[i].flags;
1815                 unsigned long *bitmap = ranges[i].bitmap;
1816
1817                 if ((index >= start) && (index < end) && (flags & type)) {
1818                         allowed = test_bit(index - start, bitmap);
1819                         break;
1820                 }
1821         }
1822
1823 out:
1824         srcu_read_unlock(&kvm->srcu, idx);
1825
1826         return allowed;
1827 }
1828 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1829
1830 /*
1831  * Write @data into the MSR specified by @index.  Select MSR specific fault
1832  * checks are bypassed if @host_initiated is %true.
1833  * Returns 0 on success, non-0 otherwise.
1834  * Assumes vcpu_load() was already called.
1835  */
1836 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1837                          bool host_initiated)
1838 {
1839         struct msr_data msr;
1840
1841         switch (index) {
1842         case MSR_FS_BASE:
1843         case MSR_GS_BASE:
1844         case MSR_KERNEL_GS_BASE:
1845         case MSR_CSTAR:
1846         case MSR_LSTAR:
1847                 if (is_noncanonical_address(data, vcpu))
1848                         return 1;
1849                 break;
1850         case MSR_IA32_SYSENTER_EIP:
1851         case MSR_IA32_SYSENTER_ESP:
1852                 /*
1853                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1854                  * non-canonical address is written on Intel but not on
1855                  * AMD (which ignores the top 32-bits, because it does
1856                  * not implement 64-bit SYSENTER).
1857                  *
1858                  * 64-bit code should hence be able to write a non-canonical
1859                  * value on AMD.  Making the address canonical ensures that
1860                  * vmentry does not fail on Intel after writing a non-canonical
1861                  * value, and that something deterministic happens if the guest
1862                  * invokes 64-bit SYSENTER.
1863                  */
1864                 data = __canonical_address(data, vcpu_virt_addr_bits(vcpu));
1865                 break;
1866         case MSR_TSC_AUX:
1867                 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1868                         return 1;
1869
1870                 if (!host_initiated &&
1871                     !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1872                     !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1873                         return 1;
1874
1875                 /*
1876                  * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1877                  * incomplete and conflicting architectural behavior.  Current
1878                  * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1879                  * reserved and always read as zeros.  Enforce Intel's reserved
1880                  * bits check if and only if the guest CPU is Intel, and clear
1881                  * the bits in all other cases.  This ensures cross-vendor
1882                  * migration will provide consistent behavior for the guest.
1883                  */
1884                 if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0)
1885                         return 1;
1886
1887                 data = (u32)data;
1888                 break;
1889         }
1890
1891         msr.data = data;
1892         msr.index = index;
1893         msr.host_initiated = host_initiated;
1894
1895         return static_call(kvm_x86_set_msr)(vcpu, &msr);
1896 }
1897
1898 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1899                                      u32 index, u64 data, bool host_initiated)
1900 {
1901         int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1902
1903         if (ret == KVM_MSR_RET_INVALID)
1904                 if (kvm_msr_ignored_check(index, data, true))
1905                         ret = 0;
1906
1907         return ret;
1908 }
1909
1910 /*
1911  * Read the MSR specified by @index into @data.  Select MSR specific fault
1912  * checks are bypassed if @host_initiated is %true.
1913  * Returns 0 on success, non-0 otherwise.
1914  * Assumes vcpu_load() was already called.
1915  */
1916 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1917                   bool host_initiated)
1918 {
1919         struct msr_data msr;
1920         int ret;
1921
1922         switch (index) {
1923         case MSR_TSC_AUX:
1924                 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1925                         return 1;
1926
1927                 if (!host_initiated &&
1928                     !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1929                     !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1930                         return 1;
1931                 break;
1932         }
1933
1934         msr.index = index;
1935         msr.host_initiated = host_initiated;
1936
1937         ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1938         if (!ret)
1939                 *data = msr.data;
1940         return ret;
1941 }
1942
1943 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1944                                      u32 index, u64 *data, bool host_initiated)
1945 {
1946         int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1947
1948         if (ret == KVM_MSR_RET_INVALID) {
1949                 /* Unconditionally clear *data for simplicity */
1950                 *data = 0;
1951                 if (kvm_msr_ignored_check(index, 0, false))
1952                         ret = 0;
1953         }
1954
1955         return ret;
1956 }
1957
1958 static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1959 {
1960         if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1961                 return KVM_MSR_RET_FILTERED;
1962         return kvm_get_msr_ignored_check(vcpu, index, data, false);
1963 }
1964
1965 static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data)
1966 {
1967         if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1968                 return KVM_MSR_RET_FILTERED;
1969         return kvm_set_msr_ignored_check(vcpu, index, data, false);
1970 }
1971
1972 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1973 {
1974         return kvm_get_msr_ignored_check(vcpu, index, data, false);
1975 }
1976 EXPORT_SYMBOL_GPL(kvm_get_msr);
1977
1978 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1979 {
1980         return kvm_set_msr_ignored_check(vcpu, index, data, false);
1981 }
1982 EXPORT_SYMBOL_GPL(kvm_set_msr);
1983
1984 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu)
1985 {
1986         if (!vcpu->run->msr.error) {
1987                 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1988                 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1989         }
1990 }
1991
1992 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu)
1993 {
1994         return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error);
1995 }
1996
1997 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1998 {
1999         complete_userspace_rdmsr(vcpu);
2000         return complete_emulated_msr_access(vcpu);
2001 }
2002
2003 static int complete_fast_msr_access(struct kvm_vcpu *vcpu)
2004 {
2005         return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
2006 }
2007
2008 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu)
2009 {
2010         complete_userspace_rdmsr(vcpu);
2011         return complete_fast_msr_access(vcpu);
2012 }
2013
2014 static u64 kvm_msr_reason(int r)
2015 {
2016         switch (r) {
2017         case KVM_MSR_RET_INVALID:
2018                 return KVM_MSR_EXIT_REASON_UNKNOWN;
2019         case KVM_MSR_RET_FILTERED:
2020                 return KVM_MSR_EXIT_REASON_FILTER;
2021         default:
2022                 return KVM_MSR_EXIT_REASON_INVAL;
2023         }
2024 }
2025
2026 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
2027                               u32 exit_reason, u64 data,
2028                               int (*completion)(struct kvm_vcpu *vcpu),
2029                               int r)
2030 {
2031         u64 msr_reason = kvm_msr_reason(r);
2032
2033         /* Check if the user wanted to know about this MSR fault */
2034         if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
2035                 return 0;
2036
2037         vcpu->run->exit_reason = exit_reason;
2038         vcpu->run->msr.error = 0;
2039         memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
2040         vcpu->run->msr.reason = msr_reason;
2041         vcpu->run->msr.index = index;
2042         vcpu->run->msr.data = data;
2043         vcpu->arch.complete_userspace_io = completion;
2044
2045         return 1;
2046 }
2047
2048 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
2049 {
2050         u32 ecx = kvm_rcx_read(vcpu);
2051         u64 data;
2052         int r;
2053
2054         r = kvm_get_msr_with_filter(vcpu, ecx, &data);
2055
2056         if (!r) {
2057                 trace_kvm_msr_read(ecx, data);
2058
2059                 kvm_rax_write(vcpu, data & -1u);
2060                 kvm_rdx_write(vcpu, (data >> 32) & -1u);
2061         } else {
2062                 /* MSR read failed? See if we should ask user space */
2063                 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0,
2064                                        complete_fast_rdmsr, r))
2065                         return 0;
2066                 trace_kvm_msr_read_ex(ecx);
2067         }
2068
2069         return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2070 }
2071 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
2072
2073 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
2074 {
2075         u32 ecx = kvm_rcx_read(vcpu);
2076         u64 data = kvm_read_edx_eax(vcpu);
2077         int r;
2078
2079         r = kvm_set_msr_with_filter(vcpu, ecx, data);
2080
2081         if (!r) {
2082                 trace_kvm_msr_write(ecx, data);
2083         } else {
2084                 /* MSR write failed? See if we should ask user space */
2085                 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data,
2086                                        complete_fast_msr_access, r))
2087                         return 0;
2088                 /* Signal all other negative errors to userspace */
2089                 if (r < 0)
2090                         return r;
2091                 trace_kvm_msr_write_ex(ecx, data);
2092         }
2093
2094         return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2095 }
2096 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
2097
2098 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
2099 {
2100         return kvm_skip_emulated_instruction(vcpu);
2101 }
2102
2103 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
2104 {
2105         /* Treat an INVD instruction as a NOP and just skip it. */
2106         return kvm_emulate_as_nop(vcpu);
2107 }
2108 EXPORT_SYMBOL_GPL(kvm_emulate_invd);
2109
2110 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
2111 {
2112         kvm_queue_exception(vcpu, UD_VECTOR);
2113         return 1;
2114 }
2115 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
2116
2117
2118 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn)
2119 {
2120         if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) &&
2121             !guest_cpuid_has(vcpu, X86_FEATURE_MWAIT))
2122                 return kvm_handle_invalid_op(vcpu);
2123
2124         pr_warn_once("%s instruction emulated as NOP!\n", insn);
2125         return kvm_emulate_as_nop(vcpu);
2126 }
2127 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
2128 {
2129         return kvm_emulate_monitor_mwait(vcpu, "MWAIT");
2130 }
2131 EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
2132
2133 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
2134 {
2135         return kvm_emulate_monitor_mwait(vcpu, "MONITOR");
2136 }
2137 EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
2138
2139 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
2140 {
2141         xfer_to_guest_mode_prepare();
2142         return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
2143                 xfer_to_guest_mode_work_pending();
2144 }
2145
2146 /*
2147  * The fast path for frequent and performance sensitive wrmsr emulation,
2148  * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
2149  * the latency of virtual IPI by avoiding the expensive bits of transitioning
2150  * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
2151  * other cases which must be called after interrupts are enabled on the host.
2152  */
2153 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
2154 {
2155         if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
2156                 return 1;
2157
2158         if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
2159             ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
2160             ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
2161             ((u32)(data >> 32) != X2APIC_BROADCAST))
2162                 return kvm_x2apic_icr_write(vcpu->arch.apic, data);
2163
2164         return 1;
2165 }
2166
2167 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
2168 {
2169         if (!kvm_can_use_hv_timer(vcpu))
2170                 return 1;
2171
2172         kvm_set_lapic_tscdeadline_msr(vcpu, data);
2173         return 0;
2174 }
2175
2176 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
2177 {
2178         u32 msr = kvm_rcx_read(vcpu);
2179         u64 data;
2180         fastpath_t ret = EXIT_FASTPATH_NONE;
2181
2182         kvm_vcpu_srcu_read_lock(vcpu);
2183
2184         switch (msr) {
2185         case APIC_BASE_MSR + (APIC_ICR >> 4):
2186                 data = kvm_read_edx_eax(vcpu);
2187                 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
2188                         kvm_skip_emulated_instruction(vcpu);
2189                         ret = EXIT_FASTPATH_EXIT_HANDLED;
2190                 }
2191                 break;
2192         case MSR_IA32_TSC_DEADLINE:
2193                 data = kvm_read_edx_eax(vcpu);
2194                 if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
2195                         kvm_skip_emulated_instruction(vcpu);
2196                         ret = EXIT_FASTPATH_REENTER_GUEST;
2197                 }
2198                 break;
2199         default:
2200                 break;
2201         }
2202
2203         if (ret != EXIT_FASTPATH_NONE)
2204                 trace_kvm_msr_write(msr, data);
2205
2206         kvm_vcpu_srcu_read_unlock(vcpu);
2207
2208         return ret;
2209 }
2210 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2211
2212 /*
2213  * Adapt set_msr() to msr_io()'s calling convention
2214  */
2215 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2216 {
2217         return kvm_get_msr_ignored_check(vcpu, index, data, true);
2218 }
2219
2220 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2221 {
2222         u64 val;
2223
2224         /*
2225          * Disallow writes to immutable feature MSRs after KVM_RUN.  KVM does
2226          * not support modifying the guest vCPU model on the fly, e.g. changing
2227          * the nVMX capabilities while L2 is running is nonsensical.  Allow
2228          * writes of the same value, e.g. to allow userspace to blindly stuff
2229          * all MSRs when emulating RESET.
2230          */
2231         if (kvm_vcpu_has_run(vcpu) && kvm_is_immutable_feature_msr(index) &&
2232             (do_get_msr(vcpu, index, &val) || *data != val))
2233                 return -EINVAL;
2234
2235         return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2236 }
2237
2238 #ifdef CONFIG_X86_64
2239 struct pvclock_clock {
2240         int vclock_mode;
2241         u64 cycle_last;
2242         u64 mask;
2243         u32 mult;
2244         u32 shift;
2245         u64 base_cycles;
2246         u64 offset;
2247 };
2248
2249 struct pvclock_gtod_data {
2250         seqcount_t      seq;
2251
2252         struct pvclock_clock clock; /* extract of a clocksource struct */
2253         struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2254
2255         ktime_t         offs_boot;
2256         u64             wall_time_sec;
2257 };
2258
2259 static struct pvclock_gtod_data pvclock_gtod_data;
2260
2261 static void update_pvclock_gtod(struct timekeeper *tk)
2262 {
2263         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2264
2265         write_seqcount_begin(&vdata->seq);
2266
2267         /* copy pvclock gtod data */
2268         vdata->clock.vclock_mode        = tk->tkr_mono.clock->vdso_clock_mode;
2269         vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
2270         vdata->clock.mask               = tk->tkr_mono.mask;
2271         vdata->clock.mult               = tk->tkr_mono.mult;
2272         vdata->clock.shift              = tk->tkr_mono.shift;
2273         vdata->clock.base_cycles        = tk->tkr_mono.xtime_nsec;
2274         vdata->clock.offset             = tk->tkr_mono.base;
2275
2276         vdata->raw_clock.vclock_mode    = tk->tkr_raw.clock->vdso_clock_mode;
2277         vdata->raw_clock.cycle_last     = tk->tkr_raw.cycle_last;
2278         vdata->raw_clock.mask           = tk->tkr_raw.mask;
2279         vdata->raw_clock.mult           = tk->tkr_raw.mult;
2280         vdata->raw_clock.shift          = tk->tkr_raw.shift;
2281         vdata->raw_clock.base_cycles    = tk->tkr_raw.xtime_nsec;
2282         vdata->raw_clock.offset         = tk->tkr_raw.base;
2283
2284         vdata->wall_time_sec            = tk->xtime_sec;
2285
2286         vdata->offs_boot                = tk->offs_boot;
2287
2288         write_seqcount_end(&vdata->seq);
2289 }
2290
2291 static s64 get_kvmclock_base_ns(void)
2292 {
2293         /* Count up from boot time, but with the frequency of the raw clock.  */
2294         return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2295 }
2296 #else
2297 static s64 get_kvmclock_base_ns(void)
2298 {
2299         /* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
2300         return ktime_get_boottime_ns();
2301 }
2302 #endif
2303
2304 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2305 {
2306         int version;
2307         int r;
2308         struct pvclock_wall_clock wc;
2309         u32 wc_sec_hi;
2310         u64 wall_nsec;
2311
2312         if (!wall_clock)
2313                 return;
2314
2315         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2316         if (r)
2317                 return;
2318
2319         if (version & 1)
2320                 ++version;  /* first time write, random junk */
2321
2322         ++version;
2323
2324         if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2325                 return;
2326
2327         wall_nsec = kvm_get_wall_clock_epoch(kvm);
2328
2329         wc.nsec = do_div(wall_nsec, NSEC_PER_SEC);
2330         wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2331         wc.version = version;
2332
2333         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2334
2335         if (sec_hi_ofs) {
2336                 wc_sec_hi = wall_nsec >> 32;
2337                 kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2338                                 &wc_sec_hi, sizeof(wc_sec_hi));
2339         }
2340
2341         version++;
2342         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2343 }
2344
2345 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2346                                   bool old_msr, bool host_initiated)
2347 {
2348         struct kvm_arch *ka = &vcpu->kvm->arch;
2349
2350         if (vcpu->vcpu_id == 0 && !host_initiated) {
2351                 if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2352                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2353
2354                 ka->boot_vcpu_runs_old_kvmclock = old_msr;
2355         }
2356
2357         vcpu->arch.time = system_time;
2358         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2359
2360         /* we verify if the enable bit is set... */
2361         if (system_time & 1)
2362                 kvm_gpc_activate(&vcpu->arch.pv_time, system_time & ~1ULL,
2363                                  sizeof(struct pvclock_vcpu_time_info));
2364         else
2365                 kvm_gpc_deactivate(&vcpu->arch.pv_time);
2366
2367         return;
2368 }
2369
2370 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2371 {
2372         do_shl32_div32(dividend, divisor);
2373         return dividend;
2374 }
2375
2376 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2377                                s8 *pshift, u32 *pmultiplier)
2378 {
2379         uint64_t scaled64;
2380         int32_t  shift = 0;
2381         uint64_t tps64;
2382         uint32_t tps32;
2383
2384         tps64 = base_hz;
2385         scaled64 = scaled_hz;
2386         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2387                 tps64 >>= 1;
2388                 shift--;
2389         }
2390
2391         tps32 = (uint32_t)tps64;
2392         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2393                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2394                         scaled64 >>= 1;
2395                 else
2396                         tps32 <<= 1;
2397                 shift++;
2398         }
2399
2400         *pshift = shift;
2401         *pmultiplier = div_frac(scaled64, tps32);
2402 }
2403
2404 #ifdef CONFIG_X86_64
2405 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2406 #endif
2407
2408 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2409 static unsigned long max_tsc_khz;
2410
2411 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2412 {
2413         u64 v = (u64)khz * (1000000 + ppm);
2414         do_div(v, 1000000);
2415         return v;
2416 }
2417
2418 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2419
2420 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2421 {
2422         u64 ratio;
2423
2424         /* Guest TSC same frequency as host TSC? */
2425         if (!scale) {
2426                 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2427                 return 0;
2428         }
2429
2430         /* TSC scaling supported? */
2431         if (!kvm_caps.has_tsc_control) {
2432                 if (user_tsc_khz > tsc_khz) {
2433                         vcpu->arch.tsc_catchup = 1;
2434                         vcpu->arch.tsc_always_catchup = 1;
2435                         return 0;
2436                 } else {
2437                         pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2438                         return -1;
2439                 }
2440         }
2441
2442         /* TSC scaling required  - calculate ratio */
2443         ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits,
2444                                 user_tsc_khz, tsc_khz);
2445
2446         if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) {
2447                 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2448                                     user_tsc_khz);
2449                 return -1;
2450         }
2451
2452         kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2453         return 0;
2454 }
2455
2456 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2457 {
2458         u32 thresh_lo, thresh_hi;
2459         int use_scaling = 0;
2460
2461         /* tsc_khz can be zero if TSC calibration fails */
2462         if (user_tsc_khz == 0) {
2463                 /* set tsc_scaling_ratio to a safe value */
2464                 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2465                 return -1;
2466         }
2467
2468         /* Compute a scale to convert nanoseconds in TSC cycles */
2469         kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2470                            &vcpu->arch.virtual_tsc_shift,
2471                            &vcpu->arch.virtual_tsc_mult);
2472         vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2473
2474         /*
2475          * Compute the variation in TSC rate which is acceptable
2476          * within the range of tolerance and decide if the
2477          * rate being applied is within that bounds of the hardware
2478          * rate.  If so, no scaling or compensation need be done.
2479          */
2480         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2481         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2482         if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2483                 pr_debug("requested TSC rate %u falls outside tolerance [%u,%u]\n",
2484                          user_tsc_khz, thresh_lo, thresh_hi);
2485                 use_scaling = 1;
2486         }
2487         return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2488 }
2489
2490 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2491 {
2492         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2493                                       vcpu->arch.virtual_tsc_mult,
2494                                       vcpu->arch.virtual_tsc_shift);
2495         tsc += vcpu->arch.this_tsc_write;
2496         return tsc;
2497 }
2498
2499 #ifdef CONFIG_X86_64
2500 static inline bool gtod_is_based_on_tsc(int mode)
2501 {
2502         return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2503 }
2504 #endif
2505
2506 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu, bool new_generation)
2507 {
2508 #ifdef CONFIG_X86_64
2509         struct kvm_arch *ka = &vcpu->kvm->arch;
2510         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2511
2512         /*
2513          * To use the masterclock, the host clocksource must be based on TSC
2514          * and all vCPUs must have matching TSCs.  Note, the count for matching
2515          * vCPUs doesn't include the reference vCPU, hence "+1".
2516          */
2517         bool use_master_clock = (ka->nr_vcpus_matched_tsc + 1 ==
2518                                  atomic_read(&vcpu->kvm->online_vcpus)) &&
2519                                 gtod_is_based_on_tsc(gtod->clock.vclock_mode);
2520
2521         /*
2522          * Request a masterclock update if the masterclock needs to be toggled
2523          * on/off, or when starting a new generation and the masterclock is
2524          * enabled (compute_guest_tsc() requires the masterclock snapshot to be
2525          * taken _after_ the new generation is created).
2526          */
2527         if ((ka->use_master_clock && new_generation) ||
2528             (ka->use_master_clock != use_master_clock))
2529                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2530
2531         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2532                             atomic_read(&vcpu->kvm->online_vcpus),
2533                             ka->use_master_clock, gtod->clock.vclock_mode);
2534 #endif
2535 }
2536
2537 /*
2538  * Multiply tsc by a fixed point number represented by ratio.
2539  *
2540  * The most significant 64-N bits (mult) of ratio represent the
2541  * integral part of the fixed point number; the remaining N bits
2542  * (frac) represent the fractional part, ie. ratio represents a fixed
2543  * point number (mult + frac * 2^(-N)).
2544  *
2545  * N equals to kvm_caps.tsc_scaling_ratio_frac_bits.
2546  */
2547 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2548 {
2549         return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits);
2550 }
2551
2552 u64 kvm_scale_tsc(u64 tsc, u64 ratio)
2553 {
2554         u64 _tsc = tsc;
2555
2556         if (ratio != kvm_caps.default_tsc_scaling_ratio)
2557                 _tsc = __scale_tsc(ratio, tsc);
2558
2559         return _tsc;
2560 }
2561
2562 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2563 {
2564         u64 tsc;
2565
2566         tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2567
2568         return target_tsc - tsc;
2569 }
2570
2571 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2572 {
2573         return vcpu->arch.l1_tsc_offset +
2574                 kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2575 }
2576 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2577
2578 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2579 {
2580         u64 nested_offset;
2581
2582         if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio)
2583                 nested_offset = l1_offset;
2584         else
2585                 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2586                                                 kvm_caps.tsc_scaling_ratio_frac_bits);
2587
2588         nested_offset += l2_offset;
2589         return nested_offset;
2590 }
2591 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2592
2593 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2594 {
2595         if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio)
2596                 return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2597                                        kvm_caps.tsc_scaling_ratio_frac_bits);
2598
2599         return l1_multiplier;
2600 }
2601 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2602
2603 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2604 {
2605         trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2606                                    vcpu->arch.l1_tsc_offset,
2607                                    l1_offset);
2608
2609         vcpu->arch.l1_tsc_offset = l1_offset;
2610
2611         /*
2612          * If we are here because L1 chose not to trap WRMSR to TSC then
2613          * according to the spec this should set L1's TSC (as opposed to
2614          * setting L1's offset for L2).
2615          */
2616         if (is_guest_mode(vcpu))
2617                 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2618                         l1_offset,
2619                         static_call(kvm_x86_get_l2_tsc_offset)(vcpu),
2620                         static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2621         else
2622                 vcpu->arch.tsc_offset = l1_offset;
2623
2624         static_call(kvm_x86_write_tsc_offset)(vcpu);
2625 }
2626
2627 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2628 {
2629         vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2630
2631         /* Userspace is changing the multiplier while L2 is active */
2632         if (is_guest_mode(vcpu))
2633                 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2634                         l1_multiplier,
2635                         static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2636         else
2637                 vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2638
2639         if (kvm_caps.has_tsc_control)
2640                 static_call(kvm_x86_write_tsc_multiplier)(vcpu);
2641 }
2642
2643 static inline bool kvm_check_tsc_unstable(void)
2644 {
2645 #ifdef CONFIG_X86_64
2646         /*
2647          * TSC is marked unstable when we're running on Hyper-V,
2648          * 'TSC page' clocksource is good.
2649          */
2650         if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2651                 return false;
2652 #endif
2653         return check_tsc_unstable();
2654 }
2655
2656 /*
2657  * Infers attempts to synchronize the guest's tsc from host writes. Sets the
2658  * offset for the vcpu and tracks the TSC matching generation that the vcpu
2659  * participates in.
2660  */
2661 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc,
2662                                   u64 ns, bool matched)
2663 {
2664         struct kvm *kvm = vcpu->kvm;
2665
2666         lockdep_assert_held(&kvm->arch.tsc_write_lock);
2667
2668         /*
2669          * We also track th most recent recorded KHZ, write and time to
2670          * allow the matching interval to be extended at each write.
2671          */
2672         kvm->arch.last_tsc_nsec = ns;
2673         kvm->arch.last_tsc_write = tsc;
2674         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2675         kvm->arch.last_tsc_offset = offset;
2676
2677         vcpu->arch.last_guest_tsc = tsc;
2678
2679         kvm_vcpu_write_tsc_offset(vcpu, offset);
2680
2681         if (!matched) {
2682                 /*
2683                  * We split periods of matched TSC writes into generations.
2684                  * For each generation, we track the original measured
2685                  * nanosecond time, offset, and write, so if TSCs are in
2686                  * sync, we can match exact offset, and if not, we can match
2687                  * exact software computation in compute_guest_tsc()
2688                  *
2689                  * These values are tracked in kvm->arch.cur_xxx variables.
2690                  */
2691                 kvm->arch.cur_tsc_generation++;
2692                 kvm->arch.cur_tsc_nsec = ns;
2693                 kvm->arch.cur_tsc_write = tsc;
2694                 kvm->arch.cur_tsc_offset = offset;
2695                 kvm->arch.nr_vcpus_matched_tsc = 0;
2696         } else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) {
2697                 kvm->arch.nr_vcpus_matched_tsc++;
2698         }
2699
2700         /* Keep track of which generation this VCPU has synchronized to */
2701         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2702         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2703         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2704
2705         kvm_track_tsc_matching(vcpu, !matched);
2706 }
2707
2708 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 *user_value)
2709 {
2710         u64 data = user_value ? *user_value : 0;
2711         struct kvm *kvm = vcpu->kvm;
2712         u64 offset, ns, elapsed;
2713         unsigned long flags;
2714         bool matched = false;
2715         bool synchronizing = false;
2716
2717         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2718         offset = kvm_compute_l1_tsc_offset(vcpu, data);
2719         ns = get_kvmclock_base_ns();
2720         elapsed = ns - kvm->arch.last_tsc_nsec;
2721
2722         if (vcpu->arch.virtual_tsc_khz) {
2723                 if (data == 0) {
2724                         /*
2725                          * Force synchronization when creating a vCPU, or when
2726                          * userspace explicitly writes a zero value.
2727                          */
2728                         synchronizing = true;
2729                 } else if (kvm->arch.user_set_tsc) {
2730                         u64 tsc_exp = kvm->arch.last_tsc_write +
2731                                                 nsec_to_cycles(vcpu, elapsed);
2732                         u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2733                         /*
2734                          * Here lies UAPI baggage: when a user-initiated TSC write has
2735                          * a small delta (1 second) of virtual cycle time against the
2736                          * previously set vCPU, we assume that they were intended to be
2737                          * in sync and the delta was only due to the racy nature of the
2738                          * legacy API.
2739                          *
2740                          * This trick falls down when restoring a guest which genuinely
2741                          * has been running for less time than the 1 second of imprecision
2742                          * which we allow for in the legacy API. In this case, the first
2743                          * value written by userspace (on any vCPU) should not be subject
2744                          * to this 'correction' to make it sync up with values that only
2745                          * come from the kernel's default vCPU creation. Make the 1-second
2746                          * slop hack only trigger if the user_set_tsc flag is already set.
2747                          */
2748                         synchronizing = data < tsc_exp + tsc_hz &&
2749                                         data + tsc_hz > tsc_exp;
2750                 }
2751         }
2752
2753         if (user_value)
2754                 kvm->arch.user_set_tsc = true;
2755
2756         /*
2757          * For a reliable TSC, we can match TSC offsets, and for an unstable
2758          * TSC, we add elapsed time in this computation.  We could let the
2759          * compensation code attempt to catch up if we fall behind, but
2760          * it's better to try to match offsets from the beginning.
2761          */
2762         if (synchronizing &&
2763             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2764                 if (!kvm_check_tsc_unstable()) {
2765                         offset = kvm->arch.cur_tsc_offset;
2766                 } else {
2767                         u64 delta = nsec_to_cycles(vcpu, elapsed);
2768                         data += delta;
2769                         offset = kvm_compute_l1_tsc_offset(vcpu, data);
2770                 }
2771                 matched = true;
2772         }
2773
2774         __kvm_synchronize_tsc(vcpu, offset, data, ns, matched);
2775         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2776 }
2777
2778 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2779                                            s64 adjustment)
2780 {
2781         u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2782         kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2783 }
2784
2785 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2786 {
2787         if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio)
2788                 WARN_ON(adjustment < 0);
2789         adjustment = kvm_scale_tsc((u64) adjustment,
2790                                    vcpu->arch.l1_tsc_scaling_ratio);
2791         adjust_tsc_offset_guest(vcpu, adjustment);
2792 }
2793
2794 #ifdef CONFIG_X86_64
2795
2796 static u64 read_tsc(void)
2797 {
2798         u64 ret = (u64)rdtsc_ordered();
2799         u64 last = pvclock_gtod_data.clock.cycle_last;
2800
2801         if (likely(ret >= last))
2802                 return ret;
2803
2804         /*
2805          * GCC likes to generate cmov here, but this branch is extremely
2806          * predictable (it's just a function of time and the likely is
2807          * very likely) and there's a data dependence, so force GCC
2808          * to generate a branch instead.  I don't barrier() because
2809          * we don't actually need a barrier, and if this function
2810          * ever gets inlined it will generate worse code.
2811          */
2812         asm volatile ("");
2813         return last;
2814 }
2815
2816 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2817                           int *mode)
2818 {
2819         u64 tsc_pg_val;
2820         long v;
2821
2822         switch (clock->vclock_mode) {
2823         case VDSO_CLOCKMODE_HVCLOCK:
2824                 if (hv_read_tsc_page_tsc(hv_get_tsc_page(),
2825                                          tsc_timestamp, &tsc_pg_val)) {
2826                         /* TSC page valid */
2827                         *mode = VDSO_CLOCKMODE_HVCLOCK;
2828                         v = (tsc_pg_val - clock->cycle_last) &
2829                                 clock->mask;
2830                 } else {
2831                         /* TSC page invalid */
2832                         *mode = VDSO_CLOCKMODE_NONE;
2833                 }
2834                 break;
2835         case VDSO_CLOCKMODE_TSC:
2836                 *mode = VDSO_CLOCKMODE_TSC;
2837                 *tsc_timestamp = read_tsc();
2838                 v = (*tsc_timestamp - clock->cycle_last) &
2839                         clock->mask;
2840                 break;
2841         default:
2842                 *mode = VDSO_CLOCKMODE_NONE;
2843         }
2844
2845         if (*mode == VDSO_CLOCKMODE_NONE)
2846                 *tsc_timestamp = v = 0;
2847
2848         return v * clock->mult;
2849 }
2850
2851 /*
2852  * As with get_kvmclock_base_ns(), this counts from boot time, at the
2853  * frequency of CLOCK_MONOTONIC_RAW (hence adding gtos->offs_boot).
2854  */
2855 static int do_kvmclock_base(s64 *t, u64 *tsc_timestamp)
2856 {
2857         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2858         unsigned long seq;
2859         int mode;
2860         u64 ns;
2861
2862         do {
2863                 seq = read_seqcount_begin(&gtod->seq);
2864                 ns = gtod->raw_clock.base_cycles;
2865                 ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2866                 ns >>= gtod->raw_clock.shift;
2867                 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2868         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2869         *t = ns;
2870
2871         return mode;
2872 }
2873
2874 /*
2875  * This calculates CLOCK_MONOTONIC at the time of the TSC snapshot, with
2876  * no boot time offset.
2877  */
2878 static int do_monotonic(s64 *t, u64 *tsc_timestamp)
2879 {
2880         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2881         unsigned long seq;
2882         int mode;
2883         u64 ns;
2884
2885         do {
2886                 seq = read_seqcount_begin(&gtod->seq);
2887                 ns = gtod->clock.base_cycles;
2888                 ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2889                 ns >>= gtod->clock.shift;
2890                 ns += ktime_to_ns(gtod->clock.offset);
2891         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2892         *t = ns;
2893
2894         return mode;
2895 }
2896
2897 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2898 {
2899         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2900         unsigned long seq;
2901         int mode;
2902         u64 ns;
2903
2904         do {
2905                 seq = read_seqcount_begin(&gtod->seq);
2906                 ts->tv_sec = gtod->wall_time_sec;
2907                 ns = gtod->clock.base_cycles;
2908                 ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2909                 ns >>= gtod->clock.shift;
2910         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2911
2912         ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2913         ts->tv_nsec = ns;
2914
2915         return mode;
2916 }
2917
2918 /*
2919  * Calculates the kvmclock_base_ns (CLOCK_MONOTONIC_RAW + boot time) and
2920  * reports the TSC value from which it do so. Returns true if host is
2921  * using TSC based clocksource.
2922  */
2923 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2924 {
2925         /* checked again under seqlock below */
2926         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2927                 return false;
2928
2929         return gtod_is_based_on_tsc(do_kvmclock_base(kernel_ns,
2930                                                      tsc_timestamp));
2931 }
2932
2933 /*
2934  * Calculates CLOCK_MONOTONIC and reports the TSC value from which it did
2935  * so. Returns true if host is using TSC based clocksource.
2936  */
2937 bool kvm_get_monotonic_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2938 {
2939         /* checked again under seqlock below */
2940         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2941                 return false;
2942
2943         return gtod_is_based_on_tsc(do_monotonic(kernel_ns,
2944                                                  tsc_timestamp));
2945 }
2946
2947 /*
2948  * Calculates CLOCK_REALTIME and reports the TSC value from which it did
2949  * so. Returns true if host is using TSC based clocksource.
2950  *
2951  * DO NOT USE this for anything related to migration. You want CLOCK_TAI
2952  * for that.
2953  */
2954 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2955                                            u64 *tsc_timestamp)
2956 {
2957         /* checked again under seqlock below */
2958         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2959                 return false;
2960
2961         return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2962 }
2963 #endif
2964
2965 /*
2966  *
2967  * Assuming a stable TSC across physical CPUS, and a stable TSC
2968  * across virtual CPUs, the following condition is possible.
2969  * Each numbered line represents an event visible to both
2970  * CPUs at the next numbered event.
2971  *
2972  * "timespecX" represents host monotonic time. "tscX" represents
2973  * RDTSC value.
2974  *
2975  *              VCPU0 on CPU0           |       VCPU1 on CPU1
2976  *
2977  * 1.  read timespec0,tsc0
2978  * 2.                                   | timespec1 = timespec0 + N
2979  *                                      | tsc1 = tsc0 + M
2980  * 3. transition to guest               | transition to guest
2981  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2982  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
2983  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2984  *
2985  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2986  *
2987  *      - ret0 < ret1
2988  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2989  *              ...
2990  *      - 0 < N - M => M < N
2991  *
2992  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2993  * always the case (the difference between two distinct xtime instances
2994  * might be smaller then the difference between corresponding TSC reads,
2995  * when updating guest vcpus pvclock areas).
2996  *
2997  * To avoid that problem, do not allow visibility of distinct
2998  * system_timestamp/tsc_timestamp values simultaneously: use a master
2999  * copy of host monotonic time values. Update that master copy
3000  * in lockstep.
3001  *
3002  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
3003  *
3004  */
3005
3006 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
3007 {
3008 #ifdef CONFIG_X86_64
3009         struct kvm_arch *ka = &kvm->arch;
3010         int vclock_mode;
3011         bool host_tsc_clocksource, vcpus_matched;
3012
3013         lockdep_assert_held(&kvm->arch.tsc_write_lock);
3014         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
3015                         atomic_read(&kvm->online_vcpus));
3016
3017         /*
3018          * If the host uses TSC clock, then passthrough TSC as stable
3019          * to the guest.
3020          */
3021         host_tsc_clocksource = kvm_get_time_and_clockread(
3022                                         &ka->master_kernel_ns,
3023                                         &ka->master_cycle_now);
3024
3025         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
3026                                 && !ka->backwards_tsc_observed
3027                                 && !ka->boot_vcpu_runs_old_kvmclock;
3028
3029         if (ka->use_master_clock)
3030                 atomic_set(&kvm_guest_has_master_clock, 1);
3031
3032         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
3033         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
3034                                         vcpus_matched);
3035 #endif
3036 }
3037
3038 static void kvm_make_mclock_inprogress_request(struct kvm *kvm)
3039 {
3040         kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
3041 }
3042
3043 static void __kvm_start_pvclock_update(struct kvm *kvm)
3044 {
3045         raw_spin_lock_irq(&kvm->arch.tsc_write_lock);
3046         write_seqcount_begin(&kvm->arch.pvclock_sc);
3047 }
3048
3049 static void kvm_start_pvclock_update(struct kvm *kvm)
3050 {
3051         kvm_make_mclock_inprogress_request(kvm);
3052
3053         /* no guest entries from this point */
3054         __kvm_start_pvclock_update(kvm);
3055 }
3056
3057 static void kvm_end_pvclock_update(struct kvm *kvm)
3058 {
3059         struct kvm_arch *ka = &kvm->arch;
3060         struct kvm_vcpu *vcpu;
3061         unsigned long i;
3062
3063         write_seqcount_end(&ka->pvclock_sc);
3064         raw_spin_unlock_irq(&ka->tsc_write_lock);
3065         kvm_for_each_vcpu(i, vcpu, kvm)
3066                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3067
3068         /* guest entries allowed */
3069         kvm_for_each_vcpu(i, vcpu, kvm)
3070                 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
3071 }
3072
3073 static void kvm_update_masterclock(struct kvm *kvm)
3074 {
3075         kvm_hv_request_tsc_page_update(kvm);
3076         kvm_start_pvclock_update(kvm);
3077         pvclock_update_vm_gtod_copy(kvm);
3078         kvm_end_pvclock_update(kvm);
3079 }
3080
3081 /*
3082  * Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's
3083  * per-CPU value (which may be zero if a CPU is going offline).  Note, tsc_khz
3084  * can change during boot even if the TSC is constant, as it's possible for KVM
3085  * to be loaded before TSC calibration completes.  Ideally, KVM would get a
3086  * notification when calibration completes, but practically speaking calibration
3087  * will complete before userspace is alive enough to create VMs.
3088  */
3089 static unsigned long get_cpu_tsc_khz(void)
3090 {
3091         if (static_cpu_has(X86_FEATURE_CONSTANT_TSC))
3092                 return tsc_khz;
3093         else
3094                 return __this_cpu_read(cpu_tsc_khz);
3095 }
3096
3097 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc.  */
3098 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3099 {
3100         struct kvm_arch *ka = &kvm->arch;
3101         struct pvclock_vcpu_time_info hv_clock;
3102
3103         /* both __this_cpu_read() and rdtsc() should be on the same cpu */
3104         get_cpu();
3105
3106         data->flags = 0;
3107         if (ka->use_master_clock &&
3108             (static_cpu_has(X86_FEATURE_CONSTANT_TSC) || __this_cpu_read(cpu_tsc_khz))) {
3109 #ifdef CONFIG_X86_64
3110                 struct timespec64 ts;
3111
3112                 if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) {
3113                         data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec;
3114                         data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC;
3115                 } else
3116 #endif
3117                 data->host_tsc = rdtsc();
3118
3119                 data->flags |= KVM_CLOCK_TSC_STABLE;
3120                 hv_clock.tsc_timestamp = ka->master_cycle_now;
3121                 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
3122                 kvm_get_time_scale(NSEC_PER_SEC, get_cpu_tsc_khz() * 1000LL,
3123                                    &hv_clock.tsc_shift,
3124                                    &hv_clock.tsc_to_system_mul);
3125                 data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc);
3126         } else {
3127                 data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset;
3128         }
3129
3130         put_cpu();
3131 }
3132
3133 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3134 {
3135         struct kvm_arch *ka = &kvm->arch;
3136         unsigned seq;
3137
3138         do {
3139                 seq = read_seqcount_begin(&ka->pvclock_sc);
3140                 __get_kvmclock(kvm, data);
3141         } while (read_seqcount_retry(&ka->pvclock_sc, seq));
3142 }
3143
3144 u64 get_kvmclock_ns(struct kvm *kvm)
3145 {
3146         struct kvm_clock_data data;
3147
3148         get_kvmclock(kvm, &data);
3149         return data.clock;
3150 }
3151
3152 static void kvm_setup_guest_pvclock(struct kvm_vcpu *v,
3153                                     struct gfn_to_pfn_cache *gpc,
3154                                     unsigned int offset,
3155                                     bool force_tsc_unstable)
3156 {
3157         struct kvm_vcpu_arch *vcpu = &v->arch;
3158         struct pvclock_vcpu_time_info *guest_hv_clock;
3159         unsigned long flags;
3160
3161         read_lock_irqsave(&gpc->lock, flags);
3162         while (!kvm_gpc_check(gpc, offset + sizeof(*guest_hv_clock))) {
3163                 read_unlock_irqrestore(&gpc->lock, flags);
3164
3165                 if (kvm_gpc_refresh(gpc, offset + sizeof(*guest_hv_clock)))
3166                         return;
3167
3168                 read_lock_irqsave(&gpc->lock, flags);
3169         }
3170
3171         guest_hv_clock = (void *)(gpc->khva + offset);
3172
3173         /*
3174          * This VCPU is paused, but it's legal for a guest to read another
3175          * VCPU's kvmclock, so we really have to follow the specification where
3176          * it says that version is odd if data is being modified, and even after
3177          * it is consistent.
3178          */
3179
3180         guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1;
3181         smp_wmb();
3182
3183         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
3184         vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED);
3185
3186         if (vcpu->pvclock_set_guest_stopped_request) {
3187                 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
3188                 vcpu->pvclock_set_guest_stopped_request = false;
3189         }
3190
3191         memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock));
3192
3193         if (force_tsc_unstable)
3194                 guest_hv_clock->flags &= ~PVCLOCK_TSC_STABLE_BIT;
3195
3196         smp_wmb();
3197
3198         guest_hv_clock->version = ++vcpu->hv_clock.version;
3199
3200         kvm_gpc_mark_dirty_in_slot(gpc);
3201         read_unlock_irqrestore(&gpc->lock, flags);
3202
3203         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
3204 }
3205
3206 static int kvm_guest_time_update(struct kvm_vcpu *v)
3207 {
3208         unsigned long flags, tgt_tsc_khz;
3209         unsigned seq;
3210         struct kvm_vcpu_arch *vcpu = &v->arch;
3211         struct kvm_arch *ka = &v->kvm->arch;
3212         s64 kernel_ns;
3213         u64 tsc_timestamp, host_tsc;
3214         u8 pvclock_flags;
3215         bool use_master_clock;
3216 #ifdef CONFIG_KVM_XEN
3217         /*
3218          * For Xen guests we may need to override PVCLOCK_TSC_STABLE_BIT as unless
3219          * explicitly told to use TSC as its clocksource Xen will not set this bit.
3220          * This default behaviour led to bugs in some guest kernels which cause
3221          * problems if they observe PVCLOCK_TSC_STABLE_BIT in the pvclock flags.
3222          */
3223         bool xen_pvclock_tsc_unstable =
3224                 ka->xen_hvm_config.flags & KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE;
3225 #endif
3226
3227         kernel_ns = 0;
3228         host_tsc = 0;
3229
3230         /*
3231          * If the host uses TSC clock, then passthrough TSC as stable
3232          * to the guest.
3233          */
3234         do {
3235                 seq = read_seqcount_begin(&ka->pvclock_sc);
3236                 use_master_clock = ka->use_master_clock;
3237                 if (use_master_clock) {
3238                         host_tsc = ka->master_cycle_now;
3239                         kernel_ns = ka->master_kernel_ns;
3240                 }
3241         } while (read_seqcount_retry(&ka->pvclock_sc, seq));
3242
3243         /* Keep irq disabled to prevent changes to the clock */
3244         local_irq_save(flags);
3245         tgt_tsc_khz = get_cpu_tsc_khz();
3246         if (unlikely(tgt_tsc_khz == 0)) {
3247                 local_irq_restore(flags);
3248                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3249                 return 1;
3250         }
3251         if (!use_master_clock) {
3252                 host_tsc = rdtsc();
3253                 kernel_ns = get_kvmclock_base_ns();
3254         }
3255
3256         tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
3257
3258         /*
3259          * We may have to catch up the TSC to match elapsed wall clock
3260          * time for two reasons, even if kvmclock is used.
3261          *   1) CPU could have been running below the maximum TSC rate
3262          *   2) Broken TSC compensation resets the base at each VCPU
3263          *      entry to avoid unknown leaps of TSC even when running
3264          *      again on the same CPU.  This may cause apparent elapsed
3265          *      time to disappear, and the guest to stand still or run
3266          *      very slowly.
3267          */
3268         if (vcpu->tsc_catchup) {
3269                 u64 tsc = compute_guest_tsc(v, kernel_ns);
3270                 if (tsc > tsc_timestamp) {
3271                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
3272                         tsc_timestamp = tsc;
3273                 }
3274         }
3275
3276         local_irq_restore(flags);
3277
3278         /* With all the info we got, fill in the values */
3279
3280         if (kvm_caps.has_tsc_control)
3281                 tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz,
3282                                             v->arch.l1_tsc_scaling_ratio);
3283
3284         if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
3285                 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
3286                                    &vcpu->hv_clock.tsc_shift,
3287                                    &vcpu->hv_clock.tsc_to_system_mul);
3288                 vcpu->hw_tsc_khz = tgt_tsc_khz;
3289                 kvm_xen_update_tsc_info(v);
3290         }
3291
3292         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
3293         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
3294         vcpu->last_guest_tsc = tsc_timestamp;
3295
3296         /* If the host uses TSC clocksource, then it is stable */
3297         pvclock_flags = 0;
3298         if (use_master_clock)
3299                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
3300
3301         vcpu->hv_clock.flags = pvclock_flags;
3302
3303         if (vcpu->pv_time.active)
3304                 kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0, false);
3305 #ifdef CONFIG_KVM_XEN
3306         if (vcpu->xen.vcpu_info_cache.active)
3307                 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache,
3308                                         offsetof(struct compat_vcpu_info, time),
3309                                         xen_pvclock_tsc_unstable);
3310         if (vcpu->xen.vcpu_time_info_cache.active)
3311                 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0,
3312                                         xen_pvclock_tsc_unstable);
3313 #endif
3314         kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
3315         return 0;
3316 }
3317
3318 /*
3319  * The pvclock_wall_clock ABI tells the guest the wall clock time at
3320  * which it started (i.e. its epoch, when its kvmclock was zero).
3321  *
3322  * In fact those clocks are subtly different; wall clock frequency is
3323  * adjusted by NTP and has leap seconds, while the kvmclock is a
3324  * simple function of the TSC without any such adjustment.
3325  *
3326  * Perhaps the ABI should have exposed CLOCK_TAI and a ratio between
3327  * that and kvmclock, but even that would be subject to change over
3328  * time.
3329  *
3330  * Attempt to calculate the epoch at a given moment using the *same*
3331  * TSC reading via kvm_get_walltime_and_clockread() to obtain both
3332  * wallclock and kvmclock times, and subtracting one from the other.
3333  *
3334  * Fall back to using their values at slightly different moments by
3335  * calling ktime_get_real_ns() and get_kvmclock_ns() separately.
3336  */
3337 uint64_t kvm_get_wall_clock_epoch(struct kvm *kvm)
3338 {
3339 #ifdef CONFIG_X86_64
3340         struct pvclock_vcpu_time_info hv_clock;
3341         struct kvm_arch *ka = &kvm->arch;
3342         unsigned long seq, local_tsc_khz;
3343         struct timespec64 ts;
3344         uint64_t host_tsc;
3345
3346         do {
3347                 seq = read_seqcount_begin(&ka->pvclock_sc);
3348
3349                 local_tsc_khz = 0;
3350                 if (!ka->use_master_clock)
3351                         break;
3352
3353                 /*
3354                  * The TSC read and the call to get_cpu_tsc_khz() must happen
3355                  * on the same CPU.
3356                  */
3357                 get_cpu();
3358
3359                 local_tsc_khz = get_cpu_tsc_khz();
3360
3361                 if (local_tsc_khz &&
3362                     !kvm_get_walltime_and_clockread(&ts, &host_tsc))
3363                         local_tsc_khz = 0; /* Fall back to old method */
3364
3365                 put_cpu();
3366
3367                 /*
3368                  * These values must be snapshotted within the seqcount loop.
3369                  * After that, it's just mathematics which can happen on any
3370                  * CPU at any time.
3371                  */
3372                 hv_clock.tsc_timestamp = ka->master_cycle_now;
3373                 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
3374
3375         } while (read_seqcount_retry(&ka->pvclock_sc, seq));
3376
3377         /*
3378          * If the conditions were right, and obtaining the wallclock+TSC was
3379          * successful, calculate the KVM clock at the corresponding time and
3380          * subtract one from the other to get the guest's epoch in nanoseconds
3381          * since 1970-01-01.
3382          */
3383         if (local_tsc_khz) {
3384                 kvm_get_time_scale(NSEC_PER_SEC, local_tsc_khz * NSEC_PER_USEC,
3385                                    &hv_clock.tsc_shift,
3386                                    &hv_clock.tsc_to_system_mul);
3387                 return ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec -
3388                         __pvclock_read_cycles(&hv_clock, host_tsc);
3389         }
3390 #endif
3391         return ktime_get_real_ns() - get_kvmclock_ns(kvm);
3392 }
3393
3394 /*
3395  * kvmclock updates which are isolated to a given vcpu, such as
3396  * vcpu->cpu migration, should not allow system_timestamp from
3397  * the rest of the vcpus to remain static. Otherwise ntp frequency
3398  * correction applies to one vcpu's system_timestamp but not
3399  * the others.
3400  *
3401  * So in those cases, request a kvmclock update for all vcpus.
3402  * We need to rate-limit these requests though, as they can
3403  * considerably slow guests that have a large number of vcpus.
3404  * The time for a remote vcpu to update its kvmclock is bound
3405  * by the delay we use to rate-limit the updates.
3406  */
3407
3408 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
3409
3410 static void kvmclock_update_fn(struct work_struct *work)
3411 {
3412         unsigned long i;
3413         struct delayed_work *dwork = to_delayed_work(work);
3414         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3415                                            kvmclock_update_work);
3416         struct kvm *kvm = container_of(ka, struct kvm, arch);
3417         struct kvm_vcpu *vcpu;
3418
3419         kvm_for_each_vcpu(i, vcpu, kvm) {
3420                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3421                 kvm_vcpu_kick(vcpu);
3422         }
3423 }
3424
3425 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3426 {
3427         struct kvm *kvm = v->kvm;
3428
3429         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3430         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3431                                         KVMCLOCK_UPDATE_DELAY);
3432 }
3433
3434 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3435
3436 static void kvmclock_sync_fn(struct work_struct *work)
3437 {
3438         struct delayed_work *dwork = to_delayed_work(work);
3439         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3440                                            kvmclock_sync_work);
3441         struct kvm *kvm = container_of(ka, struct kvm, arch);
3442
3443         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3444         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3445                                         KVMCLOCK_SYNC_PERIOD);
3446 }
3447
3448 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */
3449 static bool is_mci_control_msr(u32 msr)
3450 {
3451         return (msr & 3) == 0;
3452 }
3453 static bool is_mci_status_msr(u32 msr)
3454 {
3455         return (msr & 3) == 1;
3456 }
3457
3458 /*
3459  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3460  */
3461 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3462 {
3463         /* McStatusWrEn enabled? */
3464         if (guest_cpuid_is_amd_compatible(vcpu))
3465                 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3466
3467         return false;
3468 }
3469
3470 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3471 {
3472         u64 mcg_cap = vcpu->arch.mcg_cap;
3473         unsigned bank_num = mcg_cap & 0xff;
3474         u32 msr = msr_info->index;
3475         u64 data = msr_info->data;
3476         u32 offset, last_msr;
3477
3478         switch (msr) {
3479         case MSR_IA32_MCG_STATUS:
3480                 vcpu->arch.mcg_status = data;
3481                 break;
3482         case MSR_IA32_MCG_CTL:
3483                 if (!(mcg_cap & MCG_CTL_P) &&
3484                     (data || !msr_info->host_initiated))
3485                         return 1;
3486                 if (data != 0 && data != ~(u64)0)
3487                         return 1;
3488                 vcpu->arch.mcg_ctl = data;
3489                 break;
3490         case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3491                 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
3492                 if (msr > last_msr)
3493                         return 1;
3494
3495                 if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated))
3496                         return 1;
3497                 /* An attempt to write a 1 to a reserved bit raises #GP */
3498                 if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK))
3499                         return 1;
3500                 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
3501                                             last_msr + 1 - MSR_IA32_MC0_CTL2);
3502                 vcpu->arch.mci_ctl2_banks[offset] = data;
3503                 break;
3504         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3505                 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
3506                 if (msr > last_msr)
3507                         return 1;
3508
3509                 /*
3510                  * Only 0 or all 1s can be written to IA32_MCi_CTL, all other
3511                  * values are architecturally undefined.  But, some Linux
3512                  * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB
3513                  * issue on AMD K8s, allow bit 10 to be clear when setting all
3514                  * other bits in order to avoid an uncaught #GP in the guest.
3515                  *
3516                  * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable,
3517                  * single-bit ECC data errors.
3518                  */
3519                 if (is_mci_control_msr(msr) &&
3520                     data != 0 && (data | (1 << 10) | 1) != ~(u64)0)
3521                         return 1;
3522
3523                 /*
3524                  * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR.
3525                  * AMD-based CPUs allow non-zero values, but if and only if
3526                  * HWCR[McStatusWrEn] is set.
3527                  */
3528                 if (!msr_info->host_initiated && is_mci_status_msr(msr) &&
3529                     data != 0 && !can_set_mci_status(vcpu))
3530                         return 1;
3531
3532                 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
3533                                             last_msr + 1 - MSR_IA32_MC0_CTL);
3534                 vcpu->arch.mce_banks[offset] = data;
3535                 break;
3536         default:
3537                 return 1;
3538         }
3539         return 0;
3540 }
3541
3542 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3543 {
3544         u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3545
3546         return (vcpu->arch.apf.msr_en_val & mask) == mask;
3547 }
3548
3549 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3550 {
3551         gpa_t gpa = data & ~0x3f;
3552
3553         /* Bits 4:5 are reserved, Should be zero */
3554         if (data & 0x30)
3555                 return 1;
3556
3557         if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3558             (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3559                 return 1;
3560
3561         if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3562             (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3563                 return 1;
3564
3565         if (!lapic_in_kernel(vcpu))
3566                 return data ? 1 : 0;
3567
3568         vcpu->arch.apf.msr_en_val = data;
3569
3570         if (!kvm_pv_async_pf_enabled(vcpu)) {
3571                 kvm_clear_async_pf_completion_queue(vcpu);
3572                 kvm_async_pf_hash_reset(vcpu);
3573                 return 0;
3574         }
3575
3576         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3577                                         sizeof(u64)))
3578                 return 1;
3579
3580         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3581         vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3582
3583         kvm_async_pf_wakeup_all(vcpu);
3584
3585         return 0;
3586 }
3587
3588 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3589 {
3590         /* Bits 8-63 are reserved */
3591         if (data >> 8)
3592                 return 1;
3593
3594         if (!lapic_in_kernel(vcpu))
3595                 return 1;
3596
3597         vcpu->arch.apf.msr_int_val = data;
3598
3599         vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3600
3601         return 0;
3602 }
3603
3604 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3605 {
3606         kvm_gpc_deactivate(&vcpu->arch.pv_time);
3607         vcpu->arch.time = 0;
3608 }
3609
3610 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3611 {
3612         ++vcpu->stat.tlb_flush;
3613         static_call(kvm_x86_flush_tlb_all)(vcpu);
3614
3615         /* Flushing all ASIDs flushes the current ASID... */
3616         kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
3617 }
3618
3619 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3620 {
3621         ++vcpu->stat.tlb_flush;
3622
3623         if (!tdp_enabled) {
3624                 /*
3625                  * A TLB flush on behalf of the guest is equivalent to
3626                  * INVPCID(all), toggling CR4.PGE, etc., which requires
3627                  * a forced sync of the shadow page tables.  Ensure all the
3628                  * roots are synced and the guest TLB in hardware is clean.
3629                  */
3630                 kvm_mmu_sync_roots(vcpu);
3631                 kvm_mmu_sync_prev_roots(vcpu);
3632         }
3633
3634         static_call(kvm_x86_flush_tlb_guest)(vcpu);
3635
3636         /*
3637          * Flushing all "guest" TLB is always a superset of Hyper-V's fine
3638          * grained flushing.
3639          */
3640         kvm_hv_vcpu_purge_flush_tlb(vcpu);
3641 }
3642
3643
3644 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
3645 {
3646         ++vcpu->stat.tlb_flush;
3647         static_call(kvm_x86_flush_tlb_current)(vcpu);
3648 }
3649
3650 /*
3651  * Service "local" TLB flush requests, which are specific to the current MMU
3652  * context.  In addition to the generic event handling in vcpu_enter_guest(),
3653  * TLB flushes that are targeted at an MMU context also need to be serviced
3654  * prior before nested VM-Enter/VM-Exit.
3655  */
3656 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu)
3657 {
3658         if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3659                 kvm_vcpu_flush_tlb_current(vcpu);
3660
3661         if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
3662                 kvm_vcpu_flush_tlb_guest(vcpu);
3663 }
3664 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests);
3665
3666 static void record_steal_time(struct kvm_vcpu *vcpu)
3667 {
3668         struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3669         struct kvm_steal_time __user *st;
3670         struct kvm_memslots *slots;
3671         gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3672         u64 steal;
3673         u32 version;
3674
3675         if (kvm_xen_msr_enabled(vcpu->kvm)) {
3676                 kvm_xen_runstate_set_running(vcpu);
3677                 return;
3678         }
3679
3680         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3681                 return;
3682
3683         if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3684                 return;
3685
3686         slots = kvm_memslots(vcpu->kvm);
3687
3688         if (unlikely(slots->generation != ghc->generation ||
3689                      gpa != ghc->gpa ||
3690                      kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3691                 /* We rely on the fact that it fits in a single page. */
3692                 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3693
3694                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) ||
3695                     kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3696                         return;
3697         }
3698
3699         st = (struct kvm_steal_time __user *)ghc->hva;
3700         /*
3701          * Doing a TLB flush here, on the guest's behalf, can avoid
3702          * expensive IPIs.
3703          */
3704         if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3705                 u8 st_preempted = 0;
3706                 int err = -EFAULT;
3707
3708                 if (!user_access_begin(st, sizeof(*st)))
3709                         return;
3710
3711                 asm volatile("1: xchgb %0, %2\n"
3712                              "xor %1, %1\n"
3713                              "2:\n"
3714                              _ASM_EXTABLE_UA(1b, 2b)
3715                              : "+q" (st_preempted),
3716                                "+&r" (err),
3717                                "+m" (st->preempted));
3718                 if (err)
3719                         goto out;
3720
3721                 user_access_end();
3722
3723                 vcpu->arch.st.preempted = 0;
3724
3725                 trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3726                                        st_preempted & KVM_VCPU_FLUSH_TLB);
3727                 if (st_preempted & KVM_VCPU_FLUSH_TLB)
3728                         kvm_vcpu_flush_tlb_guest(vcpu);
3729
3730                 if (!user_access_begin(st, sizeof(*st)))
3731                         goto dirty;
3732         } else {
3733                 if (!user_access_begin(st, sizeof(*st)))
3734                         return;
3735
3736                 unsafe_put_user(0, &st->preempted, out);
3737                 vcpu->arch.st.preempted = 0;
3738         }
3739
3740         unsafe_get_user(version, &st->version, out);
3741         if (version & 1)
3742                 version += 1;  /* first time write, random junk */
3743
3744         version += 1;
3745         unsafe_put_user(version, &st->version, out);
3746
3747         smp_wmb();
3748
3749         unsafe_get_user(steal, &st->steal, out);
3750         steal += current->sched_info.run_delay -
3751                 vcpu->arch.st.last_steal;
3752         vcpu->arch.st.last_steal = current->sched_info.run_delay;
3753         unsafe_put_user(steal, &st->steal, out);
3754
3755         version += 1;
3756         unsafe_put_user(version, &st->version, out);
3757
3758  out:
3759         user_access_end();
3760  dirty:
3761         mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
3762 }
3763
3764 static bool kvm_is_msr_to_save(u32 msr_index)
3765 {
3766         unsigned int i;
3767
3768         for (i = 0; i < num_msrs_to_save; i++) {
3769                 if (msrs_to_save[i] == msr_index)
3770                         return true;
3771         }
3772
3773         return false;
3774 }
3775
3776 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3777 {
3778         u32 msr = msr_info->index;
3779         u64 data = msr_info->data;
3780
3781         if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3782                 return kvm_xen_write_hypercall_page(vcpu, data);
3783
3784         switch (msr) {
3785         case MSR_AMD64_NB_CFG:
3786         case MSR_IA32_UCODE_WRITE:
3787         case MSR_VM_HSAVE_PA:
3788         case MSR_AMD64_PATCH_LOADER:
3789         case MSR_AMD64_BU_CFG2:
3790         case MSR_AMD64_DC_CFG:
3791         case MSR_AMD64_TW_CFG:
3792         case MSR_F15H_EX_CFG:
3793                 break;
3794
3795         case MSR_IA32_UCODE_REV:
3796                 if (msr_info->host_initiated)
3797                         vcpu->arch.microcode_version = data;
3798                 break;
3799         case MSR_IA32_ARCH_CAPABILITIES:
3800                 if (!msr_info->host_initiated)
3801                         return 1;
3802                 vcpu->arch.arch_capabilities = data;
3803                 break;
3804         case MSR_IA32_PERF_CAPABILITIES:
3805                 if (!msr_info->host_initiated)
3806                         return 1;
3807                 if (data & ~kvm_caps.supported_perf_cap)
3808                         return 1;
3809
3810                 /*
3811                  * Note, this is not just a performance optimization!  KVM
3812                  * disallows changing feature MSRs after the vCPU has run; PMU
3813                  * refresh will bug the VM if called after the vCPU has run.
3814                  */
3815                 if (vcpu->arch.perf_capabilities == data)
3816                         break;
3817
3818                 vcpu->arch.perf_capabilities = data;
3819                 kvm_pmu_refresh(vcpu);
3820                 break;
3821         case MSR_IA32_PRED_CMD: {
3822                 u64 reserved_bits = ~(PRED_CMD_IBPB | PRED_CMD_SBPB);
3823
3824                 if (!msr_info->host_initiated) {
3825                         if ((!guest_has_pred_cmd_msr(vcpu)))
3826                                 return 1;
3827
3828                         if (!guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL) &&
3829                             !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBPB))
3830                                 reserved_bits |= PRED_CMD_IBPB;
3831
3832                         if (!guest_cpuid_has(vcpu, X86_FEATURE_SBPB))
3833                                 reserved_bits |= PRED_CMD_SBPB;
3834                 }
3835
3836                 if (!boot_cpu_has(X86_FEATURE_IBPB))
3837                         reserved_bits |= PRED_CMD_IBPB;
3838
3839                 if (!boot_cpu_has(X86_FEATURE_SBPB))
3840                         reserved_bits |= PRED_CMD_SBPB;
3841
3842                 if (data & reserved_bits)
3843                         return 1;
3844
3845                 if (!data)
3846                         break;
3847
3848                 wrmsrl(MSR_IA32_PRED_CMD, data);
3849                 break;
3850         }
3851         case MSR_IA32_FLUSH_CMD:
3852                 if (!msr_info->host_initiated &&
3853                     !guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D))
3854                         return 1;
3855
3856                 if (!boot_cpu_has(X86_FEATURE_FLUSH_L1D) || (data & ~L1D_FLUSH))
3857                         return 1;
3858                 if (!data)
3859                         break;
3860
3861                 wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
3862                 break;
3863         case MSR_EFER:
3864                 return set_efer(vcpu, msr_info);
3865         case MSR_K7_HWCR:
3866                 data &= ~(u64)0x40;     /* ignore flush filter disable */
3867                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
3868                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
3869
3870                 /*
3871                  * Allow McStatusWrEn and TscFreqSel. (Linux guests from v3.2
3872                  * through at least v6.6 whine if TscFreqSel is clear,
3873                  * depending on F/M/S.
3874                  */
3875                 if (data & ~(BIT_ULL(18) | BIT_ULL(24))) {
3876                         kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3877                         return 1;
3878                 }
3879                 vcpu->arch.msr_hwcr = data;
3880                 break;
3881         case MSR_FAM10H_MMIO_CONF_BASE:
3882                 if (data != 0) {
3883                         kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3884                         return 1;
3885                 }
3886                 break;
3887         case MSR_IA32_CR_PAT:
3888                 if (!kvm_pat_valid(data))
3889                         return 1;
3890
3891                 vcpu->arch.pat = data;
3892                 break;
3893         case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
3894         case MSR_MTRRdefType:
3895                 return kvm_mtrr_set_msr(vcpu, msr, data);
3896         case MSR_IA32_APICBASE:
3897                 return kvm_set_apic_base(vcpu, msr_info);
3898         case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3899                 return kvm_x2apic_msr_write(vcpu, msr, data);
3900         case MSR_IA32_TSC_DEADLINE:
3901                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
3902                 break;
3903         case MSR_IA32_TSC_ADJUST:
3904                 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3905                         if (!msr_info->host_initiated) {
3906                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3907                                 adjust_tsc_offset_guest(vcpu, adj);
3908                                 /* Before back to guest, tsc_timestamp must be adjusted
3909                                  * as well, otherwise guest's percpu pvclock time could jump.
3910                                  */
3911                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3912                         }
3913                         vcpu->arch.ia32_tsc_adjust_msr = data;
3914                 }
3915                 break;
3916         case MSR_IA32_MISC_ENABLE: {
3917                 u64 old_val = vcpu->arch.ia32_misc_enable_msr;
3918
3919                 if (!msr_info->host_initiated) {
3920                         /* RO bits */
3921                         if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK)
3922                                 return 1;
3923
3924                         /* R bits, i.e. writes are ignored, but don't fault. */
3925                         data = data & ~MSR_IA32_MISC_ENABLE_EMON;
3926                         data |= old_val & MSR_IA32_MISC_ENABLE_EMON;
3927                 }
3928
3929                 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3930                     ((old_val ^ data)  & MSR_IA32_MISC_ENABLE_MWAIT)) {
3931                         if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3932                                 return 1;
3933                         vcpu->arch.ia32_misc_enable_msr = data;
3934                         kvm_update_cpuid_runtime(vcpu);
3935                 } else {
3936                         vcpu->arch.ia32_misc_enable_msr = data;
3937                 }
3938                 break;
3939         }
3940         case MSR_IA32_SMBASE:
3941                 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
3942                         return 1;
3943                 vcpu->arch.smbase = data;
3944                 break;
3945         case MSR_IA32_POWER_CTL:
3946                 vcpu->arch.msr_ia32_power_ctl = data;
3947                 break;
3948         case MSR_IA32_TSC:
3949                 if (msr_info->host_initiated) {
3950                         kvm_synchronize_tsc(vcpu, &data);
3951                 } else {
3952                         u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3953                         adjust_tsc_offset_guest(vcpu, adj);
3954                         vcpu->arch.ia32_tsc_adjust_msr += adj;
3955                 }
3956                 break;
3957         case MSR_IA32_XSS:
3958                 if (!msr_info->host_initiated &&
3959                     !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3960                         return 1;
3961                 /*
3962                  * KVM supports exposing PT to the guest, but does not support
3963                  * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3964                  * XSAVES/XRSTORS to save/restore PT MSRs.
3965                  */
3966                 if (data & ~kvm_caps.supported_xss)
3967                         return 1;
3968                 vcpu->arch.ia32_xss = data;
3969                 kvm_update_cpuid_runtime(vcpu);
3970                 break;
3971         case MSR_SMI_COUNT:
3972                 if (!msr_info->host_initiated)
3973                         return 1;
3974                 vcpu->arch.smi_count = data;
3975                 break;
3976         case MSR_KVM_WALL_CLOCK_NEW:
3977                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3978                         return 1;
3979
3980                 vcpu->kvm->arch.wall_clock = data;
3981                 kvm_write_wall_clock(vcpu->kvm, data, 0);
3982                 break;
3983         case MSR_KVM_WALL_CLOCK:
3984                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3985                         return 1;
3986
3987                 vcpu->kvm->arch.wall_clock = data;
3988                 kvm_write_wall_clock(vcpu->kvm, data, 0);
3989                 break;
3990         case MSR_KVM_SYSTEM_TIME_NEW:
3991                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3992                         return 1;
3993
3994                 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3995                 break;
3996         case MSR_KVM_SYSTEM_TIME:
3997                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3998                         return 1;
3999
4000                 kvm_write_system_time(vcpu, data, true,  msr_info->host_initiated);
4001                 break;
4002         case MSR_KVM_ASYNC_PF_EN:
4003                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
4004                         return 1;
4005
4006                 if (kvm_pv_enable_async_pf(vcpu, data))
4007                         return 1;
4008                 break;
4009         case MSR_KVM_ASYNC_PF_INT:
4010                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4011                         return 1;
4012
4013                 if (kvm_pv_enable_async_pf_int(vcpu, data))
4014                         return 1;
4015                 break;
4016         case MSR_KVM_ASYNC_PF_ACK:
4017                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4018                         return 1;
4019                 if (data & 0x1) {
4020                         vcpu->arch.apf.pageready_pending = false;
4021                         kvm_check_async_pf_completion(vcpu);
4022                 }
4023                 break;
4024         case MSR_KVM_STEAL_TIME:
4025                 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
4026                         return 1;
4027
4028                 if (unlikely(!sched_info_on()))
4029                         return 1;
4030
4031                 if (data & KVM_STEAL_RESERVED_MASK)
4032                         return 1;
4033
4034                 vcpu->arch.st.msr_val = data;
4035
4036                 if (!(data & KVM_MSR_ENABLED))
4037                         break;
4038
4039                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4040
4041                 break;
4042         case MSR_KVM_PV_EOI_EN:
4043                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4044                         return 1;
4045
4046                 if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8)))
4047                         return 1;
4048                 break;
4049
4050         case MSR_KVM_POLL_CONTROL:
4051                 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4052                         return 1;
4053
4054                 /* only enable bit supported */
4055                 if (data & (-1ULL << 1))
4056                         return 1;
4057
4058                 vcpu->arch.msr_kvm_poll_control = data;
4059                 break;
4060
4061         case MSR_IA32_MCG_CTL:
4062         case MSR_IA32_MCG_STATUS:
4063         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4064         case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4065                 return set_msr_mce(vcpu, msr_info);
4066
4067         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
4068         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
4069         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
4070         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
4071                 if (kvm_pmu_is_valid_msr(vcpu, msr))
4072                         return kvm_pmu_set_msr(vcpu, msr_info);
4073
4074                 if (data)
4075                         kvm_pr_unimpl_wrmsr(vcpu, msr, data);
4076                 break;
4077         case MSR_K7_CLK_CTL:
4078                 /*
4079                  * Ignore all writes to this no longer documented MSR.
4080                  * Writes are only relevant for old K7 processors,
4081                  * all pre-dating SVM, but a recommended workaround from
4082                  * AMD for these chips. It is possible to specify the
4083                  * affected processor models on the command line, hence
4084                  * the need to ignore the workaround.
4085                  */
4086                 break;
4087 #ifdef CONFIG_KVM_HYPERV
4088         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4089         case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4090         case HV_X64_MSR_SYNDBG_OPTIONS:
4091         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4092         case HV_X64_MSR_CRASH_CTL:
4093         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4094         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4095         case HV_X64_MSR_TSC_EMULATION_CONTROL:
4096         case HV_X64_MSR_TSC_EMULATION_STATUS:
4097         case HV_X64_MSR_TSC_INVARIANT_CONTROL:
4098                 return kvm_hv_set_msr_common(vcpu, msr, data,
4099                                              msr_info->host_initiated);
4100 #endif
4101         case MSR_IA32_BBL_CR_CTL3:
4102                 /* Drop writes to this legacy MSR -- see rdmsr
4103                  * counterpart for further detail.
4104                  */
4105                 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
4106                 break;
4107         case MSR_AMD64_OSVW_ID_LENGTH:
4108                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4109                         return 1;
4110                 vcpu->arch.osvw.length = data;
4111                 break;
4112         case MSR_AMD64_OSVW_STATUS:
4113                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4114                         return 1;
4115                 vcpu->arch.osvw.status = data;
4116                 break;
4117         case MSR_PLATFORM_INFO:
4118                 if (!msr_info->host_initiated ||
4119                     (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
4120                      cpuid_fault_enabled(vcpu)))
4121                         return 1;
4122                 vcpu->arch.msr_platform_info = data;
4123                 break;
4124         case MSR_MISC_FEATURES_ENABLES:
4125                 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
4126                     (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
4127                      !supports_cpuid_fault(vcpu)))
4128                         return 1;
4129                 vcpu->arch.msr_misc_features_enables = data;
4130                 break;
4131 #ifdef CONFIG_X86_64
4132         case MSR_IA32_XFD:
4133                 if (!msr_info->host_initiated &&
4134                     !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4135                         return 1;
4136
4137                 if (data & ~kvm_guest_supported_xfd(vcpu))
4138                         return 1;
4139
4140                 fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data);
4141                 break;
4142         case MSR_IA32_XFD_ERR:
4143                 if (!msr_info->host_initiated &&
4144                     !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4145                         return 1;
4146
4147                 if (data & ~kvm_guest_supported_xfd(vcpu))
4148                         return 1;
4149
4150                 vcpu->arch.guest_fpu.xfd_err = data;
4151                 break;
4152 #endif
4153         default:
4154                 if (kvm_pmu_is_valid_msr(vcpu, msr))
4155                         return kvm_pmu_set_msr(vcpu, msr_info);
4156
4157                 /*
4158                  * Userspace is allowed to write '0' to MSRs that KVM reports
4159                  * as to-be-saved, even if an MSRs isn't fully supported.
4160                  */
4161                 if (msr_info->host_initiated && !data &&
4162                     kvm_is_msr_to_save(msr))
4163                         break;
4164
4165                 return KVM_MSR_RET_INVALID;
4166         }
4167         return 0;
4168 }
4169 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
4170
4171 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
4172 {
4173         u64 data;
4174         u64 mcg_cap = vcpu->arch.mcg_cap;
4175         unsigned bank_num = mcg_cap & 0xff;
4176         u32 offset, last_msr;
4177
4178         switch (msr) {
4179         case MSR_IA32_P5_MC_ADDR:
4180         case MSR_IA32_P5_MC_TYPE:
4181                 data = 0;
4182                 break;
4183         case MSR_IA32_MCG_CAP:
4184                 data = vcpu->arch.mcg_cap;
4185                 break;
4186         case MSR_IA32_MCG_CTL:
4187                 if (!(mcg_cap & MCG_CTL_P) && !host)
4188                         return 1;
4189                 data = vcpu->arch.mcg_ctl;
4190                 break;
4191         case MSR_IA32_MCG_STATUS:
4192                 data = vcpu->arch.mcg_status;
4193                 break;
4194         case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4195                 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
4196                 if (msr > last_msr)
4197                         return 1;
4198
4199                 if (!(mcg_cap & MCG_CMCI_P) && !host)
4200                         return 1;
4201                 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
4202                                             last_msr + 1 - MSR_IA32_MC0_CTL2);
4203                 data = vcpu->arch.mci_ctl2_banks[offset];
4204                 break;
4205         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4206                 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
4207                 if (msr > last_msr)
4208                         return 1;
4209
4210                 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
4211                                             last_msr + 1 - MSR_IA32_MC0_CTL);
4212                 data = vcpu->arch.mce_banks[offset];
4213                 break;
4214         default:
4215                 return 1;
4216         }
4217         *pdata = data;
4218         return 0;
4219 }
4220
4221 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
4222 {
4223         switch (msr_info->index) {
4224         case MSR_IA32_PLATFORM_ID:
4225         case MSR_IA32_EBL_CR_POWERON:
4226         case MSR_IA32_LASTBRANCHFROMIP:
4227         case MSR_IA32_LASTBRANCHTOIP:
4228         case MSR_IA32_LASTINTFROMIP:
4229         case MSR_IA32_LASTINTTOIP:
4230         case MSR_AMD64_SYSCFG:
4231         case MSR_K8_TSEG_ADDR:
4232         case MSR_K8_TSEG_MASK:
4233         case MSR_VM_HSAVE_PA:
4234         case MSR_K8_INT_PENDING_MSG:
4235         case MSR_AMD64_NB_CFG:
4236         case MSR_FAM10H_MMIO_CONF_BASE:
4237         case MSR_AMD64_BU_CFG2:
4238         case MSR_IA32_PERF_CTL:
4239         case MSR_AMD64_DC_CFG:
4240         case MSR_AMD64_TW_CFG:
4241         case MSR_F15H_EX_CFG:
4242         /*
4243          * Intel Sandy Bridge CPUs must support the RAPL (running average power
4244          * limit) MSRs. Just return 0, as we do not want to expose the host
4245          * data here. Do not conditionalize this on CPUID, as KVM does not do
4246          * so for existing CPU-specific MSRs.
4247          */
4248         case MSR_RAPL_POWER_UNIT:
4249         case MSR_PP0_ENERGY_STATUS:     /* Power plane 0 (core) */
4250         case MSR_PP1_ENERGY_STATUS:     /* Power plane 1 (graphics uncore) */
4251         case MSR_PKG_ENERGY_STATUS:     /* Total package */
4252         case MSR_DRAM_ENERGY_STATUS:    /* DRAM controller */
4253                 msr_info->data = 0;
4254                 break;
4255         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
4256         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
4257         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
4258         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
4259                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4260                         return kvm_pmu_get_msr(vcpu, msr_info);
4261                 msr_info->data = 0;
4262                 break;
4263         case MSR_IA32_UCODE_REV:
4264                 msr_info->data = vcpu->arch.microcode_version;
4265                 break;
4266         case MSR_IA32_ARCH_CAPABILITIES:
4267                 if (!msr_info->host_initiated &&
4268                     !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
4269                         return 1;
4270                 msr_info->data = vcpu->arch.arch_capabilities;
4271                 break;
4272         case MSR_IA32_PERF_CAPABILITIES:
4273                 if (!msr_info->host_initiated &&
4274                     !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
4275                         return 1;
4276                 msr_info->data = vcpu->arch.perf_capabilities;
4277                 break;
4278         case MSR_IA32_POWER_CTL:
4279                 msr_info->data = vcpu->arch.msr_ia32_power_ctl;
4280                 break;
4281         case MSR_IA32_TSC: {
4282                 /*
4283                  * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
4284                  * even when not intercepted. AMD manual doesn't explicitly
4285                  * state this but appears to behave the same.
4286                  *
4287                  * On userspace reads and writes, however, we unconditionally
4288                  * return L1's TSC value to ensure backwards-compatible
4289                  * behavior for migration.
4290                  */
4291                 u64 offset, ratio;
4292
4293                 if (msr_info->host_initiated) {
4294                         offset = vcpu->arch.l1_tsc_offset;
4295                         ratio = vcpu->arch.l1_tsc_scaling_ratio;
4296                 } else {
4297                         offset = vcpu->arch.tsc_offset;
4298                         ratio = vcpu->arch.tsc_scaling_ratio;
4299                 }
4300
4301                 msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset;
4302                 break;
4303         }
4304         case MSR_IA32_CR_PAT:
4305                 msr_info->data = vcpu->arch.pat;
4306                 break;
4307         case MSR_MTRRcap:
4308         case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
4309         case MSR_MTRRdefType:
4310                 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
4311         case 0xcd: /* fsb frequency */
4312                 msr_info->data = 3;
4313                 break;
4314                 /*
4315                  * MSR_EBC_FREQUENCY_ID
4316                  * Conservative value valid for even the basic CPU models.
4317                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
4318                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
4319                  * and 266MHz for model 3, or 4. Set Core Clock
4320                  * Frequency to System Bus Frequency Ratio to 1 (bits
4321                  * 31:24) even though these are only valid for CPU
4322                  * models > 2, however guests may end up dividing or
4323                  * multiplying by zero otherwise.
4324                  */
4325         case MSR_EBC_FREQUENCY_ID:
4326                 msr_info->data = 1 << 24;
4327                 break;
4328         case MSR_IA32_APICBASE:
4329                 msr_info->data = kvm_get_apic_base(vcpu);
4330                 break;
4331         case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
4332                 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
4333         case MSR_IA32_TSC_DEADLINE:
4334                 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
4335                 break;
4336         case MSR_IA32_TSC_ADJUST:
4337                 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
4338                 break;
4339         case MSR_IA32_MISC_ENABLE:
4340                 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
4341                 break;
4342         case MSR_IA32_SMBASE:
4343                 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
4344                         return 1;
4345                 msr_info->data = vcpu->arch.smbase;
4346                 break;
4347         case MSR_SMI_COUNT:
4348                 msr_info->data = vcpu->arch.smi_count;
4349                 break;
4350         case MSR_IA32_PERF_STATUS:
4351                 /* TSC increment by tick */
4352                 msr_info->data = 1000ULL;
4353                 /* CPU multiplier */
4354                 msr_info->data |= (((uint64_t)4ULL) << 40);
4355                 break;
4356         case MSR_EFER:
4357                 msr_info->data = vcpu->arch.efer;
4358                 break;
4359         case MSR_KVM_WALL_CLOCK:
4360                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4361                         return 1;
4362
4363                 msr_info->data = vcpu->kvm->arch.wall_clock;
4364                 break;
4365         case MSR_KVM_WALL_CLOCK_NEW:
4366                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4367                         return 1;
4368
4369                 msr_info->data = vcpu->kvm->arch.wall_clock;
4370                 break;
4371         case MSR_KVM_SYSTEM_TIME:
4372                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4373                         return 1;
4374
4375                 msr_info->data = vcpu->arch.time;
4376                 break;
4377         case MSR_KVM_SYSTEM_TIME_NEW:
4378                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4379                         return 1;
4380
4381                 msr_info->data = vcpu->arch.time;
4382                 break;
4383         case MSR_KVM_ASYNC_PF_EN:
4384                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
4385                         return 1;
4386
4387                 msr_info->data = vcpu->arch.apf.msr_en_val;
4388                 break;
4389         case MSR_KVM_ASYNC_PF_INT:
4390                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4391                         return 1;
4392
4393                 msr_info->data = vcpu->arch.apf.msr_int_val;
4394                 break;
4395         case MSR_KVM_ASYNC_PF_ACK:
4396                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4397                         return 1;
4398
4399                 msr_info->data = 0;
4400                 break;
4401         case MSR_KVM_STEAL_TIME:
4402                 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
4403                         return 1;
4404
4405                 msr_info->data = vcpu->arch.st.msr_val;
4406                 break;
4407         case MSR_KVM_PV_EOI_EN:
4408                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4409                         return 1;
4410
4411                 msr_info->data = vcpu->arch.pv_eoi.msr_val;
4412                 break;
4413         case MSR_KVM_POLL_CONTROL:
4414                 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4415                         return 1;
4416
4417                 msr_info->data = vcpu->arch.msr_kvm_poll_control;
4418                 break;
4419         case MSR_IA32_P5_MC_ADDR:
4420         case MSR_IA32_P5_MC_TYPE:
4421         case MSR_IA32_MCG_CAP:
4422         case MSR_IA32_MCG_CTL:
4423         case MSR_IA32_MCG_STATUS:
4424         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4425         case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4426                 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
4427                                    msr_info->host_initiated);
4428         case MSR_IA32_XSS:
4429                 if (!msr_info->host_initiated &&
4430                     !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
4431                         return 1;
4432                 msr_info->data = vcpu->arch.ia32_xss;
4433                 break;
4434         case MSR_K7_CLK_CTL:
4435                 /*
4436                  * Provide expected ramp-up count for K7. All other
4437                  * are set to zero, indicating minimum divisors for
4438                  * every field.
4439                  *
4440                  * This prevents guest kernels on AMD host with CPU
4441                  * type 6, model 8 and higher from exploding due to
4442                  * the rdmsr failing.
4443                  */
4444                 msr_info->data = 0x20000000;
4445                 break;
4446 #ifdef CONFIG_KVM_HYPERV
4447         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4448         case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4449         case HV_X64_MSR_SYNDBG_OPTIONS:
4450         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4451         case HV_X64_MSR_CRASH_CTL:
4452         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4453         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4454         case HV_X64_MSR_TSC_EMULATION_CONTROL:
4455         case HV_X64_MSR_TSC_EMULATION_STATUS:
4456         case HV_X64_MSR_TSC_INVARIANT_CONTROL:
4457                 return kvm_hv_get_msr_common(vcpu,
4458                                              msr_info->index, &msr_info->data,
4459                                              msr_info->host_initiated);
4460 #endif
4461         case MSR_IA32_BBL_CR_CTL3:
4462                 /* This legacy MSR exists but isn't fully documented in current
4463                  * silicon.  It is however accessed by winxp in very narrow
4464                  * scenarios where it sets bit #19, itself documented as
4465                  * a "reserved" bit.  Best effort attempt to source coherent
4466                  * read data here should the balance of the register be
4467                  * interpreted by the guest:
4468                  *
4469                  * L2 cache control register 3: 64GB range, 256KB size,
4470                  * enabled, latency 0x1, configured
4471                  */
4472                 msr_info->data = 0xbe702111;
4473                 break;
4474         case MSR_AMD64_OSVW_ID_LENGTH:
4475                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4476                         return 1;
4477                 msr_info->data = vcpu->arch.osvw.length;
4478                 break;
4479         case MSR_AMD64_OSVW_STATUS:
4480                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4481                         return 1;
4482                 msr_info->data = vcpu->arch.osvw.status;
4483                 break;
4484         case MSR_PLATFORM_INFO:
4485                 if (!msr_info->host_initiated &&
4486                     !vcpu->kvm->arch.guest_can_read_msr_platform_info)
4487                         return 1;
4488                 msr_info->data = vcpu->arch.msr_platform_info;
4489                 break;
4490         case MSR_MISC_FEATURES_ENABLES:
4491                 msr_info->data = vcpu->arch.msr_misc_features_enables;
4492                 break;
4493         case MSR_K7_HWCR:
4494                 msr_info->data = vcpu->arch.msr_hwcr;
4495                 break;
4496 #ifdef CONFIG_X86_64
4497         case MSR_IA32_XFD:
4498                 if (!msr_info->host_initiated &&
4499                     !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4500                         return 1;
4501
4502                 msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd;
4503                 break;
4504         case MSR_IA32_XFD_ERR:
4505                 if (!msr_info->host_initiated &&
4506                     !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4507                         return 1;
4508
4509                 msr_info->data = vcpu->arch.guest_fpu.xfd_err;
4510                 break;
4511 #endif
4512         default:
4513                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4514                         return kvm_pmu_get_msr(vcpu, msr_info);
4515
4516                 /*
4517                  * Userspace is allowed to read MSRs that KVM reports as
4518                  * to-be-saved, even if an MSR isn't fully supported.
4519                  */
4520                 if (msr_info->host_initiated &&
4521                     kvm_is_msr_to_save(msr_info->index)) {
4522                         msr_info->data = 0;
4523                         break;
4524                 }
4525
4526                 return KVM_MSR_RET_INVALID;
4527         }
4528         return 0;
4529 }
4530 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
4531
4532 /*
4533  * Read or write a bunch of msrs. All parameters are kernel addresses.
4534  *
4535  * @return number of msrs set successfully.
4536  */
4537 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
4538                     struct kvm_msr_entry *entries,
4539                     int (*do_msr)(struct kvm_vcpu *vcpu,
4540                                   unsigned index, u64 *data))
4541 {
4542         int i;
4543
4544         for (i = 0; i < msrs->nmsrs; ++i)
4545                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
4546                         break;
4547
4548         return i;
4549 }
4550
4551 /*
4552  * Read or write a bunch of msrs. Parameters are user addresses.
4553  *
4554  * @return number of msrs set successfully.
4555  */
4556 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
4557                   int (*do_msr)(struct kvm_vcpu *vcpu,
4558                                 unsigned index, u64 *data),
4559                   int writeback)
4560 {
4561         struct kvm_msrs msrs;
4562         struct kvm_msr_entry *entries;
4563         unsigned size;
4564         int r;
4565
4566         r = -EFAULT;
4567         if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
4568                 goto out;
4569
4570         r = -E2BIG;
4571         if (msrs.nmsrs >= MAX_IO_MSRS)
4572                 goto out;
4573
4574         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
4575         entries = memdup_user(user_msrs->entries, size);
4576         if (IS_ERR(entries)) {
4577                 r = PTR_ERR(entries);
4578                 goto out;
4579         }
4580
4581         r = __msr_io(vcpu, &msrs, entries, do_msr);
4582
4583         if (writeback && copy_to_user(user_msrs->entries, entries, size))
4584                 r = -EFAULT;
4585
4586         kfree(entries);
4587 out:
4588         return r;
4589 }
4590
4591 static inline bool kvm_can_mwait_in_guest(void)
4592 {
4593         return boot_cpu_has(X86_FEATURE_MWAIT) &&
4594                 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
4595                 boot_cpu_has(X86_FEATURE_ARAT);
4596 }
4597
4598 #ifdef CONFIG_KVM_HYPERV
4599 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
4600                                             struct kvm_cpuid2 __user *cpuid_arg)
4601 {
4602         struct kvm_cpuid2 cpuid;
4603         int r;
4604
4605         r = -EFAULT;
4606         if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4607                 return r;
4608
4609         r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4610         if (r)
4611                 return r;
4612
4613         r = -EFAULT;
4614         if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4615                 return r;
4616
4617         return 0;
4618 }
4619 #endif
4620
4621 static bool kvm_is_vm_type_supported(unsigned long type)
4622 {
4623         return type < 32 && (kvm_caps.supported_vm_types & BIT(type));
4624 }
4625
4626 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
4627 {
4628         int r = 0;
4629
4630         switch (ext) {
4631         case KVM_CAP_IRQCHIP:
4632         case KVM_CAP_HLT:
4633         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
4634         case KVM_CAP_SET_TSS_ADDR:
4635         case KVM_CAP_EXT_CPUID:
4636         case KVM_CAP_EXT_EMUL_CPUID:
4637         case KVM_CAP_CLOCKSOURCE:
4638         case KVM_CAP_PIT:
4639         case KVM_CAP_NOP_IO_DELAY:
4640         case KVM_CAP_MP_STATE:
4641         case KVM_CAP_SYNC_MMU:
4642         case KVM_CAP_USER_NMI:
4643         case KVM_CAP_REINJECT_CONTROL:
4644         case KVM_CAP_IRQ_INJECT_STATUS:
4645         case KVM_CAP_IOEVENTFD:
4646         case KVM_CAP_IOEVENTFD_NO_LENGTH:
4647         case KVM_CAP_PIT2:
4648         case KVM_CAP_PIT_STATE2:
4649         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
4650         case KVM_CAP_VCPU_EVENTS:
4651 #ifdef CONFIG_KVM_HYPERV
4652         case KVM_CAP_HYPERV:
4653         case KVM_CAP_HYPERV_VAPIC:
4654         case KVM_CAP_HYPERV_SPIN:
4655         case KVM_CAP_HYPERV_TIME:
4656         case KVM_CAP_HYPERV_SYNIC:
4657         case KVM_CAP_HYPERV_SYNIC2:
4658         case KVM_CAP_HYPERV_VP_INDEX:
4659         case KVM_CAP_HYPERV_EVENTFD:
4660         case KVM_CAP_HYPERV_TLBFLUSH:
4661         case KVM_CAP_HYPERV_SEND_IPI:
4662         case KVM_CAP_HYPERV_CPUID:
4663         case KVM_CAP_HYPERV_ENFORCE_CPUID:
4664         case KVM_CAP_SYS_HYPERV_CPUID:
4665 #endif
4666         case KVM_CAP_PCI_SEGMENT:
4667         case KVM_CAP_DEBUGREGS:
4668         case KVM_CAP_X86_ROBUST_SINGLESTEP:
4669         case KVM_CAP_XSAVE:
4670         case KVM_CAP_ASYNC_PF:
4671         case KVM_CAP_ASYNC_PF_INT:
4672         case KVM_CAP_GET_TSC_KHZ:
4673         case KVM_CAP_KVMCLOCK_CTRL:
4674         case KVM_CAP_READONLY_MEM:
4675         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4676         case KVM_CAP_TSC_DEADLINE_TIMER:
4677         case KVM_CAP_DISABLE_QUIRKS:
4678         case KVM_CAP_SET_BOOT_CPU_ID:
4679         case KVM_CAP_SPLIT_IRQCHIP:
4680         case KVM_CAP_IMMEDIATE_EXIT:
4681         case KVM_CAP_PMU_EVENT_FILTER:
4682         case KVM_CAP_PMU_EVENT_MASKED_EVENTS:
4683         case KVM_CAP_GET_MSR_FEATURES:
4684         case KVM_CAP_MSR_PLATFORM_INFO:
4685         case KVM_CAP_EXCEPTION_PAYLOAD:
4686         case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
4687         case KVM_CAP_SET_GUEST_DEBUG:
4688         case KVM_CAP_LAST_CPU:
4689         case KVM_CAP_X86_USER_SPACE_MSR:
4690         case KVM_CAP_X86_MSR_FILTER:
4691         case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4692 #ifdef CONFIG_X86_SGX_KVM
4693         case KVM_CAP_SGX_ATTRIBUTE:
4694 #endif
4695         case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4696         case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
4697         case KVM_CAP_SREGS2:
4698         case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4699         case KVM_CAP_VCPU_ATTRIBUTES:
4700         case KVM_CAP_SYS_ATTRIBUTES:
4701         case KVM_CAP_VAPIC:
4702         case KVM_CAP_ENABLE_CAP:
4703         case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
4704         case KVM_CAP_IRQFD_RESAMPLE:
4705         case KVM_CAP_MEMORY_FAULT_INFO:
4706                 r = 1;
4707                 break;
4708         case KVM_CAP_EXIT_HYPERCALL:
4709                 r = KVM_EXIT_HYPERCALL_VALID_MASK;
4710                 break;
4711         case KVM_CAP_SET_GUEST_DEBUG2:
4712                 return KVM_GUESTDBG_VALID_MASK;
4713 #ifdef CONFIG_KVM_XEN
4714         case KVM_CAP_XEN_HVM:
4715                 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4716                     KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4717                     KVM_XEN_HVM_CONFIG_SHARED_INFO |
4718                     KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL |
4719                     KVM_XEN_HVM_CONFIG_EVTCHN_SEND |
4720                     KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE |
4721                     KVM_XEN_HVM_CONFIG_SHARED_INFO_HVA;
4722                 if (sched_info_on())
4723                         r |= KVM_XEN_HVM_CONFIG_RUNSTATE |
4724                              KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG;
4725                 break;
4726 #endif
4727         case KVM_CAP_SYNC_REGS:
4728                 r = KVM_SYNC_X86_VALID_FIELDS;
4729                 break;
4730         case KVM_CAP_ADJUST_CLOCK:
4731                 r = KVM_CLOCK_VALID_FLAGS;
4732                 break;
4733         case KVM_CAP_X86_DISABLE_EXITS:
4734                 r = KVM_X86_DISABLE_EXITS_PAUSE;
4735
4736                 if (!mitigate_smt_rsb) {
4737                         r |= KVM_X86_DISABLE_EXITS_HLT |
4738                              KVM_X86_DISABLE_EXITS_CSTATE;
4739
4740                         if (kvm_can_mwait_in_guest())
4741                                 r |= KVM_X86_DISABLE_EXITS_MWAIT;
4742                 }
4743                 break;
4744         case KVM_CAP_X86_SMM:
4745                 if (!IS_ENABLED(CONFIG_KVM_SMM))
4746                         break;
4747
4748                 /* SMBASE is usually relocated above 1M on modern chipsets,
4749                  * and SMM handlers might indeed rely on 4G segment limits,
4750                  * so do not report SMM to be available if real mode is
4751                  * emulated via vm86 mode.  Still, do not go to great lengths
4752                  * to avoid userspace's usage of the feature, because it is a
4753                  * fringe case that is not enabled except via specific settings
4754                  * of the module parameters.
4755                  */
4756                 r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4757                 break;
4758         case KVM_CAP_NR_VCPUS:
4759                 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
4760                 break;
4761         case KVM_CAP_MAX_VCPUS:
4762                 r = KVM_MAX_VCPUS;
4763                 break;
4764         case KVM_CAP_MAX_VCPU_ID:
4765                 r = KVM_MAX_VCPU_IDS;
4766                 break;
4767         case KVM_CAP_PV_MMU:    /* obsolete */
4768                 r = 0;
4769                 break;
4770         case KVM_CAP_MCE:
4771                 r = KVM_MAX_MCE_BANKS;
4772                 break;
4773         case KVM_CAP_XCRS:
4774                 r = boot_cpu_has(X86_FEATURE_XSAVE);
4775                 break;
4776         case KVM_CAP_TSC_CONTROL:
4777         case KVM_CAP_VM_TSC_CONTROL:
4778                 r = kvm_caps.has_tsc_control;
4779                 break;
4780         case KVM_CAP_X2APIC_API:
4781                 r = KVM_X2APIC_API_VALID_FLAGS;
4782                 break;
4783         case KVM_CAP_NESTED_STATE:
4784                 r = kvm_x86_ops.nested_ops->get_state ?
4785                         kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4786                 break;
4787 #ifdef CONFIG_KVM_HYPERV
4788         case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4789                 r = kvm_x86_ops.enable_l2_tlb_flush != NULL;
4790                 break;
4791         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4792                 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4793                 break;
4794 #endif
4795         case KVM_CAP_SMALLER_MAXPHYADDR:
4796                 r = (int) allow_smaller_maxphyaddr;
4797                 break;
4798         case KVM_CAP_STEAL_TIME:
4799                 r = sched_info_on();
4800                 break;
4801         case KVM_CAP_X86_BUS_LOCK_EXIT:
4802                 if (kvm_caps.has_bus_lock_exit)
4803                         r = KVM_BUS_LOCK_DETECTION_OFF |
4804                             KVM_BUS_LOCK_DETECTION_EXIT;
4805                 else
4806                         r = 0;
4807                 break;
4808         case KVM_CAP_XSAVE2: {
4809                 r = xstate_required_size(kvm_get_filtered_xcr0(), false);
4810                 if (r < sizeof(struct kvm_xsave))
4811                         r = sizeof(struct kvm_xsave);
4812                 break;
4813         }
4814         case KVM_CAP_PMU_CAPABILITY:
4815                 r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0;
4816                 break;
4817         case KVM_CAP_DISABLE_QUIRKS2:
4818                 r = KVM_X86_VALID_QUIRKS;
4819                 break;
4820         case KVM_CAP_X86_NOTIFY_VMEXIT:
4821                 r = kvm_caps.has_notify_vmexit;
4822                 break;
4823         case KVM_CAP_VM_TYPES:
4824                 r = kvm_caps.supported_vm_types;
4825                 break;
4826         default:
4827                 break;
4828         }
4829         return r;
4830 }
4831
4832 static int __kvm_x86_dev_get_attr(struct kvm_device_attr *attr, u64 *val)
4833 {
4834         if (attr->group) {
4835                 if (kvm_x86_ops.dev_get_attr)
4836                         return static_call(kvm_x86_dev_get_attr)(attr->group, attr->attr, val);
4837                 return -ENXIO;
4838         }
4839
4840         switch (attr->attr) {
4841         case KVM_X86_XCOMP_GUEST_SUPP:
4842                 *val = kvm_caps.supported_xcr0;
4843                 return 0;
4844         default:
4845                 return -ENXIO;
4846         }
4847 }
4848
4849 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr)
4850 {
4851         u64 __user *uaddr = u64_to_user_ptr(attr->addr);
4852         int r;
4853         u64 val;
4854
4855         r = __kvm_x86_dev_get_attr(attr, &val);
4856         if (r < 0)
4857                 return r;
4858
4859         if (put_user(val, uaddr))
4860                 return -EFAULT;
4861
4862         return 0;
4863 }
4864
4865 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr)
4866 {
4867         u64 val;
4868
4869         return __kvm_x86_dev_get_attr(attr, &val);
4870 }
4871
4872 long kvm_arch_dev_ioctl(struct file *filp,
4873                         unsigned int ioctl, unsigned long arg)
4874 {
4875         void __user *argp = (void __user *)arg;
4876         long r;
4877
4878         switch (ioctl) {
4879         case KVM_GET_MSR_INDEX_LIST: {
4880                 struct kvm_msr_list __user *user_msr_list = argp;
4881                 struct kvm_msr_list msr_list;
4882                 unsigned n;
4883
4884                 r = -EFAULT;
4885                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4886                         goto out;
4887                 n = msr_list.nmsrs;
4888                 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4889                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4890                         goto out;
4891                 r = -E2BIG;
4892                 if (n < msr_list.nmsrs)
4893                         goto out;
4894                 r = -EFAULT;
4895                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4896                                  num_msrs_to_save * sizeof(u32)))
4897                         goto out;
4898                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4899                                  &emulated_msrs,
4900                                  num_emulated_msrs * sizeof(u32)))
4901                         goto out;
4902                 r = 0;
4903                 break;
4904         }
4905         case KVM_GET_SUPPORTED_CPUID:
4906         case KVM_GET_EMULATED_CPUID: {
4907                 struct kvm_cpuid2 __user *cpuid_arg = argp;
4908                 struct kvm_cpuid2 cpuid;
4909
4910                 r = -EFAULT;
4911                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4912                         goto out;
4913
4914                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4915                                             ioctl);
4916                 if (r)
4917                         goto out;
4918
4919                 r = -EFAULT;
4920                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4921                         goto out;
4922                 r = 0;
4923                 break;
4924         }
4925         case KVM_X86_GET_MCE_CAP_SUPPORTED:
4926                 r = -EFAULT;
4927                 if (copy_to_user(argp, &kvm_caps.supported_mce_cap,
4928                                  sizeof(kvm_caps.supported_mce_cap)))
4929                         goto out;
4930                 r = 0;
4931                 break;
4932         case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4933                 struct kvm_msr_list __user *user_msr_list = argp;
4934                 struct kvm_msr_list msr_list;
4935                 unsigned int n;
4936
4937                 r = -EFAULT;
4938                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4939                         goto out;
4940                 n = msr_list.nmsrs;
4941                 msr_list.nmsrs = num_msr_based_features;
4942                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4943                         goto out;
4944                 r = -E2BIG;
4945                 if (n < msr_list.nmsrs)
4946                         goto out;
4947                 r = -EFAULT;
4948                 if (copy_to_user(user_msr_list->indices, &msr_based_features,
4949                                  num_msr_based_features * sizeof(u32)))
4950                         goto out;
4951                 r = 0;
4952                 break;
4953         }
4954         case KVM_GET_MSRS:
4955                 r = msr_io(NULL, argp, do_get_msr_feature, 1);
4956                 break;
4957 #ifdef CONFIG_KVM_HYPERV
4958         case KVM_GET_SUPPORTED_HV_CPUID:
4959                 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4960                 break;
4961 #endif
4962         case KVM_GET_DEVICE_ATTR: {
4963                 struct kvm_device_attr attr;
4964                 r = -EFAULT;
4965                 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4966                         break;
4967                 r = kvm_x86_dev_get_attr(&attr);
4968                 break;
4969         }
4970         case KVM_HAS_DEVICE_ATTR: {
4971                 struct kvm_device_attr attr;
4972                 r = -EFAULT;
4973                 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4974                         break;
4975                 r = kvm_x86_dev_has_attr(&attr);
4976                 break;
4977         }
4978         default:
4979                 r = -EINVAL;
4980                 break;
4981         }
4982 out:
4983         return r;
4984 }
4985
4986 static void wbinvd_ipi(void *garbage)
4987 {
4988         wbinvd();
4989 }
4990
4991 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4992 {
4993         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4994 }
4995
4996 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4997 {
4998         /* Address WBINVD may be executed by guest */
4999         if (need_emulate_wbinvd(vcpu)) {
5000                 if (static_call(kvm_x86_has_wbinvd_exit)())
5001                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
5002                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
5003                         smp_call_function_single(vcpu->cpu,
5004                                         wbinvd_ipi, NULL, 1);
5005         }
5006
5007         static_call(kvm_x86_vcpu_load)(vcpu, cpu);
5008
5009         /* Save host pkru register if supported */
5010         vcpu->arch.host_pkru = read_pkru();
5011
5012         /* Apply any externally detected TSC adjustments (due to suspend) */
5013         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
5014                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
5015                 vcpu->arch.tsc_offset_adjustment = 0;
5016                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5017         }
5018
5019         if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
5020                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
5021                                 rdtsc() - vcpu->arch.last_host_tsc;
5022                 if (tsc_delta < 0)
5023                         mark_tsc_unstable("KVM discovered backwards TSC");
5024
5025                 if (kvm_check_tsc_unstable()) {
5026                         u64 offset = kvm_compute_l1_tsc_offset(vcpu,
5027                                                 vcpu->arch.last_guest_tsc);
5028                         kvm_vcpu_write_tsc_offset(vcpu, offset);
5029                         vcpu->arch.tsc_catchup = 1;
5030                 }
5031
5032                 if (kvm_lapic_hv_timer_in_use(vcpu))
5033                         kvm_lapic_restart_hv_timer(vcpu);
5034
5035                 /*
5036                  * On a host with synchronized TSC, there is no need to update
5037                  * kvmclock on vcpu->cpu migration
5038                  */
5039                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
5040                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
5041                 if (vcpu->cpu != cpu)
5042                         kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
5043                 vcpu->cpu = cpu;
5044         }
5045
5046         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
5047 }
5048
5049 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
5050 {
5051         struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
5052         struct kvm_steal_time __user *st;
5053         struct kvm_memslots *slots;
5054         static const u8 preempted = KVM_VCPU_PREEMPTED;
5055         gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
5056
5057         /*
5058          * The vCPU can be marked preempted if and only if the VM-Exit was on
5059          * an instruction boundary and will not trigger guest emulation of any
5060          * kind (see vcpu_run).  Vendor specific code controls (conservatively)
5061          * when this is true, for example allowing the vCPU to be marked
5062          * preempted if and only if the VM-Exit was due to a host interrupt.
5063          */
5064         if (!vcpu->arch.at_instruction_boundary) {
5065                 vcpu->stat.preemption_other++;
5066                 return;
5067         }
5068
5069         vcpu->stat.preemption_reported++;
5070         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
5071                 return;
5072
5073         if (vcpu->arch.st.preempted)
5074                 return;
5075
5076         /* This happens on process exit */
5077         if (unlikely(current->mm != vcpu->kvm->mm))
5078                 return;
5079
5080         slots = kvm_memslots(vcpu->kvm);
5081
5082         if (unlikely(slots->generation != ghc->generation ||
5083                      gpa != ghc->gpa ||
5084                      kvm_is_error_hva(ghc->hva) || !ghc->memslot))
5085                 return;
5086
5087         st = (struct kvm_steal_time __user *)ghc->hva;
5088         BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
5089
5090         if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
5091                 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
5092
5093         mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
5094 }
5095
5096 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
5097 {
5098         int idx;
5099
5100         if (vcpu->preempted) {
5101                 vcpu->arch.preempted_in_kernel = kvm_arch_vcpu_in_kernel(vcpu);
5102
5103                 /*
5104                  * Take the srcu lock as memslots will be accessed to check the gfn
5105                  * cache generation against the memslots generation.
5106                  */
5107                 idx = srcu_read_lock(&vcpu->kvm->srcu);
5108                 if (kvm_xen_msr_enabled(vcpu->kvm))
5109                         kvm_xen_runstate_set_preempted(vcpu);
5110                 else
5111                         kvm_steal_time_set_preempted(vcpu);
5112                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5113         }
5114
5115         static_call(kvm_x86_vcpu_put)(vcpu);
5116         vcpu->arch.last_host_tsc = rdtsc();
5117 }
5118
5119 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
5120                                     struct kvm_lapic_state *s)
5121 {
5122         static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
5123
5124         return kvm_apic_get_state(vcpu, s);
5125 }
5126
5127 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
5128                                     struct kvm_lapic_state *s)
5129 {
5130         int r;
5131
5132         r = kvm_apic_set_state(vcpu, s);
5133         if (r)
5134                 return r;
5135         update_cr8_intercept(vcpu);
5136
5137         return 0;
5138 }
5139
5140 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
5141 {
5142         /*
5143          * We can accept userspace's request for interrupt injection
5144          * as long as we have a place to store the interrupt number.
5145          * The actual injection will happen when the CPU is able to
5146          * deliver the interrupt.
5147          */
5148         if (kvm_cpu_has_extint(vcpu))
5149                 return false;
5150
5151         /* Acknowledging ExtINT does not happen if LINT0 is masked.  */
5152         return (!lapic_in_kernel(vcpu) ||
5153                 kvm_apic_accept_pic_intr(vcpu));
5154 }
5155
5156 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
5157 {
5158         /*
5159          * Do not cause an interrupt window exit if an exception
5160          * is pending or an event needs reinjection; userspace
5161          * might want to inject the interrupt manually using KVM_SET_REGS
5162          * or KVM_SET_SREGS.  For that to work, we must be at an
5163          * instruction boundary and with no events half-injected.
5164          */
5165         return (kvm_arch_interrupt_allowed(vcpu) &&
5166                 kvm_cpu_accept_dm_intr(vcpu) &&
5167                 !kvm_event_needs_reinjection(vcpu) &&
5168                 !kvm_is_exception_pending(vcpu));
5169 }
5170
5171 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
5172                                     struct kvm_interrupt *irq)
5173 {
5174         if (irq->irq >= KVM_NR_INTERRUPTS)
5175                 return -EINVAL;
5176
5177         if (!irqchip_in_kernel(vcpu->kvm)) {
5178                 kvm_queue_interrupt(vcpu, irq->irq, false);
5179                 kvm_make_request(KVM_REQ_EVENT, vcpu);
5180                 return 0;
5181         }
5182
5183         /*
5184          * With in-kernel LAPIC, we only use this to inject EXTINT, so
5185          * fail for in-kernel 8259.
5186          */
5187         if (pic_in_kernel(vcpu->kvm))
5188                 return -ENXIO;
5189
5190         if (vcpu->arch.pending_external_vector != -1)
5191                 return -EEXIST;
5192
5193         vcpu->arch.pending_external_vector = irq->irq;
5194         kvm_make_request(KVM_REQ_EVENT, vcpu);
5195         return 0;
5196 }
5197
5198 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
5199 {
5200         kvm_inject_nmi(vcpu);
5201
5202         return 0;
5203 }
5204
5205 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
5206                                            struct kvm_tpr_access_ctl *tac)
5207 {
5208         if (tac->flags)
5209                 return -EINVAL;
5210         vcpu->arch.tpr_access_reporting = !!tac->enabled;
5211         return 0;
5212 }
5213
5214 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
5215                                         u64 mcg_cap)
5216 {
5217         int r;
5218         unsigned bank_num = mcg_cap & 0xff, bank;
5219
5220         r = -EINVAL;
5221         if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
5222                 goto out;
5223         if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000))
5224                 goto out;
5225         r = 0;
5226         vcpu->arch.mcg_cap = mcg_cap;
5227         /* Init IA32_MCG_CTL to all 1s */
5228         if (mcg_cap & MCG_CTL_P)
5229                 vcpu->arch.mcg_ctl = ~(u64)0;
5230         /* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */
5231         for (bank = 0; bank < bank_num; bank++) {
5232                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
5233                 if (mcg_cap & MCG_CMCI_P)
5234                         vcpu->arch.mci_ctl2_banks[bank] = 0;
5235         }
5236
5237         kvm_apic_after_set_mcg_cap(vcpu);
5238
5239         static_call(kvm_x86_setup_mce)(vcpu);
5240 out:
5241         return r;
5242 }
5243
5244 /*
5245  * Validate this is an UCNA (uncorrectable no action) error by checking the
5246  * MCG_STATUS and MCi_STATUS registers:
5247  * - none of the bits for Machine Check Exceptions are set
5248  * - both the VAL (valid) and UC (uncorrectable) bits are set
5249  * MCI_STATUS_PCC - Processor Context Corrupted
5250  * MCI_STATUS_S - Signaled as a Machine Check Exception
5251  * MCI_STATUS_AR - Software recoverable Action Required
5252  */
5253 static bool is_ucna(struct kvm_x86_mce *mce)
5254 {
5255         return  !mce->mcg_status &&
5256                 !(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) &&
5257                 (mce->status & MCI_STATUS_VAL) &&
5258                 (mce->status & MCI_STATUS_UC);
5259 }
5260
5261 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks)
5262 {
5263         u64 mcg_cap = vcpu->arch.mcg_cap;
5264
5265         banks[1] = mce->status;
5266         banks[2] = mce->addr;
5267         banks[3] = mce->misc;
5268         vcpu->arch.mcg_status = mce->mcg_status;
5269
5270         if (!(mcg_cap & MCG_CMCI_P) ||
5271             !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN))
5272                 return 0;
5273
5274         if (lapic_in_kernel(vcpu))
5275                 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI);
5276
5277         return 0;
5278 }
5279
5280 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
5281                                       struct kvm_x86_mce *mce)
5282 {
5283         u64 mcg_cap = vcpu->arch.mcg_cap;
5284         unsigned bank_num = mcg_cap & 0xff;
5285         u64 *banks = vcpu->arch.mce_banks;
5286
5287         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
5288                 return -EINVAL;
5289
5290         banks += array_index_nospec(4 * mce->bank, 4 * bank_num);
5291
5292         if (is_ucna(mce))
5293                 return kvm_vcpu_x86_set_ucna(vcpu, mce, banks);
5294
5295         /*
5296          * if IA32_MCG_CTL is not all 1s, the uncorrected error
5297          * reporting is disabled
5298          */
5299         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
5300             vcpu->arch.mcg_ctl != ~(u64)0)
5301                 return 0;
5302         /*
5303          * if IA32_MCi_CTL is not all 1s, the uncorrected error
5304          * reporting is disabled for the bank
5305          */
5306         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
5307                 return 0;
5308         if (mce->status & MCI_STATUS_UC) {
5309                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
5310                     !kvm_is_cr4_bit_set(vcpu, X86_CR4_MCE)) {
5311                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5312                         return 0;
5313                 }
5314                 if (banks[1] & MCI_STATUS_VAL)
5315                         mce->status |= MCI_STATUS_OVER;
5316                 banks[2] = mce->addr;
5317                 banks[3] = mce->misc;
5318                 vcpu->arch.mcg_status = mce->mcg_status;
5319                 banks[1] = mce->status;
5320                 kvm_queue_exception(vcpu, MC_VECTOR);
5321         } else if (!(banks[1] & MCI_STATUS_VAL)
5322                    || !(banks[1] & MCI_STATUS_UC)) {
5323                 if (banks[1] & MCI_STATUS_VAL)
5324                         mce->status |= MCI_STATUS_OVER;
5325                 banks[2] = mce->addr;
5326                 banks[3] = mce->misc;
5327                 banks[1] = mce->status;
5328         } else
5329                 banks[1] |= MCI_STATUS_OVER;
5330         return 0;
5331 }
5332
5333 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
5334                                                struct kvm_vcpu_events *events)
5335 {
5336         struct kvm_queued_exception *ex;
5337
5338         process_nmi(vcpu);
5339
5340 #ifdef CONFIG_KVM_SMM
5341         if (kvm_check_request(KVM_REQ_SMI, vcpu))
5342                 process_smi(vcpu);
5343 #endif
5344
5345         /*
5346          * KVM's ABI only allows for one exception to be migrated.  Luckily,
5347          * the only time there can be two queued exceptions is if there's a
5348          * non-exiting _injected_ exception, and a pending exiting exception.
5349          * In that case, ignore the VM-Exiting exception as it's an extension
5350          * of the injected exception.
5351          */
5352         if (vcpu->arch.exception_vmexit.pending &&
5353             !vcpu->arch.exception.pending &&
5354             !vcpu->arch.exception.injected)
5355                 ex = &vcpu->arch.exception_vmexit;
5356         else
5357                 ex = &vcpu->arch.exception;
5358
5359         /*
5360          * In guest mode, payload delivery should be deferred if the exception
5361          * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1
5362          * intercepts #PF, ditto for DR6 and #DBs.  If the per-VM capability,
5363          * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not
5364          * propagate the payload and so it cannot be safely deferred.  Deliver
5365          * the payload if the capability hasn't been requested.
5366          */
5367         if (!vcpu->kvm->arch.exception_payload_enabled &&
5368             ex->pending && ex->has_payload)
5369                 kvm_deliver_exception_payload(vcpu, ex);
5370
5371         memset(events, 0, sizeof(*events));
5372
5373         /*
5374          * The API doesn't provide the instruction length for software
5375          * exceptions, so don't report them. As long as the guest RIP
5376          * isn't advanced, we should expect to encounter the exception
5377          * again.
5378          */
5379         if (!kvm_exception_is_soft(ex->vector)) {
5380                 events->exception.injected = ex->injected;
5381                 events->exception.pending = ex->pending;
5382                 /*
5383                  * For ABI compatibility, deliberately conflate
5384                  * pending and injected exceptions when
5385                  * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
5386                  */
5387                 if (!vcpu->kvm->arch.exception_payload_enabled)
5388                         events->exception.injected |= ex->pending;
5389         }
5390         events->exception.nr = ex->vector;
5391         events->exception.has_error_code = ex->has_error_code;
5392         events->exception.error_code = ex->error_code;
5393         events->exception_has_payload = ex->has_payload;
5394         events->exception_payload = ex->payload;
5395
5396         events->interrupt.injected =
5397                 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
5398         events->interrupt.nr = vcpu->arch.interrupt.nr;
5399         events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
5400
5401         events->nmi.injected = vcpu->arch.nmi_injected;
5402         events->nmi.pending = kvm_get_nr_pending_nmis(vcpu);
5403         events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
5404
5405         /* events->sipi_vector is never valid when reporting to user space */
5406
5407 #ifdef CONFIG_KVM_SMM
5408         events->smi.smm = is_smm(vcpu);
5409         events->smi.pending = vcpu->arch.smi_pending;
5410         events->smi.smm_inside_nmi =
5411                 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
5412 #endif
5413         events->smi.latched_init = kvm_lapic_latched_init(vcpu);
5414
5415         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
5416                          | KVM_VCPUEVENT_VALID_SHADOW
5417                          | KVM_VCPUEVENT_VALID_SMM);
5418         if (vcpu->kvm->arch.exception_payload_enabled)
5419                 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
5420         if (vcpu->kvm->arch.triple_fault_event) {
5421                 events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5422                 events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT;
5423         }
5424 }
5425
5426 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
5427                                               struct kvm_vcpu_events *events)
5428 {
5429         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
5430                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
5431                               | KVM_VCPUEVENT_VALID_SHADOW
5432                               | KVM_VCPUEVENT_VALID_SMM
5433                               | KVM_VCPUEVENT_VALID_PAYLOAD
5434                               | KVM_VCPUEVENT_VALID_TRIPLE_FAULT))
5435                 return -EINVAL;
5436
5437         if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
5438                 if (!vcpu->kvm->arch.exception_payload_enabled)
5439                         return -EINVAL;
5440                 if (events->exception.pending)
5441                         events->exception.injected = 0;
5442                 else
5443                         events->exception_has_payload = 0;
5444         } else {
5445                 events->exception.pending = 0;
5446                 events->exception_has_payload = 0;
5447         }
5448
5449         if ((events->exception.injected || events->exception.pending) &&
5450             (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
5451                 return -EINVAL;
5452
5453         /* INITs are latched while in SMM */
5454         if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
5455             (events->smi.smm || events->smi.pending) &&
5456             vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
5457                 return -EINVAL;
5458
5459         process_nmi(vcpu);
5460
5461         /*
5462          * Flag that userspace is stuffing an exception, the next KVM_RUN will
5463          * morph the exception to a VM-Exit if appropriate.  Do this only for
5464          * pending exceptions, already-injected exceptions are not subject to
5465          * intercpetion.  Note, userspace that conflates pending and injected
5466          * is hosed, and will incorrectly convert an injected exception into a
5467          * pending exception, which in turn may cause a spurious VM-Exit.
5468          */
5469         vcpu->arch.exception_from_userspace = events->exception.pending;
5470
5471         vcpu->arch.exception_vmexit.pending = false;
5472
5473         vcpu->arch.exception.injected = events->exception.injected;
5474         vcpu->arch.exception.pending = events->exception.pending;
5475         vcpu->arch.exception.vector = events->exception.nr;
5476         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
5477         vcpu->arch.exception.error_code = events->exception.error_code;
5478         vcpu->arch.exception.has_payload = events->exception_has_payload;
5479         vcpu->arch.exception.payload = events->exception_payload;
5480
5481         vcpu->arch.interrupt.injected = events->interrupt.injected;
5482         vcpu->arch.interrupt.nr = events->interrupt.nr;
5483         vcpu->arch.interrupt.soft = events->interrupt.soft;
5484         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
5485                 static_call(kvm_x86_set_interrupt_shadow)(vcpu,
5486                                                 events->interrupt.shadow);
5487
5488         vcpu->arch.nmi_injected = events->nmi.injected;
5489         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) {
5490                 vcpu->arch.nmi_pending = 0;
5491                 atomic_set(&vcpu->arch.nmi_queued, events->nmi.pending);
5492                 if (events->nmi.pending)
5493                         kvm_make_request(KVM_REQ_NMI, vcpu);
5494         }
5495         static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
5496
5497         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
5498             lapic_in_kernel(vcpu))
5499                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
5500
5501         if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
5502 #ifdef CONFIG_KVM_SMM
5503                 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
5504                         kvm_leave_nested(vcpu);
5505                         kvm_smm_changed(vcpu, events->smi.smm);
5506                 }
5507
5508                 vcpu->arch.smi_pending = events->smi.pending;
5509
5510                 if (events->smi.smm) {
5511                         if (events->smi.smm_inside_nmi)
5512                                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
5513                         else
5514                                 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
5515                 }
5516
5517 #else
5518                 if (events->smi.smm || events->smi.pending ||
5519                     events->smi.smm_inside_nmi)
5520                         return -EINVAL;
5521 #endif
5522
5523                 if (lapic_in_kernel(vcpu)) {
5524                         if (events->smi.latched_init)
5525                                 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5526                         else
5527                                 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5528                 }
5529         }
5530
5531         if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) {
5532                 if (!vcpu->kvm->arch.triple_fault_event)
5533                         return -EINVAL;
5534                 if (events->triple_fault.pending)
5535                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5536                 else
5537                         kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5538         }
5539
5540         kvm_make_request(KVM_REQ_EVENT, vcpu);
5541
5542         return 0;
5543 }
5544
5545 static int kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
5546                                             struct kvm_debugregs *dbgregs)
5547 {
5548         unsigned int i;
5549
5550         if (vcpu->kvm->arch.has_protected_state &&
5551             vcpu->arch.guest_state_protected)
5552                 return -EINVAL;
5553
5554         memset(dbgregs, 0, sizeof(*dbgregs));
5555
5556         BUILD_BUG_ON(ARRAY_SIZE(vcpu->arch.db) != ARRAY_SIZE(dbgregs->db));
5557         for (i = 0; i < ARRAY_SIZE(vcpu->arch.db); i++)
5558                 dbgregs->db[i] = vcpu->arch.db[i];
5559
5560         dbgregs->dr6 = vcpu->arch.dr6;
5561         dbgregs->dr7 = vcpu->arch.dr7;
5562         return 0;
5563 }
5564
5565 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
5566                                             struct kvm_debugregs *dbgregs)
5567 {
5568         unsigned int i;
5569
5570         if (vcpu->kvm->arch.has_protected_state &&
5571             vcpu->arch.guest_state_protected)
5572                 return -EINVAL;
5573
5574         if (dbgregs->flags)
5575                 return -EINVAL;
5576
5577         if (!kvm_dr6_valid(dbgregs->dr6))
5578                 return -EINVAL;
5579         if (!kvm_dr7_valid(dbgregs->dr7))
5580                 return -EINVAL;
5581
5582         for (i = 0; i < ARRAY_SIZE(vcpu->arch.db); i++)
5583                 vcpu->arch.db[i] = dbgregs->db[i];
5584
5585         kvm_update_dr0123(vcpu);
5586         vcpu->arch.dr6 = dbgregs->dr6;
5587         vcpu->arch.dr7 = dbgregs->dr7;
5588         kvm_update_dr7(vcpu);
5589
5590         return 0;
5591 }
5592
5593
5594 static int kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu,
5595                                          u8 *state, unsigned int size)
5596 {
5597         /*
5598          * Only copy state for features that are enabled for the guest.  The
5599          * state itself isn't problematic, but setting bits in the header for
5600          * features that are supported in *this* host but not exposed to the
5601          * guest can result in KVM_SET_XSAVE failing when live migrating to a
5602          * compatible host without the features that are NOT exposed to the
5603          * guest.
5604          *
5605          * FP+SSE can always be saved/restored via KVM_{G,S}ET_XSAVE, even if
5606          * XSAVE/XCRO are not exposed to the guest, and even if XSAVE isn't
5607          * supported by the host.
5608          */
5609         u64 supported_xcr0 = vcpu->arch.guest_supported_xcr0 |
5610                              XFEATURE_MASK_FPSSE;
5611
5612         if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5613                 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
5614
5615         fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, state, size,
5616                                        supported_xcr0, vcpu->arch.pkru);
5617         return 0;
5618 }
5619
5620 static int kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
5621                                         struct kvm_xsave *guest_xsave)
5622 {
5623         return kvm_vcpu_ioctl_x86_get_xsave2(vcpu, (void *)guest_xsave->region,
5624                                              sizeof(guest_xsave->region));
5625 }
5626
5627 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
5628                                         struct kvm_xsave *guest_xsave)
5629 {
5630         if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5631                 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
5632
5633         return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu,
5634                                               guest_xsave->region,
5635                                               kvm_caps.supported_xcr0,
5636                                               &vcpu->arch.pkru);
5637 }
5638
5639 static int kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
5640                                        struct kvm_xcrs *guest_xcrs)
5641 {
5642         if (vcpu->kvm->arch.has_protected_state &&
5643             vcpu->arch.guest_state_protected)
5644                 return -EINVAL;
5645
5646         if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
5647                 guest_xcrs->nr_xcrs = 0;
5648                 return 0;
5649         }
5650
5651         guest_xcrs->nr_xcrs = 1;
5652         guest_xcrs->flags = 0;
5653         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
5654         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
5655         return 0;
5656 }
5657
5658 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
5659                                        struct kvm_xcrs *guest_xcrs)
5660 {
5661         int i, r = 0;
5662
5663         if (vcpu->kvm->arch.has_protected_state &&
5664             vcpu->arch.guest_state_protected)
5665                 return -EINVAL;
5666
5667         if (!boot_cpu_has(X86_FEATURE_XSAVE))
5668                 return -EINVAL;
5669
5670         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
5671                 return -EINVAL;
5672
5673         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
5674                 /* Only support XCR0 currently */
5675                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
5676                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
5677                                 guest_xcrs->xcrs[i].value);
5678                         break;
5679                 }
5680         if (r)
5681                 r = -EINVAL;
5682         return r;
5683 }
5684
5685 /*
5686  * kvm_set_guest_paused() indicates to the guest kernel that it has been
5687  * stopped by the hypervisor.  This function will be called from the host only.
5688  * EINVAL is returned when the host attempts to set the flag for a guest that
5689  * does not support pv clocks.
5690  */
5691 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
5692 {
5693         if (!vcpu->arch.pv_time.active)
5694                 return -EINVAL;
5695         vcpu->arch.pvclock_set_guest_stopped_request = true;
5696         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5697         return 0;
5698 }
5699
5700 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu,
5701                                  struct kvm_device_attr *attr)
5702 {
5703         int r;
5704
5705         switch (attr->attr) {
5706         case KVM_VCPU_TSC_OFFSET:
5707                 r = 0;
5708                 break;
5709         default:
5710                 r = -ENXIO;
5711         }
5712
5713         return r;
5714 }
5715
5716 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu,
5717                                  struct kvm_device_attr *attr)
5718 {
5719         u64 __user *uaddr = u64_to_user_ptr(attr->addr);
5720         int r;
5721
5722         switch (attr->attr) {
5723         case KVM_VCPU_TSC_OFFSET:
5724                 r = -EFAULT;
5725                 if (put_user(vcpu->arch.l1_tsc_offset, uaddr))
5726                         break;
5727                 r = 0;
5728                 break;
5729         default:
5730                 r = -ENXIO;
5731         }
5732
5733         return r;
5734 }
5735
5736 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu,
5737                                  struct kvm_device_attr *attr)
5738 {
5739         u64 __user *uaddr = u64_to_user_ptr(attr->addr);
5740         struct kvm *kvm = vcpu->kvm;
5741         int r;
5742
5743         switch (attr->attr) {
5744         case KVM_VCPU_TSC_OFFSET: {
5745                 u64 offset, tsc, ns;
5746                 unsigned long flags;
5747                 bool matched;
5748
5749                 r = -EFAULT;
5750                 if (get_user(offset, uaddr))
5751                         break;
5752
5753                 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
5754
5755                 matched = (vcpu->arch.virtual_tsc_khz &&
5756                            kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz &&
5757                            kvm->arch.last_tsc_offset == offset);
5758
5759                 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset;
5760                 ns = get_kvmclock_base_ns();
5761
5762                 kvm->arch.user_set_tsc = true;
5763                 __kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched);
5764                 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
5765
5766                 r = 0;
5767                 break;
5768         }
5769         default:
5770                 r = -ENXIO;
5771         }
5772
5773         return r;
5774 }
5775
5776 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu,
5777                                       unsigned int ioctl,
5778                                       void __user *argp)
5779 {
5780         struct kvm_device_attr attr;
5781         int r;
5782
5783         if (copy_from_user(&attr, argp, sizeof(attr)))
5784                 return -EFAULT;
5785
5786         if (attr.group != KVM_VCPU_TSC_CTRL)
5787                 return -ENXIO;
5788
5789         switch (ioctl) {
5790         case KVM_HAS_DEVICE_ATTR:
5791                 r = kvm_arch_tsc_has_attr(vcpu, &attr);
5792                 break;
5793         case KVM_GET_DEVICE_ATTR:
5794                 r = kvm_arch_tsc_get_attr(vcpu, &attr);
5795                 break;
5796         case KVM_SET_DEVICE_ATTR:
5797                 r = kvm_arch_tsc_set_attr(vcpu, &attr);
5798                 break;
5799         }
5800
5801         return r;
5802 }
5803
5804 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
5805                                      struct kvm_enable_cap *cap)
5806 {
5807         if (cap->flags)
5808                 return -EINVAL;
5809
5810         switch (cap->cap) {
5811 #ifdef CONFIG_KVM_HYPERV
5812         case KVM_CAP_HYPERV_SYNIC2:
5813                 if (cap->args[0])
5814                         return -EINVAL;
5815                 fallthrough;
5816
5817         case KVM_CAP_HYPERV_SYNIC:
5818                 if (!irqchip_in_kernel(vcpu->kvm))
5819                         return -EINVAL;
5820                 return kvm_hv_activate_synic(vcpu, cap->cap ==
5821                                              KVM_CAP_HYPERV_SYNIC2);
5822         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
5823                 {
5824                         int r;
5825                         uint16_t vmcs_version;
5826                         void __user *user_ptr;
5827
5828                         if (!kvm_x86_ops.nested_ops->enable_evmcs)
5829                                 return -ENOTTY;
5830                         r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
5831                         if (!r) {
5832                                 user_ptr = (void __user *)(uintptr_t)cap->args[0];
5833                                 if (copy_to_user(user_ptr, &vmcs_version,
5834                                                  sizeof(vmcs_version)))
5835                                         r = -EFAULT;
5836                         }
5837                         return r;
5838                 }
5839         case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
5840                 if (!kvm_x86_ops.enable_l2_tlb_flush)
5841                         return -ENOTTY;
5842
5843                 return static_call(kvm_x86_enable_l2_tlb_flush)(vcpu);
5844
5845         case KVM_CAP_HYPERV_ENFORCE_CPUID:
5846                 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
5847 #endif
5848
5849         case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
5850                 vcpu->arch.pv_cpuid.enforce = cap->args[0];
5851                 if (vcpu->arch.pv_cpuid.enforce)
5852                         kvm_update_pv_runtime(vcpu);
5853
5854                 return 0;
5855         default:
5856                 return -EINVAL;
5857         }
5858 }
5859
5860 long kvm_arch_vcpu_ioctl(struct file *filp,
5861                          unsigned int ioctl, unsigned long arg)
5862 {
5863         struct kvm_vcpu *vcpu = filp->private_data;
5864         void __user *argp = (void __user *)arg;
5865         int r;
5866         union {
5867                 struct kvm_sregs2 *sregs2;
5868                 struct kvm_lapic_state *lapic;
5869                 struct kvm_xsave *xsave;
5870                 struct kvm_xcrs *xcrs;
5871                 void *buffer;
5872         } u;
5873
5874         vcpu_load(vcpu);
5875
5876         u.buffer = NULL;
5877         switch (ioctl) {
5878         case KVM_GET_LAPIC: {
5879                 r = -EINVAL;
5880                 if (!lapic_in_kernel(vcpu))
5881                         goto out;
5882                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
5883                                 GFP_KERNEL_ACCOUNT);
5884
5885                 r = -ENOMEM;
5886                 if (!u.lapic)
5887                         goto out;
5888                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
5889                 if (r)
5890                         goto out;
5891                 r = -EFAULT;
5892                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
5893                         goto out;
5894                 r = 0;
5895                 break;
5896         }
5897         case KVM_SET_LAPIC: {
5898                 r = -EINVAL;
5899                 if (!lapic_in_kernel(vcpu))
5900                         goto out;
5901                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
5902                 if (IS_ERR(u.lapic)) {
5903                         r = PTR_ERR(u.lapic);
5904                         goto out_nofree;
5905                 }
5906
5907                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
5908                 break;
5909         }
5910         case KVM_INTERRUPT: {
5911                 struct kvm_interrupt irq;
5912
5913                 r = -EFAULT;
5914                 if (copy_from_user(&irq, argp, sizeof(irq)))
5915                         goto out;
5916                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
5917                 break;
5918         }
5919         case KVM_NMI: {
5920                 r = kvm_vcpu_ioctl_nmi(vcpu);
5921                 break;
5922         }
5923         case KVM_SMI: {
5924                 r = kvm_inject_smi(vcpu);
5925                 break;
5926         }
5927         case KVM_SET_CPUID: {
5928                 struct kvm_cpuid __user *cpuid_arg = argp;
5929                 struct kvm_cpuid cpuid;
5930
5931                 r = -EFAULT;
5932                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5933                         goto out;
5934                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
5935                 break;
5936         }
5937         case KVM_SET_CPUID2: {
5938                 struct kvm_cpuid2 __user *cpuid_arg = argp;
5939                 struct kvm_cpuid2 cpuid;
5940
5941                 r = -EFAULT;
5942                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5943                         goto out;
5944                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5945                                               cpuid_arg->entries);
5946                 break;
5947         }
5948         case KVM_GET_CPUID2: {
5949                 struct kvm_cpuid2 __user *cpuid_arg = argp;
5950                 struct kvm_cpuid2 cpuid;
5951
5952                 r = -EFAULT;
5953                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5954                         goto out;
5955                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5956                                               cpuid_arg->entries);
5957                 if (r)
5958                         goto out;
5959                 r = -EFAULT;
5960                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5961                         goto out;
5962                 r = 0;
5963                 break;
5964         }
5965         case KVM_GET_MSRS: {
5966                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5967                 r = msr_io(vcpu, argp, do_get_msr, 1);
5968                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5969                 break;
5970         }
5971         case KVM_SET_MSRS: {
5972                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5973                 r = msr_io(vcpu, argp, do_set_msr, 0);
5974                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5975                 break;
5976         }
5977         case KVM_TPR_ACCESS_REPORTING: {
5978                 struct kvm_tpr_access_ctl tac;
5979
5980                 r = -EFAULT;
5981                 if (copy_from_user(&tac, argp, sizeof(tac)))
5982                         goto out;
5983                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5984                 if (r)
5985                         goto out;
5986                 r = -EFAULT;
5987                 if (copy_to_user(argp, &tac, sizeof(tac)))
5988                         goto out;
5989                 r = 0;
5990                 break;
5991         };
5992         case KVM_SET_VAPIC_ADDR: {
5993                 struct kvm_vapic_addr va;
5994                 int idx;
5995
5996                 r = -EINVAL;
5997                 if (!lapic_in_kernel(vcpu))
5998                         goto out;
5999                 r = -EFAULT;
6000                 if (copy_from_user(&va, argp, sizeof(va)))
6001                         goto out;
6002                 idx = srcu_read_lock(&vcpu->kvm->srcu);
6003                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
6004                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
6005                 break;
6006         }
6007         case KVM_X86_SETUP_MCE: {
6008                 u64 mcg_cap;
6009
6010                 r = -EFAULT;
6011                 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
6012                         goto out;
6013                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
6014                 break;
6015         }
6016         case KVM_X86_SET_MCE: {
6017                 struct kvm_x86_mce mce;
6018
6019                 r = -EFAULT;
6020                 if (copy_from_user(&mce, argp, sizeof(mce)))
6021                         goto out;
6022                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
6023                 break;
6024         }
6025         case KVM_GET_VCPU_EVENTS: {
6026                 struct kvm_vcpu_events events;
6027
6028                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
6029
6030                 r = -EFAULT;
6031                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
6032                         break;
6033                 r = 0;
6034                 break;
6035         }
6036         case KVM_SET_VCPU_EVENTS: {
6037                 struct kvm_vcpu_events events;
6038
6039                 r = -EFAULT;
6040                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
6041                         break;
6042
6043                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
6044                 break;
6045         }
6046         case KVM_GET_DEBUGREGS: {
6047                 struct kvm_debugregs dbgregs;
6048
6049                 r = kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
6050                 if (r < 0)
6051                         break;
6052
6053                 r = -EFAULT;
6054                 if (copy_to_user(argp, &dbgregs,
6055                                  sizeof(struct kvm_debugregs)))
6056                         break;
6057                 r = 0;
6058                 break;
6059         }
6060         case KVM_SET_DEBUGREGS: {
6061                 struct kvm_debugregs dbgregs;
6062
6063                 r = -EFAULT;
6064                 if (copy_from_user(&dbgregs, argp,
6065                                    sizeof(struct kvm_debugregs)))
6066                         break;
6067
6068                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
6069                 break;
6070         }
6071         case KVM_GET_XSAVE: {
6072                 r = -EINVAL;
6073                 if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave))
6074                         break;
6075
6076                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
6077                 r = -ENOMEM;
6078                 if (!u.xsave)
6079                         break;
6080
6081                 r = kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
6082                 if (r < 0)
6083                         break;
6084
6085                 r = -EFAULT;
6086                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
6087                         break;
6088                 r = 0;
6089                 break;
6090         }
6091         case KVM_SET_XSAVE: {
6092                 int size = vcpu->arch.guest_fpu.uabi_size;
6093
6094                 u.xsave = memdup_user(argp, size);
6095                 if (IS_ERR(u.xsave)) {
6096                         r = PTR_ERR(u.xsave);
6097                         goto out_nofree;
6098                 }
6099
6100                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
6101                 break;
6102         }
6103
6104         case KVM_GET_XSAVE2: {
6105                 int size = vcpu->arch.guest_fpu.uabi_size;
6106
6107                 u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT);
6108                 r = -ENOMEM;
6109                 if (!u.xsave)
6110                         break;
6111
6112                 r = kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size);
6113                 if (r < 0)
6114                         break;
6115
6116                 r = -EFAULT;
6117                 if (copy_to_user(argp, u.xsave, size))
6118                         break;
6119
6120                 r = 0;
6121                 break;
6122         }
6123
6124         case KVM_GET_XCRS: {
6125                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
6126                 r = -ENOMEM;
6127                 if (!u.xcrs)
6128                         break;
6129
6130                 r = kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
6131                 if (r < 0)
6132                         break;
6133
6134                 r = -EFAULT;
6135                 if (copy_to_user(argp, u.xcrs,
6136                                  sizeof(struct kvm_xcrs)))
6137                         break;
6138                 r = 0;
6139                 break;
6140         }
6141         case KVM_SET_XCRS: {
6142                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
6143                 if (IS_ERR(u.xcrs)) {
6144                         r = PTR_ERR(u.xcrs);
6145                         goto out_nofree;
6146                 }
6147
6148                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
6149                 break;
6150         }
6151         case KVM_SET_TSC_KHZ: {
6152                 u32 user_tsc_khz;
6153
6154                 r = -EINVAL;
6155                 user_tsc_khz = (u32)arg;
6156
6157                 if (kvm_caps.has_tsc_control &&
6158                     user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
6159                         goto out;
6160
6161                 if (user_tsc_khz == 0)
6162                         user_tsc_khz = tsc_khz;
6163
6164                 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
6165                         r = 0;
6166
6167                 goto out;
6168         }
6169         case KVM_GET_TSC_KHZ: {
6170                 r = vcpu->arch.virtual_tsc_khz;
6171                 goto out;
6172         }
6173         case KVM_KVMCLOCK_CTRL: {
6174                 r = kvm_set_guest_paused(vcpu);
6175                 goto out;
6176         }
6177         case KVM_ENABLE_CAP: {
6178                 struct kvm_enable_cap cap;
6179
6180                 r = -EFAULT;
6181                 if (copy_from_user(&cap, argp, sizeof(cap)))
6182                         goto out;
6183                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
6184                 break;
6185         }
6186         case KVM_GET_NESTED_STATE: {
6187                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
6188                 u32 user_data_size;
6189
6190                 r = -EINVAL;
6191                 if (!kvm_x86_ops.nested_ops->get_state)
6192                         break;
6193
6194                 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
6195                 r = -EFAULT;
6196                 if (get_user(user_data_size, &user_kvm_nested_state->size))
6197                         break;
6198
6199                 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
6200                                                      user_data_size);
6201                 if (r < 0)
6202                         break;
6203
6204                 if (r > user_data_size) {
6205                         if (put_user(r, &user_kvm_nested_state->size))
6206                                 r = -EFAULT;
6207                         else
6208                                 r = -E2BIG;
6209                         break;
6210                 }
6211
6212                 r = 0;
6213                 break;
6214         }
6215         case KVM_SET_NESTED_STATE: {
6216                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
6217                 struct kvm_nested_state kvm_state;
6218                 int idx;
6219
6220                 r = -EINVAL;
6221                 if (!kvm_x86_ops.nested_ops->set_state)
6222                         break;
6223
6224                 r = -EFAULT;
6225                 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
6226                         break;
6227
6228                 r = -EINVAL;
6229                 if (kvm_state.size < sizeof(kvm_state))
6230                         break;
6231
6232                 if (kvm_state.flags &
6233                     ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
6234                       | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
6235                       | KVM_STATE_NESTED_GIF_SET))
6236                         break;
6237
6238                 /* nested_run_pending implies guest_mode.  */
6239                 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
6240                     && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
6241                         break;
6242
6243                 idx = srcu_read_lock(&vcpu->kvm->srcu);
6244                 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
6245                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
6246                 break;
6247         }
6248 #ifdef CONFIG_KVM_HYPERV
6249         case KVM_GET_SUPPORTED_HV_CPUID:
6250                 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
6251                 break;
6252 #endif
6253 #ifdef CONFIG_KVM_XEN
6254         case KVM_XEN_VCPU_GET_ATTR: {
6255                 struct kvm_xen_vcpu_attr xva;
6256
6257                 r = -EFAULT;
6258                 if (copy_from_user(&xva, argp, sizeof(xva)))
6259                         goto out;
6260                 r = kvm_xen_vcpu_get_attr(vcpu, &xva);
6261                 if (!r && copy_to_user(argp, &xva, sizeof(xva)))
6262                         r = -EFAULT;
6263                 break;
6264         }
6265         case KVM_XEN_VCPU_SET_ATTR: {
6266                 struct kvm_xen_vcpu_attr xva;
6267
6268                 r = -EFAULT;
6269                 if (copy_from_user(&xva, argp, sizeof(xva)))
6270                         goto out;
6271                 r = kvm_xen_vcpu_set_attr(vcpu, &xva);
6272                 break;
6273         }
6274 #endif
6275         case KVM_GET_SREGS2: {
6276                 r = -EINVAL;
6277                 if (vcpu->kvm->arch.has_protected_state &&
6278                     vcpu->arch.guest_state_protected)
6279                         goto out;
6280
6281                 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
6282                 r = -ENOMEM;
6283                 if (!u.sregs2)
6284                         goto out;
6285                 __get_sregs2(vcpu, u.sregs2);
6286                 r = -EFAULT;
6287                 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
6288                         goto out;
6289                 r = 0;
6290                 break;
6291         }
6292         case KVM_SET_SREGS2: {
6293                 r = -EINVAL;
6294                 if (vcpu->kvm->arch.has_protected_state &&
6295                     vcpu->arch.guest_state_protected)
6296                         goto out;
6297
6298                 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
6299                 if (IS_ERR(u.sregs2)) {
6300                         r = PTR_ERR(u.sregs2);
6301                         u.sregs2 = NULL;
6302                         goto out;
6303                 }
6304                 r = __set_sregs2(vcpu, u.sregs2);
6305                 break;
6306         }
6307         case KVM_HAS_DEVICE_ATTR:
6308         case KVM_GET_DEVICE_ATTR:
6309         case KVM_SET_DEVICE_ATTR:
6310                 r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp);
6311                 break;
6312         default:
6313                 r = -EINVAL;
6314         }
6315 out:
6316         kfree(u.buffer);
6317 out_nofree:
6318         vcpu_put(vcpu);
6319         return r;
6320 }
6321
6322 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
6323 {
6324         return VM_FAULT_SIGBUS;
6325 }
6326
6327 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
6328 {
6329         int ret;
6330
6331         if (addr > (unsigned int)(-3 * PAGE_SIZE))
6332                 return -EINVAL;
6333         ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
6334         return ret;
6335 }
6336
6337 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
6338                                               u64 ident_addr)
6339 {
6340         return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
6341 }
6342
6343 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
6344                                          unsigned long kvm_nr_mmu_pages)
6345 {
6346         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
6347                 return -EINVAL;
6348
6349         mutex_lock(&kvm->slots_lock);
6350
6351         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
6352         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
6353
6354         mutex_unlock(&kvm->slots_lock);
6355         return 0;
6356 }
6357
6358 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6359 {
6360         struct kvm_pic *pic = kvm->arch.vpic;
6361         int r;
6362
6363         r = 0;
6364         switch (chip->chip_id) {
6365         case KVM_IRQCHIP_PIC_MASTER:
6366                 memcpy(&chip->chip.pic, &pic->pics[0],
6367                         sizeof(struct kvm_pic_state));
6368                 break;
6369         case KVM_IRQCHIP_PIC_SLAVE:
6370                 memcpy(&chip->chip.pic, &pic->pics[1],
6371                         sizeof(struct kvm_pic_state));
6372                 break;
6373         case KVM_IRQCHIP_IOAPIC:
6374                 kvm_get_ioapic(kvm, &chip->chip.ioapic);
6375                 break;
6376         default:
6377                 r = -EINVAL;
6378                 break;
6379         }
6380         return r;
6381 }
6382
6383 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6384 {
6385         struct kvm_pic *pic = kvm->arch.vpic;
6386         int r;
6387
6388         r = 0;
6389         switch (chip->chip_id) {
6390         case KVM_IRQCHIP_PIC_MASTER:
6391                 spin_lock(&pic->lock);
6392                 memcpy(&pic->pics[0], &chip->chip.pic,
6393                         sizeof(struct kvm_pic_state));
6394                 spin_unlock(&pic->lock);
6395                 break;
6396         case KVM_IRQCHIP_PIC_SLAVE:
6397                 spin_lock(&pic->lock);
6398                 memcpy(&pic->pics[1], &chip->chip.pic,
6399                         sizeof(struct kvm_pic_state));
6400                 spin_unlock(&pic->lock);
6401                 break;
6402         case KVM_IRQCHIP_IOAPIC:
6403                 kvm_set_ioapic(kvm, &chip->chip.ioapic);
6404                 break;
6405         default:
6406                 r = -EINVAL;
6407                 break;
6408         }
6409         kvm_pic_update_irq(pic);
6410         return r;
6411 }
6412
6413 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6414 {
6415         struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
6416
6417         BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
6418
6419         mutex_lock(&kps->lock);
6420         memcpy(ps, &kps->channels, sizeof(*ps));
6421         mutex_unlock(&kps->lock);
6422         return 0;
6423 }
6424
6425 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6426 {
6427         int i;
6428         struct kvm_pit *pit = kvm->arch.vpit;
6429
6430         mutex_lock(&pit->pit_state.lock);
6431         memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
6432         for (i = 0; i < 3; i++)
6433                 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
6434         mutex_unlock(&pit->pit_state.lock);
6435         return 0;
6436 }
6437
6438 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6439 {
6440         mutex_lock(&kvm->arch.vpit->pit_state.lock);
6441         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
6442                 sizeof(ps->channels));
6443         ps->flags = kvm->arch.vpit->pit_state.flags;
6444         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
6445         memset(&ps->reserved, 0, sizeof(ps->reserved));
6446         return 0;
6447 }
6448
6449 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6450 {
6451         int start = 0;
6452         int i;
6453         u32 prev_legacy, cur_legacy;
6454         struct kvm_pit *pit = kvm->arch.vpit;
6455
6456         mutex_lock(&pit->pit_state.lock);
6457         prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
6458         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
6459         if (!prev_legacy && cur_legacy)
6460                 start = 1;
6461         memcpy(&pit->pit_state.channels, &ps->channels,
6462                sizeof(pit->pit_state.channels));
6463         pit->pit_state.flags = ps->flags;
6464         for (i = 0; i < 3; i++)
6465                 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
6466                                    start && i == 0);
6467         mutex_unlock(&pit->pit_state.lock);
6468         return 0;
6469 }
6470
6471 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
6472                                  struct kvm_reinject_control *control)
6473 {
6474         struct kvm_pit *pit = kvm->arch.vpit;
6475
6476         /* pit->pit_state.lock was overloaded to prevent userspace from getting
6477          * an inconsistent state after running multiple KVM_REINJECT_CONTROL
6478          * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
6479          */
6480         mutex_lock(&pit->pit_state.lock);
6481         kvm_pit_set_reinject(pit, control->pit_reinject);
6482         mutex_unlock(&pit->pit_state.lock);
6483
6484         return 0;
6485 }
6486
6487 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
6488 {
6489
6490         /*
6491          * Flush all CPUs' dirty log buffers to the  dirty_bitmap.  Called
6492          * before reporting dirty_bitmap to userspace.  KVM flushes the buffers
6493          * on all VM-Exits, thus we only need to kick running vCPUs to force a
6494          * VM-Exit.
6495          */
6496         struct kvm_vcpu *vcpu;
6497         unsigned long i;
6498
6499         if (!kvm_x86_ops.cpu_dirty_log_size)
6500                 return;
6501
6502         kvm_for_each_vcpu(i, vcpu, kvm)
6503                 kvm_vcpu_kick(vcpu);
6504 }
6505
6506 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
6507                         bool line_status)
6508 {
6509         if (!irqchip_in_kernel(kvm))
6510                 return -ENXIO;
6511
6512         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
6513                                         irq_event->irq, irq_event->level,
6514                                         line_status);
6515         return 0;
6516 }
6517
6518 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
6519                             struct kvm_enable_cap *cap)
6520 {
6521         int r;
6522
6523         if (cap->flags)
6524                 return -EINVAL;
6525
6526         switch (cap->cap) {
6527         case KVM_CAP_DISABLE_QUIRKS2:
6528                 r = -EINVAL;
6529                 if (cap->args[0] & ~KVM_X86_VALID_QUIRKS)
6530                         break;
6531                 fallthrough;
6532         case KVM_CAP_DISABLE_QUIRKS:
6533                 kvm->arch.disabled_quirks = cap->args[0];
6534                 r = 0;
6535                 break;
6536         case KVM_CAP_SPLIT_IRQCHIP: {
6537                 mutex_lock(&kvm->lock);
6538                 r = -EINVAL;
6539                 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
6540                         goto split_irqchip_unlock;
6541                 r = -EEXIST;
6542                 if (irqchip_in_kernel(kvm))
6543                         goto split_irqchip_unlock;
6544                 if (kvm->created_vcpus)
6545                         goto split_irqchip_unlock;
6546                 r = kvm_setup_empty_irq_routing(kvm);
6547                 if (r)
6548                         goto split_irqchip_unlock;
6549                 /* Pairs with irqchip_in_kernel. */
6550                 smp_wmb();
6551                 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
6552                 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
6553                 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6554                 r = 0;
6555 split_irqchip_unlock:
6556                 mutex_unlock(&kvm->lock);
6557                 break;
6558         }
6559         case KVM_CAP_X2APIC_API:
6560                 r = -EINVAL;
6561                 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
6562                         break;
6563
6564                 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
6565                         kvm->arch.x2apic_format = true;
6566                 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
6567                         kvm->arch.x2apic_broadcast_quirk_disabled = true;
6568
6569                 r = 0;
6570                 break;
6571         case KVM_CAP_X86_DISABLE_EXITS:
6572                 r = -EINVAL;
6573                 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
6574                         break;
6575
6576                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
6577                         kvm->arch.pause_in_guest = true;
6578
6579 #define SMT_RSB_MSG "This processor is affected by the Cross-Thread Return Predictions vulnerability. " \
6580                     "KVM_CAP_X86_DISABLE_EXITS should only be used with SMT disabled or trusted guests."
6581
6582                 if (!mitigate_smt_rsb) {
6583                         if (boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible() &&
6584                             (cap->args[0] & ~KVM_X86_DISABLE_EXITS_PAUSE))
6585                                 pr_warn_once(SMT_RSB_MSG);
6586
6587                         if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
6588                             kvm_can_mwait_in_guest())
6589                                 kvm->arch.mwait_in_guest = true;
6590                         if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
6591                                 kvm->arch.hlt_in_guest = true;
6592                         if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
6593                                 kvm->arch.cstate_in_guest = true;
6594                 }
6595
6596                 r = 0;
6597                 break;
6598         case KVM_CAP_MSR_PLATFORM_INFO:
6599                 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
6600                 r = 0;
6601                 break;
6602         case KVM_CAP_EXCEPTION_PAYLOAD:
6603                 kvm->arch.exception_payload_enabled = cap->args[0];
6604                 r = 0;
6605                 break;
6606         case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
6607                 kvm->arch.triple_fault_event = cap->args[0];
6608                 r = 0;
6609                 break;
6610         case KVM_CAP_X86_USER_SPACE_MSR:
6611                 r = -EINVAL;
6612                 if (cap->args[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK)
6613                         break;
6614                 kvm->arch.user_space_msr_mask = cap->args[0];
6615                 r = 0;
6616                 break;
6617         case KVM_CAP_X86_BUS_LOCK_EXIT:
6618                 r = -EINVAL;
6619                 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
6620                         break;
6621
6622                 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
6623                     (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
6624                         break;
6625
6626                 if (kvm_caps.has_bus_lock_exit &&
6627                     cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
6628                         kvm->arch.bus_lock_detection_enabled = true;
6629                 r = 0;
6630                 break;
6631 #ifdef CONFIG_X86_SGX_KVM
6632         case KVM_CAP_SGX_ATTRIBUTE: {
6633                 unsigned long allowed_attributes = 0;
6634
6635                 r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
6636                 if (r)
6637                         break;
6638
6639                 /* KVM only supports the PROVISIONKEY privileged attribute. */
6640                 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
6641                     !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
6642                         kvm->arch.sgx_provisioning_allowed = true;
6643                 else
6644                         r = -EINVAL;
6645                 break;
6646         }
6647 #endif
6648         case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
6649                 r = -EINVAL;
6650                 if (!kvm_x86_ops.vm_copy_enc_context_from)
6651                         break;
6652
6653                 r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]);
6654                 break;
6655         case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
6656                 r = -EINVAL;
6657                 if (!kvm_x86_ops.vm_move_enc_context_from)
6658                         break;
6659
6660                 r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]);
6661                 break;
6662         case KVM_CAP_EXIT_HYPERCALL:
6663                 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
6664                         r = -EINVAL;
6665                         break;
6666                 }
6667                 kvm->arch.hypercall_exit_enabled = cap->args[0];
6668                 r = 0;
6669                 break;
6670         case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
6671                 r = -EINVAL;
6672                 if (cap->args[0] & ~1)
6673                         break;
6674                 kvm->arch.exit_on_emulation_error = cap->args[0];
6675                 r = 0;
6676                 break;
6677         case KVM_CAP_PMU_CAPABILITY:
6678                 r = -EINVAL;
6679                 if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK))
6680                         break;
6681
6682                 mutex_lock(&kvm->lock);
6683                 if (!kvm->created_vcpus) {
6684                         kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE);
6685                         r = 0;
6686                 }
6687                 mutex_unlock(&kvm->lock);
6688                 break;
6689         case KVM_CAP_MAX_VCPU_ID:
6690                 r = -EINVAL;
6691                 if (cap->args[0] > KVM_MAX_VCPU_IDS)
6692                         break;
6693
6694                 mutex_lock(&kvm->lock);
6695                 if (kvm->arch.max_vcpu_ids == cap->args[0]) {
6696                         r = 0;
6697                 } else if (!kvm->arch.max_vcpu_ids) {
6698                         kvm->arch.max_vcpu_ids = cap->args[0];
6699                         r = 0;
6700                 }
6701                 mutex_unlock(&kvm->lock);
6702                 break;
6703         case KVM_CAP_X86_NOTIFY_VMEXIT:
6704                 r = -EINVAL;
6705                 if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS)
6706                         break;
6707                 if (!kvm_caps.has_notify_vmexit)
6708                         break;
6709                 if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED))
6710                         break;
6711                 mutex_lock(&kvm->lock);
6712                 if (!kvm->created_vcpus) {
6713                         kvm->arch.notify_window = cap->args[0] >> 32;
6714                         kvm->arch.notify_vmexit_flags = (u32)cap->args[0];
6715                         r = 0;
6716                 }
6717                 mutex_unlock(&kvm->lock);
6718                 break;
6719         case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
6720                 r = -EINVAL;
6721
6722                 /*
6723                  * Since the risk of disabling NX hugepages is a guest crashing
6724                  * the system, ensure the userspace process has permission to
6725                  * reboot the system.
6726                  *
6727                  * Note that unlike the reboot() syscall, the process must have
6728                  * this capability in the root namespace because exposing
6729                  * /dev/kvm into a container does not limit the scope of the
6730                  * iTLB multihit bug to that container. In other words,
6731                  * this must use capable(), not ns_capable().
6732                  */
6733                 if (!capable(CAP_SYS_BOOT)) {
6734                         r = -EPERM;
6735                         break;
6736                 }
6737
6738                 if (cap->args[0])
6739                         break;
6740
6741                 mutex_lock(&kvm->lock);
6742                 if (!kvm->created_vcpus) {
6743                         kvm->arch.disable_nx_huge_pages = true;
6744                         r = 0;
6745                 }
6746                 mutex_unlock(&kvm->lock);
6747                 break;
6748         default:
6749                 r = -EINVAL;
6750                 break;
6751         }
6752         return r;
6753 }
6754
6755 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
6756 {
6757         struct kvm_x86_msr_filter *msr_filter;
6758
6759         msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
6760         if (!msr_filter)
6761                 return NULL;
6762
6763         msr_filter->default_allow = default_allow;
6764         return msr_filter;
6765 }
6766
6767 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
6768 {
6769         u32 i;
6770
6771         if (!msr_filter)
6772                 return;
6773
6774         for (i = 0; i < msr_filter->count; i++)
6775                 kfree(msr_filter->ranges[i].bitmap);
6776
6777         kfree(msr_filter);
6778 }
6779
6780 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
6781                               struct kvm_msr_filter_range *user_range)
6782 {
6783         unsigned long *bitmap;
6784         size_t bitmap_size;
6785
6786         if (!user_range->nmsrs)
6787                 return 0;
6788
6789         if (user_range->flags & ~KVM_MSR_FILTER_RANGE_VALID_MASK)
6790                 return -EINVAL;
6791
6792         if (!user_range->flags)
6793                 return -EINVAL;
6794
6795         bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
6796         if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
6797                 return -EINVAL;
6798
6799         bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
6800         if (IS_ERR(bitmap))
6801                 return PTR_ERR(bitmap);
6802
6803         msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
6804                 .flags = user_range->flags,
6805                 .base = user_range->base,
6806                 .nmsrs = user_range->nmsrs,
6807                 .bitmap = bitmap,
6808         };
6809
6810         msr_filter->count++;
6811         return 0;
6812 }
6813
6814 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm,
6815                                        struct kvm_msr_filter *filter)
6816 {
6817         struct kvm_x86_msr_filter *new_filter, *old_filter;
6818         bool default_allow;
6819         bool empty = true;
6820         int r;
6821         u32 i;
6822
6823         if (filter->flags & ~KVM_MSR_FILTER_VALID_MASK)
6824                 return -EINVAL;
6825
6826         for (i = 0; i < ARRAY_SIZE(filter->ranges); i++)
6827                 empty &= !filter->ranges[i].nmsrs;
6828
6829         default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY);
6830         if (empty && !default_allow)
6831                 return -EINVAL;
6832
6833         new_filter = kvm_alloc_msr_filter(default_allow);
6834         if (!new_filter)
6835                 return -ENOMEM;
6836
6837         for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) {
6838                 r = kvm_add_msr_filter(new_filter, &filter->ranges[i]);
6839                 if (r) {
6840                         kvm_free_msr_filter(new_filter);
6841                         return r;
6842                 }
6843         }
6844
6845         mutex_lock(&kvm->lock);
6846         old_filter = rcu_replace_pointer(kvm->arch.msr_filter, new_filter,
6847                                          mutex_is_locked(&kvm->lock));
6848         mutex_unlock(&kvm->lock);
6849         synchronize_srcu(&kvm->srcu);
6850
6851         kvm_free_msr_filter(old_filter);
6852
6853         kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
6854
6855         return 0;
6856 }
6857
6858 #ifdef CONFIG_KVM_COMPAT
6859 /* for KVM_X86_SET_MSR_FILTER */
6860 struct kvm_msr_filter_range_compat {
6861         __u32 flags;
6862         __u32 nmsrs;
6863         __u32 base;
6864         __u32 bitmap;
6865 };
6866
6867 struct kvm_msr_filter_compat {
6868         __u32 flags;
6869         struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES];
6870 };
6871
6872 #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat)
6873
6874 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
6875                               unsigned long arg)
6876 {
6877         void __user *argp = (void __user *)arg;
6878         struct kvm *kvm = filp->private_data;
6879         long r = -ENOTTY;
6880
6881         switch (ioctl) {
6882         case KVM_X86_SET_MSR_FILTER_COMPAT: {
6883                 struct kvm_msr_filter __user *user_msr_filter = argp;
6884                 struct kvm_msr_filter_compat filter_compat;
6885                 struct kvm_msr_filter filter;
6886                 int i;
6887
6888                 if (copy_from_user(&filter_compat, user_msr_filter,
6889                                    sizeof(filter_compat)))
6890                         return -EFAULT;
6891
6892                 filter.flags = filter_compat.flags;
6893                 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
6894                         struct kvm_msr_filter_range_compat *cr;
6895
6896                         cr = &filter_compat.ranges[i];
6897                         filter.ranges[i] = (struct kvm_msr_filter_range) {
6898                                 .flags = cr->flags,
6899                                 .nmsrs = cr->nmsrs,
6900                                 .base = cr->base,
6901                                 .bitmap = (__u8 *)(ulong)cr->bitmap,
6902                         };
6903                 }
6904
6905                 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
6906                 break;
6907         }
6908         }
6909
6910         return r;
6911 }
6912 #endif
6913
6914 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
6915 static int kvm_arch_suspend_notifier(struct kvm *kvm)
6916 {
6917         struct kvm_vcpu *vcpu;
6918         unsigned long i;
6919         int ret = 0;
6920
6921         mutex_lock(&kvm->lock);
6922         kvm_for_each_vcpu(i, vcpu, kvm) {
6923                 if (!vcpu->arch.pv_time.active)
6924                         continue;
6925
6926                 ret = kvm_set_guest_paused(vcpu);
6927                 if (ret) {
6928                         kvm_err("Failed to pause guest VCPU%d: %d\n",
6929                                 vcpu->vcpu_id, ret);
6930                         break;
6931                 }
6932         }
6933         mutex_unlock(&kvm->lock);
6934
6935         return ret ? NOTIFY_BAD : NOTIFY_DONE;
6936 }
6937
6938 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
6939 {
6940         switch (state) {
6941         case PM_HIBERNATION_PREPARE:
6942         case PM_SUSPEND_PREPARE:
6943                 return kvm_arch_suspend_notifier(kvm);
6944         }
6945
6946         return NOTIFY_DONE;
6947 }
6948 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
6949
6950 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp)
6951 {
6952         struct kvm_clock_data data = { 0 };
6953
6954         get_kvmclock(kvm, &data);
6955         if (copy_to_user(argp, &data, sizeof(data)))
6956                 return -EFAULT;
6957
6958         return 0;
6959 }
6960
6961 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp)
6962 {
6963         struct kvm_arch *ka = &kvm->arch;
6964         struct kvm_clock_data data;
6965         u64 now_raw_ns;
6966
6967         if (copy_from_user(&data, argp, sizeof(data)))
6968                 return -EFAULT;
6969
6970         /*
6971          * Only KVM_CLOCK_REALTIME is used, but allow passing the
6972          * result of KVM_GET_CLOCK back to KVM_SET_CLOCK.
6973          */
6974         if (data.flags & ~KVM_CLOCK_VALID_FLAGS)
6975                 return -EINVAL;
6976
6977         kvm_hv_request_tsc_page_update(kvm);
6978         kvm_start_pvclock_update(kvm);
6979         pvclock_update_vm_gtod_copy(kvm);
6980
6981         /*
6982          * This pairs with kvm_guest_time_update(): when masterclock is
6983          * in use, we use master_kernel_ns + kvmclock_offset to set
6984          * unsigned 'system_time' so if we use get_kvmclock_ns() (which
6985          * is slightly ahead) here we risk going negative on unsigned
6986          * 'system_time' when 'data.clock' is very small.
6987          */
6988         if (data.flags & KVM_CLOCK_REALTIME) {
6989                 u64 now_real_ns = ktime_get_real_ns();
6990
6991                 /*
6992                  * Avoid stepping the kvmclock backwards.
6993                  */
6994                 if (now_real_ns > data.realtime)
6995                         data.clock += now_real_ns - data.realtime;
6996         }
6997
6998         if (ka->use_master_clock)
6999                 now_raw_ns = ka->master_kernel_ns;
7000         else
7001                 now_raw_ns = get_kvmclock_base_ns();
7002         ka->kvmclock_offset = data.clock - now_raw_ns;
7003         kvm_end_pvclock_update(kvm);
7004         return 0;
7005 }
7006
7007 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
7008 {
7009         struct kvm *kvm = filp->private_data;
7010         void __user *argp = (void __user *)arg;
7011         int r = -ENOTTY;
7012         /*
7013          * This union makes it completely explicit to gcc-3.x
7014          * that these two variables' stack usage should be
7015          * combined, not added together.
7016          */
7017         union {
7018                 struct kvm_pit_state ps;
7019                 struct kvm_pit_state2 ps2;
7020                 struct kvm_pit_config pit_config;
7021         } u;
7022
7023         switch (ioctl) {
7024         case KVM_SET_TSS_ADDR:
7025                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
7026                 break;
7027         case KVM_SET_IDENTITY_MAP_ADDR: {
7028                 u64 ident_addr;
7029
7030                 mutex_lock(&kvm->lock);
7031                 r = -EINVAL;
7032                 if (kvm->created_vcpus)
7033                         goto set_identity_unlock;
7034                 r = -EFAULT;
7035                 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
7036                         goto set_identity_unlock;
7037                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
7038 set_identity_unlock:
7039                 mutex_unlock(&kvm->lock);
7040                 break;
7041         }
7042         case KVM_SET_NR_MMU_PAGES:
7043                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
7044                 break;
7045         case KVM_CREATE_IRQCHIP: {
7046                 mutex_lock(&kvm->lock);
7047
7048                 r = -EEXIST;
7049                 if (irqchip_in_kernel(kvm))
7050                         goto create_irqchip_unlock;
7051
7052                 r = -EINVAL;
7053                 if (kvm->created_vcpus)
7054                         goto create_irqchip_unlock;
7055
7056                 r = kvm_pic_init(kvm);
7057                 if (r)
7058                         goto create_irqchip_unlock;
7059
7060                 r = kvm_ioapic_init(kvm);
7061                 if (r) {
7062                         kvm_pic_destroy(kvm);
7063                         goto create_irqchip_unlock;
7064                 }
7065
7066                 r = kvm_setup_default_irq_routing(kvm);
7067                 if (r) {
7068                         kvm_ioapic_destroy(kvm);
7069                         kvm_pic_destroy(kvm);
7070                         goto create_irqchip_unlock;
7071                 }
7072                 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
7073                 smp_wmb();
7074                 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
7075                 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
7076         create_irqchip_unlock:
7077                 mutex_unlock(&kvm->lock);
7078                 break;
7079         }
7080         case KVM_CREATE_PIT:
7081                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
7082                 goto create_pit;
7083         case KVM_CREATE_PIT2:
7084                 r = -EFAULT;
7085                 if (copy_from_user(&u.pit_config, argp,
7086                                    sizeof(struct kvm_pit_config)))
7087                         goto out;
7088         create_pit:
7089                 mutex_lock(&kvm->lock);
7090                 r = -EEXIST;
7091                 if (kvm->arch.vpit)
7092                         goto create_pit_unlock;
7093                 r = -ENOENT;
7094                 if (!pic_in_kernel(kvm))
7095                         goto create_pit_unlock;
7096                 r = -ENOMEM;
7097                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
7098                 if (kvm->arch.vpit)
7099                         r = 0;
7100         create_pit_unlock:
7101                 mutex_unlock(&kvm->lock);
7102                 break;
7103         case KVM_GET_IRQCHIP: {
7104                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
7105                 struct kvm_irqchip *chip;
7106
7107                 chip = memdup_user(argp, sizeof(*chip));
7108                 if (IS_ERR(chip)) {
7109                         r = PTR_ERR(chip);
7110                         goto out;
7111                 }
7112
7113                 r = -ENXIO;
7114                 if (!irqchip_kernel(kvm))
7115                         goto get_irqchip_out;
7116                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
7117                 if (r)
7118                         goto get_irqchip_out;
7119                 r = -EFAULT;
7120                 if (copy_to_user(argp, chip, sizeof(*chip)))
7121                         goto get_irqchip_out;
7122                 r = 0;
7123         get_irqchip_out:
7124                 kfree(chip);
7125                 break;
7126         }
7127         case KVM_SET_IRQCHIP: {
7128                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
7129                 struct kvm_irqchip *chip;
7130
7131                 chip = memdup_user(argp, sizeof(*chip));
7132                 if (IS_ERR(chip)) {
7133                         r = PTR_ERR(chip);
7134                         goto out;
7135                 }
7136
7137                 r = -ENXIO;
7138                 if (!irqchip_kernel(kvm))
7139                         goto set_irqchip_out;
7140                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
7141         set_irqchip_out:
7142                 kfree(chip);
7143                 break;
7144         }
7145         case KVM_GET_PIT: {
7146                 r = -EFAULT;
7147                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
7148                         goto out;
7149                 r = -ENXIO;
7150                 if (!kvm->arch.vpit)
7151                         goto out;
7152                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
7153                 if (r)
7154                         goto out;
7155                 r = -EFAULT;
7156                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
7157                         goto out;
7158                 r = 0;
7159                 break;
7160         }
7161         case KVM_SET_PIT: {
7162                 r = -EFAULT;
7163                 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
7164                         goto out;
7165                 mutex_lock(&kvm->lock);
7166                 r = -ENXIO;
7167                 if (!kvm->arch.vpit)
7168                         goto set_pit_out;
7169                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
7170 set_pit_out:
7171                 mutex_unlock(&kvm->lock);
7172                 break;
7173         }
7174         case KVM_GET_PIT2: {
7175                 r = -ENXIO;
7176                 if (!kvm->arch.vpit)
7177                         goto out;
7178                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
7179                 if (r)
7180                         goto out;
7181                 r = -EFAULT;
7182                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
7183                         goto out;
7184                 r = 0;
7185                 break;
7186         }
7187         case KVM_SET_PIT2: {
7188                 r = -EFAULT;
7189                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
7190                         goto out;
7191                 mutex_lock(&kvm->lock);
7192                 r = -ENXIO;
7193                 if (!kvm->arch.vpit)
7194                         goto set_pit2_out;
7195                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
7196 set_pit2_out:
7197                 mutex_unlock(&kvm->lock);
7198                 break;
7199         }
7200         case KVM_REINJECT_CONTROL: {
7201                 struct kvm_reinject_control control;
7202                 r =  -EFAULT;
7203                 if (copy_from_user(&control, argp, sizeof(control)))
7204                         goto out;
7205                 r = -ENXIO;
7206                 if (!kvm->arch.vpit)
7207                         goto out;
7208                 r = kvm_vm_ioctl_reinject(kvm, &control);
7209                 break;
7210         }
7211         case KVM_SET_BOOT_CPU_ID:
7212                 r = 0;
7213                 mutex_lock(&kvm->lock);
7214                 if (kvm->created_vcpus)
7215                         r = -EBUSY;
7216                 else
7217                         kvm->arch.bsp_vcpu_id = arg;
7218                 mutex_unlock(&kvm->lock);
7219                 break;
7220 #ifdef CONFIG_KVM_XEN
7221         case KVM_XEN_HVM_CONFIG: {
7222                 struct kvm_xen_hvm_config xhc;
7223                 r = -EFAULT;
7224                 if (copy_from_user(&xhc, argp, sizeof(xhc)))
7225                         goto out;
7226                 r = kvm_xen_hvm_config(kvm, &xhc);
7227                 break;
7228         }
7229         case KVM_XEN_HVM_GET_ATTR: {
7230                 struct kvm_xen_hvm_attr xha;
7231
7232                 r = -EFAULT;
7233                 if (copy_from_user(&xha, argp, sizeof(xha)))
7234                         goto out;
7235                 r = kvm_xen_hvm_get_attr(kvm, &xha);
7236                 if (!r && copy_to_user(argp, &xha, sizeof(xha)))
7237                         r = -EFAULT;
7238                 break;
7239         }
7240         case KVM_XEN_HVM_SET_ATTR: {
7241                 struct kvm_xen_hvm_attr xha;
7242
7243                 r = -EFAULT;
7244                 if (copy_from_user(&xha, argp, sizeof(xha)))
7245                         goto out;
7246                 r = kvm_xen_hvm_set_attr(kvm, &xha);
7247                 break;
7248         }
7249         case KVM_XEN_HVM_EVTCHN_SEND: {
7250                 struct kvm_irq_routing_xen_evtchn uxe;
7251
7252                 r = -EFAULT;
7253                 if (copy_from_user(&uxe, argp, sizeof(uxe)))
7254                         goto out;
7255                 r = kvm_xen_hvm_evtchn_send(kvm, &uxe);
7256                 break;
7257         }
7258 #endif
7259         case KVM_SET_CLOCK:
7260                 r = kvm_vm_ioctl_set_clock(kvm, argp);
7261                 break;
7262         case KVM_GET_CLOCK:
7263                 r = kvm_vm_ioctl_get_clock(kvm, argp);
7264                 break;
7265         case KVM_SET_TSC_KHZ: {
7266                 u32 user_tsc_khz;
7267
7268                 r = -EINVAL;
7269                 user_tsc_khz = (u32)arg;
7270
7271                 if (kvm_caps.has_tsc_control &&
7272                     user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
7273                         goto out;
7274
7275                 if (user_tsc_khz == 0)
7276                         user_tsc_khz = tsc_khz;
7277
7278                 WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz);
7279                 r = 0;
7280
7281                 goto out;
7282         }
7283         case KVM_GET_TSC_KHZ: {
7284                 r = READ_ONCE(kvm->arch.default_tsc_khz);
7285                 goto out;
7286         }
7287         case KVM_MEMORY_ENCRYPT_OP: {
7288                 r = -ENOTTY;
7289                 if (!kvm_x86_ops.mem_enc_ioctl)
7290                         goto out;
7291
7292                 r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp);
7293                 break;
7294         }
7295         case KVM_MEMORY_ENCRYPT_REG_REGION: {
7296                 struct kvm_enc_region region;
7297
7298                 r = -EFAULT;
7299                 if (copy_from_user(&region, argp, sizeof(region)))
7300                         goto out;
7301
7302                 r = -ENOTTY;
7303                 if (!kvm_x86_ops.mem_enc_register_region)
7304                         goto out;
7305
7306                 r = static_call(kvm_x86_mem_enc_register_region)(kvm, &region);
7307                 break;
7308         }
7309         case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
7310                 struct kvm_enc_region region;
7311
7312                 r = -EFAULT;
7313                 if (copy_from_user(&region, argp, sizeof(region)))
7314                         goto out;
7315
7316                 r = -ENOTTY;
7317                 if (!kvm_x86_ops.mem_enc_unregister_region)
7318                         goto out;
7319
7320                 r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, &region);
7321                 break;
7322         }
7323 #ifdef CONFIG_KVM_HYPERV
7324         case KVM_HYPERV_EVENTFD: {
7325                 struct kvm_hyperv_eventfd hvevfd;
7326
7327                 r = -EFAULT;
7328                 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
7329                         goto out;
7330                 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
7331                 break;
7332         }
7333 #endif
7334         case KVM_SET_PMU_EVENT_FILTER:
7335                 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
7336                 break;
7337         case KVM_X86_SET_MSR_FILTER: {
7338                 struct kvm_msr_filter __user *user_msr_filter = argp;
7339                 struct kvm_msr_filter filter;
7340
7341                 if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
7342                         return -EFAULT;
7343
7344                 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
7345                 break;
7346         }
7347         default:
7348                 r = -ENOTTY;
7349         }
7350 out:
7351         return r;
7352 }
7353
7354 static void kvm_probe_feature_msr(u32 msr_index)
7355 {
7356         struct kvm_msr_entry msr = {
7357                 .index = msr_index,
7358         };
7359
7360         if (kvm_get_msr_feature(&msr))
7361                 return;
7362
7363         msr_based_features[num_msr_based_features++] = msr_index;
7364 }
7365
7366 static void kvm_probe_msr_to_save(u32 msr_index)
7367 {
7368         u32 dummy[2];
7369
7370         if (rdmsr_safe(msr_index, &dummy[0], &dummy[1]))
7371                 return;
7372
7373         /*
7374          * Even MSRs that are valid in the host may not be exposed to guests in
7375          * some cases.
7376          */
7377         switch (msr_index) {
7378         case MSR_IA32_BNDCFGS:
7379                 if (!kvm_mpx_supported())
7380                         return;
7381                 break;
7382         case MSR_TSC_AUX:
7383                 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
7384                     !kvm_cpu_cap_has(X86_FEATURE_RDPID))
7385                         return;
7386                 break;
7387         case MSR_IA32_UMWAIT_CONTROL:
7388                 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
7389                         return;
7390                 break;
7391         case MSR_IA32_RTIT_CTL:
7392         case MSR_IA32_RTIT_STATUS:
7393                 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
7394                         return;
7395                 break;
7396         case MSR_IA32_RTIT_CR3_MATCH:
7397                 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7398                     !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
7399                         return;
7400                 break;
7401         case MSR_IA32_RTIT_OUTPUT_BASE:
7402         case MSR_IA32_RTIT_OUTPUT_MASK:
7403                 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7404                     (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
7405                      !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
7406                         return;
7407                 break;
7408         case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
7409                 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7410                     (msr_index - MSR_IA32_RTIT_ADDR0_A >=
7411                      intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2))
7412                         return;
7413                 break;
7414         case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR_MAX:
7415                 if (msr_index - MSR_ARCH_PERFMON_PERFCTR0 >=
7416                     kvm_pmu_cap.num_counters_gp)
7417                         return;
7418                 break;
7419         case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL_MAX:
7420                 if (msr_index - MSR_ARCH_PERFMON_EVENTSEL0 >=
7421                     kvm_pmu_cap.num_counters_gp)
7422                         return;
7423                 break;
7424         case MSR_ARCH_PERFMON_FIXED_CTR0 ... MSR_ARCH_PERFMON_FIXED_CTR_MAX:
7425                 if (msr_index - MSR_ARCH_PERFMON_FIXED_CTR0 >=
7426                     kvm_pmu_cap.num_counters_fixed)
7427                         return;
7428                 break;
7429         case MSR_AMD64_PERF_CNTR_GLOBAL_CTL:
7430         case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS:
7431         case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR:
7432                 if (!kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2))
7433                         return;
7434                 break;
7435         case MSR_IA32_XFD:
7436         case MSR_IA32_XFD_ERR:
7437                 if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
7438                         return;
7439                 break;
7440         case MSR_IA32_TSX_CTRL:
7441                 if (!(kvm_get_arch_capabilities() & ARCH_CAP_TSX_CTRL_MSR))
7442                         return;
7443                 break;
7444         default:
7445                 break;
7446         }
7447
7448         msrs_to_save[num_msrs_to_save++] = msr_index;
7449 }
7450
7451 static void kvm_init_msr_lists(void)
7452 {
7453         unsigned i;
7454
7455         BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3,
7456                          "Please update the fixed PMCs in msrs_to_save_pmu[]");
7457
7458         num_msrs_to_save = 0;
7459         num_emulated_msrs = 0;
7460         num_msr_based_features = 0;
7461
7462         for (i = 0; i < ARRAY_SIZE(msrs_to_save_base); i++)
7463                 kvm_probe_msr_to_save(msrs_to_save_base[i]);
7464
7465         if (enable_pmu) {
7466                 for (i = 0; i < ARRAY_SIZE(msrs_to_save_pmu); i++)
7467                         kvm_probe_msr_to_save(msrs_to_save_pmu[i]);
7468         }
7469
7470         for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
7471                 if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
7472                         continue;
7473
7474                 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
7475         }
7476
7477         for (i = KVM_FIRST_EMULATED_VMX_MSR; i <= KVM_LAST_EMULATED_VMX_MSR; i++)
7478                 kvm_probe_feature_msr(i);
7479
7480         for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++)
7481                 kvm_probe_feature_msr(msr_based_features_all_except_vmx[i]);
7482 }
7483
7484 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
7485                            const void *v)
7486 {
7487         int handled = 0;
7488         int n;
7489
7490         do {
7491                 n = min(len, 8);
7492                 if (!(lapic_in_kernel(vcpu) &&
7493                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
7494                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
7495                         break;
7496                 handled += n;
7497                 addr += n;
7498                 len -= n;
7499                 v += n;
7500         } while (len);
7501
7502         return handled;
7503 }
7504
7505 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
7506 {
7507         int handled = 0;
7508         int n;
7509
7510         do {
7511                 n = min(len, 8);
7512                 if (!(lapic_in_kernel(vcpu) &&
7513                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
7514                                          addr, n, v))
7515                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
7516                         break;
7517                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
7518                 handled += n;
7519                 addr += n;
7520                 len -= n;
7521                 v += n;
7522         } while (len);
7523
7524         return handled;
7525 }
7526
7527 void kvm_set_segment(struct kvm_vcpu *vcpu,
7528                      struct kvm_segment *var, int seg)
7529 {
7530         static_call(kvm_x86_set_segment)(vcpu, var, seg);
7531 }
7532
7533 void kvm_get_segment(struct kvm_vcpu *vcpu,
7534                      struct kvm_segment *var, int seg)
7535 {
7536         static_call(kvm_x86_get_segment)(vcpu, var, seg);
7537 }
7538
7539 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access,
7540                            struct x86_exception *exception)
7541 {
7542         struct kvm_mmu *mmu = vcpu->arch.mmu;
7543         gpa_t t_gpa;
7544
7545         BUG_ON(!mmu_is_nested(vcpu));
7546
7547         /* NPT walks are always user-walks */
7548         access |= PFERR_USER_MASK;
7549         t_gpa  = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception);
7550
7551         return t_gpa;
7552 }
7553
7554 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
7555                               struct x86_exception *exception)
7556 {
7557         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7558
7559         u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7560         return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7561 }
7562 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
7563
7564 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
7565                                struct x86_exception *exception)
7566 {
7567         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7568
7569         u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7570         access |= PFERR_WRITE_MASK;
7571         return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7572 }
7573 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
7574
7575 /* uses this to access any guest's mapped memory without checking CPL */
7576 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
7577                                 struct x86_exception *exception)
7578 {
7579         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7580
7581         return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception);
7582 }
7583
7584 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7585                                       struct kvm_vcpu *vcpu, u64 access,
7586                                       struct x86_exception *exception)
7587 {
7588         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7589         void *data = val;
7590         int r = X86EMUL_CONTINUE;
7591
7592         while (bytes) {
7593                 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7594                 unsigned offset = addr & (PAGE_SIZE-1);
7595                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
7596                 int ret;
7597
7598                 if (gpa == INVALID_GPA)
7599                         return X86EMUL_PROPAGATE_FAULT;
7600                 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
7601                                                offset, toread);
7602                 if (ret < 0) {
7603                         r = X86EMUL_IO_NEEDED;
7604                         goto out;
7605                 }
7606
7607                 bytes -= toread;
7608                 data += toread;
7609                 addr += toread;
7610         }
7611 out:
7612         return r;
7613 }
7614
7615 /* used for instruction fetching */
7616 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
7617                                 gva_t addr, void *val, unsigned int bytes,
7618                                 struct x86_exception *exception)
7619 {
7620         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7621         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7622         u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7623         unsigned offset;
7624         int ret;
7625
7626         /* Inline kvm_read_guest_virt_helper for speed.  */
7627         gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK,
7628                                     exception);
7629         if (unlikely(gpa == INVALID_GPA))
7630                 return X86EMUL_PROPAGATE_FAULT;
7631
7632         offset = addr & (PAGE_SIZE-1);
7633         if (WARN_ON(offset + bytes > PAGE_SIZE))
7634                 bytes = (unsigned)PAGE_SIZE - offset;
7635         ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
7636                                        offset, bytes);
7637         if (unlikely(ret < 0))
7638                 return X86EMUL_IO_NEEDED;
7639
7640         return X86EMUL_CONTINUE;
7641 }
7642
7643 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
7644                                gva_t addr, void *val, unsigned int bytes,
7645                                struct x86_exception *exception)
7646 {
7647         u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7648
7649         /*
7650          * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
7651          * is returned, but our callers are not ready for that and they blindly
7652          * call kvm_inject_page_fault.  Ensure that they at least do not leak
7653          * uninitialized kernel stack memory into cr2 and error code.
7654          */
7655         memset(exception, 0, sizeof(*exception));
7656         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
7657                                           exception);
7658 }
7659 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
7660
7661 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
7662                              gva_t addr, void *val, unsigned int bytes,
7663                              struct x86_exception *exception, bool system)
7664 {
7665         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7666         u64 access = 0;
7667
7668         if (system)
7669                 access |= PFERR_IMPLICIT_ACCESS;
7670         else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7671                 access |= PFERR_USER_MASK;
7672
7673         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
7674 }
7675
7676 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7677                                       struct kvm_vcpu *vcpu, u64 access,
7678                                       struct x86_exception *exception)
7679 {
7680         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7681         void *data = val;
7682         int r = X86EMUL_CONTINUE;
7683
7684         while (bytes) {
7685                 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7686                 unsigned offset = addr & (PAGE_SIZE-1);
7687                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
7688                 int ret;
7689
7690                 if (gpa == INVALID_GPA)
7691                         return X86EMUL_PROPAGATE_FAULT;
7692                 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
7693                 if (ret < 0) {
7694                         r = X86EMUL_IO_NEEDED;
7695                         goto out;
7696                 }
7697
7698                 bytes -= towrite;
7699                 data += towrite;
7700                 addr += towrite;
7701         }
7702 out:
7703         return r;
7704 }
7705
7706 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
7707                               unsigned int bytes, struct x86_exception *exception,
7708                               bool system)
7709 {
7710         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7711         u64 access = PFERR_WRITE_MASK;
7712
7713         if (system)
7714                 access |= PFERR_IMPLICIT_ACCESS;
7715         else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7716                 access |= PFERR_USER_MASK;
7717
7718         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7719                                            access, exception);
7720 }
7721
7722 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
7723                                 unsigned int bytes, struct x86_exception *exception)
7724 {
7725         /* kvm_write_guest_virt_system can pull in tons of pages. */
7726         vcpu->arch.l1tf_flush_l1d = true;
7727
7728         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7729                                            PFERR_WRITE_MASK, exception);
7730 }
7731 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
7732
7733 static int kvm_check_emulate_insn(struct kvm_vcpu *vcpu, int emul_type,
7734                                   void *insn, int insn_len)
7735 {
7736         return static_call(kvm_x86_check_emulate_instruction)(vcpu, emul_type,
7737                                                               insn, insn_len);
7738 }
7739
7740 int handle_ud(struct kvm_vcpu *vcpu)
7741 {
7742         static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
7743         int fep_flags = READ_ONCE(force_emulation_prefix);
7744         int emul_type = EMULTYPE_TRAP_UD;
7745         char sig[5]; /* ud2; .ascii "kvm" */
7746         struct x86_exception e;
7747         int r;
7748
7749         r = kvm_check_emulate_insn(vcpu, emul_type, NULL, 0);
7750         if (r != X86EMUL_CONTINUE)
7751                 return 1;
7752
7753         if (fep_flags &&
7754             kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
7755                                 sig, sizeof(sig), &e) == 0 &&
7756             memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
7757                 if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF)
7758                         kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF);
7759                 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
7760                 emul_type = EMULTYPE_TRAP_UD_FORCED;
7761         }
7762
7763         return kvm_emulate_instruction(vcpu, emul_type);
7764 }
7765 EXPORT_SYMBOL_GPL(handle_ud);
7766
7767 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7768                             gpa_t gpa, bool write)
7769 {
7770         /* For APIC access vmexit */
7771         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7772                 return 1;
7773
7774         if (vcpu_match_mmio_gpa(vcpu, gpa)) {
7775                 trace_vcpu_match_mmio(gva, gpa, write, true);
7776                 return 1;
7777         }
7778
7779         return 0;
7780 }
7781
7782 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7783                                 gpa_t *gpa, struct x86_exception *exception,
7784                                 bool write)
7785 {
7786         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7787         u64 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
7788                 | (write ? PFERR_WRITE_MASK : 0);
7789
7790         /*
7791          * currently PKRU is only applied to ept enabled guest so
7792          * there is no pkey in EPT page table for L1 guest or EPT
7793          * shadow page table for L2 guest.
7794          */
7795         if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
7796             !permission_fault(vcpu, vcpu->arch.walk_mmu,
7797                               vcpu->arch.mmio_access, 0, access))) {
7798                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
7799                                         (gva & (PAGE_SIZE - 1));
7800                 trace_vcpu_match_mmio(gva, *gpa, write, false);
7801                 return 1;
7802         }
7803
7804         *gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7805
7806         if (*gpa == INVALID_GPA)
7807                 return -1;
7808
7809         return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
7810 }
7811
7812 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
7813                         const void *val, int bytes)
7814 {
7815         int ret;
7816
7817         ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
7818         if (ret < 0)
7819                 return 0;
7820         kvm_page_track_write(vcpu, gpa, val, bytes);
7821         return 1;
7822 }
7823
7824 struct read_write_emulator_ops {
7825         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
7826                                   int bytes);
7827         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
7828                                   void *val, int bytes);
7829         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7830                                int bytes, void *val);
7831         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7832                                     void *val, int bytes);
7833         bool write;
7834 };
7835
7836 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
7837 {
7838         if (vcpu->mmio_read_completed) {
7839                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
7840                                vcpu->mmio_fragments[0].gpa, val);
7841                 vcpu->mmio_read_completed = 0;
7842                 return 1;
7843         }
7844
7845         return 0;
7846 }
7847
7848 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7849                         void *val, int bytes)
7850 {
7851         return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
7852 }
7853
7854 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7855                          void *val, int bytes)
7856 {
7857         return emulator_write_phys(vcpu, gpa, val, bytes);
7858 }
7859
7860 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
7861 {
7862         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
7863         return vcpu_mmio_write(vcpu, gpa, bytes, val);
7864 }
7865
7866 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7867                           void *val, int bytes)
7868 {
7869         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
7870         return X86EMUL_IO_NEEDED;
7871 }
7872
7873 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7874                            void *val, int bytes)
7875 {
7876         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
7877
7878         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
7879         return X86EMUL_CONTINUE;
7880 }
7881
7882 static const struct read_write_emulator_ops read_emultor = {
7883         .read_write_prepare = read_prepare,
7884         .read_write_emulate = read_emulate,
7885         .read_write_mmio = vcpu_mmio_read,
7886         .read_write_exit_mmio = read_exit_mmio,
7887 };
7888
7889 static const struct read_write_emulator_ops write_emultor = {
7890         .read_write_emulate = write_emulate,
7891         .read_write_mmio = write_mmio,
7892         .read_write_exit_mmio = write_exit_mmio,
7893         .write = true,
7894 };
7895
7896 static int emulator_read_write_onepage(unsigned long addr, void *val,
7897                                        unsigned int bytes,
7898                                        struct x86_exception *exception,
7899                                        struct kvm_vcpu *vcpu,
7900                                        const struct read_write_emulator_ops *ops)
7901 {
7902         gpa_t gpa;
7903         int handled, ret;
7904         bool write = ops->write;
7905         struct kvm_mmio_fragment *frag;
7906         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7907
7908         /*
7909          * If the exit was due to a NPF we may already have a GPA.
7910          * If the GPA is present, use it to avoid the GVA to GPA table walk.
7911          * Note, this cannot be used on string operations since string
7912          * operation using rep will only have the initial GPA from the NPF
7913          * occurred.
7914          */
7915         if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
7916             (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
7917                 gpa = ctxt->gpa_val;
7918                 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
7919         } else {
7920                 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
7921                 if (ret < 0)
7922                         return X86EMUL_PROPAGATE_FAULT;
7923         }
7924
7925         if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
7926                 return X86EMUL_CONTINUE;
7927
7928         /*
7929          * Is this MMIO handled locally?
7930          */
7931         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
7932         if (handled == bytes)
7933                 return X86EMUL_CONTINUE;
7934
7935         gpa += handled;
7936         bytes -= handled;
7937         val += handled;
7938
7939         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
7940         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
7941         frag->gpa = gpa;
7942         frag->data = val;
7943         frag->len = bytes;
7944         return X86EMUL_CONTINUE;
7945 }
7946
7947 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
7948                         unsigned long addr,
7949                         void *val, unsigned int bytes,
7950                         struct x86_exception *exception,
7951                         const struct read_write_emulator_ops *ops)
7952 {
7953         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7954         gpa_t gpa;
7955         int rc;
7956
7957         if (ops->read_write_prepare &&
7958                   ops->read_write_prepare(vcpu, val, bytes))
7959                 return X86EMUL_CONTINUE;
7960
7961         vcpu->mmio_nr_fragments = 0;
7962
7963         /* Crossing a page boundary? */
7964         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
7965                 int now;
7966
7967                 now = -addr & ~PAGE_MASK;
7968                 rc = emulator_read_write_onepage(addr, val, now, exception,
7969                                                  vcpu, ops);
7970
7971                 if (rc != X86EMUL_CONTINUE)
7972                         return rc;
7973                 addr += now;
7974                 if (ctxt->mode != X86EMUL_MODE_PROT64)
7975                         addr = (u32)addr;
7976                 val += now;
7977                 bytes -= now;
7978         }
7979
7980         rc = emulator_read_write_onepage(addr, val, bytes, exception,
7981                                          vcpu, ops);
7982         if (rc != X86EMUL_CONTINUE)
7983                 return rc;
7984
7985         if (!vcpu->mmio_nr_fragments)
7986                 return rc;
7987
7988         gpa = vcpu->mmio_fragments[0].gpa;
7989
7990         vcpu->mmio_needed = 1;
7991         vcpu->mmio_cur_fragment = 0;
7992
7993         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
7994         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
7995         vcpu->run->exit_reason = KVM_EXIT_MMIO;
7996         vcpu->run->mmio.phys_addr = gpa;
7997
7998         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
7999 }
8000
8001 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
8002                                   unsigned long addr,
8003                                   void *val,
8004                                   unsigned int bytes,
8005                                   struct x86_exception *exception)
8006 {
8007         return emulator_read_write(ctxt, addr, val, bytes,
8008                                    exception, &read_emultor);
8009 }
8010
8011 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
8012                             unsigned long addr,
8013                             const void *val,
8014                             unsigned int bytes,
8015                             struct x86_exception *exception)
8016 {
8017         return emulator_read_write(ctxt, addr, (void *)val, bytes,
8018                                    exception, &write_emultor);
8019 }
8020
8021 #define emulator_try_cmpxchg_user(t, ptr, old, new) \
8022         (__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t))
8023
8024 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
8025                                      unsigned long addr,
8026                                      const void *old,
8027                                      const void *new,
8028                                      unsigned int bytes,
8029                                      struct x86_exception *exception)
8030 {
8031         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8032         u64 page_line_mask;
8033         unsigned long hva;
8034         gpa_t gpa;
8035         int r;
8036
8037         /* guests cmpxchg8b have to be emulated atomically */
8038         if (bytes > 8 || (bytes & (bytes - 1)))
8039                 goto emul_write;
8040
8041         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
8042
8043         if (gpa == INVALID_GPA ||
8044             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
8045                 goto emul_write;
8046
8047         /*
8048          * Emulate the atomic as a straight write to avoid #AC if SLD is
8049          * enabled in the host and the access splits a cache line.
8050          */
8051         if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
8052                 page_line_mask = ~(cache_line_size() - 1);
8053         else
8054                 page_line_mask = PAGE_MASK;
8055
8056         if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
8057                 goto emul_write;
8058
8059         hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa));
8060         if (kvm_is_error_hva(hva))
8061                 goto emul_write;
8062
8063         hva += offset_in_page(gpa);
8064
8065         switch (bytes) {
8066         case 1:
8067                 r = emulator_try_cmpxchg_user(u8, hva, old, new);
8068                 break;
8069         case 2:
8070                 r = emulator_try_cmpxchg_user(u16, hva, old, new);
8071                 break;
8072         case 4:
8073                 r = emulator_try_cmpxchg_user(u32, hva, old, new);
8074                 break;
8075         case 8:
8076                 r = emulator_try_cmpxchg_user(u64, hva, old, new);
8077                 break;
8078         default:
8079                 BUG();
8080         }
8081
8082         if (r < 0)
8083                 return X86EMUL_UNHANDLEABLE;
8084
8085         /*
8086          * Mark the page dirty _before_ checking whether or not the CMPXCHG was
8087          * successful, as the old value is written back on failure.  Note, for
8088          * live migration, this is unnecessarily conservative as CMPXCHG writes
8089          * back the original value and the access is atomic, but KVM's ABI is
8090          * that all writes are dirty logged, regardless of the value written.
8091          */
8092         kvm_vcpu_mark_page_dirty(vcpu, gpa_to_gfn(gpa));
8093
8094         if (r)
8095                 return X86EMUL_CMPXCHG_FAILED;
8096
8097         kvm_page_track_write(vcpu, gpa, new, bytes);
8098
8099         return X86EMUL_CONTINUE;
8100
8101 emul_write:
8102         pr_warn_once("emulating exchange as write\n");
8103
8104         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
8105 }
8106
8107 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
8108                                unsigned short port, void *data,
8109                                unsigned int count, bool in)
8110 {
8111         unsigned i;
8112         int r;
8113
8114         WARN_ON_ONCE(vcpu->arch.pio.count);
8115         for (i = 0; i < count; i++) {
8116                 if (in)
8117                         r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data);
8118                 else
8119                         r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data);
8120
8121                 if (r) {
8122                         if (i == 0)
8123                                 goto userspace_io;
8124
8125                         /*
8126                          * Userspace must have unregistered the device while PIO
8127                          * was running.  Drop writes / read as 0.
8128                          */
8129                         if (in)
8130                                 memset(data, 0, size * (count - i));
8131                         break;
8132                 }
8133
8134                 data += size;
8135         }
8136         return 1;
8137
8138 userspace_io:
8139         vcpu->arch.pio.port = port;
8140         vcpu->arch.pio.in = in;
8141         vcpu->arch.pio.count = count;
8142         vcpu->arch.pio.size = size;
8143
8144         if (in)
8145                 memset(vcpu->arch.pio_data, 0, size * count);
8146         else
8147                 memcpy(vcpu->arch.pio_data, data, size * count);
8148
8149         vcpu->run->exit_reason = KVM_EXIT_IO;
8150         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
8151         vcpu->run->io.size = size;
8152         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
8153         vcpu->run->io.count = count;
8154         vcpu->run->io.port = port;
8155         return 0;
8156 }
8157
8158 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
8159                            unsigned short port, void *val, unsigned int count)
8160 {
8161         int r = emulator_pio_in_out(vcpu, size, port, val, count, true);
8162         if (r)
8163                 trace_kvm_pio(KVM_PIO_IN, port, size, count, val);
8164
8165         return r;
8166 }
8167
8168 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
8169 {
8170         int size = vcpu->arch.pio.size;
8171         unsigned int count = vcpu->arch.pio.count;
8172         memcpy(val, vcpu->arch.pio_data, size * count);
8173         trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
8174         vcpu->arch.pio.count = 0;
8175 }
8176
8177 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
8178                                     int size, unsigned short port, void *val,
8179                                     unsigned int count)
8180 {
8181         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8182         if (vcpu->arch.pio.count) {
8183                 /*
8184                  * Complete a previous iteration that required userspace I/O.
8185                  * Note, @count isn't guaranteed to match pio.count as userspace
8186                  * can modify ECX before rerunning the vCPU.  Ignore any such
8187                  * shenanigans as KVM doesn't support modifying the rep count,
8188                  * and the emulator ensures @count doesn't overflow the buffer.
8189                  */
8190                 complete_emulator_pio_in(vcpu, val);
8191                 return 1;
8192         }
8193
8194         return emulator_pio_in(vcpu, size, port, val, count);
8195 }
8196
8197 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
8198                             unsigned short port, const void *val,
8199                             unsigned int count)
8200 {
8201         trace_kvm_pio(KVM_PIO_OUT, port, size, count, val);
8202         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
8203 }
8204
8205 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
8206                                      int size, unsigned short port,
8207                                      const void *val, unsigned int count)
8208 {
8209         return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
8210 }
8211
8212 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
8213 {
8214         return static_call(kvm_x86_get_segment_base)(vcpu, seg);
8215 }
8216
8217 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
8218 {
8219         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
8220 }
8221
8222 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
8223 {
8224         if (!need_emulate_wbinvd(vcpu))
8225                 return X86EMUL_CONTINUE;
8226
8227         if (static_call(kvm_x86_has_wbinvd_exit)()) {
8228                 int cpu = get_cpu();
8229
8230                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
8231                 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
8232                                 wbinvd_ipi, NULL, 1);
8233                 put_cpu();
8234                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
8235         } else
8236                 wbinvd();
8237         return X86EMUL_CONTINUE;
8238 }
8239
8240 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
8241 {
8242         kvm_emulate_wbinvd_noskip(vcpu);
8243         return kvm_skip_emulated_instruction(vcpu);
8244 }
8245 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
8246
8247
8248
8249 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
8250 {
8251         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
8252 }
8253
8254 static unsigned long emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr)
8255 {
8256         return kvm_get_dr(emul_to_vcpu(ctxt), dr);
8257 }
8258
8259 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
8260                            unsigned long value)
8261 {
8262
8263         return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
8264 }
8265
8266 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
8267 {
8268         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
8269 }
8270
8271 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
8272 {
8273         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8274         unsigned long value;
8275
8276         switch (cr) {
8277         case 0:
8278                 value = kvm_read_cr0(vcpu);
8279                 break;
8280         case 2:
8281                 value = vcpu->arch.cr2;
8282                 break;
8283         case 3:
8284                 value = kvm_read_cr3(vcpu);
8285                 break;
8286         case 4:
8287                 value = kvm_read_cr4(vcpu);
8288                 break;
8289         case 8:
8290                 value = kvm_get_cr8(vcpu);
8291                 break;
8292         default:
8293                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
8294                 return 0;
8295         }
8296
8297         return value;
8298 }
8299
8300 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
8301 {
8302         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8303         int res = 0;
8304
8305         switch (cr) {
8306         case 0:
8307                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
8308                 break;
8309         case 2:
8310                 vcpu->arch.cr2 = val;
8311                 break;
8312         case 3:
8313                 res = kvm_set_cr3(vcpu, val);
8314                 break;
8315         case 4:
8316                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
8317                 break;
8318         case 8:
8319                 res = kvm_set_cr8(vcpu, val);
8320                 break;
8321         default:
8322                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
8323                 res = -1;
8324         }
8325
8326         return res;
8327 }
8328
8329 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
8330 {
8331         return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
8332 }
8333
8334 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8335 {
8336         static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
8337 }
8338
8339 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8340 {
8341         static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
8342 }
8343
8344 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8345 {
8346         static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
8347 }
8348
8349 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8350 {
8351         static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
8352 }
8353
8354 static unsigned long emulator_get_cached_segment_base(
8355         struct x86_emulate_ctxt *ctxt, int seg)
8356 {
8357         return get_segment_base(emul_to_vcpu(ctxt), seg);
8358 }
8359
8360 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
8361                                  struct desc_struct *desc, u32 *base3,
8362                                  int seg)
8363 {
8364         struct kvm_segment var;
8365
8366         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
8367         *selector = var.selector;
8368
8369         if (var.unusable) {
8370                 memset(desc, 0, sizeof(*desc));
8371                 if (base3)
8372                         *base3 = 0;
8373                 return false;
8374         }
8375
8376         if (var.g)
8377                 var.limit >>= 12;
8378         set_desc_limit(desc, var.limit);
8379         set_desc_base(desc, (unsigned long)var.base);
8380 #ifdef CONFIG_X86_64
8381         if (base3)
8382                 *base3 = var.base >> 32;
8383 #endif
8384         desc->type = var.type;
8385         desc->s = var.s;
8386         desc->dpl = var.dpl;
8387         desc->p = var.present;
8388         desc->avl = var.avl;
8389         desc->l = var.l;
8390         desc->d = var.db;
8391         desc->g = var.g;
8392
8393         return true;
8394 }
8395
8396 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
8397                                  struct desc_struct *desc, u32 base3,
8398                                  int seg)
8399 {
8400         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8401         struct kvm_segment var;
8402
8403         var.selector = selector;
8404         var.base = get_desc_base(desc);
8405 #ifdef CONFIG_X86_64
8406         var.base |= ((u64)base3) << 32;
8407 #endif
8408         var.limit = get_desc_limit(desc);
8409         if (desc->g)
8410                 var.limit = (var.limit << 12) | 0xfff;
8411         var.type = desc->type;
8412         var.dpl = desc->dpl;
8413         var.db = desc->d;
8414         var.s = desc->s;
8415         var.l = desc->l;
8416         var.g = desc->g;
8417         var.avl = desc->avl;
8418         var.present = desc->p;
8419         var.unusable = !var.present;
8420         var.padding = 0;
8421
8422         kvm_set_segment(vcpu, &var, seg);
8423         return;
8424 }
8425
8426 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8427                                         u32 msr_index, u64 *pdata)
8428 {
8429         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8430         int r;
8431
8432         r = kvm_get_msr_with_filter(vcpu, msr_index, pdata);
8433         if (r < 0)
8434                 return X86EMUL_UNHANDLEABLE;
8435
8436         if (r) {
8437                 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0,
8438                                        complete_emulated_rdmsr, r))
8439                         return X86EMUL_IO_NEEDED;
8440
8441                 trace_kvm_msr_read_ex(msr_index);
8442                 return X86EMUL_PROPAGATE_FAULT;
8443         }
8444
8445         trace_kvm_msr_read(msr_index, *pdata);
8446         return X86EMUL_CONTINUE;
8447 }
8448
8449 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8450                                         u32 msr_index, u64 data)
8451 {
8452         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8453         int r;
8454
8455         r = kvm_set_msr_with_filter(vcpu, msr_index, data);
8456         if (r < 0)
8457                 return X86EMUL_UNHANDLEABLE;
8458
8459         if (r) {
8460                 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data,
8461                                        complete_emulated_msr_access, r))
8462                         return X86EMUL_IO_NEEDED;
8463
8464                 trace_kvm_msr_write_ex(msr_index, data);
8465                 return X86EMUL_PROPAGATE_FAULT;
8466         }
8467
8468         trace_kvm_msr_write(msr_index, data);
8469         return X86EMUL_CONTINUE;
8470 }
8471
8472 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
8473                             u32 msr_index, u64 *pdata)
8474 {
8475         return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
8476 }
8477
8478 static int emulator_check_rdpmc_early(struct x86_emulate_ctxt *ctxt, u32 pmc)
8479 {
8480         return kvm_pmu_check_rdpmc_early(emul_to_vcpu(ctxt), pmc);
8481 }
8482
8483 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
8484                              u32 pmc, u64 *pdata)
8485 {
8486         return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
8487 }
8488
8489 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
8490 {
8491         emul_to_vcpu(ctxt)->arch.halt_request = 1;
8492 }
8493
8494 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
8495                               struct x86_instruction_info *info,
8496                               enum x86_intercept_stage stage)
8497 {
8498         return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
8499                                             &ctxt->exception);
8500 }
8501
8502 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
8503                               u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
8504                               bool exact_only)
8505 {
8506         return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
8507 }
8508
8509 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
8510 {
8511         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
8512 }
8513
8514 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
8515 {
8516         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
8517 }
8518
8519 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt)
8520 {
8521         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID);
8522 }
8523
8524 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
8525 {
8526         return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
8527 }
8528
8529 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
8530 {
8531         kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
8532 }
8533
8534 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
8535 {
8536         static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
8537 }
8538
8539 static bool emulator_is_smm(struct x86_emulate_ctxt *ctxt)
8540 {
8541         return is_smm(emul_to_vcpu(ctxt));
8542 }
8543
8544 static bool emulator_is_guest_mode(struct x86_emulate_ctxt *ctxt)
8545 {
8546         return is_guest_mode(emul_to_vcpu(ctxt));
8547 }
8548
8549 #ifndef CONFIG_KVM_SMM
8550 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt)
8551 {
8552         WARN_ON_ONCE(1);
8553         return X86EMUL_UNHANDLEABLE;
8554 }
8555 #endif
8556
8557 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
8558 {
8559         kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
8560 }
8561
8562 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
8563 {
8564         return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
8565 }
8566
8567 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt)
8568 {
8569         struct kvm *kvm = emul_to_vcpu(ctxt)->kvm;
8570
8571         if (!kvm->vm_bugged)
8572                 kvm_vm_bugged(kvm);
8573 }
8574
8575 static gva_t emulator_get_untagged_addr(struct x86_emulate_ctxt *ctxt,
8576                                         gva_t addr, unsigned int flags)
8577 {
8578         if (!kvm_x86_ops.get_untagged_addr)
8579                 return addr;
8580
8581         return static_call(kvm_x86_get_untagged_addr)(emul_to_vcpu(ctxt), addr, flags);
8582 }
8583
8584 static const struct x86_emulate_ops emulate_ops = {
8585         .vm_bugged           = emulator_vm_bugged,
8586         .read_gpr            = emulator_read_gpr,
8587         .write_gpr           = emulator_write_gpr,
8588         .read_std            = emulator_read_std,
8589         .write_std           = emulator_write_std,
8590         .fetch               = kvm_fetch_guest_virt,
8591         .read_emulated       = emulator_read_emulated,
8592         .write_emulated      = emulator_write_emulated,
8593         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
8594         .invlpg              = emulator_invlpg,
8595         .pio_in_emulated     = emulator_pio_in_emulated,
8596         .pio_out_emulated    = emulator_pio_out_emulated,
8597         .get_segment         = emulator_get_segment,
8598         .set_segment         = emulator_set_segment,
8599         .get_cached_segment_base = emulator_get_cached_segment_base,
8600         .get_gdt             = emulator_get_gdt,
8601         .get_idt             = emulator_get_idt,
8602         .set_gdt             = emulator_set_gdt,
8603         .set_idt             = emulator_set_idt,
8604         .get_cr              = emulator_get_cr,
8605         .set_cr              = emulator_set_cr,
8606         .cpl                 = emulator_get_cpl,
8607         .get_dr              = emulator_get_dr,
8608         .set_dr              = emulator_set_dr,
8609         .set_msr_with_filter = emulator_set_msr_with_filter,
8610         .get_msr_with_filter = emulator_get_msr_with_filter,
8611         .get_msr             = emulator_get_msr,
8612         .check_rdpmc_early   = emulator_check_rdpmc_early,
8613         .read_pmc            = emulator_read_pmc,
8614         .halt                = emulator_halt,
8615         .wbinvd              = emulator_wbinvd,
8616         .fix_hypercall       = emulator_fix_hypercall,
8617         .intercept           = emulator_intercept,
8618         .get_cpuid           = emulator_get_cpuid,
8619         .guest_has_movbe     = emulator_guest_has_movbe,
8620         .guest_has_fxsr      = emulator_guest_has_fxsr,
8621         .guest_has_rdpid     = emulator_guest_has_rdpid,
8622         .set_nmi_mask        = emulator_set_nmi_mask,
8623         .is_smm              = emulator_is_smm,
8624         .is_guest_mode       = emulator_is_guest_mode,
8625         .leave_smm           = emulator_leave_smm,
8626         .triple_fault        = emulator_triple_fault,
8627         .set_xcr             = emulator_set_xcr,
8628         .get_untagged_addr   = emulator_get_untagged_addr,
8629 };
8630
8631 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
8632 {
8633         u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
8634         /*
8635          * an sti; sti; sequence only disable interrupts for the first
8636          * instruction. So, if the last instruction, be it emulated or
8637          * not, left the system with the INT_STI flag enabled, it
8638          * means that the last instruction is an sti. We should not
8639          * leave the flag on in this case. The same goes for mov ss
8640          */
8641         if (int_shadow & mask)
8642                 mask = 0;
8643         if (unlikely(int_shadow || mask)) {
8644                 static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
8645                 if (!mask)
8646                         kvm_make_request(KVM_REQ_EVENT, vcpu);
8647         }
8648 }
8649
8650 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
8651 {
8652         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8653
8654         if (ctxt->exception.vector == PF_VECTOR)
8655                 kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
8656         else if (ctxt->exception.error_code_valid)
8657                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
8658                                       ctxt->exception.error_code);
8659         else
8660                 kvm_queue_exception(vcpu, ctxt->exception.vector);
8661 }
8662
8663 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
8664 {
8665         struct x86_emulate_ctxt *ctxt;
8666
8667         ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
8668         if (!ctxt) {
8669                 pr_err("failed to allocate vcpu's emulator\n");
8670                 return NULL;
8671         }
8672
8673         ctxt->vcpu = vcpu;
8674         ctxt->ops = &emulate_ops;
8675         vcpu->arch.emulate_ctxt = ctxt;
8676
8677         return ctxt;
8678 }
8679
8680 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
8681 {
8682         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8683         int cs_db, cs_l;
8684
8685         static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
8686
8687         ctxt->gpa_available = false;
8688         ctxt->eflags = kvm_get_rflags(vcpu);
8689         ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
8690
8691         ctxt->eip = kvm_rip_read(vcpu);
8692         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
8693                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
8694                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
8695                      cs_db                              ? X86EMUL_MODE_PROT32 :
8696                                                           X86EMUL_MODE_PROT16;
8697         ctxt->interruptibility = 0;
8698         ctxt->have_exception = false;
8699         ctxt->exception.vector = -1;
8700         ctxt->perm_ok = false;
8701
8702         init_decode_cache(ctxt);
8703         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8704 }
8705
8706 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
8707 {
8708         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8709         int ret;
8710
8711         init_emulate_ctxt(vcpu);
8712
8713         ctxt->op_bytes = 2;
8714         ctxt->ad_bytes = 2;
8715         ctxt->_eip = ctxt->eip + inc_eip;
8716         ret = emulate_int_real(ctxt, irq);
8717
8718         if (ret != X86EMUL_CONTINUE) {
8719                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8720         } else {
8721                 ctxt->eip = ctxt->_eip;
8722                 kvm_rip_write(vcpu, ctxt->eip);
8723                 kvm_set_rflags(vcpu, ctxt->eflags);
8724         }
8725 }
8726 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
8727
8728 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8729                                            u8 ndata, u8 *insn_bytes, u8 insn_size)
8730 {
8731         struct kvm_run *run = vcpu->run;
8732         u64 info[5];
8733         u8 info_start;
8734
8735         /*
8736          * Zero the whole array used to retrieve the exit info, as casting to
8737          * u32 for select entries will leave some chunks uninitialized.
8738          */
8739         memset(&info, 0, sizeof(info));
8740
8741         static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1],
8742                                            &info[2], (u32 *)&info[3],
8743                                            (u32 *)&info[4]);
8744
8745         run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8746         run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
8747
8748         /*
8749          * There's currently space for 13 entries, but 5 are used for the exit
8750          * reason and info.  Restrict to 4 to reduce the maintenance burden
8751          * when expanding kvm_run.emulation_failure in the future.
8752          */
8753         if (WARN_ON_ONCE(ndata > 4))
8754                 ndata = 4;
8755
8756         /* Always include the flags as a 'data' entry. */
8757         info_start = 1;
8758         run->emulation_failure.flags = 0;
8759
8760         if (insn_size) {
8761                 BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) +
8762                               sizeof(run->emulation_failure.insn_bytes) != 16));
8763                 info_start += 2;
8764                 run->emulation_failure.flags |=
8765                         KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
8766                 run->emulation_failure.insn_size = insn_size;
8767                 memset(run->emulation_failure.insn_bytes, 0x90,
8768                        sizeof(run->emulation_failure.insn_bytes));
8769                 memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size);
8770         }
8771
8772         memcpy(&run->internal.data[info_start], info, sizeof(info));
8773         memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data,
8774                ndata * sizeof(data[0]));
8775
8776         run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata;
8777 }
8778
8779 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu)
8780 {
8781         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8782
8783         prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data,
8784                                        ctxt->fetch.end - ctxt->fetch.data);
8785 }
8786
8787 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8788                                           u8 ndata)
8789 {
8790         prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0);
8791 }
8792 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit);
8793
8794 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
8795 {
8796         __kvm_prepare_emulation_failure_exit(vcpu, NULL, 0);
8797 }
8798 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit);
8799
8800 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
8801 {
8802         struct kvm *kvm = vcpu->kvm;
8803
8804         ++vcpu->stat.insn_emulation_fail;
8805         trace_kvm_emulate_insn_failed(vcpu);
8806
8807         if (emulation_type & EMULTYPE_VMWARE_GP) {
8808                 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8809                 return 1;
8810         }
8811
8812         if (kvm->arch.exit_on_emulation_error ||
8813             (emulation_type & EMULTYPE_SKIP)) {
8814                 prepare_emulation_ctxt_failure_exit(vcpu);
8815                 return 0;
8816         }
8817
8818         kvm_queue_exception(vcpu, UD_VECTOR);
8819
8820         if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
8821                 prepare_emulation_ctxt_failure_exit(vcpu);
8822                 return 0;
8823         }
8824
8825         return 1;
8826 }
8827
8828 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8829                                   int emulation_type)
8830 {
8831         gpa_t gpa = cr2_or_gpa;
8832         kvm_pfn_t pfn;
8833
8834         if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8835                 return false;
8836
8837         if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8838             WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8839                 return false;
8840
8841         if (!vcpu->arch.mmu->root_role.direct) {
8842                 /*
8843                  * Write permission should be allowed since only
8844                  * write access need to be emulated.
8845                  */
8846                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8847
8848                 /*
8849                  * If the mapping is invalid in guest, let cpu retry
8850                  * it to generate fault.
8851                  */
8852                 if (gpa == INVALID_GPA)
8853                         return true;
8854         }
8855
8856         /*
8857          * Do not retry the unhandleable instruction if it faults on the
8858          * readonly host memory, otherwise it will goto a infinite loop:
8859          * retry instruction -> write #PF -> emulation fail -> retry
8860          * instruction -> ...
8861          */
8862         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
8863
8864         /*
8865          * If the instruction failed on the error pfn, it can not be fixed,
8866          * report the error to userspace.
8867          */
8868         if (is_error_noslot_pfn(pfn))
8869                 return false;
8870
8871         kvm_release_pfn_clean(pfn);
8872
8873         /*
8874          * If emulation may have been triggered by a write to a shadowed page
8875          * table, unprotect the gfn (zap any relevant SPTEs) and re-enter the
8876          * guest to let the CPU re-execute the instruction in the hope that the
8877          * CPU can cleanly execute the instruction that KVM failed to emulate.
8878          */
8879         if (vcpu->kvm->arch.indirect_shadow_pages)
8880                 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8881
8882         /*
8883          * If the failed instruction faulted on an access to page tables that
8884          * are used to translate any part of the instruction, KVM can't resolve
8885          * the issue by unprotecting the gfn, as zapping the shadow page will
8886          * result in the instruction taking a !PRESENT page fault and thus put
8887          * the vCPU into an infinite loop of page faults.  E.g. KVM will create
8888          * a SPTE and write-protect the gfn to resolve the !PRESENT fault, and
8889          * then zap the SPTE to unprotect the gfn, and then do it all over
8890          * again.  Report the error to userspace.
8891          */
8892         return !(emulation_type & EMULTYPE_WRITE_PF_TO_SP);
8893 }
8894
8895 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
8896                               gpa_t cr2_or_gpa,  int emulation_type)
8897 {
8898         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8899         unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
8900
8901         last_retry_eip = vcpu->arch.last_retry_eip;
8902         last_retry_addr = vcpu->arch.last_retry_addr;
8903
8904         /*
8905          * If the emulation is caused by #PF and it is non-page_table
8906          * writing instruction, it means the VM-EXIT is caused by shadow
8907          * page protected, we can zap the shadow page and retry this
8908          * instruction directly.
8909          *
8910          * Note: if the guest uses a non-page-table modifying instruction
8911          * on the PDE that points to the instruction, then we will unmap
8912          * the instruction and go to an infinite loop. So, we cache the
8913          * last retried eip and the last fault address, if we meet the eip
8914          * and the address again, we can break out of the potential infinite
8915          * loop.
8916          */
8917         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
8918
8919         if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8920                 return false;
8921
8922         if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8923             WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8924                 return false;
8925
8926         if (x86_page_table_writing_insn(ctxt))
8927                 return false;
8928
8929         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
8930                 return false;
8931
8932         vcpu->arch.last_retry_eip = ctxt->eip;
8933         vcpu->arch.last_retry_addr = cr2_or_gpa;
8934
8935         if (!vcpu->arch.mmu->root_role.direct)
8936                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8937
8938         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8939
8940         return true;
8941 }
8942
8943 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
8944 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
8945
8946 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
8947                                 unsigned long *db)
8948 {
8949         u32 dr6 = 0;
8950         int i;
8951         u32 enable, rwlen;
8952
8953         enable = dr7;
8954         rwlen = dr7 >> 16;
8955         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
8956                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
8957                         dr6 |= (1 << i);
8958         return dr6;
8959 }
8960
8961 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
8962 {
8963         struct kvm_run *kvm_run = vcpu->run;
8964
8965         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
8966                 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
8967                 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
8968                 kvm_run->debug.arch.exception = DB_VECTOR;
8969                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
8970                 return 0;
8971         }
8972         kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
8973         return 1;
8974 }
8975
8976 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
8977 {
8978         unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8979         int r;
8980
8981         r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
8982         if (unlikely(!r))
8983                 return 0;
8984
8985         kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.INSTRUCTIONS_RETIRED);
8986
8987         /*
8988          * rflags is the old, "raw" value of the flags.  The new value has
8989          * not been saved yet.
8990          *
8991          * This is correct even for TF set by the guest, because "the
8992          * processor will not generate this exception after the instruction
8993          * that sets the TF flag".
8994          */
8995         if (unlikely(rflags & X86_EFLAGS_TF))
8996                 r = kvm_vcpu_do_singlestep(vcpu);
8997         return r;
8998 }
8999 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
9000
9001 static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu)
9002 {
9003         u32 shadow;
9004
9005         if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF)
9006                 return true;
9007
9008         /*
9009          * Intel CPUs inhibit code #DBs when MOV/POP SS blocking is active,
9010          * but AMD CPUs do not.  MOV/POP SS blocking is rare, check that first
9011          * to avoid the relatively expensive CPUID lookup.
9012          */
9013         shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
9014         return (shadow & KVM_X86_SHADOW_INT_MOV_SS) &&
9015                guest_cpuid_is_intel(vcpu);
9016 }
9017
9018 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu,
9019                                            int emulation_type, int *r)
9020 {
9021         WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE);
9022
9023         /*
9024          * Do not check for code breakpoints if hardware has already done the
9025          * checks, as inferred from the emulation type.  On NO_DECODE and SKIP,
9026          * the instruction has passed all exception checks, and all intercepted
9027          * exceptions that trigger emulation have lower priority than code
9028          * breakpoints, i.e. the fact that the intercepted exception occurred
9029          * means any code breakpoints have already been serviced.
9030          *
9031          * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as
9032          * hardware has checked the RIP of the magic prefix, but not the RIP of
9033          * the instruction being emulated.  The intent of forced emulation is
9034          * to behave as if KVM intercepted the instruction without an exception
9035          * and without a prefix.
9036          */
9037         if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
9038                               EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF))
9039                 return false;
9040
9041         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
9042             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
9043                 struct kvm_run *kvm_run = vcpu->run;
9044                 unsigned long eip = kvm_get_linear_rip(vcpu);
9045                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
9046                                            vcpu->arch.guest_debug_dr7,
9047                                            vcpu->arch.eff_db);
9048
9049                 if (dr6 != 0) {
9050                         kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
9051                         kvm_run->debug.arch.pc = eip;
9052                         kvm_run->debug.arch.exception = DB_VECTOR;
9053                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
9054                         *r = 0;
9055                         return true;
9056                 }
9057         }
9058
9059         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
9060             !kvm_is_code_breakpoint_inhibited(vcpu)) {
9061                 unsigned long eip = kvm_get_linear_rip(vcpu);
9062                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
9063                                            vcpu->arch.dr7,
9064                                            vcpu->arch.db);
9065
9066                 if (dr6 != 0) {
9067                         kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
9068                         *r = 1;
9069                         return true;
9070                 }
9071         }
9072
9073         return false;
9074 }
9075
9076 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
9077 {
9078         switch (ctxt->opcode_len) {
9079         case 1:
9080                 switch (ctxt->b) {
9081                 case 0xe4:      /* IN */
9082                 case 0xe5:
9083                 case 0xec:
9084                 case 0xed:
9085                 case 0xe6:      /* OUT */
9086                 case 0xe7:
9087                 case 0xee:
9088                 case 0xef:
9089                 case 0x6c:      /* INS */
9090                 case 0x6d:
9091                 case 0x6e:      /* OUTS */
9092                 case 0x6f:
9093                         return true;
9094                 }
9095                 break;
9096         case 2:
9097                 switch (ctxt->b) {
9098                 case 0x33:      /* RDPMC */
9099                         return true;
9100                 }
9101                 break;
9102         }
9103
9104         return false;
9105 }
9106
9107 /*
9108  * Decode an instruction for emulation.  The caller is responsible for handling
9109  * code breakpoints.  Note, manually detecting code breakpoints is unnecessary
9110  * (and wrong) when emulating on an intercepted fault-like exception[*], as
9111  * code breakpoints have higher priority and thus have already been done by
9112  * hardware.
9113  *
9114  * [*] Except #MC, which is higher priority, but KVM should never emulate in
9115  *     response to a machine check.
9116  */
9117 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
9118                                     void *insn, int insn_len)
9119 {
9120         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9121         int r;
9122
9123         init_emulate_ctxt(vcpu);
9124
9125         r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
9126
9127         trace_kvm_emulate_insn_start(vcpu);
9128         ++vcpu->stat.insn_emulation;
9129
9130         return r;
9131 }
9132 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
9133
9134 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
9135                             int emulation_type, void *insn, int insn_len)
9136 {
9137         int r;
9138         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9139         bool writeback = true;
9140
9141         r = kvm_check_emulate_insn(vcpu, emulation_type, insn, insn_len);
9142         if (r != X86EMUL_CONTINUE) {
9143                 if (r == X86EMUL_RETRY_INSTR || r == X86EMUL_PROPAGATE_FAULT)
9144                         return 1;
9145
9146                 WARN_ON_ONCE(r != X86EMUL_UNHANDLEABLE);
9147                 return handle_emulation_failure(vcpu, emulation_type);
9148         }
9149
9150         vcpu->arch.l1tf_flush_l1d = true;
9151
9152         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
9153                 kvm_clear_exception_queue(vcpu);
9154
9155                 /*
9156                  * Return immediately if RIP hits a code breakpoint, such #DBs
9157                  * are fault-like and are higher priority than any faults on
9158                  * the code fetch itself.
9159                  */
9160                 if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r))
9161                         return r;
9162
9163                 r = x86_decode_emulated_instruction(vcpu, emulation_type,
9164                                                     insn, insn_len);
9165                 if (r != EMULATION_OK)  {
9166                         if ((emulation_type & EMULTYPE_TRAP_UD) ||
9167                             (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
9168                                 kvm_queue_exception(vcpu, UD_VECTOR);
9169                                 return 1;
9170                         }
9171                         if (reexecute_instruction(vcpu, cr2_or_gpa,
9172                                                   emulation_type))
9173                                 return 1;
9174
9175                         if (ctxt->have_exception &&
9176                             !(emulation_type & EMULTYPE_SKIP)) {
9177                                 /*
9178                                  * #UD should result in just EMULATION_FAILED, and trap-like
9179                                  * exception should not be encountered during decode.
9180                                  */
9181                                 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
9182                                              exception_type(ctxt->exception.vector) == EXCPT_TRAP);
9183                                 inject_emulated_exception(vcpu);
9184                                 return 1;
9185                         }
9186                         return handle_emulation_failure(vcpu, emulation_type);
9187                 }
9188         }
9189
9190         if ((emulation_type & EMULTYPE_VMWARE_GP) &&
9191             !is_vmware_backdoor_opcode(ctxt)) {
9192                 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
9193                 return 1;
9194         }
9195
9196         /*
9197          * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for
9198          * use *only* by vendor callbacks for kvm_skip_emulated_instruction().
9199          * The caller is responsible for updating interruptibility state and
9200          * injecting single-step #DBs.
9201          */
9202         if (emulation_type & EMULTYPE_SKIP) {
9203                 if (ctxt->mode != X86EMUL_MODE_PROT64)
9204                         ctxt->eip = (u32)ctxt->_eip;
9205                 else
9206                         ctxt->eip = ctxt->_eip;
9207
9208                 if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) {
9209                         r = 1;
9210                         goto writeback;
9211                 }
9212
9213                 kvm_rip_write(vcpu, ctxt->eip);
9214                 if (ctxt->eflags & X86_EFLAGS_RF)
9215                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
9216                 return 1;
9217         }
9218
9219         if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
9220                 return 1;
9221
9222         /* this is needed for vmware backdoor interface to work since it
9223            changes registers values  during IO operation */
9224         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
9225                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
9226                 emulator_invalidate_register_cache(ctxt);
9227         }
9228
9229 restart:
9230         if (emulation_type & EMULTYPE_PF) {
9231                 /* Save the faulting GPA (cr2) in the address field */
9232                 ctxt->exception.address = cr2_or_gpa;
9233
9234                 /* With shadow page tables, cr2 contains a GVA or nGPA. */
9235                 if (vcpu->arch.mmu->root_role.direct) {
9236                         ctxt->gpa_available = true;
9237                         ctxt->gpa_val = cr2_or_gpa;
9238                 }
9239         } else {
9240                 /* Sanitize the address out of an abundance of paranoia. */
9241                 ctxt->exception.address = 0;
9242         }
9243
9244         r = x86_emulate_insn(ctxt);
9245
9246         if (r == EMULATION_INTERCEPTED)
9247                 return 1;
9248
9249         if (r == EMULATION_FAILED) {
9250                 if (reexecute_instruction(vcpu, cr2_or_gpa, emulation_type))
9251                         return 1;
9252
9253                 return handle_emulation_failure(vcpu, emulation_type);
9254         }
9255
9256         if (ctxt->have_exception) {
9257                 WARN_ON_ONCE(vcpu->mmio_needed && !vcpu->mmio_is_write);
9258                 vcpu->mmio_needed = false;
9259                 r = 1;
9260                 inject_emulated_exception(vcpu);
9261         } else if (vcpu->arch.pio.count) {
9262                 if (!vcpu->arch.pio.in) {
9263                         /* FIXME: return into emulator if single-stepping.  */
9264                         vcpu->arch.pio.count = 0;
9265                 } else {
9266                         writeback = false;
9267                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
9268                 }
9269                 r = 0;
9270         } else if (vcpu->mmio_needed) {
9271                 ++vcpu->stat.mmio_exits;
9272
9273                 if (!vcpu->mmio_is_write)
9274                         writeback = false;
9275                 r = 0;
9276                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
9277         } else if (vcpu->arch.complete_userspace_io) {
9278                 writeback = false;
9279                 r = 0;
9280         } else if (r == EMULATION_RESTART)
9281                 goto restart;
9282         else
9283                 r = 1;
9284
9285 writeback:
9286         if (writeback) {
9287                 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
9288                 toggle_interruptibility(vcpu, ctxt->interruptibility);
9289                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9290
9291                 /*
9292                  * Note, EXCPT_DB is assumed to be fault-like as the emulator
9293                  * only supports code breakpoints and general detect #DB, both
9294                  * of which are fault-like.
9295                  */
9296                 if (!ctxt->have_exception ||
9297                     exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
9298                         kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.INSTRUCTIONS_RETIRED);
9299                         if (ctxt->is_branch)
9300                                 kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.BRANCH_INSTRUCTIONS_RETIRED);
9301                         kvm_rip_write(vcpu, ctxt->eip);
9302                         if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
9303                                 r = kvm_vcpu_do_singlestep(vcpu);
9304                         static_call_cond(kvm_x86_update_emulated_instruction)(vcpu);
9305                         __kvm_set_rflags(vcpu, ctxt->eflags);
9306                 }
9307
9308                 /*
9309                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
9310                  * do nothing, and it will be requested again as soon as
9311                  * the shadow expires.  But we still need to check here,
9312                  * because POPF has no interrupt shadow.
9313                  */
9314                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
9315                         kvm_make_request(KVM_REQ_EVENT, vcpu);
9316         } else
9317                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
9318
9319         return r;
9320 }
9321
9322 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
9323 {
9324         return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
9325 }
9326 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
9327
9328 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
9329                                         void *insn, int insn_len)
9330 {
9331         return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
9332 }
9333 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
9334
9335 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
9336 {
9337         vcpu->arch.pio.count = 0;
9338         return 1;
9339 }
9340
9341 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
9342 {
9343         vcpu->arch.pio.count = 0;
9344
9345         if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
9346                 return 1;
9347
9348         return kvm_skip_emulated_instruction(vcpu);
9349 }
9350
9351 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
9352                             unsigned short port)
9353 {
9354         unsigned long val = kvm_rax_read(vcpu);
9355         int ret = emulator_pio_out(vcpu, size, port, &val, 1);
9356
9357         if (ret)
9358                 return ret;
9359
9360         /*
9361          * Workaround userspace that relies on old KVM behavior of %rip being
9362          * incremented prior to exiting to userspace to handle "OUT 0x7e".
9363          */
9364         if (port == 0x7e &&
9365             kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
9366                 vcpu->arch.complete_userspace_io =
9367                         complete_fast_pio_out_port_0x7e;
9368                 kvm_skip_emulated_instruction(vcpu);
9369         } else {
9370                 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9371                 vcpu->arch.complete_userspace_io = complete_fast_pio_out;
9372         }
9373         return 0;
9374 }
9375
9376 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
9377 {
9378         unsigned long val;
9379
9380         /* We should only ever be called with arch.pio.count equal to 1 */
9381         BUG_ON(vcpu->arch.pio.count != 1);
9382
9383         if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
9384                 vcpu->arch.pio.count = 0;
9385                 return 1;
9386         }
9387
9388         /* For size less than 4 we merge, else we zero extend */
9389         val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
9390
9391         complete_emulator_pio_in(vcpu, &val);
9392         kvm_rax_write(vcpu, val);
9393
9394         return kvm_skip_emulated_instruction(vcpu);
9395 }
9396
9397 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
9398                            unsigned short port)
9399 {
9400         unsigned long val;
9401         int ret;
9402
9403         /* For size less than 4 we merge, else we zero extend */
9404         val = (size < 4) ? kvm_rax_read(vcpu) : 0;
9405
9406         ret = emulator_pio_in(vcpu, size, port, &val, 1);
9407         if (ret) {
9408                 kvm_rax_write(vcpu, val);
9409                 return ret;
9410         }
9411
9412         vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9413         vcpu->arch.complete_userspace_io = complete_fast_pio_in;
9414
9415         return 0;
9416 }
9417
9418 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
9419 {
9420         int ret;
9421
9422         if (in)
9423                 ret = kvm_fast_pio_in(vcpu, size, port);
9424         else
9425                 ret = kvm_fast_pio_out(vcpu, size, port);
9426         return ret && kvm_skip_emulated_instruction(vcpu);
9427 }
9428 EXPORT_SYMBOL_GPL(kvm_fast_pio);
9429
9430 static int kvmclock_cpu_down_prep(unsigned int cpu)
9431 {
9432         __this_cpu_write(cpu_tsc_khz, 0);
9433         return 0;
9434 }
9435
9436 static void tsc_khz_changed(void *data)
9437 {
9438         struct cpufreq_freqs *freq = data;
9439         unsigned long khz;
9440
9441         WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC));
9442
9443         if (data)
9444                 khz = freq->new;
9445         else
9446                 khz = cpufreq_quick_get(raw_smp_processor_id());
9447         if (!khz)
9448                 khz = tsc_khz;
9449         __this_cpu_write(cpu_tsc_khz, khz);
9450 }
9451
9452 #ifdef CONFIG_X86_64
9453 static void kvm_hyperv_tsc_notifier(void)
9454 {
9455         struct kvm *kvm;
9456         int cpu;
9457
9458         mutex_lock(&kvm_lock);
9459         list_for_each_entry(kvm, &vm_list, vm_list)
9460                 kvm_make_mclock_inprogress_request(kvm);
9461
9462         /* no guest entries from this point */
9463         hyperv_stop_tsc_emulation();
9464
9465         /* TSC frequency always matches when on Hyper-V */
9466         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9467                 for_each_present_cpu(cpu)
9468                         per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
9469         }
9470         kvm_caps.max_guest_tsc_khz = tsc_khz;
9471
9472         list_for_each_entry(kvm, &vm_list, vm_list) {
9473                 __kvm_start_pvclock_update(kvm);
9474                 pvclock_update_vm_gtod_copy(kvm);
9475                 kvm_end_pvclock_update(kvm);
9476         }
9477
9478         mutex_unlock(&kvm_lock);
9479 }
9480 #endif
9481
9482 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
9483 {
9484         struct kvm *kvm;
9485         struct kvm_vcpu *vcpu;
9486         int send_ipi = 0;
9487         unsigned long i;
9488
9489         /*
9490          * We allow guests to temporarily run on slowing clocks,
9491          * provided we notify them after, or to run on accelerating
9492          * clocks, provided we notify them before.  Thus time never
9493          * goes backwards.
9494          *
9495          * However, we have a problem.  We can't atomically update
9496          * the frequency of a given CPU from this function; it is
9497          * merely a notifier, which can be called from any CPU.
9498          * Changing the TSC frequency at arbitrary points in time
9499          * requires a recomputation of local variables related to
9500          * the TSC for each VCPU.  We must flag these local variables
9501          * to be updated and be sure the update takes place with the
9502          * new frequency before any guests proceed.
9503          *
9504          * Unfortunately, the combination of hotplug CPU and frequency
9505          * change creates an intractable locking scenario; the order
9506          * of when these callouts happen is undefined with respect to
9507          * CPU hotplug, and they can race with each other.  As such,
9508          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
9509          * undefined; you can actually have a CPU frequency change take
9510          * place in between the computation of X and the setting of the
9511          * variable.  To protect against this problem, all updates of
9512          * the per_cpu tsc_khz variable are done in an interrupt
9513          * protected IPI, and all callers wishing to update the value
9514          * must wait for a synchronous IPI to complete (which is trivial
9515          * if the caller is on the CPU already).  This establishes the
9516          * necessary total order on variable updates.
9517          *
9518          * Note that because a guest time update may take place
9519          * anytime after the setting of the VCPU's request bit, the
9520          * correct TSC value must be set before the request.  However,
9521          * to ensure the update actually makes it to any guest which
9522          * starts running in hardware virtualization between the set
9523          * and the acquisition of the spinlock, we must also ping the
9524          * CPU after setting the request bit.
9525          *
9526          */
9527
9528         smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9529
9530         mutex_lock(&kvm_lock);
9531         list_for_each_entry(kvm, &vm_list, vm_list) {
9532                 kvm_for_each_vcpu(i, vcpu, kvm) {
9533                         if (vcpu->cpu != cpu)
9534                                 continue;
9535                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9536                         if (vcpu->cpu != raw_smp_processor_id())
9537                                 send_ipi = 1;
9538                 }
9539         }
9540         mutex_unlock(&kvm_lock);
9541
9542         if (freq->old < freq->new && send_ipi) {
9543                 /*
9544                  * We upscale the frequency.  Must make the guest
9545                  * doesn't see old kvmclock values while running with
9546                  * the new frequency, otherwise we risk the guest sees
9547                  * time go backwards.
9548                  *
9549                  * In case we update the frequency for another cpu
9550                  * (which might be in guest context) send an interrupt
9551                  * to kick the cpu out of guest context.  Next time
9552                  * guest context is entered kvmclock will be updated,
9553                  * so the guest will not see stale values.
9554                  */
9555                 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9556         }
9557 }
9558
9559 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
9560                                      void *data)
9561 {
9562         struct cpufreq_freqs *freq = data;
9563         int cpu;
9564
9565         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
9566                 return 0;
9567         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
9568                 return 0;
9569
9570         for_each_cpu(cpu, freq->policy->cpus)
9571                 __kvmclock_cpufreq_notifier(freq, cpu);
9572
9573         return 0;
9574 }
9575
9576 static struct notifier_block kvmclock_cpufreq_notifier_block = {
9577         .notifier_call  = kvmclock_cpufreq_notifier
9578 };
9579
9580 static int kvmclock_cpu_online(unsigned int cpu)
9581 {
9582         tsc_khz_changed(NULL);
9583         return 0;
9584 }
9585
9586 static void kvm_timer_init(void)
9587 {
9588         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9589                 max_tsc_khz = tsc_khz;
9590
9591                 if (IS_ENABLED(CONFIG_CPU_FREQ)) {
9592                         struct cpufreq_policy *policy;
9593                         int cpu;
9594
9595                         cpu = get_cpu();
9596                         policy = cpufreq_cpu_get(cpu);
9597                         if (policy) {
9598                                 if (policy->cpuinfo.max_freq)
9599                                         max_tsc_khz = policy->cpuinfo.max_freq;
9600                                 cpufreq_cpu_put(policy);
9601                         }
9602                         put_cpu();
9603                 }
9604                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
9605                                           CPUFREQ_TRANSITION_NOTIFIER);
9606
9607                 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
9608                                   kvmclock_cpu_online, kvmclock_cpu_down_prep);
9609         }
9610 }
9611
9612 #ifdef CONFIG_X86_64
9613 static void pvclock_gtod_update_fn(struct work_struct *work)
9614 {
9615         struct kvm *kvm;
9616         struct kvm_vcpu *vcpu;
9617         unsigned long i;
9618
9619         mutex_lock(&kvm_lock);
9620         list_for_each_entry(kvm, &vm_list, vm_list)
9621                 kvm_for_each_vcpu(i, vcpu, kvm)
9622                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9623         atomic_set(&kvm_guest_has_master_clock, 0);
9624         mutex_unlock(&kvm_lock);
9625 }
9626
9627 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
9628
9629 /*
9630  * Indirection to move queue_work() out of the tk_core.seq write held
9631  * region to prevent possible deadlocks against time accessors which
9632  * are invoked with work related locks held.
9633  */
9634 static void pvclock_irq_work_fn(struct irq_work *w)
9635 {
9636         queue_work(system_long_wq, &pvclock_gtod_work);
9637 }
9638
9639 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
9640
9641 /*
9642  * Notification about pvclock gtod data update.
9643  */
9644 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
9645                                void *priv)
9646 {
9647         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
9648         struct timekeeper *tk = priv;
9649
9650         update_pvclock_gtod(tk);
9651
9652         /*
9653          * Disable master clock if host does not trust, or does not use,
9654          * TSC based clocksource. Delegate queue_work() to irq_work as
9655          * this is invoked with tk_core.seq write held.
9656          */
9657         if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
9658             atomic_read(&kvm_guest_has_master_clock) != 0)
9659                 irq_work_queue(&pvclock_irq_work);
9660         return 0;
9661 }
9662
9663 static struct notifier_block pvclock_gtod_notifier = {
9664         .notifier_call = pvclock_gtod_notify,
9665 };
9666 #endif
9667
9668 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops)
9669 {
9670         memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
9671
9672 #define __KVM_X86_OP(func) \
9673         static_call_update(kvm_x86_##func, kvm_x86_ops.func);
9674 #define KVM_X86_OP(func) \
9675         WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func)
9676 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP
9677 #define KVM_X86_OP_OPTIONAL_RET0(func) \
9678         static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \
9679                                            (void *)__static_call_return0);
9680 #include <asm/kvm-x86-ops.h>
9681 #undef __KVM_X86_OP
9682
9683         kvm_pmu_ops_update(ops->pmu_ops);
9684 }
9685
9686 static int kvm_x86_check_processor_compatibility(void)
9687 {
9688         int cpu = smp_processor_id();
9689         struct cpuinfo_x86 *c = &cpu_data(cpu);
9690
9691         /*
9692          * Compatibility checks are done when loading KVM and when enabling
9693          * hardware, e.g. during CPU hotplug, to ensure all online CPUs are
9694          * compatible, i.e. KVM should never perform a compatibility check on
9695          * an offline CPU.
9696          */
9697         WARN_ON(!cpu_online(cpu));
9698
9699         if (__cr4_reserved_bits(cpu_has, c) !=
9700             __cr4_reserved_bits(cpu_has, &boot_cpu_data))
9701                 return -EIO;
9702
9703         return static_call(kvm_x86_check_processor_compatibility)();
9704 }
9705
9706 static void kvm_x86_check_cpu_compat(void *ret)
9707 {
9708         *(int *)ret = kvm_x86_check_processor_compatibility();
9709 }
9710
9711 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops)
9712 {
9713         u64 host_pat;
9714         int r, cpu;
9715
9716         guard(mutex)(&vendor_module_lock);
9717
9718         if (kvm_x86_ops.hardware_enable) {
9719                 pr_err("already loaded vendor module '%s'\n", kvm_x86_ops.name);
9720                 return -EEXIST;
9721         }
9722
9723         /*
9724          * KVM explicitly assumes that the guest has an FPU and
9725          * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
9726          * vCPU's FPU state as a fxregs_state struct.
9727          */
9728         if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
9729                 pr_err("inadequate fpu\n");
9730                 return -EOPNOTSUPP;
9731         }
9732
9733         if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9734                 pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n");
9735                 return -EOPNOTSUPP;
9736         }
9737
9738         /*
9739          * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes
9740          * the PAT bits in SPTEs.  Bail if PAT[0] is programmed to something
9741          * other than WB.  Note, EPT doesn't utilize the PAT, but don't bother
9742          * with an exception.  PAT[0] is set to WB on RESET and also by the
9743          * kernel, i.e. failure indicates a kernel bug or broken firmware.
9744          */
9745         if (rdmsrl_safe(MSR_IA32_CR_PAT, &host_pat) ||
9746             (host_pat & GENMASK(2, 0)) != 6) {
9747                 pr_err("host PAT[0] is not WB\n");
9748                 return -EIO;
9749         }
9750
9751         memset(&kvm_caps, 0, sizeof(kvm_caps));
9752
9753         x86_emulator_cache = kvm_alloc_emulator_cache();
9754         if (!x86_emulator_cache) {
9755                 pr_err("failed to allocate cache for x86 emulator\n");
9756                 return -ENOMEM;
9757         }
9758
9759         user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
9760         if (!user_return_msrs) {
9761                 pr_err("failed to allocate percpu kvm_user_return_msrs\n");
9762                 r = -ENOMEM;
9763                 goto out_free_x86_emulator_cache;
9764         }
9765         kvm_nr_uret_msrs = 0;
9766
9767         r = kvm_mmu_vendor_module_init();
9768         if (r)
9769                 goto out_free_percpu;
9770
9771         kvm_caps.supported_vm_types = BIT(KVM_X86_DEFAULT_VM);
9772         kvm_caps.supported_mce_cap = MCG_CTL_P | MCG_SER_P;
9773
9774         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
9775                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
9776                 kvm_caps.supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
9777         }
9778
9779         rdmsrl_safe(MSR_EFER, &host_efer);
9780
9781         if (boot_cpu_has(X86_FEATURE_XSAVES))
9782                 rdmsrl(MSR_IA32_XSS, host_xss);
9783
9784         kvm_init_pmu_capability(ops->pmu_ops);
9785
9786         if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
9787                 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, host_arch_capabilities);
9788
9789         r = ops->hardware_setup();
9790         if (r != 0)
9791                 goto out_mmu_exit;
9792
9793         kvm_ops_update(ops);
9794
9795         for_each_online_cpu(cpu) {
9796                 smp_call_function_single(cpu, kvm_x86_check_cpu_compat, &r, 1);
9797                 if (r < 0)
9798                         goto out_unwind_ops;
9799         }
9800
9801         /*
9802          * Point of no return!  DO NOT add error paths below this point unless
9803          * absolutely necessary, as most operations from this point forward
9804          * require unwinding.
9805          */
9806         kvm_timer_init();
9807
9808         if (pi_inject_timer == -1)
9809                 pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER);
9810 #ifdef CONFIG_X86_64
9811         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
9812
9813         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9814                 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
9815 #endif
9816
9817         kvm_register_perf_callbacks(ops->handle_intel_pt_intr);
9818
9819         if (IS_ENABLED(CONFIG_KVM_SW_PROTECTED_VM) && tdp_mmu_enabled)
9820                 kvm_caps.supported_vm_types |= BIT(KVM_X86_SW_PROTECTED_VM);
9821
9822         if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
9823                 kvm_caps.supported_xss = 0;
9824
9825 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
9826         cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
9827 #undef __kvm_cpu_cap_has
9828
9829         if (kvm_caps.has_tsc_control) {
9830                 /*
9831                  * Make sure the user can only configure tsc_khz values that
9832                  * fit into a signed integer.
9833                  * A min value is not calculated because it will always
9834                  * be 1 on all machines.
9835                  */
9836                 u64 max = min(0x7fffffffULL,
9837                               __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz));
9838                 kvm_caps.max_guest_tsc_khz = max;
9839         }
9840         kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits;
9841         kvm_init_msr_lists();
9842         return 0;
9843
9844 out_unwind_ops:
9845         kvm_x86_ops.hardware_enable = NULL;
9846         static_call(kvm_x86_hardware_unsetup)();
9847 out_mmu_exit:
9848         kvm_mmu_vendor_module_exit();
9849 out_free_percpu:
9850         free_percpu(user_return_msrs);
9851 out_free_x86_emulator_cache:
9852         kmem_cache_destroy(x86_emulator_cache);
9853         return r;
9854 }
9855 EXPORT_SYMBOL_GPL(kvm_x86_vendor_init);
9856
9857 void kvm_x86_vendor_exit(void)
9858 {
9859         kvm_unregister_perf_callbacks();
9860
9861 #ifdef CONFIG_X86_64
9862         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9863                 clear_hv_tscchange_cb();
9864 #endif
9865         kvm_lapic_exit();
9866
9867         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9868                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
9869                                             CPUFREQ_TRANSITION_NOTIFIER);
9870                 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
9871         }
9872 #ifdef CONFIG_X86_64
9873         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
9874         irq_work_sync(&pvclock_irq_work);
9875         cancel_work_sync(&pvclock_gtod_work);
9876 #endif
9877         static_call(kvm_x86_hardware_unsetup)();
9878         kvm_mmu_vendor_module_exit();
9879         free_percpu(user_return_msrs);
9880         kmem_cache_destroy(x86_emulator_cache);
9881 #ifdef CONFIG_KVM_XEN
9882         static_key_deferred_flush(&kvm_xen_enabled);
9883         WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
9884 #endif
9885         mutex_lock(&vendor_module_lock);
9886         kvm_x86_ops.hardware_enable = NULL;
9887         mutex_unlock(&vendor_module_lock);
9888 }
9889 EXPORT_SYMBOL_GPL(kvm_x86_vendor_exit);
9890
9891 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason)
9892 {
9893         /*
9894          * The vCPU has halted, e.g. executed HLT.  Update the run state if the
9895          * local APIC is in-kernel, the run loop will detect the non-runnable
9896          * state and halt the vCPU.  Exit to userspace if the local APIC is
9897          * managed by userspace, in which case userspace is responsible for
9898          * handling wake events.
9899          */
9900         ++vcpu->stat.halt_exits;
9901         if (lapic_in_kernel(vcpu)) {
9902                 vcpu->arch.mp_state = state;
9903                 return 1;
9904         } else {
9905                 vcpu->run->exit_reason = reason;
9906                 return 0;
9907         }
9908 }
9909
9910 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu)
9911 {
9912         return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
9913 }
9914 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip);
9915
9916 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
9917 {
9918         int ret = kvm_skip_emulated_instruction(vcpu);
9919         /*
9920          * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
9921          * KVM_EXIT_DEBUG here.
9922          */
9923         return kvm_emulate_halt_noskip(vcpu) && ret;
9924 }
9925 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
9926
9927 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
9928 {
9929         int ret = kvm_skip_emulated_instruction(vcpu);
9930
9931         return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD,
9932                                         KVM_EXIT_AP_RESET_HOLD) && ret;
9933 }
9934 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
9935
9936 #ifdef CONFIG_X86_64
9937 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
9938                                 unsigned long clock_type)
9939 {
9940         struct kvm_clock_pairing clock_pairing;
9941         struct timespec64 ts;
9942         u64 cycle;
9943         int ret;
9944
9945         if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
9946                 return -KVM_EOPNOTSUPP;
9947
9948         /*
9949          * When tsc is in permanent catchup mode guests won't be able to use
9950          * pvclock_read_retry loop to get consistent view of pvclock
9951          */
9952         if (vcpu->arch.tsc_always_catchup)
9953                 return -KVM_EOPNOTSUPP;
9954
9955         if (!kvm_get_walltime_and_clockread(&ts, &cycle))
9956                 return -KVM_EOPNOTSUPP;
9957
9958         clock_pairing.sec = ts.tv_sec;
9959         clock_pairing.nsec = ts.tv_nsec;
9960         clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
9961         clock_pairing.flags = 0;
9962         memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
9963
9964         ret = 0;
9965         if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
9966                             sizeof(struct kvm_clock_pairing)))
9967                 ret = -KVM_EFAULT;
9968
9969         return ret;
9970 }
9971 #endif
9972
9973 /*
9974  * kvm_pv_kick_cpu_op:  Kick a vcpu.
9975  *
9976  * @apicid - apicid of vcpu to be kicked.
9977  */
9978 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid)
9979 {
9980         /*
9981          * All other fields are unused for APIC_DM_REMRD, but may be consumed by
9982          * common code, e.g. for tracing. Defer initialization to the compiler.
9983          */
9984         struct kvm_lapic_irq lapic_irq = {
9985                 .delivery_mode = APIC_DM_REMRD,
9986                 .dest_mode = APIC_DEST_PHYSICAL,
9987                 .shorthand = APIC_DEST_NOSHORT,
9988                 .dest_id = apicid,
9989         };
9990
9991         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
9992 }
9993
9994 bool kvm_apicv_activated(struct kvm *kvm)
9995 {
9996         return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
9997 }
9998 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
9999
10000 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu)
10001 {
10002         ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons);
10003         ulong vcpu_reasons = static_call(kvm_x86_vcpu_get_apicv_inhibit_reasons)(vcpu);
10004
10005         return (vm_reasons | vcpu_reasons) == 0;
10006 }
10007 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated);
10008
10009 static void set_or_clear_apicv_inhibit(unsigned long *inhibits,
10010                                        enum kvm_apicv_inhibit reason, bool set)
10011 {
10012         if (set)
10013                 __set_bit(reason, inhibits);
10014         else
10015                 __clear_bit(reason, inhibits);
10016
10017         trace_kvm_apicv_inhibit_changed(reason, set, *inhibits);
10018 }
10019
10020 static void kvm_apicv_init(struct kvm *kvm)
10021 {
10022         enum kvm_apicv_inhibit reason = enable_apicv ? APICV_INHIBIT_REASON_ABSENT :
10023                                                        APICV_INHIBIT_REASON_DISABLE;
10024
10025         set_or_clear_apicv_inhibit(&kvm->arch.apicv_inhibit_reasons, reason, true);
10026
10027         init_rwsem(&kvm->arch.apicv_update_lock);
10028 }
10029
10030 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
10031 {
10032         struct kvm_vcpu *target = NULL;
10033         struct kvm_apic_map *map;
10034
10035         vcpu->stat.directed_yield_attempted++;
10036
10037         if (single_task_running())
10038                 goto no_yield;
10039
10040         rcu_read_lock();
10041         map = rcu_dereference(vcpu->kvm->arch.apic_map);
10042
10043         if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
10044                 target = map->phys_map[dest_id]->vcpu;
10045
10046         rcu_read_unlock();
10047
10048         if (!target || !READ_ONCE(target->ready))
10049                 goto no_yield;
10050
10051         /* Ignore requests to yield to self */
10052         if (vcpu == target)
10053                 goto no_yield;
10054
10055         if (kvm_vcpu_yield_to(target) <= 0)
10056                 goto no_yield;
10057
10058         vcpu->stat.directed_yield_successful++;
10059
10060 no_yield:
10061         return;
10062 }
10063
10064 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
10065 {
10066         u64 ret = vcpu->run->hypercall.ret;
10067
10068         if (!is_64_bit_mode(vcpu))
10069                 ret = (u32)ret;
10070         kvm_rax_write(vcpu, ret);
10071         ++vcpu->stat.hypercalls;
10072         return kvm_skip_emulated_instruction(vcpu);
10073 }
10074
10075 unsigned long __kvm_emulate_hypercall(struct kvm_vcpu *vcpu, unsigned long nr,
10076                                       unsigned long a0, unsigned long a1,
10077                                       unsigned long a2, unsigned long a3,
10078                                       int op_64_bit, int cpl)
10079 {
10080         unsigned long ret;
10081
10082         trace_kvm_hypercall(nr, a0, a1, a2, a3);
10083
10084         if (!op_64_bit) {
10085                 nr &= 0xFFFFFFFF;
10086                 a0 &= 0xFFFFFFFF;
10087                 a1 &= 0xFFFFFFFF;
10088                 a2 &= 0xFFFFFFFF;
10089                 a3 &= 0xFFFFFFFF;
10090         }
10091
10092         if (cpl) {
10093                 ret = -KVM_EPERM;
10094                 goto out;
10095         }
10096
10097         ret = -KVM_ENOSYS;
10098
10099         switch (nr) {
10100         case KVM_HC_VAPIC_POLL_IRQ:
10101                 ret = 0;
10102                 break;
10103         case KVM_HC_KICK_CPU:
10104                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
10105                         break;
10106
10107                 kvm_pv_kick_cpu_op(vcpu->kvm, a1);
10108                 kvm_sched_yield(vcpu, a1);
10109                 ret = 0;
10110                 break;
10111 #ifdef CONFIG_X86_64
10112         case KVM_HC_CLOCK_PAIRING:
10113                 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
10114                 break;
10115 #endif
10116         case KVM_HC_SEND_IPI:
10117                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
10118                         break;
10119
10120                 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
10121                 break;
10122         case KVM_HC_SCHED_YIELD:
10123                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
10124                         break;
10125
10126                 kvm_sched_yield(vcpu, a0);
10127                 ret = 0;
10128                 break;
10129         case KVM_HC_MAP_GPA_RANGE: {
10130                 u64 gpa = a0, npages = a1, attrs = a2;
10131
10132                 ret = -KVM_ENOSYS;
10133                 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE)))
10134                         break;
10135
10136                 if (!PAGE_ALIGNED(gpa) || !npages ||
10137                     gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
10138                         ret = -KVM_EINVAL;
10139                         break;
10140                 }
10141
10142                 vcpu->run->exit_reason        = KVM_EXIT_HYPERCALL;
10143                 vcpu->run->hypercall.nr       = KVM_HC_MAP_GPA_RANGE;
10144                 vcpu->run->hypercall.args[0]  = gpa;
10145                 vcpu->run->hypercall.args[1]  = npages;
10146                 vcpu->run->hypercall.args[2]  = attrs;
10147                 vcpu->run->hypercall.flags    = 0;
10148                 if (op_64_bit)
10149                         vcpu->run->hypercall.flags |= KVM_EXIT_HYPERCALL_LONG_MODE;
10150
10151                 WARN_ON_ONCE(vcpu->run->hypercall.flags & KVM_EXIT_HYPERCALL_MBZ);
10152                 vcpu->arch.complete_userspace_io = complete_hypercall_exit;
10153                 /* stat is incremented on completion. */
10154                 return 0;
10155         }
10156         default:
10157                 ret = -KVM_ENOSYS;
10158                 break;
10159         }
10160
10161 out:
10162         ++vcpu->stat.hypercalls;
10163         return ret;
10164 }
10165 EXPORT_SYMBOL_GPL(__kvm_emulate_hypercall);
10166
10167 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
10168 {
10169         unsigned long nr, a0, a1, a2, a3, ret;
10170         int op_64_bit;
10171         int cpl;
10172
10173         if (kvm_xen_hypercall_enabled(vcpu->kvm))
10174                 return kvm_xen_hypercall(vcpu);
10175
10176         if (kvm_hv_hypercall_enabled(vcpu))
10177                 return kvm_hv_hypercall(vcpu);
10178
10179         nr = kvm_rax_read(vcpu);
10180         a0 = kvm_rbx_read(vcpu);
10181         a1 = kvm_rcx_read(vcpu);
10182         a2 = kvm_rdx_read(vcpu);
10183         a3 = kvm_rsi_read(vcpu);
10184         op_64_bit = is_64_bit_hypercall(vcpu);
10185         cpl = static_call(kvm_x86_get_cpl)(vcpu);
10186
10187         ret = __kvm_emulate_hypercall(vcpu, nr, a0, a1, a2, a3, op_64_bit, cpl);
10188         if (nr == KVM_HC_MAP_GPA_RANGE && !ret)
10189                 /* MAP_GPA tosses the request to the user space. */
10190                 return 0;
10191
10192         if (!op_64_bit)
10193                 ret = (u32)ret;
10194         kvm_rax_write(vcpu, ret);
10195
10196         return kvm_skip_emulated_instruction(vcpu);
10197 }
10198 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
10199
10200 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
10201 {
10202         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
10203         char instruction[3];
10204         unsigned long rip = kvm_rip_read(vcpu);
10205
10206         /*
10207          * If the quirk is disabled, synthesize a #UD and let the guest pick up
10208          * the pieces.
10209          */
10210         if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) {
10211                 ctxt->exception.error_code_valid = false;
10212                 ctxt->exception.vector = UD_VECTOR;
10213                 ctxt->have_exception = true;
10214                 return X86EMUL_PROPAGATE_FAULT;
10215         }
10216
10217         static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
10218
10219         return emulator_write_emulated(ctxt, rip, instruction, 3,
10220                 &ctxt->exception);
10221 }
10222
10223 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
10224 {
10225         return vcpu->run->request_interrupt_window &&
10226                 likely(!pic_in_kernel(vcpu->kvm));
10227 }
10228
10229 /* Called within kvm->srcu read side.  */
10230 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
10231 {
10232         struct kvm_run *kvm_run = vcpu->run;
10233
10234         kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu);
10235         kvm_run->cr8 = kvm_get_cr8(vcpu);
10236         kvm_run->apic_base = kvm_get_apic_base(vcpu);
10237
10238         kvm_run->ready_for_interrupt_injection =
10239                 pic_in_kernel(vcpu->kvm) ||
10240                 kvm_vcpu_ready_for_interrupt_injection(vcpu);
10241
10242         if (is_smm(vcpu))
10243                 kvm_run->flags |= KVM_RUN_X86_SMM;
10244 }
10245
10246 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
10247 {
10248         int max_irr, tpr;
10249
10250         if (!kvm_x86_ops.update_cr8_intercept)
10251                 return;
10252
10253         if (!lapic_in_kernel(vcpu))
10254                 return;
10255
10256         if (vcpu->arch.apic->apicv_active)
10257                 return;
10258
10259         if (!vcpu->arch.apic->vapic_addr)
10260                 max_irr = kvm_lapic_find_highest_irr(vcpu);
10261         else
10262                 max_irr = -1;
10263
10264         if (max_irr != -1)
10265                 max_irr >>= 4;
10266
10267         tpr = kvm_lapic_get_cr8(vcpu);
10268
10269         static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
10270 }
10271
10272
10273 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
10274 {
10275         if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10276                 kvm_x86_ops.nested_ops->triple_fault(vcpu);
10277                 return 1;
10278         }
10279
10280         return kvm_x86_ops.nested_ops->check_events(vcpu);
10281 }
10282
10283 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
10284 {
10285         /*
10286          * Suppress the error code if the vCPU is in Real Mode, as Real Mode
10287          * exceptions don't report error codes.  The presence of an error code
10288          * is carried with the exception and only stripped when the exception
10289          * is injected as intercepted #PF VM-Exits for AMD's Paged Real Mode do
10290          * report an error code despite the CPU being in Real Mode.
10291          */
10292         vcpu->arch.exception.has_error_code &= is_protmode(vcpu);
10293
10294         trace_kvm_inj_exception(vcpu->arch.exception.vector,
10295                                 vcpu->arch.exception.has_error_code,
10296                                 vcpu->arch.exception.error_code,
10297                                 vcpu->arch.exception.injected);
10298
10299         static_call(kvm_x86_inject_exception)(vcpu);
10300 }
10301
10302 /*
10303  * Check for any event (interrupt or exception) that is ready to be injected,
10304  * and if there is at least one event, inject the event with the highest
10305  * priority.  This handles both "pending" events, i.e. events that have never
10306  * been injected into the guest, and "injected" events, i.e. events that were
10307  * injected as part of a previous VM-Enter, but weren't successfully delivered
10308  * and need to be re-injected.
10309  *
10310  * Note, this is not guaranteed to be invoked on a guest instruction boundary,
10311  * i.e. doesn't guarantee that there's an event window in the guest.  KVM must
10312  * be able to inject exceptions in the "middle" of an instruction, and so must
10313  * also be able to re-inject NMIs and IRQs in the middle of an instruction.
10314  * I.e. for exceptions and re-injected events, NOT invoking this on instruction
10315  * boundaries is necessary and correct.
10316  *
10317  * For simplicity, KVM uses a single path to inject all events (except events
10318  * that are injected directly from L1 to L2) and doesn't explicitly track
10319  * instruction boundaries for asynchronous events.  However, because VM-Exits
10320  * that can occur during instruction execution typically result in KVM skipping
10321  * the instruction or injecting an exception, e.g. instruction and exception
10322  * intercepts, and because pending exceptions have higher priority than pending
10323  * interrupts, KVM still honors instruction boundaries in most scenarios.
10324  *
10325  * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip
10326  * the instruction or inject an exception, then KVM can incorrecty inject a new
10327  * asynchronous event if the event became pending after the CPU fetched the
10328  * instruction (in the guest).  E.g. if a page fault (#PF, #NPF, EPT violation)
10329  * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be
10330  * injected on the restarted instruction instead of being deferred until the
10331  * instruction completes.
10332  *
10333  * In practice, this virtualization hole is unlikely to be observed by the
10334  * guest, and even less likely to cause functional problems.  To detect the
10335  * hole, the guest would have to trigger an event on a side effect of an early
10336  * phase of instruction execution, e.g. on the instruction fetch from memory.
10337  * And for it to be a functional problem, the guest would need to depend on the
10338  * ordering between that side effect, the instruction completing, _and_ the
10339  * delivery of the asynchronous event.
10340  */
10341 static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu,
10342                                        bool *req_immediate_exit)
10343 {
10344         bool can_inject;
10345         int r;
10346
10347         /*
10348          * Process nested events first, as nested VM-Exit supersedes event
10349          * re-injection.  If there's an event queued for re-injection, it will
10350          * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit.
10351          */
10352         if (is_guest_mode(vcpu))
10353                 r = kvm_check_nested_events(vcpu);
10354         else
10355                 r = 0;
10356
10357         /*
10358          * Re-inject exceptions and events *especially* if immediate entry+exit
10359          * to/from L2 is needed, as any event that has already been injected
10360          * into L2 needs to complete its lifecycle before injecting a new event.
10361          *
10362          * Don't re-inject an NMI or interrupt if there is a pending exception.
10363          * This collision arises if an exception occurred while vectoring the
10364          * injected event, KVM intercepted said exception, and KVM ultimately
10365          * determined the fault belongs to the guest and queues the exception
10366          * for injection back into the guest.
10367          *
10368          * "Injected" interrupts can also collide with pending exceptions if
10369          * userspace ignores the "ready for injection" flag and blindly queues
10370          * an interrupt.  In that case, prioritizing the exception is correct,
10371          * as the exception "occurred" before the exit to userspace.  Trap-like
10372          * exceptions, e.g. most #DBs, have higher priority than interrupts.
10373          * And while fault-like exceptions, e.g. #GP and #PF, are the lowest
10374          * priority, they're only generated (pended) during instruction
10375          * execution, and interrupts are recognized at instruction boundaries.
10376          * Thus a pending fault-like exception means the fault occurred on the
10377          * *previous* instruction and must be serviced prior to recognizing any
10378          * new events in order to fully complete the previous instruction.
10379          */
10380         if (vcpu->arch.exception.injected)
10381                 kvm_inject_exception(vcpu);
10382         else if (kvm_is_exception_pending(vcpu))
10383                 ; /* see above */
10384         else if (vcpu->arch.nmi_injected)
10385                 static_call(kvm_x86_inject_nmi)(vcpu);
10386         else if (vcpu->arch.interrupt.injected)
10387                 static_call(kvm_x86_inject_irq)(vcpu, true);
10388
10389         /*
10390          * Exceptions that morph to VM-Exits are handled above, and pending
10391          * exceptions on top of injected exceptions that do not VM-Exit should
10392          * either morph to #DF or, sadly, override the injected exception.
10393          */
10394         WARN_ON_ONCE(vcpu->arch.exception.injected &&
10395                      vcpu->arch.exception.pending);
10396
10397         /*
10398          * Bail if immediate entry+exit to/from the guest is needed to complete
10399          * nested VM-Enter or event re-injection so that a different pending
10400          * event can be serviced (or if KVM needs to exit to userspace).
10401          *
10402          * Otherwise, continue processing events even if VM-Exit occurred.  The
10403          * VM-Exit will have cleared exceptions that were meant for L2, but
10404          * there may now be events that can be injected into L1.
10405          */
10406         if (r < 0)
10407                 goto out;
10408
10409         /*
10410          * A pending exception VM-Exit should either result in nested VM-Exit
10411          * or force an immediate re-entry and exit to/from L2, and exception
10412          * VM-Exits cannot be injected (flag should _never_ be set).
10413          */
10414         WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected ||
10415                      vcpu->arch.exception_vmexit.pending);
10416
10417         /*
10418          * New events, other than exceptions, cannot be injected if KVM needs
10419          * to re-inject a previous event.  See above comments on re-injecting
10420          * for why pending exceptions get priority.
10421          */
10422         can_inject = !kvm_event_needs_reinjection(vcpu);
10423
10424         if (vcpu->arch.exception.pending) {
10425                 /*
10426                  * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS
10427                  * value pushed on the stack.  Trap-like exception and all #DBs
10428                  * leave RF as-is (KVM follows Intel's behavior in this regard;
10429                  * AMD states that code breakpoint #DBs excplitly clear RF=0).
10430                  *
10431                  * Note, most versions of Intel's SDM and AMD's APM incorrectly
10432                  * describe the behavior of General Detect #DBs, which are
10433                  * fault-like.  They do _not_ set RF, a la code breakpoints.
10434                  */
10435                 if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT)
10436                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
10437                                              X86_EFLAGS_RF);
10438
10439                 if (vcpu->arch.exception.vector == DB_VECTOR) {
10440                         kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception);
10441                         if (vcpu->arch.dr7 & DR7_GD) {
10442                                 vcpu->arch.dr7 &= ~DR7_GD;
10443                                 kvm_update_dr7(vcpu);
10444                         }
10445                 }
10446
10447                 kvm_inject_exception(vcpu);
10448
10449                 vcpu->arch.exception.pending = false;
10450                 vcpu->arch.exception.injected = true;
10451
10452                 can_inject = false;
10453         }
10454
10455         /* Don't inject interrupts if the user asked to avoid doing so */
10456         if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
10457                 return 0;
10458
10459         /*
10460          * Finally, inject interrupt events.  If an event cannot be injected
10461          * due to architectural conditions (e.g. IF=0) a window-open exit
10462          * will re-request KVM_REQ_EVENT.  Sometimes however an event is pending
10463          * and can architecturally be injected, but we cannot do it right now:
10464          * an interrupt could have arrived just now and we have to inject it
10465          * as a vmexit, or there could already an event in the queue, which is
10466          * indicated by can_inject.  In that case we request an immediate exit
10467          * in order to make progress and get back here for another iteration.
10468          * The kvm_x86_ops hooks communicate this by returning -EBUSY.
10469          */
10470 #ifdef CONFIG_KVM_SMM
10471         if (vcpu->arch.smi_pending) {
10472                 r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
10473                 if (r < 0)
10474                         goto out;
10475                 if (r) {
10476                         vcpu->arch.smi_pending = false;
10477                         ++vcpu->arch.smi_count;
10478                         enter_smm(vcpu);
10479                         can_inject = false;
10480                 } else
10481                         static_call(kvm_x86_enable_smi_window)(vcpu);
10482         }
10483 #endif
10484
10485         if (vcpu->arch.nmi_pending) {
10486                 r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
10487                 if (r < 0)
10488                         goto out;
10489                 if (r) {
10490                         --vcpu->arch.nmi_pending;
10491                         vcpu->arch.nmi_injected = true;
10492                         static_call(kvm_x86_inject_nmi)(vcpu);
10493                         can_inject = false;
10494                         WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
10495                 }
10496                 if (vcpu->arch.nmi_pending)
10497                         static_call(kvm_x86_enable_nmi_window)(vcpu);
10498         }
10499
10500         if (kvm_cpu_has_injectable_intr(vcpu)) {
10501                 r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
10502                 if (r < 0)
10503                         goto out;
10504                 if (r) {
10505                         int irq = kvm_cpu_get_interrupt(vcpu);
10506
10507                         if (!WARN_ON_ONCE(irq == -1)) {
10508                                 kvm_queue_interrupt(vcpu, irq, false);
10509                                 static_call(kvm_x86_inject_irq)(vcpu, false);
10510                                 WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
10511                         }
10512                 }
10513                 if (kvm_cpu_has_injectable_intr(vcpu))
10514                         static_call(kvm_x86_enable_irq_window)(vcpu);
10515         }
10516
10517         if (is_guest_mode(vcpu) &&
10518             kvm_x86_ops.nested_ops->has_events &&
10519             kvm_x86_ops.nested_ops->has_events(vcpu))
10520                 *req_immediate_exit = true;
10521
10522         /*
10523          * KVM must never queue a new exception while injecting an event; KVM
10524          * is done emulating and should only propagate the to-be-injected event
10525          * to the VMCS/VMCB.  Queueing a new exception can put the vCPU into an
10526          * infinite loop as KVM will bail from VM-Enter to inject the pending
10527          * exception and start the cycle all over.
10528          *
10529          * Exempt triple faults as they have special handling and won't put the
10530          * vCPU into an infinite loop.  Triple fault can be queued when running
10531          * VMX without unrestricted guest, as that requires KVM to emulate Real
10532          * Mode events (see kvm_inject_realmode_interrupt()).
10533          */
10534         WARN_ON_ONCE(vcpu->arch.exception.pending ||
10535                      vcpu->arch.exception_vmexit.pending);
10536         return 0;
10537
10538 out:
10539         if (r == -EBUSY) {
10540                 *req_immediate_exit = true;
10541                 r = 0;
10542         }
10543         return r;
10544 }
10545
10546 static void process_nmi(struct kvm_vcpu *vcpu)
10547 {
10548         unsigned int limit;
10549
10550         /*
10551          * x86 is limited to one NMI pending, but because KVM can't react to
10552          * incoming NMIs as quickly as bare metal, e.g. if the vCPU is
10553          * scheduled out, KVM needs to play nice with two queued NMIs showing
10554          * up at the same time.  To handle this scenario, allow two NMIs to be
10555          * (temporarily) pending so long as NMIs are not blocked and KVM is not
10556          * waiting for a previous NMI injection to complete (which effectively
10557          * blocks NMIs).  KVM will immediately inject one of the two NMIs, and
10558          * will request an NMI window to handle the second NMI.
10559          */
10560         if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
10561                 limit = 1;
10562         else
10563                 limit = 2;
10564
10565         /*
10566          * Adjust the limit to account for pending virtual NMIs, which aren't
10567          * tracked in vcpu->arch.nmi_pending.
10568          */
10569         if (static_call(kvm_x86_is_vnmi_pending)(vcpu))
10570                 limit--;
10571
10572         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
10573         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
10574
10575         if (vcpu->arch.nmi_pending &&
10576             (static_call(kvm_x86_set_vnmi_pending)(vcpu)))
10577                 vcpu->arch.nmi_pending--;
10578
10579         if (vcpu->arch.nmi_pending)
10580                 kvm_make_request(KVM_REQ_EVENT, vcpu);
10581 }
10582
10583 /* Return total number of NMIs pending injection to the VM */
10584 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu)
10585 {
10586         return vcpu->arch.nmi_pending +
10587                static_call(kvm_x86_is_vnmi_pending)(vcpu);
10588 }
10589
10590 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
10591                                        unsigned long *vcpu_bitmap)
10592 {
10593         kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap);
10594 }
10595
10596 void kvm_make_scan_ioapic_request(struct kvm *kvm)
10597 {
10598         kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
10599 }
10600
10601 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10602 {
10603         struct kvm_lapic *apic = vcpu->arch.apic;
10604         bool activate;
10605
10606         if (!lapic_in_kernel(vcpu))
10607                 return;
10608
10609         down_read(&vcpu->kvm->arch.apicv_update_lock);
10610         preempt_disable();
10611
10612         /* Do not activate APICV when APIC is disabled */
10613         activate = kvm_vcpu_apicv_activated(vcpu) &&
10614                    (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED);
10615
10616         if (apic->apicv_active == activate)
10617                 goto out;
10618
10619         apic->apicv_active = activate;
10620         kvm_apic_update_apicv(vcpu);
10621         static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
10622
10623         /*
10624          * When APICv gets disabled, we may still have injected interrupts
10625          * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
10626          * still active when the interrupt got accepted. Make sure
10627          * kvm_check_and_inject_events() is called to check for that.
10628          */
10629         if (!apic->apicv_active)
10630                 kvm_make_request(KVM_REQ_EVENT, vcpu);
10631
10632 out:
10633         preempt_enable();
10634         up_read(&vcpu->kvm->arch.apicv_update_lock);
10635 }
10636 EXPORT_SYMBOL_GPL(__kvm_vcpu_update_apicv);
10637
10638 static void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10639 {
10640         if (!lapic_in_kernel(vcpu))
10641                 return;
10642
10643         /*
10644          * Due to sharing page tables across vCPUs, the xAPIC memslot must be
10645          * deleted if any vCPU has xAPIC virtualization and x2APIC enabled, but
10646          * and hardware doesn't support x2APIC virtualization.  E.g. some AMD
10647          * CPUs support AVIC but not x2APIC.  KVM still allows enabling AVIC in
10648          * this case so that KVM can the AVIC doorbell to inject interrupts to
10649          * running vCPUs, but KVM must not create SPTEs for the APIC base as
10650          * the vCPU would incorrectly be able to access the vAPIC page via MMIO
10651          * despite being in x2APIC mode.  For simplicity, inhibiting the APIC
10652          * access page is sticky.
10653          */
10654         if (apic_x2apic_mode(vcpu->arch.apic) &&
10655             kvm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization)
10656                 kvm_inhibit_apic_access_page(vcpu);
10657
10658         __kvm_vcpu_update_apicv(vcpu);
10659 }
10660
10661 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10662                                       enum kvm_apicv_inhibit reason, bool set)
10663 {
10664         unsigned long old, new;
10665
10666         lockdep_assert_held_write(&kvm->arch.apicv_update_lock);
10667
10668         if (!(kvm_x86_ops.required_apicv_inhibits & BIT(reason)))
10669                 return;
10670
10671         old = new = kvm->arch.apicv_inhibit_reasons;
10672
10673         set_or_clear_apicv_inhibit(&new, reason, set);
10674
10675         if (!!old != !!new) {
10676                 /*
10677                  * Kick all vCPUs before setting apicv_inhibit_reasons to avoid
10678                  * false positives in the sanity check WARN in svm_vcpu_run().
10679                  * This task will wait for all vCPUs to ack the kick IRQ before
10680                  * updating apicv_inhibit_reasons, and all other vCPUs will
10681                  * block on acquiring apicv_update_lock so that vCPUs can't
10682                  * redo svm_vcpu_run() without seeing the new inhibit state.
10683                  *
10684                  * Note, holding apicv_update_lock and taking it in the read
10685                  * side (handling the request) also prevents other vCPUs from
10686                  * servicing the request with a stale apicv_inhibit_reasons.
10687                  */
10688                 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
10689                 kvm->arch.apicv_inhibit_reasons = new;
10690                 if (new) {
10691                         unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
10692                         int idx = srcu_read_lock(&kvm->srcu);
10693
10694                         kvm_zap_gfn_range(kvm, gfn, gfn+1);
10695                         srcu_read_unlock(&kvm->srcu, idx);
10696                 }
10697         } else {
10698                 kvm->arch.apicv_inhibit_reasons = new;
10699         }
10700 }
10701
10702 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10703                                     enum kvm_apicv_inhibit reason, bool set)
10704 {
10705         if (!enable_apicv)
10706                 return;
10707
10708         down_write(&kvm->arch.apicv_update_lock);
10709         __kvm_set_or_clear_apicv_inhibit(kvm, reason, set);
10710         up_write(&kvm->arch.apicv_update_lock);
10711 }
10712 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit);
10713
10714 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
10715 {
10716         if (!kvm_apic_present(vcpu))
10717                 return;
10718
10719         bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
10720
10721         if (irqchip_split(vcpu->kvm))
10722                 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
10723         else {
10724                 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10725                 if (ioapic_in_kernel(vcpu->kvm))
10726                         kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
10727         }
10728
10729         if (is_guest_mode(vcpu))
10730                 vcpu->arch.load_eoi_exitmap_pending = true;
10731         else
10732                 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
10733 }
10734
10735 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
10736 {
10737         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
10738                 return;
10739
10740 #ifdef CONFIG_KVM_HYPERV
10741         if (to_hv_vcpu(vcpu)) {
10742                 u64 eoi_exit_bitmap[4];
10743
10744                 bitmap_or((ulong *)eoi_exit_bitmap,
10745                           vcpu->arch.ioapic_handled_vectors,
10746                           to_hv_synic(vcpu)->vec_bitmap, 256);
10747                 static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
10748                 return;
10749         }
10750 #endif
10751         static_call_cond(kvm_x86_load_eoi_exitmap)(
10752                 vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors);
10753 }
10754
10755 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
10756 {
10757         static_call_cond(kvm_x86_guest_memory_reclaimed)(kvm);
10758 }
10759
10760 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
10761 {
10762         if (!lapic_in_kernel(vcpu))
10763                 return;
10764
10765         static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu);
10766 }
10767
10768 /*
10769  * Called within kvm->srcu read side.
10770  * Returns 1 to let vcpu_run() continue the guest execution loop without
10771  * exiting to the userspace.  Otherwise, the value will be returned to the
10772  * userspace.
10773  */
10774 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
10775 {
10776         int r;
10777         bool req_int_win =
10778                 dm_request_for_irq_injection(vcpu) &&
10779                 kvm_cpu_accept_dm_intr(vcpu);
10780         fastpath_t exit_fastpath;
10781
10782         bool req_immediate_exit = false;
10783
10784         if (kvm_request_pending(vcpu)) {
10785                 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) {
10786                         r = -EIO;
10787                         goto out;
10788                 }
10789
10790                 if (kvm_dirty_ring_check_request(vcpu)) {
10791                         r = 0;
10792                         goto out;
10793                 }
10794
10795                 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
10796                         if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
10797                                 r = 0;
10798                                 goto out;
10799                         }
10800                 }
10801                 if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
10802                         kvm_mmu_free_obsolete_roots(vcpu);
10803                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
10804                         __kvm_migrate_timers(vcpu);
10805                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
10806                         kvm_update_masterclock(vcpu->kvm);
10807                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
10808                         kvm_gen_kvmclock_update(vcpu);
10809                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
10810                         r = kvm_guest_time_update(vcpu);
10811                         if (unlikely(r))
10812                                 goto out;
10813                 }
10814                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
10815                         kvm_mmu_sync_roots(vcpu);
10816                 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
10817                         kvm_mmu_load_pgd(vcpu);
10818
10819                 /*
10820                  * Note, the order matters here, as flushing "all" TLB entries
10821                  * also flushes the "current" TLB entries, i.e. servicing the
10822                  * flush "all" will clear any request to flush "current".
10823                  */
10824                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
10825                         kvm_vcpu_flush_tlb_all(vcpu);
10826
10827                 kvm_service_local_tlb_flush_requests(vcpu);
10828
10829                 /*
10830                  * Fall back to a "full" guest flush if Hyper-V's precise
10831                  * flushing fails.  Note, Hyper-V's flushing is per-vCPU, but
10832                  * the flushes are considered "remote" and not "local" because
10833                  * the requests can be initiated from other vCPUs.
10834                  */
10835 #ifdef CONFIG_KVM_HYPERV
10836                 if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu) &&
10837                     kvm_hv_vcpu_flush_tlb(vcpu))
10838                         kvm_vcpu_flush_tlb_guest(vcpu);
10839 #endif
10840
10841                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
10842                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
10843                         r = 0;
10844                         goto out;
10845                 }
10846                 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10847                         if (is_guest_mode(vcpu))
10848                                 kvm_x86_ops.nested_ops->triple_fault(vcpu);
10849
10850                         if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10851                                 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
10852                                 vcpu->mmio_needed = 0;
10853                                 r = 0;
10854                                 goto out;
10855                         }
10856                 }
10857                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
10858                         /* Page is swapped out. Do synthetic halt */
10859                         vcpu->arch.apf.halted = true;
10860                         r = 1;
10861                         goto out;
10862                 }
10863                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
10864                         record_steal_time(vcpu);
10865                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
10866                         kvm_pmu_handle_event(vcpu);
10867                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
10868                         kvm_pmu_deliver_pmi(vcpu);
10869 #ifdef CONFIG_KVM_SMM
10870                 if (kvm_check_request(KVM_REQ_SMI, vcpu))
10871                         process_smi(vcpu);
10872 #endif
10873                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
10874                         process_nmi(vcpu);
10875                 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
10876                         BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
10877                         if (test_bit(vcpu->arch.pending_ioapic_eoi,
10878                                      vcpu->arch.ioapic_handled_vectors)) {
10879                                 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
10880                                 vcpu->run->eoi.vector =
10881                                                 vcpu->arch.pending_ioapic_eoi;
10882                                 r = 0;
10883                                 goto out;
10884                         }
10885                 }
10886                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
10887                         vcpu_scan_ioapic(vcpu);
10888                 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
10889                         vcpu_load_eoi_exitmap(vcpu);
10890                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
10891                         kvm_vcpu_reload_apic_access_page(vcpu);
10892 #ifdef CONFIG_KVM_HYPERV
10893                 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
10894                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10895                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
10896                         vcpu->run->system_event.ndata = 0;
10897                         r = 0;
10898                         goto out;
10899                 }
10900                 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
10901                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10902                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
10903                         vcpu->run->system_event.ndata = 0;
10904                         r = 0;
10905                         goto out;
10906                 }
10907                 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
10908                         struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
10909
10910                         vcpu->run->exit_reason = KVM_EXIT_HYPERV;
10911                         vcpu->run->hyperv = hv_vcpu->exit;
10912                         r = 0;
10913                         goto out;
10914                 }
10915
10916                 /*
10917                  * KVM_REQ_HV_STIMER has to be processed after
10918                  * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
10919                  * depend on the guest clock being up-to-date
10920                  */
10921                 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
10922                         kvm_hv_process_stimers(vcpu);
10923 #endif
10924                 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
10925                         kvm_vcpu_update_apicv(vcpu);
10926                 if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
10927                         kvm_check_async_pf_completion(vcpu);
10928                 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
10929                         static_call(kvm_x86_msr_filter_changed)(vcpu);
10930
10931                 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
10932                         static_call(kvm_x86_update_cpu_dirty_logging)(vcpu);
10933         }
10934
10935         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
10936             kvm_xen_has_interrupt(vcpu)) {
10937                 ++vcpu->stat.req_event;
10938                 r = kvm_apic_accept_events(vcpu);
10939                 if (r < 0) {
10940                         r = 0;
10941                         goto out;
10942                 }
10943                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
10944                         r = 1;
10945                         goto out;
10946                 }
10947
10948                 r = kvm_check_and_inject_events(vcpu, &req_immediate_exit);
10949                 if (r < 0) {
10950                         r = 0;
10951                         goto out;
10952                 }
10953                 if (req_int_win)
10954                         static_call(kvm_x86_enable_irq_window)(vcpu);
10955
10956                 if (kvm_lapic_enabled(vcpu)) {
10957                         update_cr8_intercept(vcpu);
10958                         kvm_lapic_sync_to_vapic(vcpu);
10959                 }
10960         }
10961
10962         r = kvm_mmu_reload(vcpu);
10963         if (unlikely(r)) {
10964                 goto cancel_injection;
10965         }
10966
10967         preempt_disable();
10968
10969         static_call(kvm_x86_prepare_switch_to_guest)(vcpu);
10970
10971         /*
10972          * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
10973          * IPI are then delayed after guest entry, which ensures that they
10974          * result in virtual interrupt delivery.
10975          */
10976         local_irq_disable();
10977
10978         /* Store vcpu->apicv_active before vcpu->mode.  */
10979         smp_store_release(&vcpu->mode, IN_GUEST_MODE);
10980
10981         kvm_vcpu_srcu_read_unlock(vcpu);
10982
10983         /*
10984          * 1) We should set ->mode before checking ->requests.  Please see
10985          * the comment in kvm_vcpu_exiting_guest_mode().
10986          *
10987          * 2) For APICv, we should set ->mode before checking PID.ON. This
10988          * pairs with the memory barrier implicit in pi_test_and_set_on
10989          * (see vmx_deliver_posted_interrupt).
10990          *
10991          * 3) This also orders the write to mode from any reads to the page
10992          * tables done while the VCPU is running.  Please see the comment
10993          * in kvm_flush_remote_tlbs.
10994          */
10995         smp_mb__after_srcu_read_unlock();
10996
10997         /*
10998          * Process pending posted interrupts to handle the case where the
10999          * notification IRQ arrived in the host, or was never sent (because the
11000          * target vCPU wasn't running).  Do this regardless of the vCPU's APICv
11001          * status, KVM doesn't update assigned devices when APICv is inhibited,
11002          * i.e. they can post interrupts even if APICv is temporarily disabled.
11003          */
11004         if (kvm_lapic_enabled(vcpu))
11005                 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
11006
11007         if (kvm_vcpu_exit_request(vcpu)) {
11008                 vcpu->mode = OUTSIDE_GUEST_MODE;
11009                 smp_wmb();
11010                 local_irq_enable();
11011                 preempt_enable();
11012                 kvm_vcpu_srcu_read_lock(vcpu);
11013                 r = 1;
11014                 goto cancel_injection;
11015         }
11016
11017         if (req_immediate_exit)
11018                 kvm_make_request(KVM_REQ_EVENT, vcpu);
11019
11020         fpregs_assert_state_consistent();
11021         if (test_thread_flag(TIF_NEED_FPU_LOAD))
11022                 switch_fpu_return();
11023
11024         if (vcpu->arch.guest_fpu.xfd_err)
11025                 wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
11026
11027         if (unlikely(vcpu->arch.switch_db_regs)) {
11028                 set_debugreg(0, 7);
11029                 set_debugreg(vcpu->arch.eff_db[0], 0);
11030                 set_debugreg(vcpu->arch.eff_db[1], 1);
11031                 set_debugreg(vcpu->arch.eff_db[2], 2);
11032                 set_debugreg(vcpu->arch.eff_db[3], 3);
11033         } else if (unlikely(hw_breakpoint_active())) {
11034                 set_debugreg(0, 7);
11035         }
11036
11037         guest_timing_enter_irqoff();
11038
11039         for (;;) {
11040                 /*
11041                  * Assert that vCPU vs. VM APICv state is consistent.  An APICv
11042                  * update must kick and wait for all vCPUs before toggling the
11043                  * per-VM state, and responding vCPUs must wait for the update
11044                  * to complete before servicing KVM_REQ_APICV_UPDATE.
11045                  */
11046                 WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) &&
11047                              (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED));
11048
11049                 exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu, req_immediate_exit);
11050                 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
11051                         break;
11052
11053                 if (kvm_lapic_enabled(vcpu))
11054                         static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
11055
11056                 if (unlikely(kvm_vcpu_exit_request(vcpu))) {
11057                         exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
11058                         break;
11059                 }
11060
11061                 /* Note, VM-Exits that go down the "slow" path are accounted below. */
11062                 ++vcpu->stat.exits;
11063         }
11064
11065         /*
11066          * Do this here before restoring debug registers on the host.  And
11067          * since we do this before handling the vmexit, a DR access vmexit
11068          * can (a) read the correct value of the debug registers, (b) set
11069          * KVM_DEBUGREG_WONT_EXIT again.
11070          */
11071         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
11072                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
11073                 static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
11074                 kvm_update_dr0123(vcpu);
11075                 kvm_update_dr7(vcpu);
11076         }
11077
11078         /*
11079          * If the guest has used debug registers, at least dr7
11080          * will be disabled while returning to the host.
11081          * If we don't have active breakpoints in the host, we don't
11082          * care about the messed up debug address registers. But if
11083          * we have some of them active, restore the old state.
11084          */
11085         if (hw_breakpoint_active())
11086                 hw_breakpoint_restore();
11087
11088         vcpu->arch.last_vmentry_cpu = vcpu->cpu;
11089         vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
11090
11091         vcpu->mode = OUTSIDE_GUEST_MODE;
11092         smp_wmb();
11093
11094         /*
11095          * Sync xfd before calling handle_exit_irqoff() which may
11096          * rely on the fact that guest_fpu::xfd is up-to-date (e.g.
11097          * in #NM irqoff handler).
11098          */
11099         if (vcpu->arch.xfd_no_write_intercept)
11100                 fpu_sync_guest_vmexit_xfd_state();
11101
11102         static_call(kvm_x86_handle_exit_irqoff)(vcpu);
11103
11104         if (vcpu->arch.guest_fpu.xfd_err)
11105                 wrmsrl(MSR_IA32_XFD_ERR, 0);
11106
11107         /*
11108          * Consume any pending interrupts, including the possible source of
11109          * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
11110          * An instruction is required after local_irq_enable() to fully unblock
11111          * interrupts on processors that implement an interrupt shadow, the
11112          * stat.exits increment will do nicely.
11113          */
11114         kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
11115         local_irq_enable();
11116         ++vcpu->stat.exits;
11117         local_irq_disable();
11118         kvm_after_interrupt(vcpu);
11119
11120         /*
11121          * Wait until after servicing IRQs to account guest time so that any
11122          * ticks that occurred while running the guest are properly accounted
11123          * to the guest.  Waiting until IRQs are enabled degrades the accuracy
11124          * of accounting via context tracking, but the loss of accuracy is
11125          * acceptable for all known use cases.
11126          */
11127         guest_timing_exit_irqoff();
11128
11129         local_irq_enable();
11130         preempt_enable();
11131
11132         kvm_vcpu_srcu_read_lock(vcpu);
11133
11134         /*
11135          * Profile KVM exit RIPs:
11136          */
11137         if (unlikely(prof_on == KVM_PROFILING)) {
11138                 unsigned long rip = kvm_rip_read(vcpu);
11139                 profile_hit(KVM_PROFILING, (void *)rip);
11140         }
11141
11142         if (unlikely(vcpu->arch.tsc_always_catchup))
11143                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
11144
11145         if (vcpu->arch.apic_attention)
11146                 kvm_lapic_sync_from_vapic(vcpu);
11147
11148         r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
11149         return r;
11150
11151 cancel_injection:
11152         if (req_immediate_exit)
11153                 kvm_make_request(KVM_REQ_EVENT, vcpu);
11154         static_call(kvm_x86_cancel_injection)(vcpu);
11155         if (unlikely(vcpu->arch.apic_attention))
11156                 kvm_lapic_sync_from_vapic(vcpu);
11157 out:
11158         return r;
11159 }
11160
11161 /* Called within kvm->srcu read side.  */
11162 static inline int vcpu_block(struct kvm_vcpu *vcpu)
11163 {
11164         bool hv_timer;
11165
11166         if (!kvm_arch_vcpu_runnable(vcpu)) {
11167                 /*
11168                  * Switch to the software timer before halt-polling/blocking as
11169                  * the guest's timer may be a break event for the vCPU, and the
11170                  * hypervisor timer runs only when the CPU is in guest mode.
11171                  * Switch before halt-polling so that KVM recognizes an expired
11172                  * timer before blocking.
11173                  */
11174                 hv_timer = kvm_lapic_hv_timer_in_use(vcpu);
11175                 if (hv_timer)
11176                         kvm_lapic_switch_to_sw_timer(vcpu);
11177
11178                 kvm_vcpu_srcu_read_unlock(vcpu);
11179                 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
11180                         kvm_vcpu_halt(vcpu);
11181                 else
11182                         kvm_vcpu_block(vcpu);
11183                 kvm_vcpu_srcu_read_lock(vcpu);
11184
11185                 if (hv_timer)
11186                         kvm_lapic_switch_to_hv_timer(vcpu);
11187
11188                 /*
11189                  * If the vCPU is not runnable, a signal or another host event
11190                  * of some kind is pending; service it without changing the
11191                  * vCPU's activity state.
11192                  */
11193                 if (!kvm_arch_vcpu_runnable(vcpu))
11194                         return 1;
11195         }
11196
11197         /*
11198          * Evaluate nested events before exiting the halted state.  This allows
11199          * the halt state to be recorded properly in the VMCS12's activity
11200          * state field (AMD does not have a similar field and a VM-Exit always
11201          * causes a spurious wakeup from HLT).
11202          */
11203         if (is_guest_mode(vcpu)) {
11204                 if (kvm_check_nested_events(vcpu) < 0)
11205                         return 0;
11206         }
11207
11208         if (kvm_apic_accept_events(vcpu) < 0)
11209                 return 0;
11210         switch(vcpu->arch.mp_state) {
11211         case KVM_MP_STATE_HALTED:
11212         case KVM_MP_STATE_AP_RESET_HOLD:
11213                 vcpu->arch.pv.pv_unhalted = false;
11214                 vcpu->arch.mp_state =
11215                         KVM_MP_STATE_RUNNABLE;
11216                 fallthrough;
11217         case KVM_MP_STATE_RUNNABLE:
11218                 vcpu->arch.apf.halted = false;
11219                 break;
11220         case KVM_MP_STATE_INIT_RECEIVED:
11221                 break;
11222         default:
11223                 WARN_ON_ONCE(1);
11224                 break;
11225         }
11226         return 1;
11227 }
11228
11229 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
11230 {
11231         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
11232                 !vcpu->arch.apf.halted);
11233 }
11234
11235 /* Called within kvm->srcu read side.  */
11236 static int vcpu_run(struct kvm_vcpu *vcpu)
11237 {
11238         int r;
11239
11240         vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
11241         vcpu->arch.l1tf_flush_l1d = true;
11242
11243         for (;;) {
11244                 /*
11245                  * If another guest vCPU requests a PV TLB flush in the middle
11246                  * of instruction emulation, the rest of the emulation could
11247                  * use a stale page translation. Assume that any code after
11248                  * this point can start executing an instruction.
11249                  */
11250                 vcpu->arch.at_instruction_boundary = false;
11251                 if (kvm_vcpu_running(vcpu)) {
11252                         r = vcpu_enter_guest(vcpu);
11253                 } else {
11254                         r = vcpu_block(vcpu);
11255                 }
11256
11257                 if (r <= 0)
11258                         break;
11259
11260                 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
11261                 if (kvm_xen_has_pending_events(vcpu))
11262                         kvm_xen_inject_pending_events(vcpu);
11263
11264                 if (kvm_cpu_has_pending_timer(vcpu))
11265                         kvm_inject_pending_timer_irqs(vcpu);
11266
11267                 if (dm_request_for_irq_injection(vcpu) &&
11268                         kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
11269                         r = 0;
11270                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
11271                         ++vcpu->stat.request_irq_exits;
11272                         break;
11273                 }
11274
11275                 if (__xfer_to_guest_mode_work_pending()) {
11276                         kvm_vcpu_srcu_read_unlock(vcpu);
11277                         r = xfer_to_guest_mode_handle_work(vcpu);
11278                         kvm_vcpu_srcu_read_lock(vcpu);
11279                         if (r)
11280                                 return r;
11281                 }
11282         }
11283
11284         return r;
11285 }
11286
11287 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
11288 {
11289         return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
11290 }
11291
11292 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
11293 {
11294         BUG_ON(!vcpu->arch.pio.count);
11295
11296         return complete_emulated_io(vcpu);
11297 }
11298
11299 /*
11300  * Implements the following, as a state machine:
11301  *
11302  * read:
11303  *   for each fragment
11304  *     for each mmio piece in the fragment
11305  *       write gpa, len
11306  *       exit
11307  *       copy data
11308  *   execute insn
11309  *
11310  * write:
11311  *   for each fragment
11312  *     for each mmio piece in the fragment
11313  *       write gpa, len
11314  *       copy data
11315  *       exit
11316  */
11317 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
11318 {
11319         struct kvm_run *run = vcpu->run;
11320         struct kvm_mmio_fragment *frag;
11321         unsigned len;
11322
11323         BUG_ON(!vcpu->mmio_needed);
11324
11325         /* Complete previous fragment */
11326         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
11327         len = min(8u, frag->len);
11328         if (!vcpu->mmio_is_write)
11329                 memcpy(frag->data, run->mmio.data, len);
11330
11331         if (frag->len <= 8) {
11332                 /* Switch to the next fragment. */
11333                 frag++;
11334                 vcpu->mmio_cur_fragment++;
11335         } else {
11336                 /* Go forward to the next mmio piece. */
11337                 frag->data += len;
11338                 frag->gpa += len;
11339                 frag->len -= len;
11340         }
11341
11342         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
11343                 vcpu->mmio_needed = 0;
11344
11345                 /* FIXME: return into emulator if single-stepping.  */
11346                 if (vcpu->mmio_is_write)
11347                         return 1;
11348                 vcpu->mmio_read_completed = 1;
11349                 return complete_emulated_io(vcpu);
11350         }
11351
11352         run->exit_reason = KVM_EXIT_MMIO;
11353         run->mmio.phys_addr = frag->gpa;
11354         if (vcpu->mmio_is_write)
11355                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
11356         run->mmio.len = min(8u, frag->len);
11357         run->mmio.is_write = vcpu->mmio_is_write;
11358         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
11359         return 0;
11360 }
11361
11362 /* Swap (qemu) user FPU context for the guest FPU context. */
11363 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
11364 {
11365         /* Exclude PKRU, it's restored separately immediately after VM-Exit. */
11366         fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true);
11367         trace_kvm_fpu(1);
11368 }
11369
11370 /* When vcpu_run ends, restore user space FPU context. */
11371 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
11372 {
11373         fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false);
11374         ++vcpu->stat.fpu_reload;
11375         trace_kvm_fpu(0);
11376 }
11377
11378 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
11379 {
11380         struct kvm_queued_exception *ex = &vcpu->arch.exception;
11381         struct kvm_run *kvm_run = vcpu->run;
11382         int r;
11383
11384         vcpu_load(vcpu);
11385         kvm_sigset_activate(vcpu);
11386         kvm_run->flags = 0;
11387         kvm_load_guest_fpu(vcpu);
11388
11389         kvm_vcpu_srcu_read_lock(vcpu);
11390         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
11391                 if (kvm_run->immediate_exit) {
11392                         r = -EINTR;
11393                         goto out;
11394                 }
11395
11396                 /*
11397                  * Don't bother switching APIC timer emulation from the
11398                  * hypervisor timer to the software timer, the only way for the
11399                  * APIC timer to be active is if userspace stuffed vCPU state,
11400                  * i.e. put the vCPU into a nonsensical state.  Only an INIT
11401                  * will transition the vCPU out of UNINITIALIZED (without more
11402                  * state stuffing from userspace), which will reset the local
11403                  * APIC and thus cancel the timer or drop the IRQ (if the timer
11404                  * already expired).
11405                  */
11406                 kvm_vcpu_srcu_read_unlock(vcpu);
11407                 kvm_vcpu_block(vcpu);
11408                 kvm_vcpu_srcu_read_lock(vcpu);
11409
11410                 if (kvm_apic_accept_events(vcpu) < 0) {
11411                         r = 0;
11412                         goto out;
11413                 }
11414                 r = -EAGAIN;
11415                 if (signal_pending(current)) {
11416                         r = -EINTR;
11417                         kvm_run->exit_reason = KVM_EXIT_INTR;
11418                         ++vcpu->stat.signal_exits;
11419                 }
11420                 goto out;
11421         }
11422
11423         if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) ||
11424             (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) {
11425                 r = -EINVAL;
11426                 goto out;
11427         }
11428
11429         if (kvm_run->kvm_dirty_regs) {
11430                 r = sync_regs(vcpu);
11431                 if (r != 0)
11432                         goto out;
11433         }
11434
11435         /* re-sync apic's tpr */
11436         if (!lapic_in_kernel(vcpu)) {
11437                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
11438                         r = -EINVAL;
11439                         goto out;
11440                 }
11441         }
11442
11443         /*
11444          * If userspace set a pending exception and L2 is active, convert it to
11445          * a pending VM-Exit if L1 wants to intercept the exception.
11446          */
11447         if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) &&
11448             kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector,
11449                                                         ex->error_code)) {
11450                 kvm_queue_exception_vmexit(vcpu, ex->vector,
11451                                            ex->has_error_code, ex->error_code,
11452                                            ex->has_payload, ex->payload);
11453                 ex->injected = false;
11454                 ex->pending = false;
11455         }
11456         vcpu->arch.exception_from_userspace = false;
11457
11458         if (unlikely(vcpu->arch.complete_userspace_io)) {
11459                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
11460                 vcpu->arch.complete_userspace_io = NULL;
11461                 r = cui(vcpu);
11462                 if (r <= 0)
11463                         goto out;
11464         } else {
11465                 WARN_ON_ONCE(vcpu->arch.pio.count);
11466                 WARN_ON_ONCE(vcpu->mmio_needed);
11467         }
11468
11469         if (kvm_run->immediate_exit) {
11470                 r = -EINTR;
11471                 goto out;
11472         }
11473
11474         r = static_call(kvm_x86_vcpu_pre_run)(vcpu);
11475         if (r <= 0)
11476                 goto out;
11477
11478         r = vcpu_run(vcpu);
11479
11480 out:
11481         kvm_put_guest_fpu(vcpu);
11482         if (kvm_run->kvm_valid_regs)
11483                 store_regs(vcpu);
11484         post_kvm_run_save(vcpu);
11485         kvm_vcpu_srcu_read_unlock(vcpu);
11486
11487         kvm_sigset_deactivate(vcpu);
11488         vcpu_put(vcpu);
11489         return r;
11490 }
11491
11492 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11493 {
11494         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
11495                 /*
11496                  * We are here if userspace calls get_regs() in the middle of
11497                  * instruction emulation. Registers state needs to be copied
11498                  * back from emulation context to vcpu. Userspace shouldn't do
11499                  * that usually, but some bad designed PV devices (vmware
11500                  * backdoor interface) need this to work
11501                  */
11502                 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
11503                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11504         }
11505         regs->rax = kvm_rax_read(vcpu);
11506         regs->rbx = kvm_rbx_read(vcpu);
11507         regs->rcx = kvm_rcx_read(vcpu);
11508         regs->rdx = kvm_rdx_read(vcpu);
11509         regs->rsi = kvm_rsi_read(vcpu);
11510         regs->rdi = kvm_rdi_read(vcpu);
11511         regs->rsp = kvm_rsp_read(vcpu);
11512         regs->rbp = kvm_rbp_read(vcpu);
11513 #ifdef CONFIG_X86_64
11514         regs->r8 = kvm_r8_read(vcpu);
11515         regs->r9 = kvm_r9_read(vcpu);
11516         regs->r10 = kvm_r10_read(vcpu);
11517         regs->r11 = kvm_r11_read(vcpu);
11518         regs->r12 = kvm_r12_read(vcpu);
11519         regs->r13 = kvm_r13_read(vcpu);
11520         regs->r14 = kvm_r14_read(vcpu);
11521         regs->r15 = kvm_r15_read(vcpu);
11522 #endif
11523
11524         regs->rip = kvm_rip_read(vcpu);
11525         regs->rflags = kvm_get_rflags(vcpu);
11526 }
11527
11528 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11529 {
11530         if (vcpu->kvm->arch.has_protected_state &&
11531             vcpu->arch.guest_state_protected)
11532                 return -EINVAL;
11533
11534         vcpu_load(vcpu);
11535         __get_regs(vcpu, regs);
11536         vcpu_put(vcpu);
11537         return 0;
11538 }
11539
11540 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11541 {
11542         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
11543         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11544
11545         kvm_rax_write(vcpu, regs->rax);
11546         kvm_rbx_write(vcpu, regs->rbx);
11547         kvm_rcx_write(vcpu, regs->rcx);
11548         kvm_rdx_write(vcpu, regs->rdx);
11549         kvm_rsi_write(vcpu, regs->rsi);
11550         kvm_rdi_write(vcpu, regs->rdi);
11551         kvm_rsp_write(vcpu, regs->rsp);
11552         kvm_rbp_write(vcpu, regs->rbp);
11553 #ifdef CONFIG_X86_64
11554         kvm_r8_write(vcpu, regs->r8);
11555         kvm_r9_write(vcpu, regs->r9);
11556         kvm_r10_write(vcpu, regs->r10);
11557         kvm_r11_write(vcpu, regs->r11);
11558         kvm_r12_write(vcpu, regs->r12);
11559         kvm_r13_write(vcpu, regs->r13);
11560         kvm_r14_write(vcpu, regs->r14);
11561         kvm_r15_write(vcpu, regs->r15);
11562 #endif
11563
11564         kvm_rip_write(vcpu, regs->rip);
11565         kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
11566
11567         vcpu->arch.exception.pending = false;
11568         vcpu->arch.exception_vmexit.pending = false;
11569
11570         kvm_make_request(KVM_REQ_EVENT, vcpu);
11571 }
11572
11573 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11574 {
11575         if (vcpu->kvm->arch.has_protected_state &&
11576             vcpu->arch.guest_state_protected)
11577                 return -EINVAL;
11578
11579         vcpu_load(vcpu);
11580         __set_regs(vcpu, regs);
11581         vcpu_put(vcpu);
11582         return 0;
11583 }
11584
11585 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11586 {
11587         struct desc_ptr dt;
11588
11589         if (vcpu->arch.guest_state_protected)
11590                 goto skip_protected_regs;
11591
11592         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11593         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11594         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11595         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11596         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11597         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11598
11599         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11600         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11601
11602         static_call(kvm_x86_get_idt)(vcpu, &dt);
11603         sregs->idt.limit = dt.size;
11604         sregs->idt.base = dt.address;
11605         static_call(kvm_x86_get_gdt)(vcpu, &dt);
11606         sregs->gdt.limit = dt.size;
11607         sregs->gdt.base = dt.address;
11608
11609         sregs->cr2 = vcpu->arch.cr2;
11610         sregs->cr3 = kvm_read_cr3(vcpu);
11611
11612 skip_protected_regs:
11613         sregs->cr0 = kvm_read_cr0(vcpu);
11614         sregs->cr4 = kvm_read_cr4(vcpu);
11615         sregs->cr8 = kvm_get_cr8(vcpu);
11616         sregs->efer = vcpu->arch.efer;
11617         sregs->apic_base = kvm_get_apic_base(vcpu);
11618 }
11619
11620 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11621 {
11622         __get_sregs_common(vcpu, sregs);
11623
11624         if (vcpu->arch.guest_state_protected)
11625                 return;
11626
11627         if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
11628                 set_bit(vcpu->arch.interrupt.nr,
11629                         (unsigned long *)sregs->interrupt_bitmap);
11630 }
11631
11632 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11633 {
11634         int i;
11635
11636         __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
11637
11638         if (vcpu->arch.guest_state_protected)
11639                 return;
11640
11641         if (is_pae_paging(vcpu)) {
11642                 for (i = 0 ; i < 4 ; i++)
11643                         sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
11644                 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
11645         }
11646 }
11647
11648 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
11649                                   struct kvm_sregs *sregs)
11650 {
11651         if (vcpu->kvm->arch.has_protected_state &&
11652             vcpu->arch.guest_state_protected)
11653                 return -EINVAL;
11654
11655         vcpu_load(vcpu);
11656         __get_sregs(vcpu, sregs);
11657         vcpu_put(vcpu);
11658         return 0;
11659 }
11660
11661 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
11662                                     struct kvm_mp_state *mp_state)
11663 {
11664         int r;
11665
11666         vcpu_load(vcpu);
11667         if (kvm_mpx_supported())
11668                 kvm_load_guest_fpu(vcpu);
11669
11670         r = kvm_apic_accept_events(vcpu);
11671         if (r < 0)
11672                 goto out;
11673         r = 0;
11674
11675         if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
11676              vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
11677             vcpu->arch.pv.pv_unhalted)
11678                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
11679         else
11680                 mp_state->mp_state = vcpu->arch.mp_state;
11681
11682 out:
11683         if (kvm_mpx_supported())
11684                 kvm_put_guest_fpu(vcpu);
11685         vcpu_put(vcpu);
11686         return r;
11687 }
11688
11689 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
11690                                     struct kvm_mp_state *mp_state)
11691 {
11692         int ret = -EINVAL;
11693
11694         vcpu_load(vcpu);
11695
11696         switch (mp_state->mp_state) {
11697         case KVM_MP_STATE_UNINITIALIZED:
11698         case KVM_MP_STATE_HALTED:
11699         case KVM_MP_STATE_AP_RESET_HOLD:
11700         case KVM_MP_STATE_INIT_RECEIVED:
11701         case KVM_MP_STATE_SIPI_RECEIVED:
11702                 if (!lapic_in_kernel(vcpu))
11703                         goto out;
11704                 break;
11705
11706         case KVM_MP_STATE_RUNNABLE:
11707                 break;
11708
11709         default:
11710                 goto out;
11711         }
11712
11713         /*
11714          * Pending INITs are reported using KVM_SET_VCPU_EVENTS, disallow
11715          * forcing the guest into INIT/SIPI if those events are supposed to be
11716          * blocked.  KVM prioritizes SMI over INIT, so reject INIT/SIPI state
11717          * if an SMI is pending as well.
11718          */
11719         if ((!kvm_apic_init_sipi_allowed(vcpu) || vcpu->arch.smi_pending) &&
11720             (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
11721              mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
11722                 goto out;
11723
11724         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
11725                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
11726                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
11727         } else
11728                 vcpu->arch.mp_state = mp_state->mp_state;
11729         kvm_make_request(KVM_REQ_EVENT, vcpu);
11730
11731         ret = 0;
11732 out:
11733         vcpu_put(vcpu);
11734         return ret;
11735 }
11736
11737 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
11738                     int reason, bool has_error_code, u32 error_code)
11739 {
11740         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
11741         int ret;
11742
11743         init_emulate_ctxt(vcpu);
11744
11745         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
11746                                    has_error_code, error_code);
11747         if (ret) {
11748                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
11749                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
11750                 vcpu->run->internal.ndata = 0;
11751                 return 0;
11752         }
11753
11754         kvm_rip_write(vcpu, ctxt->eip);
11755         kvm_set_rflags(vcpu, ctxt->eflags);
11756         return 1;
11757 }
11758 EXPORT_SYMBOL_GPL(kvm_task_switch);
11759
11760 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11761 {
11762         if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
11763                 /*
11764                  * When EFER.LME and CR0.PG are set, the processor is in
11765                  * 64-bit mode (though maybe in a 32-bit code segment).
11766                  * CR4.PAE and EFER.LMA must be set.
11767                  */
11768                 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
11769                         return false;
11770                 if (!kvm_vcpu_is_legal_cr3(vcpu, sregs->cr3))
11771                         return false;
11772         } else {
11773                 /*
11774                  * Not in 64-bit mode: EFER.LMA is clear and the code
11775                  * segment cannot be 64-bit.
11776                  */
11777                 if (sregs->efer & EFER_LMA || sregs->cs.l)
11778                         return false;
11779         }
11780
11781         return kvm_is_valid_cr4(vcpu, sregs->cr4) &&
11782                kvm_is_valid_cr0(vcpu, sregs->cr0);
11783 }
11784
11785 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
11786                 int *mmu_reset_needed, bool update_pdptrs)
11787 {
11788         struct msr_data apic_base_msr;
11789         int idx;
11790         struct desc_ptr dt;
11791
11792         if (!kvm_is_valid_sregs(vcpu, sregs))
11793                 return -EINVAL;
11794
11795         apic_base_msr.data = sregs->apic_base;
11796         apic_base_msr.host_initiated = true;
11797         if (kvm_set_apic_base(vcpu, &apic_base_msr))
11798                 return -EINVAL;
11799
11800         if (vcpu->arch.guest_state_protected)
11801                 return 0;
11802
11803         dt.size = sregs->idt.limit;
11804         dt.address = sregs->idt.base;
11805         static_call(kvm_x86_set_idt)(vcpu, &dt);
11806         dt.size = sregs->gdt.limit;
11807         dt.address = sregs->gdt.base;
11808         static_call(kvm_x86_set_gdt)(vcpu, &dt);
11809
11810         vcpu->arch.cr2 = sregs->cr2;
11811         *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
11812         vcpu->arch.cr3 = sregs->cr3;
11813         kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11814         static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3);
11815
11816         kvm_set_cr8(vcpu, sregs->cr8);
11817
11818         *mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
11819         static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
11820
11821         *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
11822         static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
11823
11824         *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
11825         static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
11826
11827         if (update_pdptrs) {
11828                 idx = srcu_read_lock(&vcpu->kvm->srcu);
11829                 if (is_pae_paging(vcpu)) {
11830                         load_pdptrs(vcpu, kvm_read_cr3(vcpu));
11831                         *mmu_reset_needed = 1;
11832                 }
11833                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
11834         }
11835
11836         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11837         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11838         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11839         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11840         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11841         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11842
11843         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11844         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11845
11846         update_cr8_intercept(vcpu);
11847
11848         /* Older userspace won't unhalt the vcpu on reset. */
11849         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
11850             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
11851             !is_protmode(vcpu))
11852                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11853
11854         return 0;
11855 }
11856
11857 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11858 {
11859         int pending_vec, max_bits;
11860         int mmu_reset_needed = 0;
11861         int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
11862
11863         if (ret)
11864                 return ret;
11865
11866         if (mmu_reset_needed) {
11867                 kvm_mmu_reset_context(vcpu);
11868                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11869         }
11870
11871         max_bits = KVM_NR_INTERRUPTS;
11872         pending_vec = find_first_bit(
11873                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
11874
11875         if (pending_vec < max_bits) {
11876                 kvm_queue_interrupt(vcpu, pending_vec, false);
11877                 pr_debug("Set back pending irq %d\n", pending_vec);
11878                 kvm_make_request(KVM_REQ_EVENT, vcpu);
11879         }
11880         return 0;
11881 }
11882
11883 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11884 {
11885         int mmu_reset_needed = 0;
11886         bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
11887         bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
11888                 !(sregs2->efer & EFER_LMA);
11889         int i, ret;
11890
11891         if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
11892                 return -EINVAL;
11893
11894         if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
11895                 return -EINVAL;
11896
11897         ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
11898                                  &mmu_reset_needed, !valid_pdptrs);
11899         if (ret)
11900                 return ret;
11901
11902         if (valid_pdptrs) {
11903                 for (i = 0; i < 4 ; i++)
11904                         kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
11905
11906                 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
11907                 mmu_reset_needed = 1;
11908                 vcpu->arch.pdptrs_from_userspace = true;
11909         }
11910         if (mmu_reset_needed) {
11911                 kvm_mmu_reset_context(vcpu);
11912                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11913         }
11914         return 0;
11915 }
11916
11917 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
11918                                   struct kvm_sregs *sregs)
11919 {
11920         int ret;
11921
11922         if (vcpu->kvm->arch.has_protected_state &&
11923             vcpu->arch.guest_state_protected)
11924                 return -EINVAL;
11925
11926         vcpu_load(vcpu);
11927         ret = __set_sregs(vcpu, sregs);
11928         vcpu_put(vcpu);
11929         return ret;
11930 }
11931
11932 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm)
11933 {
11934         bool set = false;
11935         struct kvm_vcpu *vcpu;
11936         unsigned long i;
11937
11938         if (!enable_apicv)
11939                 return;
11940
11941         down_write(&kvm->arch.apicv_update_lock);
11942
11943         kvm_for_each_vcpu(i, vcpu, kvm) {
11944                 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) {
11945                         set = true;
11946                         break;
11947                 }
11948         }
11949         __kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set);
11950         up_write(&kvm->arch.apicv_update_lock);
11951 }
11952
11953 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
11954                                         struct kvm_guest_debug *dbg)
11955 {
11956         unsigned long rflags;
11957         int i, r;
11958
11959         if (vcpu->arch.guest_state_protected)
11960                 return -EINVAL;
11961
11962         vcpu_load(vcpu);
11963
11964         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
11965                 r = -EBUSY;
11966                 if (kvm_is_exception_pending(vcpu))
11967                         goto out;
11968                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
11969                         kvm_queue_exception(vcpu, DB_VECTOR);
11970                 else
11971                         kvm_queue_exception(vcpu, BP_VECTOR);
11972         }
11973
11974         /*
11975          * Read rflags as long as potentially injected trace flags are still
11976          * filtered out.
11977          */
11978         rflags = kvm_get_rflags(vcpu);
11979
11980         vcpu->guest_debug = dbg->control;
11981         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
11982                 vcpu->guest_debug = 0;
11983
11984         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
11985                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
11986                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
11987                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
11988         } else {
11989                 for (i = 0; i < KVM_NR_DB_REGS; i++)
11990                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
11991         }
11992         kvm_update_dr7(vcpu);
11993
11994         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
11995                 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
11996
11997         /*
11998          * Trigger an rflags update that will inject or remove the trace
11999          * flags.
12000          */
12001         kvm_set_rflags(vcpu, rflags);
12002
12003         static_call(kvm_x86_update_exception_bitmap)(vcpu);
12004
12005         kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm);
12006
12007         r = 0;
12008
12009 out:
12010         vcpu_put(vcpu);
12011         return r;
12012 }
12013
12014 /*
12015  * Translate a guest virtual address to a guest physical address.
12016  */
12017 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
12018                                     struct kvm_translation *tr)
12019 {
12020         unsigned long vaddr = tr->linear_address;
12021         gpa_t gpa;
12022         int idx;
12023
12024         vcpu_load(vcpu);
12025
12026         idx = srcu_read_lock(&vcpu->kvm->srcu);
12027         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
12028         srcu_read_unlock(&vcpu->kvm->srcu, idx);
12029         tr->physical_address = gpa;
12030         tr->valid = gpa != INVALID_GPA;
12031         tr->writeable = 1;
12032         tr->usermode = 0;
12033
12034         vcpu_put(vcpu);
12035         return 0;
12036 }
12037
12038 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
12039 {
12040         struct fxregs_state *fxsave;
12041
12042         if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
12043                 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
12044
12045         vcpu_load(vcpu);
12046
12047         fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
12048         memcpy(fpu->fpr, fxsave->st_space, 128);
12049         fpu->fcw = fxsave->cwd;
12050         fpu->fsw = fxsave->swd;
12051         fpu->ftwx = fxsave->twd;
12052         fpu->last_opcode = fxsave->fop;
12053         fpu->last_ip = fxsave->rip;
12054         fpu->last_dp = fxsave->rdp;
12055         memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
12056
12057         vcpu_put(vcpu);
12058         return 0;
12059 }
12060
12061 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
12062 {
12063         struct fxregs_state *fxsave;
12064
12065         if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
12066                 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
12067
12068         vcpu_load(vcpu);
12069
12070         fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
12071
12072         memcpy(fxsave->st_space, fpu->fpr, 128);
12073         fxsave->cwd = fpu->fcw;
12074         fxsave->swd = fpu->fsw;
12075         fxsave->twd = fpu->ftwx;
12076         fxsave->fop = fpu->last_opcode;
12077         fxsave->rip = fpu->last_ip;
12078         fxsave->rdp = fpu->last_dp;
12079         memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
12080
12081         vcpu_put(vcpu);
12082         return 0;
12083 }
12084
12085 static void store_regs(struct kvm_vcpu *vcpu)
12086 {
12087         BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
12088
12089         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
12090                 __get_regs(vcpu, &vcpu->run->s.regs.regs);
12091
12092         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
12093                 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
12094
12095         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
12096                 kvm_vcpu_ioctl_x86_get_vcpu_events(
12097                                 vcpu, &vcpu->run->s.regs.events);
12098 }
12099
12100 static int sync_regs(struct kvm_vcpu *vcpu)
12101 {
12102         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
12103                 __set_regs(vcpu, &vcpu->run->s.regs.regs);
12104                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
12105         }
12106
12107         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
12108                 struct kvm_sregs sregs = vcpu->run->s.regs.sregs;
12109
12110                 if (__set_sregs(vcpu, &sregs))
12111                         return -EINVAL;
12112
12113                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
12114         }
12115
12116         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
12117                 struct kvm_vcpu_events events = vcpu->run->s.regs.events;
12118
12119                 if (kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events))
12120                         return -EINVAL;
12121
12122                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
12123         }
12124
12125         return 0;
12126 }
12127
12128 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
12129 {
12130         if (kvm_check_tsc_unstable() && kvm->created_vcpus)
12131                 pr_warn_once("SMP vm created on host with unstable TSC; "
12132                              "guest TSC will not be reliable\n");
12133
12134         if (!kvm->arch.max_vcpu_ids)
12135                 kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS;
12136
12137         if (id >= kvm->arch.max_vcpu_ids)
12138                 return -EINVAL;
12139
12140         return static_call(kvm_x86_vcpu_precreate)(kvm);
12141 }
12142
12143 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
12144 {
12145         struct page *page;
12146         int r;
12147
12148         vcpu->arch.last_vmentry_cpu = -1;
12149         vcpu->arch.regs_avail = ~0;
12150         vcpu->arch.regs_dirty = ~0;
12151
12152         kvm_gpc_init(&vcpu->arch.pv_time, vcpu->kvm);
12153
12154         if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
12155                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
12156         else
12157                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
12158
12159         r = kvm_mmu_create(vcpu);
12160         if (r < 0)
12161                 return r;
12162
12163         r = kvm_create_lapic(vcpu);
12164         if (r < 0)
12165                 goto fail_mmu_destroy;
12166
12167         r = -ENOMEM;
12168
12169         page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
12170         if (!page)
12171                 goto fail_free_lapic;
12172         vcpu->arch.pio_data = page_address(page);
12173
12174         vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64),
12175                                        GFP_KERNEL_ACCOUNT);
12176         vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64),
12177                                             GFP_KERNEL_ACCOUNT);
12178         if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks)
12179                 goto fail_free_mce_banks;
12180         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
12181
12182         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
12183                                 GFP_KERNEL_ACCOUNT))
12184                 goto fail_free_mce_banks;
12185
12186         if (!alloc_emulate_ctxt(vcpu))
12187                 goto free_wbinvd_dirty_mask;
12188
12189         if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) {
12190                 pr_err("failed to allocate vcpu's fpu\n");
12191                 goto free_emulate_ctxt;
12192         }
12193
12194         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
12195         vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
12196
12197         vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
12198
12199         kvm_async_pf_hash_reset(vcpu);
12200
12201         vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap;
12202         kvm_pmu_init(vcpu);
12203
12204         vcpu->arch.pending_external_vector = -1;
12205         vcpu->arch.preempted_in_kernel = false;
12206
12207 #if IS_ENABLED(CONFIG_HYPERV)
12208         vcpu->arch.hv_root_tdp = INVALID_PAGE;
12209 #endif
12210
12211         r = static_call(kvm_x86_vcpu_create)(vcpu);
12212         if (r)
12213                 goto free_guest_fpu;
12214
12215         vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
12216         vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
12217         kvm_xen_init_vcpu(vcpu);
12218         kvm_vcpu_mtrr_init(vcpu);
12219         vcpu_load(vcpu);
12220         kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz);
12221         kvm_vcpu_reset(vcpu, false);
12222         kvm_init_mmu(vcpu);
12223         vcpu_put(vcpu);
12224         return 0;
12225
12226 free_guest_fpu:
12227         fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
12228 free_emulate_ctxt:
12229         kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
12230 free_wbinvd_dirty_mask:
12231         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
12232 fail_free_mce_banks:
12233         kfree(vcpu->arch.mce_banks);
12234         kfree(vcpu->arch.mci_ctl2_banks);
12235         free_page((unsigned long)vcpu->arch.pio_data);
12236 fail_free_lapic:
12237         kvm_free_lapic(vcpu);
12238 fail_mmu_destroy:
12239         kvm_mmu_destroy(vcpu);
12240         return r;
12241 }
12242
12243 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
12244 {
12245         struct kvm *kvm = vcpu->kvm;
12246
12247         if (mutex_lock_killable(&vcpu->mutex))
12248                 return;
12249         vcpu_load(vcpu);
12250         kvm_synchronize_tsc(vcpu, NULL);
12251         vcpu_put(vcpu);
12252
12253         /* poll control enabled by default */
12254         vcpu->arch.msr_kvm_poll_control = 1;
12255
12256         mutex_unlock(&vcpu->mutex);
12257
12258         if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
12259                 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
12260                                                 KVMCLOCK_SYNC_PERIOD);
12261 }
12262
12263 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
12264 {
12265         int idx;
12266
12267         kvmclock_reset(vcpu);
12268
12269         static_call(kvm_x86_vcpu_free)(vcpu);
12270
12271         kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
12272         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
12273         fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
12274
12275         kvm_xen_destroy_vcpu(vcpu);
12276         kvm_hv_vcpu_uninit(vcpu);
12277         kvm_pmu_destroy(vcpu);
12278         kfree(vcpu->arch.mce_banks);
12279         kfree(vcpu->arch.mci_ctl2_banks);
12280         kvm_free_lapic(vcpu);
12281         idx = srcu_read_lock(&vcpu->kvm->srcu);
12282         kvm_mmu_destroy(vcpu);
12283         srcu_read_unlock(&vcpu->kvm->srcu, idx);
12284         free_page((unsigned long)vcpu->arch.pio_data);
12285         kvfree(vcpu->arch.cpuid_entries);
12286 }
12287
12288 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
12289 {
12290         struct kvm_cpuid_entry2 *cpuid_0x1;
12291         unsigned long old_cr0 = kvm_read_cr0(vcpu);
12292         unsigned long new_cr0;
12293
12294         /*
12295          * Several of the "set" flows, e.g. ->set_cr0(), read other registers
12296          * to handle side effects.  RESET emulation hits those flows and relies
12297          * on emulated/virtualized registers, including those that are loaded
12298          * into hardware, to be zeroed at vCPU creation.  Use CRs as a sentinel
12299          * to detect improper or missing initialization.
12300          */
12301         WARN_ON_ONCE(!init_event &&
12302                      (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu)));
12303
12304         /*
12305          * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's
12306          * possible to INIT the vCPU while L2 is active.  Force the vCPU back
12307          * into L1 as EFER.SVME is cleared on INIT (along with all other EFER
12308          * bits), i.e. virtualization is disabled.
12309          */
12310         if (is_guest_mode(vcpu))
12311                 kvm_leave_nested(vcpu);
12312
12313         kvm_lapic_reset(vcpu, init_event);
12314
12315         WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu));
12316         vcpu->arch.hflags = 0;
12317
12318         vcpu->arch.smi_pending = 0;
12319         vcpu->arch.smi_count = 0;
12320         atomic_set(&vcpu->arch.nmi_queued, 0);
12321         vcpu->arch.nmi_pending = 0;
12322         vcpu->arch.nmi_injected = false;
12323         kvm_clear_interrupt_queue(vcpu);
12324         kvm_clear_exception_queue(vcpu);
12325
12326         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
12327         kvm_update_dr0123(vcpu);
12328         vcpu->arch.dr6 = DR6_ACTIVE_LOW;
12329         vcpu->arch.dr7 = DR7_FIXED_1;
12330         kvm_update_dr7(vcpu);
12331
12332         vcpu->arch.cr2 = 0;
12333
12334         kvm_make_request(KVM_REQ_EVENT, vcpu);
12335         vcpu->arch.apf.msr_en_val = 0;
12336         vcpu->arch.apf.msr_int_val = 0;
12337         vcpu->arch.st.msr_val = 0;
12338
12339         kvmclock_reset(vcpu);
12340
12341         kvm_clear_async_pf_completion_queue(vcpu);
12342         kvm_async_pf_hash_reset(vcpu);
12343         vcpu->arch.apf.halted = false;
12344
12345         if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) {
12346                 struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate;
12347
12348                 /*
12349                  * All paths that lead to INIT are required to load the guest's
12350                  * FPU state (because most paths are buried in KVM_RUN).
12351                  */
12352                 if (init_event)
12353                         kvm_put_guest_fpu(vcpu);
12354
12355                 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS);
12356                 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR);
12357
12358                 if (init_event)
12359                         kvm_load_guest_fpu(vcpu);
12360         }
12361
12362         if (!init_event) {
12363                 vcpu->arch.smbase = 0x30000;
12364
12365                 vcpu->arch.msr_misc_features_enables = 0;
12366                 vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL |
12367                                                   MSR_IA32_MISC_ENABLE_BTS_UNAVAIL;
12368
12369                 __kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP);
12370                 __kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true);
12371         }
12372
12373         /* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */
12374         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
12375         kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP);
12376
12377         /*
12378          * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
12379          * if no CPUID match is found.  Note, it's impossible to get a match at
12380          * RESET since KVM emulates RESET before exposing the vCPU to userspace,
12381          * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry
12382          * on RESET.  But, go through the motions in case that's ever remedied.
12383          */
12384         cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1);
12385         kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600);
12386
12387         static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
12388
12389         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
12390         kvm_rip_write(vcpu, 0xfff0);
12391
12392         vcpu->arch.cr3 = 0;
12393         kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
12394
12395         /*
12396          * CR0.CD/NW are set on RESET, preserved on INIT.  Note, some versions
12397          * of Intel's SDM list CD/NW as being set on INIT, but they contradict
12398          * (or qualify) that with a footnote stating that CD/NW are preserved.
12399          */
12400         new_cr0 = X86_CR0_ET;
12401         if (init_event)
12402                 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
12403         else
12404                 new_cr0 |= X86_CR0_NW | X86_CR0_CD;
12405
12406         static_call(kvm_x86_set_cr0)(vcpu, new_cr0);
12407         static_call(kvm_x86_set_cr4)(vcpu, 0);
12408         static_call(kvm_x86_set_efer)(vcpu, 0);
12409         static_call(kvm_x86_update_exception_bitmap)(vcpu);
12410
12411         /*
12412          * On the standard CR0/CR4/EFER modification paths, there are several
12413          * complex conditions determining whether the MMU has to be reset and/or
12414          * which PCIDs have to be flushed.  However, CR0.WP and the paging-related
12415          * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush
12416          * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as
12417          * CR0 will be '0' prior to RESET).  So we only need to check CR0.PG here.
12418          */
12419         if (old_cr0 & X86_CR0_PG) {
12420                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12421                 kvm_mmu_reset_context(vcpu);
12422         }
12423
12424         /*
12425          * Intel's SDM states that all TLB entries are flushed on INIT.  AMD's
12426          * APM states the TLBs are untouched by INIT, but it also states that
12427          * the TLBs are flushed on "External initialization of the processor."
12428          * Flush the guest TLB regardless of vendor, there is no meaningful
12429          * benefit in relying on the guest to flush the TLB immediately after
12430          * INIT.  A spurious TLB flush is benign and likely negligible from a
12431          * performance perspective.
12432          */
12433         if (init_event)
12434                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12435 }
12436 EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
12437
12438 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
12439 {
12440         struct kvm_segment cs;
12441
12442         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
12443         cs.selector = vector << 8;
12444         cs.base = vector << 12;
12445         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
12446         kvm_rip_write(vcpu, 0);
12447 }
12448 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
12449
12450 int kvm_arch_hardware_enable(void)
12451 {
12452         struct kvm *kvm;
12453         struct kvm_vcpu *vcpu;
12454         unsigned long i;
12455         int ret;
12456         u64 local_tsc;
12457         u64 max_tsc = 0;
12458         bool stable, backwards_tsc = false;
12459
12460         kvm_user_return_msr_cpu_online();
12461
12462         ret = kvm_x86_check_processor_compatibility();
12463         if (ret)
12464                 return ret;
12465
12466         ret = static_call(kvm_x86_hardware_enable)();
12467         if (ret != 0)
12468                 return ret;
12469
12470         local_tsc = rdtsc();
12471         stable = !kvm_check_tsc_unstable();
12472         list_for_each_entry(kvm, &vm_list, vm_list) {
12473                 kvm_for_each_vcpu(i, vcpu, kvm) {
12474                         if (!stable && vcpu->cpu == smp_processor_id())
12475                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
12476                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
12477                                 backwards_tsc = true;
12478                                 if (vcpu->arch.last_host_tsc > max_tsc)
12479                                         max_tsc = vcpu->arch.last_host_tsc;
12480                         }
12481                 }
12482         }
12483
12484         /*
12485          * Sometimes, even reliable TSCs go backwards.  This happens on
12486          * platforms that reset TSC during suspend or hibernate actions, but
12487          * maintain synchronization.  We must compensate.  Fortunately, we can
12488          * detect that condition here, which happens early in CPU bringup,
12489          * before any KVM threads can be running.  Unfortunately, we can't
12490          * bring the TSCs fully up to date with real time, as we aren't yet far
12491          * enough into CPU bringup that we know how much real time has actually
12492          * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
12493          * variables that haven't been updated yet.
12494          *
12495          * So we simply find the maximum observed TSC above, then record the
12496          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
12497          * the adjustment will be applied.  Note that we accumulate
12498          * adjustments, in case multiple suspend cycles happen before some VCPU
12499          * gets a chance to run again.  In the event that no KVM threads get a
12500          * chance to run, we will miss the entire elapsed period, as we'll have
12501          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
12502          * loose cycle time.  This isn't too big a deal, since the loss will be
12503          * uniform across all VCPUs (not to mention the scenario is extremely
12504          * unlikely). It is possible that a second hibernate recovery happens
12505          * much faster than a first, causing the observed TSC here to be
12506          * smaller; this would require additional padding adjustment, which is
12507          * why we set last_host_tsc to the local tsc observed here.
12508          *
12509          * N.B. - this code below runs only on platforms with reliable TSC,
12510          * as that is the only way backwards_tsc is set above.  Also note
12511          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
12512          * have the same delta_cyc adjustment applied if backwards_tsc
12513          * is detected.  Note further, this adjustment is only done once,
12514          * as we reset last_host_tsc on all VCPUs to stop this from being
12515          * called multiple times (one for each physical CPU bringup).
12516          *
12517          * Platforms with unreliable TSCs don't have to deal with this, they
12518          * will be compensated by the logic in vcpu_load, which sets the TSC to
12519          * catchup mode.  This will catchup all VCPUs to real time, but cannot
12520          * guarantee that they stay in perfect synchronization.
12521          */
12522         if (backwards_tsc) {
12523                 u64 delta_cyc = max_tsc - local_tsc;
12524                 list_for_each_entry(kvm, &vm_list, vm_list) {
12525                         kvm->arch.backwards_tsc_observed = true;
12526                         kvm_for_each_vcpu(i, vcpu, kvm) {
12527                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
12528                                 vcpu->arch.last_host_tsc = local_tsc;
12529                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
12530                         }
12531
12532                         /*
12533                          * We have to disable TSC offset matching.. if you were
12534                          * booting a VM while issuing an S4 host suspend....
12535                          * you may have some problem.  Solving this issue is
12536                          * left as an exercise to the reader.
12537                          */
12538                         kvm->arch.last_tsc_nsec = 0;
12539                         kvm->arch.last_tsc_write = 0;
12540                 }
12541
12542         }
12543         return 0;
12544 }
12545
12546 void kvm_arch_hardware_disable(void)
12547 {
12548         static_call(kvm_x86_hardware_disable)();
12549         drop_user_return_notifiers();
12550 }
12551
12552 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
12553 {
12554         return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
12555 }
12556
12557 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
12558 {
12559         return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
12560 }
12561
12562 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
12563 {
12564         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
12565
12566         vcpu->arch.l1tf_flush_l1d = true;
12567         if (pmu->version && unlikely(pmu->event_count)) {
12568                 pmu->need_cleanup = true;
12569                 kvm_make_request(KVM_REQ_PMU, vcpu);
12570         }
12571         static_call(kvm_x86_sched_in)(vcpu, cpu);
12572 }
12573
12574 void kvm_arch_free_vm(struct kvm *kvm)
12575 {
12576 #if IS_ENABLED(CONFIG_HYPERV)
12577         kfree(kvm->arch.hv_pa_pg);
12578 #endif
12579         __kvm_arch_free_vm(kvm);
12580 }
12581
12582
12583 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
12584 {
12585         int ret;
12586         unsigned long flags;
12587
12588         if (!kvm_is_vm_type_supported(type))
12589                 return -EINVAL;
12590
12591         kvm->arch.vm_type = type;
12592         kvm->arch.has_private_mem =
12593                 (type == KVM_X86_SW_PROTECTED_VM);
12594
12595         ret = kvm_page_track_init(kvm);
12596         if (ret)
12597                 goto out;
12598
12599         kvm_mmu_init_vm(kvm);
12600
12601         ret = static_call(kvm_x86_vm_init)(kvm);
12602         if (ret)
12603                 goto out_uninit_mmu;
12604
12605         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
12606         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
12607
12608         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
12609         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
12610         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
12611         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
12612                 &kvm->arch.irq_sources_bitmap);
12613
12614         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
12615         mutex_init(&kvm->arch.apic_map_lock);
12616         seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock);
12617         kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
12618
12619         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
12620         pvclock_update_vm_gtod_copy(kvm);
12621         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
12622
12623         kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz;
12624         kvm->arch.guest_can_read_msr_platform_info = true;
12625         kvm->arch.enable_pmu = enable_pmu;
12626
12627 #if IS_ENABLED(CONFIG_HYPERV)
12628         spin_lock_init(&kvm->arch.hv_root_tdp_lock);
12629         kvm->arch.hv_root_tdp = INVALID_PAGE;
12630 #endif
12631
12632         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
12633         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
12634
12635         kvm_apicv_init(kvm);
12636         kvm_hv_init_vm(kvm);
12637         kvm_xen_init_vm(kvm);
12638
12639         return 0;
12640
12641 out_uninit_mmu:
12642         kvm_mmu_uninit_vm(kvm);
12643         kvm_page_track_cleanup(kvm);
12644 out:
12645         return ret;
12646 }
12647
12648 int kvm_arch_post_init_vm(struct kvm *kvm)
12649 {
12650         return kvm_mmu_post_init_vm(kvm);
12651 }
12652
12653 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
12654 {
12655         vcpu_load(vcpu);
12656         kvm_mmu_unload(vcpu);
12657         vcpu_put(vcpu);
12658 }
12659
12660 static void kvm_unload_vcpu_mmus(struct kvm *kvm)
12661 {
12662         unsigned long i;
12663         struct kvm_vcpu *vcpu;
12664
12665         kvm_for_each_vcpu(i, vcpu, kvm) {
12666                 kvm_clear_async_pf_completion_queue(vcpu);
12667                 kvm_unload_vcpu_mmu(vcpu);
12668         }
12669 }
12670
12671 void kvm_arch_sync_events(struct kvm *kvm)
12672 {
12673         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
12674         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
12675         kvm_free_pit(kvm);
12676 }
12677
12678 /**
12679  * __x86_set_memory_region: Setup KVM internal memory slot
12680  *
12681  * @kvm: the kvm pointer to the VM.
12682  * @id: the slot ID to setup.
12683  * @gpa: the GPA to install the slot (unused when @size == 0).
12684  * @size: the size of the slot. Set to zero to uninstall a slot.
12685  *
12686  * This function helps to setup a KVM internal memory slot.  Specify
12687  * @size > 0 to install a new slot, while @size == 0 to uninstall a
12688  * slot.  The return code can be one of the following:
12689  *
12690  *   HVA:           on success (uninstall will return a bogus HVA)
12691  *   -errno:        on error
12692  *
12693  * The caller should always use IS_ERR() to check the return value
12694  * before use.  Note, the KVM internal memory slots are guaranteed to
12695  * remain valid and unchanged until the VM is destroyed, i.e., the
12696  * GPA->HVA translation will not change.  However, the HVA is a user
12697  * address, i.e. its accessibility is not guaranteed, and must be
12698  * accessed via __copy_{to,from}_user().
12699  */
12700 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
12701                                       u32 size)
12702 {
12703         int i, r;
12704         unsigned long hva, old_npages;
12705         struct kvm_memslots *slots = kvm_memslots(kvm);
12706         struct kvm_memory_slot *slot;
12707
12708         /* Called with kvm->slots_lock held.  */
12709         if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
12710                 return ERR_PTR_USR(-EINVAL);
12711
12712         slot = id_to_memslot(slots, id);
12713         if (size) {
12714                 if (slot && slot->npages)
12715                         return ERR_PTR_USR(-EEXIST);
12716
12717                 /*
12718                  * MAP_SHARED to prevent internal slot pages from being moved
12719                  * by fork()/COW.
12720                  */
12721                 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
12722                               MAP_SHARED | MAP_ANONYMOUS, 0);
12723                 if (IS_ERR_VALUE(hva))
12724                         return (void __user *)hva;
12725         } else {
12726                 if (!slot || !slot->npages)
12727                         return NULL;
12728
12729                 old_npages = slot->npages;
12730                 hva = slot->userspace_addr;
12731         }
12732
12733         for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
12734                 struct kvm_userspace_memory_region2 m;
12735
12736                 m.slot = id | (i << 16);
12737                 m.flags = 0;
12738                 m.guest_phys_addr = gpa;
12739                 m.userspace_addr = hva;
12740                 m.memory_size = size;
12741                 r = __kvm_set_memory_region(kvm, &m);
12742                 if (r < 0)
12743                         return ERR_PTR_USR(r);
12744         }
12745
12746         if (!size)
12747                 vm_munmap(hva, old_npages * PAGE_SIZE);
12748
12749         return (void __user *)hva;
12750 }
12751 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
12752
12753 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
12754 {
12755         kvm_mmu_pre_destroy_vm(kvm);
12756 }
12757
12758 void kvm_arch_destroy_vm(struct kvm *kvm)
12759 {
12760         if (current->mm == kvm->mm) {
12761                 /*
12762                  * Free memory regions allocated on behalf of userspace,
12763                  * unless the memory map has changed due to process exit
12764                  * or fd copying.
12765                  */
12766                 mutex_lock(&kvm->slots_lock);
12767                 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
12768                                         0, 0);
12769                 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
12770                                         0, 0);
12771                 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
12772                 mutex_unlock(&kvm->slots_lock);
12773         }
12774         kvm_unload_vcpu_mmus(kvm);
12775         static_call_cond(kvm_x86_vm_destroy)(kvm);
12776         kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
12777         kvm_pic_destroy(kvm);
12778         kvm_ioapic_destroy(kvm);
12779         kvm_destroy_vcpus(kvm);
12780         kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
12781         kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
12782         kvm_mmu_uninit_vm(kvm);
12783         kvm_page_track_cleanup(kvm);
12784         kvm_xen_destroy_vm(kvm);
12785         kvm_hv_destroy_vm(kvm);
12786 }
12787
12788 static void memslot_rmap_free(struct kvm_memory_slot *slot)
12789 {
12790         int i;
12791
12792         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12793                 vfree(slot->arch.rmap[i]);
12794                 slot->arch.rmap[i] = NULL;
12795         }
12796 }
12797
12798 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
12799 {
12800         int i;
12801
12802         memslot_rmap_free(slot);
12803
12804         for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12805                 vfree(slot->arch.lpage_info[i - 1]);
12806                 slot->arch.lpage_info[i - 1] = NULL;
12807         }
12808
12809         kvm_page_track_free_memslot(slot);
12810 }
12811
12812 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages)
12813 {
12814         const int sz = sizeof(*slot->arch.rmap[0]);
12815         int i;
12816
12817         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12818                 int level = i + 1;
12819                 int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12820
12821                 if (slot->arch.rmap[i])
12822                         continue;
12823
12824                 slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
12825                 if (!slot->arch.rmap[i]) {
12826                         memslot_rmap_free(slot);
12827                         return -ENOMEM;
12828                 }
12829         }
12830
12831         return 0;
12832 }
12833
12834 static int kvm_alloc_memslot_metadata(struct kvm *kvm,
12835                                       struct kvm_memory_slot *slot)
12836 {
12837         unsigned long npages = slot->npages;
12838         int i, r;
12839
12840         /*
12841          * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
12842          * old arrays will be freed by __kvm_set_memory_region() if installing
12843          * the new memslot is successful.
12844          */
12845         memset(&slot->arch, 0, sizeof(slot->arch));
12846
12847         if (kvm_memslots_have_rmaps(kvm)) {
12848                 r = memslot_rmap_alloc(slot, npages);
12849                 if (r)
12850                         return r;
12851         }
12852
12853         for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12854                 struct kvm_lpage_info *linfo;
12855                 unsigned long ugfn;
12856                 int lpages;
12857                 int level = i + 1;
12858
12859                 lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12860
12861                 linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
12862                 if (!linfo)
12863                         goto out_free;
12864
12865                 slot->arch.lpage_info[i - 1] = linfo;
12866
12867                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
12868                         linfo[0].disallow_lpage = 1;
12869                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
12870                         linfo[lpages - 1].disallow_lpage = 1;
12871                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
12872                 /*
12873                  * If the gfn and userspace address are not aligned wrt each
12874                  * other, disable large page support for this slot.
12875                  */
12876                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
12877                         unsigned long j;
12878
12879                         for (j = 0; j < lpages; ++j)
12880                                 linfo[j].disallow_lpage = 1;
12881                 }
12882         }
12883
12884 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
12885         kvm_mmu_init_memslot_memory_attributes(kvm, slot);
12886 #endif
12887
12888         if (kvm_page_track_create_memslot(kvm, slot, npages))
12889                 goto out_free;
12890
12891         return 0;
12892
12893 out_free:
12894         memslot_rmap_free(slot);
12895
12896         for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12897                 vfree(slot->arch.lpage_info[i - 1]);
12898                 slot->arch.lpage_info[i - 1] = NULL;
12899         }
12900         return -ENOMEM;
12901 }
12902
12903 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
12904 {
12905         struct kvm_vcpu *vcpu;
12906         unsigned long i;
12907
12908         /*
12909          * memslots->generation has been incremented.
12910          * mmio generation may have reached its maximum value.
12911          */
12912         kvm_mmu_invalidate_mmio_sptes(kvm, gen);
12913
12914         /* Force re-initialization of steal_time cache */
12915         kvm_for_each_vcpu(i, vcpu, kvm)
12916                 kvm_vcpu_kick(vcpu);
12917 }
12918
12919 int kvm_arch_prepare_memory_region(struct kvm *kvm,
12920                                    const struct kvm_memory_slot *old,
12921                                    struct kvm_memory_slot *new,
12922                                    enum kvm_mr_change change)
12923 {
12924         /*
12925          * KVM doesn't support moving memslots when there are external page
12926          * trackers attached to the VM, i.e. if KVMGT is in use.
12927          */
12928         if (change == KVM_MR_MOVE && kvm_page_track_has_external_user(kvm))
12929                 return -EINVAL;
12930
12931         if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) {
12932                 if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn())
12933                         return -EINVAL;
12934
12935                 return kvm_alloc_memslot_metadata(kvm, new);
12936         }
12937
12938         if (change == KVM_MR_FLAGS_ONLY)
12939                 memcpy(&new->arch, &old->arch, sizeof(old->arch));
12940         else if (WARN_ON_ONCE(change != KVM_MR_DELETE))
12941                 return -EIO;
12942
12943         return 0;
12944 }
12945
12946
12947 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
12948 {
12949         int nr_slots;
12950
12951         if (!kvm_x86_ops.cpu_dirty_log_size)
12952                 return;
12953
12954         nr_slots = atomic_read(&kvm->nr_memslots_dirty_logging);
12955         if ((enable && nr_slots == 1) || !nr_slots)
12956                 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
12957 }
12958
12959 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
12960                                      struct kvm_memory_slot *old,
12961                                      const struct kvm_memory_slot *new,
12962                                      enum kvm_mr_change change)
12963 {
12964         u32 old_flags = old ? old->flags : 0;
12965         u32 new_flags = new ? new->flags : 0;
12966         bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES;
12967
12968         /*
12969          * Update CPU dirty logging if dirty logging is being toggled.  This
12970          * applies to all operations.
12971          */
12972         if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)
12973                 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
12974
12975         /*
12976          * Nothing more to do for RO slots (which can't be dirtied and can't be
12977          * made writable) or CREATE/MOVE/DELETE of a slot.
12978          *
12979          * For a memslot with dirty logging disabled:
12980          * CREATE:      No dirty mappings will already exist.
12981          * MOVE/DELETE: The old mappings will already have been cleaned up by
12982          *              kvm_arch_flush_shadow_memslot()
12983          *
12984          * For a memslot with dirty logging enabled:
12985          * CREATE:      No shadow pages exist, thus nothing to write-protect
12986          *              and no dirty bits to clear.
12987          * MOVE/DELETE: The old mappings will already have been cleaned up by
12988          *              kvm_arch_flush_shadow_memslot().
12989          */
12990         if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY))
12991                 return;
12992
12993         /*
12994          * READONLY and non-flags changes were filtered out above, and the only
12995          * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
12996          * logging isn't being toggled on or off.
12997          */
12998         if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)))
12999                 return;
13000
13001         if (!log_dirty_pages) {
13002                 /*
13003                  * Dirty logging tracks sptes in 4k granularity, meaning that
13004                  * large sptes have to be split.  If live migration succeeds,
13005                  * the guest in the source machine will be destroyed and large
13006                  * sptes will be created in the destination.  However, if the
13007                  * guest continues to run in the source machine (for example if
13008                  * live migration fails), small sptes will remain around and
13009                  * cause bad performance.
13010                  *
13011                  * Scan sptes if dirty logging has been stopped, dropping those
13012                  * which can be collapsed into a single large-page spte.  Later
13013                  * page faults will create the large-page sptes.
13014                  */
13015                 kvm_mmu_zap_collapsible_sptes(kvm, new);
13016         } else {
13017                 /*
13018                  * Initially-all-set does not require write protecting any page,
13019                  * because they're all assumed to be dirty.
13020                  */
13021                 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
13022                         return;
13023
13024                 if (READ_ONCE(eager_page_split))
13025                         kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K);
13026
13027                 if (kvm_x86_ops.cpu_dirty_log_size) {
13028                         kvm_mmu_slot_leaf_clear_dirty(kvm, new);
13029                         kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
13030                 } else {
13031                         kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
13032                 }
13033
13034                 /*
13035                  * Unconditionally flush the TLBs after enabling dirty logging.
13036                  * A flush is almost always going to be necessary (see below),
13037                  * and unconditionally flushing allows the helpers to omit
13038                  * the subtly complex checks when removing write access.
13039                  *
13040                  * Do the flush outside of mmu_lock to reduce the amount of
13041                  * time mmu_lock is held.  Flushing after dropping mmu_lock is
13042                  * safe as KVM only needs to guarantee the slot is fully
13043                  * write-protected before returning to userspace, i.e. before
13044                  * userspace can consume the dirty status.
13045                  *
13046                  * Flushing outside of mmu_lock requires KVM to be careful when
13047                  * making decisions based on writable status of an SPTE, e.g. a
13048                  * !writable SPTE doesn't guarantee a CPU can't perform writes.
13049                  *
13050                  * Specifically, KVM also write-protects guest page tables to
13051                  * monitor changes when using shadow paging, and must guarantee
13052                  * no CPUs can write to those page before mmu_lock is dropped.
13053                  * Because CPUs may have stale TLB entries at this point, a
13054                  * !writable SPTE doesn't guarantee CPUs can't perform writes.
13055                  *
13056                  * KVM also allows making SPTES writable outside of mmu_lock,
13057                  * e.g. to allow dirty logging without taking mmu_lock.
13058                  *
13059                  * To handle these scenarios, KVM uses a separate software-only
13060                  * bit (MMU-writable) to track if a SPTE is !writable due to
13061                  * a guest page table being write-protected (KVM clears the
13062                  * MMU-writable flag when write-protecting for shadow paging).
13063                  *
13064                  * The use of MMU-writable is also the primary motivation for
13065                  * the unconditional flush.  Because KVM must guarantee that a
13066                  * CPU doesn't contain stale, writable TLB entries for a
13067                  * !MMU-writable SPTE, KVM must flush if it encounters any
13068                  * MMU-writable SPTE regardless of whether the actual hardware
13069                  * writable bit was set.  I.e. KVM is almost guaranteed to need
13070                  * to flush, while unconditionally flushing allows the "remove
13071                  * write access" helpers to ignore MMU-writable entirely.
13072                  *
13073                  * See is_writable_pte() for more details (the case involving
13074                  * access-tracked SPTEs is particularly relevant).
13075                  */
13076                 kvm_flush_remote_tlbs_memslot(kvm, new);
13077         }
13078 }
13079
13080 void kvm_arch_commit_memory_region(struct kvm *kvm,
13081                                 struct kvm_memory_slot *old,
13082                                 const struct kvm_memory_slot *new,
13083                                 enum kvm_mr_change change)
13084 {
13085         if (change == KVM_MR_DELETE)
13086                 kvm_page_track_delete_slot(kvm, old);
13087
13088         if (!kvm->arch.n_requested_mmu_pages &&
13089             (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) {
13090                 unsigned long nr_mmu_pages;
13091
13092                 nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO;
13093                 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
13094                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
13095         }
13096
13097         kvm_mmu_slot_apply_flags(kvm, old, new, change);
13098
13099         /* Free the arrays associated with the old memslot. */
13100         if (change == KVM_MR_MOVE)
13101                 kvm_arch_free_memslot(kvm, old);
13102 }
13103
13104 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
13105 {
13106         return (is_guest_mode(vcpu) &&
13107                 static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
13108 }
13109
13110 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
13111 {
13112         if (!list_empty_careful(&vcpu->async_pf.done))
13113                 return true;
13114
13115         if (kvm_apic_has_pending_init_or_sipi(vcpu) &&
13116             kvm_apic_init_sipi_allowed(vcpu))
13117                 return true;
13118
13119         if (vcpu->arch.pv.pv_unhalted)
13120                 return true;
13121
13122         if (kvm_is_exception_pending(vcpu))
13123                 return true;
13124
13125         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
13126             (vcpu->arch.nmi_pending &&
13127              static_call(kvm_x86_nmi_allowed)(vcpu, false)))
13128                 return true;
13129
13130 #ifdef CONFIG_KVM_SMM
13131         if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
13132             (vcpu->arch.smi_pending &&
13133              static_call(kvm_x86_smi_allowed)(vcpu, false)))
13134                 return true;
13135 #endif
13136
13137         if (kvm_test_request(KVM_REQ_PMI, vcpu))
13138                 return true;
13139
13140         if (kvm_arch_interrupt_allowed(vcpu) &&
13141             (kvm_cpu_has_interrupt(vcpu) ||
13142             kvm_guest_apic_has_interrupt(vcpu)))
13143                 return true;
13144
13145         if (kvm_hv_has_stimer_pending(vcpu))
13146                 return true;
13147
13148         if (is_guest_mode(vcpu) &&
13149             kvm_x86_ops.nested_ops->has_events &&
13150             kvm_x86_ops.nested_ops->has_events(vcpu))
13151                 return true;
13152
13153         if (kvm_xen_has_pending_events(vcpu))
13154                 return true;
13155
13156         return false;
13157 }
13158
13159 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
13160 {
13161         return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
13162 }
13163
13164 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
13165 {
13166         return kvm_vcpu_apicv_active(vcpu) &&
13167                static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu);
13168 }
13169
13170 bool kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu)
13171 {
13172         return vcpu->arch.preempted_in_kernel;
13173 }
13174
13175 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
13176 {
13177         if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
13178                 return true;
13179
13180         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
13181 #ifdef CONFIG_KVM_SMM
13182                 kvm_test_request(KVM_REQ_SMI, vcpu) ||
13183 #endif
13184                  kvm_test_request(KVM_REQ_EVENT, vcpu))
13185                 return true;
13186
13187         return kvm_arch_dy_has_pending_interrupt(vcpu);
13188 }
13189
13190 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
13191 {
13192         if (vcpu->arch.guest_state_protected)
13193                 return true;
13194
13195         return static_call(kvm_x86_get_cpl)(vcpu) == 0;
13196 }
13197
13198 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
13199 {
13200         return kvm_rip_read(vcpu);
13201 }
13202
13203 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
13204 {
13205         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
13206 }
13207
13208 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
13209 {
13210         return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
13211 }
13212
13213 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
13214 {
13215         /* Can't read the RIP when guest state is protected, just return 0 */
13216         if (vcpu->arch.guest_state_protected)
13217                 return 0;
13218
13219         if (is_64_bit_mode(vcpu))
13220                 return kvm_rip_read(vcpu);
13221         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
13222                      kvm_rip_read(vcpu));
13223 }
13224 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
13225
13226 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
13227 {
13228         return kvm_get_linear_rip(vcpu) == linear_rip;
13229 }
13230 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
13231
13232 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
13233 {
13234         unsigned long rflags;
13235
13236         rflags = static_call(kvm_x86_get_rflags)(vcpu);
13237         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
13238                 rflags &= ~X86_EFLAGS_TF;
13239         return rflags;
13240 }
13241 EXPORT_SYMBOL_GPL(kvm_get_rflags);
13242
13243 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
13244 {
13245         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
13246             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
13247                 rflags |= X86_EFLAGS_TF;
13248         static_call(kvm_x86_set_rflags)(vcpu, rflags);
13249 }
13250
13251 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
13252 {
13253         __kvm_set_rflags(vcpu, rflags);
13254         kvm_make_request(KVM_REQ_EVENT, vcpu);
13255 }
13256 EXPORT_SYMBOL_GPL(kvm_set_rflags);
13257
13258 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
13259 {
13260         BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
13261
13262         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
13263 }
13264
13265 static inline u32 kvm_async_pf_next_probe(u32 key)
13266 {
13267         return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
13268 }
13269
13270 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13271 {
13272         u32 key = kvm_async_pf_hash_fn(gfn);
13273
13274         while (vcpu->arch.apf.gfns[key] != ~0)
13275                 key = kvm_async_pf_next_probe(key);
13276
13277         vcpu->arch.apf.gfns[key] = gfn;
13278 }
13279
13280 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
13281 {
13282         int i;
13283         u32 key = kvm_async_pf_hash_fn(gfn);
13284
13285         for (i = 0; i < ASYNC_PF_PER_VCPU &&
13286                      (vcpu->arch.apf.gfns[key] != gfn &&
13287                       vcpu->arch.apf.gfns[key] != ~0); i++)
13288                 key = kvm_async_pf_next_probe(key);
13289
13290         return key;
13291 }
13292
13293 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13294 {
13295         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
13296 }
13297
13298 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13299 {
13300         u32 i, j, k;
13301
13302         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
13303
13304         if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
13305                 return;
13306
13307         while (true) {
13308                 vcpu->arch.apf.gfns[i] = ~0;
13309                 do {
13310                         j = kvm_async_pf_next_probe(j);
13311                         if (vcpu->arch.apf.gfns[j] == ~0)
13312                                 return;
13313                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
13314                         /*
13315                          * k lies cyclically in ]i,j]
13316                          * |    i.k.j |
13317                          * |....j i.k.| or  |.k..j i...|
13318                          */
13319                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
13320                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
13321                 i = j;
13322         }
13323 }
13324
13325 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
13326 {
13327         u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
13328
13329         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
13330                                       sizeof(reason));
13331 }
13332
13333 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
13334 {
13335         unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13336
13337         return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13338                                              &token, offset, sizeof(token));
13339 }
13340
13341 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
13342 {
13343         unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13344         u32 val;
13345
13346         if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13347                                          &val, offset, sizeof(val)))
13348                 return false;
13349
13350         return !val;
13351 }
13352
13353 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
13354 {
13355
13356         if (!kvm_pv_async_pf_enabled(vcpu))
13357                 return false;
13358
13359         if (vcpu->arch.apf.send_user_only &&
13360             static_call(kvm_x86_get_cpl)(vcpu) == 0)
13361                 return false;
13362
13363         if (is_guest_mode(vcpu)) {
13364                 /*
13365                  * L1 needs to opt into the special #PF vmexits that are
13366                  * used to deliver async page faults.
13367                  */
13368                 return vcpu->arch.apf.delivery_as_pf_vmexit;
13369         } else {
13370                 /*
13371                  * Play it safe in case the guest temporarily disables paging.
13372                  * The real mode IDT in particular is unlikely to have a #PF
13373                  * exception setup.
13374                  */
13375                 return is_paging(vcpu);
13376         }
13377 }
13378
13379 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
13380 {
13381         if (unlikely(!lapic_in_kernel(vcpu) ||
13382                      kvm_event_needs_reinjection(vcpu) ||
13383                      kvm_is_exception_pending(vcpu)))
13384                 return false;
13385
13386         if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
13387                 return false;
13388
13389         /*
13390          * If interrupts are off we cannot even use an artificial
13391          * halt state.
13392          */
13393         return kvm_arch_interrupt_allowed(vcpu);
13394 }
13395
13396 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
13397                                      struct kvm_async_pf *work)
13398 {
13399         struct x86_exception fault;
13400
13401         trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
13402         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
13403
13404         if (kvm_can_deliver_async_pf(vcpu) &&
13405             !apf_put_user_notpresent(vcpu)) {
13406                 fault.vector = PF_VECTOR;
13407                 fault.error_code_valid = true;
13408                 fault.error_code = 0;
13409                 fault.nested_page_fault = false;
13410                 fault.address = work->arch.token;
13411                 fault.async_page_fault = true;
13412                 kvm_inject_page_fault(vcpu, &fault);
13413                 return true;
13414         } else {
13415                 /*
13416                  * It is not possible to deliver a paravirtualized asynchronous
13417                  * page fault, but putting the guest in an artificial halt state
13418                  * can be beneficial nevertheless: if an interrupt arrives, we
13419                  * can deliver it timely and perhaps the guest will schedule
13420                  * another process.  When the instruction that triggered a page
13421                  * fault is retried, hopefully the page will be ready in the host.
13422                  */
13423                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
13424                 return false;
13425         }
13426 }
13427
13428 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
13429                                  struct kvm_async_pf *work)
13430 {
13431         struct kvm_lapic_irq irq = {
13432                 .delivery_mode = APIC_DM_FIXED,
13433                 .vector = vcpu->arch.apf.vec
13434         };
13435
13436         if (work->wakeup_all)
13437                 work->arch.token = ~0; /* broadcast wakeup */
13438         else
13439                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
13440         trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
13441
13442         if ((work->wakeup_all || work->notpresent_injected) &&
13443             kvm_pv_async_pf_enabled(vcpu) &&
13444             !apf_put_user_ready(vcpu, work->arch.token)) {
13445                 vcpu->arch.apf.pageready_pending = true;
13446                 kvm_apic_set_irq(vcpu, &irq, NULL);
13447         }
13448
13449         vcpu->arch.apf.halted = false;
13450         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
13451 }
13452
13453 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
13454 {
13455         kvm_make_request(KVM_REQ_APF_READY, vcpu);
13456         if (!vcpu->arch.apf.pageready_pending)
13457                 kvm_vcpu_kick(vcpu);
13458 }
13459
13460 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
13461 {
13462         if (!kvm_pv_async_pf_enabled(vcpu))
13463                 return true;
13464         else
13465                 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
13466 }
13467
13468 void kvm_arch_start_assignment(struct kvm *kvm)
13469 {
13470         if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
13471                 static_call_cond(kvm_x86_pi_start_assignment)(kvm);
13472 }
13473 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
13474
13475 void kvm_arch_end_assignment(struct kvm *kvm)
13476 {
13477         atomic_dec(&kvm->arch.assigned_device_count);
13478 }
13479 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
13480
13481 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm)
13482 {
13483         return raw_atomic_read(&kvm->arch.assigned_device_count);
13484 }
13485 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
13486
13487 static void kvm_noncoherent_dma_assignment_start_or_stop(struct kvm *kvm)
13488 {
13489         /*
13490          * Non-coherent DMA assignment and de-assignment will affect
13491          * whether KVM honors guest MTRRs and cause changes in memtypes
13492          * in TDP.
13493          * So, pass %true unconditionally to indicate non-coherent DMA was,
13494          * or will be involved, and that zapping SPTEs might be necessary.
13495          */
13496         if (__kvm_mmu_honors_guest_mtrrs(true))
13497                 kvm_zap_gfn_range(kvm, gpa_to_gfn(0), gpa_to_gfn(~0ULL));
13498 }
13499
13500 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
13501 {
13502         if (atomic_inc_return(&kvm->arch.noncoherent_dma_count) == 1)
13503                 kvm_noncoherent_dma_assignment_start_or_stop(kvm);
13504 }
13505 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
13506
13507 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
13508 {
13509         if (!atomic_dec_return(&kvm->arch.noncoherent_dma_count))
13510                 kvm_noncoherent_dma_assignment_start_or_stop(kvm);
13511 }
13512 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
13513
13514 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
13515 {
13516         return atomic_read(&kvm->arch.noncoherent_dma_count);
13517 }
13518 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
13519
13520 bool kvm_arch_has_irq_bypass(void)
13521 {
13522         return enable_apicv && irq_remapping_cap(IRQ_POSTING_CAP);
13523 }
13524
13525 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
13526                                       struct irq_bypass_producer *prod)
13527 {
13528         struct kvm_kernel_irqfd *irqfd =
13529                 container_of(cons, struct kvm_kernel_irqfd, consumer);
13530         int ret;
13531
13532         irqfd->producer = prod;
13533         kvm_arch_start_assignment(irqfd->kvm);
13534         ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm,
13535                                          prod->irq, irqfd->gsi, 1);
13536
13537         if (ret)
13538                 kvm_arch_end_assignment(irqfd->kvm);
13539
13540         return ret;
13541 }
13542
13543 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
13544                                       struct irq_bypass_producer *prod)
13545 {
13546         int ret;
13547         struct kvm_kernel_irqfd *irqfd =
13548                 container_of(cons, struct kvm_kernel_irqfd, consumer);
13549
13550         WARN_ON(irqfd->producer != prod);
13551         irqfd->producer = NULL;
13552
13553         /*
13554          * When producer of consumer is unregistered, we change back to
13555          * remapped mode, so we can re-use the current implementation
13556          * when the irq is masked/disabled or the consumer side (KVM
13557          * int this case doesn't want to receive the interrupts.
13558         */
13559         ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
13560         if (ret)
13561                 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
13562                        " fails: %d\n", irqfd->consumer.token, ret);
13563
13564         kvm_arch_end_assignment(irqfd->kvm);
13565 }
13566
13567 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
13568                                    uint32_t guest_irq, bool set)
13569 {
13570         return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set);
13571 }
13572
13573 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old,
13574                                   struct kvm_kernel_irq_routing_entry *new)
13575 {
13576         if (new->type != KVM_IRQ_ROUTING_MSI)
13577                 return true;
13578
13579         return !!memcmp(&old->msi, &new->msi, sizeof(new->msi));
13580 }
13581
13582 bool kvm_vector_hashing_enabled(void)
13583 {
13584         return vector_hashing;
13585 }
13586
13587 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
13588 {
13589         return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
13590 }
13591 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
13592
13593
13594 int kvm_spec_ctrl_test_value(u64 value)
13595 {
13596         /*
13597          * test that setting IA32_SPEC_CTRL to given value
13598          * is allowed by the host processor
13599          */
13600
13601         u64 saved_value;
13602         unsigned long flags;
13603         int ret = 0;
13604
13605         local_irq_save(flags);
13606
13607         if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
13608                 ret = 1;
13609         else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
13610                 ret = 1;
13611         else
13612                 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
13613
13614         local_irq_restore(flags);
13615
13616         return ret;
13617 }
13618 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
13619
13620 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
13621 {
13622         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
13623         struct x86_exception fault;
13624         u64 access = error_code &
13625                 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
13626
13627         if (!(error_code & PFERR_PRESENT_MASK) ||
13628             mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) {
13629                 /*
13630                  * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
13631                  * tables probably do not match the TLB.  Just proceed
13632                  * with the error code that the processor gave.
13633                  */
13634                 fault.vector = PF_VECTOR;
13635                 fault.error_code_valid = true;
13636                 fault.error_code = error_code;
13637                 fault.nested_page_fault = false;
13638                 fault.address = gva;
13639                 fault.async_page_fault = false;
13640         }
13641         vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
13642 }
13643 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
13644
13645 /*
13646  * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
13647  * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
13648  * indicates whether exit to userspace is needed.
13649  */
13650 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
13651                               struct x86_exception *e)
13652 {
13653         if (r == X86EMUL_PROPAGATE_FAULT) {
13654                 if (KVM_BUG_ON(!e, vcpu->kvm))
13655                         return -EIO;
13656
13657                 kvm_inject_emulated_page_fault(vcpu, e);
13658                 return 1;
13659         }
13660
13661         /*
13662          * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
13663          * while handling a VMX instruction KVM could've handled the request
13664          * correctly by exiting to userspace and performing I/O but there
13665          * doesn't seem to be a real use-case behind such requests, just return
13666          * KVM_EXIT_INTERNAL_ERROR for now.
13667          */
13668         kvm_prepare_emulation_failure_exit(vcpu);
13669
13670         return 0;
13671 }
13672 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
13673
13674 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
13675 {
13676         bool pcid_enabled;
13677         struct x86_exception e;
13678         struct {
13679                 u64 pcid;
13680                 u64 gla;
13681         } operand;
13682         int r;
13683
13684         r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
13685         if (r != X86EMUL_CONTINUE)
13686                 return kvm_handle_memory_failure(vcpu, r, &e);
13687
13688         if (operand.pcid >> 12 != 0) {
13689                 kvm_inject_gp(vcpu, 0);
13690                 return 1;
13691         }
13692
13693         pcid_enabled = kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE);
13694
13695         switch (type) {
13696         case INVPCID_TYPE_INDIV_ADDR:
13697                 /*
13698                  * LAM doesn't apply to addresses that are inputs to TLB
13699                  * invalidation.
13700                  */
13701                 if ((!pcid_enabled && (operand.pcid != 0)) ||
13702                     is_noncanonical_address(operand.gla, vcpu)) {
13703                         kvm_inject_gp(vcpu, 0);
13704                         return 1;
13705                 }
13706                 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
13707                 return kvm_skip_emulated_instruction(vcpu);
13708
13709         case INVPCID_TYPE_SINGLE_CTXT:
13710                 if (!pcid_enabled && (operand.pcid != 0)) {
13711                         kvm_inject_gp(vcpu, 0);
13712                         return 1;
13713                 }
13714
13715                 kvm_invalidate_pcid(vcpu, operand.pcid);
13716                 return kvm_skip_emulated_instruction(vcpu);
13717
13718         case INVPCID_TYPE_ALL_NON_GLOBAL:
13719                 /*
13720                  * Currently, KVM doesn't mark global entries in the shadow
13721                  * page tables, so a non-global flush just degenerates to a
13722                  * global flush. If needed, we could optimize this later by
13723                  * keeping track of global entries in shadow page tables.
13724                  */
13725
13726                 fallthrough;
13727         case INVPCID_TYPE_ALL_INCL_GLOBAL:
13728                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
13729                 return kvm_skip_emulated_instruction(vcpu);
13730
13731         default:
13732                 kvm_inject_gp(vcpu, 0);
13733                 return 1;
13734         }
13735 }
13736 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
13737
13738 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
13739 {
13740         struct kvm_run *run = vcpu->run;
13741         struct kvm_mmio_fragment *frag;
13742         unsigned int len;
13743
13744         BUG_ON(!vcpu->mmio_needed);
13745
13746         /* Complete previous fragment */
13747         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
13748         len = min(8u, frag->len);
13749         if (!vcpu->mmio_is_write)
13750                 memcpy(frag->data, run->mmio.data, len);
13751
13752         if (frag->len <= 8) {
13753                 /* Switch to the next fragment. */
13754                 frag++;
13755                 vcpu->mmio_cur_fragment++;
13756         } else {
13757                 /* Go forward to the next mmio piece. */
13758                 frag->data += len;
13759                 frag->gpa += len;
13760                 frag->len -= len;
13761         }
13762
13763         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
13764                 vcpu->mmio_needed = 0;
13765
13766                 // VMG change, at this point, we're always done
13767                 // RIP has already been advanced
13768                 return 1;
13769         }
13770
13771         // More MMIO is needed
13772         run->mmio.phys_addr = frag->gpa;
13773         run->mmio.len = min(8u, frag->len);
13774         run->mmio.is_write = vcpu->mmio_is_write;
13775         if (run->mmio.is_write)
13776                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
13777         run->exit_reason = KVM_EXIT_MMIO;
13778
13779         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13780
13781         return 0;
13782 }
13783
13784 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13785                           void *data)
13786 {
13787         int handled;
13788         struct kvm_mmio_fragment *frag;
13789
13790         if (!data)
13791                 return -EINVAL;
13792
13793         handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13794         if (handled == bytes)
13795                 return 1;
13796
13797         bytes -= handled;
13798         gpa += handled;
13799         data += handled;
13800
13801         /*TODO: Check if need to increment number of frags */
13802         frag = vcpu->mmio_fragments;
13803         vcpu->mmio_nr_fragments = 1;
13804         frag->len = bytes;
13805         frag->gpa = gpa;
13806         frag->data = data;
13807
13808         vcpu->mmio_needed = 1;
13809         vcpu->mmio_cur_fragment = 0;
13810
13811         vcpu->run->mmio.phys_addr = gpa;
13812         vcpu->run->mmio.len = min(8u, frag->len);
13813         vcpu->run->mmio.is_write = 1;
13814         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
13815         vcpu->run->exit_reason = KVM_EXIT_MMIO;
13816
13817         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13818
13819         return 0;
13820 }
13821 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
13822
13823 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13824                          void *data)
13825 {
13826         int handled;
13827         struct kvm_mmio_fragment *frag;
13828
13829         if (!data)
13830                 return -EINVAL;
13831
13832         handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13833         if (handled == bytes)
13834                 return 1;
13835
13836         bytes -= handled;
13837         gpa += handled;
13838         data += handled;
13839
13840         /*TODO: Check if need to increment number of frags */
13841         frag = vcpu->mmio_fragments;
13842         vcpu->mmio_nr_fragments = 1;
13843         frag->len = bytes;
13844         frag->gpa = gpa;
13845         frag->data = data;
13846
13847         vcpu->mmio_needed = 1;
13848         vcpu->mmio_cur_fragment = 0;
13849
13850         vcpu->run->mmio.phys_addr = gpa;
13851         vcpu->run->mmio.len = min(8u, frag->len);
13852         vcpu->run->mmio.is_write = 0;
13853         vcpu->run->exit_reason = KVM_EXIT_MMIO;
13854
13855         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13856
13857         return 0;
13858 }
13859 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
13860
13861 static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size)
13862 {
13863         vcpu->arch.sev_pio_count -= count;
13864         vcpu->arch.sev_pio_data += count * size;
13865 }
13866
13867 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13868                            unsigned int port);
13869
13870 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
13871 {
13872         int size = vcpu->arch.pio.size;
13873         int port = vcpu->arch.pio.port;
13874
13875         vcpu->arch.pio.count = 0;
13876         if (vcpu->arch.sev_pio_count)
13877                 return kvm_sev_es_outs(vcpu, size, port);
13878         return 1;
13879 }
13880
13881 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13882                            unsigned int port)
13883 {
13884         for (;;) {
13885                 unsigned int count =
13886                         min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13887                 int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
13888
13889                 /* memcpy done already by emulator_pio_out.  */
13890                 advance_sev_es_emulated_pio(vcpu, count, size);
13891                 if (!ret)
13892                         break;
13893
13894                 /* Emulation done by the kernel.  */
13895                 if (!vcpu->arch.sev_pio_count)
13896                         return 1;
13897         }
13898
13899         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
13900         return 0;
13901 }
13902
13903 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13904                           unsigned int port);
13905
13906 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
13907 {
13908         unsigned count = vcpu->arch.pio.count;
13909         int size = vcpu->arch.pio.size;
13910         int port = vcpu->arch.pio.port;
13911
13912         complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
13913         advance_sev_es_emulated_pio(vcpu, count, size);
13914         if (vcpu->arch.sev_pio_count)
13915                 return kvm_sev_es_ins(vcpu, size, port);
13916         return 1;
13917 }
13918
13919 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13920                           unsigned int port)
13921 {
13922         for (;;) {
13923                 unsigned int count =
13924                         min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13925                 if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count))
13926                         break;
13927
13928                 /* Emulation done by the kernel.  */
13929                 advance_sev_es_emulated_pio(vcpu, count, size);
13930                 if (!vcpu->arch.sev_pio_count)
13931                         return 1;
13932         }
13933
13934         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
13935         return 0;
13936 }
13937
13938 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
13939                          unsigned int port, void *data,  unsigned int count,
13940                          int in)
13941 {
13942         vcpu->arch.sev_pio_data = data;
13943         vcpu->arch.sev_pio_count = count;
13944         return in ? kvm_sev_es_ins(vcpu, size, port)
13945                   : kvm_sev_es_outs(vcpu, size, port);
13946 }
13947 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
13948
13949 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
13950 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
13951 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
13952 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
13953 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
13954 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
13955 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
13956 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter);
13957 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
13958 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
13959 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
13960 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
13961 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
13962 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
13963 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
13964 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
13965 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
13966 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
13967 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
13968 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
13969 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
13970 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
13971 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath);
13972 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell);
13973 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq);
13974 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
13975 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
13976 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
13977 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);
13978
13979 static int __init kvm_x86_init(void)
13980 {
13981         kvm_mmu_x86_module_init();
13982         mitigate_smt_rsb &= boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible();
13983         return 0;
13984 }
13985 module_init(kvm_x86_init);
13986
13987 static void __exit kvm_x86_exit(void)
13988 {
13989         WARN_ON_ONCE(static_branch_unlikely(&kvm_has_noapic_vcpu));
13990 }
13991 module_exit(kvm_x86_exit);
This page took 0.823361 seconds and 4 git commands to generate.