]> Git Repo - linux.git/blob - mm/zsmalloc.c
block, bfq: choose the last bfqq from merge chain in bfq_setup_cooperator()
[linux.git] / mm / zsmalloc.c
1 /*
2  * zsmalloc memory allocator
3  *
4  * Copyright (C) 2011  Nitin Gupta
5  * Copyright (C) 2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the license that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  */
13
14 /*
15  * Following is how we use various fields and flags of underlying
16  * struct page(s) to form a zspage.
17  *
18  * Usage of struct page fields:
19  *      page->private: points to zspage
20  *      page->index: links together all component pages of a zspage
21  *              For the huge page, this is always 0, so we use this field
22  *              to store handle.
23  *      page->page_type: PG_zsmalloc, lower 16 bit locate the first object
24  *              offset in a subpage of a zspage
25  *
26  * Usage of struct page flags:
27  *      PG_private: identifies the first component page
28  *      PG_owner_priv_1: identifies the huge component page
29  *
30  */
31
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
34 /*
35  * lock ordering:
36  *      page_lock
37  *      pool->migrate_lock
38  *      class->lock
39  *      zspage->lock
40  */
41
42 #include <linux/module.h>
43 #include <linux/kernel.h>
44 #include <linux/sched.h>
45 #include <linux/bitops.h>
46 #include <linux/errno.h>
47 #include <linux/highmem.h>
48 #include <linux/string.h>
49 #include <linux/slab.h>
50 #include <linux/pgtable.h>
51 #include <asm/tlbflush.h>
52 #include <linux/cpumask.h>
53 #include <linux/cpu.h>
54 #include <linux/vmalloc.h>
55 #include <linux/preempt.h>
56 #include <linux/spinlock.h>
57 #include <linux/shrinker.h>
58 #include <linux/types.h>
59 #include <linux/debugfs.h>
60 #include <linux/zsmalloc.h>
61 #include <linux/zpool.h>
62 #include <linux/migrate.h>
63 #include <linux/wait.h>
64 #include <linux/pagemap.h>
65 #include <linux/fs.h>
66 #include <linux/local_lock.h>
67
68 #define ZSPAGE_MAGIC    0x58
69
70 /*
71  * This must be power of 2 and greater than or equal to sizeof(link_free).
72  * These two conditions ensure that any 'struct link_free' itself doesn't
73  * span more than 1 page which avoids complex case of mapping 2 pages simply
74  * to restore link_free pointer values.
75  */
76 #define ZS_ALIGN                8
77
78 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
79
80 /*
81  * Object location (<PFN>, <obj_idx>) is encoded as
82  * a single (unsigned long) handle value.
83  *
84  * Note that object index <obj_idx> starts from 0.
85  *
86  * This is made more complicated by various memory models and PAE.
87  */
88
89 #ifndef MAX_POSSIBLE_PHYSMEM_BITS
90 #ifdef MAX_PHYSMEM_BITS
91 #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
92 #else
93 /*
94  * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
95  * be PAGE_SHIFT
96  */
97 #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
98 #endif
99 #endif
100
101 #define _PFN_BITS               (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
102
103 /*
104  * Head in allocated object should have OBJ_ALLOCATED_TAG
105  * to identify the object was allocated or not.
106  * It's okay to add the status bit in the least bit because
107  * header keeps handle which is 4byte-aligned address so we
108  * have room for two bit at least.
109  */
110 #define OBJ_ALLOCATED_TAG 1
111
112 #define OBJ_TAG_BITS    1
113 #define OBJ_TAG_MASK    OBJ_ALLOCATED_TAG
114
115 #define OBJ_INDEX_BITS  (BITS_PER_LONG - _PFN_BITS)
116 #define OBJ_INDEX_MASK  ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
117
118 #define HUGE_BITS       1
119 #define FULLNESS_BITS   4
120 #define CLASS_BITS      8
121 #define MAGIC_VAL_BITS  8
122
123 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
124
125 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(CONFIG_ZSMALLOC_CHAIN_SIZE, UL))
126
127 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
128 #define ZS_MIN_ALLOC_SIZE \
129         MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
130 /* each chunk includes extra space to keep handle */
131 #define ZS_MAX_ALLOC_SIZE       PAGE_SIZE
132
133 /*
134  * On systems with 4K page size, this gives 255 size classes! There is a
135  * trader-off here:
136  *  - Large number of size classes is potentially wasteful as free page are
137  *    spread across these classes
138  *  - Small number of size classes causes large internal fragmentation
139  *  - Probably its better to use specific size classes (empirically
140  *    determined). NOTE: all those class sizes must be set as multiple of
141  *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
142  *
143  *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
144  *  (reason above)
145  */
146 #define ZS_SIZE_CLASS_DELTA     (PAGE_SIZE >> CLASS_BITS)
147 #define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
148                                       ZS_SIZE_CLASS_DELTA) + 1)
149
150 /*
151  * Pages are distinguished by the ratio of used memory (that is the ratio
152  * of ->inuse objects to all objects that page can store). For example,
153  * INUSE_RATIO_10 means that the ratio of used objects is > 0% and <= 10%.
154  *
155  * The number of fullness groups is not random. It allows us to keep
156  * difference between the least busy page in the group (minimum permitted
157  * number of ->inuse objects) and the most busy page (maximum permitted
158  * number of ->inuse objects) at a reasonable value.
159  */
160 enum fullness_group {
161         ZS_INUSE_RATIO_0,
162         ZS_INUSE_RATIO_10,
163         /* NOTE: 8 more fullness groups here */
164         ZS_INUSE_RATIO_99       = 10,
165         ZS_INUSE_RATIO_100,
166         NR_FULLNESS_GROUPS,
167 };
168
169 enum class_stat_type {
170         /* NOTE: stats for 12 fullness groups here: from inuse 0 to 100 */
171         ZS_OBJS_ALLOCATED       = NR_FULLNESS_GROUPS,
172         ZS_OBJS_INUSE,
173         NR_CLASS_STAT_TYPES,
174 };
175
176 struct zs_size_stat {
177         unsigned long objs[NR_CLASS_STAT_TYPES];
178 };
179
180 #ifdef CONFIG_ZSMALLOC_STAT
181 static struct dentry *zs_stat_root;
182 #endif
183
184 static size_t huge_class_size;
185
186 struct size_class {
187         spinlock_t lock;
188         struct list_head fullness_list[NR_FULLNESS_GROUPS];
189         /*
190          * Size of objects stored in this class. Must be multiple
191          * of ZS_ALIGN.
192          */
193         int size;
194         int objs_per_zspage;
195         /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
196         int pages_per_zspage;
197
198         unsigned int index;
199         struct zs_size_stat stats;
200 };
201
202 /*
203  * Placed within free objects to form a singly linked list.
204  * For every zspage, zspage->freeobj gives head of this list.
205  *
206  * This must be power of 2 and less than or equal to ZS_ALIGN
207  */
208 struct link_free {
209         union {
210                 /*
211                  * Free object index;
212                  * It's valid for non-allocated object
213                  */
214                 unsigned long next;
215                 /*
216                  * Handle of allocated object.
217                  */
218                 unsigned long handle;
219         };
220 };
221
222 struct zs_pool {
223         const char *name;
224
225         struct size_class *size_class[ZS_SIZE_CLASSES];
226         struct kmem_cache *handle_cachep;
227         struct kmem_cache *zspage_cachep;
228
229         atomic_long_t pages_allocated;
230
231         struct zs_pool_stats stats;
232
233         /* Compact classes */
234         struct shrinker *shrinker;
235
236 #ifdef CONFIG_ZSMALLOC_STAT
237         struct dentry *stat_dentry;
238 #endif
239 #ifdef CONFIG_COMPACTION
240         struct work_struct free_work;
241 #endif
242         /* protect page/zspage migration */
243         rwlock_t migrate_lock;
244         atomic_t compaction_in_progress;
245 };
246
247 struct zspage {
248         struct {
249                 unsigned int huge:HUGE_BITS;
250                 unsigned int fullness:FULLNESS_BITS;
251                 unsigned int class:CLASS_BITS + 1;
252                 unsigned int magic:MAGIC_VAL_BITS;
253         };
254         unsigned int inuse;
255         unsigned int freeobj;
256         struct page *first_page;
257         struct list_head list; /* fullness list */
258         struct zs_pool *pool;
259         rwlock_t lock;
260 };
261
262 struct mapping_area {
263         local_lock_t lock;
264         char *vm_buf; /* copy buffer for objects that span pages */
265         char *vm_addr; /* address of kmap_atomic()'ed pages */
266         enum zs_mapmode vm_mm; /* mapping mode */
267 };
268
269 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
270 static void SetZsHugePage(struct zspage *zspage)
271 {
272         zspage->huge = 1;
273 }
274
275 static bool ZsHugePage(struct zspage *zspage)
276 {
277         return zspage->huge;
278 }
279
280 static void migrate_lock_init(struct zspage *zspage);
281 static void migrate_read_lock(struct zspage *zspage);
282 static void migrate_read_unlock(struct zspage *zspage);
283 static void migrate_write_lock(struct zspage *zspage);
284 static void migrate_write_unlock(struct zspage *zspage);
285
286 #ifdef CONFIG_COMPACTION
287 static void kick_deferred_free(struct zs_pool *pool);
288 static void init_deferred_free(struct zs_pool *pool);
289 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
290 #else
291 static void kick_deferred_free(struct zs_pool *pool) {}
292 static void init_deferred_free(struct zs_pool *pool) {}
293 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
294 #endif
295
296 static int create_cache(struct zs_pool *pool)
297 {
298         pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
299                                         0, 0, NULL);
300         if (!pool->handle_cachep)
301                 return 1;
302
303         pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
304                                         0, 0, NULL);
305         if (!pool->zspage_cachep) {
306                 kmem_cache_destroy(pool->handle_cachep);
307                 pool->handle_cachep = NULL;
308                 return 1;
309         }
310
311         return 0;
312 }
313
314 static void destroy_cache(struct zs_pool *pool)
315 {
316         kmem_cache_destroy(pool->handle_cachep);
317         kmem_cache_destroy(pool->zspage_cachep);
318 }
319
320 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
321 {
322         return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
323                         gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
324 }
325
326 static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
327 {
328         kmem_cache_free(pool->handle_cachep, (void *)handle);
329 }
330
331 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
332 {
333         return kmem_cache_zalloc(pool->zspage_cachep,
334                         flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
335 }
336
337 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
338 {
339         kmem_cache_free(pool->zspage_cachep, zspage);
340 }
341
342 /* class->lock(which owns the handle) synchronizes races */
343 static void record_obj(unsigned long handle, unsigned long obj)
344 {
345         *(unsigned long *)handle = obj;
346 }
347
348 /* zpool driver */
349
350 #ifdef CONFIG_ZPOOL
351
352 static void *zs_zpool_create(const char *name, gfp_t gfp)
353 {
354         /*
355          * Ignore global gfp flags: zs_malloc() may be invoked from
356          * different contexts and its caller must provide a valid
357          * gfp mask.
358          */
359         return zs_create_pool(name);
360 }
361
362 static void zs_zpool_destroy(void *pool)
363 {
364         zs_destroy_pool(pool);
365 }
366
367 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
368                         unsigned long *handle)
369 {
370         *handle = zs_malloc(pool, size, gfp);
371
372         if (IS_ERR_VALUE(*handle))
373                 return PTR_ERR((void *)*handle);
374         return 0;
375 }
376 static void zs_zpool_free(void *pool, unsigned long handle)
377 {
378         zs_free(pool, handle);
379 }
380
381 static void *zs_zpool_map(void *pool, unsigned long handle,
382                         enum zpool_mapmode mm)
383 {
384         enum zs_mapmode zs_mm;
385
386         switch (mm) {
387         case ZPOOL_MM_RO:
388                 zs_mm = ZS_MM_RO;
389                 break;
390         case ZPOOL_MM_WO:
391                 zs_mm = ZS_MM_WO;
392                 break;
393         case ZPOOL_MM_RW:
394         default:
395                 zs_mm = ZS_MM_RW;
396                 break;
397         }
398
399         return zs_map_object(pool, handle, zs_mm);
400 }
401 static void zs_zpool_unmap(void *pool, unsigned long handle)
402 {
403         zs_unmap_object(pool, handle);
404 }
405
406 static u64 zs_zpool_total_pages(void *pool)
407 {
408         return zs_get_total_pages(pool);
409 }
410
411 static struct zpool_driver zs_zpool_driver = {
412         .type =                   "zsmalloc",
413         .owner =                  THIS_MODULE,
414         .create =                 zs_zpool_create,
415         .destroy =                zs_zpool_destroy,
416         .malloc_support_movable = true,
417         .malloc =                 zs_zpool_malloc,
418         .free =                   zs_zpool_free,
419         .map =                    zs_zpool_map,
420         .unmap =                  zs_zpool_unmap,
421         .total_pages =            zs_zpool_total_pages,
422 };
423
424 MODULE_ALIAS("zpool-zsmalloc");
425 #endif /* CONFIG_ZPOOL */
426
427 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
428 static DEFINE_PER_CPU(struct mapping_area, zs_map_area) = {
429         .lock   = INIT_LOCAL_LOCK(lock),
430 };
431
432 static __maybe_unused int is_first_page(struct page *page)
433 {
434         return PagePrivate(page);
435 }
436
437 /* Protected by class->lock */
438 static inline int get_zspage_inuse(struct zspage *zspage)
439 {
440         return zspage->inuse;
441 }
442
443
444 static inline void mod_zspage_inuse(struct zspage *zspage, int val)
445 {
446         zspage->inuse += val;
447 }
448
449 static inline struct page *get_first_page(struct zspage *zspage)
450 {
451         struct page *first_page = zspage->first_page;
452
453         VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
454         return first_page;
455 }
456
457 #define FIRST_OBJ_PAGE_TYPE_MASK        0xffff
458
459 static inline void reset_first_obj_offset(struct page *page)
460 {
461         VM_WARN_ON_ONCE(!PageZsmalloc(page));
462         page->page_type |= FIRST_OBJ_PAGE_TYPE_MASK;
463 }
464
465 static inline unsigned int get_first_obj_offset(struct page *page)
466 {
467         VM_WARN_ON_ONCE(!PageZsmalloc(page));
468         return page->page_type & FIRST_OBJ_PAGE_TYPE_MASK;
469 }
470
471 static inline void set_first_obj_offset(struct page *page, unsigned int offset)
472 {
473         /* With 16 bit available, we can support offsets into 64 KiB pages. */
474         BUILD_BUG_ON(PAGE_SIZE > SZ_64K);
475         VM_WARN_ON_ONCE(!PageZsmalloc(page));
476         VM_WARN_ON_ONCE(offset & ~FIRST_OBJ_PAGE_TYPE_MASK);
477         page->page_type &= ~FIRST_OBJ_PAGE_TYPE_MASK;
478         page->page_type |= offset & FIRST_OBJ_PAGE_TYPE_MASK;
479 }
480
481 static inline unsigned int get_freeobj(struct zspage *zspage)
482 {
483         return zspage->freeobj;
484 }
485
486 static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
487 {
488         zspage->freeobj = obj;
489 }
490
491 static struct size_class *zspage_class(struct zs_pool *pool,
492                                        struct zspage *zspage)
493 {
494         return pool->size_class[zspage->class];
495 }
496
497 /*
498  * zsmalloc divides the pool into various size classes where each
499  * class maintains a list of zspages where each zspage is divided
500  * into equal sized chunks. Each allocation falls into one of these
501  * classes depending on its size. This function returns index of the
502  * size class which has chunk size big enough to hold the given size.
503  */
504 static int get_size_class_index(int size)
505 {
506         int idx = 0;
507
508         if (likely(size > ZS_MIN_ALLOC_SIZE))
509                 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
510                                 ZS_SIZE_CLASS_DELTA);
511
512         return min_t(int, ZS_SIZE_CLASSES - 1, idx);
513 }
514
515 static inline void class_stat_add(struct size_class *class, int type,
516                                   unsigned long cnt)
517 {
518         class->stats.objs[type] += cnt;
519 }
520
521 static inline void class_stat_sub(struct size_class *class, int type,
522                                   unsigned long cnt)
523 {
524         class->stats.objs[type] -= cnt;
525 }
526
527 static inline unsigned long class_stat_read(struct size_class *class, int type)
528 {
529         return class->stats.objs[type];
530 }
531
532 #ifdef CONFIG_ZSMALLOC_STAT
533
534 static void __init zs_stat_init(void)
535 {
536         if (!debugfs_initialized()) {
537                 pr_warn("debugfs not available, stat dir not created\n");
538                 return;
539         }
540
541         zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
542 }
543
544 static void __exit zs_stat_exit(void)
545 {
546         debugfs_remove_recursive(zs_stat_root);
547 }
548
549 static unsigned long zs_can_compact(struct size_class *class);
550
551 static int zs_stats_size_show(struct seq_file *s, void *v)
552 {
553         int i, fg;
554         struct zs_pool *pool = s->private;
555         struct size_class *class;
556         int objs_per_zspage;
557         unsigned long obj_allocated, obj_used, pages_used, freeable;
558         unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
559         unsigned long total_freeable = 0;
560         unsigned long inuse_totals[NR_FULLNESS_GROUPS] = {0, };
561
562         seq_printf(s, " %5s %5s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %13s %10s %10s %16s %8s\n",
563                         "class", "size", "10%", "20%", "30%", "40%",
564                         "50%", "60%", "70%", "80%", "90%", "99%", "100%",
565                         "obj_allocated", "obj_used", "pages_used",
566                         "pages_per_zspage", "freeable");
567
568         for (i = 0; i < ZS_SIZE_CLASSES; i++) {
569
570                 class = pool->size_class[i];
571
572                 if (class->index != i)
573                         continue;
574
575                 spin_lock(&class->lock);
576
577                 seq_printf(s, " %5u %5u ", i, class->size);
578                 for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++) {
579                         inuse_totals[fg] += class_stat_read(class, fg);
580                         seq_printf(s, "%9lu ", class_stat_read(class, fg));
581                 }
582
583                 obj_allocated = class_stat_read(class, ZS_OBJS_ALLOCATED);
584                 obj_used = class_stat_read(class, ZS_OBJS_INUSE);
585                 freeable = zs_can_compact(class);
586                 spin_unlock(&class->lock);
587
588                 objs_per_zspage = class->objs_per_zspage;
589                 pages_used = obj_allocated / objs_per_zspage *
590                                 class->pages_per_zspage;
591
592                 seq_printf(s, "%13lu %10lu %10lu %16d %8lu\n",
593                            obj_allocated, obj_used, pages_used,
594                            class->pages_per_zspage, freeable);
595
596                 total_objs += obj_allocated;
597                 total_used_objs += obj_used;
598                 total_pages += pages_used;
599                 total_freeable += freeable;
600         }
601
602         seq_puts(s, "\n");
603         seq_printf(s, " %5s %5s ", "Total", "");
604
605         for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++)
606                 seq_printf(s, "%9lu ", inuse_totals[fg]);
607
608         seq_printf(s, "%13lu %10lu %10lu %16s %8lu\n",
609                    total_objs, total_used_objs, total_pages, "",
610                    total_freeable);
611
612         return 0;
613 }
614 DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
615
616 static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
617 {
618         if (!zs_stat_root) {
619                 pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
620                 return;
621         }
622
623         pool->stat_dentry = debugfs_create_dir(name, zs_stat_root);
624
625         debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool,
626                             &zs_stats_size_fops);
627 }
628
629 static void zs_pool_stat_destroy(struct zs_pool *pool)
630 {
631         debugfs_remove_recursive(pool->stat_dentry);
632 }
633
634 #else /* CONFIG_ZSMALLOC_STAT */
635 static void __init zs_stat_init(void)
636 {
637 }
638
639 static void __exit zs_stat_exit(void)
640 {
641 }
642
643 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
644 {
645 }
646
647 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
648 {
649 }
650 #endif
651
652
653 /*
654  * For each size class, zspages are divided into different groups
655  * depending on their usage ratio. This function returns fullness
656  * status of the given page.
657  */
658 static int get_fullness_group(struct size_class *class, struct zspage *zspage)
659 {
660         int inuse, objs_per_zspage, ratio;
661
662         inuse = get_zspage_inuse(zspage);
663         objs_per_zspage = class->objs_per_zspage;
664
665         if (inuse == 0)
666                 return ZS_INUSE_RATIO_0;
667         if (inuse == objs_per_zspage)
668                 return ZS_INUSE_RATIO_100;
669
670         ratio = 100 * inuse / objs_per_zspage;
671         /*
672          * Take integer division into consideration: a page with one inuse
673          * object out of 127 possible, will end up having 0 usage ratio,
674          * which is wrong as it belongs in ZS_INUSE_RATIO_10 fullness group.
675          */
676         return ratio / 10 + 1;
677 }
678
679 /*
680  * Each size class maintains various freelists and zspages are assigned
681  * to one of these freelists based on the number of live objects they
682  * have. This functions inserts the given zspage into the freelist
683  * identified by <class, fullness_group>.
684  */
685 static void insert_zspage(struct size_class *class,
686                                 struct zspage *zspage,
687                                 int fullness)
688 {
689         class_stat_add(class, fullness, 1);
690         list_add(&zspage->list, &class->fullness_list[fullness]);
691         zspage->fullness = fullness;
692 }
693
694 /*
695  * This function removes the given zspage from the freelist identified
696  * by <class, fullness_group>.
697  */
698 static void remove_zspage(struct size_class *class, struct zspage *zspage)
699 {
700         int fullness = zspage->fullness;
701
702         VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
703
704         list_del_init(&zspage->list);
705         class_stat_sub(class, fullness, 1);
706 }
707
708 /*
709  * Each size class maintains zspages in different fullness groups depending
710  * on the number of live objects they contain. When allocating or freeing
711  * objects, the fullness status of the page can change, for instance, from
712  * INUSE_RATIO_80 to INUSE_RATIO_70 when freeing an object. This function
713  * checks if such a status change has occurred for the given page and
714  * accordingly moves the page from the list of the old fullness group to that
715  * of the new fullness group.
716  */
717 static int fix_fullness_group(struct size_class *class, struct zspage *zspage)
718 {
719         int newfg;
720
721         newfg = get_fullness_group(class, zspage);
722         if (newfg == zspage->fullness)
723                 goto out;
724
725         remove_zspage(class, zspage);
726         insert_zspage(class, zspage, newfg);
727 out:
728         return newfg;
729 }
730
731 static struct zspage *get_zspage(struct page *page)
732 {
733         struct zspage *zspage = (struct zspage *)page_private(page);
734
735         BUG_ON(zspage->magic != ZSPAGE_MAGIC);
736         return zspage;
737 }
738
739 static struct page *get_next_page(struct page *page)
740 {
741         struct zspage *zspage = get_zspage(page);
742
743         if (unlikely(ZsHugePage(zspage)))
744                 return NULL;
745
746         return (struct page *)page->index;
747 }
748
749 /**
750  * obj_to_location - get (<page>, <obj_idx>) from encoded object value
751  * @obj: the encoded object value
752  * @page: page object resides in zspage
753  * @obj_idx: object index
754  */
755 static void obj_to_location(unsigned long obj, struct page **page,
756                                 unsigned int *obj_idx)
757 {
758         *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
759         *obj_idx = (obj & OBJ_INDEX_MASK);
760 }
761
762 static void obj_to_page(unsigned long obj, struct page **page)
763 {
764         *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
765 }
766
767 /**
768  * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
769  * @page: page object resides in zspage
770  * @obj_idx: object index
771  */
772 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
773 {
774         unsigned long obj;
775
776         obj = page_to_pfn(page) << OBJ_INDEX_BITS;
777         obj |= obj_idx & OBJ_INDEX_MASK;
778
779         return obj;
780 }
781
782 static unsigned long handle_to_obj(unsigned long handle)
783 {
784         return *(unsigned long *)handle;
785 }
786
787 static inline bool obj_allocated(struct page *page, void *obj,
788                                  unsigned long *phandle)
789 {
790         unsigned long handle;
791         struct zspage *zspage = get_zspage(page);
792
793         if (unlikely(ZsHugePage(zspage))) {
794                 VM_BUG_ON_PAGE(!is_first_page(page), page);
795                 handle = page->index;
796         } else
797                 handle = *(unsigned long *)obj;
798
799         if (!(handle & OBJ_ALLOCATED_TAG))
800                 return false;
801
802         /* Clear all tags before returning the handle */
803         *phandle = handle & ~OBJ_TAG_MASK;
804         return true;
805 }
806
807 static void reset_page(struct page *page)
808 {
809         __ClearPageMovable(page);
810         ClearPagePrivate(page);
811         set_page_private(page, 0);
812         page->index = 0;
813         reset_first_obj_offset(page);
814         __ClearPageZsmalloc(page);
815 }
816
817 static int trylock_zspage(struct zspage *zspage)
818 {
819         struct page *cursor, *fail;
820
821         for (cursor = get_first_page(zspage); cursor != NULL; cursor =
822                                         get_next_page(cursor)) {
823                 if (!trylock_page(cursor)) {
824                         fail = cursor;
825                         goto unlock;
826                 }
827         }
828
829         return 1;
830 unlock:
831         for (cursor = get_first_page(zspage); cursor != fail; cursor =
832                                         get_next_page(cursor))
833                 unlock_page(cursor);
834
835         return 0;
836 }
837
838 static void __free_zspage(struct zs_pool *pool, struct size_class *class,
839                                 struct zspage *zspage)
840 {
841         struct page *page, *next;
842
843         assert_spin_locked(&class->lock);
844
845         VM_BUG_ON(get_zspage_inuse(zspage));
846         VM_BUG_ON(zspage->fullness != ZS_INUSE_RATIO_0);
847
848         next = page = get_first_page(zspage);
849         do {
850                 VM_BUG_ON_PAGE(!PageLocked(page), page);
851                 next = get_next_page(page);
852                 reset_page(page);
853                 unlock_page(page);
854                 dec_zone_page_state(page, NR_ZSPAGES);
855                 put_page(page);
856                 page = next;
857         } while (page != NULL);
858
859         cache_free_zspage(pool, zspage);
860
861         class_stat_sub(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage);
862         atomic_long_sub(class->pages_per_zspage, &pool->pages_allocated);
863 }
864
865 static void free_zspage(struct zs_pool *pool, struct size_class *class,
866                                 struct zspage *zspage)
867 {
868         VM_BUG_ON(get_zspage_inuse(zspage));
869         VM_BUG_ON(list_empty(&zspage->list));
870
871         /*
872          * Since zs_free couldn't be sleepable, this function cannot call
873          * lock_page. The page locks trylock_zspage got will be released
874          * by __free_zspage.
875          */
876         if (!trylock_zspage(zspage)) {
877                 kick_deferred_free(pool);
878                 return;
879         }
880
881         remove_zspage(class, zspage);
882         __free_zspage(pool, class, zspage);
883 }
884
885 /* Initialize a newly allocated zspage */
886 static void init_zspage(struct size_class *class, struct zspage *zspage)
887 {
888         unsigned int freeobj = 1;
889         unsigned long off = 0;
890         struct page *page = get_first_page(zspage);
891
892         while (page) {
893                 struct page *next_page;
894                 struct link_free *link;
895                 void *vaddr;
896
897                 set_first_obj_offset(page, off);
898
899                 vaddr = kmap_atomic(page);
900                 link = (struct link_free *)vaddr + off / sizeof(*link);
901
902                 while ((off += class->size) < PAGE_SIZE) {
903                         link->next = freeobj++ << OBJ_TAG_BITS;
904                         link += class->size / sizeof(*link);
905                 }
906
907                 /*
908                  * We now come to the last (full or partial) object on this
909                  * page, which must point to the first object on the next
910                  * page (if present)
911                  */
912                 next_page = get_next_page(page);
913                 if (next_page) {
914                         link->next = freeobj++ << OBJ_TAG_BITS;
915                 } else {
916                         /*
917                          * Reset OBJ_TAG_BITS bit to last link to tell
918                          * whether it's allocated object or not.
919                          */
920                         link->next = -1UL << OBJ_TAG_BITS;
921                 }
922                 kunmap_atomic(vaddr);
923                 page = next_page;
924                 off %= PAGE_SIZE;
925         }
926
927         set_freeobj(zspage, 0);
928 }
929
930 static void create_page_chain(struct size_class *class, struct zspage *zspage,
931                                 struct page *pages[])
932 {
933         int i;
934         struct page *page;
935         struct page *prev_page = NULL;
936         int nr_pages = class->pages_per_zspage;
937
938         /*
939          * Allocate individual pages and link them together as:
940          * 1. all pages are linked together using page->index
941          * 2. each sub-page point to zspage using page->private
942          *
943          * we set PG_private to identify the first page (i.e. no other sub-page
944          * has this flag set).
945          */
946         for (i = 0; i < nr_pages; i++) {
947                 page = pages[i];
948                 set_page_private(page, (unsigned long)zspage);
949                 page->index = 0;
950                 if (i == 0) {
951                         zspage->first_page = page;
952                         SetPagePrivate(page);
953                         if (unlikely(class->objs_per_zspage == 1 &&
954                                         class->pages_per_zspage == 1))
955                                 SetZsHugePage(zspage);
956                 } else {
957                         prev_page->index = (unsigned long)page;
958                 }
959                 prev_page = page;
960         }
961 }
962
963 /*
964  * Allocate a zspage for the given size class
965  */
966 static struct zspage *alloc_zspage(struct zs_pool *pool,
967                                         struct size_class *class,
968                                         gfp_t gfp)
969 {
970         int i;
971         struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
972         struct zspage *zspage = cache_alloc_zspage(pool, gfp);
973
974         if (!zspage)
975                 return NULL;
976
977         zspage->magic = ZSPAGE_MAGIC;
978         migrate_lock_init(zspage);
979
980         for (i = 0; i < class->pages_per_zspage; i++) {
981                 struct page *page;
982
983                 page = alloc_page(gfp);
984                 if (!page) {
985                         while (--i >= 0) {
986                                 dec_zone_page_state(pages[i], NR_ZSPAGES);
987                                 __ClearPageZsmalloc(pages[i]);
988                                 __free_page(pages[i]);
989                         }
990                         cache_free_zspage(pool, zspage);
991                         return NULL;
992                 }
993                 __SetPageZsmalloc(page);
994
995                 inc_zone_page_state(page, NR_ZSPAGES);
996                 pages[i] = page;
997         }
998
999         create_page_chain(class, zspage, pages);
1000         init_zspage(class, zspage);
1001         zspage->pool = pool;
1002         zspage->class = class->index;
1003
1004         return zspage;
1005 }
1006
1007 static struct zspage *find_get_zspage(struct size_class *class)
1008 {
1009         int i;
1010         struct zspage *zspage;
1011
1012         for (i = ZS_INUSE_RATIO_99; i >= ZS_INUSE_RATIO_0; i--) {
1013                 zspage = list_first_entry_or_null(&class->fullness_list[i],
1014                                                   struct zspage, list);
1015                 if (zspage)
1016                         break;
1017         }
1018
1019         return zspage;
1020 }
1021
1022 static inline int __zs_cpu_up(struct mapping_area *area)
1023 {
1024         /*
1025          * Make sure we don't leak memory if a cpu UP notification
1026          * and zs_init() race and both call zs_cpu_up() on the same cpu
1027          */
1028         if (area->vm_buf)
1029                 return 0;
1030         area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1031         if (!area->vm_buf)
1032                 return -ENOMEM;
1033         return 0;
1034 }
1035
1036 static inline void __zs_cpu_down(struct mapping_area *area)
1037 {
1038         kfree(area->vm_buf);
1039         area->vm_buf = NULL;
1040 }
1041
1042 static void *__zs_map_object(struct mapping_area *area,
1043                         struct page *pages[2], int off, int size)
1044 {
1045         int sizes[2];
1046         void *addr;
1047         char *buf = area->vm_buf;
1048
1049         /* disable page faults to match kmap_atomic() return conditions */
1050         pagefault_disable();
1051
1052         /* no read fastpath */
1053         if (area->vm_mm == ZS_MM_WO)
1054                 goto out;
1055
1056         sizes[0] = PAGE_SIZE - off;
1057         sizes[1] = size - sizes[0];
1058
1059         /* copy object to per-cpu buffer */
1060         addr = kmap_atomic(pages[0]);
1061         memcpy(buf, addr + off, sizes[0]);
1062         kunmap_atomic(addr);
1063         addr = kmap_atomic(pages[1]);
1064         memcpy(buf + sizes[0], addr, sizes[1]);
1065         kunmap_atomic(addr);
1066 out:
1067         return area->vm_buf;
1068 }
1069
1070 static void __zs_unmap_object(struct mapping_area *area,
1071                         struct page *pages[2], int off, int size)
1072 {
1073         int sizes[2];
1074         void *addr;
1075         char *buf;
1076
1077         /* no write fastpath */
1078         if (area->vm_mm == ZS_MM_RO)
1079                 goto out;
1080
1081         buf = area->vm_buf;
1082         buf = buf + ZS_HANDLE_SIZE;
1083         size -= ZS_HANDLE_SIZE;
1084         off += ZS_HANDLE_SIZE;
1085
1086         sizes[0] = PAGE_SIZE - off;
1087         sizes[1] = size - sizes[0];
1088
1089         /* copy per-cpu buffer to object */
1090         addr = kmap_atomic(pages[0]);
1091         memcpy(addr + off, buf, sizes[0]);
1092         kunmap_atomic(addr);
1093         addr = kmap_atomic(pages[1]);
1094         memcpy(addr, buf + sizes[0], sizes[1]);
1095         kunmap_atomic(addr);
1096
1097 out:
1098         /* enable page faults to match kunmap_atomic() return conditions */
1099         pagefault_enable();
1100 }
1101
1102 static int zs_cpu_prepare(unsigned int cpu)
1103 {
1104         struct mapping_area *area;
1105
1106         area = &per_cpu(zs_map_area, cpu);
1107         return __zs_cpu_up(area);
1108 }
1109
1110 static int zs_cpu_dead(unsigned int cpu)
1111 {
1112         struct mapping_area *area;
1113
1114         area = &per_cpu(zs_map_area, cpu);
1115         __zs_cpu_down(area);
1116         return 0;
1117 }
1118
1119 static bool can_merge(struct size_class *prev, int pages_per_zspage,
1120                                         int objs_per_zspage)
1121 {
1122         if (prev->pages_per_zspage == pages_per_zspage &&
1123                 prev->objs_per_zspage == objs_per_zspage)
1124                 return true;
1125
1126         return false;
1127 }
1128
1129 static bool zspage_full(struct size_class *class, struct zspage *zspage)
1130 {
1131         return get_zspage_inuse(zspage) == class->objs_per_zspage;
1132 }
1133
1134 static bool zspage_empty(struct zspage *zspage)
1135 {
1136         return get_zspage_inuse(zspage) == 0;
1137 }
1138
1139 /**
1140  * zs_lookup_class_index() - Returns index of the zsmalloc &size_class
1141  * that hold objects of the provided size.
1142  * @pool: zsmalloc pool to use
1143  * @size: object size
1144  *
1145  * Context: Any context.
1146  *
1147  * Return: the index of the zsmalloc &size_class that hold objects of the
1148  * provided size.
1149  */
1150 unsigned int zs_lookup_class_index(struct zs_pool *pool, unsigned int size)
1151 {
1152         struct size_class *class;
1153
1154         class = pool->size_class[get_size_class_index(size)];
1155
1156         return class->index;
1157 }
1158 EXPORT_SYMBOL_GPL(zs_lookup_class_index);
1159
1160 unsigned long zs_get_total_pages(struct zs_pool *pool)
1161 {
1162         return atomic_long_read(&pool->pages_allocated);
1163 }
1164 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1165
1166 /**
1167  * zs_map_object - get address of allocated object from handle.
1168  * @pool: pool from which the object was allocated
1169  * @handle: handle returned from zs_malloc
1170  * @mm: mapping mode to use
1171  *
1172  * Before using an object allocated from zs_malloc, it must be mapped using
1173  * this function. When done with the object, it must be unmapped using
1174  * zs_unmap_object.
1175  *
1176  * Only one object can be mapped per cpu at a time. There is no protection
1177  * against nested mappings.
1178  *
1179  * This function returns with preemption and page faults disabled.
1180  */
1181 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1182                         enum zs_mapmode mm)
1183 {
1184         struct zspage *zspage;
1185         struct page *page;
1186         unsigned long obj, off;
1187         unsigned int obj_idx;
1188
1189         struct size_class *class;
1190         struct mapping_area *area;
1191         struct page *pages[2];
1192         void *ret;
1193
1194         /*
1195          * Because we use per-cpu mapping areas shared among the
1196          * pools/users, we can't allow mapping in interrupt context
1197          * because it can corrupt another users mappings.
1198          */
1199         BUG_ON(in_interrupt());
1200
1201         /* It guarantees it can get zspage from handle safely */
1202         read_lock(&pool->migrate_lock);
1203         obj = handle_to_obj(handle);
1204         obj_to_location(obj, &page, &obj_idx);
1205         zspage = get_zspage(page);
1206
1207         /*
1208          * migration cannot move any zpages in this zspage. Here, class->lock
1209          * is too heavy since callers would take some time until they calls
1210          * zs_unmap_object API so delegate the locking from class to zspage
1211          * which is smaller granularity.
1212          */
1213         migrate_read_lock(zspage);
1214         read_unlock(&pool->migrate_lock);
1215
1216         class = zspage_class(pool, zspage);
1217         off = offset_in_page(class->size * obj_idx);
1218
1219         local_lock(&zs_map_area.lock);
1220         area = this_cpu_ptr(&zs_map_area);
1221         area->vm_mm = mm;
1222         if (off + class->size <= PAGE_SIZE) {
1223                 /* this object is contained entirely within a page */
1224                 area->vm_addr = kmap_atomic(page);
1225                 ret = area->vm_addr + off;
1226                 goto out;
1227         }
1228
1229         /* this object spans two pages */
1230         pages[0] = page;
1231         pages[1] = get_next_page(page);
1232         BUG_ON(!pages[1]);
1233
1234         ret = __zs_map_object(area, pages, off, class->size);
1235 out:
1236         if (likely(!ZsHugePage(zspage)))
1237                 ret += ZS_HANDLE_SIZE;
1238
1239         return ret;
1240 }
1241 EXPORT_SYMBOL_GPL(zs_map_object);
1242
1243 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1244 {
1245         struct zspage *zspage;
1246         struct page *page;
1247         unsigned long obj, off;
1248         unsigned int obj_idx;
1249
1250         struct size_class *class;
1251         struct mapping_area *area;
1252
1253         obj = handle_to_obj(handle);
1254         obj_to_location(obj, &page, &obj_idx);
1255         zspage = get_zspage(page);
1256         class = zspage_class(pool, zspage);
1257         off = offset_in_page(class->size * obj_idx);
1258
1259         area = this_cpu_ptr(&zs_map_area);
1260         if (off + class->size <= PAGE_SIZE)
1261                 kunmap_atomic(area->vm_addr);
1262         else {
1263                 struct page *pages[2];
1264
1265                 pages[0] = page;
1266                 pages[1] = get_next_page(page);
1267                 BUG_ON(!pages[1]);
1268
1269                 __zs_unmap_object(area, pages, off, class->size);
1270         }
1271         local_unlock(&zs_map_area.lock);
1272
1273         migrate_read_unlock(zspage);
1274 }
1275 EXPORT_SYMBOL_GPL(zs_unmap_object);
1276
1277 /**
1278  * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1279  *                        zsmalloc &size_class.
1280  * @pool: zsmalloc pool to use
1281  *
1282  * The function returns the size of the first huge class - any object of equal
1283  * or bigger size will be stored in zspage consisting of a single physical
1284  * page.
1285  *
1286  * Context: Any context.
1287  *
1288  * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1289  */
1290 size_t zs_huge_class_size(struct zs_pool *pool)
1291 {
1292         return huge_class_size;
1293 }
1294 EXPORT_SYMBOL_GPL(zs_huge_class_size);
1295
1296 static unsigned long obj_malloc(struct zs_pool *pool,
1297                                 struct zspage *zspage, unsigned long handle)
1298 {
1299         int i, nr_page, offset;
1300         unsigned long obj;
1301         struct link_free *link;
1302         struct size_class *class;
1303
1304         struct page *m_page;
1305         unsigned long m_offset;
1306         void *vaddr;
1307
1308         class = pool->size_class[zspage->class];
1309         obj = get_freeobj(zspage);
1310
1311         offset = obj * class->size;
1312         nr_page = offset >> PAGE_SHIFT;
1313         m_offset = offset_in_page(offset);
1314         m_page = get_first_page(zspage);
1315
1316         for (i = 0; i < nr_page; i++)
1317                 m_page = get_next_page(m_page);
1318
1319         vaddr = kmap_atomic(m_page);
1320         link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1321         set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1322         if (likely(!ZsHugePage(zspage)))
1323                 /* record handle in the header of allocated chunk */
1324                 link->handle = handle | OBJ_ALLOCATED_TAG;
1325         else
1326                 /* record handle to page->index */
1327                 zspage->first_page->index = handle | OBJ_ALLOCATED_TAG;
1328
1329         kunmap_atomic(vaddr);
1330         mod_zspage_inuse(zspage, 1);
1331
1332         obj = location_to_obj(m_page, obj);
1333         record_obj(handle, obj);
1334
1335         return obj;
1336 }
1337
1338
1339 /**
1340  * zs_malloc - Allocate block of given size from pool.
1341  * @pool: pool to allocate from
1342  * @size: size of block to allocate
1343  * @gfp: gfp flags when allocating object
1344  *
1345  * On success, handle to the allocated object is returned,
1346  * otherwise an ERR_PTR().
1347  * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1348  */
1349 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1350 {
1351         unsigned long handle;
1352         struct size_class *class;
1353         int newfg;
1354         struct zspage *zspage;
1355
1356         if (unlikely(!size))
1357                 return (unsigned long)ERR_PTR(-EINVAL);
1358
1359         if (unlikely(size > ZS_MAX_ALLOC_SIZE))
1360                 return (unsigned long)ERR_PTR(-ENOSPC);
1361
1362         handle = cache_alloc_handle(pool, gfp);
1363         if (!handle)
1364                 return (unsigned long)ERR_PTR(-ENOMEM);
1365
1366         /* extra space in chunk to keep the handle */
1367         size += ZS_HANDLE_SIZE;
1368         class = pool->size_class[get_size_class_index(size)];
1369
1370         /* class->lock effectively protects the zpage migration */
1371         spin_lock(&class->lock);
1372         zspage = find_get_zspage(class);
1373         if (likely(zspage)) {
1374                 obj_malloc(pool, zspage, handle);
1375                 /* Now move the zspage to another fullness group, if required */
1376                 fix_fullness_group(class, zspage);
1377                 class_stat_add(class, ZS_OBJS_INUSE, 1);
1378
1379                 goto out;
1380         }
1381
1382         spin_unlock(&class->lock);
1383
1384         zspage = alloc_zspage(pool, class, gfp);
1385         if (!zspage) {
1386                 cache_free_handle(pool, handle);
1387                 return (unsigned long)ERR_PTR(-ENOMEM);
1388         }
1389
1390         spin_lock(&class->lock);
1391         obj_malloc(pool, zspage, handle);
1392         newfg = get_fullness_group(class, zspage);
1393         insert_zspage(class, zspage, newfg);
1394         atomic_long_add(class->pages_per_zspage, &pool->pages_allocated);
1395         class_stat_add(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage);
1396         class_stat_add(class, ZS_OBJS_INUSE, 1);
1397
1398         /* We completely set up zspage so mark them as movable */
1399         SetZsPageMovable(pool, zspage);
1400 out:
1401         spin_unlock(&class->lock);
1402
1403         return handle;
1404 }
1405 EXPORT_SYMBOL_GPL(zs_malloc);
1406
1407 static void obj_free(int class_size, unsigned long obj)
1408 {
1409         struct link_free *link;
1410         struct zspage *zspage;
1411         struct page *f_page;
1412         unsigned long f_offset;
1413         unsigned int f_objidx;
1414         void *vaddr;
1415
1416         obj_to_location(obj, &f_page, &f_objidx);
1417         f_offset = offset_in_page(class_size * f_objidx);
1418         zspage = get_zspage(f_page);
1419
1420         vaddr = kmap_atomic(f_page);
1421         link = (struct link_free *)(vaddr + f_offset);
1422
1423         /* Insert this object in containing zspage's freelist */
1424         if (likely(!ZsHugePage(zspage)))
1425                 link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1426         else
1427                 f_page->index = 0;
1428         set_freeobj(zspage, f_objidx);
1429
1430         kunmap_atomic(vaddr);
1431         mod_zspage_inuse(zspage, -1);
1432 }
1433
1434 void zs_free(struct zs_pool *pool, unsigned long handle)
1435 {
1436         struct zspage *zspage;
1437         struct page *f_page;
1438         unsigned long obj;
1439         struct size_class *class;
1440         int fullness;
1441
1442         if (IS_ERR_OR_NULL((void *)handle))
1443                 return;
1444
1445         /*
1446          * The pool->migrate_lock protects the race with zpage's migration
1447          * so it's safe to get the page from handle.
1448          */
1449         read_lock(&pool->migrate_lock);
1450         obj = handle_to_obj(handle);
1451         obj_to_page(obj, &f_page);
1452         zspage = get_zspage(f_page);
1453         class = zspage_class(pool, zspage);
1454         spin_lock(&class->lock);
1455         read_unlock(&pool->migrate_lock);
1456
1457         class_stat_sub(class, ZS_OBJS_INUSE, 1);
1458         obj_free(class->size, obj);
1459
1460         fullness = fix_fullness_group(class, zspage);
1461         if (fullness == ZS_INUSE_RATIO_0)
1462                 free_zspage(pool, class, zspage);
1463
1464         spin_unlock(&class->lock);
1465         cache_free_handle(pool, handle);
1466 }
1467 EXPORT_SYMBOL_GPL(zs_free);
1468
1469 static void zs_object_copy(struct size_class *class, unsigned long dst,
1470                                 unsigned long src)
1471 {
1472         struct page *s_page, *d_page;
1473         unsigned int s_objidx, d_objidx;
1474         unsigned long s_off, d_off;
1475         void *s_addr, *d_addr;
1476         int s_size, d_size, size;
1477         int written = 0;
1478
1479         s_size = d_size = class->size;
1480
1481         obj_to_location(src, &s_page, &s_objidx);
1482         obj_to_location(dst, &d_page, &d_objidx);
1483
1484         s_off = offset_in_page(class->size * s_objidx);
1485         d_off = offset_in_page(class->size * d_objidx);
1486
1487         if (s_off + class->size > PAGE_SIZE)
1488                 s_size = PAGE_SIZE - s_off;
1489
1490         if (d_off + class->size > PAGE_SIZE)
1491                 d_size = PAGE_SIZE - d_off;
1492
1493         s_addr = kmap_atomic(s_page);
1494         d_addr = kmap_atomic(d_page);
1495
1496         while (1) {
1497                 size = min(s_size, d_size);
1498                 memcpy(d_addr + d_off, s_addr + s_off, size);
1499                 written += size;
1500
1501                 if (written == class->size)
1502                         break;
1503
1504                 s_off += size;
1505                 s_size -= size;
1506                 d_off += size;
1507                 d_size -= size;
1508
1509                 /*
1510                  * Calling kunmap_atomic(d_addr) is necessary. kunmap_atomic()
1511                  * calls must occurs in reverse order of calls to kmap_atomic().
1512                  * So, to call kunmap_atomic(s_addr) we should first call
1513                  * kunmap_atomic(d_addr). For more details see
1514                  * Documentation/mm/highmem.rst.
1515                  */
1516                 if (s_off >= PAGE_SIZE) {
1517                         kunmap_atomic(d_addr);
1518                         kunmap_atomic(s_addr);
1519                         s_page = get_next_page(s_page);
1520                         s_addr = kmap_atomic(s_page);
1521                         d_addr = kmap_atomic(d_page);
1522                         s_size = class->size - written;
1523                         s_off = 0;
1524                 }
1525
1526                 if (d_off >= PAGE_SIZE) {
1527                         kunmap_atomic(d_addr);
1528                         d_page = get_next_page(d_page);
1529                         d_addr = kmap_atomic(d_page);
1530                         d_size = class->size - written;
1531                         d_off = 0;
1532                 }
1533         }
1534
1535         kunmap_atomic(d_addr);
1536         kunmap_atomic(s_addr);
1537 }
1538
1539 /*
1540  * Find alloced object in zspage from index object and
1541  * return handle.
1542  */
1543 static unsigned long find_alloced_obj(struct size_class *class,
1544                                       struct page *page, int *obj_idx)
1545 {
1546         unsigned int offset;
1547         int index = *obj_idx;
1548         unsigned long handle = 0;
1549         void *addr = kmap_atomic(page);
1550
1551         offset = get_first_obj_offset(page);
1552         offset += class->size * index;
1553
1554         while (offset < PAGE_SIZE) {
1555                 if (obj_allocated(page, addr + offset, &handle))
1556                         break;
1557
1558                 offset += class->size;
1559                 index++;
1560         }
1561
1562         kunmap_atomic(addr);
1563
1564         *obj_idx = index;
1565
1566         return handle;
1567 }
1568
1569 static void migrate_zspage(struct zs_pool *pool, struct zspage *src_zspage,
1570                            struct zspage *dst_zspage)
1571 {
1572         unsigned long used_obj, free_obj;
1573         unsigned long handle;
1574         int obj_idx = 0;
1575         struct page *s_page = get_first_page(src_zspage);
1576         struct size_class *class = pool->size_class[src_zspage->class];
1577
1578         while (1) {
1579                 handle = find_alloced_obj(class, s_page, &obj_idx);
1580                 if (!handle) {
1581                         s_page = get_next_page(s_page);
1582                         if (!s_page)
1583                                 break;
1584                         obj_idx = 0;
1585                         continue;
1586                 }
1587
1588                 used_obj = handle_to_obj(handle);
1589                 free_obj = obj_malloc(pool, dst_zspage, handle);
1590                 zs_object_copy(class, free_obj, used_obj);
1591                 obj_idx++;
1592                 obj_free(class->size, used_obj);
1593
1594                 /* Stop if there is no more space */
1595                 if (zspage_full(class, dst_zspage))
1596                         break;
1597
1598                 /* Stop if there are no more objects to migrate */
1599                 if (zspage_empty(src_zspage))
1600                         break;
1601         }
1602 }
1603
1604 static struct zspage *isolate_src_zspage(struct size_class *class)
1605 {
1606         struct zspage *zspage;
1607         int fg;
1608
1609         for (fg = ZS_INUSE_RATIO_10; fg <= ZS_INUSE_RATIO_99; fg++) {
1610                 zspage = list_first_entry_or_null(&class->fullness_list[fg],
1611                                                   struct zspage, list);
1612                 if (zspage) {
1613                         remove_zspage(class, zspage);
1614                         return zspage;
1615                 }
1616         }
1617
1618         return zspage;
1619 }
1620
1621 static struct zspage *isolate_dst_zspage(struct size_class *class)
1622 {
1623         struct zspage *zspage;
1624         int fg;
1625
1626         for (fg = ZS_INUSE_RATIO_99; fg >= ZS_INUSE_RATIO_10; fg--) {
1627                 zspage = list_first_entry_or_null(&class->fullness_list[fg],
1628                                                   struct zspage, list);
1629                 if (zspage) {
1630                         remove_zspage(class, zspage);
1631                         return zspage;
1632                 }
1633         }
1634
1635         return zspage;
1636 }
1637
1638 /*
1639  * putback_zspage - add @zspage into right class's fullness list
1640  * @class: destination class
1641  * @zspage: target page
1642  *
1643  * Return @zspage's fullness status
1644  */
1645 static int putback_zspage(struct size_class *class, struct zspage *zspage)
1646 {
1647         int fullness;
1648
1649         fullness = get_fullness_group(class, zspage);
1650         insert_zspage(class, zspage, fullness);
1651
1652         return fullness;
1653 }
1654
1655 #ifdef CONFIG_COMPACTION
1656 /*
1657  * To prevent zspage destroy during migration, zspage freeing should
1658  * hold locks of all pages in the zspage.
1659  */
1660 static void lock_zspage(struct zspage *zspage)
1661 {
1662         struct page *curr_page, *page;
1663
1664         /*
1665          * Pages we haven't locked yet can be migrated off the list while we're
1666          * trying to lock them, so we need to be careful and only attempt to
1667          * lock each page under migrate_read_lock(). Otherwise, the page we lock
1668          * may no longer belong to the zspage. This means that we may wait for
1669          * the wrong page to unlock, so we must take a reference to the page
1670          * prior to waiting for it to unlock outside migrate_read_lock().
1671          */
1672         while (1) {
1673                 migrate_read_lock(zspage);
1674                 page = get_first_page(zspage);
1675                 if (trylock_page(page))
1676                         break;
1677                 get_page(page);
1678                 migrate_read_unlock(zspage);
1679                 wait_on_page_locked(page);
1680                 put_page(page);
1681         }
1682
1683         curr_page = page;
1684         while ((page = get_next_page(curr_page))) {
1685                 if (trylock_page(page)) {
1686                         curr_page = page;
1687                 } else {
1688                         get_page(page);
1689                         migrate_read_unlock(zspage);
1690                         wait_on_page_locked(page);
1691                         put_page(page);
1692                         migrate_read_lock(zspage);
1693                 }
1694         }
1695         migrate_read_unlock(zspage);
1696 }
1697 #endif /* CONFIG_COMPACTION */
1698
1699 static void migrate_lock_init(struct zspage *zspage)
1700 {
1701         rwlock_init(&zspage->lock);
1702 }
1703
1704 static void migrate_read_lock(struct zspage *zspage) __acquires(&zspage->lock)
1705 {
1706         read_lock(&zspage->lock);
1707 }
1708
1709 static void migrate_read_unlock(struct zspage *zspage) __releases(&zspage->lock)
1710 {
1711         read_unlock(&zspage->lock);
1712 }
1713
1714 static void migrate_write_lock(struct zspage *zspage)
1715 {
1716         write_lock(&zspage->lock);
1717 }
1718
1719 static void migrate_write_unlock(struct zspage *zspage)
1720 {
1721         write_unlock(&zspage->lock);
1722 }
1723
1724 #ifdef CONFIG_COMPACTION
1725
1726 static const struct movable_operations zsmalloc_mops;
1727
1728 static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1729                                 struct page *newpage, struct page *oldpage)
1730 {
1731         struct page *page;
1732         struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1733         int idx = 0;
1734
1735         page = get_first_page(zspage);
1736         do {
1737                 if (page == oldpage)
1738                         pages[idx] = newpage;
1739                 else
1740                         pages[idx] = page;
1741                 idx++;
1742         } while ((page = get_next_page(page)) != NULL);
1743
1744         create_page_chain(class, zspage, pages);
1745         set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1746         if (unlikely(ZsHugePage(zspage)))
1747                 newpage->index = oldpage->index;
1748         __SetPageMovable(newpage, &zsmalloc_mops);
1749 }
1750
1751 static bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1752 {
1753         /*
1754          * Page is locked so zspage couldn't be destroyed. For detail, look at
1755          * lock_zspage in free_zspage.
1756          */
1757         VM_BUG_ON_PAGE(PageIsolated(page), page);
1758
1759         return true;
1760 }
1761
1762 static int zs_page_migrate(struct page *newpage, struct page *page,
1763                 enum migrate_mode mode)
1764 {
1765         struct zs_pool *pool;
1766         struct size_class *class;
1767         struct zspage *zspage;
1768         struct page *dummy;
1769         void *s_addr, *d_addr, *addr;
1770         unsigned int offset;
1771         unsigned long handle;
1772         unsigned long old_obj, new_obj;
1773         unsigned int obj_idx;
1774
1775         VM_BUG_ON_PAGE(!PageIsolated(page), page);
1776
1777         /* We're committed, tell the world that this is a Zsmalloc page. */
1778         __SetPageZsmalloc(newpage);
1779
1780         /* The page is locked, so this pointer must remain valid */
1781         zspage = get_zspage(page);
1782         pool = zspage->pool;
1783
1784         /*
1785          * The pool migrate_lock protects the race between zpage migration
1786          * and zs_free.
1787          */
1788         write_lock(&pool->migrate_lock);
1789         class = zspage_class(pool, zspage);
1790
1791         /*
1792          * the class lock protects zpage alloc/free in the zspage.
1793          */
1794         spin_lock(&class->lock);
1795         /* the migrate_write_lock protects zpage access via zs_map_object */
1796         migrate_write_lock(zspage);
1797
1798         offset = get_first_obj_offset(page);
1799         s_addr = kmap_atomic(page);
1800
1801         /*
1802          * Here, any user cannot access all objects in the zspage so let's move.
1803          */
1804         d_addr = kmap_atomic(newpage);
1805         copy_page(d_addr, s_addr);
1806         kunmap_atomic(d_addr);
1807
1808         for (addr = s_addr + offset; addr < s_addr + PAGE_SIZE;
1809                                         addr += class->size) {
1810                 if (obj_allocated(page, addr, &handle)) {
1811
1812                         old_obj = handle_to_obj(handle);
1813                         obj_to_location(old_obj, &dummy, &obj_idx);
1814                         new_obj = (unsigned long)location_to_obj(newpage,
1815                                                                 obj_idx);
1816                         record_obj(handle, new_obj);
1817                 }
1818         }
1819         kunmap_atomic(s_addr);
1820
1821         replace_sub_page(class, zspage, newpage, page);
1822         /*
1823          * Since we complete the data copy and set up new zspage structure,
1824          * it's okay to release migration_lock.
1825          */
1826         write_unlock(&pool->migrate_lock);
1827         spin_unlock(&class->lock);
1828         migrate_write_unlock(zspage);
1829
1830         get_page(newpage);
1831         if (page_zone(newpage) != page_zone(page)) {
1832                 dec_zone_page_state(page, NR_ZSPAGES);
1833                 inc_zone_page_state(newpage, NR_ZSPAGES);
1834         }
1835
1836         reset_page(page);
1837         put_page(page);
1838
1839         return MIGRATEPAGE_SUCCESS;
1840 }
1841
1842 static void zs_page_putback(struct page *page)
1843 {
1844         VM_BUG_ON_PAGE(!PageIsolated(page), page);
1845 }
1846
1847 static const struct movable_operations zsmalloc_mops = {
1848         .isolate_page = zs_page_isolate,
1849         .migrate_page = zs_page_migrate,
1850         .putback_page = zs_page_putback,
1851 };
1852
1853 /*
1854  * Caller should hold page_lock of all pages in the zspage
1855  * In here, we cannot use zspage meta data.
1856  */
1857 static void async_free_zspage(struct work_struct *work)
1858 {
1859         int i;
1860         struct size_class *class;
1861         struct zspage *zspage, *tmp;
1862         LIST_HEAD(free_pages);
1863         struct zs_pool *pool = container_of(work, struct zs_pool,
1864                                         free_work);
1865
1866         for (i = 0; i < ZS_SIZE_CLASSES; i++) {
1867                 class = pool->size_class[i];
1868                 if (class->index != i)
1869                         continue;
1870
1871                 spin_lock(&class->lock);
1872                 list_splice_init(&class->fullness_list[ZS_INUSE_RATIO_0],
1873                                  &free_pages);
1874                 spin_unlock(&class->lock);
1875         }
1876
1877         list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
1878                 list_del(&zspage->list);
1879                 lock_zspage(zspage);
1880
1881                 class = zspage_class(pool, zspage);
1882                 spin_lock(&class->lock);
1883                 class_stat_sub(class, ZS_INUSE_RATIO_0, 1);
1884                 __free_zspage(pool, class, zspage);
1885                 spin_unlock(&class->lock);
1886         }
1887 };
1888
1889 static void kick_deferred_free(struct zs_pool *pool)
1890 {
1891         schedule_work(&pool->free_work);
1892 }
1893
1894 static void zs_flush_migration(struct zs_pool *pool)
1895 {
1896         flush_work(&pool->free_work);
1897 }
1898
1899 static void init_deferred_free(struct zs_pool *pool)
1900 {
1901         INIT_WORK(&pool->free_work, async_free_zspage);
1902 }
1903
1904 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
1905 {
1906         struct page *page = get_first_page(zspage);
1907
1908         do {
1909                 WARN_ON(!trylock_page(page));
1910                 __SetPageMovable(page, &zsmalloc_mops);
1911                 unlock_page(page);
1912         } while ((page = get_next_page(page)) != NULL);
1913 }
1914 #else
1915 static inline void zs_flush_migration(struct zs_pool *pool) { }
1916 #endif
1917
1918 /*
1919  *
1920  * Based on the number of unused allocated objects calculate
1921  * and return the number of pages that we can free.
1922  */
1923 static unsigned long zs_can_compact(struct size_class *class)
1924 {
1925         unsigned long obj_wasted;
1926         unsigned long obj_allocated = class_stat_read(class, ZS_OBJS_ALLOCATED);
1927         unsigned long obj_used = class_stat_read(class, ZS_OBJS_INUSE);
1928
1929         if (obj_allocated <= obj_used)
1930                 return 0;
1931
1932         obj_wasted = obj_allocated - obj_used;
1933         obj_wasted /= class->objs_per_zspage;
1934
1935         return obj_wasted * class->pages_per_zspage;
1936 }
1937
1938 static unsigned long __zs_compact(struct zs_pool *pool,
1939                                   struct size_class *class)
1940 {
1941         struct zspage *src_zspage = NULL;
1942         struct zspage *dst_zspage = NULL;
1943         unsigned long pages_freed = 0;
1944
1945         /*
1946          * protect the race between zpage migration and zs_free
1947          * as well as zpage allocation/free
1948          */
1949         write_lock(&pool->migrate_lock);
1950         spin_lock(&class->lock);
1951         while (zs_can_compact(class)) {
1952                 int fg;
1953
1954                 if (!dst_zspage) {
1955                         dst_zspage = isolate_dst_zspage(class);
1956                         if (!dst_zspage)
1957                                 break;
1958                 }
1959
1960                 src_zspage = isolate_src_zspage(class);
1961                 if (!src_zspage)
1962                         break;
1963
1964                 migrate_write_lock(src_zspage);
1965                 migrate_zspage(pool, src_zspage, dst_zspage);
1966                 migrate_write_unlock(src_zspage);
1967
1968                 fg = putback_zspage(class, src_zspage);
1969                 if (fg == ZS_INUSE_RATIO_0) {
1970                         free_zspage(pool, class, src_zspage);
1971                         pages_freed += class->pages_per_zspage;
1972                 }
1973                 src_zspage = NULL;
1974
1975                 if (get_fullness_group(class, dst_zspage) == ZS_INUSE_RATIO_100
1976                     || rwlock_is_contended(&pool->migrate_lock)) {
1977                         putback_zspage(class, dst_zspage);
1978                         dst_zspage = NULL;
1979
1980                         spin_unlock(&class->lock);
1981                         write_unlock(&pool->migrate_lock);
1982                         cond_resched();
1983                         write_lock(&pool->migrate_lock);
1984                         spin_lock(&class->lock);
1985                 }
1986         }
1987
1988         if (src_zspage)
1989                 putback_zspage(class, src_zspage);
1990
1991         if (dst_zspage)
1992                 putback_zspage(class, dst_zspage);
1993
1994         spin_unlock(&class->lock);
1995         write_unlock(&pool->migrate_lock);
1996
1997         return pages_freed;
1998 }
1999
2000 unsigned long zs_compact(struct zs_pool *pool)
2001 {
2002         int i;
2003         struct size_class *class;
2004         unsigned long pages_freed = 0;
2005
2006         /*
2007          * Pool compaction is performed under pool->migrate_lock so it is basically
2008          * single-threaded. Having more than one thread in __zs_compact()
2009          * will increase pool->migrate_lock contention, which will impact other
2010          * zsmalloc operations that need pool->migrate_lock.
2011          */
2012         if (atomic_xchg(&pool->compaction_in_progress, 1))
2013                 return 0;
2014
2015         for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2016                 class = pool->size_class[i];
2017                 if (class->index != i)
2018                         continue;
2019                 pages_freed += __zs_compact(pool, class);
2020         }
2021         atomic_long_add(pages_freed, &pool->stats.pages_compacted);
2022         atomic_set(&pool->compaction_in_progress, 0);
2023
2024         return pages_freed;
2025 }
2026 EXPORT_SYMBOL_GPL(zs_compact);
2027
2028 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2029 {
2030         memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2031 }
2032 EXPORT_SYMBOL_GPL(zs_pool_stats);
2033
2034 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2035                 struct shrink_control *sc)
2036 {
2037         unsigned long pages_freed;
2038         struct zs_pool *pool = shrinker->private_data;
2039
2040         /*
2041          * Compact classes and calculate compaction delta.
2042          * Can run concurrently with a manually triggered
2043          * (by user) compaction.
2044          */
2045         pages_freed = zs_compact(pool);
2046
2047         return pages_freed ? pages_freed : SHRINK_STOP;
2048 }
2049
2050 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2051                 struct shrink_control *sc)
2052 {
2053         int i;
2054         struct size_class *class;
2055         unsigned long pages_to_free = 0;
2056         struct zs_pool *pool = shrinker->private_data;
2057
2058         for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2059                 class = pool->size_class[i];
2060                 if (class->index != i)
2061                         continue;
2062
2063                 pages_to_free += zs_can_compact(class);
2064         }
2065
2066         return pages_to_free;
2067 }
2068
2069 static void zs_unregister_shrinker(struct zs_pool *pool)
2070 {
2071         shrinker_free(pool->shrinker);
2072 }
2073
2074 static int zs_register_shrinker(struct zs_pool *pool)
2075 {
2076         pool->shrinker = shrinker_alloc(0, "mm-zspool:%s", pool->name);
2077         if (!pool->shrinker)
2078                 return -ENOMEM;
2079
2080         pool->shrinker->scan_objects = zs_shrinker_scan;
2081         pool->shrinker->count_objects = zs_shrinker_count;
2082         pool->shrinker->batch = 0;
2083         pool->shrinker->private_data = pool;
2084
2085         shrinker_register(pool->shrinker);
2086
2087         return 0;
2088 }
2089
2090 static int calculate_zspage_chain_size(int class_size)
2091 {
2092         int i, min_waste = INT_MAX;
2093         int chain_size = 1;
2094
2095         if (is_power_of_2(class_size))
2096                 return chain_size;
2097
2098         for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
2099                 int waste;
2100
2101                 waste = (i * PAGE_SIZE) % class_size;
2102                 if (waste < min_waste) {
2103                         min_waste = waste;
2104                         chain_size = i;
2105                 }
2106         }
2107
2108         return chain_size;
2109 }
2110
2111 /**
2112  * zs_create_pool - Creates an allocation pool to work from.
2113  * @name: pool name to be created
2114  *
2115  * This function must be called before anything when using
2116  * the zsmalloc allocator.
2117  *
2118  * On success, a pointer to the newly created pool is returned,
2119  * otherwise NULL.
2120  */
2121 struct zs_pool *zs_create_pool(const char *name)
2122 {
2123         int i;
2124         struct zs_pool *pool;
2125         struct size_class *prev_class = NULL;
2126
2127         pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2128         if (!pool)
2129                 return NULL;
2130
2131         init_deferred_free(pool);
2132         rwlock_init(&pool->migrate_lock);
2133         atomic_set(&pool->compaction_in_progress, 0);
2134
2135         pool->name = kstrdup(name, GFP_KERNEL);
2136         if (!pool->name)
2137                 goto err;
2138
2139         if (create_cache(pool))
2140                 goto err;
2141
2142         /*
2143          * Iterate reversely, because, size of size_class that we want to use
2144          * for merging should be larger or equal to current size.
2145          */
2146         for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2147                 int size;
2148                 int pages_per_zspage;
2149                 int objs_per_zspage;
2150                 struct size_class *class;
2151                 int fullness;
2152
2153                 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2154                 if (size > ZS_MAX_ALLOC_SIZE)
2155                         size = ZS_MAX_ALLOC_SIZE;
2156                 pages_per_zspage = calculate_zspage_chain_size(size);
2157                 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2158
2159                 /*
2160                  * We iterate from biggest down to smallest classes,
2161                  * so huge_class_size holds the size of the first huge
2162                  * class. Any object bigger than or equal to that will
2163                  * endup in the huge class.
2164                  */
2165                 if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2166                                 !huge_class_size) {
2167                         huge_class_size = size;
2168                         /*
2169                          * The object uses ZS_HANDLE_SIZE bytes to store the
2170                          * handle. We need to subtract it, because zs_malloc()
2171                          * unconditionally adds handle size before it performs
2172                          * size class search - so object may be smaller than
2173                          * huge class size, yet it still can end up in the huge
2174                          * class because it grows by ZS_HANDLE_SIZE extra bytes
2175                          * right before class lookup.
2176                          */
2177                         huge_class_size -= (ZS_HANDLE_SIZE - 1);
2178                 }
2179
2180                 /*
2181                  * size_class is used for normal zsmalloc operation such
2182                  * as alloc/free for that size. Although it is natural that we
2183                  * have one size_class for each size, there is a chance that we
2184                  * can get more memory utilization if we use one size_class for
2185                  * many different sizes whose size_class have same
2186                  * characteristics. So, we makes size_class point to
2187                  * previous size_class if possible.
2188                  */
2189                 if (prev_class) {
2190                         if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2191                                 pool->size_class[i] = prev_class;
2192                                 continue;
2193                         }
2194                 }
2195
2196                 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2197                 if (!class)
2198                         goto err;
2199
2200                 class->size = size;
2201                 class->index = i;
2202                 class->pages_per_zspage = pages_per_zspage;
2203                 class->objs_per_zspage = objs_per_zspage;
2204                 spin_lock_init(&class->lock);
2205                 pool->size_class[i] = class;
2206
2207                 fullness = ZS_INUSE_RATIO_0;
2208                 while (fullness < NR_FULLNESS_GROUPS) {
2209                         INIT_LIST_HEAD(&class->fullness_list[fullness]);
2210                         fullness++;
2211                 }
2212
2213                 prev_class = class;
2214         }
2215
2216         /* debug only, don't abort if it fails */
2217         zs_pool_stat_create(pool, name);
2218
2219         /*
2220          * Not critical since shrinker is only used to trigger internal
2221          * defragmentation of the pool which is pretty optional thing.  If
2222          * registration fails we still can use the pool normally and user can
2223          * trigger compaction manually. Thus, ignore return code.
2224          */
2225         zs_register_shrinker(pool);
2226
2227         return pool;
2228
2229 err:
2230         zs_destroy_pool(pool);
2231         return NULL;
2232 }
2233 EXPORT_SYMBOL_GPL(zs_create_pool);
2234
2235 void zs_destroy_pool(struct zs_pool *pool)
2236 {
2237         int i;
2238
2239         zs_unregister_shrinker(pool);
2240         zs_flush_migration(pool);
2241         zs_pool_stat_destroy(pool);
2242
2243         for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2244                 int fg;
2245                 struct size_class *class = pool->size_class[i];
2246
2247                 if (!class)
2248                         continue;
2249
2250                 if (class->index != i)
2251                         continue;
2252
2253                 for (fg = ZS_INUSE_RATIO_0; fg < NR_FULLNESS_GROUPS; fg++) {
2254                         if (list_empty(&class->fullness_list[fg]))
2255                                 continue;
2256
2257                         pr_err("Class-%d fullness group %d is not empty\n",
2258                                class->size, fg);
2259                 }
2260                 kfree(class);
2261         }
2262
2263         destroy_cache(pool);
2264         kfree(pool->name);
2265         kfree(pool);
2266 }
2267 EXPORT_SYMBOL_GPL(zs_destroy_pool);
2268
2269 static int __init zs_init(void)
2270 {
2271         int ret;
2272
2273         ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2274                                 zs_cpu_prepare, zs_cpu_dead);
2275         if (ret)
2276                 goto out;
2277
2278 #ifdef CONFIG_ZPOOL
2279         zpool_register_driver(&zs_zpool_driver);
2280 #endif
2281
2282         zs_stat_init();
2283
2284         return 0;
2285
2286 out:
2287         return ret;
2288 }
2289
2290 static void __exit zs_exit(void)
2291 {
2292 #ifdef CONFIG_ZPOOL
2293         zpool_unregister_driver(&zs_zpool_driver);
2294 #endif
2295         cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
2296
2297         zs_stat_exit();
2298 }
2299
2300 module_init(zs_init);
2301 module_exit(zs_exit);
2302
2303 MODULE_LICENSE("Dual BSD/GPL");
2304 MODULE_AUTHOR("Nitin Gupta <[email protected]>");
2305 MODULE_DESCRIPTION("zsmalloc memory allocator");
This page took 0.166852 seconds and 4 git commands to generate.