2 * zsmalloc memory allocator
4 * Copyright (C) 2011 Nitin Gupta
5 * Copyright (C) 2012, 2013 Minchan Kim
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
15 * Following is how we use various fields and flags of underlying
16 * struct page(s) to form a zspage.
18 * Usage of struct page fields:
19 * page->private: points to zspage
20 * page->index: links together all component pages of a zspage
21 * For the huge page, this is always 0, so we use this field
23 * page->page_type: PG_zsmalloc, lower 16 bit locate the first object
24 * offset in a subpage of a zspage
26 * Usage of struct page flags:
27 * PG_private: identifies the first component page
28 * PG_owner_priv_1: identifies the huge component page
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
42 #include <linux/module.h>
43 #include <linux/kernel.h>
44 #include <linux/sched.h>
45 #include <linux/bitops.h>
46 #include <linux/errno.h>
47 #include <linux/highmem.h>
48 #include <linux/string.h>
49 #include <linux/slab.h>
50 #include <linux/pgtable.h>
51 #include <asm/tlbflush.h>
52 #include <linux/cpumask.h>
53 #include <linux/cpu.h>
54 #include <linux/vmalloc.h>
55 #include <linux/preempt.h>
56 #include <linux/spinlock.h>
57 #include <linux/shrinker.h>
58 #include <linux/types.h>
59 #include <linux/debugfs.h>
60 #include <linux/zsmalloc.h>
61 #include <linux/zpool.h>
62 #include <linux/migrate.h>
63 #include <linux/wait.h>
64 #include <linux/pagemap.h>
66 #include <linux/local_lock.h>
68 #define ZSPAGE_MAGIC 0x58
71 * This must be power of 2 and greater than or equal to sizeof(link_free).
72 * These two conditions ensure that any 'struct link_free' itself doesn't
73 * span more than 1 page which avoids complex case of mapping 2 pages simply
74 * to restore link_free pointer values.
78 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
81 * Object location (<PFN>, <obj_idx>) is encoded as
82 * a single (unsigned long) handle value.
84 * Note that object index <obj_idx> starts from 0.
86 * This is made more complicated by various memory models and PAE.
89 #ifndef MAX_POSSIBLE_PHYSMEM_BITS
90 #ifdef MAX_PHYSMEM_BITS
91 #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
94 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
97 #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
101 #define _PFN_BITS (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
104 * Head in allocated object should have OBJ_ALLOCATED_TAG
105 * to identify the object was allocated or not.
106 * It's okay to add the status bit in the least bit because
107 * header keeps handle which is 4byte-aligned address so we
108 * have room for two bit at least.
110 #define OBJ_ALLOCATED_TAG 1
112 #define OBJ_TAG_BITS 1
113 #define OBJ_TAG_MASK OBJ_ALLOCATED_TAG
115 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS)
116 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
119 #define FULLNESS_BITS 4
121 #define MAGIC_VAL_BITS 8
123 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
125 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(CONFIG_ZSMALLOC_CHAIN_SIZE, UL))
127 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
128 #define ZS_MIN_ALLOC_SIZE \
129 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
130 /* each chunk includes extra space to keep handle */
131 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE
134 * On systems with 4K page size, this gives 255 size classes! There is a
136 * - Large number of size classes is potentially wasteful as free page are
137 * spread across these classes
138 * - Small number of size classes causes large internal fragmentation
139 * - Probably its better to use specific size classes (empirically
140 * determined). NOTE: all those class sizes must be set as multiple of
141 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
143 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
146 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS)
147 #define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
148 ZS_SIZE_CLASS_DELTA) + 1)
151 * Pages are distinguished by the ratio of used memory (that is the ratio
152 * of ->inuse objects to all objects that page can store). For example,
153 * INUSE_RATIO_10 means that the ratio of used objects is > 0% and <= 10%.
155 * The number of fullness groups is not random. It allows us to keep
156 * difference between the least busy page in the group (minimum permitted
157 * number of ->inuse objects) and the most busy page (maximum permitted
158 * number of ->inuse objects) at a reasonable value.
160 enum fullness_group {
163 /* NOTE: 8 more fullness groups here */
164 ZS_INUSE_RATIO_99 = 10,
169 enum class_stat_type {
170 /* NOTE: stats for 12 fullness groups here: from inuse 0 to 100 */
171 ZS_OBJS_ALLOCATED = NR_FULLNESS_GROUPS,
176 struct zs_size_stat {
177 unsigned long objs[NR_CLASS_STAT_TYPES];
180 #ifdef CONFIG_ZSMALLOC_STAT
181 static struct dentry *zs_stat_root;
184 static size_t huge_class_size;
188 struct list_head fullness_list[NR_FULLNESS_GROUPS];
190 * Size of objects stored in this class. Must be multiple
195 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
196 int pages_per_zspage;
199 struct zs_size_stat stats;
203 * Placed within free objects to form a singly linked list.
204 * For every zspage, zspage->freeobj gives head of this list.
206 * This must be power of 2 and less than or equal to ZS_ALIGN
212 * It's valid for non-allocated object
216 * Handle of allocated object.
218 unsigned long handle;
225 struct size_class *size_class[ZS_SIZE_CLASSES];
226 struct kmem_cache *handle_cachep;
227 struct kmem_cache *zspage_cachep;
229 atomic_long_t pages_allocated;
231 struct zs_pool_stats stats;
233 /* Compact classes */
234 struct shrinker *shrinker;
236 #ifdef CONFIG_ZSMALLOC_STAT
237 struct dentry *stat_dentry;
239 #ifdef CONFIG_COMPACTION
240 struct work_struct free_work;
242 /* protect page/zspage migration */
243 rwlock_t migrate_lock;
244 atomic_t compaction_in_progress;
249 unsigned int huge:HUGE_BITS;
250 unsigned int fullness:FULLNESS_BITS;
251 unsigned int class:CLASS_BITS + 1;
252 unsigned int magic:MAGIC_VAL_BITS;
255 unsigned int freeobj;
256 struct page *first_page;
257 struct list_head list; /* fullness list */
258 struct zs_pool *pool;
262 struct mapping_area {
264 char *vm_buf; /* copy buffer for objects that span pages */
265 char *vm_addr; /* address of kmap_atomic()'ed pages */
266 enum zs_mapmode vm_mm; /* mapping mode */
269 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
270 static void SetZsHugePage(struct zspage *zspage)
275 static bool ZsHugePage(struct zspage *zspage)
280 static void migrate_lock_init(struct zspage *zspage);
281 static void migrate_read_lock(struct zspage *zspage);
282 static void migrate_read_unlock(struct zspage *zspage);
283 static void migrate_write_lock(struct zspage *zspage);
284 static void migrate_write_unlock(struct zspage *zspage);
286 #ifdef CONFIG_COMPACTION
287 static void kick_deferred_free(struct zs_pool *pool);
288 static void init_deferred_free(struct zs_pool *pool);
289 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
291 static void kick_deferred_free(struct zs_pool *pool) {}
292 static void init_deferred_free(struct zs_pool *pool) {}
293 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
296 static int create_cache(struct zs_pool *pool)
298 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
300 if (!pool->handle_cachep)
303 pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
305 if (!pool->zspage_cachep) {
306 kmem_cache_destroy(pool->handle_cachep);
307 pool->handle_cachep = NULL;
314 static void destroy_cache(struct zs_pool *pool)
316 kmem_cache_destroy(pool->handle_cachep);
317 kmem_cache_destroy(pool->zspage_cachep);
320 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
322 return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
323 gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
326 static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
328 kmem_cache_free(pool->handle_cachep, (void *)handle);
331 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
333 return kmem_cache_zalloc(pool->zspage_cachep,
334 flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
337 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
339 kmem_cache_free(pool->zspage_cachep, zspage);
342 /* class->lock(which owns the handle) synchronizes races */
343 static void record_obj(unsigned long handle, unsigned long obj)
345 *(unsigned long *)handle = obj;
352 static void *zs_zpool_create(const char *name, gfp_t gfp)
355 * Ignore global gfp flags: zs_malloc() may be invoked from
356 * different contexts and its caller must provide a valid
359 return zs_create_pool(name);
362 static void zs_zpool_destroy(void *pool)
364 zs_destroy_pool(pool);
367 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
368 unsigned long *handle)
370 *handle = zs_malloc(pool, size, gfp);
372 if (IS_ERR_VALUE(*handle))
373 return PTR_ERR((void *)*handle);
376 static void zs_zpool_free(void *pool, unsigned long handle)
378 zs_free(pool, handle);
381 static void *zs_zpool_map(void *pool, unsigned long handle,
382 enum zpool_mapmode mm)
384 enum zs_mapmode zs_mm;
399 return zs_map_object(pool, handle, zs_mm);
401 static void zs_zpool_unmap(void *pool, unsigned long handle)
403 zs_unmap_object(pool, handle);
406 static u64 zs_zpool_total_pages(void *pool)
408 return zs_get_total_pages(pool);
411 static struct zpool_driver zs_zpool_driver = {
413 .owner = THIS_MODULE,
414 .create = zs_zpool_create,
415 .destroy = zs_zpool_destroy,
416 .malloc_support_movable = true,
417 .malloc = zs_zpool_malloc,
418 .free = zs_zpool_free,
420 .unmap = zs_zpool_unmap,
421 .total_pages = zs_zpool_total_pages,
424 MODULE_ALIAS("zpool-zsmalloc");
425 #endif /* CONFIG_ZPOOL */
427 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
428 static DEFINE_PER_CPU(struct mapping_area, zs_map_area) = {
429 .lock = INIT_LOCAL_LOCK(lock),
432 static __maybe_unused int is_first_page(struct page *page)
434 return PagePrivate(page);
437 /* Protected by class->lock */
438 static inline int get_zspage_inuse(struct zspage *zspage)
440 return zspage->inuse;
444 static inline void mod_zspage_inuse(struct zspage *zspage, int val)
446 zspage->inuse += val;
449 static inline struct page *get_first_page(struct zspage *zspage)
451 struct page *first_page = zspage->first_page;
453 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
457 #define FIRST_OBJ_PAGE_TYPE_MASK 0xffff
459 static inline void reset_first_obj_offset(struct page *page)
461 VM_WARN_ON_ONCE(!PageZsmalloc(page));
462 page->page_type |= FIRST_OBJ_PAGE_TYPE_MASK;
465 static inline unsigned int get_first_obj_offset(struct page *page)
467 VM_WARN_ON_ONCE(!PageZsmalloc(page));
468 return page->page_type & FIRST_OBJ_PAGE_TYPE_MASK;
471 static inline void set_first_obj_offset(struct page *page, unsigned int offset)
473 /* With 16 bit available, we can support offsets into 64 KiB pages. */
474 BUILD_BUG_ON(PAGE_SIZE > SZ_64K);
475 VM_WARN_ON_ONCE(!PageZsmalloc(page));
476 VM_WARN_ON_ONCE(offset & ~FIRST_OBJ_PAGE_TYPE_MASK);
477 page->page_type &= ~FIRST_OBJ_PAGE_TYPE_MASK;
478 page->page_type |= offset & FIRST_OBJ_PAGE_TYPE_MASK;
481 static inline unsigned int get_freeobj(struct zspage *zspage)
483 return zspage->freeobj;
486 static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
488 zspage->freeobj = obj;
491 static struct size_class *zspage_class(struct zs_pool *pool,
492 struct zspage *zspage)
494 return pool->size_class[zspage->class];
498 * zsmalloc divides the pool into various size classes where each
499 * class maintains a list of zspages where each zspage is divided
500 * into equal sized chunks. Each allocation falls into one of these
501 * classes depending on its size. This function returns index of the
502 * size class which has chunk size big enough to hold the given size.
504 static int get_size_class_index(int size)
508 if (likely(size > ZS_MIN_ALLOC_SIZE))
509 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
510 ZS_SIZE_CLASS_DELTA);
512 return min_t(int, ZS_SIZE_CLASSES - 1, idx);
515 static inline void class_stat_add(struct size_class *class, int type,
518 class->stats.objs[type] += cnt;
521 static inline void class_stat_sub(struct size_class *class, int type,
524 class->stats.objs[type] -= cnt;
527 static inline unsigned long class_stat_read(struct size_class *class, int type)
529 return class->stats.objs[type];
532 #ifdef CONFIG_ZSMALLOC_STAT
534 static void __init zs_stat_init(void)
536 if (!debugfs_initialized()) {
537 pr_warn("debugfs not available, stat dir not created\n");
541 zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
544 static void __exit zs_stat_exit(void)
546 debugfs_remove_recursive(zs_stat_root);
549 static unsigned long zs_can_compact(struct size_class *class);
551 static int zs_stats_size_show(struct seq_file *s, void *v)
554 struct zs_pool *pool = s->private;
555 struct size_class *class;
557 unsigned long obj_allocated, obj_used, pages_used, freeable;
558 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
559 unsigned long total_freeable = 0;
560 unsigned long inuse_totals[NR_FULLNESS_GROUPS] = {0, };
562 seq_printf(s, " %5s %5s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %13s %10s %10s %16s %8s\n",
563 "class", "size", "10%", "20%", "30%", "40%",
564 "50%", "60%", "70%", "80%", "90%", "99%", "100%",
565 "obj_allocated", "obj_used", "pages_used",
566 "pages_per_zspage", "freeable");
568 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
570 class = pool->size_class[i];
572 if (class->index != i)
575 spin_lock(&class->lock);
577 seq_printf(s, " %5u %5u ", i, class->size);
578 for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++) {
579 inuse_totals[fg] += class_stat_read(class, fg);
580 seq_printf(s, "%9lu ", class_stat_read(class, fg));
583 obj_allocated = class_stat_read(class, ZS_OBJS_ALLOCATED);
584 obj_used = class_stat_read(class, ZS_OBJS_INUSE);
585 freeable = zs_can_compact(class);
586 spin_unlock(&class->lock);
588 objs_per_zspage = class->objs_per_zspage;
589 pages_used = obj_allocated / objs_per_zspage *
590 class->pages_per_zspage;
592 seq_printf(s, "%13lu %10lu %10lu %16d %8lu\n",
593 obj_allocated, obj_used, pages_used,
594 class->pages_per_zspage, freeable);
596 total_objs += obj_allocated;
597 total_used_objs += obj_used;
598 total_pages += pages_used;
599 total_freeable += freeable;
603 seq_printf(s, " %5s %5s ", "Total", "");
605 for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++)
606 seq_printf(s, "%9lu ", inuse_totals[fg]);
608 seq_printf(s, "%13lu %10lu %10lu %16s %8lu\n",
609 total_objs, total_used_objs, total_pages, "",
614 DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
616 static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
619 pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
623 pool->stat_dentry = debugfs_create_dir(name, zs_stat_root);
625 debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool,
626 &zs_stats_size_fops);
629 static void zs_pool_stat_destroy(struct zs_pool *pool)
631 debugfs_remove_recursive(pool->stat_dentry);
634 #else /* CONFIG_ZSMALLOC_STAT */
635 static void __init zs_stat_init(void)
639 static void __exit zs_stat_exit(void)
643 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
647 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
654 * For each size class, zspages are divided into different groups
655 * depending on their usage ratio. This function returns fullness
656 * status of the given page.
658 static int get_fullness_group(struct size_class *class, struct zspage *zspage)
660 int inuse, objs_per_zspage, ratio;
662 inuse = get_zspage_inuse(zspage);
663 objs_per_zspage = class->objs_per_zspage;
666 return ZS_INUSE_RATIO_0;
667 if (inuse == objs_per_zspage)
668 return ZS_INUSE_RATIO_100;
670 ratio = 100 * inuse / objs_per_zspage;
672 * Take integer division into consideration: a page with one inuse
673 * object out of 127 possible, will end up having 0 usage ratio,
674 * which is wrong as it belongs in ZS_INUSE_RATIO_10 fullness group.
676 return ratio / 10 + 1;
680 * Each size class maintains various freelists and zspages are assigned
681 * to one of these freelists based on the number of live objects they
682 * have. This functions inserts the given zspage into the freelist
683 * identified by <class, fullness_group>.
685 static void insert_zspage(struct size_class *class,
686 struct zspage *zspage,
689 class_stat_add(class, fullness, 1);
690 list_add(&zspage->list, &class->fullness_list[fullness]);
691 zspage->fullness = fullness;
695 * This function removes the given zspage from the freelist identified
696 * by <class, fullness_group>.
698 static void remove_zspage(struct size_class *class, struct zspage *zspage)
700 int fullness = zspage->fullness;
702 VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
704 list_del_init(&zspage->list);
705 class_stat_sub(class, fullness, 1);
709 * Each size class maintains zspages in different fullness groups depending
710 * on the number of live objects they contain. When allocating or freeing
711 * objects, the fullness status of the page can change, for instance, from
712 * INUSE_RATIO_80 to INUSE_RATIO_70 when freeing an object. This function
713 * checks if such a status change has occurred for the given page and
714 * accordingly moves the page from the list of the old fullness group to that
715 * of the new fullness group.
717 static int fix_fullness_group(struct size_class *class, struct zspage *zspage)
721 newfg = get_fullness_group(class, zspage);
722 if (newfg == zspage->fullness)
725 remove_zspage(class, zspage);
726 insert_zspage(class, zspage, newfg);
731 static struct zspage *get_zspage(struct page *page)
733 struct zspage *zspage = (struct zspage *)page_private(page);
735 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
739 static struct page *get_next_page(struct page *page)
741 struct zspage *zspage = get_zspage(page);
743 if (unlikely(ZsHugePage(zspage)))
746 return (struct page *)page->index;
750 * obj_to_location - get (<page>, <obj_idx>) from encoded object value
751 * @obj: the encoded object value
752 * @page: page object resides in zspage
753 * @obj_idx: object index
755 static void obj_to_location(unsigned long obj, struct page **page,
756 unsigned int *obj_idx)
758 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
759 *obj_idx = (obj & OBJ_INDEX_MASK);
762 static void obj_to_page(unsigned long obj, struct page **page)
764 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
768 * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
769 * @page: page object resides in zspage
770 * @obj_idx: object index
772 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
776 obj = page_to_pfn(page) << OBJ_INDEX_BITS;
777 obj |= obj_idx & OBJ_INDEX_MASK;
782 static unsigned long handle_to_obj(unsigned long handle)
784 return *(unsigned long *)handle;
787 static inline bool obj_allocated(struct page *page, void *obj,
788 unsigned long *phandle)
790 unsigned long handle;
791 struct zspage *zspage = get_zspage(page);
793 if (unlikely(ZsHugePage(zspage))) {
794 VM_BUG_ON_PAGE(!is_first_page(page), page);
795 handle = page->index;
797 handle = *(unsigned long *)obj;
799 if (!(handle & OBJ_ALLOCATED_TAG))
802 /* Clear all tags before returning the handle */
803 *phandle = handle & ~OBJ_TAG_MASK;
807 static void reset_page(struct page *page)
809 __ClearPageMovable(page);
810 ClearPagePrivate(page);
811 set_page_private(page, 0);
813 reset_first_obj_offset(page);
814 __ClearPageZsmalloc(page);
817 static int trylock_zspage(struct zspage *zspage)
819 struct page *cursor, *fail;
821 for (cursor = get_first_page(zspage); cursor != NULL; cursor =
822 get_next_page(cursor)) {
823 if (!trylock_page(cursor)) {
831 for (cursor = get_first_page(zspage); cursor != fail; cursor =
832 get_next_page(cursor))
838 static void __free_zspage(struct zs_pool *pool, struct size_class *class,
839 struct zspage *zspage)
841 struct page *page, *next;
843 assert_spin_locked(&class->lock);
845 VM_BUG_ON(get_zspage_inuse(zspage));
846 VM_BUG_ON(zspage->fullness != ZS_INUSE_RATIO_0);
848 next = page = get_first_page(zspage);
850 VM_BUG_ON_PAGE(!PageLocked(page), page);
851 next = get_next_page(page);
854 dec_zone_page_state(page, NR_ZSPAGES);
857 } while (page != NULL);
859 cache_free_zspage(pool, zspage);
861 class_stat_sub(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage);
862 atomic_long_sub(class->pages_per_zspage, &pool->pages_allocated);
865 static void free_zspage(struct zs_pool *pool, struct size_class *class,
866 struct zspage *zspage)
868 VM_BUG_ON(get_zspage_inuse(zspage));
869 VM_BUG_ON(list_empty(&zspage->list));
872 * Since zs_free couldn't be sleepable, this function cannot call
873 * lock_page. The page locks trylock_zspage got will be released
876 if (!trylock_zspage(zspage)) {
877 kick_deferred_free(pool);
881 remove_zspage(class, zspage);
882 __free_zspage(pool, class, zspage);
885 /* Initialize a newly allocated zspage */
886 static void init_zspage(struct size_class *class, struct zspage *zspage)
888 unsigned int freeobj = 1;
889 unsigned long off = 0;
890 struct page *page = get_first_page(zspage);
893 struct page *next_page;
894 struct link_free *link;
897 set_first_obj_offset(page, off);
899 vaddr = kmap_atomic(page);
900 link = (struct link_free *)vaddr + off / sizeof(*link);
902 while ((off += class->size) < PAGE_SIZE) {
903 link->next = freeobj++ << OBJ_TAG_BITS;
904 link += class->size / sizeof(*link);
908 * We now come to the last (full or partial) object on this
909 * page, which must point to the first object on the next
912 next_page = get_next_page(page);
914 link->next = freeobj++ << OBJ_TAG_BITS;
917 * Reset OBJ_TAG_BITS bit to last link to tell
918 * whether it's allocated object or not.
920 link->next = -1UL << OBJ_TAG_BITS;
922 kunmap_atomic(vaddr);
927 set_freeobj(zspage, 0);
930 static void create_page_chain(struct size_class *class, struct zspage *zspage,
931 struct page *pages[])
935 struct page *prev_page = NULL;
936 int nr_pages = class->pages_per_zspage;
939 * Allocate individual pages and link them together as:
940 * 1. all pages are linked together using page->index
941 * 2. each sub-page point to zspage using page->private
943 * we set PG_private to identify the first page (i.e. no other sub-page
944 * has this flag set).
946 for (i = 0; i < nr_pages; i++) {
948 set_page_private(page, (unsigned long)zspage);
951 zspage->first_page = page;
952 SetPagePrivate(page);
953 if (unlikely(class->objs_per_zspage == 1 &&
954 class->pages_per_zspage == 1))
955 SetZsHugePage(zspage);
957 prev_page->index = (unsigned long)page;
964 * Allocate a zspage for the given size class
966 static struct zspage *alloc_zspage(struct zs_pool *pool,
967 struct size_class *class,
971 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
972 struct zspage *zspage = cache_alloc_zspage(pool, gfp);
977 zspage->magic = ZSPAGE_MAGIC;
978 migrate_lock_init(zspage);
980 for (i = 0; i < class->pages_per_zspage; i++) {
983 page = alloc_page(gfp);
986 dec_zone_page_state(pages[i], NR_ZSPAGES);
987 __ClearPageZsmalloc(pages[i]);
988 __free_page(pages[i]);
990 cache_free_zspage(pool, zspage);
993 __SetPageZsmalloc(page);
995 inc_zone_page_state(page, NR_ZSPAGES);
999 create_page_chain(class, zspage, pages);
1000 init_zspage(class, zspage);
1001 zspage->pool = pool;
1002 zspage->class = class->index;
1007 static struct zspage *find_get_zspage(struct size_class *class)
1010 struct zspage *zspage;
1012 for (i = ZS_INUSE_RATIO_99; i >= ZS_INUSE_RATIO_0; i--) {
1013 zspage = list_first_entry_or_null(&class->fullness_list[i],
1014 struct zspage, list);
1022 static inline int __zs_cpu_up(struct mapping_area *area)
1025 * Make sure we don't leak memory if a cpu UP notification
1026 * and zs_init() race and both call zs_cpu_up() on the same cpu
1030 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1036 static inline void __zs_cpu_down(struct mapping_area *area)
1038 kfree(area->vm_buf);
1039 area->vm_buf = NULL;
1042 static void *__zs_map_object(struct mapping_area *area,
1043 struct page *pages[2], int off, int size)
1047 char *buf = area->vm_buf;
1049 /* disable page faults to match kmap_atomic() return conditions */
1050 pagefault_disable();
1052 /* no read fastpath */
1053 if (area->vm_mm == ZS_MM_WO)
1056 sizes[0] = PAGE_SIZE - off;
1057 sizes[1] = size - sizes[0];
1059 /* copy object to per-cpu buffer */
1060 addr = kmap_atomic(pages[0]);
1061 memcpy(buf, addr + off, sizes[0]);
1062 kunmap_atomic(addr);
1063 addr = kmap_atomic(pages[1]);
1064 memcpy(buf + sizes[0], addr, sizes[1]);
1065 kunmap_atomic(addr);
1067 return area->vm_buf;
1070 static void __zs_unmap_object(struct mapping_area *area,
1071 struct page *pages[2], int off, int size)
1077 /* no write fastpath */
1078 if (area->vm_mm == ZS_MM_RO)
1082 buf = buf + ZS_HANDLE_SIZE;
1083 size -= ZS_HANDLE_SIZE;
1084 off += ZS_HANDLE_SIZE;
1086 sizes[0] = PAGE_SIZE - off;
1087 sizes[1] = size - sizes[0];
1089 /* copy per-cpu buffer to object */
1090 addr = kmap_atomic(pages[0]);
1091 memcpy(addr + off, buf, sizes[0]);
1092 kunmap_atomic(addr);
1093 addr = kmap_atomic(pages[1]);
1094 memcpy(addr, buf + sizes[0], sizes[1]);
1095 kunmap_atomic(addr);
1098 /* enable page faults to match kunmap_atomic() return conditions */
1102 static int zs_cpu_prepare(unsigned int cpu)
1104 struct mapping_area *area;
1106 area = &per_cpu(zs_map_area, cpu);
1107 return __zs_cpu_up(area);
1110 static int zs_cpu_dead(unsigned int cpu)
1112 struct mapping_area *area;
1114 area = &per_cpu(zs_map_area, cpu);
1115 __zs_cpu_down(area);
1119 static bool can_merge(struct size_class *prev, int pages_per_zspage,
1120 int objs_per_zspage)
1122 if (prev->pages_per_zspage == pages_per_zspage &&
1123 prev->objs_per_zspage == objs_per_zspage)
1129 static bool zspage_full(struct size_class *class, struct zspage *zspage)
1131 return get_zspage_inuse(zspage) == class->objs_per_zspage;
1134 static bool zspage_empty(struct zspage *zspage)
1136 return get_zspage_inuse(zspage) == 0;
1140 * zs_lookup_class_index() - Returns index of the zsmalloc &size_class
1141 * that hold objects of the provided size.
1142 * @pool: zsmalloc pool to use
1143 * @size: object size
1145 * Context: Any context.
1147 * Return: the index of the zsmalloc &size_class that hold objects of the
1150 unsigned int zs_lookup_class_index(struct zs_pool *pool, unsigned int size)
1152 struct size_class *class;
1154 class = pool->size_class[get_size_class_index(size)];
1156 return class->index;
1158 EXPORT_SYMBOL_GPL(zs_lookup_class_index);
1160 unsigned long zs_get_total_pages(struct zs_pool *pool)
1162 return atomic_long_read(&pool->pages_allocated);
1164 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1167 * zs_map_object - get address of allocated object from handle.
1168 * @pool: pool from which the object was allocated
1169 * @handle: handle returned from zs_malloc
1170 * @mm: mapping mode to use
1172 * Before using an object allocated from zs_malloc, it must be mapped using
1173 * this function. When done with the object, it must be unmapped using
1176 * Only one object can be mapped per cpu at a time. There is no protection
1177 * against nested mappings.
1179 * This function returns with preemption and page faults disabled.
1181 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1184 struct zspage *zspage;
1186 unsigned long obj, off;
1187 unsigned int obj_idx;
1189 struct size_class *class;
1190 struct mapping_area *area;
1191 struct page *pages[2];
1195 * Because we use per-cpu mapping areas shared among the
1196 * pools/users, we can't allow mapping in interrupt context
1197 * because it can corrupt another users mappings.
1199 BUG_ON(in_interrupt());
1201 /* It guarantees it can get zspage from handle safely */
1202 read_lock(&pool->migrate_lock);
1203 obj = handle_to_obj(handle);
1204 obj_to_location(obj, &page, &obj_idx);
1205 zspage = get_zspage(page);
1208 * migration cannot move any zpages in this zspage. Here, class->lock
1209 * is too heavy since callers would take some time until they calls
1210 * zs_unmap_object API so delegate the locking from class to zspage
1211 * which is smaller granularity.
1213 migrate_read_lock(zspage);
1214 read_unlock(&pool->migrate_lock);
1216 class = zspage_class(pool, zspage);
1217 off = offset_in_page(class->size * obj_idx);
1219 local_lock(&zs_map_area.lock);
1220 area = this_cpu_ptr(&zs_map_area);
1222 if (off + class->size <= PAGE_SIZE) {
1223 /* this object is contained entirely within a page */
1224 area->vm_addr = kmap_atomic(page);
1225 ret = area->vm_addr + off;
1229 /* this object spans two pages */
1231 pages[1] = get_next_page(page);
1234 ret = __zs_map_object(area, pages, off, class->size);
1236 if (likely(!ZsHugePage(zspage)))
1237 ret += ZS_HANDLE_SIZE;
1241 EXPORT_SYMBOL_GPL(zs_map_object);
1243 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1245 struct zspage *zspage;
1247 unsigned long obj, off;
1248 unsigned int obj_idx;
1250 struct size_class *class;
1251 struct mapping_area *area;
1253 obj = handle_to_obj(handle);
1254 obj_to_location(obj, &page, &obj_idx);
1255 zspage = get_zspage(page);
1256 class = zspage_class(pool, zspage);
1257 off = offset_in_page(class->size * obj_idx);
1259 area = this_cpu_ptr(&zs_map_area);
1260 if (off + class->size <= PAGE_SIZE)
1261 kunmap_atomic(area->vm_addr);
1263 struct page *pages[2];
1266 pages[1] = get_next_page(page);
1269 __zs_unmap_object(area, pages, off, class->size);
1271 local_unlock(&zs_map_area.lock);
1273 migrate_read_unlock(zspage);
1275 EXPORT_SYMBOL_GPL(zs_unmap_object);
1278 * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1279 * zsmalloc &size_class.
1280 * @pool: zsmalloc pool to use
1282 * The function returns the size of the first huge class - any object of equal
1283 * or bigger size will be stored in zspage consisting of a single physical
1286 * Context: Any context.
1288 * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1290 size_t zs_huge_class_size(struct zs_pool *pool)
1292 return huge_class_size;
1294 EXPORT_SYMBOL_GPL(zs_huge_class_size);
1296 static unsigned long obj_malloc(struct zs_pool *pool,
1297 struct zspage *zspage, unsigned long handle)
1299 int i, nr_page, offset;
1301 struct link_free *link;
1302 struct size_class *class;
1304 struct page *m_page;
1305 unsigned long m_offset;
1308 class = pool->size_class[zspage->class];
1309 obj = get_freeobj(zspage);
1311 offset = obj * class->size;
1312 nr_page = offset >> PAGE_SHIFT;
1313 m_offset = offset_in_page(offset);
1314 m_page = get_first_page(zspage);
1316 for (i = 0; i < nr_page; i++)
1317 m_page = get_next_page(m_page);
1319 vaddr = kmap_atomic(m_page);
1320 link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1321 set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1322 if (likely(!ZsHugePage(zspage)))
1323 /* record handle in the header of allocated chunk */
1324 link->handle = handle | OBJ_ALLOCATED_TAG;
1326 /* record handle to page->index */
1327 zspage->first_page->index = handle | OBJ_ALLOCATED_TAG;
1329 kunmap_atomic(vaddr);
1330 mod_zspage_inuse(zspage, 1);
1332 obj = location_to_obj(m_page, obj);
1333 record_obj(handle, obj);
1340 * zs_malloc - Allocate block of given size from pool.
1341 * @pool: pool to allocate from
1342 * @size: size of block to allocate
1343 * @gfp: gfp flags when allocating object
1345 * On success, handle to the allocated object is returned,
1346 * otherwise an ERR_PTR().
1347 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1349 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1351 unsigned long handle;
1352 struct size_class *class;
1354 struct zspage *zspage;
1356 if (unlikely(!size))
1357 return (unsigned long)ERR_PTR(-EINVAL);
1359 if (unlikely(size > ZS_MAX_ALLOC_SIZE))
1360 return (unsigned long)ERR_PTR(-ENOSPC);
1362 handle = cache_alloc_handle(pool, gfp);
1364 return (unsigned long)ERR_PTR(-ENOMEM);
1366 /* extra space in chunk to keep the handle */
1367 size += ZS_HANDLE_SIZE;
1368 class = pool->size_class[get_size_class_index(size)];
1370 /* class->lock effectively protects the zpage migration */
1371 spin_lock(&class->lock);
1372 zspage = find_get_zspage(class);
1373 if (likely(zspage)) {
1374 obj_malloc(pool, zspage, handle);
1375 /* Now move the zspage to another fullness group, if required */
1376 fix_fullness_group(class, zspage);
1377 class_stat_add(class, ZS_OBJS_INUSE, 1);
1382 spin_unlock(&class->lock);
1384 zspage = alloc_zspage(pool, class, gfp);
1386 cache_free_handle(pool, handle);
1387 return (unsigned long)ERR_PTR(-ENOMEM);
1390 spin_lock(&class->lock);
1391 obj_malloc(pool, zspage, handle);
1392 newfg = get_fullness_group(class, zspage);
1393 insert_zspage(class, zspage, newfg);
1394 atomic_long_add(class->pages_per_zspage, &pool->pages_allocated);
1395 class_stat_add(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage);
1396 class_stat_add(class, ZS_OBJS_INUSE, 1);
1398 /* We completely set up zspage so mark them as movable */
1399 SetZsPageMovable(pool, zspage);
1401 spin_unlock(&class->lock);
1405 EXPORT_SYMBOL_GPL(zs_malloc);
1407 static void obj_free(int class_size, unsigned long obj)
1409 struct link_free *link;
1410 struct zspage *zspage;
1411 struct page *f_page;
1412 unsigned long f_offset;
1413 unsigned int f_objidx;
1416 obj_to_location(obj, &f_page, &f_objidx);
1417 f_offset = offset_in_page(class_size * f_objidx);
1418 zspage = get_zspage(f_page);
1420 vaddr = kmap_atomic(f_page);
1421 link = (struct link_free *)(vaddr + f_offset);
1423 /* Insert this object in containing zspage's freelist */
1424 if (likely(!ZsHugePage(zspage)))
1425 link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1428 set_freeobj(zspage, f_objidx);
1430 kunmap_atomic(vaddr);
1431 mod_zspage_inuse(zspage, -1);
1434 void zs_free(struct zs_pool *pool, unsigned long handle)
1436 struct zspage *zspage;
1437 struct page *f_page;
1439 struct size_class *class;
1442 if (IS_ERR_OR_NULL((void *)handle))
1446 * The pool->migrate_lock protects the race with zpage's migration
1447 * so it's safe to get the page from handle.
1449 read_lock(&pool->migrate_lock);
1450 obj = handle_to_obj(handle);
1451 obj_to_page(obj, &f_page);
1452 zspage = get_zspage(f_page);
1453 class = zspage_class(pool, zspage);
1454 spin_lock(&class->lock);
1455 read_unlock(&pool->migrate_lock);
1457 class_stat_sub(class, ZS_OBJS_INUSE, 1);
1458 obj_free(class->size, obj);
1460 fullness = fix_fullness_group(class, zspage);
1461 if (fullness == ZS_INUSE_RATIO_0)
1462 free_zspage(pool, class, zspage);
1464 spin_unlock(&class->lock);
1465 cache_free_handle(pool, handle);
1467 EXPORT_SYMBOL_GPL(zs_free);
1469 static void zs_object_copy(struct size_class *class, unsigned long dst,
1472 struct page *s_page, *d_page;
1473 unsigned int s_objidx, d_objidx;
1474 unsigned long s_off, d_off;
1475 void *s_addr, *d_addr;
1476 int s_size, d_size, size;
1479 s_size = d_size = class->size;
1481 obj_to_location(src, &s_page, &s_objidx);
1482 obj_to_location(dst, &d_page, &d_objidx);
1484 s_off = offset_in_page(class->size * s_objidx);
1485 d_off = offset_in_page(class->size * d_objidx);
1487 if (s_off + class->size > PAGE_SIZE)
1488 s_size = PAGE_SIZE - s_off;
1490 if (d_off + class->size > PAGE_SIZE)
1491 d_size = PAGE_SIZE - d_off;
1493 s_addr = kmap_atomic(s_page);
1494 d_addr = kmap_atomic(d_page);
1497 size = min(s_size, d_size);
1498 memcpy(d_addr + d_off, s_addr + s_off, size);
1501 if (written == class->size)
1510 * Calling kunmap_atomic(d_addr) is necessary. kunmap_atomic()
1511 * calls must occurs in reverse order of calls to kmap_atomic().
1512 * So, to call kunmap_atomic(s_addr) we should first call
1513 * kunmap_atomic(d_addr). For more details see
1514 * Documentation/mm/highmem.rst.
1516 if (s_off >= PAGE_SIZE) {
1517 kunmap_atomic(d_addr);
1518 kunmap_atomic(s_addr);
1519 s_page = get_next_page(s_page);
1520 s_addr = kmap_atomic(s_page);
1521 d_addr = kmap_atomic(d_page);
1522 s_size = class->size - written;
1526 if (d_off >= PAGE_SIZE) {
1527 kunmap_atomic(d_addr);
1528 d_page = get_next_page(d_page);
1529 d_addr = kmap_atomic(d_page);
1530 d_size = class->size - written;
1535 kunmap_atomic(d_addr);
1536 kunmap_atomic(s_addr);
1540 * Find alloced object in zspage from index object and
1543 static unsigned long find_alloced_obj(struct size_class *class,
1544 struct page *page, int *obj_idx)
1546 unsigned int offset;
1547 int index = *obj_idx;
1548 unsigned long handle = 0;
1549 void *addr = kmap_atomic(page);
1551 offset = get_first_obj_offset(page);
1552 offset += class->size * index;
1554 while (offset < PAGE_SIZE) {
1555 if (obj_allocated(page, addr + offset, &handle))
1558 offset += class->size;
1562 kunmap_atomic(addr);
1569 static void migrate_zspage(struct zs_pool *pool, struct zspage *src_zspage,
1570 struct zspage *dst_zspage)
1572 unsigned long used_obj, free_obj;
1573 unsigned long handle;
1575 struct page *s_page = get_first_page(src_zspage);
1576 struct size_class *class = pool->size_class[src_zspage->class];
1579 handle = find_alloced_obj(class, s_page, &obj_idx);
1581 s_page = get_next_page(s_page);
1588 used_obj = handle_to_obj(handle);
1589 free_obj = obj_malloc(pool, dst_zspage, handle);
1590 zs_object_copy(class, free_obj, used_obj);
1592 obj_free(class->size, used_obj);
1594 /* Stop if there is no more space */
1595 if (zspage_full(class, dst_zspage))
1598 /* Stop if there are no more objects to migrate */
1599 if (zspage_empty(src_zspage))
1604 static struct zspage *isolate_src_zspage(struct size_class *class)
1606 struct zspage *zspage;
1609 for (fg = ZS_INUSE_RATIO_10; fg <= ZS_INUSE_RATIO_99; fg++) {
1610 zspage = list_first_entry_or_null(&class->fullness_list[fg],
1611 struct zspage, list);
1613 remove_zspage(class, zspage);
1621 static struct zspage *isolate_dst_zspage(struct size_class *class)
1623 struct zspage *zspage;
1626 for (fg = ZS_INUSE_RATIO_99; fg >= ZS_INUSE_RATIO_10; fg--) {
1627 zspage = list_first_entry_or_null(&class->fullness_list[fg],
1628 struct zspage, list);
1630 remove_zspage(class, zspage);
1639 * putback_zspage - add @zspage into right class's fullness list
1640 * @class: destination class
1641 * @zspage: target page
1643 * Return @zspage's fullness status
1645 static int putback_zspage(struct size_class *class, struct zspage *zspage)
1649 fullness = get_fullness_group(class, zspage);
1650 insert_zspage(class, zspage, fullness);
1655 #ifdef CONFIG_COMPACTION
1657 * To prevent zspage destroy during migration, zspage freeing should
1658 * hold locks of all pages in the zspage.
1660 static void lock_zspage(struct zspage *zspage)
1662 struct page *curr_page, *page;
1665 * Pages we haven't locked yet can be migrated off the list while we're
1666 * trying to lock them, so we need to be careful and only attempt to
1667 * lock each page under migrate_read_lock(). Otherwise, the page we lock
1668 * may no longer belong to the zspage. This means that we may wait for
1669 * the wrong page to unlock, so we must take a reference to the page
1670 * prior to waiting for it to unlock outside migrate_read_lock().
1673 migrate_read_lock(zspage);
1674 page = get_first_page(zspage);
1675 if (trylock_page(page))
1678 migrate_read_unlock(zspage);
1679 wait_on_page_locked(page);
1684 while ((page = get_next_page(curr_page))) {
1685 if (trylock_page(page)) {
1689 migrate_read_unlock(zspage);
1690 wait_on_page_locked(page);
1692 migrate_read_lock(zspage);
1695 migrate_read_unlock(zspage);
1697 #endif /* CONFIG_COMPACTION */
1699 static void migrate_lock_init(struct zspage *zspage)
1701 rwlock_init(&zspage->lock);
1704 static void migrate_read_lock(struct zspage *zspage) __acquires(&zspage->lock)
1706 read_lock(&zspage->lock);
1709 static void migrate_read_unlock(struct zspage *zspage) __releases(&zspage->lock)
1711 read_unlock(&zspage->lock);
1714 static void migrate_write_lock(struct zspage *zspage)
1716 write_lock(&zspage->lock);
1719 static void migrate_write_unlock(struct zspage *zspage)
1721 write_unlock(&zspage->lock);
1724 #ifdef CONFIG_COMPACTION
1726 static const struct movable_operations zsmalloc_mops;
1728 static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1729 struct page *newpage, struct page *oldpage)
1732 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1735 page = get_first_page(zspage);
1737 if (page == oldpage)
1738 pages[idx] = newpage;
1742 } while ((page = get_next_page(page)) != NULL);
1744 create_page_chain(class, zspage, pages);
1745 set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1746 if (unlikely(ZsHugePage(zspage)))
1747 newpage->index = oldpage->index;
1748 __SetPageMovable(newpage, &zsmalloc_mops);
1751 static bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1754 * Page is locked so zspage couldn't be destroyed. For detail, look at
1755 * lock_zspage in free_zspage.
1757 VM_BUG_ON_PAGE(PageIsolated(page), page);
1762 static int zs_page_migrate(struct page *newpage, struct page *page,
1763 enum migrate_mode mode)
1765 struct zs_pool *pool;
1766 struct size_class *class;
1767 struct zspage *zspage;
1769 void *s_addr, *d_addr, *addr;
1770 unsigned int offset;
1771 unsigned long handle;
1772 unsigned long old_obj, new_obj;
1773 unsigned int obj_idx;
1775 VM_BUG_ON_PAGE(!PageIsolated(page), page);
1777 /* We're committed, tell the world that this is a Zsmalloc page. */
1778 __SetPageZsmalloc(newpage);
1780 /* The page is locked, so this pointer must remain valid */
1781 zspage = get_zspage(page);
1782 pool = zspage->pool;
1785 * The pool migrate_lock protects the race between zpage migration
1788 write_lock(&pool->migrate_lock);
1789 class = zspage_class(pool, zspage);
1792 * the class lock protects zpage alloc/free in the zspage.
1794 spin_lock(&class->lock);
1795 /* the migrate_write_lock protects zpage access via zs_map_object */
1796 migrate_write_lock(zspage);
1798 offset = get_first_obj_offset(page);
1799 s_addr = kmap_atomic(page);
1802 * Here, any user cannot access all objects in the zspage so let's move.
1804 d_addr = kmap_atomic(newpage);
1805 copy_page(d_addr, s_addr);
1806 kunmap_atomic(d_addr);
1808 for (addr = s_addr + offset; addr < s_addr + PAGE_SIZE;
1809 addr += class->size) {
1810 if (obj_allocated(page, addr, &handle)) {
1812 old_obj = handle_to_obj(handle);
1813 obj_to_location(old_obj, &dummy, &obj_idx);
1814 new_obj = (unsigned long)location_to_obj(newpage,
1816 record_obj(handle, new_obj);
1819 kunmap_atomic(s_addr);
1821 replace_sub_page(class, zspage, newpage, page);
1823 * Since we complete the data copy and set up new zspage structure,
1824 * it's okay to release migration_lock.
1826 write_unlock(&pool->migrate_lock);
1827 spin_unlock(&class->lock);
1828 migrate_write_unlock(zspage);
1831 if (page_zone(newpage) != page_zone(page)) {
1832 dec_zone_page_state(page, NR_ZSPAGES);
1833 inc_zone_page_state(newpage, NR_ZSPAGES);
1839 return MIGRATEPAGE_SUCCESS;
1842 static void zs_page_putback(struct page *page)
1844 VM_BUG_ON_PAGE(!PageIsolated(page), page);
1847 static const struct movable_operations zsmalloc_mops = {
1848 .isolate_page = zs_page_isolate,
1849 .migrate_page = zs_page_migrate,
1850 .putback_page = zs_page_putback,
1854 * Caller should hold page_lock of all pages in the zspage
1855 * In here, we cannot use zspage meta data.
1857 static void async_free_zspage(struct work_struct *work)
1860 struct size_class *class;
1861 struct zspage *zspage, *tmp;
1862 LIST_HEAD(free_pages);
1863 struct zs_pool *pool = container_of(work, struct zs_pool,
1866 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
1867 class = pool->size_class[i];
1868 if (class->index != i)
1871 spin_lock(&class->lock);
1872 list_splice_init(&class->fullness_list[ZS_INUSE_RATIO_0],
1874 spin_unlock(&class->lock);
1877 list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
1878 list_del(&zspage->list);
1879 lock_zspage(zspage);
1881 class = zspage_class(pool, zspage);
1882 spin_lock(&class->lock);
1883 class_stat_sub(class, ZS_INUSE_RATIO_0, 1);
1884 __free_zspage(pool, class, zspage);
1885 spin_unlock(&class->lock);
1889 static void kick_deferred_free(struct zs_pool *pool)
1891 schedule_work(&pool->free_work);
1894 static void zs_flush_migration(struct zs_pool *pool)
1896 flush_work(&pool->free_work);
1899 static void init_deferred_free(struct zs_pool *pool)
1901 INIT_WORK(&pool->free_work, async_free_zspage);
1904 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
1906 struct page *page = get_first_page(zspage);
1909 WARN_ON(!trylock_page(page));
1910 __SetPageMovable(page, &zsmalloc_mops);
1912 } while ((page = get_next_page(page)) != NULL);
1915 static inline void zs_flush_migration(struct zs_pool *pool) { }
1920 * Based on the number of unused allocated objects calculate
1921 * and return the number of pages that we can free.
1923 static unsigned long zs_can_compact(struct size_class *class)
1925 unsigned long obj_wasted;
1926 unsigned long obj_allocated = class_stat_read(class, ZS_OBJS_ALLOCATED);
1927 unsigned long obj_used = class_stat_read(class, ZS_OBJS_INUSE);
1929 if (obj_allocated <= obj_used)
1932 obj_wasted = obj_allocated - obj_used;
1933 obj_wasted /= class->objs_per_zspage;
1935 return obj_wasted * class->pages_per_zspage;
1938 static unsigned long __zs_compact(struct zs_pool *pool,
1939 struct size_class *class)
1941 struct zspage *src_zspage = NULL;
1942 struct zspage *dst_zspage = NULL;
1943 unsigned long pages_freed = 0;
1946 * protect the race between zpage migration and zs_free
1947 * as well as zpage allocation/free
1949 write_lock(&pool->migrate_lock);
1950 spin_lock(&class->lock);
1951 while (zs_can_compact(class)) {
1955 dst_zspage = isolate_dst_zspage(class);
1960 src_zspage = isolate_src_zspage(class);
1964 migrate_write_lock(src_zspage);
1965 migrate_zspage(pool, src_zspage, dst_zspage);
1966 migrate_write_unlock(src_zspage);
1968 fg = putback_zspage(class, src_zspage);
1969 if (fg == ZS_INUSE_RATIO_0) {
1970 free_zspage(pool, class, src_zspage);
1971 pages_freed += class->pages_per_zspage;
1975 if (get_fullness_group(class, dst_zspage) == ZS_INUSE_RATIO_100
1976 || rwlock_is_contended(&pool->migrate_lock)) {
1977 putback_zspage(class, dst_zspage);
1980 spin_unlock(&class->lock);
1981 write_unlock(&pool->migrate_lock);
1983 write_lock(&pool->migrate_lock);
1984 spin_lock(&class->lock);
1989 putback_zspage(class, src_zspage);
1992 putback_zspage(class, dst_zspage);
1994 spin_unlock(&class->lock);
1995 write_unlock(&pool->migrate_lock);
2000 unsigned long zs_compact(struct zs_pool *pool)
2003 struct size_class *class;
2004 unsigned long pages_freed = 0;
2007 * Pool compaction is performed under pool->migrate_lock so it is basically
2008 * single-threaded. Having more than one thread in __zs_compact()
2009 * will increase pool->migrate_lock contention, which will impact other
2010 * zsmalloc operations that need pool->migrate_lock.
2012 if (atomic_xchg(&pool->compaction_in_progress, 1))
2015 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2016 class = pool->size_class[i];
2017 if (class->index != i)
2019 pages_freed += __zs_compact(pool, class);
2021 atomic_long_add(pages_freed, &pool->stats.pages_compacted);
2022 atomic_set(&pool->compaction_in_progress, 0);
2026 EXPORT_SYMBOL_GPL(zs_compact);
2028 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2030 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2032 EXPORT_SYMBOL_GPL(zs_pool_stats);
2034 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2035 struct shrink_control *sc)
2037 unsigned long pages_freed;
2038 struct zs_pool *pool = shrinker->private_data;
2041 * Compact classes and calculate compaction delta.
2042 * Can run concurrently with a manually triggered
2043 * (by user) compaction.
2045 pages_freed = zs_compact(pool);
2047 return pages_freed ? pages_freed : SHRINK_STOP;
2050 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2051 struct shrink_control *sc)
2054 struct size_class *class;
2055 unsigned long pages_to_free = 0;
2056 struct zs_pool *pool = shrinker->private_data;
2058 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2059 class = pool->size_class[i];
2060 if (class->index != i)
2063 pages_to_free += zs_can_compact(class);
2066 return pages_to_free;
2069 static void zs_unregister_shrinker(struct zs_pool *pool)
2071 shrinker_free(pool->shrinker);
2074 static int zs_register_shrinker(struct zs_pool *pool)
2076 pool->shrinker = shrinker_alloc(0, "mm-zspool:%s", pool->name);
2077 if (!pool->shrinker)
2080 pool->shrinker->scan_objects = zs_shrinker_scan;
2081 pool->shrinker->count_objects = zs_shrinker_count;
2082 pool->shrinker->batch = 0;
2083 pool->shrinker->private_data = pool;
2085 shrinker_register(pool->shrinker);
2090 static int calculate_zspage_chain_size(int class_size)
2092 int i, min_waste = INT_MAX;
2095 if (is_power_of_2(class_size))
2098 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
2101 waste = (i * PAGE_SIZE) % class_size;
2102 if (waste < min_waste) {
2112 * zs_create_pool - Creates an allocation pool to work from.
2113 * @name: pool name to be created
2115 * This function must be called before anything when using
2116 * the zsmalloc allocator.
2118 * On success, a pointer to the newly created pool is returned,
2121 struct zs_pool *zs_create_pool(const char *name)
2124 struct zs_pool *pool;
2125 struct size_class *prev_class = NULL;
2127 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2131 init_deferred_free(pool);
2132 rwlock_init(&pool->migrate_lock);
2133 atomic_set(&pool->compaction_in_progress, 0);
2135 pool->name = kstrdup(name, GFP_KERNEL);
2139 if (create_cache(pool))
2143 * Iterate reversely, because, size of size_class that we want to use
2144 * for merging should be larger or equal to current size.
2146 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2148 int pages_per_zspage;
2149 int objs_per_zspage;
2150 struct size_class *class;
2153 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2154 if (size > ZS_MAX_ALLOC_SIZE)
2155 size = ZS_MAX_ALLOC_SIZE;
2156 pages_per_zspage = calculate_zspage_chain_size(size);
2157 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2160 * We iterate from biggest down to smallest classes,
2161 * so huge_class_size holds the size of the first huge
2162 * class. Any object bigger than or equal to that will
2163 * endup in the huge class.
2165 if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2167 huge_class_size = size;
2169 * The object uses ZS_HANDLE_SIZE bytes to store the
2170 * handle. We need to subtract it, because zs_malloc()
2171 * unconditionally adds handle size before it performs
2172 * size class search - so object may be smaller than
2173 * huge class size, yet it still can end up in the huge
2174 * class because it grows by ZS_HANDLE_SIZE extra bytes
2175 * right before class lookup.
2177 huge_class_size -= (ZS_HANDLE_SIZE - 1);
2181 * size_class is used for normal zsmalloc operation such
2182 * as alloc/free for that size. Although it is natural that we
2183 * have one size_class for each size, there is a chance that we
2184 * can get more memory utilization if we use one size_class for
2185 * many different sizes whose size_class have same
2186 * characteristics. So, we makes size_class point to
2187 * previous size_class if possible.
2190 if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2191 pool->size_class[i] = prev_class;
2196 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2202 class->pages_per_zspage = pages_per_zspage;
2203 class->objs_per_zspage = objs_per_zspage;
2204 spin_lock_init(&class->lock);
2205 pool->size_class[i] = class;
2207 fullness = ZS_INUSE_RATIO_0;
2208 while (fullness < NR_FULLNESS_GROUPS) {
2209 INIT_LIST_HEAD(&class->fullness_list[fullness]);
2216 /* debug only, don't abort if it fails */
2217 zs_pool_stat_create(pool, name);
2220 * Not critical since shrinker is only used to trigger internal
2221 * defragmentation of the pool which is pretty optional thing. If
2222 * registration fails we still can use the pool normally and user can
2223 * trigger compaction manually. Thus, ignore return code.
2225 zs_register_shrinker(pool);
2230 zs_destroy_pool(pool);
2233 EXPORT_SYMBOL_GPL(zs_create_pool);
2235 void zs_destroy_pool(struct zs_pool *pool)
2239 zs_unregister_shrinker(pool);
2240 zs_flush_migration(pool);
2241 zs_pool_stat_destroy(pool);
2243 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2245 struct size_class *class = pool->size_class[i];
2250 if (class->index != i)
2253 for (fg = ZS_INUSE_RATIO_0; fg < NR_FULLNESS_GROUPS; fg++) {
2254 if (list_empty(&class->fullness_list[fg]))
2257 pr_err("Class-%d fullness group %d is not empty\n",
2263 destroy_cache(pool);
2267 EXPORT_SYMBOL_GPL(zs_destroy_pool);
2269 static int __init zs_init(void)
2273 ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2274 zs_cpu_prepare, zs_cpu_dead);
2279 zpool_register_driver(&zs_zpool_driver);
2290 static void __exit zs_exit(void)
2293 zpool_unregister_driver(&zs_zpool_driver);
2295 cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
2300 module_init(zs_init);
2301 module_exit(zs_exit);
2303 MODULE_LICENSE("Dual BSD/GPL");
2305 MODULE_DESCRIPTION("zsmalloc memory allocator");