1 // SPDX-License-Identifier: GPL-2.0-only
3 * Kernel-based Virtual Machine driver for Linux
5 * derived from drivers/kvm/kvm_main.c
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright (C) 2008 Qumranet, Inc.
9 * Copyright IBM Corporation, 2008
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
20 #include <linux/kvm_host.h>
26 #include "kvm_cache_regs.h"
27 #include "kvm_emulate.h"
28 #include "mmu/page_track.h"
37 #include <linux/clocksource.h>
38 #include <linux/interrupt.h>
39 #include <linux/kvm.h>
41 #include <linux/vmalloc.h>
42 #include <linux/export.h>
43 #include <linux/moduleparam.h>
44 #include <linux/mman.h>
45 #include <linux/highmem.h>
46 #include <linux/iommu.h>
47 #include <linux/cpufreq.h>
48 #include <linux/user-return-notifier.h>
49 #include <linux/srcu.h>
50 #include <linux/slab.h>
51 #include <linux/perf_event.h>
52 #include <linux/uaccess.h>
53 #include <linux/hash.h>
54 #include <linux/pci.h>
55 #include <linux/timekeeper_internal.h>
56 #include <linux/pvclock_gtod.h>
57 #include <linux/kvm_irqfd.h>
58 #include <linux/irqbypass.h>
59 #include <linux/sched/stat.h>
60 #include <linux/sched/isolation.h>
61 #include <linux/mem_encrypt.h>
62 #include <linux/entry-kvm.h>
63 #include <linux/suspend.h>
64 #include <linux/smp.h>
66 #include <trace/events/ipi.h>
67 #include <trace/events/kvm.h>
69 #include <asm/debugreg.h>
74 #include <linux/kernel_stat.h>
75 #include <asm/fpu/api.h>
76 #include <asm/fpu/xcr.h>
77 #include <asm/fpu/xstate.h>
78 #include <asm/pvclock.h>
79 #include <asm/div64.h>
80 #include <asm/irq_remapping.h>
81 #include <asm/mshyperv.h>
82 #include <asm/hypervisor.h>
83 #include <asm/tlbflush.h>
84 #include <asm/intel_pt.h>
85 #include <asm/emulate_prefix.h>
87 #include <clocksource/hyperv_timer.h>
89 #define CREATE_TRACE_POINTS
92 #define MAX_IO_MSRS 256
93 #define KVM_MAX_MCE_BANKS 32
96 * Note, kvm_caps fields should *never* have default values, all fields must be
97 * recomputed from scratch during vendor module load, e.g. to account for a
98 * vendor module being reloaded with different module parameters.
100 struct kvm_caps kvm_caps __read_mostly;
101 EXPORT_SYMBOL_GPL(kvm_caps);
103 #define ERR_PTR_USR(e) ((void __user *)ERR_PTR(e))
105 #define emul_to_vcpu(ctxt) \
106 ((struct kvm_vcpu *)(ctxt)->vcpu)
109 * - enable syscall per default because its emulated by KVM
110 * - enable LME and LMA per default on 64 bit KVM
114 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
116 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
119 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
121 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
123 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE
125 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
126 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
128 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
129 static void process_nmi(struct kvm_vcpu *vcpu);
130 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
131 static void store_regs(struct kvm_vcpu *vcpu);
132 static int sync_regs(struct kvm_vcpu *vcpu);
133 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu);
135 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
136 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
138 static DEFINE_MUTEX(vendor_module_lock);
139 struct kvm_x86_ops kvm_x86_ops __read_mostly;
141 #define KVM_X86_OP(func) \
142 DEFINE_STATIC_CALL_NULL(kvm_x86_##func, \
143 *(((struct kvm_x86_ops *)0)->func));
144 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
145 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
146 #include <asm/kvm-x86-ops.h>
147 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
148 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
150 static bool __read_mostly ignore_msrs = 0;
151 module_param(ignore_msrs, bool, 0644);
153 bool __read_mostly report_ignored_msrs = true;
154 module_param(report_ignored_msrs, bool, 0644);
155 EXPORT_SYMBOL_GPL(report_ignored_msrs);
157 unsigned int min_timer_period_us = 200;
158 module_param(min_timer_period_us, uint, 0644);
160 static bool __read_mostly kvmclock_periodic_sync = true;
161 module_param(kvmclock_periodic_sync, bool, 0444);
163 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
164 static u32 __read_mostly tsc_tolerance_ppm = 250;
165 module_param(tsc_tolerance_ppm, uint, 0644);
167 static bool __read_mostly vector_hashing = true;
168 module_param(vector_hashing, bool, 0444);
170 bool __read_mostly enable_vmware_backdoor = false;
171 module_param(enable_vmware_backdoor, bool, 0444);
172 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
175 * Flags to manipulate forced emulation behavior (any non-zero value will
176 * enable forced emulation).
178 #define KVM_FEP_CLEAR_RFLAGS_RF BIT(1)
179 static int __read_mostly force_emulation_prefix;
180 module_param(force_emulation_prefix, int, 0644);
182 int __read_mostly pi_inject_timer = -1;
183 module_param(pi_inject_timer, bint, 0644);
185 /* Enable/disable PMU virtualization */
186 bool __read_mostly enable_pmu = true;
187 EXPORT_SYMBOL_GPL(enable_pmu);
188 module_param(enable_pmu, bool, 0444);
190 bool __read_mostly eager_page_split = true;
191 module_param(eager_page_split, bool, 0644);
193 /* Enable/disable SMT_RSB bug mitigation */
194 static bool __read_mostly mitigate_smt_rsb;
195 module_param(mitigate_smt_rsb, bool, 0444);
198 * Restoring the host value for MSRs that are only consumed when running in
199 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
200 * returns to userspace, i.e. the kernel can run with the guest's value.
202 #define KVM_MAX_NR_USER_RETURN_MSRS 16
204 struct kvm_user_return_msrs {
205 struct user_return_notifier urn;
207 struct kvm_user_return_msr_values {
210 } values[KVM_MAX_NR_USER_RETURN_MSRS];
213 u32 __read_mostly kvm_nr_uret_msrs;
214 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
215 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
216 static struct kvm_user_return_msrs __percpu *user_return_msrs;
218 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
219 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
220 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
221 | XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE)
223 u64 __read_mostly host_efer;
224 EXPORT_SYMBOL_GPL(host_efer);
226 bool __read_mostly allow_smaller_maxphyaddr = 0;
227 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
229 bool __read_mostly enable_apicv = true;
230 EXPORT_SYMBOL_GPL(enable_apicv);
232 u64 __read_mostly host_xss;
233 EXPORT_SYMBOL_GPL(host_xss);
235 u64 __read_mostly host_arch_capabilities;
236 EXPORT_SYMBOL_GPL(host_arch_capabilities);
238 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
239 KVM_GENERIC_VM_STATS(),
240 STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
241 STATS_DESC_COUNTER(VM, mmu_pte_write),
242 STATS_DESC_COUNTER(VM, mmu_pde_zapped),
243 STATS_DESC_COUNTER(VM, mmu_flooded),
244 STATS_DESC_COUNTER(VM, mmu_recycled),
245 STATS_DESC_COUNTER(VM, mmu_cache_miss),
246 STATS_DESC_ICOUNTER(VM, mmu_unsync),
247 STATS_DESC_ICOUNTER(VM, pages_4k),
248 STATS_DESC_ICOUNTER(VM, pages_2m),
249 STATS_DESC_ICOUNTER(VM, pages_1g),
250 STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
251 STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
252 STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
255 const struct kvm_stats_header kvm_vm_stats_header = {
256 .name_size = KVM_STATS_NAME_SIZE,
257 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
258 .id_offset = sizeof(struct kvm_stats_header),
259 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
260 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
261 sizeof(kvm_vm_stats_desc),
264 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
265 KVM_GENERIC_VCPU_STATS(),
266 STATS_DESC_COUNTER(VCPU, pf_taken),
267 STATS_DESC_COUNTER(VCPU, pf_fixed),
268 STATS_DESC_COUNTER(VCPU, pf_emulate),
269 STATS_DESC_COUNTER(VCPU, pf_spurious),
270 STATS_DESC_COUNTER(VCPU, pf_fast),
271 STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created),
272 STATS_DESC_COUNTER(VCPU, pf_guest),
273 STATS_DESC_COUNTER(VCPU, tlb_flush),
274 STATS_DESC_COUNTER(VCPU, invlpg),
275 STATS_DESC_COUNTER(VCPU, exits),
276 STATS_DESC_COUNTER(VCPU, io_exits),
277 STATS_DESC_COUNTER(VCPU, mmio_exits),
278 STATS_DESC_COUNTER(VCPU, signal_exits),
279 STATS_DESC_COUNTER(VCPU, irq_window_exits),
280 STATS_DESC_COUNTER(VCPU, nmi_window_exits),
281 STATS_DESC_COUNTER(VCPU, l1d_flush),
282 STATS_DESC_COUNTER(VCPU, halt_exits),
283 STATS_DESC_COUNTER(VCPU, request_irq_exits),
284 STATS_DESC_COUNTER(VCPU, irq_exits),
285 STATS_DESC_COUNTER(VCPU, host_state_reload),
286 STATS_DESC_COUNTER(VCPU, fpu_reload),
287 STATS_DESC_COUNTER(VCPU, insn_emulation),
288 STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
289 STATS_DESC_COUNTER(VCPU, hypercalls),
290 STATS_DESC_COUNTER(VCPU, irq_injections),
291 STATS_DESC_COUNTER(VCPU, nmi_injections),
292 STATS_DESC_COUNTER(VCPU, req_event),
293 STATS_DESC_COUNTER(VCPU, nested_run),
294 STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
295 STATS_DESC_COUNTER(VCPU, directed_yield_successful),
296 STATS_DESC_COUNTER(VCPU, preemption_reported),
297 STATS_DESC_COUNTER(VCPU, preemption_other),
298 STATS_DESC_IBOOLEAN(VCPU, guest_mode),
299 STATS_DESC_COUNTER(VCPU, notify_window_exits),
302 const struct kvm_stats_header kvm_vcpu_stats_header = {
303 .name_size = KVM_STATS_NAME_SIZE,
304 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
305 .id_offset = sizeof(struct kvm_stats_header),
306 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
307 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
308 sizeof(kvm_vcpu_stats_desc),
311 u64 __read_mostly host_xcr0;
313 static struct kmem_cache *x86_emulator_cache;
316 * When called, it means the previous get/set msr reached an invalid msr.
317 * Return true if we want to ignore/silent this failed msr access.
319 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write)
321 const char *op = write ? "wrmsr" : "rdmsr";
324 if (report_ignored_msrs)
325 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
330 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
336 static struct kmem_cache *kvm_alloc_emulator_cache(void)
338 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
339 unsigned int size = sizeof(struct x86_emulate_ctxt);
341 return kmem_cache_create_usercopy("x86_emulator", size,
342 __alignof__(struct x86_emulate_ctxt),
343 SLAB_ACCOUNT, useroffset,
344 size - useroffset, NULL);
347 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
349 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
352 for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
353 vcpu->arch.apf.gfns[i] = ~0;
356 static void kvm_on_user_return(struct user_return_notifier *urn)
359 struct kvm_user_return_msrs *msrs
360 = container_of(urn, struct kvm_user_return_msrs, urn);
361 struct kvm_user_return_msr_values *values;
365 * Disabling irqs at this point since the following code could be
366 * interrupted and executed through kvm_arch_hardware_disable()
368 local_irq_save(flags);
369 if (msrs->registered) {
370 msrs->registered = false;
371 user_return_notifier_unregister(urn);
373 local_irq_restore(flags);
374 for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
375 values = &msrs->values[slot];
376 if (values->host != values->curr) {
377 wrmsrl(kvm_uret_msrs_list[slot], values->host);
378 values->curr = values->host;
383 static int kvm_probe_user_return_msr(u32 msr)
389 ret = rdmsrl_safe(msr, &val);
392 ret = wrmsrl_safe(msr, val);
398 int kvm_add_user_return_msr(u32 msr)
400 BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
402 if (kvm_probe_user_return_msr(msr))
405 kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
406 return kvm_nr_uret_msrs++;
408 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
410 int kvm_find_user_return_msr(u32 msr)
414 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
415 if (kvm_uret_msrs_list[i] == msr)
420 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
422 static void kvm_user_return_msr_cpu_online(void)
424 unsigned int cpu = smp_processor_id();
425 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
429 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
430 rdmsrl_safe(kvm_uret_msrs_list[i], &value);
431 msrs->values[i].host = value;
432 msrs->values[i].curr = value;
436 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
438 unsigned int cpu = smp_processor_id();
439 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
442 value = (value & mask) | (msrs->values[slot].host & ~mask);
443 if (value == msrs->values[slot].curr)
445 err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
449 msrs->values[slot].curr = value;
450 if (!msrs->registered) {
451 msrs->urn.on_user_return = kvm_on_user_return;
452 user_return_notifier_register(&msrs->urn);
453 msrs->registered = true;
457 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
459 static void drop_user_return_notifiers(void)
461 unsigned int cpu = smp_processor_id();
462 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
464 if (msrs->registered)
465 kvm_on_user_return(&msrs->urn);
468 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
470 return vcpu->arch.apic_base;
473 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
475 return kvm_apic_mode(kvm_get_apic_base(vcpu));
477 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
479 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
481 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
482 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
483 u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
484 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
486 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
488 if (!msr_info->host_initiated) {
489 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
491 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
495 kvm_lapic_set_base(vcpu, msr_info->data);
496 kvm_recalculate_apic_map(vcpu->kvm);
501 * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
503 * Hardware virtualization extension instructions may fault if a reboot turns
504 * off virtualization while processes are running. Usually after catching the
505 * fault we just panic; during reboot instead the instruction is ignored.
507 noinstr void kvm_spurious_fault(void)
509 /* Fault while not rebooting. We want the trace. */
510 BUG_ON(!kvm_rebooting);
512 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
514 #define EXCPT_BENIGN 0
515 #define EXCPT_CONTRIBUTORY 1
518 static int exception_class(int vector)
528 return EXCPT_CONTRIBUTORY;
535 #define EXCPT_FAULT 0
537 #define EXCPT_ABORT 2
538 #define EXCPT_INTERRUPT 3
541 static int exception_type(int vector)
545 if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
546 return EXCPT_INTERRUPT;
551 * #DBs can be trap-like or fault-like, the caller must check other CPU
552 * state, e.g. DR6, to determine whether a #DB is a trap or fault.
554 if (mask & (1 << DB_VECTOR))
557 if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR)))
560 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
563 /* Reserved exceptions will result in fault */
567 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu,
568 struct kvm_queued_exception *ex)
570 if (!ex->has_payload)
573 switch (ex->vector) {
576 * "Certain debug exceptions may clear bit 0-3. The
577 * remaining contents of the DR6 register are never
578 * cleared by the processor".
580 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
582 * In order to reflect the #DB exception payload in guest
583 * dr6, three components need to be considered: active low
584 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
586 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
587 * In the target guest dr6:
588 * FIXED_1 bits should always be set.
589 * Active low bits should be cleared if 1-setting in payload.
590 * Active high bits should be set if 1-setting in payload.
592 * Note, the payload is compatible with the pending debug
593 * exceptions/exit qualification under VMX, that active_low bits
594 * are active high in payload.
595 * So they need to be flipped for DR6.
597 vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
598 vcpu->arch.dr6 |= ex->payload;
599 vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW;
602 * The #DB payload is defined as compatible with the 'pending
603 * debug exceptions' field under VMX, not DR6. While bit 12 is
604 * defined in the 'pending debug exceptions' field (enabled
605 * breakpoint), it is reserved and must be zero in DR6.
607 vcpu->arch.dr6 &= ~BIT(12);
610 vcpu->arch.cr2 = ex->payload;
614 ex->has_payload = false;
617 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
619 static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector,
620 bool has_error_code, u32 error_code,
621 bool has_payload, unsigned long payload)
623 struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit;
626 ex->injected = false;
628 ex->has_error_code = has_error_code;
629 ex->error_code = error_code;
630 ex->has_payload = has_payload;
631 ex->payload = payload;
634 /* Forcibly leave the nested mode in cases like a vCPU reset */
635 static void kvm_leave_nested(struct kvm_vcpu *vcpu)
637 kvm_x86_ops.nested_ops->leave_nested(vcpu);
640 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
641 unsigned nr, bool has_error, u32 error_code,
642 bool has_payload, unsigned long payload, bool reinject)
647 kvm_make_request(KVM_REQ_EVENT, vcpu);
650 * If the exception is destined for L2 and isn't being reinjected,
651 * morph it to a VM-Exit if L1 wants to intercept the exception. A
652 * previously injected exception is not checked because it was checked
653 * when it was original queued, and re-checking is incorrect if _L1_
654 * injected the exception, in which case it's exempt from interception.
656 if (!reinject && is_guest_mode(vcpu) &&
657 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) {
658 kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code,
659 has_payload, payload);
663 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
667 * On VM-Entry, an exception can be pending if and only
668 * if event injection was blocked by nested_run_pending.
669 * In that case, however, vcpu_enter_guest() requests an
670 * immediate exit, and the guest shouldn't proceed far
671 * enough to need reinjection.
673 WARN_ON_ONCE(kvm_is_exception_pending(vcpu));
674 vcpu->arch.exception.injected = true;
675 if (WARN_ON_ONCE(has_payload)) {
677 * A reinjected event has already
678 * delivered its payload.
684 vcpu->arch.exception.pending = true;
685 vcpu->arch.exception.injected = false;
687 vcpu->arch.exception.has_error_code = has_error;
688 vcpu->arch.exception.vector = nr;
689 vcpu->arch.exception.error_code = error_code;
690 vcpu->arch.exception.has_payload = has_payload;
691 vcpu->arch.exception.payload = payload;
692 if (!is_guest_mode(vcpu))
693 kvm_deliver_exception_payload(vcpu,
694 &vcpu->arch.exception);
698 /* to check exception */
699 prev_nr = vcpu->arch.exception.vector;
700 if (prev_nr == DF_VECTOR) {
701 /* triple fault -> shutdown */
702 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
705 class1 = exception_class(prev_nr);
706 class2 = exception_class(nr);
707 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) ||
708 (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
710 * Synthesize #DF. Clear the previously injected or pending
711 * exception so as not to incorrectly trigger shutdown.
713 vcpu->arch.exception.injected = false;
714 vcpu->arch.exception.pending = false;
716 kvm_queue_exception_e(vcpu, DF_VECTOR, 0);
718 /* replace previous exception with a new one in a hope
719 that instruction re-execution will regenerate lost
725 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
727 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
729 EXPORT_SYMBOL_GPL(kvm_queue_exception);
731 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
733 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
735 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
737 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
738 unsigned long payload)
740 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
742 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
744 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
745 u32 error_code, unsigned long payload)
747 kvm_multiple_exception(vcpu, nr, true, error_code,
748 true, payload, false);
751 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
754 kvm_inject_gp(vcpu, 0);
756 return kvm_skip_emulated_instruction(vcpu);
760 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
762 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err)
765 kvm_inject_gp(vcpu, 0);
769 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
770 EMULTYPE_COMPLETE_USER_EXIT);
773 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
775 ++vcpu->stat.pf_guest;
778 * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of
779 * whether or not L1 wants to intercept "regular" #PF.
781 if (is_guest_mode(vcpu) && fault->async_page_fault)
782 kvm_queue_exception_vmexit(vcpu, PF_VECTOR,
783 true, fault->error_code,
784 true, fault->address);
786 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
790 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
791 struct x86_exception *fault)
793 struct kvm_mmu *fault_mmu;
794 WARN_ON_ONCE(fault->vector != PF_VECTOR);
796 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
800 * Invalidate the TLB entry for the faulting address, if it exists,
801 * else the access will fault indefinitely (and to emulate hardware).
803 if ((fault->error_code & PFERR_PRESENT_MASK) &&
804 !(fault->error_code & PFERR_RSVD_MASK))
805 kvm_mmu_invalidate_addr(vcpu, fault_mmu, fault->address,
806 KVM_MMU_ROOT_CURRENT);
808 fault_mmu->inject_page_fault(vcpu, fault);
810 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
812 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
814 atomic_inc(&vcpu->arch.nmi_queued);
815 kvm_make_request(KVM_REQ_NMI, vcpu);
818 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
820 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
822 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
824 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
826 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
828 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
831 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
832 * a #GP and return false.
834 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
836 if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
838 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
842 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
844 if ((dr != 4 && dr != 5) || !kvm_is_cr4_bit_set(vcpu, X86_CR4_DE))
847 kvm_queue_exception(vcpu, UD_VECTOR);
850 EXPORT_SYMBOL_GPL(kvm_require_dr);
852 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
854 return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
858 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise.
860 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
862 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
863 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
867 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
870 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated
873 real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn),
874 PFERR_USER_MASK | PFERR_WRITE_MASK, NULL);
875 if (real_gpa == INVALID_GPA)
878 /* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */
879 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte,
880 cr3 & GENMASK(11, 5), sizeof(pdpte));
884 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
885 if ((pdpte[i] & PT_PRESENT_MASK) &&
886 (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
892 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled.
893 * Shadow page roots need to be reconstructed instead.
895 if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)))
896 kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT);
898 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
899 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
900 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
901 vcpu->arch.pdptrs_from_userspace = false;
905 EXPORT_SYMBOL_GPL(load_pdptrs);
907 static bool kvm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
910 if (cr0 & 0xffffffff00000000UL)
914 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
917 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
920 return static_call(kvm_x86_is_valid_cr0)(vcpu, cr0);
923 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
926 * CR0.WP is incorporated into the MMU role, but only for non-nested,
927 * indirect shadow MMUs. If paging is disabled, no updates are needed
928 * as there are no permission bits to emulate. If TDP is enabled, the
929 * MMU's metadata needs to be updated, e.g. so that emulating guest
930 * translations does the right thing, but there's no need to unload the
931 * root as CR0.WP doesn't affect SPTEs.
933 if ((cr0 ^ old_cr0) == X86_CR0_WP) {
934 if (!(cr0 & X86_CR0_PG))
943 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
944 kvm_clear_async_pf_completion_queue(vcpu);
945 kvm_async_pf_hash_reset(vcpu);
948 * Clearing CR0.PG is defined to flush the TLB from the guest's
951 if (!(cr0 & X86_CR0_PG))
952 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
955 if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
956 kvm_mmu_reset_context(vcpu);
958 if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
959 kvm_mmu_honors_guest_mtrrs(vcpu->kvm) &&
960 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
961 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
963 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
965 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
967 unsigned long old_cr0 = kvm_read_cr0(vcpu);
969 if (!kvm_is_valid_cr0(vcpu, cr0))
974 /* Write to CR0 reserved bits are ignored, even on Intel. */
975 cr0 &= ~CR0_RESERVED_BITS;
978 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
979 (cr0 & X86_CR0_PG)) {
984 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
989 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
990 is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) &&
991 !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
994 if (!(cr0 & X86_CR0_PG) &&
995 (is_64_bit_mode(vcpu) || kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)))
998 static_call(kvm_x86_set_cr0)(vcpu, cr0);
1000 kvm_post_set_cr0(vcpu, old_cr0, cr0);
1004 EXPORT_SYMBOL_GPL(kvm_set_cr0);
1006 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
1008 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
1010 EXPORT_SYMBOL_GPL(kvm_lmsw);
1012 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
1014 if (vcpu->arch.guest_state_protected)
1017 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) {
1019 if (vcpu->arch.xcr0 != host_xcr0)
1020 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
1022 if (guest_can_use(vcpu, X86_FEATURE_XSAVES) &&
1023 vcpu->arch.ia32_xss != host_xss)
1024 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
1027 if (cpu_feature_enabled(X86_FEATURE_PKU) &&
1028 vcpu->arch.pkru != vcpu->arch.host_pkru &&
1029 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1030 kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE)))
1031 write_pkru(vcpu->arch.pkru);
1033 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
1035 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
1037 if (vcpu->arch.guest_state_protected)
1040 if (cpu_feature_enabled(X86_FEATURE_PKU) &&
1041 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1042 kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) {
1043 vcpu->arch.pkru = rdpkru();
1044 if (vcpu->arch.pkru != vcpu->arch.host_pkru)
1045 write_pkru(vcpu->arch.host_pkru);
1048 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) {
1050 if (vcpu->arch.xcr0 != host_xcr0)
1051 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
1053 if (guest_can_use(vcpu, X86_FEATURE_XSAVES) &&
1054 vcpu->arch.ia32_xss != host_xss)
1055 wrmsrl(MSR_IA32_XSS, host_xss);
1059 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
1061 #ifdef CONFIG_X86_64
1062 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu)
1064 return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC;
1068 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
1071 u64 old_xcr0 = vcpu->arch.xcr0;
1074 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
1075 if (index != XCR_XFEATURE_ENABLED_MASK)
1077 if (!(xcr0 & XFEATURE_MASK_FP))
1079 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
1083 * Do not allow the guest to set bits that we do not support
1084 * saving. However, xcr0 bit 0 is always set, even if the
1085 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()).
1087 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
1088 if (xcr0 & ~valid_bits)
1091 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1092 (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1095 if (xcr0 & XFEATURE_MASK_AVX512) {
1096 if (!(xcr0 & XFEATURE_MASK_YMM))
1098 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1102 if ((xcr0 & XFEATURE_MASK_XTILE) &&
1103 ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE))
1106 vcpu->arch.xcr0 = xcr0;
1108 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1109 kvm_update_cpuid_runtime(vcpu);
1113 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1115 /* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */
1116 if (static_call(kvm_x86_get_cpl)(vcpu) != 0 ||
1117 __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1118 kvm_inject_gp(vcpu, 0);
1122 return kvm_skip_emulated_instruction(vcpu);
1124 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1126 bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1128 if (cr4 & cr4_reserved_bits)
1131 if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1136 EXPORT_SYMBOL_GPL(__kvm_is_valid_cr4);
1138 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1140 return __kvm_is_valid_cr4(vcpu, cr4) &&
1141 static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1144 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1146 if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS)
1147 kvm_mmu_reset_context(vcpu);
1150 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB
1151 * according to the SDM; however, stale prev_roots could be reused
1152 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we
1153 * free them all. This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST
1154 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed,
1158 (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE))
1159 kvm_mmu_unload(vcpu);
1162 * The TLB has to be flushed for all PCIDs if any of the following
1163 * (architecturally required) changes happen:
1164 * - CR4.PCIDE is changed from 1 to 0
1165 * - CR4.PGE is toggled
1167 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT.
1169 if (((cr4 ^ old_cr4) & X86_CR4_PGE) ||
1170 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1171 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1174 * The TLB has to be flushed for the current PCID if any of the
1175 * following (architecturally required) changes happen:
1176 * - CR4.SMEP is changed from 0 to 1
1177 * - CR4.PAE is toggled
1179 else if (((cr4 ^ old_cr4) & X86_CR4_PAE) ||
1180 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP)))
1181 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1184 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1186 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1188 unsigned long old_cr4 = kvm_read_cr4(vcpu);
1190 if (!kvm_is_valid_cr4(vcpu, cr4))
1193 if (is_long_mode(vcpu)) {
1194 if (!(cr4 & X86_CR4_PAE))
1196 if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1198 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1199 && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS)
1200 && !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1203 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1204 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1205 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1209 static_call(kvm_x86_set_cr4)(vcpu, cr4);
1211 kvm_post_set_cr4(vcpu, old_cr4, cr4);
1215 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1217 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1219 struct kvm_mmu *mmu = vcpu->arch.mmu;
1220 unsigned long roots_to_free = 0;
1224 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but
1225 * this is reachable when running EPT=1 and unrestricted_guest=0, and
1226 * also via the emulator. KVM's TDP page tables are not in the scope of
1227 * the invalidation, but the guest's TLB entries need to be flushed as
1228 * the CPU may have cached entries in its TLB for the target PCID.
1230 if (unlikely(tdp_enabled)) {
1231 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1236 * If neither the current CR3 nor any of the prev_roots use the given
1237 * PCID, then nothing needs to be done here because a resync will
1238 * happen anyway before switching to any other CR3.
1240 if (kvm_get_active_pcid(vcpu) == pcid) {
1241 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1242 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1246 * If PCID is disabled, there is no need to free prev_roots even if the
1247 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB
1250 if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE))
1253 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1254 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1255 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1257 kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
1260 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1262 bool skip_tlb_flush = false;
1263 unsigned long pcid = 0;
1264 #ifdef CONFIG_X86_64
1265 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) {
1266 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1267 cr3 &= ~X86_CR3_PCID_NOFLUSH;
1268 pcid = cr3 & X86_CR3_PCID_MASK;
1272 /* PDPTRs are always reloaded for PAE paging. */
1273 if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1274 goto handle_tlb_flush;
1277 * Do not condition the GPA check on long mode, this helper is used to
1278 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1279 * the current vCPU mode is accurate.
1281 if (!kvm_vcpu_is_legal_cr3(vcpu, cr3))
1284 if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3))
1287 if (cr3 != kvm_read_cr3(vcpu))
1288 kvm_mmu_new_pgd(vcpu, cr3);
1290 vcpu->arch.cr3 = cr3;
1291 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1292 /* Do not call post_set_cr3, we do not get here for confidential guests. */
1296 * A load of CR3 that flushes the TLB flushes only the current PCID,
1297 * even if PCID is disabled, in which case PCID=0 is flushed. It's a
1298 * moot point in the end because _disabling_ PCID will flush all PCIDs,
1299 * and it's impossible to use a non-zero PCID when PCID is disabled,
1300 * i.e. only PCID=0 can be relevant.
1302 if (!skip_tlb_flush)
1303 kvm_invalidate_pcid(vcpu, pcid);
1307 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1309 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1311 if (cr8 & CR8_RESERVED_BITS)
1313 if (lapic_in_kernel(vcpu))
1314 kvm_lapic_set_tpr(vcpu, cr8);
1316 vcpu->arch.cr8 = cr8;
1319 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1321 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1323 if (lapic_in_kernel(vcpu))
1324 return kvm_lapic_get_cr8(vcpu);
1326 return vcpu->arch.cr8;
1328 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1330 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1334 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1335 for (i = 0; i < KVM_NR_DB_REGS; i++)
1336 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1340 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1344 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1345 dr7 = vcpu->arch.guest_debug_dr7;
1347 dr7 = vcpu->arch.dr7;
1348 static_call(kvm_x86_set_dr7)(vcpu, dr7);
1349 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1350 if (dr7 & DR7_BP_EN_MASK)
1351 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1353 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1355 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1357 u64 fixed = DR6_FIXED_1;
1359 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1362 if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1363 fixed |= DR6_BUS_LOCK;
1367 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1369 size_t size = ARRAY_SIZE(vcpu->arch.db);
1373 vcpu->arch.db[array_index_nospec(dr, size)] = val;
1374 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1375 vcpu->arch.eff_db[dr] = val;
1379 if (!kvm_dr6_valid(val))
1381 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1385 if (!kvm_dr7_valid(val))
1387 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1388 kvm_update_dr7(vcpu);
1394 EXPORT_SYMBOL_GPL(kvm_set_dr);
1396 unsigned long kvm_get_dr(struct kvm_vcpu *vcpu, int dr)
1398 size_t size = ARRAY_SIZE(vcpu->arch.db);
1402 return vcpu->arch.db[array_index_nospec(dr, size)];
1405 return vcpu->arch.dr6;
1408 return vcpu->arch.dr7;
1411 EXPORT_SYMBOL_GPL(kvm_get_dr);
1413 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1415 u32 ecx = kvm_rcx_read(vcpu);
1418 if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1419 kvm_inject_gp(vcpu, 0);
1423 kvm_rax_write(vcpu, (u32)data);
1424 kvm_rdx_write(vcpu, data >> 32);
1425 return kvm_skip_emulated_instruction(vcpu);
1427 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1430 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) track
1431 * the set of MSRs that KVM exposes to userspace through KVM_GET_MSRS,
1432 * KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. msrs_to_save holds MSRs that
1433 * require host support, i.e. should be probed via RDMSR. emulated_msrs holds
1434 * MSRs that KVM emulates without strictly requiring host support.
1435 * msr_based_features holds MSRs that enumerate features, i.e. are effectively
1436 * CPUID leafs. Note, msr_based_features isn't mutually exclusive with
1437 * msrs_to_save and emulated_msrs.
1440 static const u32 msrs_to_save_base[] = {
1441 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1443 #ifdef CONFIG_X86_64
1444 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1446 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1447 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1448 MSR_IA32_SPEC_CTRL, MSR_IA32_TSX_CTRL,
1449 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1450 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1451 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1452 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1453 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1454 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1455 MSR_IA32_UMWAIT_CONTROL,
1457 MSR_IA32_XFD, MSR_IA32_XFD_ERR,
1460 static const u32 msrs_to_save_pmu[] = {
1461 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1462 MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
1463 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1464 MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1465 MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG,
1467 /* This part of MSRs should match KVM_INTEL_PMC_MAX_GENERIC. */
1468 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1469 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1470 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1471 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1472 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1473 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1474 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1475 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1477 MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
1478 MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
1480 /* This part of MSRs should match KVM_AMD_PMC_MAX_GENERIC. */
1481 MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
1482 MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
1483 MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
1484 MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
1486 MSR_AMD64_PERF_CNTR_GLOBAL_CTL,
1487 MSR_AMD64_PERF_CNTR_GLOBAL_STATUS,
1488 MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR,
1491 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_base) +
1492 ARRAY_SIZE(msrs_to_save_pmu)];
1493 static unsigned num_msrs_to_save;
1495 static const u32 emulated_msrs_all[] = {
1496 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1497 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1499 #ifdef CONFIG_KVM_HYPERV
1500 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1501 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1502 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1503 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1504 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1506 HV_X64_MSR_VP_INDEX,
1507 HV_X64_MSR_VP_RUNTIME,
1508 HV_X64_MSR_SCONTROL,
1509 HV_X64_MSR_STIMER0_CONFIG,
1510 HV_X64_MSR_VP_ASSIST_PAGE,
1511 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1512 HV_X64_MSR_TSC_EMULATION_STATUS, HV_X64_MSR_TSC_INVARIANT_CONTROL,
1513 HV_X64_MSR_SYNDBG_OPTIONS,
1514 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1515 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1516 HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1519 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1520 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1522 MSR_IA32_TSC_ADJUST,
1523 MSR_IA32_TSC_DEADLINE,
1524 MSR_IA32_ARCH_CAPABILITIES,
1525 MSR_IA32_PERF_CAPABILITIES,
1526 MSR_IA32_MISC_ENABLE,
1527 MSR_IA32_MCG_STATUS,
1529 MSR_IA32_MCG_EXT_CTL,
1533 MSR_MISC_FEATURES_ENABLES,
1534 MSR_AMD64_VIRT_SPEC_CTRL,
1535 MSR_AMD64_TSC_RATIO,
1540 * KVM always supports the "true" VMX control MSRs, even if the host
1541 * does not. The VMX MSRs as a whole are considered "emulated" as KVM
1542 * doesn't strictly require them to exist in the host (ignoring that
1543 * KVM would refuse to load in the first place if the core set of MSRs
1544 * aren't supported).
1547 MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1548 MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1549 MSR_IA32_VMX_TRUE_EXIT_CTLS,
1550 MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1552 MSR_IA32_VMX_CR0_FIXED0,
1553 MSR_IA32_VMX_CR4_FIXED0,
1554 MSR_IA32_VMX_VMCS_ENUM,
1555 MSR_IA32_VMX_PROCBASED_CTLS2,
1556 MSR_IA32_VMX_EPT_VPID_CAP,
1557 MSR_IA32_VMX_VMFUNC,
1560 MSR_KVM_POLL_CONTROL,
1563 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1564 static unsigned num_emulated_msrs;
1567 * List of MSRs that control the existence of MSR-based features, i.e. MSRs
1568 * that are effectively CPUID leafs. VMX MSRs are also included in the set of
1569 * feature MSRs, but are handled separately to allow expedited lookups.
1571 static const u32 msr_based_features_all_except_vmx[] = {
1574 MSR_IA32_ARCH_CAPABILITIES,
1575 MSR_IA32_PERF_CAPABILITIES,
1578 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all_except_vmx) +
1579 (KVM_LAST_EMULATED_VMX_MSR - KVM_FIRST_EMULATED_VMX_MSR + 1)];
1580 static unsigned int num_msr_based_features;
1583 * All feature MSRs except uCode revID, which tracks the currently loaded uCode
1584 * patch, are immutable once the vCPU model is defined.
1586 static bool kvm_is_immutable_feature_msr(u32 msr)
1590 if (msr >= KVM_FIRST_EMULATED_VMX_MSR && msr <= KVM_LAST_EMULATED_VMX_MSR)
1593 for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) {
1594 if (msr == msr_based_features_all_except_vmx[i])
1595 return msr != MSR_IA32_UCODE_REV;
1602 * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM
1603 * does not yet virtualize. These include:
1604 * 10 - MISC_PACKAGE_CTRLS
1605 * 11 - ENERGY_FILTERING_CTL
1607 * 18 - FB_CLEAR_CTRL
1608 * 21 - XAPIC_DISABLE_STATUS
1609 * 23 - OVERCLOCKING_STATUS
1612 #define KVM_SUPPORTED_ARCH_CAP \
1613 (ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \
1614 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \
1615 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \
1616 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \
1617 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO | ARCH_CAP_GDS_NO | \
1618 ARCH_CAP_RFDS_NO | ARCH_CAP_RFDS_CLEAR | ARCH_CAP_BHI_NO)
1620 static u64 kvm_get_arch_capabilities(void)
1622 u64 data = host_arch_capabilities & KVM_SUPPORTED_ARCH_CAP;
1625 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1626 * the nested hypervisor runs with NX huge pages. If it is not,
1627 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1628 * L1 guests, so it need not worry about its own (L2) guests.
1630 data |= ARCH_CAP_PSCHANGE_MC_NO;
1633 * If we're doing cache flushes (either "always" or "cond")
1634 * we will do one whenever the guest does a vmlaunch/vmresume.
1635 * If an outer hypervisor is doing the cache flush for us
1636 * (ARCH_CAP_SKIP_VMENTRY_L1DFLUSH), we can safely pass that
1637 * capability to the guest too, and if EPT is disabled we're not
1638 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will
1639 * require a nested hypervisor to do a flush of its own.
1641 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1642 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1644 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1645 data |= ARCH_CAP_RDCL_NO;
1646 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1647 data |= ARCH_CAP_SSB_NO;
1648 if (!boot_cpu_has_bug(X86_BUG_MDS))
1649 data |= ARCH_CAP_MDS_NO;
1650 if (!boot_cpu_has_bug(X86_BUG_RFDS))
1651 data |= ARCH_CAP_RFDS_NO;
1653 if (!boot_cpu_has(X86_FEATURE_RTM)) {
1655 * If RTM=0 because the kernel has disabled TSX, the host might
1656 * have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0
1657 * and therefore knows that there cannot be TAA) but keep
1658 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1659 * and we want to allow migrating those guests to tsx=off hosts.
1661 data &= ~ARCH_CAP_TAA_NO;
1662 } else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1663 data |= ARCH_CAP_TAA_NO;
1666 * Nothing to do here; we emulate TSX_CTRL if present on the
1667 * host so the guest can choose between disabling TSX or
1668 * using VERW to clear CPU buffers.
1672 if (!boot_cpu_has_bug(X86_BUG_GDS) || gds_ucode_mitigated())
1673 data |= ARCH_CAP_GDS_NO;
1678 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1680 switch (msr->index) {
1681 case MSR_IA32_ARCH_CAPABILITIES:
1682 msr->data = kvm_get_arch_capabilities();
1684 case MSR_IA32_PERF_CAPABILITIES:
1685 msr->data = kvm_caps.supported_perf_cap;
1687 case MSR_IA32_UCODE_REV:
1688 rdmsrl_safe(msr->index, &msr->data);
1691 return static_call(kvm_x86_get_msr_feature)(msr);
1696 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1698 struct kvm_msr_entry msr;
1701 /* Unconditionally clear the output for simplicity */
1704 r = kvm_get_msr_feature(&msr);
1706 if (r == KVM_MSR_RET_INVALID && kvm_msr_ignored_check(index, 0, false))
1714 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1716 if (efer & EFER_AUTOIBRS && !guest_cpuid_has(vcpu, X86_FEATURE_AUTOIBRS))
1719 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1722 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1725 if (efer & (EFER_LME | EFER_LMA) &&
1726 !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1729 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1735 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1737 if (efer & efer_reserved_bits)
1740 return __kvm_valid_efer(vcpu, efer);
1742 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1744 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1746 u64 old_efer = vcpu->arch.efer;
1747 u64 efer = msr_info->data;
1750 if (efer & efer_reserved_bits)
1753 if (!msr_info->host_initiated) {
1754 if (!__kvm_valid_efer(vcpu, efer))
1757 if (is_paging(vcpu) &&
1758 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1763 efer |= vcpu->arch.efer & EFER_LMA;
1765 r = static_call(kvm_x86_set_efer)(vcpu, efer);
1771 if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS)
1772 kvm_mmu_reset_context(vcpu);
1774 if (!static_cpu_has(X86_FEATURE_XSAVES) &&
1776 kvm_hv_xsaves_xsavec_maybe_warn(vcpu);
1781 void kvm_enable_efer_bits(u64 mask)
1783 efer_reserved_bits &= ~mask;
1785 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1787 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1789 struct kvm_x86_msr_filter *msr_filter;
1790 struct msr_bitmap_range *ranges;
1791 struct kvm *kvm = vcpu->kvm;
1796 /* x2APIC MSRs do not support filtering. */
1797 if (index >= 0x800 && index <= 0x8ff)
1800 idx = srcu_read_lock(&kvm->srcu);
1802 msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1808 allowed = msr_filter->default_allow;
1809 ranges = msr_filter->ranges;
1811 for (i = 0; i < msr_filter->count; i++) {
1812 u32 start = ranges[i].base;
1813 u32 end = start + ranges[i].nmsrs;
1814 u32 flags = ranges[i].flags;
1815 unsigned long *bitmap = ranges[i].bitmap;
1817 if ((index >= start) && (index < end) && (flags & type)) {
1818 allowed = test_bit(index - start, bitmap);
1824 srcu_read_unlock(&kvm->srcu, idx);
1828 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1831 * Write @data into the MSR specified by @index. Select MSR specific fault
1832 * checks are bypassed if @host_initiated is %true.
1833 * Returns 0 on success, non-0 otherwise.
1834 * Assumes vcpu_load() was already called.
1836 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1837 bool host_initiated)
1839 struct msr_data msr;
1844 case MSR_KERNEL_GS_BASE:
1847 if (is_noncanonical_address(data, vcpu))
1850 case MSR_IA32_SYSENTER_EIP:
1851 case MSR_IA32_SYSENTER_ESP:
1853 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1854 * non-canonical address is written on Intel but not on
1855 * AMD (which ignores the top 32-bits, because it does
1856 * not implement 64-bit SYSENTER).
1858 * 64-bit code should hence be able to write a non-canonical
1859 * value on AMD. Making the address canonical ensures that
1860 * vmentry does not fail on Intel after writing a non-canonical
1861 * value, and that something deterministic happens if the guest
1862 * invokes 64-bit SYSENTER.
1864 data = __canonical_address(data, vcpu_virt_addr_bits(vcpu));
1867 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1870 if (!host_initiated &&
1871 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1872 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1876 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1877 * incomplete and conflicting architectural behavior. Current
1878 * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1879 * reserved and always read as zeros. Enforce Intel's reserved
1880 * bits check if and only if the guest CPU is Intel, and clear
1881 * the bits in all other cases. This ensures cross-vendor
1882 * migration will provide consistent behavior for the guest.
1884 if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0)
1893 msr.host_initiated = host_initiated;
1895 return static_call(kvm_x86_set_msr)(vcpu, &msr);
1898 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1899 u32 index, u64 data, bool host_initiated)
1901 int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1903 if (ret == KVM_MSR_RET_INVALID)
1904 if (kvm_msr_ignored_check(index, data, true))
1911 * Read the MSR specified by @index into @data. Select MSR specific fault
1912 * checks are bypassed if @host_initiated is %true.
1913 * Returns 0 on success, non-0 otherwise.
1914 * Assumes vcpu_load() was already called.
1916 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1917 bool host_initiated)
1919 struct msr_data msr;
1924 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1927 if (!host_initiated &&
1928 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1929 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1935 msr.host_initiated = host_initiated;
1937 ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1943 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1944 u32 index, u64 *data, bool host_initiated)
1946 int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1948 if (ret == KVM_MSR_RET_INVALID) {
1949 /* Unconditionally clear *data for simplicity */
1951 if (kvm_msr_ignored_check(index, 0, false))
1958 static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1960 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1961 return KVM_MSR_RET_FILTERED;
1962 return kvm_get_msr_ignored_check(vcpu, index, data, false);
1965 static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data)
1967 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1968 return KVM_MSR_RET_FILTERED;
1969 return kvm_set_msr_ignored_check(vcpu, index, data, false);
1972 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1974 return kvm_get_msr_ignored_check(vcpu, index, data, false);
1976 EXPORT_SYMBOL_GPL(kvm_get_msr);
1978 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1980 return kvm_set_msr_ignored_check(vcpu, index, data, false);
1982 EXPORT_SYMBOL_GPL(kvm_set_msr);
1984 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu)
1986 if (!vcpu->run->msr.error) {
1987 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1988 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1992 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu)
1994 return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error);
1997 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1999 complete_userspace_rdmsr(vcpu);
2000 return complete_emulated_msr_access(vcpu);
2003 static int complete_fast_msr_access(struct kvm_vcpu *vcpu)
2005 return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
2008 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu)
2010 complete_userspace_rdmsr(vcpu);
2011 return complete_fast_msr_access(vcpu);
2014 static u64 kvm_msr_reason(int r)
2017 case KVM_MSR_RET_INVALID:
2018 return KVM_MSR_EXIT_REASON_UNKNOWN;
2019 case KVM_MSR_RET_FILTERED:
2020 return KVM_MSR_EXIT_REASON_FILTER;
2022 return KVM_MSR_EXIT_REASON_INVAL;
2026 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
2027 u32 exit_reason, u64 data,
2028 int (*completion)(struct kvm_vcpu *vcpu),
2031 u64 msr_reason = kvm_msr_reason(r);
2033 /* Check if the user wanted to know about this MSR fault */
2034 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
2037 vcpu->run->exit_reason = exit_reason;
2038 vcpu->run->msr.error = 0;
2039 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
2040 vcpu->run->msr.reason = msr_reason;
2041 vcpu->run->msr.index = index;
2042 vcpu->run->msr.data = data;
2043 vcpu->arch.complete_userspace_io = completion;
2048 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
2050 u32 ecx = kvm_rcx_read(vcpu);
2054 r = kvm_get_msr_with_filter(vcpu, ecx, &data);
2057 trace_kvm_msr_read(ecx, data);
2059 kvm_rax_write(vcpu, data & -1u);
2060 kvm_rdx_write(vcpu, (data >> 32) & -1u);
2062 /* MSR read failed? See if we should ask user space */
2063 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0,
2064 complete_fast_rdmsr, r))
2066 trace_kvm_msr_read_ex(ecx);
2069 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2071 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
2073 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
2075 u32 ecx = kvm_rcx_read(vcpu);
2076 u64 data = kvm_read_edx_eax(vcpu);
2079 r = kvm_set_msr_with_filter(vcpu, ecx, data);
2082 trace_kvm_msr_write(ecx, data);
2084 /* MSR write failed? See if we should ask user space */
2085 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data,
2086 complete_fast_msr_access, r))
2088 /* Signal all other negative errors to userspace */
2091 trace_kvm_msr_write_ex(ecx, data);
2094 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2096 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
2098 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
2100 return kvm_skip_emulated_instruction(vcpu);
2103 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
2105 /* Treat an INVD instruction as a NOP and just skip it. */
2106 return kvm_emulate_as_nop(vcpu);
2108 EXPORT_SYMBOL_GPL(kvm_emulate_invd);
2110 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
2112 kvm_queue_exception(vcpu, UD_VECTOR);
2115 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
2118 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn)
2120 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) &&
2121 !guest_cpuid_has(vcpu, X86_FEATURE_MWAIT))
2122 return kvm_handle_invalid_op(vcpu);
2124 pr_warn_once("%s instruction emulated as NOP!\n", insn);
2125 return kvm_emulate_as_nop(vcpu);
2127 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
2129 return kvm_emulate_monitor_mwait(vcpu, "MWAIT");
2131 EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
2133 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
2135 return kvm_emulate_monitor_mwait(vcpu, "MONITOR");
2137 EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
2139 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
2141 xfer_to_guest_mode_prepare();
2142 return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
2143 xfer_to_guest_mode_work_pending();
2147 * The fast path for frequent and performance sensitive wrmsr emulation,
2148 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
2149 * the latency of virtual IPI by avoiding the expensive bits of transitioning
2150 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
2151 * other cases which must be called after interrupts are enabled on the host.
2153 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
2155 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
2158 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
2159 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
2160 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
2161 ((u32)(data >> 32) != X2APIC_BROADCAST))
2162 return kvm_x2apic_icr_write(vcpu->arch.apic, data);
2167 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
2169 if (!kvm_can_use_hv_timer(vcpu))
2172 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2176 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
2178 u32 msr = kvm_rcx_read(vcpu);
2180 fastpath_t ret = EXIT_FASTPATH_NONE;
2182 kvm_vcpu_srcu_read_lock(vcpu);
2185 case APIC_BASE_MSR + (APIC_ICR >> 4):
2186 data = kvm_read_edx_eax(vcpu);
2187 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
2188 kvm_skip_emulated_instruction(vcpu);
2189 ret = EXIT_FASTPATH_EXIT_HANDLED;
2192 case MSR_IA32_TSC_DEADLINE:
2193 data = kvm_read_edx_eax(vcpu);
2194 if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
2195 kvm_skip_emulated_instruction(vcpu);
2196 ret = EXIT_FASTPATH_REENTER_GUEST;
2203 if (ret != EXIT_FASTPATH_NONE)
2204 trace_kvm_msr_write(msr, data);
2206 kvm_vcpu_srcu_read_unlock(vcpu);
2210 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2213 * Adapt set_msr() to msr_io()'s calling convention
2215 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2217 return kvm_get_msr_ignored_check(vcpu, index, data, true);
2220 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2225 * Disallow writes to immutable feature MSRs after KVM_RUN. KVM does
2226 * not support modifying the guest vCPU model on the fly, e.g. changing
2227 * the nVMX capabilities while L2 is running is nonsensical. Allow
2228 * writes of the same value, e.g. to allow userspace to blindly stuff
2229 * all MSRs when emulating RESET.
2231 if (kvm_vcpu_has_run(vcpu) && kvm_is_immutable_feature_msr(index) &&
2232 (do_get_msr(vcpu, index, &val) || *data != val))
2235 return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2238 #ifdef CONFIG_X86_64
2239 struct pvclock_clock {
2249 struct pvclock_gtod_data {
2252 struct pvclock_clock clock; /* extract of a clocksource struct */
2253 struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2259 static struct pvclock_gtod_data pvclock_gtod_data;
2261 static void update_pvclock_gtod(struct timekeeper *tk)
2263 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2265 write_seqcount_begin(&vdata->seq);
2267 /* copy pvclock gtod data */
2268 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode;
2269 vdata->clock.cycle_last = tk->tkr_mono.cycle_last;
2270 vdata->clock.mask = tk->tkr_mono.mask;
2271 vdata->clock.mult = tk->tkr_mono.mult;
2272 vdata->clock.shift = tk->tkr_mono.shift;
2273 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec;
2274 vdata->clock.offset = tk->tkr_mono.base;
2276 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode;
2277 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last;
2278 vdata->raw_clock.mask = tk->tkr_raw.mask;
2279 vdata->raw_clock.mult = tk->tkr_raw.mult;
2280 vdata->raw_clock.shift = tk->tkr_raw.shift;
2281 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec;
2282 vdata->raw_clock.offset = tk->tkr_raw.base;
2284 vdata->wall_time_sec = tk->xtime_sec;
2286 vdata->offs_boot = tk->offs_boot;
2288 write_seqcount_end(&vdata->seq);
2291 static s64 get_kvmclock_base_ns(void)
2293 /* Count up from boot time, but with the frequency of the raw clock. */
2294 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2297 static s64 get_kvmclock_base_ns(void)
2299 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */
2300 return ktime_get_boottime_ns();
2304 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2308 struct pvclock_wall_clock wc;
2315 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2320 ++version; /* first time write, random junk */
2324 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2327 wall_nsec = kvm_get_wall_clock_epoch(kvm);
2329 wc.nsec = do_div(wall_nsec, NSEC_PER_SEC);
2330 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2331 wc.version = version;
2333 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2336 wc_sec_hi = wall_nsec >> 32;
2337 kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2338 &wc_sec_hi, sizeof(wc_sec_hi));
2342 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2345 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2346 bool old_msr, bool host_initiated)
2348 struct kvm_arch *ka = &vcpu->kvm->arch;
2350 if (vcpu->vcpu_id == 0 && !host_initiated) {
2351 if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2352 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2354 ka->boot_vcpu_runs_old_kvmclock = old_msr;
2357 vcpu->arch.time = system_time;
2358 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2360 /* we verify if the enable bit is set... */
2361 if (system_time & 1)
2362 kvm_gpc_activate(&vcpu->arch.pv_time, system_time & ~1ULL,
2363 sizeof(struct pvclock_vcpu_time_info));
2365 kvm_gpc_deactivate(&vcpu->arch.pv_time);
2370 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2372 do_shl32_div32(dividend, divisor);
2376 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2377 s8 *pshift, u32 *pmultiplier)
2385 scaled64 = scaled_hz;
2386 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2391 tps32 = (uint32_t)tps64;
2392 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2393 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2401 *pmultiplier = div_frac(scaled64, tps32);
2404 #ifdef CONFIG_X86_64
2405 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2408 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2409 static unsigned long max_tsc_khz;
2411 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2413 u64 v = (u64)khz * (1000000 + ppm);
2418 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2420 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2424 /* Guest TSC same frequency as host TSC? */
2426 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2430 /* TSC scaling supported? */
2431 if (!kvm_caps.has_tsc_control) {
2432 if (user_tsc_khz > tsc_khz) {
2433 vcpu->arch.tsc_catchup = 1;
2434 vcpu->arch.tsc_always_catchup = 1;
2437 pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2442 /* TSC scaling required - calculate ratio */
2443 ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits,
2444 user_tsc_khz, tsc_khz);
2446 if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) {
2447 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2452 kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2456 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2458 u32 thresh_lo, thresh_hi;
2459 int use_scaling = 0;
2461 /* tsc_khz can be zero if TSC calibration fails */
2462 if (user_tsc_khz == 0) {
2463 /* set tsc_scaling_ratio to a safe value */
2464 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2468 /* Compute a scale to convert nanoseconds in TSC cycles */
2469 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2470 &vcpu->arch.virtual_tsc_shift,
2471 &vcpu->arch.virtual_tsc_mult);
2472 vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2475 * Compute the variation in TSC rate which is acceptable
2476 * within the range of tolerance and decide if the
2477 * rate being applied is within that bounds of the hardware
2478 * rate. If so, no scaling or compensation need be done.
2480 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2481 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2482 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2483 pr_debug("requested TSC rate %u falls outside tolerance [%u,%u]\n",
2484 user_tsc_khz, thresh_lo, thresh_hi);
2487 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2490 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2492 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2493 vcpu->arch.virtual_tsc_mult,
2494 vcpu->arch.virtual_tsc_shift);
2495 tsc += vcpu->arch.this_tsc_write;
2499 #ifdef CONFIG_X86_64
2500 static inline bool gtod_is_based_on_tsc(int mode)
2502 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2506 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu, bool new_generation)
2508 #ifdef CONFIG_X86_64
2509 struct kvm_arch *ka = &vcpu->kvm->arch;
2510 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2513 * To use the masterclock, the host clocksource must be based on TSC
2514 * and all vCPUs must have matching TSCs. Note, the count for matching
2515 * vCPUs doesn't include the reference vCPU, hence "+1".
2517 bool use_master_clock = (ka->nr_vcpus_matched_tsc + 1 ==
2518 atomic_read(&vcpu->kvm->online_vcpus)) &&
2519 gtod_is_based_on_tsc(gtod->clock.vclock_mode);
2522 * Request a masterclock update if the masterclock needs to be toggled
2523 * on/off, or when starting a new generation and the masterclock is
2524 * enabled (compute_guest_tsc() requires the masterclock snapshot to be
2525 * taken _after_ the new generation is created).
2527 if ((ka->use_master_clock && new_generation) ||
2528 (ka->use_master_clock != use_master_clock))
2529 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2531 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2532 atomic_read(&vcpu->kvm->online_vcpus),
2533 ka->use_master_clock, gtod->clock.vclock_mode);
2538 * Multiply tsc by a fixed point number represented by ratio.
2540 * The most significant 64-N bits (mult) of ratio represent the
2541 * integral part of the fixed point number; the remaining N bits
2542 * (frac) represent the fractional part, ie. ratio represents a fixed
2543 * point number (mult + frac * 2^(-N)).
2545 * N equals to kvm_caps.tsc_scaling_ratio_frac_bits.
2547 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2549 return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits);
2552 u64 kvm_scale_tsc(u64 tsc, u64 ratio)
2556 if (ratio != kvm_caps.default_tsc_scaling_ratio)
2557 _tsc = __scale_tsc(ratio, tsc);
2562 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2566 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2568 return target_tsc - tsc;
2571 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2573 return vcpu->arch.l1_tsc_offset +
2574 kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2576 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2578 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2582 if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio)
2583 nested_offset = l1_offset;
2585 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2586 kvm_caps.tsc_scaling_ratio_frac_bits);
2588 nested_offset += l2_offset;
2589 return nested_offset;
2591 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2593 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2595 if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio)
2596 return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2597 kvm_caps.tsc_scaling_ratio_frac_bits);
2599 return l1_multiplier;
2601 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2603 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2605 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2606 vcpu->arch.l1_tsc_offset,
2609 vcpu->arch.l1_tsc_offset = l1_offset;
2612 * If we are here because L1 chose not to trap WRMSR to TSC then
2613 * according to the spec this should set L1's TSC (as opposed to
2614 * setting L1's offset for L2).
2616 if (is_guest_mode(vcpu))
2617 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2619 static_call(kvm_x86_get_l2_tsc_offset)(vcpu),
2620 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2622 vcpu->arch.tsc_offset = l1_offset;
2624 static_call(kvm_x86_write_tsc_offset)(vcpu);
2627 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2629 vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2631 /* Userspace is changing the multiplier while L2 is active */
2632 if (is_guest_mode(vcpu))
2633 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2635 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2637 vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2639 if (kvm_caps.has_tsc_control)
2640 static_call(kvm_x86_write_tsc_multiplier)(vcpu);
2643 static inline bool kvm_check_tsc_unstable(void)
2645 #ifdef CONFIG_X86_64
2647 * TSC is marked unstable when we're running on Hyper-V,
2648 * 'TSC page' clocksource is good.
2650 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2653 return check_tsc_unstable();
2657 * Infers attempts to synchronize the guest's tsc from host writes. Sets the
2658 * offset for the vcpu and tracks the TSC matching generation that the vcpu
2661 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc,
2662 u64 ns, bool matched)
2664 struct kvm *kvm = vcpu->kvm;
2666 lockdep_assert_held(&kvm->arch.tsc_write_lock);
2669 * We also track th most recent recorded KHZ, write and time to
2670 * allow the matching interval to be extended at each write.
2672 kvm->arch.last_tsc_nsec = ns;
2673 kvm->arch.last_tsc_write = tsc;
2674 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2675 kvm->arch.last_tsc_offset = offset;
2677 vcpu->arch.last_guest_tsc = tsc;
2679 kvm_vcpu_write_tsc_offset(vcpu, offset);
2683 * We split periods of matched TSC writes into generations.
2684 * For each generation, we track the original measured
2685 * nanosecond time, offset, and write, so if TSCs are in
2686 * sync, we can match exact offset, and if not, we can match
2687 * exact software computation in compute_guest_tsc()
2689 * These values are tracked in kvm->arch.cur_xxx variables.
2691 kvm->arch.cur_tsc_generation++;
2692 kvm->arch.cur_tsc_nsec = ns;
2693 kvm->arch.cur_tsc_write = tsc;
2694 kvm->arch.cur_tsc_offset = offset;
2695 kvm->arch.nr_vcpus_matched_tsc = 0;
2696 } else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) {
2697 kvm->arch.nr_vcpus_matched_tsc++;
2700 /* Keep track of which generation this VCPU has synchronized to */
2701 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2702 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2703 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2705 kvm_track_tsc_matching(vcpu, !matched);
2708 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 *user_value)
2710 u64 data = user_value ? *user_value : 0;
2711 struct kvm *kvm = vcpu->kvm;
2712 u64 offset, ns, elapsed;
2713 unsigned long flags;
2714 bool matched = false;
2715 bool synchronizing = false;
2717 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2718 offset = kvm_compute_l1_tsc_offset(vcpu, data);
2719 ns = get_kvmclock_base_ns();
2720 elapsed = ns - kvm->arch.last_tsc_nsec;
2722 if (vcpu->arch.virtual_tsc_khz) {
2725 * Force synchronization when creating a vCPU, or when
2726 * userspace explicitly writes a zero value.
2728 synchronizing = true;
2729 } else if (kvm->arch.user_set_tsc) {
2730 u64 tsc_exp = kvm->arch.last_tsc_write +
2731 nsec_to_cycles(vcpu, elapsed);
2732 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2734 * Here lies UAPI baggage: when a user-initiated TSC write has
2735 * a small delta (1 second) of virtual cycle time against the
2736 * previously set vCPU, we assume that they were intended to be
2737 * in sync and the delta was only due to the racy nature of the
2740 * This trick falls down when restoring a guest which genuinely
2741 * has been running for less time than the 1 second of imprecision
2742 * which we allow for in the legacy API. In this case, the first
2743 * value written by userspace (on any vCPU) should not be subject
2744 * to this 'correction' to make it sync up with values that only
2745 * come from the kernel's default vCPU creation. Make the 1-second
2746 * slop hack only trigger if the user_set_tsc flag is already set.
2748 synchronizing = data < tsc_exp + tsc_hz &&
2749 data + tsc_hz > tsc_exp;
2754 kvm->arch.user_set_tsc = true;
2757 * For a reliable TSC, we can match TSC offsets, and for an unstable
2758 * TSC, we add elapsed time in this computation. We could let the
2759 * compensation code attempt to catch up if we fall behind, but
2760 * it's better to try to match offsets from the beginning.
2762 if (synchronizing &&
2763 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2764 if (!kvm_check_tsc_unstable()) {
2765 offset = kvm->arch.cur_tsc_offset;
2767 u64 delta = nsec_to_cycles(vcpu, elapsed);
2769 offset = kvm_compute_l1_tsc_offset(vcpu, data);
2774 __kvm_synchronize_tsc(vcpu, offset, data, ns, matched);
2775 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2778 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2781 u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2782 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2785 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2787 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio)
2788 WARN_ON(adjustment < 0);
2789 adjustment = kvm_scale_tsc((u64) adjustment,
2790 vcpu->arch.l1_tsc_scaling_ratio);
2791 adjust_tsc_offset_guest(vcpu, adjustment);
2794 #ifdef CONFIG_X86_64
2796 static u64 read_tsc(void)
2798 u64 ret = (u64)rdtsc_ordered();
2799 u64 last = pvclock_gtod_data.clock.cycle_last;
2801 if (likely(ret >= last))
2805 * GCC likes to generate cmov here, but this branch is extremely
2806 * predictable (it's just a function of time and the likely is
2807 * very likely) and there's a data dependence, so force GCC
2808 * to generate a branch instead. I don't barrier() because
2809 * we don't actually need a barrier, and if this function
2810 * ever gets inlined it will generate worse code.
2816 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2822 switch (clock->vclock_mode) {
2823 case VDSO_CLOCKMODE_HVCLOCK:
2824 if (hv_read_tsc_page_tsc(hv_get_tsc_page(),
2825 tsc_timestamp, &tsc_pg_val)) {
2826 /* TSC page valid */
2827 *mode = VDSO_CLOCKMODE_HVCLOCK;
2828 v = (tsc_pg_val - clock->cycle_last) &
2831 /* TSC page invalid */
2832 *mode = VDSO_CLOCKMODE_NONE;
2835 case VDSO_CLOCKMODE_TSC:
2836 *mode = VDSO_CLOCKMODE_TSC;
2837 *tsc_timestamp = read_tsc();
2838 v = (*tsc_timestamp - clock->cycle_last) &
2842 *mode = VDSO_CLOCKMODE_NONE;
2845 if (*mode == VDSO_CLOCKMODE_NONE)
2846 *tsc_timestamp = v = 0;
2848 return v * clock->mult;
2852 * As with get_kvmclock_base_ns(), this counts from boot time, at the
2853 * frequency of CLOCK_MONOTONIC_RAW (hence adding gtos->offs_boot).
2855 static int do_kvmclock_base(s64 *t, u64 *tsc_timestamp)
2857 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2863 seq = read_seqcount_begin(>od->seq);
2864 ns = gtod->raw_clock.base_cycles;
2865 ns += vgettsc(>od->raw_clock, tsc_timestamp, &mode);
2866 ns >>= gtod->raw_clock.shift;
2867 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2868 } while (unlikely(read_seqcount_retry(>od->seq, seq)));
2875 * This calculates CLOCK_MONOTONIC at the time of the TSC snapshot, with
2876 * no boot time offset.
2878 static int do_monotonic(s64 *t, u64 *tsc_timestamp)
2880 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2886 seq = read_seqcount_begin(>od->seq);
2887 ns = gtod->clock.base_cycles;
2888 ns += vgettsc(>od->clock, tsc_timestamp, &mode);
2889 ns >>= gtod->clock.shift;
2890 ns += ktime_to_ns(gtod->clock.offset);
2891 } while (unlikely(read_seqcount_retry(>od->seq, seq)));
2897 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2899 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2905 seq = read_seqcount_begin(>od->seq);
2906 ts->tv_sec = gtod->wall_time_sec;
2907 ns = gtod->clock.base_cycles;
2908 ns += vgettsc(>od->clock, tsc_timestamp, &mode);
2909 ns >>= gtod->clock.shift;
2910 } while (unlikely(read_seqcount_retry(>od->seq, seq)));
2912 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2919 * Calculates the kvmclock_base_ns (CLOCK_MONOTONIC_RAW + boot time) and
2920 * reports the TSC value from which it do so. Returns true if host is
2921 * using TSC based clocksource.
2923 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2925 /* checked again under seqlock below */
2926 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2929 return gtod_is_based_on_tsc(do_kvmclock_base(kernel_ns,
2934 * Calculates CLOCK_MONOTONIC and reports the TSC value from which it did
2935 * so. Returns true if host is using TSC based clocksource.
2937 bool kvm_get_monotonic_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2939 /* checked again under seqlock below */
2940 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2943 return gtod_is_based_on_tsc(do_monotonic(kernel_ns,
2948 * Calculates CLOCK_REALTIME and reports the TSC value from which it did
2949 * so. Returns true if host is using TSC based clocksource.
2951 * DO NOT USE this for anything related to migration. You want CLOCK_TAI
2954 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2957 /* checked again under seqlock below */
2958 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2961 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2967 * Assuming a stable TSC across physical CPUS, and a stable TSC
2968 * across virtual CPUs, the following condition is possible.
2969 * Each numbered line represents an event visible to both
2970 * CPUs at the next numbered event.
2972 * "timespecX" represents host monotonic time. "tscX" represents
2975 * VCPU0 on CPU0 | VCPU1 on CPU1
2977 * 1. read timespec0,tsc0
2978 * 2. | timespec1 = timespec0 + N
2980 * 3. transition to guest | transition to guest
2981 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2982 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
2983 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2985 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2988 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2990 * - 0 < N - M => M < N
2992 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2993 * always the case (the difference between two distinct xtime instances
2994 * might be smaller then the difference between corresponding TSC reads,
2995 * when updating guest vcpus pvclock areas).
2997 * To avoid that problem, do not allow visibility of distinct
2998 * system_timestamp/tsc_timestamp values simultaneously: use a master
2999 * copy of host monotonic time values. Update that master copy
3002 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
3006 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
3008 #ifdef CONFIG_X86_64
3009 struct kvm_arch *ka = &kvm->arch;
3011 bool host_tsc_clocksource, vcpus_matched;
3013 lockdep_assert_held(&kvm->arch.tsc_write_lock);
3014 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
3015 atomic_read(&kvm->online_vcpus));
3018 * If the host uses TSC clock, then passthrough TSC as stable
3021 host_tsc_clocksource = kvm_get_time_and_clockread(
3022 &ka->master_kernel_ns,
3023 &ka->master_cycle_now);
3025 ka->use_master_clock = host_tsc_clocksource && vcpus_matched
3026 && !ka->backwards_tsc_observed
3027 && !ka->boot_vcpu_runs_old_kvmclock;
3029 if (ka->use_master_clock)
3030 atomic_set(&kvm_guest_has_master_clock, 1);
3032 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
3033 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
3038 static void kvm_make_mclock_inprogress_request(struct kvm *kvm)
3040 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
3043 static void __kvm_start_pvclock_update(struct kvm *kvm)
3045 raw_spin_lock_irq(&kvm->arch.tsc_write_lock);
3046 write_seqcount_begin(&kvm->arch.pvclock_sc);
3049 static void kvm_start_pvclock_update(struct kvm *kvm)
3051 kvm_make_mclock_inprogress_request(kvm);
3053 /* no guest entries from this point */
3054 __kvm_start_pvclock_update(kvm);
3057 static void kvm_end_pvclock_update(struct kvm *kvm)
3059 struct kvm_arch *ka = &kvm->arch;
3060 struct kvm_vcpu *vcpu;
3063 write_seqcount_end(&ka->pvclock_sc);
3064 raw_spin_unlock_irq(&ka->tsc_write_lock);
3065 kvm_for_each_vcpu(i, vcpu, kvm)
3066 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3068 /* guest entries allowed */
3069 kvm_for_each_vcpu(i, vcpu, kvm)
3070 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
3073 static void kvm_update_masterclock(struct kvm *kvm)
3075 kvm_hv_request_tsc_page_update(kvm);
3076 kvm_start_pvclock_update(kvm);
3077 pvclock_update_vm_gtod_copy(kvm);
3078 kvm_end_pvclock_update(kvm);
3082 * Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's
3083 * per-CPU value (which may be zero if a CPU is going offline). Note, tsc_khz
3084 * can change during boot even if the TSC is constant, as it's possible for KVM
3085 * to be loaded before TSC calibration completes. Ideally, KVM would get a
3086 * notification when calibration completes, but practically speaking calibration
3087 * will complete before userspace is alive enough to create VMs.
3089 static unsigned long get_cpu_tsc_khz(void)
3091 if (static_cpu_has(X86_FEATURE_CONSTANT_TSC))
3094 return __this_cpu_read(cpu_tsc_khz);
3097 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc. */
3098 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3100 struct kvm_arch *ka = &kvm->arch;
3101 struct pvclock_vcpu_time_info hv_clock;
3103 /* both __this_cpu_read() and rdtsc() should be on the same cpu */
3107 if (ka->use_master_clock &&
3108 (static_cpu_has(X86_FEATURE_CONSTANT_TSC) || __this_cpu_read(cpu_tsc_khz))) {
3109 #ifdef CONFIG_X86_64
3110 struct timespec64 ts;
3112 if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) {
3113 data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec;
3114 data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC;
3117 data->host_tsc = rdtsc();
3119 data->flags |= KVM_CLOCK_TSC_STABLE;
3120 hv_clock.tsc_timestamp = ka->master_cycle_now;
3121 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
3122 kvm_get_time_scale(NSEC_PER_SEC, get_cpu_tsc_khz() * 1000LL,
3123 &hv_clock.tsc_shift,
3124 &hv_clock.tsc_to_system_mul);
3125 data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc);
3127 data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset;
3133 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3135 struct kvm_arch *ka = &kvm->arch;
3139 seq = read_seqcount_begin(&ka->pvclock_sc);
3140 __get_kvmclock(kvm, data);
3141 } while (read_seqcount_retry(&ka->pvclock_sc, seq));
3144 u64 get_kvmclock_ns(struct kvm *kvm)
3146 struct kvm_clock_data data;
3148 get_kvmclock(kvm, &data);
3152 static void kvm_setup_guest_pvclock(struct kvm_vcpu *v,
3153 struct gfn_to_pfn_cache *gpc,
3154 unsigned int offset,
3155 bool force_tsc_unstable)
3157 struct kvm_vcpu_arch *vcpu = &v->arch;
3158 struct pvclock_vcpu_time_info *guest_hv_clock;
3159 unsigned long flags;
3161 read_lock_irqsave(&gpc->lock, flags);
3162 while (!kvm_gpc_check(gpc, offset + sizeof(*guest_hv_clock))) {
3163 read_unlock_irqrestore(&gpc->lock, flags);
3165 if (kvm_gpc_refresh(gpc, offset + sizeof(*guest_hv_clock)))
3168 read_lock_irqsave(&gpc->lock, flags);
3171 guest_hv_clock = (void *)(gpc->khva + offset);
3174 * This VCPU is paused, but it's legal for a guest to read another
3175 * VCPU's kvmclock, so we really have to follow the specification where
3176 * it says that version is odd if data is being modified, and even after
3180 guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1;
3183 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
3184 vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED);
3186 if (vcpu->pvclock_set_guest_stopped_request) {
3187 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
3188 vcpu->pvclock_set_guest_stopped_request = false;
3191 memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock));
3193 if (force_tsc_unstable)
3194 guest_hv_clock->flags &= ~PVCLOCK_TSC_STABLE_BIT;
3198 guest_hv_clock->version = ++vcpu->hv_clock.version;
3200 kvm_gpc_mark_dirty_in_slot(gpc);
3201 read_unlock_irqrestore(&gpc->lock, flags);
3203 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
3206 static int kvm_guest_time_update(struct kvm_vcpu *v)
3208 unsigned long flags, tgt_tsc_khz;
3210 struct kvm_vcpu_arch *vcpu = &v->arch;
3211 struct kvm_arch *ka = &v->kvm->arch;
3213 u64 tsc_timestamp, host_tsc;
3215 bool use_master_clock;
3216 #ifdef CONFIG_KVM_XEN
3218 * For Xen guests we may need to override PVCLOCK_TSC_STABLE_BIT as unless
3219 * explicitly told to use TSC as its clocksource Xen will not set this bit.
3220 * This default behaviour led to bugs in some guest kernels which cause
3221 * problems if they observe PVCLOCK_TSC_STABLE_BIT in the pvclock flags.
3223 bool xen_pvclock_tsc_unstable =
3224 ka->xen_hvm_config.flags & KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE;
3231 * If the host uses TSC clock, then passthrough TSC as stable
3235 seq = read_seqcount_begin(&ka->pvclock_sc);
3236 use_master_clock = ka->use_master_clock;
3237 if (use_master_clock) {
3238 host_tsc = ka->master_cycle_now;
3239 kernel_ns = ka->master_kernel_ns;
3241 } while (read_seqcount_retry(&ka->pvclock_sc, seq));
3243 /* Keep irq disabled to prevent changes to the clock */
3244 local_irq_save(flags);
3245 tgt_tsc_khz = get_cpu_tsc_khz();
3246 if (unlikely(tgt_tsc_khz == 0)) {
3247 local_irq_restore(flags);
3248 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3251 if (!use_master_clock) {
3253 kernel_ns = get_kvmclock_base_ns();
3256 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
3259 * We may have to catch up the TSC to match elapsed wall clock
3260 * time for two reasons, even if kvmclock is used.
3261 * 1) CPU could have been running below the maximum TSC rate
3262 * 2) Broken TSC compensation resets the base at each VCPU
3263 * entry to avoid unknown leaps of TSC even when running
3264 * again on the same CPU. This may cause apparent elapsed
3265 * time to disappear, and the guest to stand still or run
3268 if (vcpu->tsc_catchup) {
3269 u64 tsc = compute_guest_tsc(v, kernel_ns);
3270 if (tsc > tsc_timestamp) {
3271 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
3272 tsc_timestamp = tsc;
3276 local_irq_restore(flags);
3278 /* With all the info we got, fill in the values */
3280 if (kvm_caps.has_tsc_control)
3281 tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz,
3282 v->arch.l1_tsc_scaling_ratio);
3284 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
3285 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
3286 &vcpu->hv_clock.tsc_shift,
3287 &vcpu->hv_clock.tsc_to_system_mul);
3288 vcpu->hw_tsc_khz = tgt_tsc_khz;
3289 kvm_xen_update_tsc_info(v);
3292 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
3293 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
3294 vcpu->last_guest_tsc = tsc_timestamp;
3296 /* If the host uses TSC clocksource, then it is stable */
3298 if (use_master_clock)
3299 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
3301 vcpu->hv_clock.flags = pvclock_flags;
3303 if (vcpu->pv_time.active)
3304 kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0, false);
3305 #ifdef CONFIG_KVM_XEN
3306 if (vcpu->xen.vcpu_info_cache.active)
3307 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache,
3308 offsetof(struct compat_vcpu_info, time),
3309 xen_pvclock_tsc_unstable);
3310 if (vcpu->xen.vcpu_time_info_cache.active)
3311 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0,
3312 xen_pvclock_tsc_unstable);
3314 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
3319 * The pvclock_wall_clock ABI tells the guest the wall clock time at
3320 * which it started (i.e. its epoch, when its kvmclock was zero).
3322 * In fact those clocks are subtly different; wall clock frequency is
3323 * adjusted by NTP and has leap seconds, while the kvmclock is a
3324 * simple function of the TSC without any such adjustment.
3326 * Perhaps the ABI should have exposed CLOCK_TAI and a ratio between
3327 * that and kvmclock, but even that would be subject to change over
3330 * Attempt to calculate the epoch at a given moment using the *same*
3331 * TSC reading via kvm_get_walltime_and_clockread() to obtain both
3332 * wallclock and kvmclock times, and subtracting one from the other.
3334 * Fall back to using their values at slightly different moments by
3335 * calling ktime_get_real_ns() and get_kvmclock_ns() separately.
3337 uint64_t kvm_get_wall_clock_epoch(struct kvm *kvm)
3339 #ifdef CONFIG_X86_64
3340 struct pvclock_vcpu_time_info hv_clock;
3341 struct kvm_arch *ka = &kvm->arch;
3342 unsigned long seq, local_tsc_khz;
3343 struct timespec64 ts;
3347 seq = read_seqcount_begin(&ka->pvclock_sc);
3350 if (!ka->use_master_clock)
3354 * The TSC read and the call to get_cpu_tsc_khz() must happen
3359 local_tsc_khz = get_cpu_tsc_khz();
3361 if (local_tsc_khz &&
3362 !kvm_get_walltime_and_clockread(&ts, &host_tsc))
3363 local_tsc_khz = 0; /* Fall back to old method */
3368 * These values must be snapshotted within the seqcount loop.
3369 * After that, it's just mathematics which can happen on any
3372 hv_clock.tsc_timestamp = ka->master_cycle_now;
3373 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
3375 } while (read_seqcount_retry(&ka->pvclock_sc, seq));
3378 * If the conditions were right, and obtaining the wallclock+TSC was
3379 * successful, calculate the KVM clock at the corresponding time and
3380 * subtract one from the other to get the guest's epoch in nanoseconds
3383 if (local_tsc_khz) {
3384 kvm_get_time_scale(NSEC_PER_SEC, local_tsc_khz * NSEC_PER_USEC,
3385 &hv_clock.tsc_shift,
3386 &hv_clock.tsc_to_system_mul);
3387 return ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec -
3388 __pvclock_read_cycles(&hv_clock, host_tsc);
3391 return ktime_get_real_ns() - get_kvmclock_ns(kvm);
3395 * kvmclock updates which are isolated to a given vcpu, such as
3396 * vcpu->cpu migration, should not allow system_timestamp from
3397 * the rest of the vcpus to remain static. Otherwise ntp frequency
3398 * correction applies to one vcpu's system_timestamp but not
3401 * So in those cases, request a kvmclock update for all vcpus.
3402 * We need to rate-limit these requests though, as they can
3403 * considerably slow guests that have a large number of vcpus.
3404 * The time for a remote vcpu to update its kvmclock is bound
3405 * by the delay we use to rate-limit the updates.
3408 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
3410 static void kvmclock_update_fn(struct work_struct *work)
3413 struct delayed_work *dwork = to_delayed_work(work);
3414 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3415 kvmclock_update_work);
3416 struct kvm *kvm = container_of(ka, struct kvm, arch);
3417 struct kvm_vcpu *vcpu;
3419 kvm_for_each_vcpu(i, vcpu, kvm) {
3420 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3421 kvm_vcpu_kick(vcpu);
3425 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3427 struct kvm *kvm = v->kvm;
3429 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3430 schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3431 KVMCLOCK_UPDATE_DELAY);
3434 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3436 static void kvmclock_sync_fn(struct work_struct *work)
3438 struct delayed_work *dwork = to_delayed_work(work);
3439 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3440 kvmclock_sync_work);
3441 struct kvm *kvm = container_of(ka, struct kvm, arch);
3443 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3444 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3445 KVMCLOCK_SYNC_PERIOD);
3448 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */
3449 static bool is_mci_control_msr(u32 msr)
3451 return (msr & 3) == 0;
3453 static bool is_mci_status_msr(u32 msr)
3455 return (msr & 3) == 1;
3459 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3461 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3463 /* McStatusWrEn enabled? */
3464 if (guest_cpuid_is_amd_compatible(vcpu))
3465 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3470 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3472 u64 mcg_cap = vcpu->arch.mcg_cap;
3473 unsigned bank_num = mcg_cap & 0xff;
3474 u32 msr = msr_info->index;
3475 u64 data = msr_info->data;
3476 u32 offset, last_msr;
3479 case MSR_IA32_MCG_STATUS:
3480 vcpu->arch.mcg_status = data;
3482 case MSR_IA32_MCG_CTL:
3483 if (!(mcg_cap & MCG_CTL_P) &&
3484 (data || !msr_info->host_initiated))
3486 if (data != 0 && data != ~(u64)0)
3488 vcpu->arch.mcg_ctl = data;
3490 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3491 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
3495 if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated))
3497 /* An attempt to write a 1 to a reserved bit raises #GP */
3498 if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK))
3500 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
3501 last_msr + 1 - MSR_IA32_MC0_CTL2);
3502 vcpu->arch.mci_ctl2_banks[offset] = data;
3504 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3505 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
3510 * Only 0 or all 1s can be written to IA32_MCi_CTL, all other
3511 * values are architecturally undefined. But, some Linux
3512 * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB
3513 * issue on AMD K8s, allow bit 10 to be clear when setting all
3514 * other bits in order to avoid an uncaught #GP in the guest.
3516 * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable,
3517 * single-bit ECC data errors.
3519 if (is_mci_control_msr(msr) &&
3520 data != 0 && (data | (1 << 10) | 1) != ~(u64)0)
3524 * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR.
3525 * AMD-based CPUs allow non-zero values, but if and only if
3526 * HWCR[McStatusWrEn] is set.
3528 if (!msr_info->host_initiated && is_mci_status_msr(msr) &&
3529 data != 0 && !can_set_mci_status(vcpu))
3532 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
3533 last_msr + 1 - MSR_IA32_MC0_CTL);
3534 vcpu->arch.mce_banks[offset] = data;
3542 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3544 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3546 return (vcpu->arch.apf.msr_en_val & mask) == mask;
3549 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3551 gpa_t gpa = data & ~0x3f;
3553 /* Bits 4:5 are reserved, Should be zero */
3557 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3558 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3561 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3562 (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3565 if (!lapic_in_kernel(vcpu))
3566 return data ? 1 : 0;
3568 vcpu->arch.apf.msr_en_val = data;
3570 if (!kvm_pv_async_pf_enabled(vcpu)) {
3571 kvm_clear_async_pf_completion_queue(vcpu);
3572 kvm_async_pf_hash_reset(vcpu);
3576 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3580 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3581 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3583 kvm_async_pf_wakeup_all(vcpu);
3588 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3590 /* Bits 8-63 are reserved */
3594 if (!lapic_in_kernel(vcpu))
3597 vcpu->arch.apf.msr_int_val = data;
3599 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3604 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3606 kvm_gpc_deactivate(&vcpu->arch.pv_time);
3607 vcpu->arch.time = 0;
3610 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3612 ++vcpu->stat.tlb_flush;
3613 static_call(kvm_x86_flush_tlb_all)(vcpu);
3615 /* Flushing all ASIDs flushes the current ASID... */
3616 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
3619 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3621 ++vcpu->stat.tlb_flush;
3625 * A TLB flush on behalf of the guest is equivalent to
3626 * INVPCID(all), toggling CR4.PGE, etc., which requires
3627 * a forced sync of the shadow page tables. Ensure all the
3628 * roots are synced and the guest TLB in hardware is clean.
3630 kvm_mmu_sync_roots(vcpu);
3631 kvm_mmu_sync_prev_roots(vcpu);
3634 static_call(kvm_x86_flush_tlb_guest)(vcpu);
3637 * Flushing all "guest" TLB is always a superset of Hyper-V's fine
3640 kvm_hv_vcpu_purge_flush_tlb(vcpu);
3644 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
3646 ++vcpu->stat.tlb_flush;
3647 static_call(kvm_x86_flush_tlb_current)(vcpu);
3651 * Service "local" TLB flush requests, which are specific to the current MMU
3652 * context. In addition to the generic event handling in vcpu_enter_guest(),
3653 * TLB flushes that are targeted at an MMU context also need to be serviced
3654 * prior before nested VM-Enter/VM-Exit.
3656 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu)
3658 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3659 kvm_vcpu_flush_tlb_current(vcpu);
3661 if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
3662 kvm_vcpu_flush_tlb_guest(vcpu);
3664 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests);
3666 static void record_steal_time(struct kvm_vcpu *vcpu)
3668 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3669 struct kvm_steal_time __user *st;
3670 struct kvm_memslots *slots;
3671 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3675 if (kvm_xen_msr_enabled(vcpu->kvm)) {
3676 kvm_xen_runstate_set_running(vcpu);
3680 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3683 if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3686 slots = kvm_memslots(vcpu->kvm);
3688 if (unlikely(slots->generation != ghc->generation ||
3690 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3691 /* We rely on the fact that it fits in a single page. */
3692 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3694 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) ||
3695 kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3699 st = (struct kvm_steal_time __user *)ghc->hva;
3701 * Doing a TLB flush here, on the guest's behalf, can avoid
3704 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3705 u8 st_preempted = 0;
3708 if (!user_access_begin(st, sizeof(*st)))
3711 asm volatile("1: xchgb %0, %2\n"
3714 _ASM_EXTABLE_UA(1b, 2b)
3715 : "+q" (st_preempted),
3717 "+m" (st->preempted));
3723 vcpu->arch.st.preempted = 0;
3725 trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3726 st_preempted & KVM_VCPU_FLUSH_TLB);
3727 if (st_preempted & KVM_VCPU_FLUSH_TLB)
3728 kvm_vcpu_flush_tlb_guest(vcpu);
3730 if (!user_access_begin(st, sizeof(*st)))
3733 if (!user_access_begin(st, sizeof(*st)))
3736 unsafe_put_user(0, &st->preempted, out);
3737 vcpu->arch.st.preempted = 0;
3740 unsafe_get_user(version, &st->version, out);
3742 version += 1; /* first time write, random junk */
3745 unsafe_put_user(version, &st->version, out);
3749 unsafe_get_user(steal, &st->steal, out);
3750 steal += current->sched_info.run_delay -
3751 vcpu->arch.st.last_steal;
3752 vcpu->arch.st.last_steal = current->sched_info.run_delay;
3753 unsafe_put_user(steal, &st->steal, out);
3756 unsafe_put_user(version, &st->version, out);
3761 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
3764 static bool kvm_is_msr_to_save(u32 msr_index)
3768 for (i = 0; i < num_msrs_to_save; i++) {
3769 if (msrs_to_save[i] == msr_index)
3776 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3778 u32 msr = msr_info->index;
3779 u64 data = msr_info->data;
3781 if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3782 return kvm_xen_write_hypercall_page(vcpu, data);
3785 case MSR_AMD64_NB_CFG:
3786 case MSR_IA32_UCODE_WRITE:
3787 case MSR_VM_HSAVE_PA:
3788 case MSR_AMD64_PATCH_LOADER:
3789 case MSR_AMD64_BU_CFG2:
3790 case MSR_AMD64_DC_CFG:
3791 case MSR_AMD64_TW_CFG:
3792 case MSR_F15H_EX_CFG:
3795 case MSR_IA32_UCODE_REV:
3796 if (msr_info->host_initiated)
3797 vcpu->arch.microcode_version = data;
3799 case MSR_IA32_ARCH_CAPABILITIES:
3800 if (!msr_info->host_initiated)
3802 vcpu->arch.arch_capabilities = data;
3804 case MSR_IA32_PERF_CAPABILITIES:
3805 if (!msr_info->host_initiated)
3807 if (data & ~kvm_caps.supported_perf_cap)
3811 * Note, this is not just a performance optimization! KVM
3812 * disallows changing feature MSRs after the vCPU has run; PMU
3813 * refresh will bug the VM if called after the vCPU has run.
3815 if (vcpu->arch.perf_capabilities == data)
3818 vcpu->arch.perf_capabilities = data;
3819 kvm_pmu_refresh(vcpu);
3821 case MSR_IA32_PRED_CMD: {
3822 u64 reserved_bits = ~(PRED_CMD_IBPB | PRED_CMD_SBPB);
3824 if (!msr_info->host_initiated) {
3825 if ((!guest_has_pred_cmd_msr(vcpu)))
3828 if (!guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL) &&
3829 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBPB))
3830 reserved_bits |= PRED_CMD_IBPB;
3832 if (!guest_cpuid_has(vcpu, X86_FEATURE_SBPB))
3833 reserved_bits |= PRED_CMD_SBPB;
3836 if (!boot_cpu_has(X86_FEATURE_IBPB))
3837 reserved_bits |= PRED_CMD_IBPB;
3839 if (!boot_cpu_has(X86_FEATURE_SBPB))
3840 reserved_bits |= PRED_CMD_SBPB;
3842 if (data & reserved_bits)
3848 wrmsrl(MSR_IA32_PRED_CMD, data);
3851 case MSR_IA32_FLUSH_CMD:
3852 if (!msr_info->host_initiated &&
3853 !guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D))
3856 if (!boot_cpu_has(X86_FEATURE_FLUSH_L1D) || (data & ~L1D_FLUSH))
3861 wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
3864 return set_efer(vcpu, msr_info);
3866 data &= ~(u64)0x40; /* ignore flush filter disable */
3867 data &= ~(u64)0x100; /* ignore ignne emulation enable */
3868 data &= ~(u64)0x8; /* ignore TLB cache disable */
3871 * Allow McStatusWrEn and TscFreqSel. (Linux guests from v3.2
3872 * through at least v6.6 whine if TscFreqSel is clear,
3873 * depending on F/M/S.
3875 if (data & ~(BIT_ULL(18) | BIT_ULL(24))) {
3876 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3879 vcpu->arch.msr_hwcr = data;
3881 case MSR_FAM10H_MMIO_CONF_BASE:
3883 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3887 case MSR_IA32_CR_PAT:
3888 if (!kvm_pat_valid(data))
3891 vcpu->arch.pat = data;
3893 case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
3894 case MSR_MTRRdefType:
3895 return kvm_mtrr_set_msr(vcpu, msr, data);
3896 case MSR_IA32_APICBASE:
3897 return kvm_set_apic_base(vcpu, msr_info);
3898 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3899 return kvm_x2apic_msr_write(vcpu, msr, data);
3900 case MSR_IA32_TSC_DEADLINE:
3901 kvm_set_lapic_tscdeadline_msr(vcpu, data);
3903 case MSR_IA32_TSC_ADJUST:
3904 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3905 if (!msr_info->host_initiated) {
3906 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3907 adjust_tsc_offset_guest(vcpu, adj);
3908 /* Before back to guest, tsc_timestamp must be adjusted
3909 * as well, otherwise guest's percpu pvclock time could jump.
3911 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3913 vcpu->arch.ia32_tsc_adjust_msr = data;
3916 case MSR_IA32_MISC_ENABLE: {
3917 u64 old_val = vcpu->arch.ia32_misc_enable_msr;
3919 if (!msr_info->host_initiated) {
3921 if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK)
3924 /* R bits, i.e. writes are ignored, but don't fault. */
3925 data = data & ~MSR_IA32_MISC_ENABLE_EMON;
3926 data |= old_val & MSR_IA32_MISC_ENABLE_EMON;
3929 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3930 ((old_val ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
3931 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3933 vcpu->arch.ia32_misc_enable_msr = data;
3934 kvm_update_cpuid_runtime(vcpu);
3936 vcpu->arch.ia32_misc_enable_msr = data;
3940 case MSR_IA32_SMBASE:
3941 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
3943 vcpu->arch.smbase = data;
3945 case MSR_IA32_POWER_CTL:
3946 vcpu->arch.msr_ia32_power_ctl = data;
3949 if (msr_info->host_initiated) {
3950 kvm_synchronize_tsc(vcpu, &data);
3952 u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3953 adjust_tsc_offset_guest(vcpu, adj);
3954 vcpu->arch.ia32_tsc_adjust_msr += adj;
3958 if (!msr_info->host_initiated &&
3959 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3962 * KVM supports exposing PT to the guest, but does not support
3963 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3964 * XSAVES/XRSTORS to save/restore PT MSRs.
3966 if (data & ~kvm_caps.supported_xss)
3968 vcpu->arch.ia32_xss = data;
3969 kvm_update_cpuid_runtime(vcpu);
3972 if (!msr_info->host_initiated)
3974 vcpu->arch.smi_count = data;
3976 case MSR_KVM_WALL_CLOCK_NEW:
3977 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3980 vcpu->kvm->arch.wall_clock = data;
3981 kvm_write_wall_clock(vcpu->kvm, data, 0);
3983 case MSR_KVM_WALL_CLOCK:
3984 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3987 vcpu->kvm->arch.wall_clock = data;
3988 kvm_write_wall_clock(vcpu->kvm, data, 0);
3990 case MSR_KVM_SYSTEM_TIME_NEW:
3991 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3994 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3996 case MSR_KVM_SYSTEM_TIME:
3997 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4000 kvm_write_system_time(vcpu, data, true, msr_info->host_initiated);
4002 case MSR_KVM_ASYNC_PF_EN:
4003 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
4006 if (kvm_pv_enable_async_pf(vcpu, data))
4009 case MSR_KVM_ASYNC_PF_INT:
4010 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4013 if (kvm_pv_enable_async_pf_int(vcpu, data))
4016 case MSR_KVM_ASYNC_PF_ACK:
4017 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4020 vcpu->arch.apf.pageready_pending = false;
4021 kvm_check_async_pf_completion(vcpu);
4024 case MSR_KVM_STEAL_TIME:
4025 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
4028 if (unlikely(!sched_info_on()))
4031 if (data & KVM_STEAL_RESERVED_MASK)
4034 vcpu->arch.st.msr_val = data;
4036 if (!(data & KVM_MSR_ENABLED))
4039 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4042 case MSR_KVM_PV_EOI_EN:
4043 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4046 if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8)))
4050 case MSR_KVM_POLL_CONTROL:
4051 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4054 /* only enable bit supported */
4055 if (data & (-1ULL << 1))
4058 vcpu->arch.msr_kvm_poll_control = data;
4061 case MSR_IA32_MCG_CTL:
4062 case MSR_IA32_MCG_STATUS:
4063 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4064 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4065 return set_msr_mce(vcpu, msr_info);
4067 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
4068 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
4069 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
4070 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
4071 if (kvm_pmu_is_valid_msr(vcpu, msr))
4072 return kvm_pmu_set_msr(vcpu, msr_info);
4075 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
4077 case MSR_K7_CLK_CTL:
4079 * Ignore all writes to this no longer documented MSR.
4080 * Writes are only relevant for old K7 processors,
4081 * all pre-dating SVM, but a recommended workaround from
4082 * AMD for these chips. It is possible to specify the
4083 * affected processor models on the command line, hence
4084 * the need to ignore the workaround.
4087 #ifdef CONFIG_KVM_HYPERV
4088 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4089 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4090 case HV_X64_MSR_SYNDBG_OPTIONS:
4091 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4092 case HV_X64_MSR_CRASH_CTL:
4093 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4094 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4095 case HV_X64_MSR_TSC_EMULATION_CONTROL:
4096 case HV_X64_MSR_TSC_EMULATION_STATUS:
4097 case HV_X64_MSR_TSC_INVARIANT_CONTROL:
4098 return kvm_hv_set_msr_common(vcpu, msr, data,
4099 msr_info->host_initiated);
4101 case MSR_IA32_BBL_CR_CTL3:
4102 /* Drop writes to this legacy MSR -- see rdmsr
4103 * counterpart for further detail.
4105 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
4107 case MSR_AMD64_OSVW_ID_LENGTH:
4108 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4110 vcpu->arch.osvw.length = data;
4112 case MSR_AMD64_OSVW_STATUS:
4113 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4115 vcpu->arch.osvw.status = data;
4117 case MSR_PLATFORM_INFO:
4118 if (!msr_info->host_initiated ||
4119 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
4120 cpuid_fault_enabled(vcpu)))
4122 vcpu->arch.msr_platform_info = data;
4124 case MSR_MISC_FEATURES_ENABLES:
4125 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
4126 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
4127 !supports_cpuid_fault(vcpu)))
4129 vcpu->arch.msr_misc_features_enables = data;
4131 #ifdef CONFIG_X86_64
4133 if (!msr_info->host_initiated &&
4134 !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4137 if (data & ~kvm_guest_supported_xfd(vcpu))
4140 fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data);
4142 case MSR_IA32_XFD_ERR:
4143 if (!msr_info->host_initiated &&
4144 !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4147 if (data & ~kvm_guest_supported_xfd(vcpu))
4150 vcpu->arch.guest_fpu.xfd_err = data;
4154 if (kvm_pmu_is_valid_msr(vcpu, msr))
4155 return kvm_pmu_set_msr(vcpu, msr_info);
4158 * Userspace is allowed to write '0' to MSRs that KVM reports
4159 * as to-be-saved, even if an MSRs isn't fully supported.
4161 if (msr_info->host_initiated && !data &&
4162 kvm_is_msr_to_save(msr))
4165 return KVM_MSR_RET_INVALID;
4169 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
4171 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
4174 u64 mcg_cap = vcpu->arch.mcg_cap;
4175 unsigned bank_num = mcg_cap & 0xff;
4176 u32 offset, last_msr;
4179 case MSR_IA32_P5_MC_ADDR:
4180 case MSR_IA32_P5_MC_TYPE:
4183 case MSR_IA32_MCG_CAP:
4184 data = vcpu->arch.mcg_cap;
4186 case MSR_IA32_MCG_CTL:
4187 if (!(mcg_cap & MCG_CTL_P) && !host)
4189 data = vcpu->arch.mcg_ctl;
4191 case MSR_IA32_MCG_STATUS:
4192 data = vcpu->arch.mcg_status;
4194 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4195 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
4199 if (!(mcg_cap & MCG_CMCI_P) && !host)
4201 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
4202 last_msr + 1 - MSR_IA32_MC0_CTL2);
4203 data = vcpu->arch.mci_ctl2_banks[offset];
4205 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4206 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
4210 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
4211 last_msr + 1 - MSR_IA32_MC0_CTL);
4212 data = vcpu->arch.mce_banks[offset];
4221 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
4223 switch (msr_info->index) {
4224 case MSR_IA32_PLATFORM_ID:
4225 case MSR_IA32_EBL_CR_POWERON:
4226 case MSR_IA32_LASTBRANCHFROMIP:
4227 case MSR_IA32_LASTBRANCHTOIP:
4228 case MSR_IA32_LASTINTFROMIP:
4229 case MSR_IA32_LASTINTTOIP:
4230 case MSR_AMD64_SYSCFG:
4231 case MSR_K8_TSEG_ADDR:
4232 case MSR_K8_TSEG_MASK:
4233 case MSR_VM_HSAVE_PA:
4234 case MSR_K8_INT_PENDING_MSG:
4235 case MSR_AMD64_NB_CFG:
4236 case MSR_FAM10H_MMIO_CONF_BASE:
4237 case MSR_AMD64_BU_CFG2:
4238 case MSR_IA32_PERF_CTL:
4239 case MSR_AMD64_DC_CFG:
4240 case MSR_AMD64_TW_CFG:
4241 case MSR_F15H_EX_CFG:
4243 * Intel Sandy Bridge CPUs must support the RAPL (running average power
4244 * limit) MSRs. Just return 0, as we do not want to expose the host
4245 * data here. Do not conditionalize this on CPUID, as KVM does not do
4246 * so for existing CPU-specific MSRs.
4248 case MSR_RAPL_POWER_UNIT:
4249 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */
4250 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */
4251 case MSR_PKG_ENERGY_STATUS: /* Total package */
4252 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */
4255 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
4256 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
4257 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
4258 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
4259 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4260 return kvm_pmu_get_msr(vcpu, msr_info);
4263 case MSR_IA32_UCODE_REV:
4264 msr_info->data = vcpu->arch.microcode_version;
4266 case MSR_IA32_ARCH_CAPABILITIES:
4267 if (!msr_info->host_initiated &&
4268 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
4270 msr_info->data = vcpu->arch.arch_capabilities;
4272 case MSR_IA32_PERF_CAPABILITIES:
4273 if (!msr_info->host_initiated &&
4274 !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
4276 msr_info->data = vcpu->arch.perf_capabilities;
4278 case MSR_IA32_POWER_CTL:
4279 msr_info->data = vcpu->arch.msr_ia32_power_ctl;
4281 case MSR_IA32_TSC: {
4283 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
4284 * even when not intercepted. AMD manual doesn't explicitly
4285 * state this but appears to behave the same.
4287 * On userspace reads and writes, however, we unconditionally
4288 * return L1's TSC value to ensure backwards-compatible
4289 * behavior for migration.
4293 if (msr_info->host_initiated) {
4294 offset = vcpu->arch.l1_tsc_offset;
4295 ratio = vcpu->arch.l1_tsc_scaling_ratio;
4297 offset = vcpu->arch.tsc_offset;
4298 ratio = vcpu->arch.tsc_scaling_ratio;
4301 msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset;
4304 case MSR_IA32_CR_PAT:
4305 msr_info->data = vcpu->arch.pat;
4308 case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
4309 case MSR_MTRRdefType:
4310 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
4311 case 0xcd: /* fsb frequency */
4315 * MSR_EBC_FREQUENCY_ID
4316 * Conservative value valid for even the basic CPU models.
4317 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
4318 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
4319 * and 266MHz for model 3, or 4. Set Core Clock
4320 * Frequency to System Bus Frequency Ratio to 1 (bits
4321 * 31:24) even though these are only valid for CPU
4322 * models > 2, however guests may end up dividing or
4323 * multiplying by zero otherwise.
4325 case MSR_EBC_FREQUENCY_ID:
4326 msr_info->data = 1 << 24;
4328 case MSR_IA32_APICBASE:
4329 msr_info->data = kvm_get_apic_base(vcpu);
4331 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
4332 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
4333 case MSR_IA32_TSC_DEADLINE:
4334 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
4336 case MSR_IA32_TSC_ADJUST:
4337 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
4339 case MSR_IA32_MISC_ENABLE:
4340 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
4342 case MSR_IA32_SMBASE:
4343 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
4345 msr_info->data = vcpu->arch.smbase;
4348 msr_info->data = vcpu->arch.smi_count;
4350 case MSR_IA32_PERF_STATUS:
4351 /* TSC increment by tick */
4352 msr_info->data = 1000ULL;
4353 /* CPU multiplier */
4354 msr_info->data |= (((uint64_t)4ULL) << 40);
4357 msr_info->data = vcpu->arch.efer;
4359 case MSR_KVM_WALL_CLOCK:
4360 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4363 msr_info->data = vcpu->kvm->arch.wall_clock;
4365 case MSR_KVM_WALL_CLOCK_NEW:
4366 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4369 msr_info->data = vcpu->kvm->arch.wall_clock;
4371 case MSR_KVM_SYSTEM_TIME:
4372 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4375 msr_info->data = vcpu->arch.time;
4377 case MSR_KVM_SYSTEM_TIME_NEW:
4378 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4381 msr_info->data = vcpu->arch.time;
4383 case MSR_KVM_ASYNC_PF_EN:
4384 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
4387 msr_info->data = vcpu->arch.apf.msr_en_val;
4389 case MSR_KVM_ASYNC_PF_INT:
4390 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4393 msr_info->data = vcpu->arch.apf.msr_int_val;
4395 case MSR_KVM_ASYNC_PF_ACK:
4396 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4401 case MSR_KVM_STEAL_TIME:
4402 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
4405 msr_info->data = vcpu->arch.st.msr_val;
4407 case MSR_KVM_PV_EOI_EN:
4408 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4411 msr_info->data = vcpu->arch.pv_eoi.msr_val;
4413 case MSR_KVM_POLL_CONTROL:
4414 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4417 msr_info->data = vcpu->arch.msr_kvm_poll_control;
4419 case MSR_IA32_P5_MC_ADDR:
4420 case MSR_IA32_P5_MC_TYPE:
4421 case MSR_IA32_MCG_CAP:
4422 case MSR_IA32_MCG_CTL:
4423 case MSR_IA32_MCG_STATUS:
4424 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4425 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4426 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
4427 msr_info->host_initiated);
4429 if (!msr_info->host_initiated &&
4430 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
4432 msr_info->data = vcpu->arch.ia32_xss;
4434 case MSR_K7_CLK_CTL:
4436 * Provide expected ramp-up count for K7. All other
4437 * are set to zero, indicating minimum divisors for
4440 * This prevents guest kernels on AMD host with CPU
4441 * type 6, model 8 and higher from exploding due to
4442 * the rdmsr failing.
4444 msr_info->data = 0x20000000;
4446 #ifdef CONFIG_KVM_HYPERV
4447 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4448 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4449 case HV_X64_MSR_SYNDBG_OPTIONS:
4450 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4451 case HV_X64_MSR_CRASH_CTL:
4452 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4453 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4454 case HV_X64_MSR_TSC_EMULATION_CONTROL:
4455 case HV_X64_MSR_TSC_EMULATION_STATUS:
4456 case HV_X64_MSR_TSC_INVARIANT_CONTROL:
4457 return kvm_hv_get_msr_common(vcpu,
4458 msr_info->index, &msr_info->data,
4459 msr_info->host_initiated);
4461 case MSR_IA32_BBL_CR_CTL3:
4462 /* This legacy MSR exists but isn't fully documented in current
4463 * silicon. It is however accessed by winxp in very narrow
4464 * scenarios where it sets bit #19, itself documented as
4465 * a "reserved" bit. Best effort attempt to source coherent
4466 * read data here should the balance of the register be
4467 * interpreted by the guest:
4469 * L2 cache control register 3: 64GB range, 256KB size,
4470 * enabled, latency 0x1, configured
4472 msr_info->data = 0xbe702111;
4474 case MSR_AMD64_OSVW_ID_LENGTH:
4475 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4477 msr_info->data = vcpu->arch.osvw.length;
4479 case MSR_AMD64_OSVW_STATUS:
4480 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4482 msr_info->data = vcpu->arch.osvw.status;
4484 case MSR_PLATFORM_INFO:
4485 if (!msr_info->host_initiated &&
4486 !vcpu->kvm->arch.guest_can_read_msr_platform_info)
4488 msr_info->data = vcpu->arch.msr_platform_info;
4490 case MSR_MISC_FEATURES_ENABLES:
4491 msr_info->data = vcpu->arch.msr_misc_features_enables;
4494 msr_info->data = vcpu->arch.msr_hwcr;
4496 #ifdef CONFIG_X86_64
4498 if (!msr_info->host_initiated &&
4499 !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4502 msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd;
4504 case MSR_IA32_XFD_ERR:
4505 if (!msr_info->host_initiated &&
4506 !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4509 msr_info->data = vcpu->arch.guest_fpu.xfd_err;
4513 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4514 return kvm_pmu_get_msr(vcpu, msr_info);
4517 * Userspace is allowed to read MSRs that KVM reports as
4518 * to-be-saved, even if an MSR isn't fully supported.
4520 if (msr_info->host_initiated &&
4521 kvm_is_msr_to_save(msr_info->index)) {
4526 return KVM_MSR_RET_INVALID;
4530 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
4533 * Read or write a bunch of msrs. All parameters are kernel addresses.
4535 * @return number of msrs set successfully.
4537 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
4538 struct kvm_msr_entry *entries,
4539 int (*do_msr)(struct kvm_vcpu *vcpu,
4540 unsigned index, u64 *data))
4544 for (i = 0; i < msrs->nmsrs; ++i)
4545 if (do_msr(vcpu, entries[i].index, &entries[i].data))
4552 * Read or write a bunch of msrs. Parameters are user addresses.
4554 * @return number of msrs set successfully.
4556 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
4557 int (*do_msr)(struct kvm_vcpu *vcpu,
4558 unsigned index, u64 *data),
4561 struct kvm_msrs msrs;
4562 struct kvm_msr_entry *entries;
4567 if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
4571 if (msrs.nmsrs >= MAX_IO_MSRS)
4574 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
4575 entries = memdup_user(user_msrs->entries, size);
4576 if (IS_ERR(entries)) {
4577 r = PTR_ERR(entries);
4581 r = __msr_io(vcpu, &msrs, entries, do_msr);
4583 if (writeback && copy_to_user(user_msrs->entries, entries, size))
4591 static inline bool kvm_can_mwait_in_guest(void)
4593 return boot_cpu_has(X86_FEATURE_MWAIT) &&
4594 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
4595 boot_cpu_has(X86_FEATURE_ARAT);
4598 #ifdef CONFIG_KVM_HYPERV
4599 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
4600 struct kvm_cpuid2 __user *cpuid_arg)
4602 struct kvm_cpuid2 cpuid;
4606 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4609 r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4614 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4621 static bool kvm_is_vm_type_supported(unsigned long type)
4623 return type < 32 && (kvm_caps.supported_vm_types & BIT(type));
4626 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
4631 case KVM_CAP_IRQCHIP:
4633 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
4634 case KVM_CAP_SET_TSS_ADDR:
4635 case KVM_CAP_EXT_CPUID:
4636 case KVM_CAP_EXT_EMUL_CPUID:
4637 case KVM_CAP_CLOCKSOURCE:
4639 case KVM_CAP_NOP_IO_DELAY:
4640 case KVM_CAP_MP_STATE:
4641 case KVM_CAP_SYNC_MMU:
4642 case KVM_CAP_USER_NMI:
4643 case KVM_CAP_REINJECT_CONTROL:
4644 case KVM_CAP_IRQ_INJECT_STATUS:
4645 case KVM_CAP_IOEVENTFD:
4646 case KVM_CAP_IOEVENTFD_NO_LENGTH:
4648 case KVM_CAP_PIT_STATE2:
4649 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
4650 case KVM_CAP_VCPU_EVENTS:
4651 #ifdef CONFIG_KVM_HYPERV
4652 case KVM_CAP_HYPERV:
4653 case KVM_CAP_HYPERV_VAPIC:
4654 case KVM_CAP_HYPERV_SPIN:
4655 case KVM_CAP_HYPERV_TIME:
4656 case KVM_CAP_HYPERV_SYNIC:
4657 case KVM_CAP_HYPERV_SYNIC2:
4658 case KVM_CAP_HYPERV_VP_INDEX:
4659 case KVM_CAP_HYPERV_EVENTFD:
4660 case KVM_CAP_HYPERV_TLBFLUSH:
4661 case KVM_CAP_HYPERV_SEND_IPI:
4662 case KVM_CAP_HYPERV_CPUID:
4663 case KVM_CAP_HYPERV_ENFORCE_CPUID:
4664 case KVM_CAP_SYS_HYPERV_CPUID:
4666 case KVM_CAP_PCI_SEGMENT:
4667 case KVM_CAP_DEBUGREGS:
4668 case KVM_CAP_X86_ROBUST_SINGLESTEP:
4670 case KVM_CAP_ASYNC_PF:
4671 case KVM_CAP_ASYNC_PF_INT:
4672 case KVM_CAP_GET_TSC_KHZ:
4673 case KVM_CAP_KVMCLOCK_CTRL:
4674 case KVM_CAP_READONLY_MEM:
4675 case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4676 case KVM_CAP_TSC_DEADLINE_TIMER:
4677 case KVM_CAP_DISABLE_QUIRKS:
4678 case KVM_CAP_SET_BOOT_CPU_ID:
4679 case KVM_CAP_SPLIT_IRQCHIP:
4680 case KVM_CAP_IMMEDIATE_EXIT:
4681 case KVM_CAP_PMU_EVENT_FILTER:
4682 case KVM_CAP_PMU_EVENT_MASKED_EVENTS:
4683 case KVM_CAP_GET_MSR_FEATURES:
4684 case KVM_CAP_MSR_PLATFORM_INFO:
4685 case KVM_CAP_EXCEPTION_PAYLOAD:
4686 case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
4687 case KVM_CAP_SET_GUEST_DEBUG:
4688 case KVM_CAP_LAST_CPU:
4689 case KVM_CAP_X86_USER_SPACE_MSR:
4690 case KVM_CAP_X86_MSR_FILTER:
4691 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4692 #ifdef CONFIG_X86_SGX_KVM
4693 case KVM_CAP_SGX_ATTRIBUTE:
4695 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4696 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
4697 case KVM_CAP_SREGS2:
4698 case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4699 case KVM_CAP_VCPU_ATTRIBUTES:
4700 case KVM_CAP_SYS_ATTRIBUTES:
4702 case KVM_CAP_ENABLE_CAP:
4703 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
4704 case KVM_CAP_IRQFD_RESAMPLE:
4705 case KVM_CAP_MEMORY_FAULT_INFO:
4708 case KVM_CAP_EXIT_HYPERCALL:
4709 r = KVM_EXIT_HYPERCALL_VALID_MASK;
4711 case KVM_CAP_SET_GUEST_DEBUG2:
4712 return KVM_GUESTDBG_VALID_MASK;
4713 #ifdef CONFIG_KVM_XEN
4714 case KVM_CAP_XEN_HVM:
4715 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4716 KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4717 KVM_XEN_HVM_CONFIG_SHARED_INFO |
4718 KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL |
4719 KVM_XEN_HVM_CONFIG_EVTCHN_SEND |
4720 KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE |
4721 KVM_XEN_HVM_CONFIG_SHARED_INFO_HVA;
4722 if (sched_info_on())
4723 r |= KVM_XEN_HVM_CONFIG_RUNSTATE |
4724 KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG;
4727 case KVM_CAP_SYNC_REGS:
4728 r = KVM_SYNC_X86_VALID_FIELDS;
4730 case KVM_CAP_ADJUST_CLOCK:
4731 r = KVM_CLOCK_VALID_FLAGS;
4733 case KVM_CAP_X86_DISABLE_EXITS:
4734 r = KVM_X86_DISABLE_EXITS_PAUSE;
4736 if (!mitigate_smt_rsb) {
4737 r |= KVM_X86_DISABLE_EXITS_HLT |
4738 KVM_X86_DISABLE_EXITS_CSTATE;
4740 if (kvm_can_mwait_in_guest())
4741 r |= KVM_X86_DISABLE_EXITS_MWAIT;
4744 case KVM_CAP_X86_SMM:
4745 if (!IS_ENABLED(CONFIG_KVM_SMM))
4748 /* SMBASE is usually relocated above 1M on modern chipsets,
4749 * and SMM handlers might indeed rely on 4G segment limits,
4750 * so do not report SMM to be available if real mode is
4751 * emulated via vm86 mode. Still, do not go to great lengths
4752 * to avoid userspace's usage of the feature, because it is a
4753 * fringe case that is not enabled except via specific settings
4754 * of the module parameters.
4756 r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4758 case KVM_CAP_NR_VCPUS:
4759 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
4761 case KVM_CAP_MAX_VCPUS:
4764 case KVM_CAP_MAX_VCPU_ID:
4765 r = KVM_MAX_VCPU_IDS;
4767 case KVM_CAP_PV_MMU: /* obsolete */
4771 r = KVM_MAX_MCE_BANKS;
4774 r = boot_cpu_has(X86_FEATURE_XSAVE);
4776 case KVM_CAP_TSC_CONTROL:
4777 case KVM_CAP_VM_TSC_CONTROL:
4778 r = kvm_caps.has_tsc_control;
4780 case KVM_CAP_X2APIC_API:
4781 r = KVM_X2APIC_API_VALID_FLAGS;
4783 case KVM_CAP_NESTED_STATE:
4784 r = kvm_x86_ops.nested_ops->get_state ?
4785 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4787 #ifdef CONFIG_KVM_HYPERV
4788 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4789 r = kvm_x86_ops.enable_l2_tlb_flush != NULL;
4791 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4792 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4795 case KVM_CAP_SMALLER_MAXPHYADDR:
4796 r = (int) allow_smaller_maxphyaddr;
4798 case KVM_CAP_STEAL_TIME:
4799 r = sched_info_on();
4801 case KVM_CAP_X86_BUS_LOCK_EXIT:
4802 if (kvm_caps.has_bus_lock_exit)
4803 r = KVM_BUS_LOCK_DETECTION_OFF |
4804 KVM_BUS_LOCK_DETECTION_EXIT;
4808 case KVM_CAP_XSAVE2: {
4809 r = xstate_required_size(kvm_get_filtered_xcr0(), false);
4810 if (r < sizeof(struct kvm_xsave))
4811 r = sizeof(struct kvm_xsave);
4814 case KVM_CAP_PMU_CAPABILITY:
4815 r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0;
4817 case KVM_CAP_DISABLE_QUIRKS2:
4818 r = KVM_X86_VALID_QUIRKS;
4820 case KVM_CAP_X86_NOTIFY_VMEXIT:
4821 r = kvm_caps.has_notify_vmexit;
4823 case KVM_CAP_VM_TYPES:
4824 r = kvm_caps.supported_vm_types;
4832 static int __kvm_x86_dev_get_attr(struct kvm_device_attr *attr, u64 *val)
4835 if (kvm_x86_ops.dev_get_attr)
4836 return static_call(kvm_x86_dev_get_attr)(attr->group, attr->attr, val);
4840 switch (attr->attr) {
4841 case KVM_X86_XCOMP_GUEST_SUPP:
4842 *val = kvm_caps.supported_xcr0;
4849 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr)
4851 u64 __user *uaddr = u64_to_user_ptr(attr->addr);
4855 r = __kvm_x86_dev_get_attr(attr, &val);
4859 if (put_user(val, uaddr))
4865 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr)
4869 return __kvm_x86_dev_get_attr(attr, &val);
4872 long kvm_arch_dev_ioctl(struct file *filp,
4873 unsigned int ioctl, unsigned long arg)
4875 void __user *argp = (void __user *)arg;
4879 case KVM_GET_MSR_INDEX_LIST: {
4880 struct kvm_msr_list __user *user_msr_list = argp;
4881 struct kvm_msr_list msr_list;
4885 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4888 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4889 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4892 if (n < msr_list.nmsrs)
4895 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4896 num_msrs_to_save * sizeof(u32)))
4898 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4900 num_emulated_msrs * sizeof(u32)))
4905 case KVM_GET_SUPPORTED_CPUID:
4906 case KVM_GET_EMULATED_CPUID: {
4907 struct kvm_cpuid2 __user *cpuid_arg = argp;
4908 struct kvm_cpuid2 cpuid;
4911 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4914 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4920 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4925 case KVM_X86_GET_MCE_CAP_SUPPORTED:
4927 if (copy_to_user(argp, &kvm_caps.supported_mce_cap,
4928 sizeof(kvm_caps.supported_mce_cap)))
4932 case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4933 struct kvm_msr_list __user *user_msr_list = argp;
4934 struct kvm_msr_list msr_list;
4938 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4941 msr_list.nmsrs = num_msr_based_features;
4942 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4945 if (n < msr_list.nmsrs)
4948 if (copy_to_user(user_msr_list->indices, &msr_based_features,
4949 num_msr_based_features * sizeof(u32)))
4955 r = msr_io(NULL, argp, do_get_msr_feature, 1);
4957 #ifdef CONFIG_KVM_HYPERV
4958 case KVM_GET_SUPPORTED_HV_CPUID:
4959 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4962 case KVM_GET_DEVICE_ATTR: {
4963 struct kvm_device_attr attr;
4965 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4967 r = kvm_x86_dev_get_attr(&attr);
4970 case KVM_HAS_DEVICE_ATTR: {
4971 struct kvm_device_attr attr;
4973 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4975 r = kvm_x86_dev_has_attr(&attr);
4986 static void wbinvd_ipi(void *garbage)
4991 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4993 return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4996 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4998 /* Address WBINVD may be executed by guest */
4999 if (need_emulate_wbinvd(vcpu)) {
5000 if (static_call(kvm_x86_has_wbinvd_exit)())
5001 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
5002 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
5003 smp_call_function_single(vcpu->cpu,
5004 wbinvd_ipi, NULL, 1);
5007 static_call(kvm_x86_vcpu_load)(vcpu, cpu);
5009 /* Save host pkru register if supported */
5010 vcpu->arch.host_pkru = read_pkru();
5012 /* Apply any externally detected TSC adjustments (due to suspend) */
5013 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
5014 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
5015 vcpu->arch.tsc_offset_adjustment = 0;
5016 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5019 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
5020 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
5021 rdtsc() - vcpu->arch.last_host_tsc;
5023 mark_tsc_unstable("KVM discovered backwards TSC");
5025 if (kvm_check_tsc_unstable()) {
5026 u64 offset = kvm_compute_l1_tsc_offset(vcpu,
5027 vcpu->arch.last_guest_tsc);
5028 kvm_vcpu_write_tsc_offset(vcpu, offset);
5029 vcpu->arch.tsc_catchup = 1;
5032 if (kvm_lapic_hv_timer_in_use(vcpu))
5033 kvm_lapic_restart_hv_timer(vcpu);
5036 * On a host with synchronized TSC, there is no need to update
5037 * kvmclock on vcpu->cpu migration
5039 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
5040 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
5041 if (vcpu->cpu != cpu)
5042 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
5046 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
5049 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
5051 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
5052 struct kvm_steal_time __user *st;
5053 struct kvm_memslots *slots;
5054 static const u8 preempted = KVM_VCPU_PREEMPTED;
5055 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
5058 * The vCPU can be marked preempted if and only if the VM-Exit was on
5059 * an instruction boundary and will not trigger guest emulation of any
5060 * kind (see vcpu_run). Vendor specific code controls (conservatively)
5061 * when this is true, for example allowing the vCPU to be marked
5062 * preempted if and only if the VM-Exit was due to a host interrupt.
5064 if (!vcpu->arch.at_instruction_boundary) {
5065 vcpu->stat.preemption_other++;
5069 vcpu->stat.preemption_reported++;
5070 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
5073 if (vcpu->arch.st.preempted)
5076 /* This happens on process exit */
5077 if (unlikely(current->mm != vcpu->kvm->mm))
5080 slots = kvm_memslots(vcpu->kvm);
5082 if (unlikely(slots->generation != ghc->generation ||
5084 kvm_is_error_hva(ghc->hva) || !ghc->memslot))
5087 st = (struct kvm_steal_time __user *)ghc->hva;
5088 BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
5090 if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
5091 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
5093 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
5096 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
5100 if (vcpu->preempted) {
5101 vcpu->arch.preempted_in_kernel = kvm_arch_vcpu_in_kernel(vcpu);
5104 * Take the srcu lock as memslots will be accessed to check the gfn
5105 * cache generation against the memslots generation.
5107 idx = srcu_read_lock(&vcpu->kvm->srcu);
5108 if (kvm_xen_msr_enabled(vcpu->kvm))
5109 kvm_xen_runstate_set_preempted(vcpu);
5111 kvm_steal_time_set_preempted(vcpu);
5112 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5115 static_call(kvm_x86_vcpu_put)(vcpu);
5116 vcpu->arch.last_host_tsc = rdtsc();
5119 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
5120 struct kvm_lapic_state *s)
5122 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
5124 return kvm_apic_get_state(vcpu, s);
5127 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
5128 struct kvm_lapic_state *s)
5132 r = kvm_apic_set_state(vcpu, s);
5135 update_cr8_intercept(vcpu);
5140 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
5143 * We can accept userspace's request for interrupt injection
5144 * as long as we have a place to store the interrupt number.
5145 * The actual injection will happen when the CPU is able to
5146 * deliver the interrupt.
5148 if (kvm_cpu_has_extint(vcpu))
5151 /* Acknowledging ExtINT does not happen if LINT0 is masked. */
5152 return (!lapic_in_kernel(vcpu) ||
5153 kvm_apic_accept_pic_intr(vcpu));
5156 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
5159 * Do not cause an interrupt window exit if an exception
5160 * is pending or an event needs reinjection; userspace
5161 * might want to inject the interrupt manually using KVM_SET_REGS
5162 * or KVM_SET_SREGS. For that to work, we must be at an
5163 * instruction boundary and with no events half-injected.
5165 return (kvm_arch_interrupt_allowed(vcpu) &&
5166 kvm_cpu_accept_dm_intr(vcpu) &&
5167 !kvm_event_needs_reinjection(vcpu) &&
5168 !kvm_is_exception_pending(vcpu));
5171 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
5172 struct kvm_interrupt *irq)
5174 if (irq->irq >= KVM_NR_INTERRUPTS)
5177 if (!irqchip_in_kernel(vcpu->kvm)) {
5178 kvm_queue_interrupt(vcpu, irq->irq, false);
5179 kvm_make_request(KVM_REQ_EVENT, vcpu);
5184 * With in-kernel LAPIC, we only use this to inject EXTINT, so
5185 * fail for in-kernel 8259.
5187 if (pic_in_kernel(vcpu->kvm))
5190 if (vcpu->arch.pending_external_vector != -1)
5193 vcpu->arch.pending_external_vector = irq->irq;
5194 kvm_make_request(KVM_REQ_EVENT, vcpu);
5198 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
5200 kvm_inject_nmi(vcpu);
5205 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
5206 struct kvm_tpr_access_ctl *tac)
5210 vcpu->arch.tpr_access_reporting = !!tac->enabled;
5214 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
5218 unsigned bank_num = mcg_cap & 0xff, bank;
5221 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
5223 if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000))
5226 vcpu->arch.mcg_cap = mcg_cap;
5227 /* Init IA32_MCG_CTL to all 1s */
5228 if (mcg_cap & MCG_CTL_P)
5229 vcpu->arch.mcg_ctl = ~(u64)0;
5230 /* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */
5231 for (bank = 0; bank < bank_num; bank++) {
5232 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
5233 if (mcg_cap & MCG_CMCI_P)
5234 vcpu->arch.mci_ctl2_banks[bank] = 0;
5237 kvm_apic_after_set_mcg_cap(vcpu);
5239 static_call(kvm_x86_setup_mce)(vcpu);
5245 * Validate this is an UCNA (uncorrectable no action) error by checking the
5246 * MCG_STATUS and MCi_STATUS registers:
5247 * - none of the bits for Machine Check Exceptions are set
5248 * - both the VAL (valid) and UC (uncorrectable) bits are set
5249 * MCI_STATUS_PCC - Processor Context Corrupted
5250 * MCI_STATUS_S - Signaled as a Machine Check Exception
5251 * MCI_STATUS_AR - Software recoverable Action Required
5253 static bool is_ucna(struct kvm_x86_mce *mce)
5255 return !mce->mcg_status &&
5256 !(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) &&
5257 (mce->status & MCI_STATUS_VAL) &&
5258 (mce->status & MCI_STATUS_UC);
5261 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks)
5263 u64 mcg_cap = vcpu->arch.mcg_cap;
5265 banks[1] = mce->status;
5266 banks[2] = mce->addr;
5267 banks[3] = mce->misc;
5268 vcpu->arch.mcg_status = mce->mcg_status;
5270 if (!(mcg_cap & MCG_CMCI_P) ||
5271 !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN))
5274 if (lapic_in_kernel(vcpu))
5275 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI);
5280 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
5281 struct kvm_x86_mce *mce)
5283 u64 mcg_cap = vcpu->arch.mcg_cap;
5284 unsigned bank_num = mcg_cap & 0xff;
5285 u64 *banks = vcpu->arch.mce_banks;
5287 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
5290 banks += array_index_nospec(4 * mce->bank, 4 * bank_num);
5293 return kvm_vcpu_x86_set_ucna(vcpu, mce, banks);
5296 * if IA32_MCG_CTL is not all 1s, the uncorrected error
5297 * reporting is disabled
5299 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
5300 vcpu->arch.mcg_ctl != ~(u64)0)
5303 * if IA32_MCi_CTL is not all 1s, the uncorrected error
5304 * reporting is disabled for the bank
5306 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
5308 if (mce->status & MCI_STATUS_UC) {
5309 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
5310 !kvm_is_cr4_bit_set(vcpu, X86_CR4_MCE)) {
5311 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5314 if (banks[1] & MCI_STATUS_VAL)
5315 mce->status |= MCI_STATUS_OVER;
5316 banks[2] = mce->addr;
5317 banks[3] = mce->misc;
5318 vcpu->arch.mcg_status = mce->mcg_status;
5319 banks[1] = mce->status;
5320 kvm_queue_exception(vcpu, MC_VECTOR);
5321 } else if (!(banks[1] & MCI_STATUS_VAL)
5322 || !(banks[1] & MCI_STATUS_UC)) {
5323 if (banks[1] & MCI_STATUS_VAL)
5324 mce->status |= MCI_STATUS_OVER;
5325 banks[2] = mce->addr;
5326 banks[3] = mce->misc;
5327 banks[1] = mce->status;
5329 banks[1] |= MCI_STATUS_OVER;
5333 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
5334 struct kvm_vcpu_events *events)
5336 struct kvm_queued_exception *ex;
5340 #ifdef CONFIG_KVM_SMM
5341 if (kvm_check_request(KVM_REQ_SMI, vcpu))
5346 * KVM's ABI only allows for one exception to be migrated. Luckily,
5347 * the only time there can be two queued exceptions is if there's a
5348 * non-exiting _injected_ exception, and a pending exiting exception.
5349 * In that case, ignore the VM-Exiting exception as it's an extension
5350 * of the injected exception.
5352 if (vcpu->arch.exception_vmexit.pending &&
5353 !vcpu->arch.exception.pending &&
5354 !vcpu->arch.exception.injected)
5355 ex = &vcpu->arch.exception_vmexit;
5357 ex = &vcpu->arch.exception;
5360 * In guest mode, payload delivery should be deferred if the exception
5361 * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1
5362 * intercepts #PF, ditto for DR6 and #DBs. If the per-VM capability,
5363 * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not
5364 * propagate the payload and so it cannot be safely deferred. Deliver
5365 * the payload if the capability hasn't been requested.
5367 if (!vcpu->kvm->arch.exception_payload_enabled &&
5368 ex->pending && ex->has_payload)
5369 kvm_deliver_exception_payload(vcpu, ex);
5371 memset(events, 0, sizeof(*events));
5374 * The API doesn't provide the instruction length for software
5375 * exceptions, so don't report them. As long as the guest RIP
5376 * isn't advanced, we should expect to encounter the exception
5379 if (!kvm_exception_is_soft(ex->vector)) {
5380 events->exception.injected = ex->injected;
5381 events->exception.pending = ex->pending;
5383 * For ABI compatibility, deliberately conflate
5384 * pending and injected exceptions when
5385 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
5387 if (!vcpu->kvm->arch.exception_payload_enabled)
5388 events->exception.injected |= ex->pending;
5390 events->exception.nr = ex->vector;
5391 events->exception.has_error_code = ex->has_error_code;
5392 events->exception.error_code = ex->error_code;
5393 events->exception_has_payload = ex->has_payload;
5394 events->exception_payload = ex->payload;
5396 events->interrupt.injected =
5397 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
5398 events->interrupt.nr = vcpu->arch.interrupt.nr;
5399 events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
5401 events->nmi.injected = vcpu->arch.nmi_injected;
5402 events->nmi.pending = kvm_get_nr_pending_nmis(vcpu);
5403 events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
5405 /* events->sipi_vector is never valid when reporting to user space */
5407 #ifdef CONFIG_KVM_SMM
5408 events->smi.smm = is_smm(vcpu);
5409 events->smi.pending = vcpu->arch.smi_pending;
5410 events->smi.smm_inside_nmi =
5411 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
5413 events->smi.latched_init = kvm_lapic_latched_init(vcpu);
5415 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
5416 | KVM_VCPUEVENT_VALID_SHADOW
5417 | KVM_VCPUEVENT_VALID_SMM);
5418 if (vcpu->kvm->arch.exception_payload_enabled)
5419 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
5420 if (vcpu->kvm->arch.triple_fault_event) {
5421 events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5422 events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT;
5426 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
5427 struct kvm_vcpu_events *events)
5429 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
5430 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
5431 | KVM_VCPUEVENT_VALID_SHADOW
5432 | KVM_VCPUEVENT_VALID_SMM
5433 | KVM_VCPUEVENT_VALID_PAYLOAD
5434 | KVM_VCPUEVENT_VALID_TRIPLE_FAULT))
5437 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
5438 if (!vcpu->kvm->arch.exception_payload_enabled)
5440 if (events->exception.pending)
5441 events->exception.injected = 0;
5443 events->exception_has_payload = 0;
5445 events->exception.pending = 0;
5446 events->exception_has_payload = 0;
5449 if ((events->exception.injected || events->exception.pending) &&
5450 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
5453 /* INITs are latched while in SMM */
5454 if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
5455 (events->smi.smm || events->smi.pending) &&
5456 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
5462 * Flag that userspace is stuffing an exception, the next KVM_RUN will
5463 * morph the exception to a VM-Exit if appropriate. Do this only for
5464 * pending exceptions, already-injected exceptions are not subject to
5465 * intercpetion. Note, userspace that conflates pending and injected
5466 * is hosed, and will incorrectly convert an injected exception into a
5467 * pending exception, which in turn may cause a spurious VM-Exit.
5469 vcpu->arch.exception_from_userspace = events->exception.pending;
5471 vcpu->arch.exception_vmexit.pending = false;
5473 vcpu->arch.exception.injected = events->exception.injected;
5474 vcpu->arch.exception.pending = events->exception.pending;
5475 vcpu->arch.exception.vector = events->exception.nr;
5476 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
5477 vcpu->arch.exception.error_code = events->exception.error_code;
5478 vcpu->arch.exception.has_payload = events->exception_has_payload;
5479 vcpu->arch.exception.payload = events->exception_payload;
5481 vcpu->arch.interrupt.injected = events->interrupt.injected;
5482 vcpu->arch.interrupt.nr = events->interrupt.nr;
5483 vcpu->arch.interrupt.soft = events->interrupt.soft;
5484 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
5485 static_call(kvm_x86_set_interrupt_shadow)(vcpu,
5486 events->interrupt.shadow);
5488 vcpu->arch.nmi_injected = events->nmi.injected;
5489 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) {
5490 vcpu->arch.nmi_pending = 0;
5491 atomic_set(&vcpu->arch.nmi_queued, events->nmi.pending);
5492 if (events->nmi.pending)
5493 kvm_make_request(KVM_REQ_NMI, vcpu);
5495 static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
5497 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
5498 lapic_in_kernel(vcpu))
5499 vcpu->arch.apic->sipi_vector = events->sipi_vector;
5501 if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
5502 #ifdef CONFIG_KVM_SMM
5503 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
5504 kvm_leave_nested(vcpu);
5505 kvm_smm_changed(vcpu, events->smi.smm);
5508 vcpu->arch.smi_pending = events->smi.pending;
5510 if (events->smi.smm) {
5511 if (events->smi.smm_inside_nmi)
5512 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
5514 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
5518 if (events->smi.smm || events->smi.pending ||
5519 events->smi.smm_inside_nmi)
5523 if (lapic_in_kernel(vcpu)) {
5524 if (events->smi.latched_init)
5525 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5527 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5531 if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) {
5532 if (!vcpu->kvm->arch.triple_fault_event)
5534 if (events->triple_fault.pending)
5535 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5537 kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5540 kvm_make_request(KVM_REQ_EVENT, vcpu);
5545 static int kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
5546 struct kvm_debugregs *dbgregs)
5550 if (vcpu->kvm->arch.has_protected_state &&
5551 vcpu->arch.guest_state_protected)
5554 memset(dbgregs, 0, sizeof(*dbgregs));
5556 BUILD_BUG_ON(ARRAY_SIZE(vcpu->arch.db) != ARRAY_SIZE(dbgregs->db));
5557 for (i = 0; i < ARRAY_SIZE(vcpu->arch.db); i++)
5558 dbgregs->db[i] = vcpu->arch.db[i];
5560 dbgregs->dr6 = vcpu->arch.dr6;
5561 dbgregs->dr7 = vcpu->arch.dr7;
5565 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
5566 struct kvm_debugregs *dbgregs)
5570 if (vcpu->kvm->arch.has_protected_state &&
5571 vcpu->arch.guest_state_protected)
5577 if (!kvm_dr6_valid(dbgregs->dr6))
5579 if (!kvm_dr7_valid(dbgregs->dr7))
5582 for (i = 0; i < ARRAY_SIZE(vcpu->arch.db); i++)
5583 vcpu->arch.db[i] = dbgregs->db[i];
5585 kvm_update_dr0123(vcpu);
5586 vcpu->arch.dr6 = dbgregs->dr6;
5587 vcpu->arch.dr7 = dbgregs->dr7;
5588 kvm_update_dr7(vcpu);
5594 static int kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu,
5595 u8 *state, unsigned int size)
5598 * Only copy state for features that are enabled for the guest. The
5599 * state itself isn't problematic, but setting bits in the header for
5600 * features that are supported in *this* host but not exposed to the
5601 * guest can result in KVM_SET_XSAVE failing when live migrating to a
5602 * compatible host without the features that are NOT exposed to the
5605 * FP+SSE can always be saved/restored via KVM_{G,S}ET_XSAVE, even if
5606 * XSAVE/XCRO are not exposed to the guest, and even if XSAVE isn't
5607 * supported by the host.
5609 u64 supported_xcr0 = vcpu->arch.guest_supported_xcr0 |
5610 XFEATURE_MASK_FPSSE;
5612 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5613 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
5615 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, state, size,
5616 supported_xcr0, vcpu->arch.pkru);
5620 static int kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
5621 struct kvm_xsave *guest_xsave)
5623 return kvm_vcpu_ioctl_x86_get_xsave2(vcpu, (void *)guest_xsave->region,
5624 sizeof(guest_xsave->region));
5627 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
5628 struct kvm_xsave *guest_xsave)
5630 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5631 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
5633 return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu,
5634 guest_xsave->region,
5635 kvm_caps.supported_xcr0,
5639 static int kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
5640 struct kvm_xcrs *guest_xcrs)
5642 if (vcpu->kvm->arch.has_protected_state &&
5643 vcpu->arch.guest_state_protected)
5646 if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
5647 guest_xcrs->nr_xcrs = 0;
5651 guest_xcrs->nr_xcrs = 1;
5652 guest_xcrs->flags = 0;
5653 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
5654 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
5658 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
5659 struct kvm_xcrs *guest_xcrs)
5663 if (vcpu->kvm->arch.has_protected_state &&
5664 vcpu->arch.guest_state_protected)
5667 if (!boot_cpu_has(X86_FEATURE_XSAVE))
5670 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
5673 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
5674 /* Only support XCR0 currently */
5675 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
5676 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
5677 guest_xcrs->xcrs[i].value);
5686 * kvm_set_guest_paused() indicates to the guest kernel that it has been
5687 * stopped by the hypervisor. This function will be called from the host only.
5688 * EINVAL is returned when the host attempts to set the flag for a guest that
5689 * does not support pv clocks.
5691 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
5693 if (!vcpu->arch.pv_time.active)
5695 vcpu->arch.pvclock_set_guest_stopped_request = true;
5696 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5700 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu,
5701 struct kvm_device_attr *attr)
5705 switch (attr->attr) {
5706 case KVM_VCPU_TSC_OFFSET:
5716 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu,
5717 struct kvm_device_attr *attr)
5719 u64 __user *uaddr = u64_to_user_ptr(attr->addr);
5722 switch (attr->attr) {
5723 case KVM_VCPU_TSC_OFFSET:
5725 if (put_user(vcpu->arch.l1_tsc_offset, uaddr))
5736 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu,
5737 struct kvm_device_attr *attr)
5739 u64 __user *uaddr = u64_to_user_ptr(attr->addr);
5740 struct kvm *kvm = vcpu->kvm;
5743 switch (attr->attr) {
5744 case KVM_VCPU_TSC_OFFSET: {
5745 u64 offset, tsc, ns;
5746 unsigned long flags;
5750 if (get_user(offset, uaddr))
5753 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
5755 matched = (vcpu->arch.virtual_tsc_khz &&
5756 kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz &&
5757 kvm->arch.last_tsc_offset == offset);
5759 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset;
5760 ns = get_kvmclock_base_ns();
5762 kvm->arch.user_set_tsc = true;
5763 __kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched);
5764 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
5776 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu,
5780 struct kvm_device_attr attr;
5783 if (copy_from_user(&attr, argp, sizeof(attr)))
5786 if (attr.group != KVM_VCPU_TSC_CTRL)
5790 case KVM_HAS_DEVICE_ATTR:
5791 r = kvm_arch_tsc_has_attr(vcpu, &attr);
5793 case KVM_GET_DEVICE_ATTR:
5794 r = kvm_arch_tsc_get_attr(vcpu, &attr);
5796 case KVM_SET_DEVICE_ATTR:
5797 r = kvm_arch_tsc_set_attr(vcpu, &attr);
5804 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
5805 struct kvm_enable_cap *cap)
5811 #ifdef CONFIG_KVM_HYPERV
5812 case KVM_CAP_HYPERV_SYNIC2:
5817 case KVM_CAP_HYPERV_SYNIC:
5818 if (!irqchip_in_kernel(vcpu->kvm))
5820 return kvm_hv_activate_synic(vcpu, cap->cap ==
5821 KVM_CAP_HYPERV_SYNIC2);
5822 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
5825 uint16_t vmcs_version;
5826 void __user *user_ptr;
5828 if (!kvm_x86_ops.nested_ops->enable_evmcs)
5830 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
5832 user_ptr = (void __user *)(uintptr_t)cap->args[0];
5833 if (copy_to_user(user_ptr, &vmcs_version,
5834 sizeof(vmcs_version)))
5839 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
5840 if (!kvm_x86_ops.enable_l2_tlb_flush)
5843 return static_call(kvm_x86_enable_l2_tlb_flush)(vcpu);
5845 case KVM_CAP_HYPERV_ENFORCE_CPUID:
5846 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
5849 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
5850 vcpu->arch.pv_cpuid.enforce = cap->args[0];
5851 if (vcpu->arch.pv_cpuid.enforce)
5852 kvm_update_pv_runtime(vcpu);
5860 long kvm_arch_vcpu_ioctl(struct file *filp,
5861 unsigned int ioctl, unsigned long arg)
5863 struct kvm_vcpu *vcpu = filp->private_data;
5864 void __user *argp = (void __user *)arg;
5867 struct kvm_sregs2 *sregs2;
5868 struct kvm_lapic_state *lapic;
5869 struct kvm_xsave *xsave;
5870 struct kvm_xcrs *xcrs;
5878 case KVM_GET_LAPIC: {
5880 if (!lapic_in_kernel(vcpu))
5882 u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
5883 GFP_KERNEL_ACCOUNT);
5888 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
5892 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
5897 case KVM_SET_LAPIC: {
5899 if (!lapic_in_kernel(vcpu))
5901 u.lapic = memdup_user(argp, sizeof(*u.lapic));
5902 if (IS_ERR(u.lapic)) {
5903 r = PTR_ERR(u.lapic);
5907 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
5910 case KVM_INTERRUPT: {
5911 struct kvm_interrupt irq;
5914 if (copy_from_user(&irq, argp, sizeof(irq)))
5916 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
5920 r = kvm_vcpu_ioctl_nmi(vcpu);
5924 r = kvm_inject_smi(vcpu);
5927 case KVM_SET_CPUID: {
5928 struct kvm_cpuid __user *cpuid_arg = argp;
5929 struct kvm_cpuid cpuid;
5932 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5934 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
5937 case KVM_SET_CPUID2: {
5938 struct kvm_cpuid2 __user *cpuid_arg = argp;
5939 struct kvm_cpuid2 cpuid;
5942 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5944 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5945 cpuid_arg->entries);
5948 case KVM_GET_CPUID2: {
5949 struct kvm_cpuid2 __user *cpuid_arg = argp;
5950 struct kvm_cpuid2 cpuid;
5953 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5955 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5956 cpuid_arg->entries);
5960 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5965 case KVM_GET_MSRS: {
5966 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5967 r = msr_io(vcpu, argp, do_get_msr, 1);
5968 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5971 case KVM_SET_MSRS: {
5972 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5973 r = msr_io(vcpu, argp, do_set_msr, 0);
5974 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5977 case KVM_TPR_ACCESS_REPORTING: {
5978 struct kvm_tpr_access_ctl tac;
5981 if (copy_from_user(&tac, argp, sizeof(tac)))
5983 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5987 if (copy_to_user(argp, &tac, sizeof(tac)))
5992 case KVM_SET_VAPIC_ADDR: {
5993 struct kvm_vapic_addr va;
5997 if (!lapic_in_kernel(vcpu))
6000 if (copy_from_user(&va, argp, sizeof(va)))
6002 idx = srcu_read_lock(&vcpu->kvm->srcu);
6003 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
6004 srcu_read_unlock(&vcpu->kvm->srcu, idx);
6007 case KVM_X86_SETUP_MCE: {
6011 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
6013 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
6016 case KVM_X86_SET_MCE: {
6017 struct kvm_x86_mce mce;
6020 if (copy_from_user(&mce, argp, sizeof(mce)))
6022 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
6025 case KVM_GET_VCPU_EVENTS: {
6026 struct kvm_vcpu_events events;
6028 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
6031 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
6036 case KVM_SET_VCPU_EVENTS: {
6037 struct kvm_vcpu_events events;
6040 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
6043 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
6046 case KVM_GET_DEBUGREGS: {
6047 struct kvm_debugregs dbgregs;
6049 r = kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
6054 if (copy_to_user(argp, &dbgregs,
6055 sizeof(struct kvm_debugregs)))
6060 case KVM_SET_DEBUGREGS: {
6061 struct kvm_debugregs dbgregs;
6064 if (copy_from_user(&dbgregs, argp,
6065 sizeof(struct kvm_debugregs)))
6068 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
6071 case KVM_GET_XSAVE: {
6073 if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave))
6076 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
6081 r = kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
6086 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
6091 case KVM_SET_XSAVE: {
6092 int size = vcpu->arch.guest_fpu.uabi_size;
6094 u.xsave = memdup_user(argp, size);
6095 if (IS_ERR(u.xsave)) {
6096 r = PTR_ERR(u.xsave);
6100 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
6104 case KVM_GET_XSAVE2: {
6105 int size = vcpu->arch.guest_fpu.uabi_size;
6107 u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT);
6112 r = kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size);
6117 if (copy_to_user(argp, u.xsave, size))
6124 case KVM_GET_XCRS: {
6125 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
6130 r = kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
6135 if (copy_to_user(argp, u.xcrs,
6136 sizeof(struct kvm_xcrs)))
6141 case KVM_SET_XCRS: {
6142 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
6143 if (IS_ERR(u.xcrs)) {
6144 r = PTR_ERR(u.xcrs);
6148 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
6151 case KVM_SET_TSC_KHZ: {
6155 user_tsc_khz = (u32)arg;
6157 if (kvm_caps.has_tsc_control &&
6158 user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
6161 if (user_tsc_khz == 0)
6162 user_tsc_khz = tsc_khz;
6164 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
6169 case KVM_GET_TSC_KHZ: {
6170 r = vcpu->arch.virtual_tsc_khz;
6173 case KVM_KVMCLOCK_CTRL: {
6174 r = kvm_set_guest_paused(vcpu);
6177 case KVM_ENABLE_CAP: {
6178 struct kvm_enable_cap cap;
6181 if (copy_from_user(&cap, argp, sizeof(cap)))
6183 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
6186 case KVM_GET_NESTED_STATE: {
6187 struct kvm_nested_state __user *user_kvm_nested_state = argp;
6191 if (!kvm_x86_ops.nested_ops->get_state)
6194 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
6196 if (get_user(user_data_size, &user_kvm_nested_state->size))
6199 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
6204 if (r > user_data_size) {
6205 if (put_user(r, &user_kvm_nested_state->size))
6215 case KVM_SET_NESTED_STATE: {
6216 struct kvm_nested_state __user *user_kvm_nested_state = argp;
6217 struct kvm_nested_state kvm_state;
6221 if (!kvm_x86_ops.nested_ops->set_state)
6225 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
6229 if (kvm_state.size < sizeof(kvm_state))
6232 if (kvm_state.flags &
6233 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
6234 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
6235 | KVM_STATE_NESTED_GIF_SET))
6238 /* nested_run_pending implies guest_mode. */
6239 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
6240 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
6243 idx = srcu_read_lock(&vcpu->kvm->srcu);
6244 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
6245 srcu_read_unlock(&vcpu->kvm->srcu, idx);
6248 #ifdef CONFIG_KVM_HYPERV
6249 case KVM_GET_SUPPORTED_HV_CPUID:
6250 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
6253 #ifdef CONFIG_KVM_XEN
6254 case KVM_XEN_VCPU_GET_ATTR: {
6255 struct kvm_xen_vcpu_attr xva;
6258 if (copy_from_user(&xva, argp, sizeof(xva)))
6260 r = kvm_xen_vcpu_get_attr(vcpu, &xva);
6261 if (!r && copy_to_user(argp, &xva, sizeof(xva)))
6265 case KVM_XEN_VCPU_SET_ATTR: {
6266 struct kvm_xen_vcpu_attr xva;
6269 if (copy_from_user(&xva, argp, sizeof(xva)))
6271 r = kvm_xen_vcpu_set_attr(vcpu, &xva);
6275 case KVM_GET_SREGS2: {
6277 if (vcpu->kvm->arch.has_protected_state &&
6278 vcpu->arch.guest_state_protected)
6281 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
6285 __get_sregs2(vcpu, u.sregs2);
6287 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
6292 case KVM_SET_SREGS2: {
6294 if (vcpu->kvm->arch.has_protected_state &&
6295 vcpu->arch.guest_state_protected)
6298 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
6299 if (IS_ERR(u.sregs2)) {
6300 r = PTR_ERR(u.sregs2);
6304 r = __set_sregs2(vcpu, u.sregs2);
6307 case KVM_HAS_DEVICE_ATTR:
6308 case KVM_GET_DEVICE_ATTR:
6309 case KVM_SET_DEVICE_ATTR:
6310 r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp);
6322 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
6324 return VM_FAULT_SIGBUS;
6327 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
6331 if (addr > (unsigned int)(-3 * PAGE_SIZE))
6333 ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
6337 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
6340 return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
6343 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
6344 unsigned long kvm_nr_mmu_pages)
6346 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
6349 mutex_lock(&kvm->slots_lock);
6351 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
6352 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
6354 mutex_unlock(&kvm->slots_lock);
6358 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6360 struct kvm_pic *pic = kvm->arch.vpic;
6364 switch (chip->chip_id) {
6365 case KVM_IRQCHIP_PIC_MASTER:
6366 memcpy(&chip->chip.pic, &pic->pics[0],
6367 sizeof(struct kvm_pic_state));
6369 case KVM_IRQCHIP_PIC_SLAVE:
6370 memcpy(&chip->chip.pic, &pic->pics[1],
6371 sizeof(struct kvm_pic_state));
6373 case KVM_IRQCHIP_IOAPIC:
6374 kvm_get_ioapic(kvm, &chip->chip.ioapic);
6383 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6385 struct kvm_pic *pic = kvm->arch.vpic;
6389 switch (chip->chip_id) {
6390 case KVM_IRQCHIP_PIC_MASTER:
6391 spin_lock(&pic->lock);
6392 memcpy(&pic->pics[0], &chip->chip.pic,
6393 sizeof(struct kvm_pic_state));
6394 spin_unlock(&pic->lock);
6396 case KVM_IRQCHIP_PIC_SLAVE:
6397 spin_lock(&pic->lock);
6398 memcpy(&pic->pics[1], &chip->chip.pic,
6399 sizeof(struct kvm_pic_state));
6400 spin_unlock(&pic->lock);
6402 case KVM_IRQCHIP_IOAPIC:
6403 kvm_set_ioapic(kvm, &chip->chip.ioapic);
6409 kvm_pic_update_irq(pic);
6413 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6415 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
6417 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
6419 mutex_lock(&kps->lock);
6420 memcpy(ps, &kps->channels, sizeof(*ps));
6421 mutex_unlock(&kps->lock);
6425 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6428 struct kvm_pit *pit = kvm->arch.vpit;
6430 mutex_lock(&pit->pit_state.lock);
6431 memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
6432 for (i = 0; i < 3; i++)
6433 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
6434 mutex_unlock(&pit->pit_state.lock);
6438 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6440 mutex_lock(&kvm->arch.vpit->pit_state.lock);
6441 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
6442 sizeof(ps->channels));
6443 ps->flags = kvm->arch.vpit->pit_state.flags;
6444 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
6445 memset(&ps->reserved, 0, sizeof(ps->reserved));
6449 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6453 u32 prev_legacy, cur_legacy;
6454 struct kvm_pit *pit = kvm->arch.vpit;
6456 mutex_lock(&pit->pit_state.lock);
6457 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
6458 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
6459 if (!prev_legacy && cur_legacy)
6461 memcpy(&pit->pit_state.channels, &ps->channels,
6462 sizeof(pit->pit_state.channels));
6463 pit->pit_state.flags = ps->flags;
6464 for (i = 0; i < 3; i++)
6465 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
6467 mutex_unlock(&pit->pit_state.lock);
6471 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
6472 struct kvm_reinject_control *control)
6474 struct kvm_pit *pit = kvm->arch.vpit;
6476 /* pit->pit_state.lock was overloaded to prevent userspace from getting
6477 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
6478 * ioctls in parallel. Use a separate lock if that ioctl isn't rare.
6480 mutex_lock(&pit->pit_state.lock);
6481 kvm_pit_set_reinject(pit, control->pit_reinject);
6482 mutex_unlock(&pit->pit_state.lock);
6487 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
6491 * Flush all CPUs' dirty log buffers to the dirty_bitmap. Called
6492 * before reporting dirty_bitmap to userspace. KVM flushes the buffers
6493 * on all VM-Exits, thus we only need to kick running vCPUs to force a
6496 struct kvm_vcpu *vcpu;
6499 if (!kvm_x86_ops.cpu_dirty_log_size)
6502 kvm_for_each_vcpu(i, vcpu, kvm)
6503 kvm_vcpu_kick(vcpu);
6506 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
6509 if (!irqchip_in_kernel(kvm))
6512 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
6513 irq_event->irq, irq_event->level,
6518 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
6519 struct kvm_enable_cap *cap)
6527 case KVM_CAP_DISABLE_QUIRKS2:
6529 if (cap->args[0] & ~KVM_X86_VALID_QUIRKS)
6532 case KVM_CAP_DISABLE_QUIRKS:
6533 kvm->arch.disabled_quirks = cap->args[0];
6536 case KVM_CAP_SPLIT_IRQCHIP: {
6537 mutex_lock(&kvm->lock);
6539 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
6540 goto split_irqchip_unlock;
6542 if (irqchip_in_kernel(kvm))
6543 goto split_irqchip_unlock;
6544 if (kvm->created_vcpus)
6545 goto split_irqchip_unlock;
6546 r = kvm_setup_empty_irq_routing(kvm);
6548 goto split_irqchip_unlock;
6549 /* Pairs with irqchip_in_kernel. */
6551 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
6552 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
6553 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6555 split_irqchip_unlock:
6556 mutex_unlock(&kvm->lock);
6559 case KVM_CAP_X2APIC_API:
6561 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
6564 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
6565 kvm->arch.x2apic_format = true;
6566 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
6567 kvm->arch.x2apic_broadcast_quirk_disabled = true;
6571 case KVM_CAP_X86_DISABLE_EXITS:
6573 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
6576 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
6577 kvm->arch.pause_in_guest = true;
6579 #define SMT_RSB_MSG "This processor is affected by the Cross-Thread Return Predictions vulnerability. " \
6580 "KVM_CAP_X86_DISABLE_EXITS should only be used with SMT disabled or trusted guests."
6582 if (!mitigate_smt_rsb) {
6583 if (boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible() &&
6584 (cap->args[0] & ~KVM_X86_DISABLE_EXITS_PAUSE))
6585 pr_warn_once(SMT_RSB_MSG);
6587 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
6588 kvm_can_mwait_in_guest())
6589 kvm->arch.mwait_in_guest = true;
6590 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
6591 kvm->arch.hlt_in_guest = true;
6592 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
6593 kvm->arch.cstate_in_guest = true;
6598 case KVM_CAP_MSR_PLATFORM_INFO:
6599 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
6602 case KVM_CAP_EXCEPTION_PAYLOAD:
6603 kvm->arch.exception_payload_enabled = cap->args[0];
6606 case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
6607 kvm->arch.triple_fault_event = cap->args[0];
6610 case KVM_CAP_X86_USER_SPACE_MSR:
6612 if (cap->args[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK)
6614 kvm->arch.user_space_msr_mask = cap->args[0];
6617 case KVM_CAP_X86_BUS_LOCK_EXIT:
6619 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
6622 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
6623 (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
6626 if (kvm_caps.has_bus_lock_exit &&
6627 cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
6628 kvm->arch.bus_lock_detection_enabled = true;
6631 #ifdef CONFIG_X86_SGX_KVM
6632 case KVM_CAP_SGX_ATTRIBUTE: {
6633 unsigned long allowed_attributes = 0;
6635 r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
6639 /* KVM only supports the PROVISIONKEY privileged attribute. */
6640 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
6641 !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
6642 kvm->arch.sgx_provisioning_allowed = true;
6648 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
6650 if (!kvm_x86_ops.vm_copy_enc_context_from)
6653 r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]);
6655 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
6657 if (!kvm_x86_ops.vm_move_enc_context_from)
6660 r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]);
6662 case KVM_CAP_EXIT_HYPERCALL:
6663 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
6667 kvm->arch.hypercall_exit_enabled = cap->args[0];
6670 case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
6672 if (cap->args[0] & ~1)
6674 kvm->arch.exit_on_emulation_error = cap->args[0];
6677 case KVM_CAP_PMU_CAPABILITY:
6679 if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK))
6682 mutex_lock(&kvm->lock);
6683 if (!kvm->created_vcpus) {
6684 kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE);
6687 mutex_unlock(&kvm->lock);
6689 case KVM_CAP_MAX_VCPU_ID:
6691 if (cap->args[0] > KVM_MAX_VCPU_IDS)
6694 mutex_lock(&kvm->lock);
6695 if (kvm->arch.max_vcpu_ids == cap->args[0]) {
6697 } else if (!kvm->arch.max_vcpu_ids) {
6698 kvm->arch.max_vcpu_ids = cap->args[0];
6701 mutex_unlock(&kvm->lock);
6703 case KVM_CAP_X86_NOTIFY_VMEXIT:
6705 if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS)
6707 if (!kvm_caps.has_notify_vmexit)
6709 if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED))
6711 mutex_lock(&kvm->lock);
6712 if (!kvm->created_vcpus) {
6713 kvm->arch.notify_window = cap->args[0] >> 32;
6714 kvm->arch.notify_vmexit_flags = (u32)cap->args[0];
6717 mutex_unlock(&kvm->lock);
6719 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
6723 * Since the risk of disabling NX hugepages is a guest crashing
6724 * the system, ensure the userspace process has permission to
6725 * reboot the system.
6727 * Note that unlike the reboot() syscall, the process must have
6728 * this capability in the root namespace because exposing
6729 * /dev/kvm into a container does not limit the scope of the
6730 * iTLB multihit bug to that container. In other words,
6731 * this must use capable(), not ns_capable().
6733 if (!capable(CAP_SYS_BOOT)) {
6741 mutex_lock(&kvm->lock);
6742 if (!kvm->created_vcpus) {
6743 kvm->arch.disable_nx_huge_pages = true;
6746 mutex_unlock(&kvm->lock);
6755 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
6757 struct kvm_x86_msr_filter *msr_filter;
6759 msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
6763 msr_filter->default_allow = default_allow;
6767 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
6774 for (i = 0; i < msr_filter->count; i++)
6775 kfree(msr_filter->ranges[i].bitmap);
6780 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
6781 struct kvm_msr_filter_range *user_range)
6783 unsigned long *bitmap;
6786 if (!user_range->nmsrs)
6789 if (user_range->flags & ~KVM_MSR_FILTER_RANGE_VALID_MASK)
6792 if (!user_range->flags)
6795 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
6796 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
6799 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
6801 return PTR_ERR(bitmap);
6803 msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
6804 .flags = user_range->flags,
6805 .base = user_range->base,
6806 .nmsrs = user_range->nmsrs,
6810 msr_filter->count++;
6814 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm,
6815 struct kvm_msr_filter *filter)
6817 struct kvm_x86_msr_filter *new_filter, *old_filter;
6823 if (filter->flags & ~KVM_MSR_FILTER_VALID_MASK)
6826 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++)
6827 empty &= !filter->ranges[i].nmsrs;
6829 default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY);
6830 if (empty && !default_allow)
6833 new_filter = kvm_alloc_msr_filter(default_allow);
6837 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) {
6838 r = kvm_add_msr_filter(new_filter, &filter->ranges[i]);
6840 kvm_free_msr_filter(new_filter);
6845 mutex_lock(&kvm->lock);
6846 old_filter = rcu_replace_pointer(kvm->arch.msr_filter, new_filter,
6847 mutex_is_locked(&kvm->lock));
6848 mutex_unlock(&kvm->lock);
6849 synchronize_srcu(&kvm->srcu);
6851 kvm_free_msr_filter(old_filter);
6853 kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
6858 #ifdef CONFIG_KVM_COMPAT
6859 /* for KVM_X86_SET_MSR_FILTER */
6860 struct kvm_msr_filter_range_compat {
6867 struct kvm_msr_filter_compat {
6869 struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES];
6872 #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat)
6874 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
6877 void __user *argp = (void __user *)arg;
6878 struct kvm *kvm = filp->private_data;
6882 case KVM_X86_SET_MSR_FILTER_COMPAT: {
6883 struct kvm_msr_filter __user *user_msr_filter = argp;
6884 struct kvm_msr_filter_compat filter_compat;
6885 struct kvm_msr_filter filter;
6888 if (copy_from_user(&filter_compat, user_msr_filter,
6889 sizeof(filter_compat)))
6892 filter.flags = filter_compat.flags;
6893 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
6894 struct kvm_msr_filter_range_compat *cr;
6896 cr = &filter_compat.ranges[i];
6897 filter.ranges[i] = (struct kvm_msr_filter_range) {
6901 .bitmap = (__u8 *)(ulong)cr->bitmap,
6905 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
6914 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
6915 static int kvm_arch_suspend_notifier(struct kvm *kvm)
6917 struct kvm_vcpu *vcpu;
6921 mutex_lock(&kvm->lock);
6922 kvm_for_each_vcpu(i, vcpu, kvm) {
6923 if (!vcpu->arch.pv_time.active)
6926 ret = kvm_set_guest_paused(vcpu);
6928 kvm_err("Failed to pause guest VCPU%d: %d\n",
6929 vcpu->vcpu_id, ret);
6933 mutex_unlock(&kvm->lock);
6935 return ret ? NOTIFY_BAD : NOTIFY_DONE;
6938 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
6941 case PM_HIBERNATION_PREPARE:
6942 case PM_SUSPEND_PREPARE:
6943 return kvm_arch_suspend_notifier(kvm);
6948 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
6950 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp)
6952 struct kvm_clock_data data = { 0 };
6954 get_kvmclock(kvm, &data);
6955 if (copy_to_user(argp, &data, sizeof(data)))
6961 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp)
6963 struct kvm_arch *ka = &kvm->arch;
6964 struct kvm_clock_data data;
6967 if (copy_from_user(&data, argp, sizeof(data)))
6971 * Only KVM_CLOCK_REALTIME is used, but allow passing the
6972 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK.
6974 if (data.flags & ~KVM_CLOCK_VALID_FLAGS)
6977 kvm_hv_request_tsc_page_update(kvm);
6978 kvm_start_pvclock_update(kvm);
6979 pvclock_update_vm_gtod_copy(kvm);
6982 * This pairs with kvm_guest_time_update(): when masterclock is
6983 * in use, we use master_kernel_ns + kvmclock_offset to set
6984 * unsigned 'system_time' so if we use get_kvmclock_ns() (which
6985 * is slightly ahead) here we risk going negative on unsigned
6986 * 'system_time' when 'data.clock' is very small.
6988 if (data.flags & KVM_CLOCK_REALTIME) {
6989 u64 now_real_ns = ktime_get_real_ns();
6992 * Avoid stepping the kvmclock backwards.
6994 if (now_real_ns > data.realtime)
6995 data.clock += now_real_ns - data.realtime;
6998 if (ka->use_master_clock)
6999 now_raw_ns = ka->master_kernel_ns;
7001 now_raw_ns = get_kvmclock_base_ns();
7002 ka->kvmclock_offset = data.clock - now_raw_ns;
7003 kvm_end_pvclock_update(kvm);
7007 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
7009 struct kvm *kvm = filp->private_data;
7010 void __user *argp = (void __user *)arg;
7013 * This union makes it completely explicit to gcc-3.x
7014 * that these two variables' stack usage should be
7015 * combined, not added together.
7018 struct kvm_pit_state ps;
7019 struct kvm_pit_state2 ps2;
7020 struct kvm_pit_config pit_config;
7024 case KVM_SET_TSS_ADDR:
7025 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
7027 case KVM_SET_IDENTITY_MAP_ADDR: {
7030 mutex_lock(&kvm->lock);
7032 if (kvm->created_vcpus)
7033 goto set_identity_unlock;
7035 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
7036 goto set_identity_unlock;
7037 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
7038 set_identity_unlock:
7039 mutex_unlock(&kvm->lock);
7042 case KVM_SET_NR_MMU_PAGES:
7043 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
7045 case KVM_CREATE_IRQCHIP: {
7046 mutex_lock(&kvm->lock);
7049 if (irqchip_in_kernel(kvm))
7050 goto create_irqchip_unlock;
7053 if (kvm->created_vcpus)
7054 goto create_irqchip_unlock;
7056 r = kvm_pic_init(kvm);
7058 goto create_irqchip_unlock;
7060 r = kvm_ioapic_init(kvm);
7062 kvm_pic_destroy(kvm);
7063 goto create_irqchip_unlock;
7066 r = kvm_setup_default_irq_routing(kvm);
7068 kvm_ioapic_destroy(kvm);
7069 kvm_pic_destroy(kvm);
7070 goto create_irqchip_unlock;
7072 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
7074 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
7075 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
7076 create_irqchip_unlock:
7077 mutex_unlock(&kvm->lock);
7080 case KVM_CREATE_PIT:
7081 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
7083 case KVM_CREATE_PIT2:
7085 if (copy_from_user(&u.pit_config, argp,
7086 sizeof(struct kvm_pit_config)))
7089 mutex_lock(&kvm->lock);
7092 goto create_pit_unlock;
7094 if (!pic_in_kernel(kvm))
7095 goto create_pit_unlock;
7097 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
7101 mutex_unlock(&kvm->lock);
7103 case KVM_GET_IRQCHIP: {
7104 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
7105 struct kvm_irqchip *chip;
7107 chip = memdup_user(argp, sizeof(*chip));
7114 if (!irqchip_kernel(kvm))
7115 goto get_irqchip_out;
7116 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
7118 goto get_irqchip_out;
7120 if (copy_to_user(argp, chip, sizeof(*chip)))
7121 goto get_irqchip_out;
7127 case KVM_SET_IRQCHIP: {
7128 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
7129 struct kvm_irqchip *chip;
7131 chip = memdup_user(argp, sizeof(*chip));
7138 if (!irqchip_kernel(kvm))
7139 goto set_irqchip_out;
7140 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
7147 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
7150 if (!kvm->arch.vpit)
7152 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
7156 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
7163 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
7165 mutex_lock(&kvm->lock);
7167 if (!kvm->arch.vpit)
7169 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
7171 mutex_unlock(&kvm->lock);
7174 case KVM_GET_PIT2: {
7176 if (!kvm->arch.vpit)
7178 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
7182 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
7187 case KVM_SET_PIT2: {
7189 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
7191 mutex_lock(&kvm->lock);
7193 if (!kvm->arch.vpit)
7195 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
7197 mutex_unlock(&kvm->lock);
7200 case KVM_REINJECT_CONTROL: {
7201 struct kvm_reinject_control control;
7203 if (copy_from_user(&control, argp, sizeof(control)))
7206 if (!kvm->arch.vpit)
7208 r = kvm_vm_ioctl_reinject(kvm, &control);
7211 case KVM_SET_BOOT_CPU_ID:
7213 mutex_lock(&kvm->lock);
7214 if (kvm->created_vcpus)
7217 kvm->arch.bsp_vcpu_id = arg;
7218 mutex_unlock(&kvm->lock);
7220 #ifdef CONFIG_KVM_XEN
7221 case KVM_XEN_HVM_CONFIG: {
7222 struct kvm_xen_hvm_config xhc;
7224 if (copy_from_user(&xhc, argp, sizeof(xhc)))
7226 r = kvm_xen_hvm_config(kvm, &xhc);
7229 case KVM_XEN_HVM_GET_ATTR: {
7230 struct kvm_xen_hvm_attr xha;
7233 if (copy_from_user(&xha, argp, sizeof(xha)))
7235 r = kvm_xen_hvm_get_attr(kvm, &xha);
7236 if (!r && copy_to_user(argp, &xha, sizeof(xha)))
7240 case KVM_XEN_HVM_SET_ATTR: {
7241 struct kvm_xen_hvm_attr xha;
7244 if (copy_from_user(&xha, argp, sizeof(xha)))
7246 r = kvm_xen_hvm_set_attr(kvm, &xha);
7249 case KVM_XEN_HVM_EVTCHN_SEND: {
7250 struct kvm_irq_routing_xen_evtchn uxe;
7253 if (copy_from_user(&uxe, argp, sizeof(uxe)))
7255 r = kvm_xen_hvm_evtchn_send(kvm, &uxe);
7260 r = kvm_vm_ioctl_set_clock(kvm, argp);
7263 r = kvm_vm_ioctl_get_clock(kvm, argp);
7265 case KVM_SET_TSC_KHZ: {
7269 user_tsc_khz = (u32)arg;
7271 if (kvm_caps.has_tsc_control &&
7272 user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
7275 if (user_tsc_khz == 0)
7276 user_tsc_khz = tsc_khz;
7278 WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz);
7283 case KVM_GET_TSC_KHZ: {
7284 r = READ_ONCE(kvm->arch.default_tsc_khz);
7287 case KVM_MEMORY_ENCRYPT_OP: {
7289 if (!kvm_x86_ops.mem_enc_ioctl)
7292 r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp);
7295 case KVM_MEMORY_ENCRYPT_REG_REGION: {
7296 struct kvm_enc_region region;
7299 if (copy_from_user(®ion, argp, sizeof(region)))
7303 if (!kvm_x86_ops.mem_enc_register_region)
7306 r = static_call(kvm_x86_mem_enc_register_region)(kvm, ®ion);
7309 case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
7310 struct kvm_enc_region region;
7313 if (copy_from_user(®ion, argp, sizeof(region)))
7317 if (!kvm_x86_ops.mem_enc_unregister_region)
7320 r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, ®ion);
7323 #ifdef CONFIG_KVM_HYPERV
7324 case KVM_HYPERV_EVENTFD: {
7325 struct kvm_hyperv_eventfd hvevfd;
7328 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
7330 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
7334 case KVM_SET_PMU_EVENT_FILTER:
7335 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
7337 case KVM_X86_SET_MSR_FILTER: {
7338 struct kvm_msr_filter __user *user_msr_filter = argp;
7339 struct kvm_msr_filter filter;
7341 if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
7344 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
7354 static void kvm_probe_feature_msr(u32 msr_index)
7356 struct kvm_msr_entry msr = {
7360 if (kvm_get_msr_feature(&msr))
7363 msr_based_features[num_msr_based_features++] = msr_index;
7366 static void kvm_probe_msr_to_save(u32 msr_index)
7370 if (rdmsr_safe(msr_index, &dummy[0], &dummy[1]))
7374 * Even MSRs that are valid in the host may not be exposed to guests in
7377 switch (msr_index) {
7378 case MSR_IA32_BNDCFGS:
7379 if (!kvm_mpx_supported())
7383 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
7384 !kvm_cpu_cap_has(X86_FEATURE_RDPID))
7387 case MSR_IA32_UMWAIT_CONTROL:
7388 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
7391 case MSR_IA32_RTIT_CTL:
7392 case MSR_IA32_RTIT_STATUS:
7393 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
7396 case MSR_IA32_RTIT_CR3_MATCH:
7397 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7398 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
7401 case MSR_IA32_RTIT_OUTPUT_BASE:
7402 case MSR_IA32_RTIT_OUTPUT_MASK:
7403 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7404 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
7405 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
7408 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
7409 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7410 (msr_index - MSR_IA32_RTIT_ADDR0_A >=
7411 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2))
7414 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR_MAX:
7415 if (msr_index - MSR_ARCH_PERFMON_PERFCTR0 >=
7416 kvm_pmu_cap.num_counters_gp)
7419 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL_MAX:
7420 if (msr_index - MSR_ARCH_PERFMON_EVENTSEL0 >=
7421 kvm_pmu_cap.num_counters_gp)
7424 case MSR_ARCH_PERFMON_FIXED_CTR0 ... MSR_ARCH_PERFMON_FIXED_CTR_MAX:
7425 if (msr_index - MSR_ARCH_PERFMON_FIXED_CTR0 >=
7426 kvm_pmu_cap.num_counters_fixed)
7429 case MSR_AMD64_PERF_CNTR_GLOBAL_CTL:
7430 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS:
7431 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR:
7432 if (!kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2))
7436 case MSR_IA32_XFD_ERR:
7437 if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
7440 case MSR_IA32_TSX_CTRL:
7441 if (!(kvm_get_arch_capabilities() & ARCH_CAP_TSX_CTRL_MSR))
7448 msrs_to_save[num_msrs_to_save++] = msr_index;
7451 static void kvm_init_msr_lists(void)
7455 BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3,
7456 "Please update the fixed PMCs in msrs_to_save_pmu[]");
7458 num_msrs_to_save = 0;
7459 num_emulated_msrs = 0;
7460 num_msr_based_features = 0;
7462 for (i = 0; i < ARRAY_SIZE(msrs_to_save_base); i++)
7463 kvm_probe_msr_to_save(msrs_to_save_base[i]);
7466 for (i = 0; i < ARRAY_SIZE(msrs_to_save_pmu); i++)
7467 kvm_probe_msr_to_save(msrs_to_save_pmu[i]);
7470 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
7471 if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
7474 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
7477 for (i = KVM_FIRST_EMULATED_VMX_MSR; i <= KVM_LAST_EMULATED_VMX_MSR; i++)
7478 kvm_probe_feature_msr(i);
7480 for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++)
7481 kvm_probe_feature_msr(msr_based_features_all_except_vmx[i]);
7484 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
7492 if (!(lapic_in_kernel(vcpu) &&
7493 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
7494 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
7505 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
7512 if (!(lapic_in_kernel(vcpu) &&
7513 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
7515 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
7517 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
7527 void kvm_set_segment(struct kvm_vcpu *vcpu,
7528 struct kvm_segment *var, int seg)
7530 static_call(kvm_x86_set_segment)(vcpu, var, seg);
7533 void kvm_get_segment(struct kvm_vcpu *vcpu,
7534 struct kvm_segment *var, int seg)
7536 static_call(kvm_x86_get_segment)(vcpu, var, seg);
7539 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access,
7540 struct x86_exception *exception)
7542 struct kvm_mmu *mmu = vcpu->arch.mmu;
7545 BUG_ON(!mmu_is_nested(vcpu));
7547 /* NPT walks are always user-walks */
7548 access |= PFERR_USER_MASK;
7549 t_gpa = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception);
7554 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
7555 struct x86_exception *exception)
7557 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7559 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7560 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7562 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
7564 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
7565 struct x86_exception *exception)
7567 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7569 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7570 access |= PFERR_WRITE_MASK;
7571 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7573 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
7575 /* uses this to access any guest's mapped memory without checking CPL */
7576 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
7577 struct x86_exception *exception)
7579 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7581 return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception);
7584 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7585 struct kvm_vcpu *vcpu, u64 access,
7586 struct x86_exception *exception)
7588 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7590 int r = X86EMUL_CONTINUE;
7593 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7594 unsigned offset = addr & (PAGE_SIZE-1);
7595 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
7598 if (gpa == INVALID_GPA)
7599 return X86EMUL_PROPAGATE_FAULT;
7600 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
7603 r = X86EMUL_IO_NEEDED;
7615 /* used for instruction fetching */
7616 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
7617 gva_t addr, void *val, unsigned int bytes,
7618 struct x86_exception *exception)
7620 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7621 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7622 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7626 /* Inline kvm_read_guest_virt_helper for speed. */
7627 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK,
7629 if (unlikely(gpa == INVALID_GPA))
7630 return X86EMUL_PROPAGATE_FAULT;
7632 offset = addr & (PAGE_SIZE-1);
7633 if (WARN_ON(offset + bytes > PAGE_SIZE))
7634 bytes = (unsigned)PAGE_SIZE - offset;
7635 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
7637 if (unlikely(ret < 0))
7638 return X86EMUL_IO_NEEDED;
7640 return X86EMUL_CONTINUE;
7643 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
7644 gva_t addr, void *val, unsigned int bytes,
7645 struct x86_exception *exception)
7647 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7650 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
7651 * is returned, but our callers are not ready for that and they blindly
7652 * call kvm_inject_page_fault. Ensure that they at least do not leak
7653 * uninitialized kernel stack memory into cr2 and error code.
7655 memset(exception, 0, sizeof(*exception));
7656 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
7659 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
7661 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
7662 gva_t addr, void *val, unsigned int bytes,
7663 struct x86_exception *exception, bool system)
7665 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7669 access |= PFERR_IMPLICIT_ACCESS;
7670 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7671 access |= PFERR_USER_MASK;
7673 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
7676 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7677 struct kvm_vcpu *vcpu, u64 access,
7678 struct x86_exception *exception)
7680 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7682 int r = X86EMUL_CONTINUE;
7685 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7686 unsigned offset = addr & (PAGE_SIZE-1);
7687 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
7690 if (gpa == INVALID_GPA)
7691 return X86EMUL_PROPAGATE_FAULT;
7692 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
7694 r = X86EMUL_IO_NEEDED;
7706 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
7707 unsigned int bytes, struct x86_exception *exception,
7710 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7711 u64 access = PFERR_WRITE_MASK;
7714 access |= PFERR_IMPLICIT_ACCESS;
7715 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7716 access |= PFERR_USER_MASK;
7718 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7722 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
7723 unsigned int bytes, struct x86_exception *exception)
7725 /* kvm_write_guest_virt_system can pull in tons of pages. */
7726 vcpu->arch.l1tf_flush_l1d = true;
7728 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7729 PFERR_WRITE_MASK, exception);
7731 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
7733 static int kvm_check_emulate_insn(struct kvm_vcpu *vcpu, int emul_type,
7734 void *insn, int insn_len)
7736 return static_call(kvm_x86_check_emulate_instruction)(vcpu, emul_type,
7740 int handle_ud(struct kvm_vcpu *vcpu)
7742 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
7743 int fep_flags = READ_ONCE(force_emulation_prefix);
7744 int emul_type = EMULTYPE_TRAP_UD;
7745 char sig[5]; /* ud2; .ascii "kvm" */
7746 struct x86_exception e;
7749 r = kvm_check_emulate_insn(vcpu, emul_type, NULL, 0);
7750 if (r != X86EMUL_CONTINUE)
7754 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
7755 sig, sizeof(sig), &e) == 0 &&
7756 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
7757 if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF)
7758 kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF);
7759 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
7760 emul_type = EMULTYPE_TRAP_UD_FORCED;
7763 return kvm_emulate_instruction(vcpu, emul_type);
7765 EXPORT_SYMBOL_GPL(handle_ud);
7767 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7768 gpa_t gpa, bool write)
7770 /* For APIC access vmexit */
7771 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7774 if (vcpu_match_mmio_gpa(vcpu, gpa)) {
7775 trace_vcpu_match_mmio(gva, gpa, write, true);
7782 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7783 gpa_t *gpa, struct x86_exception *exception,
7786 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7787 u64 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
7788 | (write ? PFERR_WRITE_MASK : 0);
7791 * currently PKRU is only applied to ept enabled guest so
7792 * there is no pkey in EPT page table for L1 guest or EPT
7793 * shadow page table for L2 guest.
7795 if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
7796 !permission_fault(vcpu, vcpu->arch.walk_mmu,
7797 vcpu->arch.mmio_access, 0, access))) {
7798 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
7799 (gva & (PAGE_SIZE - 1));
7800 trace_vcpu_match_mmio(gva, *gpa, write, false);
7804 *gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7806 if (*gpa == INVALID_GPA)
7809 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
7812 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
7813 const void *val, int bytes)
7817 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
7820 kvm_page_track_write(vcpu, gpa, val, bytes);
7824 struct read_write_emulator_ops {
7825 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
7827 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
7828 void *val, int bytes);
7829 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7830 int bytes, void *val);
7831 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7832 void *val, int bytes);
7836 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
7838 if (vcpu->mmio_read_completed) {
7839 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
7840 vcpu->mmio_fragments[0].gpa, val);
7841 vcpu->mmio_read_completed = 0;
7848 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7849 void *val, int bytes)
7851 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
7854 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7855 void *val, int bytes)
7857 return emulator_write_phys(vcpu, gpa, val, bytes);
7860 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
7862 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
7863 return vcpu_mmio_write(vcpu, gpa, bytes, val);
7866 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7867 void *val, int bytes)
7869 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
7870 return X86EMUL_IO_NEEDED;
7873 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7874 void *val, int bytes)
7876 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
7878 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
7879 return X86EMUL_CONTINUE;
7882 static const struct read_write_emulator_ops read_emultor = {
7883 .read_write_prepare = read_prepare,
7884 .read_write_emulate = read_emulate,
7885 .read_write_mmio = vcpu_mmio_read,
7886 .read_write_exit_mmio = read_exit_mmio,
7889 static const struct read_write_emulator_ops write_emultor = {
7890 .read_write_emulate = write_emulate,
7891 .read_write_mmio = write_mmio,
7892 .read_write_exit_mmio = write_exit_mmio,
7896 static int emulator_read_write_onepage(unsigned long addr, void *val,
7898 struct x86_exception *exception,
7899 struct kvm_vcpu *vcpu,
7900 const struct read_write_emulator_ops *ops)
7904 bool write = ops->write;
7905 struct kvm_mmio_fragment *frag;
7906 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7909 * If the exit was due to a NPF we may already have a GPA.
7910 * If the GPA is present, use it to avoid the GVA to GPA table walk.
7911 * Note, this cannot be used on string operations since string
7912 * operation using rep will only have the initial GPA from the NPF
7915 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
7916 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
7917 gpa = ctxt->gpa_val;
7918 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
7920 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
7922 return X86EMUL_PROPAGATE_FAULT;
7925 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
7926 return X86EMUL_CONTINUE;
7929 * Is this MMIO handled locally?
7931 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
7932 if (handled == bytes)
7933 return X86EMUL_CONTINUE;
7939 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
7940 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
7944 return X86EMUL_CONTINUE;
7947 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
7949 void *val, unsigned int bytes,
7950 struct x86_exception *exception,
7951 const struct read_write_emulator_ops *ops)
7953 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7957 if (ops->read_write_prepare &&
7958 ops->read_write_prepare(vcpu, val, bytes))
7959 return X86EMUL_CONTINUE;
7961 vcpu->mmio_nr_fragments = 0;
7963 /* Crossing a page boundary? */
7964 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
7967 now = -addr & ~PAGE_MASK;
7968 rc = emulator_read_write_onepage(addr, val, now, exception,
7971 if (rc != X86EMUL_CONTINUE)
7974 if (ctxt->mode != X86EMUL_MODE_PROT64)
7980 rc = emulator_read_write_onepage(addr, val, bytes, exception,
7982 if (rc != X86EMUL_CONTINUE)
7985 if (!vcpu->mmio_nr_fragments)
7988 gpa = vcpu->mmio_fragments[0].gpa;
7990 vcpu->mmio_needed = 1;
7991 vcpu->mmio_cur_fragment = 0;
7993 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
7994 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
7995 vcpu->run->exit_reason = KVM_EXIT_MMIO;
7996 vcpu->run->mmio.phys_addr = gpa;
7998 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
8001 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
8005 struct x86_exception *exception)
8007 return emulator_read_write(ctxt, addr, val, bytes,
8008 exception, &read_emultor);
8011 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
8015 struct x86_exception *exception)
8017 return emulator_read_write(ctxt, addr, (void *)val, bytes,
8018 exception, &write_emultor);
8021 #define emulator_try_cmpxchg_user(t, ptr, old, new) \
8022 (__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t))
8024 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
8029 struct x86_exception *exception)
8031 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8037 /* guests cmpxchg8b have to be emulated atomically */
8038 if (bytes > 8 || (bytes & (bytes - 1)))
8041 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
8043 if (gpa == INVALID_GPA ||
8044 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
8048 * Emulate the atomic as a straight write to avoid #AC if SLD is
8049 * enabled in the host and the access splits a cache line.
8051 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
8052 page_line_mask = ~(cache_line_size() - 1);
8054 page_line_mask = PAGE_MASK;
8056 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
8059 hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa));
8060 if (kvm_is_error_hva(hva))
8063 hva += offset_in_page(gpa);
8067 r = emulator_try_cmpxchg_user(u8, hva, old, new);
8070 r = emulator_try_cmpxchg_user(u16, hva, old, new);
8073 r = emulator_try_cmpxchg_user(u32, hva, old, new);
8076 r = emulator_try_cmpxchg_user(u64, hva, old, new);
8083 return X86EMUL_UNHANDLEABLE;
8086 * Mark the page dirty _before_ checking whether or not the CMPXCHG was
8087 * successful, as the old value is written back on failure. Note, for
8088 * live migration, this is unnecessarily conservative as CMPXCHG writes
8089 * back the original value and the access is atomic, but KVM's ABI is
8090 * that all writes are dirty logged, regardless of the value written.
8092 kvm_vcpu_mark_page_dirty(vcpu, gpa_to_gfn(gpa));
8095 return X86EMUL_CMPXCHG_FAILED;
8097 kvm_page_track_write(vcpu, gpa, new, bytes);
8099 return X86EMUL_CONTINUE;
8102 pr_warn_once("emulating exchange as write\n");
8104 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
8107 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
8108 unsigned short port, void *data,
8109 unsigned int count, bool in)
8114 WARN_ON_ONCE(vcpu->arch.pio.count);
8115 for (i = 0; i < count; i++) {
8117 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data);
8119 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data);
8126 * Userspace must have unregistered the device while PIO
8127 * was running. Drop writes / read as 0.
8130 memset(data, 0, size * (count - i));
8139 vcpu->arch.pio.port = port;
8140 vcpu->arch.pio.in = in;
8141 vcpu->arch.pio.count = count;
8142 vcpu->arch.pio.size = size;
8145 memset(vcpu->arch.pio_data, 0, size * count);
8147 memcpy(vcpu->arch.pio_data, data, size * count);
8149 vcpu->run->exit_reason = KVM_EXIT_IO;
8150 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
8151 vcpu->run->io.size = size;
8152 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
8153 vcpu->run->io.count = count;
8154 vcpu->run->io.port = port;
8158 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
8159 unsigned short port, void *val, unsigned int count)
8161 int r = emulator_pio_in_out(vcpu, size, port, val, count, true);
8163 trace_kvm_pio(KVM_PIO_IN, port, size, count, val);
8168 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
8170 int size = vcpu->arch.pio.size;
8171 unsigned int count = vcpu->arch.pio.count;
8172 memcpy(val, vcpu->arch.pio_data, size * count);
8173 trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
8174 vcpu->arch.pio.count = 0;
8177 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
8178 int size, unsigned short port, void *val,
8181 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8182 if (vcpu->arch.pio.count) {
8184 * Complete a previous iteration that required userspace I/O.
8185 * Note, @count isn't guaranteed to match pio.count as userspace
8186 * can modify ECX before rerunning the vCPU. Ignore any such
8187 * shenanigans as KVM doesn't support modifying the rep count,
8188 * and the emulator ensures @count doesn't overflow the buffer.
8190 complete_emulator_pio_in(vcpu, val);
8194 return emulator_pio_in(vcpu, size, port, val, count);
8197 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
8198 unsigned short port, const void *val,
8201 trace_kvm_pio(KVM_PIO_OUT, port, size, count, val);
8202 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
8205 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
8206 int size, unsigned short port,
8207 const void *val, unsigned int count)
8209 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
8212 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
8214 return static_call(kvm_x86_get_segment_base)(vcpu, seg);
8217 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
8219 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
8222 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
8224 if (!need_emulate_wbinvd(vcpu))
8225 return X86EMUL_CONTINUE;
8227 if (static_call(kvm_x86_has_wbinvd_exit)()) {
8228 int cpu = get_cpu();
8230 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
8231 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
8232 wbinvd_ipi, NULL, 1);
8234 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
8237 return X86EMUL_CONTINUE;
8240 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
8242 kvm_emulate_wbinvd_noskip(vcpu);
8243 return kvm_skip_emulated_instruction(vcpu);
8245 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
8249 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
8251 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
8254 static unsigned long emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr)
8256 return kvm_get_dr(emul_to_vcpu(ctxt), dr);
8259 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
8260 unsigned long value)
8263 return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
8266 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
8268 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
8271 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
8273 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8274 unsigned long value;
8278 value = kvm_read_cr0(vcpu);
8281 value = vcpu->arch.cr2;
8284 value = kvm_read_cr3(vcpu);
8287 value = kvm_read_cr4(vcpu);
8290 value = kvm_get_cr8(vcpu);
8293 kvm_err("%s: unexpected cr %u\n", __func__, cr);
8300 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
8302 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8307 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
8310 vcpu->arch.cr2 = val;
8313 res = kvm_set_cr3(vcpu, val);
8316 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
8319 res = kvm_set_cr8(vcpu, val);
8322 kvm_err("%s: unexpected cr %u\n", __func__, cr);
8329 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
8331 return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
8334 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8336 static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
8339 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8341 static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
8344 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8346 static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
8349 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8351 static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
8354 static unsigned long emulator_get_cached_segment_base(
8355 struct x86_emulate_ctxt *ctxt, int seg)
8357 return get_segment_base(emul_to_vcpu(ctxt), seg);
8360 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
8361 struct desc_struct *desc, u32 *base3,
8364 struct kvm_segment var;
8366 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
8367 *selector = var.selector;
8370 memset(desc, 0, sizeof(*desc));
8378 set_desc_limit(desc, var.limit);
8379 set_desc_base(desc, (unsigned long)var.base);
8380 #ifdef CONFIG_X86_64
8382 *base3 = var.base >> 32;
8384 desc->type = var.type;
8386 desc->dpl = var.dpl;
8387 desc->p = var.present;
8388 desc->avl = var.avl;
8396 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
8397 struct desc_struct *desc, u32 base3,
8400 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8401 struct kvm_segment var;
8403 var.selector = selector;
8404 var.base = get_desc_base(desc);
8405 #ifdef CONFIG_X86_64
8406 var.base |= ((u64)base3) << 32;
8408 var.limit = get_desc_limit(desc);
8410 var.limit = (var.limit << 12) | 0xfff;
8411 var.type = desc->type;
8412 var.dpl = desc->dpl;
8417 var.avl = desc->avl;
8418 var.present = desc->p;
8419 var.unusable = !var.present;
8422 kvm_set_segment(vcpu, &var, seg);
8426 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8427 u32 msr_index, u64 *pdata)
8429 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8432 r = kvm_get_msr_with_filter(vcpu, msr_index, pdata);
8434 return X86EMUL_UNHANDLEABLE;
8437 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0,
8438 complete_emulated_rdmsr, r))
8439 return X86EMUL_IO_NEEDED;
8441 trace_kvm_msr_read_ex(msr_index);
8442 return X86EMUL_PROPAGATE_FAULT;
8445 trace_kvm_msr_read(msr_index, *pdata);
8446 return X86EMUL_CONTINUE;
8449 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8450 u32 msr_index, u64 data)
8452 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8455 r = kvm_set_msr_with_filter(vcpu, msr_index, data);
8457 return X86EMUL_UNHANDLEABLE;
8460 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data,
8461 complete_emulated_msr_access, r))
8462 return X86EMUL_IO_NEEDED;
8464 trace_kvm_msr_write_ex(msr_index, data);
8465 return X86EMUL_PROPAGATE_FAULT;
8468 trace_kvm_msr_write(msr_index, data);
8469 return X86EMUL_CONTINUE;
8472 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
8473 u32 msr_index, u64 *pdata)
8475 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
8478 static int emulator_check_rdpmc_early(struct x86_emulate_ctxt *ctxt, u32 pmc)
8480 return kvm_pmu_check_rdpmc_early(emul_to_vcpu(ctxt), pmc);
8483 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
8484 u32 pmc, u64 *pdata)
8486 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
8489 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
8491 emul_to_vcpu(ctxt)->arch.halt_request = 1;
8494 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
8495 struct x86_instruction_info *info,
8496 enum x86_intercept_stage stage)
8498 return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
8502 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
8503 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
8506 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
8509 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
8511 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
8514 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
8516 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
8519 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt)
8521 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID);
8524 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
8526 return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
8529 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
8531 kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
8534 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
8536 static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
8539 static bool emulator_is_smm(struct x86_emulate_ctxt *ctxt)
8541 return is_smm(emul_to_vcpu(ctxt));
8544 static bool emulator_is_guest_mode(struct x86_emulate_ctxt *ctxt)
8546 return is_guest_mode(emul_to_vcpu(ctxt));
8549 #ifndef CONFIG_KVM_SMM
8550 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt)
8553 return X86EMUL_UNHANDLEABLE;
8557 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
8559 kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
8562 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
8564 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
8567 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt)
8569 struct kvm *kvm = emul_to_vcpu(ctxt)->kvm;
8571 if (!kvm->vm_bugged)
8575 static gva_t emulator_get_untagged_addr(struct x86_emulate_ctxt *ctxt,
8576 gva_t addr, unsigned int flags)
8578 if (!kvm_x86_ops.get_untagged_addr)
8581 return static_call(kvm_x86_get_untagged_addr)(emul_to_vcpu(ctxt), addr, flags);
8584 static const struct x86_emulate_ops emulate_ops = {
8585 .vm_bugged = emulator_vm_bugged,
8586 .read_gpr = emulator_read_gpr,
8587 .write_gpr = emulator_write_gpr,
8588 .read_std = emulator_read_std,
8589 .write_std = emulator_write_std,
8590 .fetch = kvm_fetch_guest_virt,
8591 .read_emulated = emulator_read_emulated,
8592 .write_emulated = emulator_write_emulated,
8593 .cmpxchg_emulated = emulator_cmpxchg_emulated,
8594 .invlpg = emulator_invlpg,
8595 .pio_in_emulated = emulator_pio_in_emulated,
8596 .pio_out_emulated = emulator_pio_out_emulated,
8597 .get_segment = emulator_get_segment,
8598 .set_segment = emulator_set_segment,
8599 .get_cached_segment_base = emulator_get_cached_segment_base,
8600 .get_gdt = emulator_get_gdt,
8601 .get_idt = emulator_get_idt,
8602 .set_gdt = emulator_set_gdt,
8603 .set_idt = emulator_set_idt,
8604 .get_cr = emulator_get_cr,
8605 .set_cr = emulator_set_cr,
8606 .cpl = emulator_get_cpl,
8607 .get_dr = emulator_get_dr,
8608 .set_dr = emulator_set_dr,
8609 .set_msr_with_filter = emulator_set_msr_with_filter,
8610 .get_msr_with_filter = emulator_get_msr_with_filter,
8611 .get_msr = emulator_get_msr,
8612 .check_rdpmc_early = emulator_check_rdpmc_early,
8613 .read_pmc = emulator_read_pmc,
8614 .halt = emulator_halt,
8615 .wbinvd = emulator_wbinvd,
8616 .fix_hypercall = emulator_fix_hypercall,
8617 .intercept = emulator_intercept,
8618 .get_cpuid = emulator_get_cpuid,
8619 .guest_has_movbe = emulator_guest_has_movbe,
8620 .guest_has_fxsr = emulator_guest_has_fxsr,
8621 .guest_has_rdpid = emulator_guest_has_rdpid,
8622 .set_nmi_mask = emulator_set_nmi_mask,
8623 .is_smm = emulator_is_smm,
8624 .is_guest_mode = emulator_is_guest_mode,
8625 .leave_smm = emulator_leave_smm,
8626 .triple_fault = emulator_triple_fault,
8627 .set_xcr = emulator_set_xcr,
8628 .get_untagged_addr = emulator_get_untagged_addr,
8631 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
8633 u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
8635 * an sti; sti; sequence only disable interrupts for the first
8636 * instruction. So, if the last instruction, be it emulated or
8637 * not, left the system with the INT_STI flag enabled, it
8638 * means that the last instruction is an sti. We should not
8639 * leave the flag on in this case. The same goes for mov ss
8641 if (int_shadow & mask)
8643 if (unlikely(int_shadow || mask)) {
8644 static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
8646 kvm_make_request(KVM_REQ_EVENT, vcpu);
8650 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
8652 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8654 if (ctxt->exception.vector == PF_VECTOR)
8655 kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
8656 else if (ctxt->exception.error_code_valid)
8657 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
8658 ctxt->exception.error_code);
8660 kvm_queue_exception(vcpu, ctxt->exception.vector);
8663 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
8665 struct x86_emulate_ctxt *ctxt;
8667 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
8669 pr_err("failed to allocate vcpu's emulator\n");
8674 ctxt->ops = &emulate_ops;
8675 vcpu->arch.emulate_ctxt = ctxt;
8680 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
8682 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8685 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
8687 ctxt->gpa_available = false;
8688 ctxt->eflags = kvm_get_rflags(vcpu);
8689 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
8691 ctxt->eip = kvm_rip_read(vcpu);
8692 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
8693 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
8694 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
8695 cs_db ? X86EMUL_MODE_PROT32 :
8696 X86EMUL_MODE_PROT16;
8697 ctxt->interruptibility = 0;
8698 ctxt->have_exception = false;
8699 ctxt->exception.vector = -1;
8700 ctxt->perm_ok = false;
8702 init_decode_cache(ctxt);
8703 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8706 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
8708 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8711 init_emulate_ctxt(vcpu);
8715 ctxt->_eip = ctxt->eip + inc_eip;
8716 ret = emulate_int_real(ctxt, irq);
8718 if (ret != X86EMUL_CONTINUE) {
8719 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8721 ctxt->eip = ctxt->_eip;
8722 kvm_rip_write(vcpu, ctxt->eip);
8723 kvm_set_rflags(vcpu, ctxt->eflags);
8726 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
8728 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8729 u8 ndata, u8 *insn_bytes, u8 insn_size)
8731 struct kvm_run *run = vcpu->run;
8736 * Zero the whole array used to retrieve the exit info, as casting to
8737 * u32 for select entries will leave some chunks uninitialized.
8739 memset(&info, 0, sizeof(info));
8741 static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1],
8742 &info[2], (u32 *)&info[3],
8745 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8746 run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
8749 * There's currently space for 13 entries, but 5 are used for the exit
8750 * reason and info. Restrict to 4 to reduce the maintenance burden
8751 * when expanding kvm_run.emulation_failure in the future.
8753 if (WARN_ON_ONCE(ndata > 4))
8756 /* Always include the flags as a 'data' entry. */
8758 run->emulation_failure.flags = 0;
8761 BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) +
8762 sizeof(run->emulation_failure.insn_bytes) != 16));
8764 run->emulation_failure.flags |=
8765 KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
8766 run->emulation_failure.insn_size = insn_size;
8767 memset(run->emulation_failure.insn_bytes, 0x90,
8768 sizeof(run->emulation_failure.insn_bytes));
8769 memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size);
8772 memcpy(&run->internal.data[info_start], info, sizeof(info));
8773 memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data,
8774 ndata * sizeof(data[0]));
8776 run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata;
8779 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu)
8781 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8783 prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data,
8784 ctxt->fetch.end - ctxt->fetch.data);
8787 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8790 prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0);
8792 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit);
8794 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
8796 __kvm_prepare_emulation_failure_exit(vcpu, NULL, 0);
8798 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit);
8800 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
8802 struct kvm *kvm = vcpu->kvm;
8804 ++vcpu->stat.insn_emulation_fail;
8805 trace_kvm_emulate_insn_failed(vcpu);
8807 if (emulation_type & EMULTYPE_VMWARE_GP) {
8808 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8812 if (kvm->arch.exit_on_emulation_error ||
8813 (emulation_type & EMULTYPE_SKIP)) {
8814 prepare_emulation_ctxt_failure_exit(vcpu);
8818 kvm_queue_exception(vcpu, UD_VECTOR);
8820 if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
8821 prepare_emulation_ctxt_failure_exit(vcpu);
8828 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8831 gpa_t gpa = cr2_or_gpa;
8834 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8837 if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8838 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8841 if (!vcpu->arch.mmu->root_role.direct) {
8843 * Write permission should be allowed since only
8844 * write access need to be emulated.
8846 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8849 * If the mapping is invalid in guest, let cpu retry
8850 * it to generate fault.
8852 if (gpa == INVALID_GPA)
8857 * Do not retry the unhandleable instruction if it faults on the
8858 * readonly host memory, otherwise it will goto a infinite loop:
8859 * retry instruction -> write #PF -> emulation fail -> retry
8860 * instruction -> ...
8862 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
8865 * If the instruction failed on the error pfn, it can not be fixed,
8866 * report the error to userspace.
8868 if (is_error_noslot_pfn(pfn))
8871 kvm_release_pfn_clean(pfn);
8874 * If emulation may have been triggered by a write to a shadowed page
8875 * table, unprotect the gfn (zap any relevant SPTEs) and re-enter the
8876 * guest to let the CPU re-execute the instruction in the hope that the
8877 * CPU can cleanly execute the instruction that KVM failed to emulate.
8879 if (vcpu->kvm->arch.indirect_shadow_pages)
8880 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8883 * If the failed instruction faulted on an access to page tables that
8884 * are used to translate any part of the instruction, KVM can't resolve
8885 * the issue by unprotecting the gfn, as zapping the shadow page will
8886 * result in the instruction taking a !PRESENT page fault and thus put
8887 * the vCPU into an infinite loop of page faults. E.g. KVM will create
8888 * a SPTE and write-protect the gfn to resolve the !PRESENT fault, and
8889 * then zap the SPTE to unprotect the gfn, and then do it all over
8890 * again. Report the error to userspace.
8892 return !(emulation_type & EMULTYPE_WRITE_PF_TO_SP);
8895 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
8896 gpa_t cr2_or_gpa, int emulation_type)
8898 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8899 unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
8901 last_retry_eip = vcpu->arch.last_retry_eip;
8902 last_retry_addr = vcpu->arch.last_retry_addr;
8905 * If the emulation is caused by #PF and it is non-page_table
8906 * writing instruction, it means the VM-EXIT is caused by shadow
8907 * page protected, we can zap the shadow page and retry this
8908 * instruction directly.
8910 * Note: if the guest uses a non-page-table modifying instruction
8911 * on the PDE that points to the instruction, then we will unmap
8912 * the instruction and go to an infinite loop. So, we cache the
8913 * last retried eip and the last fault address, if we meet the eip
8914 * and the address again, we can break out of the potential infinite
8917 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
8919 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8922 if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8923 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8926 if (x86_page_table_writing_insn(ctxt))
8929 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
8932 vcpu->arch.last_retry_eip = ctxt->eip;
8933 vcpu->arch.last_retry_addr = cr2_or_gpa;
8935 if (!vcpu->arch.mmu->root_role.direct)
8936 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8938 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8943 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
8944 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
8946 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
8955 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
8956 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
8961 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
8963 struct kvm_run *kvm_run = vcpu->run;
8965 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
8966 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
8967 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
8968 kvm_run->debug.arch.exception = DB_VECTOR;
8969 kvm_run->exit_reason = KVM_EXIT_DEBUG;
8972 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
8976 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
8978 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8981 r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
8985 kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.INSTRUCTIONS_RETIRED);
8988 * rflags is the old, "raw" value of the flags. The new value has
8989 * not been saved yet.
8991 * This is correct even for TF set by the guest, because "the
8992 * processor will not generate this exception after the instruction
8993 * that sets the TF flag".
8995 if (unlikely(rflags & X86_EFLAGS_TF))
8996 r = kvm_vcpu_do_singlestep(vcpu);
8999 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
9001 static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu)
9005 if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF)
9009 * Intel CPUs inhibit code #DBs when MOV/POP SS blocking is active,
9010 * but AMD CPUs do not. MOV/POP SS blocking is rare, check that first
9011 * to avoid the relatively expensive CPUID lookup.
9013 shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
9014 return (shadow & KVM_X86_SHADOW_INT_MOV_SS) &&
9015 guest_cpuid_is_intel(vcpu);
9018 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu,
9019 int emulation_type, int *r)
9021 WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE);
9024 * Do not check for code breakpoints if hardware has already done the
9025 * checks, as inferred from the emulation type. On NO_DECODE and SKIP,
9026 * the instruction has passed all exception checks, and all intercepted
9027 * exceptions that trigger emulation have lower priority than code
9028 * breakpoints, i.e. the fact that the intercepted exception occurred
9029 * means any code breakpoints have already been serviced.
9031 * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as
9032 * hardware has checked the RIP of the magic prefix, but not the RIP of
9033 * the instruction being emulated. The intent of forced emulation is
9034 * to behave as if KVM intercepted the instruction without an exception
9035 * and without a prefix.
9037 if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
9038 EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF))
9041 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
9042 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
9043 struct kvm_run *kvm_run = vcpu->run;
9044 unsigned long eip = kvm_get_linear_rip(vcpu);
9045 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
9046 vcpu->arch.guest_debug_dr7,
9050 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
9051 kvm_run->debug.arch.pc = eip;
9052 kvm_run->debug.arch.exception = DB_VECTOR;
9053 kvm_run->exit_reason = KVM_EXIT_DEBUG;
9059 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
9060 !kvm_is_code_breakpoint_inhibited(vcpu)) {
9061 unsigned long eip = kvm_get_linear_rip(vcpu);
9062 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
9067 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
9076 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
9078 switch (ctxt->opcode_len) {
9085 case 0xe6: /* OUT */
9089 case 0x6c: /* INS */
9091 case 0x6e: /* OUTS */
9098 case 0x33: /* RDPMC */
9108 * Decode an instruction for emulation. The caller is responsible for handling
9109 * code breakpoints. Note, manually detecting code breakpoints is unnecessary
9110 * (and wrong) when emulating on an intercepted fault-like exception[*], as
9111 * code breakpoints have higher priority and thus have already been done by
9114 * [*] Except #MC, which is higher priority, but KVM should never emulate in
9115 * response to a machine check.
9117 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
9118 void *insn, int insn_len)
9120 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9123 init_emulate_ctxt(vcpu);
9125 r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
9127 trace_kvm_emulate_insn_start(vcpu);
9128 ++vcpu->stat.insn_emulation;
9132 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
9134 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
9135 int emulation_type, void *insn, int insn_len)
9138 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9139 bool writeback = true;
9141 r = kvm_check_emulate_insn(vcpu, emulation_type, insn, insn_len);
9142 if (r != X86EMUL_CONTINUE) {
9143 if (r == X86EMUL_RETRY_INSTR || r == X86EMUL_PROPAGATE_FAULT)
9146 WARN_ON_ONCE(r != X86EMUL_UNHANDLEABLE);
9147 return handle_emulation_failure(vcpu, emulation_type);
9150 vcpu->arch.l1tf_flush_l1d = true;
9152 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
9153 kvm_clear_exception_queue(vcpu);
9156 * Return immediately if RIP hits a code breakpoint, such #DBs
9157 * are fault-like and are higher priority than any faults on
9158 * the code fetch itself.
9160 if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r))
9163 r = x86_decode_emulated_instruction(vcpu, emulation_type,
9165 if (r != EMULATION_OK) {
9166 if ((emulation_type & EMULTYPE_TRAP_UD) ||
9167 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
9168 kvm_queue_exception(vcpu, UD_VECTOR);
9171 if (reexecute_instruction(vcpu, cr2_or_gpa,
9175 if (ctxt->have_exception &&
9176 !(emulation_type & EMULTYPE_SKIP)) {
9178 * #UD should result in just EMULATION_FAILED, and trap-like
9179 * exception should not be encountered during decode.
9181 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
9182 exception_type(ctxt->exception.vector) == EXCPT_TRAP);
9183 inject_emulated_exception(vcpu);
9186 return handle_emulation_failure(vcpu, emulation_type);
9190 if ((emulation_type & EMULTYPE_VMWARE_GP) &&
9191 !is_vmware_backdoor_opcode(ctxt)) {
9192 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
9197 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for
9198 * use *only* by vendor callbacks for kvm_skip_emulated_instruction().
9199 * The caller is responsible for updating interruptibility state and
9200 * injecting single-step #DBs.
9202 if (emulation_type & EMULTYPE_SKIP) {
9203 if (ctxt->mode != X86EMUL_MODE_PROT64)
9204 ctxt->eip = (u32)ctxt->_eip;
9206 ctxt->eip = ctxt->_eip;
9208 if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) {
9213 kvm_rip_write(vcpu, ctxt->eip);
9214 if (ctxt->eflags & X86_EFLAGS_RF)
9215 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
9219 if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
9222 /* this is needed for vmware backdoor interface to work since it
9223 changes registers values during IO operation */
9224 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
9225 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
9226 emulator_invalidate_register_cache(ctxt);
9230 if (emulation_type & EMULTYPE_PF) {
9231 /* Save the faulting GPA (cr2) in the address field */
9232 ctxt->exception.address = cr2_or_gpa;
9234 /* With shadow page tables, cr2 contains a GVA or nGPA. */
9235 if (vcpu->arch.mmu->root_role.direct) {
9236 ctxt->gpa_available = true;
9237 ctxt->gpa_val = cr2_or_gpa;
9240 /* Sanitize the address out of an abundance of paranoia. */
9241 ctxt->exception.address = 0;
9244 r = x86_emulate_insn(ctxt);
9246 if (r == EMULATION_INTERCEPTED)
9249 if (r == EMULATION_FAILED) {
9250 if (reexecute_instruction(vcpu, cr2_or_gpa, emulation_type))
9253 return handle_emulation_failure(vcpu, emulation_type);
9256 if (ctxt->have_exception) {
9257 WARN_ON_ONCE(vcpu->mmio_needed && !vcpu->mmio_is_write);
9258 vcpu->mmio_needed = false;
9260 inject_emulated_exception(vcpu);
9261 } else if (vcpu->arch.pio.count) {
9262 if (!vcpu->arch.pio.in) {
9263 /* FIXME: return into emulator if single-stepping. */
9264 vcpu->arch.pio.count = 0;
9267 vcpu->arch.complete_userspace_io = complete_emulated_pio;
9270 } else if (vcpu->mmio_needed) {
9271 ++vcpu->stat.mmio_exits;
9273 if (!vcpu->mmio_is_write)
9276 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
9277 } else if (vcpu->arch.complete_userspace_io) {
9280 } else if (r == EMULATION_RESTART)
9287 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
9288 toggle_interruptibility(vcpu, ctxt->interruptibility);
9289 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9292 * Note, EXCPT_DB is assumed to be fault-like as the emulator
9293 * only supports code breakpoints and general detect #DB, both
9294 * of which are fault-like.
9296 if (!ctxt->have_exception ||
9297 exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
9298 kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.INSTRUCTIONS_RETIRED);
9299 if (ctxt->is_branch)
9300 kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.BRANCH_INSTRUCTIONS_RETIRED);
9301 kvm_rip_write(vcpu, ctxt->eip);
9302 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
9303 r = kvm_vcpu_do_singlestep(vcpu);
9304 static_call_cond(kvm_x86_update_emulated_instruction)(vcpu);
9305 __kvm_set_rflags(vcpu, ctxt->eflags);
9309 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
9310 * do nothing, and it will be requested again as soon as
9311 * the shadow expires. But we still need to check here,
9312 * because POPF has no interrupt shadow.
9314 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
9315 kvm_make_request(KVM_REQ_EVENT, vcpu);
9317 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
9322 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
9324 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
9326 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
9328 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
9329 void *insn, int insn_len)
9331 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
9333 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
9335 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
9337 vcpu->arch.pio.count = 0;
9341 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
9343 vcpu->arch.pio.count = 0;
9345 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
9348 return kvm_skip_emulated_instruction(vcpu);
9351 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
9352 unsigned short port)
9354 unsigned long val = kvm_rax_read(vcpu);
9355 int ret = emulator_pio_out(vcpu, size, port, &val, 1);
9361 * Workaround userspace that relies on old KVM behavior of %rip being
9362 * incremented prior to exiting to userspace to handle "OUT 0x7e".
9365 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
9366 vcpu->arch.complete_userspace_io =
9367 complete_fast_pio_out_port_0x7e;
9368 kvm_skip_emulated_instruction(vcpu);
9370 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9371 vcpu->arch.complete_userspace_io = complete_fast_pio_out;
9376 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
9380 /* We should only ever be called with arch.pio.count equal to 1 */
9381 BUG_ON(vcpu->arch.pio.count != 1);
9383 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
9384 vcpu->arch.pio.count = 0;
9388 /* For size less than 4 we merge, else we zero extend */
9389 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
9391 complete_emulator_pio_in(vcpu, &val);
9392 kvm_rax_write(vcpu, val);
9394 return kvm_skip_emulated_instruction(vcpu);
9397 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
9398 unsigned short port)
9403 /* For size less than 4 we merge, else we zero extend */
9404 val = (size < 4) ? kvm_rax_read(vcpu) : 0;
9406 ret = emulator_pio_in(vcpu, size, port, &val, 1);
9408 kvm_rax_write(vcpu, val);
9412 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9413 vcpu->arch.complete_userspace_io = complete_fast_pio_in;
9418 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
9423 ret = kvm_fast_pio_in(vcpu, size, port);
9425 ret = kvm_fast_pio_out(vcpu, size, port);
9426 return ret && kvm_skip_emulated_instruction(vcpu);
9428 EXPORT_SYMBOL_GPL(kvm_fast_pio);
9430 static int kvmclock_cpu_down_prep(unsigned int cpu)
9432 __this_cpu_write(cpu_tsc_khz, 0);
9436 static void tsc_khz_changed(void *data)
9438 struct cpufreq_freqs *freq = data;
9441 WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC));
9446 khz = cpufreq_quick_get(raw_smp_processor_id());
9449 __this_cpu_write(cpu_tsc_khz, khz);
9452 #ifdef CONFIG_X86_64
9453 static void kvm_hyperv_tsc_notifier(void)
9458 mutex_lock(&kvm_lock);
9459 list_for_each_entry(kvm, &vm_list, vm_list)
9460 kvm_make_mclock_inprogress_request(kvm);
9462 /* no guest entries from this point */
9463 hyperv_stop_tsc_emulation();
9465 /* TSC frequency always matches when on Hyper-V */
9466 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9467 for_each_present_cpu(cpu)
9468 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
9470 kvm_caps.max_guest_tsc_khz = tsc_khz;
9472 list_for_each_entry(kvm, &vm_list, vm_list) {
9473 __kvm_start_pvclock_update(kvm);
9474 pvclock_update_vm_gtod_copy(kvm);
9475 kvm_end_pvclock_update(kvm);
9478 mutex_unlock(&kvm_lock);
9482 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
9485 struct kvm_vcpu *vcpu;
9490 * We allow guests to temporarily run on slowing clocks,
9491 * provided we notify them after, or to run on accelerating
9492 * clocks, provided we notify them before. Thus time never
9495 * However, we have a problem. We can't atomically update
9496 * the frequency of a given CPU from this function; it is
9497 * merely a notifier, which can be called from any CPU.
9498 * Changing the TSC frequency at arbitrary points in time
9499 * requires a recomputation of local variables related to
9500 * the TSC for each VCPU. We must flag these local variables
9501 * to be updated and be sure the update takes place with the
9502 * new frequency before any guests proceed.
9504 * Unfortunately, the combination of hotplug CPU and frequency
9505 * change creates an intractable locking scenario; the order
9506 * of when these callouts happen is undefined with respect to
9507 * CPU hotplug, and they can race with each other. As such,
9508 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
9509 * undefined; you can actually have a CPU frequency change take
9510 * place in between the computation of X and the setting of the
9511 * variable. To protect against this problem, all updates of
9512 * the per_cpu tsc_khz variable are done in an interrupt
9513 * protected IPI, and all callers wishing to update the value
9514 * must wait for a synchronous IPI to complete (which is trivial
9515 * if the caller is on the CPU already). This establishes the
9516 * necessary total order on variable updates.
9518 * Note that because a guest time update may take place
9519 * anytime after the setting of the VCPU's request bit, the
9520 * correct TSC value must be set before the request. However,
9521 * to ensure the update actually makes it to any guest which
9522 * starts running in hardware virtualization between the set
9523 * and the acquisition of the spinlock, we must also ping the
9524 * CPU after setting the request bit.
9528 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9530 mutex_lock(&kvm_lock);
9531 list_for_each_entry(kvm, &vm_list, vm_list) {
9532 kvm_for_each_vcpu(i, vcpu, kvm) {
9533 if (vcpu->cpu != cpu)
9535 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9536 if (vcpu->cpu != raw_smp_processor_id())
9540 mutex_unlock(&kvm_lock);
9542 if (freq->old < freq->new && send_ipi) {
9544 * We upscale the frequency. Must make the guest
9545 * doesn't see old kvmclock values while running with
9546 * the new frequency, otherwise we risk the guest sees
9547 * time go backwards.
9549 * In case we update the frequency for another cpu
9550 * (which might be in guest context) send an interrupt
9551 * to kick the cpu out of guest context. Next time
9552 * guest context is entered kvmclock will be updated,
9553 * so the guest will not see stale values.
9555 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9559 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
9562 struct cpufreq_freqs *freq = data;
9565 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
9567 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
9570 for_each_cpu(cpu, freq->policy->cpus)
9571 __kvmclock_cpufreq_notifier(freq, cpu);
9576 static struct notifier_block kvmclock_cpufreq_notifier_block = {
9577 .notifier_call = kvmclock_cpufreq_notifier
9580 static int kvmclock_cpu_online(unsigned int cpu)
9582 tsc_khz_changed(NULL);
9586 static void kvm_timer_init(void)
9588 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9589 max_tsc_khz = tsc_khz;
9591 if (IS_ENABLED(CONFIG_CPU_FREQ)) {
9592 struct cpufreq_policy *policy;
9596 policy = cpufreq_cpu_get(cpu);
9598 if (policy->cpuinfo.max_freq)
9599 max_tsc_khz = policy->cpuinfo.max_freq;
9600 cpufreq_cpu_put(policy);
9604 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
9605 CPUFREQ_TRANSITION_NOTIFIER);
9607 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
9608 kvmclock_cpu_online, kvmclock_cpu_down_prep);
9612 #ifdef CONFIG_X86_64
9613 static void pvclock_gtod_update_fn(struct work_struct *work)
9616 struct kvm_vcpu *vcpu;
9619 mutex_lock(&kvm_lock);
9620 list_for_each_entry(kvm, &vm_list, vm_list)
9621 kvm_for_each_vcpu(i, vcpu, kvm)
9622 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9623 atomic_set(&kvm_guest_has_master_clock, 0);
9624 mutex_unlock(&kvm_lock);
9627 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
9630 * Indirection to move queue_work() out of the tk_core.seq write held
9631 * region to prevent possible deadlocks against time accessors which
9632 * are invoked with work related locks held.
9634 static void pvclock_irq_work_fn(struct irq_work *w)
9636 queue_work(system_long_wq, &pvclock_gtod_work);
9639 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
9642 * Notification about pvclock gtod data update.
9644 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
9647 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
9648 struct timekeeper *tk = priv;
9650 update_pvclock_gtod(tk);
9653 * Disable master clock if host does not trust, or does not use,
9654 * TSC based clocksource. Delegate queue_work() to irq_work as
9655 * this is invoked with tk_core.seq write held.
9657 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
9658 atomic_read(&kvm_guest_has_master_clock) != 0)
9659 irq_work_queue(&pvclock_irq_work);
9663 static struct notifier_block pvclock_gtod_notifier = {
9664 .notifier_call = pvclock_gtod_notify,
9668 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops)
9670 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
9672 #define __KVM_X86_OP(func) \
9673 static_call_update(kvm_x86_##func, kvm_x86_ops.func);
9674 #define KVM_X86_OP(func) \
9675 WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func)
9676 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP
9677 #define KVM_X86_OP_OPTIONAL_RET0(func) \
9678 static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \
9679 (void *)__static_call_return0);
9680 #include <asm/kvm-x86-ops.h>
9683 kvm_pmu_ops_update(ops->pmu_ops);
9686 static int kvm_x86_check_processor_compatibility(void)
9688 int cpu = smp_processor_id();
9689 struct cpuinfo_x86 *c = &cpu_data(cpu);
9692 * Compatibility checks are done when loading KVM and when enabling
9693 * hardware, e.g. during CPU hotplug, to ensure all online CPUs are
9694 * compatible, i.e. KVM should never perform a compatibility check on
9697 WARN_ON(!cpu_online(cpu));
9699 if (__cr4_reserved_bits(cpu_has, c) !=
9700 __cr4_reserved_bits(cpu_has, &boot_cpu_data))
9703 return static_call(kvm_x86_check_processor_compatibility)();
9706 static void kvm_x86_check_cpu_compat(void *ret)
9708 *(int *)ret = kvm_x86_check_processor_compatibility();
9711 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops)
9716 guard(mutex)(&vendor_module_lock);
9718 if (kvm_x86_ops.hardware_enable) {
9719 pr_err("already loaded vendor module '%s'\n", kvm_x86_ops.name);
9724 * KVM explicitly assumes that the guest has an FPU and
9725 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
9726 * vCPU's FPU state as a fxregs_state struct.
9728 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
9729 pr_err("inadequate fpu\n");
9733 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9734 pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n");
9739 * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes
9740 * the PAT bits in SPTEs. Bail if PAT[0] is programmed to something
9741 * other than WB. Note, EPT doesn't utilize the PAT, but don't bother
9742 * with an exception. PAT[0] is set to WB on RESET and also by the
9743 * kernel, i.e. failure indicates a kernel bug or broken firmware.
9745 if (rdmsrl_safe(MSR_IA32_CR_PAT, &host_pat) ||
9746 (host_pat & GENMASK(2, 0)) != 6) {
9747 pr_err("host PAT[0] is not WB\n");
9751 memset(&kvm_caps, 0, sizeof(kvm_caps));
9753 x86_emulator_cache = kvm_alloc_emulator_cache();
9754 if (!x86_emulator_cache) {
9755 pr_err("failed to allocate cache for x86 emulator\n");
9759 user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
9760 if (!user_return_msrs) {
9761 pr_err("failed to allocate percpu kvm_user_return_msrs\n");
9763 goto out_free_x86_emulator_cache;
9765 kvm_nr_uret_msrs = 0;
9767 r = kvm_mmu_vendor_module_init();
9769 goto out_free_percpu;
9771 kvm_caps.supported_vm_types = BIT(KVM_X86_DEFAULT_VM);
9772 kvm_caps.supported_mce_cap = MCG_CTL_P | MCG_SER_P;
9774 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
9775 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
9776 kvm_caps.supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
9779 rdmsrl_safe(MSR_EFER, &host_efer);
9781 if (boot_cpu_has(X86_FEATURE_XSAVES))
9782 rdmsrl(MSR_IA32_XSS, host_xss);
9784 kvm_init_pmu_capability(ops->pmu_ops);
9786 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
9787 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, host_arch_capabilities);
9789 r = ops->hardware_setup();
9793 kvm_ops_update(ops);
9795 for_each_online_cpu(cpu) {
9796 smp_call_function_single(cpu, kvm_x86_check_cpu_compat, &r, 1);
9798 goto out_unwind_ops;
9802 * Point of no return! DO NOT add error paths below this point unless
9803 * absolutely necessary, as most operations from this point forward
9804 * require unwinding.
9808 if (pi_inject_timer == -1)
9809 pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER);
9810 #ifdef CONFIG_X86_64
9811 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
9813 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9814 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
9817 kvm_register_perf_callbacks(ops->handle_intel_pt_intr);
9819 if (IS_ENABLED(CONFIG_KVM_SW_PROTECTED_VM) && tdp_mmu_enabled)
9820 kvm_caps.supported_vm_types |= BIT(KVM_X86_SW_PROTECTED_VM);
9822 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
9823 kvm_caps.supported_xss = 0;
9825 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
9826 cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
9827 #undef __kvm_cpu_cap_has
9829 if (kvm_caps.has_tsc_control) {
9831 * Make sure the user can only configure tsc_khz values that
9832 * fit into a signed integer.
9833 * A min value is not calculated because it will always
9834 * be 1 on all machines.
9836 u64 max = min(0x7fffffffULL,
9837 __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz));
9838 kvm_caps.max_guest_tsc_khz = max;
9840 kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits;
9841 kvm_init_msr_lists();
9845 kvm_x86_ops.hardware_enable = NULL;
9846 static_call(kvm_x86_hardware_unsetup)();
9848 kvm_mmu_vendor_module_exit();
9850 free_percpu(user_return_msrs);
9851 out_free_x86_emulator_cache:
9852 kmem_cache_destroy(x86_emulator_cache);
9855 EXPORT_SYMBOL_GPL(kvm_x86_vendor_init);
9857 void kvm_x86_vendor_exit(void)
9859 kvm_unregister_perf_callbacks();
9861 #ifdef CONFIG_X86_64
9862 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9863 clear_hv_tscchange_cb();
9867 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9868 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
9869 CPUFREQ_TRANSITION_NOTIFIER);
9870 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
9872 #ifdef CONFIG_X86_64
9873 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
9874 irq_work_sync(&pvclock_irq_work);
9875 cancel_work_sync(&pvclock_gtod_work);
9877 static_call(kvm_x86_hardware_unsetup)();
9878 kvm_mmu_vendor_module_exit();
9879 free_percpu(user_return_msrs);
9880 kmem_cache_destroy(x86_emulator_cache);
9881 #ifdef CONFIG_KVM_XEN
9882 static_key_deferred_flush(&kvm_xen_enabled);
9883 WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
9885 mutex_lock(&vendor_module_lock);
9886 kvm_x86_ops.hardware_enable = NULL;
9887 mutex_unlock(&vendor_module_lock);
9889 EXPORT_SYMBOL_GPL(kvm_x86_vendor_exit);
9891 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason)
9894 * The vCPU has halted, e.g. executed HLT. Update the run state if the
9895 * local APIC is in-kernel, the run loop will detect the non-runnable
9896 * state and halt the vCPU. Exit to userspace if the local APIC is
9897 * managed by userspace, in which case userspace is responsible for
9898 * handling wake events.
9900 ++vcpu->stat.halt_exits;
9901 if (lapic_in_kernel(vcpu)) {
9902 vcpu->arch.mp_state = state;
9905 vcpu->run->exit_reason = reason;
9910 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu)
9912 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
9914 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip);
9916 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
9918 int ret = kvm_skip_emulated_instruction(vcpu);
9920 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
9921 * KVM_EXIT_DEBUG here.
9923 return kvm_emulate_halt_noskip(vcpu) && ret;
9925 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
9927 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
9929 int ret = kvm_skip_emulated_instruction(vcpu);
9931 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD,
9932 KVM_EXIT_AP_RESET_HOLD) && ret;
9934 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
9936 #ifdef CONFIG_X86_64
9937 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
9938 unsigned long clock_type)
9940 struct kvm_clock_pairing clock_pairing;
9941 struct timespec64 ts;
9945 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
9946 return -KVM_EOPNOTSUPP;
9949 * When tsc is in permanent catchup mode guests won't be able to use
9950 * pvclock_read_retry loop to get consistent view of pvclock
9952 if (vcpu->arch.tsc_always_catchup)
9953 return -KVM_EOPNOTSUPP;
9955 if (!kvm_get_walltime_and_clockread(&ts, &cycle))
9956 return -KVM_EOPNOTSUPP;
9958 clock_pairing.sec = ts.tv_sec;
9959 clock_pairing.nsec = ts.tv_nsec;
9960 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
9961 clock_pairing.flags = 0;
9962 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
9965 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
9966 sizeof(struct kvm_clock_pairing)))
9974 * kvm_pv_kick_cpu_op: Kick a vcpu.
9976 * @apicid - apicid of vcpu to be kicked.
9978 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid)
9981 * All other fields are unused for APIC_DM_REMRD, but may be consumed by
9982 * common code, e.g. for tracing. Defer initialization to the compiler.
9984 struct kvm_lapic_irq lapic_irq = {
9985 .delivery_mode = APIC_DM_REMRD,
9986 .dest_mode = APIC_DEST_PHYSICAL,
9987 .shorthand = APIC_DEST_NOSHORT,
9991 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
9994 bool kvm_apicv_activated(struct kvm *kvm)
9996 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
9998 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
10000 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu)
10002 ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons);
10003 ulong vcpu_reasons = static_call(kvm_x86_vcpu_get_apicv_inhibit_reasons)(vcpu);
10005 return (vm_reasons | vcpu_reasons) == 0;
10007 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated);
10009 static void set_or_clear_apicv_inhibit(unsigned long *inhibits,
10010 enum kvm_apicv_inhibit reason, bool set)
10013 __set_bit(reason, inhibits);
10015 __clear_bit(reason, inhibits);
10017 trace_kvm_apicv_inhibit_changed(reason, set, *inhibits);
10020 static void kvm_apicv_init(struct kvm *kvm)
10022 enum kvm_apicv_inhibit reason = enable_apicv ? APICV_INHIBIT_REASON_ABSENT :
10023 APICV_INHIBIT_REASON_DISABLE;
10025 set_or_clear_apicv_inhibit(&kvm->arch.apicv_inhibit_reasons, reason, true);
10027 init_rwsem(&kvm->arch.apicv_update_lock);
10030 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
10032 struct kvm_vcpu *target = NULL;
10033 struct kvm_apic_map *map;
10035 vcpu->stat.directed_yield_attempted++;
10037 if (single_task_running())
10041 map = rcu_dereference(vcpu->kvm->arch.apic_map);
10043 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
10044 target = map->phys_map[dest_id]->vcpu;
10048 if (!target || !READ_ONCE(target->ready))
10051 /* Ignore requests to yield to self */
10052 if (vcpu == target)
10055 if (kvm_vcpu_yield_to(target) <= 0)
10058 vcpu->stat.directed_yield_successful++;
10064 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
10066 u64 ret = vcpu->run->hypercall.ret;
10068 if (!is_64_bit_mode(vcpu))
10070 kvm_rax_write(vcpu, ret);
10071 ++vcpu->stat.hypercalls;
10072 return kvm_skip_emulated_instruction(vcpu);
10075 unsigned long __kvm_emulate_hypercall(struct kvm_vcpu *vcpu, unsigned long nr,
10076 unsigned long a0, unsigned long a1,
10077 unsigned long a2, unsigned long a3,
10078 int op_64_bit, int cpl)
10082 trace_kvm_hypercall(nr, a0, a1, a2, a3);
10100 case KVM_HC_VAPIC_POLL_IRQ:
10103 case KVM_HC_KICK_CPU:
10104 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
10107 kvm_pv_kick_cpu_op(vcpu->kvm, a1);
10108 kvm_sched_yield(vcpu, a1);
10111 #ifdef CONFIG_X86_64
10112 case KVM_HC_CLOCK_PAIRING:
10113 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
10116 case KVM_HC_SEND_IPI:
10117 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
10120 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
10122 case KVM_HC_SCHED_YIELD:
10123 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
10126 kvm_sched_yield(vcpu, a0);
10129 case KVM_HC_MAP_GPA_RANGE: {
10130 u64 gpa = a0, npages = a1, attrs = a2;
10133 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE)))
10136 if (!PAGE_ALIGNED(gpa) || !npages ||
10137 gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
10142 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL;
10143 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE;
10144 vcpu->run->hypercall.args[0] = gpa;
10145 vcpu->run->hypercall.args[1] = npages;
10146 vcpu->run->hypercall.args[2] = attrs;
10147 vcpu->run->hypercall.flags = 0;
10149 vcpu->run->hypercall.flags |= KVM_EXIT_HYPERCALL_LONG_MODE;
10151 WARN_ON_ONCE(vcpu->run->hypercall.flags & KVM_EXIT_HYPERCALL_MBZ);
10152 vcpu->arch.complete_userspace_io = complete_hypercall_exit;
10153 /* stat is incremented on completion. */
10162 ++vcpu->stat.hypercalls;
10165 EXPORT_SYMBOL_GPL(__kvm_emulate_hypercall);
10167 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
10169 unsigned long nr, a0, a1, a2, a3, ret;
10173 if (kvm_xen_hypercall_enabled(vcpu->kvm))
10174 return kvm_xen_hypercall(vcpu);
10176 if (kvm_hv_hypercall_enabled(vcpu))
10177 return kvm_hv_hypercall(vcpu);
10179 nr = kvm_rax_read(vcpu);
10180 a0 = kvm_rbx_read(vcpu);
10181 a1 = kvm_rcx_read(vcpu);
10182 a2 = kvm_rdx_read(vcpu);
10183 a3 = kvm_rsi_read(vcpu);
10184 op_64_bit = is_64_bit_hypercall(vcpu);
10185 cpl = static_call(kvm_x86_get_cpl)(vcpu);
10187 ret = __kvm_emulate_hypercall(vcpu, nr, a0, a1, a2, a3, op_64_bit, cpl);
10188 if (nr == KVM_HC_MAP_GPA_RANGE && !ret)
10189 /* MAP_GPA tosses the request to the user space. */
10194 kvm_rax_write(vcpu, ret);
10196 return kvm_skip_emulated_instruction(vcpu);
10198 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
10200 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
10202 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
10203 char instruction[3];
10204 unsigned long rip = kvm_rip_read(vcpu);
10207 * If the quirk is disabled, synthesize a #UD and let the guest pick up
10210 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) {
10211 ctxt->exception.error_code_valid = false;
10212 ctxt->exception.vector = UD_VECTOR;
10213 ctxt->have_exception = true;
10214 return X86EMUL_PROPAGATE_FAULT;
10217 static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
10219 return emulator_write_emulated(ctxt, rip, instruction, 3,
10223 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
10225 return vcpu->run->request_interrupt_window &&
10226 likely(!pic_in_kernel(vcpu->kvm));
10229 /* Called within kvm->srcu read side. */
10230 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
10232 struct kvm_run *kvm_run = vcpu->run;
10234 kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu);
10235 kvm_run->cr8 = kvm_get_cr8(vcpu);
10236 kvm_run->apic_base = kvm_get_apic_base(vcpu);
10238 kvm_run->ready_for_interrupt_injection =
10239 pic_in_kernel(vcpu->kvm) ||
10240 kvm_vcpu_ready_for_interrupt_injection(vcpu);
10243 kvm_run->flags |= KVM_RUN_X86_SMM;
10246 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
10250 if (!kvm_x86_ops.update_cr8_intercept)
10253 if (!lapic_in_kernel(vcpu))
10256 if (vcpu->arch.apic->apicv_active)
10259 if (!vcpu->arch.apic->vapic_addr)
10260 max_irr = kvm_lapic_find_highest_irr(vcpu);
10267 tpr = kvm_lapic_get_cr8(vcpu);
10269 static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
10273 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
10275 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10276 kvm_x86_ops.nested_ops->triple_fault(vcpu);
10280 return kvm_x86_ops.nested_ops->check_events(vcpu);
10283 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
10286 * Suppress the error code if the vCPU is in Real Mode, as Real Mode
10287 * exceptions don't report error codes. The presence of an error code
10288 * is carried with the exception and only stripped when the exception
10289 * is injected as intercepted #PF VM-Exits for AMD's Paged Real Mode do
10290 * report an error code despite the CPU being in Real Mode.
10292 vcpu->arch.exception.has_error_code &= is_protmode(vcpu);
10294 trace_kvm_inj_exception(vcpu->arch.exception.vector,
10295 vcpu->arch.exception.has_error_code,
10296 vcpu->arch.exception.error_code,
10297 vcpu->arch.exception.injected);
10299 static_call(kvm_x86_inject_exception)(vcpu);
10303 * Check for any event (interrupt or exception) that is ready to be injected,
10304 * and if there is at least one event, inject the event with the highest
10305 * priority. This handles both "pending" events, i.e. events that have never
10306 * been injected into the guest, and "injected" events, i.e. events that were
10307 * injected as part of a previous VM-Enter, but weren't successfully delivered
10308 * and need to be re-injected.
10310 * Note, this is not guaranteed to be invoked on a guest instruction boundary,
10311 * i.e. doesn't guarantee that there's an event window in the guest. KVM must
10312 * be able to inject exceptions in the "middle" of an instruction, and so must
10313 * also be able to re-inject NMIs and IRQs in the middle of an instruction.
10314 * I.e. for exceptions and re-injected events, NOT invoking this on instruction
10315 * boundaries is necessary and correct.
10317 * For simplicity, KVM uses a single path to inject all events (except events
10318 * that are injected directly from L1 to L2) and doesn't explicitly track
10319 * instruction boundaries for asynchronous events. However, because VM-Exits
10320 * that can occur during instruction execution typically result in KVM skipping
10321 * the instruction or injecting an exception, e.g. instruction and exception
10322 * intercepts, and because pending exceptions have higher priority than pending
10323 * interrupts, KVM still honors instruction boundaries in most scenarios.
10325 * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip
10326 * the instruction or inject an exception, then KVM can incorrecty inject a new
10327 * asynchronous event if the event became pending after the CPU fetched the
10328 * instruction (in the guest). E.g. if a page fault (#PF, #NPF, EPT violation)
10329 * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be
10330 * injected on the restarted instruction instead of being deferred until the
10331 * instruction completes.
10333 * In practice, this virtualization hole is unlikely to be observed by the
10334 * guest, and even less likely to cause functional problems. To detect the
10335 * hole, the guest would have to trigger an event on a side effect of an early
10336 * phase of instruction execution, e.g. on the instruction fetch from memory.
10337 * And for it to be a functional problem, the guest would need to depend on the
10338 * ordering between that side effect, the instruction completing, _and_ the
10339 * delivery of the asynchronous event.
10341 static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu,
10342 bool *req_immediate_exit)
10348 * Process nested events first, as nested VM-Exit supersedes event
10349 * re-injection. If there's an event queued for re-injection, it will
10350 * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit.
10352 if (is_guest_mode(vcpu))
10353 r = kvm_check_nested_events(vcpu);
10358 * Re-inject exceptions and events *especially* if immediate entry+exit
10359 * to/from L2 is needed, as any event that has already been injected
10360 * into L2 needs to complete its lifecycle before injecting a new event.
10362 * Don't re-inject an NMI or interrupt if there is a pending exception.
10363 * This collision arises if an exception occurred while vectoring the
10364 * injected event, KVM intercepted said exception, and KVM ultimately
10365 * determined the fault belongs to the guest and queues the exception
10366 * for injection back into the guest.
10368 * "Injected" interrupts can also collide with pending exceptions if
10369 * userspace ignores the "ready for injection" flag and blindly queues
10370 * an interrupt. In that case, prioritizing the exception is correct,
10371 * as the exception "occurred" before the exit to userspace. Trap-like
10372 * exceptions, e.g. most #DBs, have higher priority than interrupts.
10373 * And while fault-like exceptions, e.g. #GP and #PF, are the lowest
10374 * priority, they're only generated (pended) during instruction
10375 * execution, and interrupts are recognized at instruction boundaries.
10376 * Thus a pending fault-like exception means the fault occurred on the
10377 * *previous* instruction and must be serviced prior to recognizing any
10378 * new events in order to fully complete the previous instruction.
10380 if (vcpu->arch.exception.injected)
10381 kvm_inject_exception(vcpu);
10382 else if (kvm_is_exception_pending(vcpu))
10384 else if (vcpu->arch.nmi_injected)
10385 static_call(kvm_x86_inject_nmi)(vcpu);
10386 else if (vcpu->arch.interrupt.injected)
10387 static_call(kvm_x86_inject_irq)(vcpu, true);
10390 * Exceptions that morph to VM-Exits are handled above, and pending
10391 * exceptions on top of injected exceptions that do not VM-Exit should
10392 * either morph to #DF or, sadly, override the injected exception.
10394 WARN_ON_ONCE(vcpu->arch.exception.injected &&
10395 vcpu->arch.exception.pending);
10398 * Bail if immediate entry+exit to/from the guest is needed to complete
10399 * nested VM-Enter or event re-injection so that a different pending
10400 * event can be serviced (or if KVM needs to exit to userspace).
10402 * Otherwise, continue processing events even if VM-Exit occurred. The
10403 * VM-Exit will have cleared exceptions that were meant for L2, but
10404 * there may now be events that can be injected into L1.
10410 * A pending exception VM-Exit should either result in nested VM-Exit
10411 * or force an immediate re-entry and exit to/from L2, and exception
10412 * VM-Exits cannot be injected (flag should _never_ be set).
10414 WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected ||
10415 vcpu->arch.exception_vmexit.pending);
10418 * New events, other than exceptions, cannot be injected if KVM needs
10419 * to re-inject a previous event. See above comments on re-injecting
10420 * for why pending exceptions get priority.
10422 can_inject = !kvm_event_needs_reinjection(vcpu);
10424 if (vcpu->arch.exception.pending) {
10426 * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS
10427 * value pushed on the stack. Trap-like exception and all #DBs
10428 * leave RF as-is (KVM follows Intel's behavior in this regard;
10429 * AMD states that code breakpoint #DBs excplitly clear RF=0).
10431 * Note, most versions of Intel's SDM and AMD's APM incorrectly
10432 * describe the behavior of General Detect #DBs, which are
10433 * fault-like. They do _not_ set RF, a la code breakpoints.
10435 if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT)
10436 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
10439 if (vcpu->arch.exception.vector == DB_VECTOR) {
10440 kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception);
10441 if (vcpu->arch.dr7 & DR7_GD) {
10442 vcpu->arch.dr7 &= ~DR7_GD;
10443 kvm_update_dr7(vcpu);
10447 kvm_inject_exception(vcpu);
10449 vcpu->arch.exception.pending = false;
10450 vcpu->arch.exception.injected = true;
10452 can_inject = false;
10455 /* Don't inject interrupts if the user asked to avoid doing so */
10456 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
10460 * Finally, inject interrupt events. If an event cannot be injected
10461 * due to architectural conditions (e.g. IF=0) a window-open exit
10462 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending
10463 * and can architecturally be injected, but we cannot do it right now:
10464 * an interrupt could have arrived just now and we have to inject it
10465 * as a vmexit, or there could already an event in the queue, which is
10466 * indicated by can_inject. In that case we request an immediate exit
10467 * in order to make progress and get back here for another iteration.
10468 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
10470 #ifdef CONFIG_KVM_SMM
10471 if (vcpu->arch.smi_pending) {
10472 r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
10476 vcpu->arch.smi_pending = false;
10477 ++vcpu->arch.smi_count;
10479 can_inject = false;
10481 static_call(kvm_x86_enable_smi_window)(vcpu);
10485 if (vcpu->arch.nmi_pending) {
10486 r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
10490 --vcpu->arch.nmi_pending;
10491 vcpu->arch.nmi_injected = true;
10492 static_call(kvm_x86_inject_nmi)(vcpu);
10493 can_inject = false;
10494 WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
10496 if (vcpu->arch.nmi_pending)
10497 static_call(kvm_x86_enable_nmi_window)(vcpu);
10500 if (kvm_cpu_has_injectable_intr(vcpu)) {
10501 r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
10505 int irq = kvm_cpu_get_interrupt(vcpu);
10507 if (!WARN_ON_ONCE(irq == -1)) {
10508 kvm_queue_interrupt(vcpu, irq, false);
10509 static_call(kvm_x86_inject_irq)(vcpu, false);
10510 WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
10513 if (kvm_cpu_has_injectable_intr(vcpu))
10514 static_call(kvm_x86_enable_irq_window)(vcpu);
10517 if (is_guest_mode(vcpu) &&
10518 kvm_x86_ops.nested_ops->has_events &&
10519 kvm_x86_ops.nested_ops->has_events(vcpu))
10520 *req_immediate_exit = true;
10523 * KVM must never queue a new exception while injecting an event; KVM
10524 * is done emulating and should only propagate the to-be-injected event
10525 * to the VMCS/VMCB. Queueing a new exception can put the vCPU into an
10526 * infinite loop as KVM will bail from VM-Enter to inject the pending
10527 * exception and start the cycle all over.
10529 * Exempt triple faults as they have special handling and won't put the
10530 * vCPU into an infinite loop. Triple fault can be queued when running
10531 * VMX without unrestricted guest, as that requires KVM to emulate Real
10532 * Mode events (see kvm_inject_realmode_interrupt()).
10534 WARN_ON_ONCE(vcpu->arch.exception.pending ||
10535 vcpu->arch.exception_vmexit.pending);
10540 *req_immediate_exit = true;
10546 static void process_nmi(struct kvm_vcpu *vcpu)
10548 unsigned int limit;
10551 * x86 is limited to one NMI pending, but because KVM can't react to
10552 * incoming NMIs as quickly as bare metal, e.g. if the vCPU is
10553 * scheduled out, KVM needs to play nice with two queued NMIs showing
10554 * up at the same time. To handle this scenario, allow two NMIs to be
10555 * (temporarily) pending so long as NMIs are not blocked and KVM is not
10556 * waiting for a previous NMI injection to complete (which effectively
10557 * blocks NMIs). KVM will immediately inject one of the two NMIs, and
10558 * will request an NMI window to handle the second NMI.
10560 if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
10566 * Adjust the limit to account for pending virtual NMIs, which aren't
10567 * tracked in vcpu->arch.nmi_pending.
10569 if (static_call(kvm_x86_is_vnmi_pending)(vcpu))
10572 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
10573 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
10575 if (vcpu->arch.nmi_pending &&
10576 (static_call(kvm_x86_set_vnmi_pending)(vcpu)))
10577 vcpu->arch.nmi_pending--;
10579 if (vcpu->arch.nmi_pending)
10580 kvm_make_request(KVM_REQ_EVENT, vcpu);
10583 /* Return total number of NMIs pending injection to the VM */
10584 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu)
10586 return vcpu->arch.nmi_pending +
10587 static_call(kvm_x86_is_vnmi_pending)(vcpu);
10590 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
10591 unsigned long *vcpu_bitmap)
10593 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap);
10596 void kvm_make_scan_ioapic_request(struct kvm *kvm)
10598 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
10601 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10603 struct kvm_lapic *apic = vcpu->arch.apic;
10606 if (!lapic_in_kernel(vcpu))
10609 down_read(&vcpu->kvm->arch.apicv_update_lock);
10612 /* Do not activate APICV when APIC is disabled */
10613 activate = kvm_vcpu_apicv_activated(vcpu) &&
10614 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED);
10616 if (apic->apicv_active == activate)
10619 apic->apicv_active = activate;
10620 kvm_apic_update_apicv(vcpu);
10621 static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
10624 * When APICv gets disabled, we may still have injected interrupts
10625 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
10626 * still active when the interrupt got accepted. Make sure
10627 * kvm_check_and_inject_events() is called to check for that.
10629 if (!apic->apicv_active)
10630 kvm_make_request(KVM_REQ_EVENT, vcpu);
10634 up_read(&vcpu->kvm->arch.apicv_update_lock);
10636 EXPORT_SYMBOL_GPL(__kvm_vcpu_update_apicv);
10638 static void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10640 if (!lapic_in_kernel(vcpu))
10644 * Due to sharing page tables across vCPUs, the xAPIC memslot must be
10645 * deleted if any vCPU has xAPIC virtualization and x2APIC enabled, but
10646 * and hardware doesn't support x2APIC virtualization. E.g. some AMD
10647 * CPUs support AVIC but not x2APIC. KVM still allows enabling AVIC in
10648 * this case so that KVM can the AVIC doorbell to inject interrupts to
10649 * running vCPUs, but KVM must not create SPTEs for the APIC base as
10650 * the vCPU would incorrectly be able to access the vAPIC page via MMIO
10651 * despite being in x2APIC mode. For simplicity, inhibiting the APIC
10652 * access page is sticky.
10654 if (apic_x2apic_mode(vcpu->arch.apic) &&
10655 kvm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization)
10656 kvm_inhibit_apic_access_page(vcpu);
10658 __kvm_vcpu_update_apicv(vcpu);
10661 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10662 enum kvm_apicv_inhibit reason, bool set)
10664 unsigned long old, new;
10666 lockdep_assert_held_write(&kvm->arch.apicv_update_lock);
10668 if (!(kvm_x86_ops.required_apicv_inhibits & BIT(reason)))
10671 old = new = kvm->arch.apicv_inhibit_reasons;
10673 set_or_clear_apicv_inhibit(&new, reason, set);
10675 if (!!old != !!new) {
10677 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid
10678 * false positives in the sanity check WARN in svm_vcpu_run().
10679 * This task will wait for all vCPUs to ack the kick IRQ before
10680 * updating apicv_inhibit_reasons, and all other vCPUs will
10681 * block on acquiring apicv_update_lock so that vCPUs can't
10682 * redo svm_vcpu_run() without seeing the new inhibit state.
10684 * Note, holding apicv_update_lock and taking it in the read
10685 * side (handling the request) also prevents other vCPUs from
10686 * servicing the request with a stale apicv_inhibit_reasons.
10688 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
10689 kvm->arch.apicv_inhibit_reasons = new;
10691 unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
10692 int idx = srcu_read_lock(&kvm->srcu);
10694 kvm_zap_gfn_range(kvm, gfn, gfn+1);
10695 srcu_read_unlock(&kvm->srcu, idx);
10698 kvm->arch.apicv_inhibit_reasons = new;
10702 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10703 enum kvm_apicv_inhibit reason, bool set)
10708 down_write(&kvm->arch.apicv_update_lock);
10709 __kvm_set_or_clear_apicv_inhibit(kvm, reason, set);
10710 up_write(&kvm->arch.apicv_update_lock);
10712 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit);
10714 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
10716 if (!kvm_apic_present(vcpu))
10719 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
10721 if (irqchip_split(vcpu->kvm))
10722 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
10724 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10725 if (ioapic_in_kernel(vcpu->kvm))
10726 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
10729 if (is_guest_mode(vcpu))
10730 vcpu->arch.load_eoi_exitmap_pending = true;
10732 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
10735 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
10737 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
10740 #ifdef CONFIG_KVM_HYPERV
10741 if (to_hv_vcpu(vcpu)) {
10742 u64 eoi_exit_bitmap[4];
10744 bitmap_or((ulong *)eoi_exit_bitmap,
10745 vcpu->arch.ioapic_handled_vectors,
10746 to_hv_synic(vcpu)->vec_bitmap, 256);
10747 static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
10751 static_call_cond(kvm_x86_load_eoi_exitmap)(
10752 vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors);
10755 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
10757 static_call_cond(kvm_x86_guest_memory_reclaimed)(kvm);
10760 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
10762 if (!lapic_in_kernel(vcpu))
10765 static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu);
10769 * Called within kvm->srcu read side.
10770 * Returns 1 to let vcpu_run() continue the guest execution loop without
10771 * exiting to the userspace. Otherwise, the value will be returned to the
10774 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
10778 dm_request_for_irq_injection(vcpu) &&
10779 kvm_cpu_accept_dm_intr(vcpu);
10780 fastpath_t exit_fastpath;
10782 bool req_immediate_exit = false;
10784 if (kvm_request_pending(vcpu)) {
10785 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) {
10790 if (kvm_dirty_ring_check_request(vcpu)) {
10795 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
10796 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
10801 if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
10802 kvm_mmu_free_obsolete_roots(vcpu);
10803 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
10804 __kvm_migrate_timers(vcpu);
10805 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
10806 kvm_update_masterclock(vcpu->kvm);
10807 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
10808 kvm_gen_kvmclock_update(vcpu);
10809 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
10810 r = kvm_guest_time_update(vcpu);
10814 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
10815 kvm_mmu_sync_roots(vcpu);
10816 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
10817 kvm_mmu_load_pgd(vcpu);
10820 * Note, the order matters here, as flushing "all" TLB entries
10821 * also flushes the "current" TLB entries, i.e. servicing the
10822 * flush "all" will clear any request to flush "current".
10824 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
10825 kvm_vcpu_flush_tlb_all(vcpu);
10827 kvm_service_local_tlb_flush_requests(vcpu);
10830 * Fall back to a "full" guest flush if Hyper-V's precise
10831 * flushing fails. Note, Hyper-V's flushing is per-vCPU, but
10832 * the flushes are considered "remote" and not "local" because
10833 * the requests can be initiated from other vCPUs.
10835 #ifdef CONFIG_KVM_HYPERV
10836 if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu) &&
10837 kvm_hv_vcpu_flush_tlb(vcpu))
10838 kvm_vcpu_flush_tlb_guest(vcpu);
10841 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
10842 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
10846 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10847 if (is_guest_mode(vcpu))
10848 kvm_x86_ops.nested_ops->triple_fault(vcpu);
10850 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10851 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
10852 vcpu->mmio_needed = 0;
10857 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
10858 /* Page is swapped out. Do synthetic halt */
10859 vcpu->arch.apf.halted = true;
10863 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
10864 record_steal_time(vcpu);
10865 if (kvm_check_request(KVM_REQ_PMU, vcpu))
10866 kvm_pmu_handle_event(vcpu);
10867 if (kvm_check_request(KVM_REQ_PMI, vcpu))
10868 kvm_pmu_deliver_pmi(vcpu);
10869 #ifdef CONFIG_KVM_SMM
10870 if (kvm_check_request(KVM_REQ_SMI, vcpu))
10873 if (kvm_check_request(KVM_REQ_NMI, vcpu))
10875 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
10876 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
10877 if (test_bit(vcpu->arch.pending_ioapic_eoi,
10878 vcpu->arch.ioapic_handled_vectors)) {
10879 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
10880 vcpu->run->eoi.vector =
10881 vcpu->arch.pending_ioapic_eoi;
10886 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
10887 vcpu_scan_ioapic(vcpu);
10888 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
10889 vcpu_load_eoi_exitmap(vcpu);
10890 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
10891 kvm_vcpu_reload_apic_access_page(vcpu);
10892 #ifdef CONFIG_KVM_HYPERV
10893 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
10894 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10895 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
10896 vcpu->run->system_event.ndata = 0;
10900 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
10901 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10902 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
10903 vcpu->run->system_event.ndata = 0;
10907 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
10908 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
10910 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
10911 vcpu->run->hyperv = hv_vcpu->exit;
10917 * KVM_REQ_HV_STIMER has to be processed after
10918 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
10919 * depend on the guest clock being up-to-date
10921 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
10922 kvm_hv_process_stimers(vcpu);
10924 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
10925 kvm_vcpu_update_apicv(vcpu);
10926 if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
10927 kvm_check_async_pf_completion(vcpu);
10928 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
10929 static_call(kvm_x86_msr_filter_changed)(vcpu);
10931 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
10932 static_call(kvm_x86_update_cpu_dirty_logging)(vcpu);
10935 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
10936 kvm_xen_has_interrupt(vcpu)) {
10937 ++vcpu->stat.req_event;
10938 r = kvm_apic_accept_events(vcpu);
10943 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
10948 r = kvm_check_and_inject_events(vcpu, &req_immediate_exit);
10954 static_call(kvm_x86_enable_irq_window)(vcpu);
10956 if (kvm_lapic_enabled(vcpu)) {
10957 update_cr8_intercept(vcpu);
10958 kvm_lapic_sync_to_vapic(vcpu);
10962 r = kvm_mmu_reload(vcpu);
10964 goto cancel_injection;
10969 static_call(kvm_x86_prepare_switch_to_guest)(vcpu);
10972 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt
10973 * IPI are then delayed after guest entry, which ensures that they
10974 * result in virtual interrupt delivery.
10976 local_irq_disable();
10978 /* Store vcpu->apicv_active before vcpu->mode. */
10979 smp_store_release(&vcpu->mode, IN_GUEST_MODE);
10981 kvm_vcpu_srcu_read_unlock(vcpu);
10984 * 1) We should set ->mode before checking ->requests. Please see
10985 * the comment in kvm_vcpu_exiting_guest_mode().
10987 * 2) For APICv, we should set ->mode before checking PID.ON. This
10988 * pairs with the memory barrier implicit in pi_test_and_set_on
10989 * (see vmx_deliver_posted_interrupt).
10991 * 3) This also orders the write to mode from any reads to the page
10992 * tables done while the VCPU is running. Please see the comment
10993 * in kvm_flush_remote_tlbs.
10995 smp_mb__after_srcu_read_unlock();
10998 * Process pending posted interrupts to handle the case where the
10999 * notification IRQ arrived in the host, or was never sent (because the
11000 * target vCPU wasn't running). Do this regardless of the vCPU's APICv
11001 * status, KVM doesn't update assigned devices when APICv is inhibited,
11002 * i.e. they can post interrupts even if APICv is temporarily disabled.
11004 if (kvm_lapic_enabled(vcpu))
11005 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
11007 if (kvm_vcpu_exit_request(vcpu)) {
11008 vcpu->mode = OUTSIDE_GUEST_MODE;
11010 local_irq_enable();
11012 kvm_vcpu_srcu_read_lock(vcpu);
11014 goto cancel_injection;
11017 if (req_immediate_exit)
11018 kvm_make_request(KVM_REQ_EVENT, vcpu);
11020 fpregs_assert_state_consistent();
11021 if (test_thread_flag(TIF_NEED_FPU_LOAD))
11022 switch_fpu_return();
11024 if (vcpu->arch.guest_fpu.xfd_err)
11025 wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
11027 if (unlikely(vcpu->arch.switch_db_regs)) {
11028 set_debugreg(0, 7);
11029 set_debugreg(vcpu->arch.eff_db[0], 0);
11030 set_debugreg(vcpu->arch.eff_db[1], 1);
11031 set_debugreg(vcpu->arch.eff_db[2], 2);
11032 set_debugreg(vcpu->arch.eff_db[3], 3);
11033 } else if (unlikely(hw_breakpoint_active())) {
11034 set_debugreg(0, 7);
11037 guest_timing_enter_irqoff();
11041 * Assert that vCPU vs. VM APICv state is consistent. An APICv
11042 * update must kick and wait for all vCPUs before toggling the
11043 * per-VM state, and responding vCPUs must wait for the update
11044 * to complete before servicing KVM_REQ_APICV_UPDATE.
11046 WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) &&
11047 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED));
11049 exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu, req_immediate_exit);
11050 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
11053 if (kvm_lapic_enabled(vcpu))
11054 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
11056 if (unlikely(kvm_vcpu_exit_request(vcpu))) {
11057 exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
11061 /* Note, VM-Exits that go down the "slow" path are accounted below. */
11062 ++vcpu->stat.exits;
11066 * Do this here before restoring debug registers on the host. And
11067 * since we do this before handling the vmexit, a DR access vmexit
11068 * can (a) read the correct value of the debug registers, (b) set
11069 * KVM_DEBUGREG_WONT_EXIT again.
11071 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
11072 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
11073 static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
11074 kvm_update_dr0123(vcpu);
11075 kvm_update_dr7(vcpu);
11079 * If the guest has used debug registers, at least dr7
11080 * will be disabled while returning to the host.
11081 * If we don't have active breakpoints in the host, we don't
11082 * care about the messed up debug address registers. But if
11083 * we have some of them active, restore the old state.
11085 if (hw_breakpoint_active())
11086 hw_breakpoint_restore();
11088 vcpu->arch.last_vmentry_cpu = vcpu->cpu;
11089 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
11091 vcpu->mode = OUTSIDE_GUEST_MODE;
11095 * Sync xfd before calling handle_exit_irqoff() which may
11096 * rely on the fact that guest_fpu::xfd is up-to-date (e.g.
11097 * in #NM irqoff handler).
11099 if (vcpu->arch.xfd_no_write_intercept)
11100 fpu_sync_guest_vmexit_xfd_state();
11102 static_call(kvm_x86_handle_exit_irqoff)(vcpu);
11104 if (vcpu->arch.guest_fpu.xfd_err)
11105 wrmsrl(MSR_IA32_XFD_ERR, 0);
11108 * Consume any pending interrupts, including the possible source of
11109 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
11110 * An instruction is required after local_irq_enable() to fully unblock
11111 * interrupts on processors that implement an interrupt shadow, the
11112 * stat.exits increment will do nicely.
11114 kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
11115 local_irq_enable();
11116 ++vcpu->stat.exits;
11117 local_irq_disable();
11118 kvm_after_interrupt(vcpu);
11121 * Wait until after servicing IRQs to account guest time so that any
11122 * ticks that occurred while running the guest are properly accounted
11123 * to the guest. Waiting until IRQs are enabled degrades the accuracy
11124 * of accounting via context tracking, but the loss of accuracy is
11125 * acceptable for all known use cases.
11127 guest_timing_exit_irqoff();
11129 local_irq_enable();
11132 kvm_vcpu_srcu_read_lock(vcpu);
11135 * Profile KVM exit RIPs:
11137 if (unlikely(prof_on == KVM_PROFILING)) {
11138 unsigned long rip = kvm_rip_read(vcpu);
11139 profile_hit(KVM_PROFILING, (void *)rip);
11142 if (unlikely(vcpu->arch.tsc_always_catchup))
11143 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
11145 if (vcpu->arch.apic_attention)
11146 kvm_lapic_sync_from_vapic(vcpu);
11148 r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
11152 if (req_immediate_exit)
11153 kvm_make_request(KVM_REQ_EVENT, vcpu);
11154 static_call(kvm_x86_cancel_injection)(vcpu);
11155 if (unlikely(vcpu->arch.apic_attention))
11156 kvm_lapic_sync_from_vapic(vcpu);
11161 /* Called within kvm->srcu read side. */
11162 static inline int vcpu_block(struct kvm_vcpu *vcpu)
11166 if (!kvm_arch_vcpu_runnable(vcpu)) {
11168 * Switch to the software timer before halt-polling/blocking as
11169 * the guest's timer may be a break event for the vCPU, and the
11170 * hypervisor timer runs only when the CPU is in guest mode.
11171 * Switch before halt-polling so that KVM recognizes an expired
11172 * timer before blocking.
11174 hv_timer = kvm_lapic_hv_timer_in_use(vcpu);
11176 kvm_lapic_switch_to_sw_timer(vcpu);
11178 kvm_vcpu_srcu_read_unlock(vcpu);
11179 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
11180 kvm_vcpu_halt(vcpu);
11182 kvm_vcpu_block(vcpu);
11183 kvm_vcpu_srcu_read_lock(vcpu);
11186 kvm_lapic_switch_to_hv_timer(vcpu);
11189 * If the vCPU is not runnable, a signal or another host event
11190 * of some kind is pending; service it without changing the
11191 * vCPU's activity state.
11193 if (!kvm_arch_vcpu_runnable(vcpu))
11198 * Evaluate nested events before exiting the halted state. This allows
11199 * the halt state to be recorded properly in the VMCS12's activity
11200 * state field (AMD does not have a similar field and a VM-Exit always
11201 * causes a spurious wakeup from HLT).
11203 if (is_guest_mode(vcpu)) {
11204 if (kvm_check_nested_events(vcpu) < 0)
11208 if (kvm_apic_accept_events(vcpu) < 0)
11210 switch(vcpu->arch.mp_state) {
11211 case KVM_MP_STATE_HALTED:
11212 case KVM_MP_STATE_AP_RESET_HOLD:
11213 vcpu->arch.pv.pv_unhalted = false;
11214 vcpu->arch.mp_state =
11215 KVM_MP_STATE_RUNNABLE;
11217 case KVM_MP_STATE_RUNNABLE:
11218 vcpu->arch.apf.halted = false;
11220 case KVM_MP_STATE_INIT_RECEIVED:
11229 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
11231 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
11232 !vcpu->arch.apf.halted);
11235 /* Called within kvm->srcu read side. */
11236 static int vcpu_run(struct kvm_vcpu *vcpu)
11240 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
11241 vcpu->arch.l1tf_flush_l1d = true;
11245 * If another guest vCPU requests a PV TLB flush in the middle
11246 * of instruction emulation, the rest of the emulation could
11247 * use a stale page translation. Assume that any code after
11248 * this point can start executing an instruction.
11250 vcpu->arch.at_instruction_boundary = false;
11251 if (kvm_vcpu_running(vcpu)) {
11252 r = vcpu_enter_guest(vcpu);
11254 r = vcpu_block(vcpu);
11260 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
11261 if (kvm_xen_has_pending_events(vcpu))
11262 kvm_xen_inject_pending_events(vcpu);
11264 if (kvm_cpu_has_pending_timer(vcpu))
11265 kvm_inject_pending_timer_irqs(vcpu);
11267 if (dm_request_for_irq_injection(vcpu) &&
11268 kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
11270 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
11271 ++vcpu->stat.request_irq_exits;
11275 if (__xfer_to_guest_mode_work_pending()) {
11276 kvm_vcpu_srcu_read_unlock(vcpu);
11277 r = xfer_to_guest_mode_handle_work(vcpu);
11278 kvm_vcpu_srcu_read_lock(vcpu);
11287 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
11289 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
11292 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
11294 BUG_ON(!vcpu->arch.pio.count);
11296 return complete_emulated_io(vcpu);
11300 * Implements the following, as a state machine:
11303 * for each fragment
11304 * for each mmio piece in the fragment
11311 * for each fragment
11312 * for each mmio piece in the fragment
11317 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
11319 struct kvm_run *run = vcpu->run;
11320 struct kvm_mmio_fragment *frag;
11323 BUG_ON(!vcpu->mmio_needed);
11325 /* Complete previous fragment */
11326 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
11327 len = min(8u, frag->len);
11328 if (!vcpu->mmio_is_write)
11329 memcpy(frag->data, run->mmio.data, len);
11331 if (frag->len <= 8) {
11332 /* Switch to the next fragment. */
11334 vcpu->mmio_cur_fragment++;
11336 /* Go forward to the next mmio piece. */
11342 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
11343 vcpu->mmio_needed = 0;
11345 /* FIXME: return into emulator if single-stepping. */
11346 if (vcpu->mmio_is_write)
11348 vcpu->mmio_read_completed = 1;
11349 return complete_emulated_io(vcpu);
11352 run->exit_reason = KVM_EXIT_MMIO;
11353 run->mmio.phys_addr = frag->gpa;
11354 if (vcpu->mmio_is_write)
11355 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
11356 run->mmio.len = min(8u, frag->len);
11357 run->mmio.is_write = vcpu->mmio_is_write;
11358 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
11362 /* Swap (qemu) user FPU context for the guest FPU context. */
11363 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
11365 /* Exclude PKRU, it's restored separately immediately after VM-Exit. */
11366 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true);
11370 /* When vcpu_run ends, restore user space FPU context. */
11371 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
11373 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false);
11374 ++vcpu->stat.fpu_reload;
11378 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
11380 struct kvm_queued_exception *ex = &vcpu->arch.exception;
11381 struct kvm_run *kvm_run = vcpu->run;
11385 kvm_sigset_activate(vcpu);
11386 kvm_run->flags = 0;
11387 kvm_load_guest_fpu(vcpu);
11389 kvm_vcpu_srcu_read_lock(vcpu);
11390 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
11391 if (kvm_run->immediate_exit) {
11397 * Don't bother switching APIC timer emulation from the
11398 * hypervisor timer to the software timer, the only way for the
11399 * APIC timer to be active is if userspace stuffed vCPU state,
11400 * i.e. put the vCPU into a nonsensical state. Only an INIT
11401 * will transition the vCPU out of UNINITIALIZED (without more
11402 * state stuffing from userspace), which will reset the local
11403 * APIC and thus cancel the timer or drop the IRQ (if the timer
11404 * already expired).
11406 kvm_vcpu_srcu_read_unlock(vcpu);
11407 kvm_vcpu_block(vcpu);
11408 kvm_vcpu_srcu_read_lock(vcpu);
11410 if (kvm_apic_accept_events(vcpu) < 0) {
11415 if (signal_pending(current)) {
11417 kvm_run->exit_reason = KVM_EXIT_INTR;
11418 ++vcpu->stat.signal_exits;
11423 if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) ||
11424 (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) {
11429 if (kvm_run->kvm_dirty_regs) {
11430 r = sync_regs(vcpu);
11435 /* re-sync apic's tpr */
11436 if (!lapic_in_kernel(vcpu)) {
11437 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
11444 * If userspace set a pending exception and L2 is active, convert it to
11445 * a pending VM-Exit if L1 wants to intercept the exception.
11447 if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) &&
11448 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector,
11450 kvm_queue_exception_vmexit(vcpu, ex->vector,
11451 ex->has_error_code, ex->error_code,
11452 ex->has_payload, ex->payload);
11453 ex->injected = false;
11454 ex->pending = false;
11456 vcpu->arch.exception_from_userspace = false;
11458 if (unlikely(vcpu->arch.complete_userspace_io)) {
11459 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
11460 vcpu->arch.complete_userspace_io = NULL;
11465 WARN_ON_ONCE(vcpu->arch.pio.count);
11466 WARN_ON_ONCE(vcpu->mmio_needed);
11469 if (kvm_run->immediate_exit) {
11474 r = static_call(kvm_x86_vcpu_pre_run)(vcpu);
11478 r = vcpu_run(vcpu);
11481 kvm_put_guest_fpu(vcpu);
11482 if (kvm_run->kvm_valid_regs)
11484 post_kvm_run_save(vcpu);
11485 kvm_vcpu_srcu_read_unlock(vcpu);
11487 kvm_sigset_deactivate(vcpu);
11492 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11494 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
11496 * We are here if userspace calls get_regs() in the middle of
11497 * instruction emulation. Registers state needs to be copied
11498 * back from emulation context to vcpu. Userspace shouldn't do
11499 * that usually, but some bad designed PV devices (vmware
11500 * backdoor interface) need this to work
11502 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
11503 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11505 regs->rax = kvm_rax_read(vcpu);
11506 regs->rbx = kvm_rbx_read(vcpu);
11507 regs->rcx = kvm_rcx_read(vcpu);
11508 regs->rdx = kvm_rdx_read(vcpu);
11509 regs->rsi = kvm_rsi_read(vcpu);
11510 regs->rdi = kvm_rdi_read(vcpu);
11511 regs->rsp = kvm_rsp_read(vcpu);
11512 regs->rbp = kvm_rbp_read(vcpu);
11513 #ifdef CONFIG_X86_64
11514 regs->r8 = kvm_r8_read(vcpu);
11515 regs->r9 = kvm_r9_read(vcpu);
11516 regs->r10 = kvm_r10_read(vcpu);
11517 regs->r11 = kvm_r11_read(vcpu);
11518 regs->r12 = kvm_r12_read(vcpu);
11519 regs->r13 = kvm_r13_read(vcpu);
11520 regs->r14 = kvm_r14_read(vcpu);
11521 regs->r15 = kvm_r15_read(vcpu);
11524 regs->rip = kvm_rip_read(vcpu);
11525 regs->rflags = kvm_get_rflags(vcpu);
11528 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11530 if (vcpu->kvm->arch.has_protected_state &&
11531 vcpu->arch.guest_state_protected)
11535 __get_regs(vcpu, regs);
11540 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11542 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
11543 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11545 kvm_rax_write(vcpu, regs->rax);
11546 kvm_rbx_write(vcpu, regs->rbx);
11547 kvm_rcx_write(vcpu, regs->rcx);
11548 kvm_rdx_write(vcpu, regs->rdx);
11549 kvm_rsi_write(vcpu, regs->rsi);
11550 kvm_rdi_write(vcpu, regs->rdi);
11551 kvm_rsp_write(vcpu, regs->rsp);
11552 kvm_rbp_write(vcpu, regs->rbp);
11553 #ifdef CONFIG_X86_64
11554 kvm_r8_write(vcpu, regs->r8);
11555 kvm_r9_write(vcpu, regs->r9);
11556 kvm_r10_write(vcpu, regs->r10);
11557 kvm_r11_write(vcpu, regs->r11);
11558 kvm_r12_write(vcpu, regs->r12);
11559 kvm_r13_write(vcpu, regs->r13);
11560 kvm_r14_write(vcpu, regs->r14);
11561 kvm_r15_write(vcpu, regs->r15);
11564 kvm_rip_write(vcpu, regs->rip);
11565 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
11567 vcpu->arch.exception.pending = false;
11568 vcpu->arch.exception_vmexit.pending = false;
11570 kvm_make_request(KVM_REQ_EVENT, vcpu);
11573 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11575 if (vcpu->kvm->arch.has_protected_state &&
11576 vcpu->arch.guest_state_protected)
11580 __set_regs(vcpu, regs);
11585 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11587 struct desc_ptr dt;
11589 if (vcpu->arch.guest_state_protected)
11590 goto skip_protected_regs;
11592 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11593 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11594 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11595 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11596 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11597 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11599 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11600 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11602 static_call(kvm_x86_get_idt)(vcpu, &dt);
11603 sregs->idt.limit = dt.size;
11604 sregs->idt.base = dt.address;
11605 static_call(kvm_x86_get_gdt)(vcpu, &dt);
11606 sregs->gdt.limit = dt.size;
11607 sregs->gdt.base = dt.address;
11609 sregs->cr2 = vcpu->arch.cr2;
11610 sregs->cr3 = kvm_read_cr3(vcpu);
11612 skip_protected_regs:
11613 sregs->cr0 = kvm_read_cr0(vcpu);
11614 sregs->cr4 = kvm_read_cr4(vcpu);
11615 sregs->cr8 = kvm_get_cr8(vcpu);
11616 sregs->efer = vcpu->arch.efer;
11617 sregs->apic_base = kvm_get_apic_base(vcpu);
11620 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11622 __get_sregs_common(vcpu, sregs);
11624 if (vcpu->arch.guest_state_protected)
11627 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
11628 set_bit(vcpu->arch.interrupt.nr,
11629 (unsigned long *)sregs->interrupt_bitmap);
11632 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11636 __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
11638 if (vcpu->arch.guest_state_protected)
11641 if (is_pae_paging(vcpu)) {
11642 for (i = 0 ; i < 4 ; i++)
11643 sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
11644 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
11648 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
11649 struct kvm_sregs *sregs)
11651 if (vcpu->kvm->arch.has_protected_state &&
11652 vcpu->arch.guest_state_protected)
11656 __get_sregs(vcpu, sregs);
11661 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
11662 struct kvm_mp_state *mp_state)
11667 if (kvm_mpx_supported())
11668 kvm_load_guest_fpu(vcpu);
11670 r = kvm_apic_accept_events(vcpu);
11675 if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
11676 vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
11677 vcpu->arch.pv.pv_unhalted)
11678 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
11680 mp_state->mp_state = vcpu->arch.mp_state;
11683 if (kvm_mpx_supported())
11684 kvm_put_guest_fpu(vcpu);
11689 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
11690 struct kvm_mp_state *mp_state)
11696 switch (mp_state->mp_state) {
11697 case KVM_MP_STATE_UNINITIALIZED:
11698 case KVM_MP_STATE_HALTED:
11699 case KVM_MP_STATE_AP_RESET_HOLD:
11700 case KVM_MP_STATE_INIT_RECEIVED:
11701 case KVM_MP_STATE_SIPI_RECEIVED:
11702 if (!lapic_in_kernel(vcpu))
11706 case KVM_MP_STATE_RUNNABLE:
11714 * Pending INITs are reported using KVM_SET_VCPU_EVENTS, disallow
11715 * forcing the guest into INIT/SIPI if those events are supposed to be
11716 * blocked. KVM prioritizes SMI over INIT, so reject INIT/SIPI state
11717 * if an SMI is pending as well.
11719 if ((!kvm_apic_init_sipi_allowed(vcpu) || vcpu->arch.smi_pending) &&
11720 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
11721 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
11724 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
11725 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
11726 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
11728 vcpu->arch.mp_state = mp_state->mp_state;
11729 kvm_make_request(KVM_REQ_EVENT, vcpu);
11737 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
11738 int reason, bool has_error_code, u32 error_code)
11740 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
11743 init_emulate_ctxt(vcpu);
11745 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
11746 has_error_code, error_code);
11748 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
11749 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
11750 vcpu->run->internal.ndata = 0;
11754 kvm_rip_write(vcpu, ctxt->eip);
11755 kvm_set_rflags(vcpu, ctxt->eflags);
11758 EXPORT_SYMBOL_GPL(kvm_task_switch);
11760 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11762 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
11764 * When EFER.LME and CR0.PG are set, the processor is in
11765 * 64-bit mode (though maybe in a 32-bit code segment).
11766 * CR4.PAE and EFER.LMA must be set.
11768 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
11770 if (!kvm_vcpu_is_legal_cr3(vcpu, sregs->cr3))
11774 * Not in 64-bit mode: EFER.LMA is clear and the code
11775 * segment cannot be 64-bit.
11777 if (sregs->efer & EFER_LMA || sregs->cs.l)
11781 return kvm_is_valid_cr4(vcpu, sregs->cr4) &&
11782 kvm_is_valid_cr0(vcpu, sregs->cr0);
11785 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
11786 int *mmu_reset_needed, bool update_pdptrs)
11788 struct msr_data apic_base_msr;
11790 struct desc_ptr dt;
11792 if (!kvm_is_valid_sregs(vcpu, sregs))
11795 apic_base_msr.data = sregs->apic_base;
11796 apic_base_msr.host_initiated = true;
11797 if (kvm_set_apic_base(vcpu, &apic_base_msr))
11800 if (vcpu->arch.guest_state_protected)
11803 dt.size = sregs->idt.limit;
11804 dt.address = sregs->idt.base;
11805 static_call(kvm_x86_set_idt)(vcpu, &dt);
11806 dt.size = sregs->gdt.limit;
11807 dt.address = sregs->gdt.base;
11808 static_call(kvm_x86_set_gdt)(vcpu, &dt);
11810 vcpu->arch.cr2 = sregs->cr2;
11811 *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
11812 vcpu->arch.cr3 = sregs->cr3;
11813 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11814 static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3);
11816 kvm_set_cr8(vcpu, sregs->cr8);
11818 *mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
11819 static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
11821 *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
11822 static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
11824 *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
11825 static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
11827 if (update_pdptrs) {
11828 idx = srcu_read_lock(&vcpu->kvm->srcu);
11829 if (is_pae_paging(vcpu)) {
11830 load_pdptrs(vcpu, kvm_read_cr3(vcpu));
11831 *mmu_reset_needed = 1;
11833 srcu_read_unlock(&vcpu->kvm->srcu, idx);
11836 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11837 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11838 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11839 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11840 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11841 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11843 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11844 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11846 update_cr8_intercept(vcpu);
11848 /* Older userspace won't unhalt the vcpu on reset. */
11849 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
11850 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
11851 !is_protmode(vcpu))
11852 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11857 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11859 int pending_vec, max_bits;
11860 int mmu_reset_needed = 0;
11861 int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
11866 if (mmu_reset_needed) {
11867 kvm_mmu_reset_context(vcpu);
11868 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11871 max_bits = KVM_NR_INTERRUPTS;
11872 pending_vec = find_first_bit(
11873 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
11875 if (pending_vec < max_bits) {
11876 kvm_queue_interrupt(vcpu, pending_vec, false);
11877 pr_debug("Set back pending irq %d\n", pending_vec);
11878 kvm_make_request(KVM_REQ_EVENT, vcpu);
11883 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11885 int mmu_reset_needed = 0;
11886 bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
11887 bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
11888 !(sregs2->efer & EFER_LMA);
11891 if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
11894 if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
11897 ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
11898 &mmu_reset_needed, !valid_pdptrs);
11902 if (valid_pdptrs) {
11903 for (i = 0; i < 4 ; i++)
11904 kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
11906 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
11907 mmu_reset_needed = 1;
11908 vcpu->arch.pdptrs_from_userspace = true;
11910 if (mmu_reset_needed) {
11911 kvm_mmu_reset_context(vcpu);
11912 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11917 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
11918 struct kvm_sregs *sregs)
11922 if (vcpu->kvm->arch.has_protected_state &&
11923 vcpu->arch.guest_state_protected)
11927 ret = __set_sregs(vcpu, sregs);
11932 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm)
11935 struct kvm_vcpu *vcpu;
11941 down_write(&kvm->arch.apicv_update_lock);
11943 kvm_for_each_vcpu(i, vcpu, kvm) {
11944 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) {
11949 __kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set);
11950 up_write(&kvm->arch.apicv_update_lock);
11953 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
11954 struct kvm_guest_debug *dbg)
11956 unsigned long rflags;
11959 if (vcpu->arch.guest_state_protected)
11964 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
11966 if (kvm_is_exception_pending(vcpu))
11968 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
11969 kvm_queue_exception(vcpu, DB_VECTOR);
11971 kvm_queue_exception(vcpu, BP_VECTOR);
11975 * Read rflags as long as potentially injected trace flags are still
11978 rflags = kvm_get_rflags(vcpu);
11980 vcpu->guest_debug = dbg->control;
11981 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
11982 vcpu->guest_debug = 0;
11984 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
11985 for (i = 0; i < KVM_NR_DB_REGS; ++i)
11986 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
11987 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
11989 for (i = 0; i < KVM_NR_DB_REGS; i++)
11990 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
11992 kvm_update_dr7(vcpu);
11994 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
11995 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
11998 * Trigger an rflags update that will inject or remove the trace
12001 kvm_set_rflags(vcpu, rflags);
12003 static_call(kvm_x86_update_exception_bitmap)(vcpu);
12005 kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm);
12015 * Translate a guest virtual address to a guest physical address.
12017 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
12018 struct kvm_translation *tr)
12020 unsigned long vaddr = tr->linear_address;
12026 idx = srcu_read_lock(&vcpu->kvm->srcu);
12027 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
12028 srcu_read_unlock(&vcpu->kvm->srcu, idx);
12029 tr->physical_address = gpa;
12030 tr->valid = gpa != INVALID_GPA;
12038 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
12040 struct fxregs_state *fxsave;
12042 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
12043 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
12047 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
12048 memcpy(fpu->fpr, fxsave->st_space, 128);
12049 fpu->fcw = fxsave->cwd;
12050 fpu->fsw = fxsave->swd;
12051 fpu->ftwx = fxsave->twd;
12052 fpu->last_opcode = fxsave->fop;
12053 fpu->last_ip = fxsave->rip;
12054 fpu->last_dp = fxsave->rdp;
12055 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
12061 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
12063 struct fxregs_state *fxsave;
12065 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
12066 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
12070 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
12072 memcpy(fxsave->st_space, fpu->fpr, 128);
12073 fxsave->cwd = fpu->fcw;
12074 fxsave->swd = fpu->fsw;
12075 fxsave->twd = fpu->ftwx;
12076 fxsave->fop = fpu->last_opcode;
12077 fxsave->rip = fpu->last_ip;
12078 fxsave->rdp = fpu->last_dp;
12079 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
12085 static void store_regs(struct kvm_vcpu *vcpu)
12087 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
12089 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
12090 __get_regs(vcpu, &vcpu->run->s.regs.regs);
12092 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
12093 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
12095 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
12096 kvm_vcpu_ioctl_x86_get_vcpu_events(
12097 vcpu, &vcpu->run->s.regs.events);
12100 static int sync_regs(struct kvm_vcpu *vcpu)
12102 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
12103 __set_regs(vcpu, &vcpu->run->s.regs.regs);
12104 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
12107 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
12108 struct kvm_sregs sregs = vcpu->run->s.regs.sregs;
12110 if (__set_sregs(vcpu, &sregs))
12113 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
12116 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
12117 struct kvm_vcpu_events events = vcpu->run->s.regs.events;
12119 if (kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events))
12122 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
12128 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
12130 if (kvm_check_tsc_unstable() && kvm->created_vcpus)
12131 pr_warn_once("SMP vm created on host with unstable TSC; "
12132 "guest TSC will not be reliable\n");
12134 if (!kvm->arch.max_vcpu_ids)
12135 kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS;
12137 if (id >= kvm->arch.max_vcpu_ids)
12140 return static_call(kvm_x86_vcpu_precreate)(kvm);
12143 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
12148 vcpu->arch.last_vmentry_cpu = -1;
12149 vcpu->arch.regs_avail = ~0;
12150 vcpu->arch.regs_dirty = ~0;
12152 kvm_gpc_init(&vcpu->arch.pv_time, vcpu->kvm);
12154 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
12155 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
12157 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
12159 r = kvm_mmu_create(vcpu);
12163 r = kvm_create_lapic(vcpu);
12165 goto fail_mmu_destroy;
12169 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
12171 goto fail_free_lapic;
12172 vcpu->arch.pio_data = page_address(page);
12174 vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64),
12175 GFP_KERNEL_ACCOUNT);
12176 vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64),
12177 GFP_KERNEL_ACCOUNT);
12178 if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks)
12179 goto fail_free_mce_banks;
12180 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
12182 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
12183 GFP_KERNEL_ACCOUNT))
12184 goto fail_free_mce_banks;
12186 if (!alloc_emulate_ctxt(vcpu))
12187 goto free_wbinvd_dirty_mask;
12189 if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) {
12190 pr_err("failed to allocate vcpu's fpu\n");
12191 goto free_emulate_ctxt;
12194 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
12195 vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
12197 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
12199 kvm_async_pf_hash_reset(vcpu);
12201 vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap;
12202 kvm_pmu_init(vcpu);
12204 vcpu->arch.pending_external_vector = -1;
12205 vcpu->arch.preempted_in_kernel = false;
12207 #if IS_ENABLED(CONFIG_HYPERV)
12208 vcpu->arch.hv_root_tdp = INVALID_PAGE;
12211 r = static_call(kvm_x86_vcpu_create)(vcpu);
12213 goto free_guest_fpu;
12215 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
12216 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
12217 kvm_xen_init_vcpu(vcpu);
12218 kvm_vcpu_mtrr_init(vcpu);
12220 kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz);
12221 kvm_vcpu_reset(vcpu, false);
12222 kvm_init_mmu(vcpu);
12227 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
12229 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
12230 free_wbinvd_dirty_mask:
12231 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
12232 fail_free_mce_banks:
12233 kfree(vcpu->arch.mce_banks);
12234 kfree(vcpu->arch.mci_ctl2_banks);
12235 free_page((unsigned long)vcpu->arch.pio_data);
12237 kvm_free_lapic(vcpu);
12239 kvm_mmu_destroy(vcpu);
12243 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
12245 struct kvm *kvm = vcpu->kvm;
12247 if (mutex_lock_killable(&vcpu->mutex))
12250 kvm_synchronize_tsc(vcpu, NULL);
12253 /* poll control enabled by default */
12254 vcpu->arch.msr_kvm_poll_control = 1;
12256 mutex_unlock(&vcpu->mutex);
12258 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
12259 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
12260 KVMCLOCK_SYNC_PERIOD);
12263 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
12267 kvmclock_reset(vcpu);
12269 static_call(kvm_x86_vcpu_free)(vcpu);
12271 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
12272 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
12273 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
12275 kvm_xen_destroy_vcpu(vcpu);
12276 kvm_hv_vcpu_uninit(vcpu);
12277 kvm_pmu_destroy(vcpu);
12278 kfree(vcpu->arch.mce_banks);
12279 kfree(vcpu->arch.mci_ctl2_banks);
12280 kvm_free_lapic(vcpu);
12281 idx = srcu_read_lock(&vcpu->kvm->srcu);
12282 kvm_mmu_destroy(vcpu);
12283 srcu_read_unlock(&vcpu->kvm->srcu, idx);
12284 free_page((unsigned long)vcpu->arch.pio_data);
12285 kvfree(vcpu->arch.cpuid_entries);
12288 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
12290 struct kvm_cpuid_entry2 *cpuid_0x1;
12291 unsigned long old_cr0 = kvm_read_cr0(vcpu);
12292 unsigned long new_cr0;
12295 * Several of the "set" flows, e.g. ->set_cr0(), read other registers
12296 * to handle side effects. RESET emulation hits those flows and relies
12297 * on emulated/virtualized registers, including those that are loaded
12298 * into hardware, to be zeroed at vCPU creation. Use CRs as a sentinel
12299 * to detect improper or missing initialization.
12301 WARN_ON_ONCE(!init_event &&
12302 (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu)));
12305 * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's
12306 * possible to INIT the vCPU while L2 is active. Force the vCPU back
12307 * into L1 as EFER.SVME is cleared on INIT (along with all other EFER
12308 * bits), i.e. virtualization is disabled.
12310 if (is_guest_mode(vcpu))
12311 kvm_leave_nested(vcpu);
12313 kvm_lapic_reset(vcpu, init_event);
12315 WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu));
12316 vcpu->arch.hflags = 0;
12318 vcpu->arch.smi_pending = 0;
12319 vcpu->arch.smi_count = 0;
12320 atomic_set(&vcpu->arch.nmi_queued, 0);
12321 vcpu->arch.nmi_pending = 0;
12322 vcpu->arch.nmi_injected = false;
12323 kvm_clear_interrupt_queue(vcpu);
12324 kvm_clear_exception_queue(vcpu);
12326 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
12327 kvm_update_dr0123(vcpu);
12328 vcpu->arch.dr6 = DR6_ACTIVE_LOW;
12329 vcpu->arch.dr7 = DR7_FIXED_1;
12330 kvm_update_dr7(vcpu);
12332 vcpu->arch.cr2 = 0;
12334 kvm_make_request(KVM_REQ_EVENT, vcpu);
12335 vcpu->arch.apf.msr_en_val = 0;
12336 vcpu->arch.apf.msr_int_val = 0;
12337 vcpu->arch.st.msr_val = 0;
12339 kvmclock_reset(vcpu);
12341 kvm_clear_async_pf_completion_queue(vcpu);
12342 kvm_async_pf_hash_reset(vcpu);
12343 vcpu->arch.apf.halted = false;
12345 if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) {
12346 struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate;
12349 * All paths that lead to INIT are required to load the guest's
12350 * FPU state (because most paths are buried in KVM_RUN).
12353 kvm_put_guest_fpu(vcpu);
12355 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS);
12356 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR);
12359 kvm_load_guest_fpu(vcpu);
12363 vcpu->arch.smbase = 0x30000;
12365 vcpu->arch.msr_misc_features_enables = 0;
12366 vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL |
12367 MSR_IA32_MISC_ENABLE_BTS_UNAVAIL;
12369 __kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP);
12370 __kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true);
12373 /* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */
12374 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
12375 kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP);
12378 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
12379 * if no CPUID match is found. Note, it's impossible to get a match at
12380 * RESET since KVM emulates RESET before exposing the vCPU to userspace,
12381 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry
12382 * on RESET. But, go through the motions in case that's ever remedied.
12384 cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1);
12385 kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600);
12387 static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
12389 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
12390 kvm_rip_write(vcpu, 0xfff0);
12392 vcpu->arch.cr3 = 0;
12393 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
12396 * CR0.CD/NW are set on RESET, preserved on INIT. Note, some versions
12397 * of Intel's SDM list CD/NW as being set on INIT, but they contradict
12398 * (or qualify) that with a footnote stating that CD/NW are preserved.
12400 new_cr0 = X86_CR0_ET;
12402 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
12404 new_cr0 |= X86_CR0_NW | X86_CR0_CD;
12406 static_call(kvm_x86_set_cr0)(vcpu, new_cr0);
12407 static_call(kvm_x86_set_cr4)(vcpu, 0);
12408 static_call(kvm_x86_set_efer)(vcpu, 0);
12409 static_call(kvm_x86_update_exception_bitmap)(vcpu);
12412 * On the standard CR0/CR4/EFER modification paths, there are several
12413 * complex conditions determining whether the MMU has to be reset and/or
12414 * which PCIDs have to be flushed. However, CR0.WP and the paging-related
12415 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush
12416 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as
12417 * CR0 will be '0' prior to RESET). So we only need to check CR0.PG here.
12419 if (old_cr0 & X86_CR0_PG) {
12420 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12421 kvm_mmu_reset_context(vcpu);
12425 * Intel's SDM states that all TLB entries are flushed on INIT. AMD's
12426 * APM states the TLBs are untouched by INIT, but it also states that
12427 * the TLBs are flushed on "External initialization of the processor."
12428 * Flush the guest TLB regardless of vendor, there is no meaningful
12429 * benefit in relying on the guest to flush the TLB immediately after
12430 * INIT. A spurious TLB flush is benign and likely negligible from a
12431 * performance perspective.
12434 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12436 EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
12438 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
12440 struct kvm_segment cs;
12442 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
12443 cs.selector = vector << 8;
12444 cs.base = vector << 12;
12445 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
12446 kvm_rip_write(vcpu, 0);
12448 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
12450 int kvm_arch_hardware_enable(void)
12453 struct kvm_vcpu *vcpu;
12458 bool stable, backwards_tsc = false;
12460 kvm_user_return_msr_cpu_online();
12462 ret = kvm_x86_check_processor_compatibility();
12466 ret = static_call(kvm_x86_hardware_enable)();
12470 local_tsc = rdtsc();
12471 stable = !kvm_check_tsc_unstable();
12472 list_for_each_entry(kvm, &vm_list, vm_list) {
12473 kvm_for_each_vcpu(i, vcpu, kvm) {
12474 if (!stable && vcpu->cpu == smp_processor_id())
12475 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
12476 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
12477 backwards_tsc = true;
12478 if (vcpu->arch.last_host_tsc > max_tsc)
12479 max_tsc = vcpu->arch.last_host_tsc;
12485 * Sometimes, even reliable TSCs go backwards. This happens on
12486 * platforms that reset TSC during suspend or hibernate actions, but
12487 * maintain synchronization. We must compensate. Fortunately, we can
12488 * detect that condition here, which happens early in CPU bringup,
12489 * before any KVM threads can be running. Unfortunately, we can't
12490 * bring the TSCs fully up to date with real time, as we aren't yet far
12491 * enough into CPU bringup that we know how much real time has actually
12492 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
12493 * variables that haven't been updated yet.
12495 * So we simply find the maximum observed TSC above, then record the
12496 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
12497 * the adjustment will be applied. Note that we accumulate
12498 * adjustments, in case multiple suspend cycles happen before some VCPU
12499 * gets a chance to run again. In the event that no KVM threads get a
12500 * chance to run, we will miss the entire elapsed period, as we'll have
12501 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
12502 * loose cycle time. This isn't too big a deal, since the loss will be
12503 * uniform across all VCPUs (not to mention the scenario is extremely
12504 * unlikely). It is possible that a second hibernate recovery happens
12505 * much faster than a first, causing the observed TSC here to be
12506 * smaller; this would require additional padding adjustment, which is
12507 * why we set last_host_tsc to the local tsc observed here.
12509 * N.B. - this code below runs only on platforms with reliable TSC,
12510 * as that is the only way backwards_tsc is set above. Also note
12511 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
12512 * have the same delta_cyc adjustment applied if backwards_tsc
12513 * is detected. Note further, this adjustment is only done once,
12514 * as we reset last_host_tsc on all VCPUs to stop this from being
12515 * called multiple times (one for each physical CPU bringup).
12517 * Platforms with unreliable TSCs don't have to deal with this, they
12518 * will be compensated by the logic in vcpu_load, which sets the TSC to
12519 * catchup mode. This will catchup all VCPUs to real time, but cannot
12520 * guarantee that they stay in perfect synchronization.
12522 if (backwards_tsc) {
12523 u64 delta_cyc = max_tsc - local_tsc;
12524 list_for_each_entry(kvm, &vm_list, vm_list) {
12525 kvm->arch.backwards_tsc_observed = true;
12526 kvm_for_each_vcpu(i, vcpu, kvm) {
12527 vcpu->arch.tsc_offset_adjustment += delta_cyc;
12528 vcpu->arch.last_host_tsc = local_tsc;
12529 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
12533 * We have to disable TSC offset matching.. if you were
12534 * booting a VM while issuing an S4 host suspend....
12535 * you may have some problem. Solving this issue is
12536 * left as an exercise to the reader.
12538 kvm->arch.last_tsc_nsec = 0;
12539 kvm->arch.last_tsc_write = 0;
12546 void kvm_arch_hardware_disable(void)
12548 static_call(kvm_x86_hardware_disable)();
12549 drop_user_return_notifiers();
12552 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
12554 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
12557 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
12559 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
12562 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
12564 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
12566 vcpu->arch.l1tf_flush_l1d = true;
12567 if (pmu->version && unlikely(pmu->event_count)) {
12568 pmu->need_cleanup = true;
12569 kvm_make_request(KVM_REQ_PMU, vcpu);
12571 static_call(kvm_x86_sched_in)(vcpu, cpu);
12574 void kvm_arch_free_vm(struct kvm *kvm)
12576 #if IS_ENABLED(CONFIG_HYPERV)
12577 kfree(kvm->arch.hv_pa_pg);
12579 __kvm_arch_free_vm(kvm);
12583 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
12586 unsigned long flags;
12588 if (!kvm_is_vm_type_supported(type))
12591 kvm->arch.vm_type = type;
12592 kvm->arch.has_private_mem =
12593 (type == KVM_X86_SW_PROTECTED_VM);
12595 ret = kvm_page_track_init(kvm);
12599 kvm_mmu_init_vm(kvm);
12601 ret = static_call(kvm_x86_vm_init)(kvm);
12603 goto out_uninit_mmu;
12605 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
12606 atomic_set(&kvm->arch.noncoherent_dma_count, 0);
12608 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
12609 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
12610 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
12611 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
12612 &kvm->arch.irq_sources_bitmap);
12614 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
12615 mutex_init(&kvm->arch.apic_map_lock);
12616 seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock);
12617 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
12619 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
12620 pvclock_update_vm_gtod_copy(kvm);
12621 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
12623 kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz;
12624 kvm->arch.guest_can_read_msr_platform_info = true;
12625 kvm->arch.enable_pmu = enable_pmu;
12627 #if IS_ENABLED(CONFIG_HYPERV)
12628 spin_lock_init(&kvm->arch.hv_root_tdp_lock);
12629 kvm->arch.hv_root_tdp = INVALID_PAGE;
12632 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
12633 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
12635 kvm_apicv_init(kvm);
12636 kvm_hv_init_vm(kvm);
12637 kvm_xen_init_vm(kvm);
12642 kvm_mmu_uninit_vm(kvm);
12643 kvm_page_track_cleanup(kvm);
12648 int kvm_arch_post_init_vm(struct kvm *kvm)
12650 return kvm_mmu_post_init_vm(kvm);
12653 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
12656 kvm_mmu_unload(vcpu);
12660 static void kvm_unload_vcpu_mmus(struct kvm *kvm)
12663 struct kvm_vcpu *vcpu;
12665 kvm_for_each_vcpu(i, vcpu, kvm) {
12666 kvm_clear_async_pf_completion_queue(vcpu);
12667 kvm_unload_vcpu_mmu(vcpu);
12671 void kvm_arch_sync_events(struct kvm *kvm)
12673 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
12674 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
12679 * __x86_set_memory_region: Setup KVM internal memory slot
12681 * @kvm: the kvm pointer to the VM.
12682 * @id: the slot ID to setup.
12683 * @gpa: the GPA to install the slot (unused when @size == 0).
12684 * @size: the size of the slot. Set to zero to uninstall a slot.
12686 * This function helps to setup a KVM internal memory slot. Specify
12687 * @size > 0 to install a new slot, while @size == 0 to uninstall a
12688 * slot. The return code can be one of the following:
12690 * HVA: on success (uninstall will return a bogus HVA)
12693 * The caller should always use IS_ERR() to check the return value
12694 * before use. Note, the KVM internal memory slots are guaranteed to
12695 * remain valid and unchanged until the VM is destroyed, i.e., the
12696 * GPA->HVA translation will not change. However, the HVA is a user
12697 * address, i.e. its accessibility is not guaranteed, and must be
12698 * accessed via __copy_{to,from}_user().
12700 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
12704 unsigned long hva, old_npages;
12705 struct kvm_memslots *slots = kvm_memslots(kvm);
12706 struct kvm_memory_slot *slot;
12708 /* Called with kvm->slots_lock held. */
12709 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
12710 return ERR_PTR_USR(-EINVAL);
12712 slot = id_to_memslot(slots, id);
12714 if (slot && slot->npages)
12715 return ERR_PTR_USR(-EEXIST);
12718 * MAP_SHARED to prevent internal slot pages from being moved
12721 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
12722 MAP_SHARED | MAP_ANONYMOUS, 0);
12723 if (IS_ERR_VALUE(hva))
12724 return (void __user *)hva;
12726 if (!slot || !slot->npages)
12729 old_npages = slot->npages;
12730 hva = slot->userspace_addr;
12733 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
12734 struct kvm_userspace_memory_region2 m;
12736 m.slot = id | (i << 16);
12738 m.guest_phys_addr = gpa;
12739 m.userspace_addr = hva;
12740 m.memory_size = size;
12741 r = __kvm_set_memory_region(kvm, &m);
12743 return ERR_PTR_USR(r);
12747 vm_munmap(hva, old_npages * PAGE_SIZE);
12749 return (void __user *)hva;
12751 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
12753 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
12755 kvm_mmu_pre_destroy_vm(kvm);
12758 void kvm_arch_destroy_vm(struct kvm *kvm)
12760 if (current->mm == kvm->mm) {
12762 * Free memory regions allocated on behalf of userspace,
12763 * unless the memory map has changed due to process exit
12766 mutex_lock(&kvm->slots_lock);
12767 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
12769 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
12771 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
12772 mutex_unlock(&kvm->slots_lock);
12774 kvm_unload_vcpu_mmus(kvm);
12775 static_call_cond(kvm_x86_vm_destroy)(kvm);
12776 kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
12777 kvm_pic_destroy(kvm);
12778 kvm_ioapic_destroy(kvm);
12779 kvm_destroy_vcpus(kvm);
12780 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
12781 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
12782 kvm_mmu_uninit_vm(kvm);
12783 kvm_page_track_cleanup(kvm);
12784 kvm_xen_destroy_vm(kvm);
12785 kvm_hv_destroy_vm(kvm);
12788 static void memslot_rmap_free(struct kvm_memory_slot *slot)
12792 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12793 vfree(slot->arch.rmap[i]);
12794 slot->arch.rmap[i] = NULL;
12798 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
12802 memslot_rmap_free(slot);
12804 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12805 vfree(slot->arch.lpage_info[i - 1]);
12806 slot->arch.lpage_info[i - 1] = NULL;
12809 kvm_page_track_free_memslot(slot);
12812 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages)
12814 const int sz = sizeof(*slot->arch.rmap[0]);
12817 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12819 int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12821 if (slot->arch.rmap[i])
12824 slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
12825 if (!slot->arch.rmap[i]) {
12826 memslot_rmap_free(slot);
12834 static int kvm_alloc_memslot_metadata(struct kvm *kvm,
12835 struct kvm_memory_slot *slot)
12837 unsigned long npages = slot->npages;
12841 * Clear out the previous array pointers for the KVM_MR_MOVE case. The
12842 * old arrays will be freed by __kvm_set_memory_region() if installing
12843 * the new memslot is successful.
12845 memset(&slot->arch, 0, sizeof(slot->arch));
12847 if (kvm_memslots_have_rmaps(kvm)) {
12848 r = memslot_rmap_alloc(slot, npages);
12853 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12854 struct kvm_lpage_info *linfo;
12855 unsigned long ugfn;
12859 lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12861 linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
12865 slot->arch.lpage_info[i - 1] = linfo;
12867 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
12868 linfo[0].disallow_lpage = 1;
12869 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
12870 linfo[lpages - 1].disallow_lpage = 1;
12871 ugfn = slot->userspace_addr >> PAGE_SHIFT;
12873 * If the gfn and userspace address are not aligned wrt each
12874 * other, disable large page support for this slot.
12876 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
12879 for (j = 0; j < lpages; ++j)
12880 linfo[j].disallow_lpage = 1;
12884 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
12885 kvm_mmu_init_memslot_memory_attributes(kvm, slot);
12888 if (kvm_page_track_create_memslot(kvm, slot, npages))
12894 memslot_rmap_free(slot);
12896 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12897 vfree(slot->arch.lpage_info[i - 1]);
12898 slot->arch.lpage_info[i - 1] = NULL;
12903 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
12905 struct kvm_vcpu *vcpu;
12909 * memslots->generation has been incremented.
12910 * mmio generation may have reached its maximum value.
12912 kvm_mmu_invalidate_mmio_sptes(kvm, gen);
12914 /* Force re-initialization of steal_time cache */
12915 kvm_for_each_vcpu(i, vcpu, kvm)
12916 kvm_vcpu_kick(vcpu);
12919 int kvm_arch_prepare_memory_region(struct kvm *kvm,
12920 const struct kvm_memory_slot *old,
12921 struct kvm_memory_slot *new,
12922 enum kvm_mr_change change)
12925 * KVM doesn't support moving memslots when there are external page
12926 * trackers attached to the VM, i.e. if KVMGT is in use.
12928 if (change == KVM_MR_MOVE && kvm_page_track_has_external_user(kvm))
12931 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) {
12932 if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn())
12935 return kvm_alloc_memslot_metadata(kvm, new);
12938 if (change == KVM_MR_FLAGS_ONLY)
12939 memcpy(&new->arch, &old->arch, sizeof(old->arch));
12940 else if (WARN_ON_ONCE(change != KVM_MR_DELETE))
12947 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
12951 if (!kvm_x86_ops.cpu_dirty_log_size)
12954 nr_slots = atomic_read(&kvm->nr_memslots_dirty_logging);
12955 if ((enable && nr_slots == 1) || !nr_slots)
12956 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
12959 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
12960 struct kvm_memory_slot *old,
12961 const struct kvm_memory_slot *new,
12962 enum kvm_mr_change change)
12964 u32 old_flags = old ? old->flags : 0;
12965 u32 new_flags = new ? new->flags : 0;
12966 bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES;
12969 * Update CPU dirty logging if dirty logging is being toggled. This
12970 * applies to all operations.
12972 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)
12973 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
12976 * Nothing more to do for RO slots (which can't be dirtied and can't be
12977 * made writable) or CREATE/MOVE/DELETE of a slot.
12979 * For a memslot with dirty logging disabled:
12980 * CREATE: No dirty mappings will already exist.
12981 * MOVE/DELETE: The old mappings will already have been cleaned up by
12982 * kvm_arch_flush_shadow_memslot()
12984 * For a memslot with dirty logging enabled:
12985 * CREATE: No shadow pages exist, thus nothing to write-protect
12986 * and no dirty bits to clear.
12987 * MOVE/DELETE: The old mappings will already have been cleaned up by
12988 * kvm_arch_flush_shadow_memslot().
12990 if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY))
12994 * READONLY and non-flags changes were filtered out above, and the only
12995 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
12996 * logging isn't being toggled on or off.
12998 if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)))
13001 if (!log_dirty_pages) {
13003 * Dirty logging tracks sptes in 4k granularity, meaning that
13004 * large sptes have to be split. If live migration succeeds,
13005 * the guest in the source machine will be destroyed and large
13006 * sptes will be created in the destination. However, if the
13007 * guest continues to run in the source machine (for example if
13008 * live migration fails), small sptes will remain around and
13009 * cause bad performance.
13011 * Scan sptes if dirty logging has been stopped, dropping those
13012 * which can be collapsed into a single large-page spte. Later
13013 * page faults will create the large-page sptes.
13015 kvm_mmu_zap_collapsible_sptes(kvm, new);
13018 * Initially-all-set does not require write protecting any page,
13019 * because they're all assumed to be dirty.
13021 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
13024 if (READ_ONCE(eager_page_split))
13025 kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K);
13027 if (kvm_x86_ops.cpu_dirty_log_size) {
13028 kvm_mmu_slot_leaf_clear_dirty(kvm, new);
13029 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
13031 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
13035 * Unconditionally flush the TLBs after enabling dirty logging.
13036 * A flush is almost always going to be necessary (see below),
13037 * and unconditionally flushing allows the helpers to omit
13038 * the subtly complex checks when removing write access.
13040 * Do the flush outside of mmu_lock to reduce the amount of
13041 * time mmu_lock is held. Flushing after dropping mmu_lock is
13042 * safe as KVM only needs to guarantee the slot is fully
13043 * write-protected before returning to userspace, i.e. before
13044 * userspace can consume the dirty status.
13046 * Flushing outside of mmu_lock requires KVM to be careful when
13047 * making decisions based on writable status of an SPTE, e.g. a
13048 * !writable SPTE doesn't guarantee a CPU can't perform writes.
13050 * Specifically, KVM also write-protects guest page tables to
13051 * monitor changes when using shadow paging, and must guarantee
13052 * no CPUs can write to those page before mmu_lock is dropped.
13053 * Because CPUs may have stale TLB entries at this point, a
13054 * !writable SPTE doesn't guarantee CPUs can't perform writes.
13056 * KVM also allows making SPTES writable outside of mmu_lock,
13057 * e.g. to allow dirty logging without taking mmu_lock.
13059 * To handle these scenarios, KVM uses a separate software-only
13060 * bit (MMU-writable) to track if a SPTE is !writable due to
13061 * a guest page table being write-protected (KVM clears the
13062 * MMU-writable flag when write-protecting for shadow paging).
13064 * The use of MMU-writable is also the primary motivation for
13065 * the unconditional flush. Because KVM must guarantee that a
13066 * CPU doesn't contain stale, writable TLB entries for a
13067 * !MMU-writable SPTE, KVM must flush if it encounters any
13068 * MMU-writable SPTE regardless of whether the actual hardware
13069 * writable bit was set. I.e. KVM is almost guaranteed to need
13070 * to flush, while unconditionally flushing allows the "remove
13071 * write access" helpers to ignore MMU-writable entirely.
13073 * See is_writable_pte() for more details (the case involving
13074 * access-tracked SPTEs is particularly relevant).
13076 kvm_flush_remote_tlbs_memslot(kvm, new);
13080 void kvm_arch_commit_memory_region(struct kvm *kvm,
13081 struct kvm_memory_slot *old,
13082 const struct kvm_memory_slot *new,
13083 enum kvm_mr_change change)
13085 if (change == KVM_MR_DELETE)
13086 kvm_page_track_delete_slot(kvm, old);
13088 if (!kvm->arch.n_requested_mmu_pages &&
13089 (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) {
13090 unsigned long nr_mmu_pages;
13092 nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO;
13093 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
13094 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
13097 kvm_mmu_slot_apply_flags(kvm, old, new, change);
13099 /* Free the arrays associated with the old memslot. */
13100 if (change == KVM_MR_MOVE)
13101 kvm_arch_free_memslot(kvm, old);
13104 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
13106 return (is_guest_mode(vcpu) &&
13107 static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
13110 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
13112 if (!list_empty_careful(&vcpu->async_pf.done))
13115 if (kvm_apic_has_pending_init_or_sipi(vcpu) &&
13116 kvm_apic_init_sipi_allowed(vcpu))
13119 if (vcpu->arch.pv.pv_unhalted)
13122 if (kvm_is_exception_pending(vcpu))
13125 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
13126 (vcpu->arch.nmi_pending &&
13127 static_call(kvm_x86_nmi_allowed)(vcpu, false)))
13130 #ifdef CONFIG_KVM_SMM
13131 if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
13132 (vcpu->arch.smi_pending &&
13133 static_call(kvm_x86_smi_allowed)(vcpu, false)))
13137 if (kvm_test_request(KVM_REQ_PMI, vcpu))
13140 if (kvm_arch_interrupt_allowed(vcpu) &&
13141 (kvm_cpu_has_interrupt(vcpu) ||
13142 kvm_guest_apic_has_interrupt(vcpu)))
13145 if (kvm_hv_has_stimer_pending(vcpu))
13148 if (is_guest_mode(vcpu) &&
13149 kvm_x86_ops.nested_ops->has_events &&
13150 kvm_x86_ops.nested_ops->has_events(vcpu))
13153 if (kvm_xen_has_pending_events(vcpu))
13159 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
13161 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
13164 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
13166 return kvm_vcpu_apicv_active(vcpu) &&
13167 static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu);
13170 bool kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu)
13172 return vcpu->arch.preempted_in_kernel;
13175 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
13177 if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
13180 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
13181 #ifdef CONFIG_KVM_SMM
13182 kvm_test_request(KVM_REQ_SMI, vcpu) ||
13184 kvm_test_request(KVM_REQ_EVENT, vcpu))
13187 return kvm_arch_dy_has_pending_interrupt(vcpu);
13190 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
13192 if (vcpu->arch.guest_state_protected)
13195 return static_call(kvm_x86_get_cpl)(vcpu) == 0;
13198 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
13200 return kvm_rip_read(vcpu);
13203 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
13205 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
13208 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
13210 return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
13213 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
13215 /* Can't read the RIP when guest state is protected, just return 0 */
13216 if (vcpu->arch.guest_state_protected)
13219 if (is_64_bit_mode(vcpu))
13220 return kvm_rip_read(vcpu);
13221 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
13222 kvm_rip_read(vcpu));
13224 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
13226 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
13228 return kvm_get_linear_rip(vcpu) == linear_rip;
13230 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
13232 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
13234 unsigned long rflags;
13236 rflags = static_call(kvm_x86_get_rflags)(vcpu);
13237 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
13238 rflags &= ~X86_EFLAGS_TF;
13241 EXPORT_SYMBOL_GPL(kvm_get_rflags);
13243 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
13245 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
13246 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
13247 rflags |= X86_EFLAGS_TF;
13248 static_call(kvm_x86_set_rflags)(vcpu, rflags);
13251 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
13253 __kvm_set_rflags(vcpu, rflags);
13254 kvm_make_request(KVM_REQ_EVENT, vcpu);
13256 EXPORT_SYMBOL_GPL(kvm_set_rflags);
13258 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
13260 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
13262 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
13265 static inline u32 kvm_async_pf_next_probe(u32 key)
13267 return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
13270 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13272 u32 key = kvm_async_pf_hash_fn(gfn);
13274 while (vcpu->arch.apf.gfns[key] != ~0)
13275 key = kvm_async_pf_next_probe(key);
13277 vcpu->arch.apf.gfns[key] = gfn;
13280 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
13283 u32 key = kvm_async_pf_hash_fn(gfn);
13285 for (i = 0; i < ASYNC_PF_PER_VCPU &&
13286 (vcpu->arch.apf.gfns[key] != gfn &&
13287 vcpu->arch.apf.gfns[key] != ~0); i++)
13288 key = kvm_async_pf_next_probe(key);
13293 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13295 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
13298 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13302 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
13304 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
13308 vcpu->arch.apf.gfns[i] = ~0;
13310 j = kvm_async_pf_next_probe(j);
13311 if (vcpu->arch.apf.gfns[j] == ~0)
13313 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
13315 * k lies cyclically in ]i,j]
13317 * |....j i.k.| or |.k..j i...|
13319 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
13320 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
13325 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
13327 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
13329 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
13333 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
13335 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13337 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13338 &token, offset, sizeof(token));
13341 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
13343 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13346 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13347 &val, offset, sizeof(val)))
13353 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
13356 if (!kvm_pv_async_pf_enabled(vcpu))
13359 if (vcpu->arch.apf.send_user_only &&
13360 static_call(kvm_x86_get_cpl)(vcpu) == 0)
13363 if (is_guest_mode(vcpu)) {
13365 * L1 needs to opt into the special #PF vmexits that are
13366 * used to deliver async page faults.
13368 return vcpu->arch.apf.delivery_as_pf_vmexit;
13371 * Play it safe in case the guest temporarily disables paging.
13372 * The real mode IDT in particular is unlikely to have a #PF
13375 return is_paging(vcpu);
13379 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
13381 if (unlikely(!lapic_in_kernel(vcpu) ||
13382 kvm_event_needs_reinjection(vcpu) ||
13383 kvm_is_exception_pending(vcpu)))
13386 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
13390 * If interrupts are off we cannot even use an artificial
13393 return kvm_arch_interrupt_allowed(vcpu);
13396 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
13397 struct kvm_async_pf *work)
13399 struct x86_exception fault;
13401 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
13402 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
13404 if (kvm_can_deliver_async_pf(vcpu) &&
13405 !apf_put_user_notpresent(vcpu)) {
13406 fault.vector = PF_VECTOR;
13407 fault.error_code_valid = true;
13408 fault.error_code = 0;
13409 fault.nested_page_fault = false;
13410 fault.address = work->arch.token;
13411 fault.async_page_fault = true;
13412 kvm_inject_page_fault(vcpu, &fault);
13416 * It is not possible to deliver a paravirtualized asynchronous
13417 * page fault, but putting the guest in an artificial halt state
13418 * can be beneficial nevertheless: if an interrupt arrives, we
13419 * can deliver it timely and perhaps the guest will schedule
13420 * another process. When the instruction that triggered a page
13421 * fault is retried, hopefully the page will be ready in the host.
13423 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
13428 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
13429 struct kvm_async_pf *work)
13431 struct kvm_lapic_irq irq = {
13432 .delivery_mode = APIC_DM_FIXED,
13433 .vector = vcpu->arch.apf.vec
13436 if (work->wakeup_all)
13437 work->arch.token = ~0; /* broadcast wakeup */
13439 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
13440 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
13442 if ((work->wakeup_all || work->notpresent_injected) &&
13443 kvm_pv_async_pf_enabled(vcpu) &&
13444 !apf_put_user_ready(vcpu, work->arch.token)) {
13445 vcpu->arch.apf.pageready_pending = true;
13446 kvm_apic_set_irq(vcpu, &irq, NULL);
13449 vcpu->arch.apf.halted = false;
13450 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
13453 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
13455 kvm_make_request(KVM_REQ_APF_READY, vcpu);
13456 if (!vcpu->arch.apf.pageready_pending)
13457 kvm_vcpu_kick(vcpu);
13460 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
13462 if (!kvm_pv_async_pf_enabled(vcpu))
13465 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
13468 void kvm_arch_start_assignment(struct kvm *kvm)
13470 if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
13471 static_call_cond(kvm_x86_pi_start_assignment)(kvm);
13473 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
13475 void kvm_arch_end_assignment(struct kvm *kvm)
13477 atomic_dec(&kvm->arch.assigned_device_count);
13479 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
13481 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm)
13483 return raw_atomic_read(&kvm->arch.assigned_device_count);
13485 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
13487 static void kvm_noncoherent_dma_assignment_start_or_stop(struct kvm *kvm)
13490 * Non-coherent DMA assignment and de-assignment will affect
13491 * whether KVM honors guest MTRRs and cause changes in memtypes
13493 * So, pass %true unconditionally to indicate non-coherent DMA was,
13494 * or will be involved, and that zapping SPTEs might be necessary.
13496 if (__kvm_mmu_honors_guest_mtrrs(true))
13497 kvm_zap_gfn_range(kvm, gpa_to_gfn(0), gpa_to_gfn(~0ULL));
13500 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
13502 if (atomic_inc_return(&kvm->arch.noncoherent_dma_count) == 1)
13503 kvm_noncoherent_dma_assignment_start_or_stop(kvm);
13505 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
13507 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
13509 if (!atomic_dec_return(&kvm->arch.noncoherent_dma_count))
13510 kvm_noncoherent_dma_assignment_start_or_stop(kvm);
13512 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
13514 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
13516 return atomic_read(&kvm->arch.noncoherent_dma_count);
13518 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
13520 bool kvm_arch_has_irq_bypass(void)
13522 return enable_apicv && irq_remapping_cap(IRQ_POSTING_CAP);
13525 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
13526 struct irq_bypass_producer *prod)
13528 struct kvm_kernel_irqfd *irqfd =
13529 container_of(cons, struct kvm_kernel_irqfd, consumer);
13532 irqfd->producer = prod;
13533 kvm_arch_start_assignment(irqfd->kvm);
13534 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm,
13535 prod->irq, irqfd->gsi, 1);
13538 kvm_arch_end_assignment(irqfd->kvm);
13543 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
13544 struct irq_bypass_producer *prod)
13547 struct kvm_kernel_irqfd *irqfd =
13548 container_of(cons, struct kvm_kernel_irqfd, consumer);
13550 WARN_ON(irqfd->producer != prod);
13551 irqfd->producer = NULL;
13554 * When producer of consumer is unregistered, we change back to
13555 * remapped mode, so we can re-use the current implementation
13556 * when the irq is masked/disabled or the consumer side (KVM
13557 * int this case doesn't want to receive the interrupts.
13559 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
13561 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
13562 " fails: %d\n", irqfd->consumer.token, ret);
13564 kvm_arch_end_assignment(irqfd->kvm);
13567 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
13568 uint32_t guest_irq, bool set)
13570 return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set);
13573 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old,
13574 struct kvm_kernel_irq_routing_entry *new)
13576 if (new->type != KVM_IRQ_ROUTING_MSI)
13579 return !!memcmp(&old->msi, &new->msi, sizeof(new->msi));
13582 bool kvm_vector_hashing_enabled(void)
13584 return vector_hashing;
13587 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
13589 return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
13591 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
13594 int kvm_spec_ctrl_test_value(u64 value)
13597 * test that setting IA32_SPEC_CTRL to given value
13598 * is allowed by the host processor
13602 unsigned long flags;
13605 local_irq_save(flags);
13607 if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
13609 else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
13612 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
13614 local_irq_restore(flags);
13618 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
13620 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
13622 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
13623 struct x86_exception fault;
13624 u64 access = error_code &
13625 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
13627 if (!(error_code & PFERR_PRESENT_MASK) ||
13628 mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) {
13630 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
13631 * tables probably do not match the TLB. Just proceed
13632 * with the error code that the processor gave.
13634 fault.vector = PF_VECTOR;
13635 fault.error_code_valid = true;
13636 fault.error_code = error_code;
13637 fault.nested_page_fault = false;
13638 fault.address = gva;
13639 fault.async_page_fault = false;
13641 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
13643 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
13646 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
13647 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
13648 * indicates whether exit to userspace is needed.
13650 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
13651 struct x86_exception *e)
13653 if (r == X86EMUL_PROPAGATE_FAULT) {
13654 if (KVM_BUG_ON(!e, vcpu->kvm))
13657 kvm_inject_emulated_page_fault(vcpu, e);
13662 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
13663 * while handling a VMX instruction KVM could've handled the request
13664 * correctly by exiting to userspace and performing I/O but there
13665 * doesn't seem to be a real use-case behind such requests, just return
13666 * KVM_EXIT_INTERNAL_ERROR for now.
13668 kvm_prepare_emulation_failure_exit(vcpu);
13672 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
13674 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
13677 struct x86_exception e;
13684 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
13685 if (r != X86EMUL_CONTINUE)
13686 return kvm_handle_memory_failure(vcpu, r, &e);
13688 if (operand.pcid >> 12 != 0) {
13689 kvm_inject_gp(vcpu, 0);
13693 pcid_enabled = kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE);
13696 case INVPCID_TYPE_INDIV_ADDR:
13698 * LAM doesn't apply to addresses that are inputs to TLB
13701 if ((!pcid_enabled && (operand.pcid != 0)) ||
13702 is_noncanonical_address(operand.gla, vcpu)) {
13703 kvm_inject_gp(vcpu, 0);
13706 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
13707 return kvm_skip_emulated_instruction(vcpu);
13709 case INVPCID_TYPE_SINGLE_CTXT:
13710 if (!pcid_enabled && (operand.pcid != 0)) {
13711 kvm_inject_gp(vcpu, 0);
13715 kvm_invalidate_pcid(vcpu, operand.pcid);
13716 return kvm_skip_emulated_instruction(vcpu);
13718 case INVPCID_TYPE_ALL_NON_GLOBAL:
13720 * Currently, KVM doesn't mark global entries in the shadow
13721 * page tables, so a non-global flush just degenerates to a
13722 * global flush. If needed, we could optimize this later by
13723 * keeping track of global entries in shadow page tables.
13727 case INVPCID_TYPE_ALL_INCL_GLOBAL:
13728 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
13729 return kvm_skip_emulated_instruction(vcpu);
13732 kvm_inject_gp(vcpu, 0);
13736 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
13738 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
13740 struct kvm_run *run = vcpu->run;
13741 struct kvm_mmio_fragment *frag;
13744 BUG_ON(!vcpu->mmio_needed);
13746 /* Complete previous fragment */
13747 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
13748 len = min(8u, frag->len);
13749 if (!vcpu->mmio_is_write)
13750 memcpy(frag->data, run->mmio.data, len);
13752 if (frag->len <= 8) {
13753 /* Switch to the next fragment. */
13755 vcpu->mmio_cur_fragment++;
13757 /* Go forward to the next mmio piece. */
13763 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
13764 vcpu->mmio_needed = 0;
13766 // VMG change, at this point, we're always done
13767 // RIP has already been advanced
13771 // More MMIO is needed
13772 run->mmio.phys_addr = frag->gpa;
13773 run->mmio.len = min(8u, frag->len);
13774 run->mmio.is_write = vcpu->mmio_is_write;
13775 if (run->mmio.is_write)
13776 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
13777 run->exit_reason = KVM_EXIT_MMIO;
13779 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13784 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13788 struct kvm_mmio_fragment *frag;
13793 handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13794 if (handled == bytes)
13801 /*TODO: Check if need to increment number of frags */
13802 frag = vcpu->mmio_fragments;
13803 vcpu->mmio_nr_fragments = 1;
13808 vcpu->mmio_needed = 1;
13809 vcpu->mmio_cur_fragment = 0;
13811 vcpu->run->mmio.phys_addr = gpa;
13812 vcpu->run->mmio.len = min(8u, frag->len);
13813 vcpu->run->mmio.is_write = 1;
13814 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
13815 vcpu->run->exit_reason = KVM_EXIT_MMIO;
13817 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13821 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
13823 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13827 struct kvm_mmio_fragment *frag;
13832 handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13833 if (handled == bytes)
13840 /*TODO: Check if need to increment number of frags */
13841 frag = vcpu->mmio_fragments;
13842 vcpu->mmio_nr_fragments = 1;
13847 vcpu->mmio_needed = 1;
13848 vcpu->mmio_cur_fragment = 0;
13850 vcpu->run->mmio.phys_addr = gpa;
13851 vcpu->run->mmio.len = min(8u, frag->len);
13852 vcpu->run->mmio.is_write = 0;
13853 vcpu->run->exit_reason = KVM_EXIT_MMIO;
13855 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13859 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
13861 static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size)
13863 vcpu->arch.sev_pio_count -= count;
13864 vcpu->arch.sev_pio_data += count * size;
13867 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13868 unsigned int port);
13870 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
13872 int size = vcpu->arch.pio.size;
13873 int port = vcpu->arch.pio.port;
13875 vcpu->arch.pio.count = 0;
13876 if (vcpu->arch.sev_pio_count)
13877 return kvm_sev_es_outs(vcpu, size, port);
13881 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13885 unsigned int count =
13886 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13887 int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
13889 /* memcpy done already by emulator_pio_out. */
13890 advance_sev_es_emulated_pio(vcpu, count, size);
13894 /* Emulation done by the kernel. */
13895 if (!vcpu->arch.sev_pio_count)
13899 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
13903 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13904 unsigned int port);
13906 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
13908 unsigned count = vcpu->arch.pio.count;
13909 int size = vcpu->arch.pio.size;
13910 int port = vcpu->arch.pio.port;
13912 complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
13913 advance_sev_es_emulated_pio(vcpu, count, size);
13914 if (vcpu->arch.sev_pio_count)
13915 return kvm_sev_es_ins(vcpu, size, port);
13919 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13923 unsigned int count =
13924 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13925 if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count))
13928 /* Emulation done by the kernel. */
13929 advance_sev_es_emulated_pio(vcpu, count, size);
13930 if (!vcpu->arch.sev_pio_count)
13934 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
13938 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
13939 unsigned int port, void *data, unsigned int count,
13942 vcpu->arch.sev_pio_data = data;
13943 vcpu->arch.sev_pio_count = count;
13944 return in ? kvm_sev_es_ins(vcpu, size, port)
13945 : kvm_sev_es_outs(vcpu, size, port);
13947 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
13949 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
13950 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
13951 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
13952 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
13953 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
13954 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
13955 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
13956 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter);
13957 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
13958 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
13959 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
13960 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
13961 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
13962 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
13963 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
13964 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
13965 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
13966 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
13967 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
13968 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
13969 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
13970 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
13971 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath);
13972 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell);
13973 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq);
13974 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
13975 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
13976 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
13977 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);
13979 static int __init kvm_x86_init(void)
13981 kvm_mmu_x86_module_init();
13982 mitigate_smt_rsb &= boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible();
13985 module_init(kvm_x86_init);
13987 static void __exit kvm_x86_exit(void)
13989 WARN_ON_ONCE(static_branch_unlikely(&kvm_has_noapic_vcpu));
13991 module_exit(kvm_x86_exit);