1 // SPDX-License-Identifier: GPL-2.0
3 * Memory Migration functionality - linux/mm/migrate.c
5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
7 * Page migration was first developed in the context of the memory hotplug
8 * project. The main authors of the migration code are:
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pagewalk.h>
42 #include <linux/pfn_t.h>
43 #include <linux/memremap.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/balloon_compaction.h>
46 #include <linux/mmu_notifier.h>
47 #include <linux/page_idle.h>
48 #include <linux/page_owner.h>
49 #include <linux/sched/mm.h>
50 #include <linux/ptrace.h>
52 #include <asm/tlbflush.h>
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/migrate.h>
60 * migrate_prep() needs to be called before we start compiling a list of pages
61 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
62 * undesirable, use migrate_prep_local()
64 int migrate_prep(void)
67 * Clear the LRU lists so pages can be isolated.
68 * Note that pages may be moved off the LRU after we have
69 * drained them. Those pages will fail to migrate like other
70 * pages that may be busy.
77 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
78 int migrate_prep_local(void)
85 int isolate_movable_page(struct page *page, isolate_mode_t mode)
87 struct address_space *mapping;
90 * Avoid burning cycles with pages that are yet under __free_pages(),
91 * or just got freed under us.
93 * In case we 'win' a race for a movable page being freed under us and
94 * raise its refcount preventing __free_pages() from doing its job
95 * the put_page() at the end of this block will take care of
96 * release this page, thus avoiding a nasty leakage.
98 if (unlikely(!get_page_unless_zero(page)))
102 * Check PageMovable before holding a PG_lock because page's owner
103 * assumes anybody doesn't touch PG_lock of newly allocated page
104 * so unconditionally grabbing the lock ruins page's owner side.
106 if (unlikely(!__PageMovable(page)))
109 * As movable pages are not isolated from LRU lists, concurrent
110 * compaction threads can race against page migration functions
111 * as well as race against the releasing a page.
113 * In order to avoid having an already isolated movable page
114 * being (wrongly) re-isolated while it is under migration,
115 * or to avoid attempting to isolate pages being released,
116 * lets be sure we have the page lock
117 * before proceeding with the movable page isolation steps.
119 if (unlikely(!trylock_page(page)))
122 if (!PageMovable(page) || PageIsolated(page))
123 goto out_no_isolated;
125 mapping = page_mapping(page);
126 VM_BUG_ON_PAGE(!mapping, page);
128 if (!mapping->a_ops->isolate_page(page, mode))
129 goto out_no_isolated;
131 /* Driver shouldn't use PG_isolated bit of page->flags */
132 WARN_ON_ONCE(PageIsolated(page));
133 __SetPageIsolated(page);
146 /* It should be called on page which is PG_movable */
147 void putback_movable_page(struct page *page)
149 struct address_space *mapping;
151 VM_BUG_ON_PAGE(!PageLocked(page), page);
152 VM_BUG_ON_PAGE(!PageMovable(page), page);
153 VM_BUG_ON_PAGE(!PageIsolated(page), page);
155 mapping = page_mapping(page);
156 mapping->a_ops->putback_page(page);
157 __ClearPageIsolated(page);
161 * Put previously isolated pages back onto the appropriate lists
162 * from where they were once taken off for compaction/migration.
164 * This function shall be used whenever the isolated pageset has been
165 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
166 * and isolate_huge_page().
168 void putback_movable_pages(struct list_head *l)
173 list_for_each_entry_safe(page, page2, l, lru) {
174 if (unlikely(PageHuge(page))) {
175 putback_active_hugepage(page);
178 list_del(&page->lru);
180 * We isolated non-lru movable page so here we can use
181 * __PageMovable because LRU page's mapping cannot have
182 * PAGE_MAPPING_MOVABLE.
184 if (unlikely(__PageMovable(page))) {
185 VM_BUG_ON_PAGE(!PageIsolated(page), page);
187 if (PageMovable(page))
188 putback_movable_page(page);
190 __ClearPageIsolated(page);
194 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
195 page_is_file_cache(page), -hpage_nr_pages(page));
196 putback_lru_page(page);
202 * Restore a potential migration pte to a working pte entry
204 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
205 unsigned long addr, void *old)
207 struct page_vma_mapped_walk pvmw = {
211 .flags = PVMW_SYNC | PVMW_MIGRATION,
217 VM_BUG_ON_PAGE(PageTail(page), page);
218 while (page_vma_mapped_walk(&pvmw)) {
222 new = page - pvmw.page->index +
223 linear_page_index(vma, pvmw.address);
225 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
226 /* PMD-mapped THP migration entry */
228 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
229 remove_migration_pmd(&pvmw, new);
235 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
236 if (pte_swp_soft_dirty(*pvmw.pte))
237 pte = pte_mksoft_dirty(pte);
240 * Recheck VMA as permissions can change since migration started
242 entry = pte_to_swp_entry(*pvmw.pte);
243 if (is_write_migration_entry(entry))
244 pte = maybe_mkwrite(pte, vma);
246 if (unlikely(is_zone_device_page(new))) {
247 if (is_device_private_page(new)) {
248 entry = make_device_private_entry(new, pte_write(pte));
249 pte = swp_entry_to_pte(entry);
253 #ifdef CONFIG_HUGETLB_PAGE
255 pte = pte_mkhuge(pte);
256 pte = arch_make_huge_pte(pte, vma, new, 0);
257 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
259 hugepage_add_anon_rmap(new, vma, pvmw.address);
261 page_dup_rmap(new, true);
265 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
268 page_add_anon_rmap(new, vma, pvmw.address, false);
270 page_add_file_rmap(new, false);
272 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
275 if (PageTransHuge(page) && PageMlocked(page))
276 clear_page_mlock(page);
278 /* No need to invalidate - it was non-present before */
279 update_mmu_cache(vma, pvmw.address, pvmw.pte);
286 * Get rid of all migration entries and replace them by
287 * references to the indicated page.
289 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
291 struct rmap_walk_control rwc = {
292 .rmap_one = remove_migration_pte,
297 rmap_walk_locked(new, &rwc);
299 rmap_walk(new, &rwc);
303 * Something used the pte of a page under migration. We need to
304 * get to the page and wait until migration is finished.
305 * When we return from this function the fault will be retried.
307 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
316 if (!is_swap_pte(pte))
319 entry = pte_to_swp_entry(pte);
320 if (!is_migration_entry(entry))
323 page = migration_entry_to_page(entry);
326 * Once page cache replacement of page migration started, page_count
327 * is zero; but we must not call put_and_wait_on_page_locked() without
328 * a ref. Use get_page_unless_zero(), and just fault again if it fails.
330 if (!get_page_unless_zero(page))
332 pte_unmap_unlock(ptep, ptl);
333 put_and_wait_on_page_locked(page);
336 pte_unmap_unlock(ptep, ptl);
339 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
340 unsigned long address)
342 spinlock_t *ptl = pte_lockptr(mm, pmd);
343 pte_t *ptep = pte_offset_map(pmd, address);
344 __migration_entry_wait(mm, ptep, ptl);
347 void migration_entry_wait_huge(struct vm_area_struct *vma,
348 struct mm_struct *mm, pte_t *pte)
350 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
351 __migration_entry_wait(mm, pte, ptl);
354 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
355 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
360 ptl = pmd_lock(mm, pmd);
361 if (!is_pmd_migration_entry(*pmd))
363 page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
364 if (!get_page_unless_zero(page))
367 put_and_wait_on_page_locked(page);
374 static int expected_page_refs(struct address_space *mapping, struct page *page)
376 int expected_count = 1;
379 * Device public or private pages have an extra refcount as they are
382 expected_count += is_device_private_page(page);
384 expected_count += hpage_nr_pages(page) + page_has_private(page);
386 return expected_count;
390 * Replace the page in the mapping.
392 * The number of remaining references must be:
393 * 1 for anonymous pages without a mapping
394 * 2 for pages with a mapping
395 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
397 int migrate_page_move_mapping(struct address_space *mapping,
398 struct page *newpage, struct page *page, int extra_count)
400 XA_STATE(xas, &mapping->i_pages, page_index(page));
401 struct zone *oldzone, *newzone;
403 int expected_count = expected_page_refs(mapping, page) + extra_count;
406 /* Anonymous page without mapping */
407 if (page_count(page) != expected_count)
410 /* No turning back from here */
411 newpage->index = page->index;
412 newpage->mapping = page->mapping;
413 if (PageSwapBacked(page))
414 __SetPageSwapBacked(newpage);
416 return MIGRATEPAGE_SUCCESS;
419 oldzone = page_zone(page);
420 newzone = page_zone(newpage);
423 if (page_count(page) != expected_count || xas_load(&xas) != page) {
424 xas_unlock_irq(&xas);
428 if (!page_ref_freeze(page, expected_count)) {
429 xas_unlock_irq(&xas);
434 * Now we know that no one else is looking at the page:
435 * no turning back from here.
437 newpage->index = page->index;
438 newpage->mapping = page->mapping;
439 page_ref_add(newpage, hpage_nr_pages(page)); /* add cache reference */
440 if (PageSwapBacked(page)) {
441 __SetPageSwapBacked(newpage);
442 if (PageSwapCache(page)) {
443 SetPageSwapCache(newpage);
444 set_page_private(newpage, page_private(page));
447 VM_BUG_ON_PAGE(PageSwapCache(page), page);
450 /* Move dirty while page refs frozen and newpage not yet exposed */
451 dirty = PageDirty(page);
453 ClearPageDirty(page);
454 SetPageDirty(newpage);
457 xas_store(&xas, newpage);
458 if (PageTransHuge(page)) {
461 for (i = 1; i < HPAGE_PMD_NR; i++) {
463 xas_store(&xas, newpage);
468 * Drop cache reference from old page by unfreezing
469 * to one less reference.
470 * We know this isn't the last reference.
472 page_ref_unfreeze(page, expected_count - hpage_nr_pages(page));
475 /* Leave irq disabled to prevent preemption while updating stats */
478 * If moved to a different zone then also account
479 * the page for that zone. Other VM counters will be
480 * taken care of when we establish references to the
481 * new page and drop references to the old page.
483 * Note that anonymous pages are accounted for
484 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
485 * are mapped to swap space.
487 if (newzone != oldzone) {
488 __dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
489 __inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
490 if (PageSwapBacked(page) && !PageSwapCache(page)) {
491 __dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
492 __inc_node_state(newzone->zone_pgdat, NR_SHMEM);
494 if (dirty && mapping_cap_account_dirty(mapping)) {
495 __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
496 __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
497 __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
498 __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
503 return MIGRATEPAGE_SUCCESS;
505 EXPORT_SYMBOL(migrate_page_move_mapping);
508 * The expected number of remaining references is the same as that
509 * of migrate_page_move_mapping().
511 int migrate_huge_page_move_mapping(struct address_space *mapping,
512 struct page *newpage, struct page *page)
514 XA_STATE(xas, &mapping->i_pages, page_index(page));
518 expected_count = 2 + page_has_private(page);
519 if (page_count(page) != expected_count || xas_load(&xas) != page) {
520 xas_unlock_irq(&xas);
524 if (!page_ref_freeze(page, expected_count)) {
525 xas_unlock_irq(&xas);
529 newpage->index = page->index;
530 newpage->mapping = page->mapping;
534 xas_store(&xas, newpage);
536 page_ref_unfreeze(page, expected_count - 1);
538 xas_unlock_irq(&xas);
540 return MIGRATEPAGE_SUCCESS;
544 * Gigantic pages are so large that we do not guarantee that page++ pointer
545 * arithmetic will work across the entire page. We need something more
548 static void __copy_gigantic_page(struct page *dst, struct page *src,
552 struct page *dst_base = dst;
553 struct page *src_base = src;
555 for (i = 0; i < nr_pages; ) {
557 copy_highpage(dst, src);
560 dst = mem_map_next(dst, dst_base, i);
561 src = mem_map_next(src, src_base, i);
565 static void copy_huge_page(struct page *dst, struct page *src)
572 struct hstate *h = page_hstate(src);
573 nr_pages = pages_per_huge_page(h);
575 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
576 __copy_gigantic_page(dst, src, nr_pages);
581 BUG_ON(!PageTransHuge(src));
582 nr_pages = hpage_nr_pages(src);
585 for (i = 0; i < nr_pages; i++) {
587 copy_highpage(dst + i, src + i);
592 * Copy the page to its new location
594 void migrate_page_states(struct page *newpage, struct page *page)
599 SetPageError(newpage);
600 if (PageReferenced(page))
601 SetPageReferenced(newpage);
602 if (PageUptodate(page))
603 SetPageUptodate(newpage);
604 if (TestClearPageActive(page)) {
605 VM_BUG_ON_PAGE(PageUnevictable(page), page);
606 SetPageActive(newpage);
607 } else if (TestClearPageUnevictable(page))
608 SetPageUnevictable(newpage);
609 if (PageWorkingset(page))
610 SetPageWorkingset(newpage);
611 if (PageChecked(page))
612 SetPageChecked(newpage);
613 if (PageMappedToDisk(page))
614 SetPageMappedToDisk(newpage);
616 /* Move dirty on pages not done by migrate_page_move_mapping() */
618 SetPageDirty(newpage);
620 if (page_is_young(page))
621 set_page_young(newpage);
622 if (page_is_idle(page))
623 set_page_idle(newpage);
626 * Copy NUMA information to the new page, to prevent over-eager
627 * future migrations of this same page.
629 cpupid = page_cpupid_xchg_last(page, -1);
630 page_cpupid_xchg_last(newpage, cpupid);
632 ksm_migrate_page(newpage, page);
634 * Please do not reorder this without considering how mm/ksm.c's
635 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
637 if (PageSwapCache(page))
638 ClearPageSwapCache(page);
639 ClearPagePrivate(page);
640 set_page_private(page, 0);
643 * If any waiters have accumulated on the new page then
646 if (PageWriteback(newpage))
647 end_page_writeback(newpage);
649 copy_page_owner(page, newpage);
651 mem_cgroup_migrate(page, newpage);
653 EXPORT_SYMBOL(migrate_page_states);
655 void migrate_page_copy(struct page *newpage, struct page *page)
657 if (PageHuge(page) || PageTransHuge(page))
658 copy_huge_page(newpage, page);
660 copy_highpage(newpage, page);
662 migrate_page_states(newpage, page);
664 EXPORT_SYMBOL(migrate_page_copy);
666 /************************************************************
667 * Migration functions
668 ***********************************************************/
671 * Common logic to directly migrate a single LRU page suitable for
672 * pages that do not use PagePrivate/PagePrivate2.
674 * Pages are locked upon entry and exit.
676 int migrate_page(struct address_space *mapping,
677 struct page *newpage, struct page *page,
678 enum migrate_mode mode)
682 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
684 rc = migrate_page_move_mapping(mapping, newpage, page, 0);
686 if (rc != MIGRATEPAGE_SUCCESS)
689 if (mode != MIGRATE_SYNC_NO_COPY)
690 migrate_page_copy(newpage, page);
692 migrate_page_states(newpage, page);
693 return MIGRATEPAGE_SUCCESS;
695 EXPORT_SYMBOL(migrate_page);
698 /* Returns true if all buffers are successfully locked */
699 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
700 enum migrate_mode mode)
702 struct buffer_head *bh = head;
704 /* Simple case, sync compaction */
705 if (mode != MIGRATE_ASYNC) {
708 bh = bh->b_this_page;
710 } while (bh != head);
715 /* async case, we cannot block on lock_buffer so use trylock_buffer */
717 if (!trylock_buffer(bh)) {
719 * We failed to lock the buffer and cannot stall in
720 * async migration. Release the taken locks
722 struct buffer_head *failed_bh = bh;
724 while (bh != failed_bh) {
726 bh = bh->b_this_page;
731 bh = bh->b_this_page;
732 } while (bh != head);
736 static int __buffer_migrate_page(struct address_space *mapping,
737 struct page *newpage, struct page *page, enum migrate_mode mode,
740 struct buffer_head *bh, *head;
744 if (!page_has_buffers(page))
745 return migrate_page(mapping, newpage, page, mode);
747 /* Check whether page does not have extra refs before we do more work */
748 expected_count = expected_page_refs(mapping, page);
749 if (page_count(page) != expected_count)
752 head = page_buffers(page);
753 if (!buffer_migrate_lock_buffers(head, mode))
758 bool invalidated = false;
762 spin_lock(&mapping->private_lock);
765 if (atomic_read(&bh->b_count)) {
769 bh = bh->b_this_page;
770 } while (bh != head);
776 spin_unlock(&mapping->private_lock);
777 invalidate_bh_lrus();
779 goto recheck_buffers;
783 rc = migrate_page_move_mapping(mapping, newpage, page, 0);
784 if (rc != MIGRATEPAGE_SUCCESS)
787 ClearPagePrivate(page);
788 set_page_private(newpage, page_private(page));
789 set_page_private(page, 0);
795 set_bh_page(bh, newpage, bh_offset(bh));
796 bh = bh->b_this_page;
798 } while (bh != head);
800 SetPagePrivate(newpage);
802 if (mode != MIGRATE_SYNC_NO_COPY)
803 migrate_page_copy(newpage, page);
805 migrate_page_states(newpage, page);
807 rc = MIGRATEPAGE_SUCCESS;
810 spin_unlock(&mapping->private_lock);
814 bh = bh->b_this_page;
816 } while (bh != head);
822 * Migration function for pages with buffers. This function can only be used
823 * if the underlying filesystem guarantees that no other references to "page"
824 * exist. For example attached buffer heads are accessed only under page lock.
826 int buffer_migrate_page(struct address_space *mapping,
827 struct page *newpage, struct page *page, enum migrate_mode mode)
829 return __buffer_migrate_page(mapping, newpage, page, mode, false);
831 EXPORT_SYMBOL(buffer_migrate_page);
834 * Same as above except that this variant is more careful and checks that there
835 * are also no buffer head references. This function is the right one for
836 * mappings where buffer heads are directly looked up and referenced (such as
837 * block device mappings).
839 int buffer_migrate_page_norefs(struct address_space *mapping,
840 struct page *newpage, struct page *page, enum migrate_mode mode)
842 return __buffer_migrate_page(mapping, newpage, page, mode, true);
847 * Writeback a page to clean the dirty state
849 static int writeout(struct address_space *mapping, struct page *page)
851 struct writeback_control wbc = {
852 .sync_mode = WB_SYNC_NONE,
855 .range_end = LLONG_MAX,
860 if (!mapping->a_ops->writepage)
861 /* No write method for the address space */
864 if (!clear_page_dirty_for_io(page))
865 /* Someone else already triggered a write */
869 * A dirty page may imply that the underlying filesystem has
870 * the page on some queue. So the page must be clean for
871 * migration. Writeout may mean we loose the lock and the
872 * page state is no longer what we checked for earlier.
873 * At this point we know that the migration attempt cannot
876 remove_migration_ptes(page, page, false);
878 rc = mapping->a_ops->writepage(page, &wbc);
880 if (rc != AOP_WRITEPAGE_ACTIVATE)
881 /* unlocked. Relock */
884 return (rc < 0) ? -EIO : -EAGAIN;
888 * Default handling if a filesystem does not provide a migration function.
890 static int fallback_migrate_page(struct address_space *mapping,
891 struct page *newpage, struct page *page, enum migrate_mode mode)
893 if (PageDirty(page)) {
894 /* Only writeback pages in full synchronous migration */
897 case MIGRATE_SYNC_NO_COPY:
902 return writeout(mapping, page);
906 * Buffers may be managed in a filesystem specific way.
907 * We must have no buffers or drop them.
909 if (page_has_private(page) &&
910 !try_to_release_page(page, GFP_KERNEL))
911 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
913 return migrate_page(mapping, newpage, page, mode);
917 * Move a page to a newly allocated page
918 * The page is locked and all ptes have been successfully removed.
920 * The new page will have replaced the old page if this function
925 * MIGRATEPAGE_SUCCESS - success
927 static int move_to_new_page(struct page *newpage, struct page *page,
928 enum migrate_mode mode)
930 struct address_space *mapping;
932 bool is_lru = !__PageMovable(page);
934 VM_BUG_ON_PAGE(!PageLocked(page), page);
935 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
937 mapping = page_mapping(page);
939 if (likely(is_lru)) {
941 rc = migrate_page(mapping, newpage, page, mode);
942 else if (mapping->a_ops->migratepage)
944 * Most pages have a mapping and most filesystems
945 * provide a migratepage callback. Anonymous pages
946 * are part of swap space which also has its own
947 * migratepage callback. This is the most common path
948 * for page migration.
950 rc = mapping->a_ops->migratepage(mapping, newpage,
953 rc = fallback_migrate_page(mapping, newpage,
957 * In case of non-lru page, it could be released after
958 * isolation step. In that case, we shouldn't try migration.
960 VM_BUG_ON_PAGE(!PageIsolated(page), page);
961 if (!PageMovable(page)) {
962 rc = MIGRATEPAGE_SUCCESS;
963 __ClearPageIsolated(page);
967 rc = mapping->a_ops->migratepage(mapping, newpage,
969 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
970 !PageIsolated(page));
974 * When successful, old pagecache page->mapping must be cleared before
975 * page is freed; but stats require that PageAnon be left as PageAnon.
977 if (rc == MIGRATEPAGE_SUCCESS) {
978 if (__PageMovable(page)) {
979 VM_BUG_ON_PAGE(!PageIsolated(page), page);
982 * We clear PG_movable under page_lock so any compactor
983 * cannot try to migrate this page.
985 __ClearPageIsolated(page);
989 * Anonymous and movable page->mapping will be cleard by
990 * free_pages_prepare so don't reset it here for keeping
991 * the type to work PageAnon, for example.
993 if (!PageMappingFlags(page))
994 page->mapping = NULL;
996 if (likely(!is_zone_device_page(newpage)))
997 flush_dcache_page(newpage);
1004 static int __unmap_and_move(struct page *page, struct page *newpage,
1005 int force, enum migrate_mode mode)
1008 int page_was_mapped = 0;
1009 struct anon_vma *anon_vma = NULL;
1010 bool is_lru = !__PageMovable(page);
1012 if (!trylock_page(page)) {
1013 if (!force || mode == MIGRATE_ASYNC)
1017 * It's not safe for direct compaction to call lock_page.
1018 * For example, during page readahead pages are added locked
1019 * to the LRU. Later, when the IO completes the pages are
1020 * marked uptodate and unlocked. However, the queueing
1021 * could be merging multiple pages for one bio (e.g.
1022 * mpage_readpages). If an allocation happens for the
1023 * second or third page, the process can end up locking
1024 * the same page twice and deadlocking. Rather than
1025 * trying to be clever about what pages can be locked,
1026 * avoid the use of lock_page for direct compaction
1029 if (current->flags & PF_MEMALLOC)
1035 if (PageWriteback(page)) {
1037 * Only in the case of a full synchronous migration is it
1038 * necessary to wait for PageWriteback. In the async case,
1039 * the retry loop is too short and in the sync-light case,
1040 * the overhead of stalling is too much
1044 case MIGRATE_SYNC_NO_COPY:
1052 wait_on_page_writeback(page);
1056 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1057 * we cannot notice that anon_vma is freed while we migrates a page.
1058 * This get_anon_vma() delays freeing anon_vma pointer until the end
1059 * of migration. File cache pages are no problem because of page_lock()
1060 * File Caches may use write_page() or lock_page() in migration, then,
1061 * just care Anon page here.
1063 * Only page_get_anon_vma() understands the subtleties of
1064 * getting a hold on an anon_vma from outside one of its mms.
1065 * But if we cannot get anon_vma, then we won't need it anyway,
1066 * because that implies that the anon page is no longer mapped
1067 * (and cannot be remapped so long as we hold the page lock).
1069 if (PageAnon(page) && !PageKsm(page))
1070 anon_vma = page_get_anon_vma(page);
1073 * Block others from accessing the new page when we get around to
1074 * establishing additional references. We are usually the only one
1075 * holding a reference to newpage at this point. We used to have a BUG
1076 * here if trylock_page(newpage) fails, but would like to allow for
1077 * cases where there might be a race with the previous use of newpage.
1078 * This is much like races on refcount of oldpage: just don't BUG().
1080 if (unlikely(!trylock_page(newpage)))
1083 if (unlikely(!is_lru)) {
1084 rc = move_to_new_page(newpage, page, mode);
1085 goto out_unlock_both;
1089 * Corner case handling:
1090 * 1. When a new swap-cache page is read into, it is added to the LRU
1091 * and treated as swapcache but it has no rmap yet.
1092 * Calling try_to_unmap() against a page->mapping==NULL page will
1093 * trigger a BUG. So handle it here.
1094 * 2. An orphaned page (see truncate_complete_page) might have
1095 * fs-private metadata. The page can be picked up due to memory
1096 * offlining. Everywhere else except page reclaim, the page is
1097 * invisible to the vm, so the page can not be migrated. So try to
1098 * free the metadata, so the page can be freed.
1100 if (!page->mapping) {
1101 VM_BUG_ON_PAGE(PageAnon(page), page);
1102 if (page_has_private(page)) {
1103 try_to_free_buffers(page);
1104 goto out_unlock_both;
1106 } else if (page_mapped(page)) {
1107 /* Establish migration ptes */
1108 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1111 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1112 page_was_mapped = 1;
1115 if (!page_mapped(page))
1116 rc = move_to_new_page(newpage, page, mode);
1118 if (page_was_mapped)
1119 remove_migration_ptes(page,
1120 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1123 unlock_page(newpage);
1125 /* Drop an anon_vma reference if we took one */
1127 put_anon_vma(anon_vma);
1131 * If migration is successful, decrease refcount of the newpage
1132 * which will not free the page because new page owner increased
1133 * refcounter. As well, if it is LRU page, add the page to LRU
1134 * list in here. Use the old state of the isolated source page to
1135 * determine if we migrated a LRU page. newpage was already unlocked
1136 * and possibly modified by its owner - don't rely on the page
1139 if (rc == MIGRATEPAGE_SUCCESS) {
1140 if (unlikely(!is_lru))
1143 putback_lru_page(newpage);
1150 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move(). Work
1153 #if defined(CONFIG_ARM) && \
1154 defined(GCC_VERSION) && GCC_VERSION < 40900 && GCC_VERSION >= 40700
1155 #define ICE_noinline noinline
1157 #define ICE_noinline
1161 * Obtain the lock on page, remove all ptes and migrate the page
1162 * to the newly allocated page in newpage.
1164 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1165 free_page_t put_new_page,
1166 unsigned long private, struct page *page,
1167 int force, enum migrate_mode mode,
1168 enum migrate_reason reason)
1170 int rc = MIGRATEPAGE_SUCCESS;
1171 struct page *newpage;
1173 if (!thp_migration_supported() && PageTransHuge(page))
1176 newpage = get_new_page(page, private);
1180 if (page_count(page) == 1) {
1181 /* page was freed from under us. So we are done. */
1182 ClearPageActive(page);
1183 ClearPageUnevictable(page);
1184 if (unlikely(__PageMovable(page))) {
1186 if (!PageMovable(page))
1187 __ClearPageIsolated(page);
1191 put_new_page(newpage, private);
1197 rc = __unmap_and_move(page, newpage, force, mode);
1198 if (rc == MIGRATEPAGE_SUCCESS)
1199 set_page_owner_migrate_reason(newpage, reason);
1202 if (rc != -EAGAIN) {
1204 * A page that has been migrated has all references
1205 * removed and will be freed. A page that has not been
1206 * migrated will have kepts its references and be
1209 list_del(&page->lru);
1212 * Compaction can migrate also non-LRU pages which are
1213 * not accounted to NR_ISOLATED_*. They can be recognized
1216 if (likely(!__PageMovable(page)))
1217 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1218 page_is_file_cache(page), -hpage_nr_pages(page));
1222 * If migration is successful, releases reference grabbed during
1223 * isolation. Otherwise, restore the page to right list unless
1226 if (rc == MIGRATEPAGE_SUCCESS) {
1228 if (reason == MR_MEMORY_FAILURE) {
1230 * Set PG_HWPoison on just freed page
1231 * intentionally. Although it's rather weird,
1232 * it's how HWPoison flag works at the moment.
1234 if (set_hwpoison_free_buddy_page(page))
1235 num_poisoned_pages_inc();
1238 if (rc != -EAGAIN) {
1239 if (likely(!__PageMovable(page))) {
1240 putback_lru_page(page);
1245 if (PageMovable(page))
1246 putback_movable_page(page);
1248 __ClearPageIsolated(page);
1254 put_new_page(newpage, private);
1263 * Counterpart of unmap_and_move_page() for hugepage migration.
1265 * This function doesn't wait the completion of hugepage I/O
1266 * because there is no race between I/O and migration for hugepage.
1267 * Note that currently hugepage I/O occurs only in direct I/O
1268 * where no lock is held and PG_writeback is irrelevant,
1269 * and writeback status of all subpages are counted in the reference
1270 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1271 * under direct I/O, the reference of the head page is 512 and a bit more.)
1272 * This means that when we try to migrate hugepage whose subpages are
1273 * doing direct I/O, some references remain after try_to_unmap() and
1274 * hugepage migration fails without data corruption.
1276 * There is also no race when direct I/O is issued on the page under migration,
1277 * because then pte is replaced with migration swap entry and direct I/O code
1278 * will wait in the page fault for migration to complete.
1280 static int unmap_and_move_huge_page(new_page_t get_new_page,
1281 free_page_t put_new_page, unsigned long private,
1282 struct page *hpage, int force,
1283 enum migrate_mode mode, int reason)
1286 int page_was_mapped = 0;
1287 struct page *new_hpage;
1288 struct anon_vma *anon_vma = NULL;
1291 * Migratability of hugepages depends on architectures and their size.
1292 * This check is necessary because some callers of hugepage migration
1293 * like soft offline and memory hotremove don't walk through page
1294 * tables or check whether the hugepage is pmd-based or not before
1295 * kicking migration.
1297 if (!hugepage_migration_supported(page_hstate(hpage))) {
1298 putback_active_hugepage(hpage);
1302 new_hpage = get_new_page(hpage, private);
1306 if (!trylock_page(hpage)) {
1311 case MIGRATE_SYNC_NO_COPY:
1320 * Check for pages which are in the process of being freed. Without
1321 * page_mapping() set, hugetlbfs specific move page routine will not
1322 * be called and we could leak usage counts for subpools.
1324 if (page_private(hpage) && !page_mapping(hpage)) {
1329 if (PageAnon(hpage))
1330 anon_vma = page_get_anon_vma(hpage);
1332 if (unlikely(!trylock_page(new_hpage)))
1335 if (page_mapped(hpage)) {
1337 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1338 page_was_mapped = 1;
1341 if (!page_mapped(hpage))
1342 rc = move_to_new_page(new_hpage, hpage, mode);
1344 if (page_was_mapped)
1345 remove_migration_ptes(hpage,
1346 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1348 unlock_page(new_hpage);
1352 put_anon_vma(anon_vma);
1354 if (rc == MIGRATEPAGE_SUCCESS) {
1355 move_hugetlb_state(hpage, new_hpage, reason);
1356 put_new_page = NULL;
1363 putback_active_hugepage(hpage);
1366 * If migration was not successful and there's a freeing callback, use
1367 * it. Otherwise, put_page() will drop the reference grabbed during
1371 put_new_page(new_hpage, private);
1373 putback_active_hugepage(new_hpage);
1379 * migrate_pages - migrate the pages specified in a list, to the free pages
1380 * supplied as the target for the page migration
1382 * @from: The list of pages to be migrated.
1383 * @get_new_page: The function used to allocate free pages to be used
1384 * as the target of the page migration.
1385 * @put_new_page: The function used to free target pages if migration
1386 * fails, or NULL if no special handling is necessary.
1387 * @private: Private data to be passed on to get_new_page()
1388 * @mode: The migration mode that specifies the constraints for
1389 * page migration, if any.
1390 * @reason: The reason for page migration.
1392 * The function returns after 10 attempts or if no pages are movable any more
1393 * because the list has become empty or no retryable pages exist any more.
1394 * The caller should call putback_movable_pages() to return pages to the LRU
1395 * or free list only if ret != 0.
1397 * Returns the number of pages that were not migrated, or an error code.
1399 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1400 free_page_t put_new_page, unsigned long private,
1401 enum migrate_mode mode, int reason)
1405 int nr_succeeded = 0;
1409 int swapwrite = current->flags & PF_SWAPWRITE;
1413 current->flags |= PF_SWAPWRITE;
1415 for(pass = 0; pass < 10 && retry; pass++) {
1418 list_for_each_entry_safe(page, page2, from, lru) {
1423 rc = unmap_and_move_huge_page(get_new_page,
1424 put_new_page, private, page,
1425 pass > 2, mode, reason);
1427 rc = unmap_and_move(get_new_page, put_new_page,
1428 private, page, pass > 2, mode,
1434 * THP migration might be unsupported or the
1435 * allocation could've failed so we should
1436 * retry on the same page with the THP split
1439 * Head page is retried immediately and tail
1440 * pages are added to the tail of the list so
1441 * we encounter them after the rest of the list
1444 if (PageTransHuge(page) && !PageHuge(page)) {
1446 rc = split_huge_page_to_list(page, from);
1449 list_safe_reset_next(page, page2, lru);
1458 case MIGRATEPAGE_SUCCESS:
1463 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1464 * unlike -EAGAIN case, the failed page is
1465 * removed from migration page list and not
1466 * retried in the next outer loop.
1477 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1479 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1480 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1483 current->flags &= ~PF_SWAPWRITE;
1490 static int store_status(int __user *status, int start, int value, int nr)
1493 if (put_user(value, status + start))
1501 static int do_move_pages_to_node(struct mm_struct *mm,
1502 struct list_head *pagelist, int node)
1506 if (list_empty(pagelist))
1509 err = migrate_pages(pagelist, alloc_new_node_page, NULL, node,
1510 MIGRATE_SYNC, MR_SYSCALL);
1512 putback_movable_pages(pagelist);
1517 * Resolves the given address to a struct page, isolates it from the LRU and
1518 * puts it to the given pagelist.
1519 * Returns -errno if the page cannot be found/isolated or 0 when it has been
1520 * queued or the page doesn't need to be migrated because it is already on
1523 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1524 int node, struct list_head *pagelist, bool migrate_all)
1526 struct vm_area_struct *vma;
1528 unsigned int follflags;
1531 down_read(&mm->mmap_sem);
1533 vma = find_vma(mm, addr);
1534 if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1537 /* FOLL_DUMP to ignore special (like zero) pages */
1538 follflags = FOLL_GET | FOLL_DUMP;
1539 page = follow_page(vma, addr, follflags);
1541 err = PTR_ERR(page);
1550 if (page_to_nid(page) == node)
1554 if (page_mapcount(page) > 1 && !migrate_all)
1557 if (PageHuge(page)) {
1558 if (PageHead(page)) {
1559 isolate_huge_page(page, pagelist);
1565 head = compound_head(page);
1566 err = isolate_lru_page(head);
1571 list_add_tail(&head->lru, pagelist);
1572 mod_node_page_state(page_pgdat(head),
1573 NR_ISOLATED_ANON + page_is_file_cache(head),
1574 hpage_nr_pages(head));
1578 * Either remove the duplicate refcount from
1579 * isolate_lru_page() or drop the page ref if it was
1584 up_read(&mm->mmap_sem);
1589 * Migrate an array of page address onto an array of nodes and fill
1590 * the corresponding array of status.
1592 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1593 unsigned long nr_pages,
1594 const void __user * __user *pages,
1595 const int __user *nodes,
1596 int __user *status, int flags)
1598 int current_node = NUMA_NO_NODE;
1599 LIST_HEAD(pagelist);
1605 for (i = start = 0; i < nr_pages; i++) {
1606 const void __user *p;
1611 if (get_user(p, pages + i))
1613 if (get_user(node, nodes + i))
1615 addr = (unsigned long)untagged_addr(p);
1618 if (node < 0 || node >= MAX_NUMNODES)
1620 if (!node_state(node, N_MEMORY))
1624 if (!node_isset(node, task_nodes))
1627 if (current_node == NUMA_NO_NODE) {
1628 current_node = node;
1630 } else if (node != current_node) {
1631 err = do_move_pages_to_node(mm, &pagelist, current_node);
1634 err = store_status(status, start, current_node, i - start);
1638 current_node = node;
1642 * Errors in the page lookup or isolation are not fatal and we simply
1643 * report them via status
1645 err = add_page_for_migration(mm, addr, current_node,
1646 &pagelist, flags & MPOL_MF_MOVE_ALL);
1650 err = store_status(status, i, err, 1);
1654 err = do_move_pages_to_node(mm, &pagelist, current_node);
1658 err = store_status(status, start, current_node, i - start);
1662 current_node = NUMA_NO_NODE;
1665 if (list_empty(&pagelist))
1668 /* Make sure we do not overwrite the existing error */
1669 err1 = do_move_pages_to_node(mm, &pagelist, current_node);
1671 err1 = store_status(status, start, current_node, i - start);
1679 * Determine the nodes of an array of pages and store it in an array of status.
1681 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1682 const void __user **pages, int *status)
1686 down_read(&mm->mmap_sem);
1688 for (i = 0; i < nr_pages; i++) {
1689 unsigned long addr = (unsigned long)(*pages);
1690 struct vm_area_struct *vma;
1694 vma = find_vma(mm, addr);
1695 if (!vma || addr < vma->vm_start)
1698 /* FOLL_DUMP to ignore special (like zero) pages */
1699 page = follow_page(vma, addr, FOLL_DUMP);
1701 err = PTR_ERR(page);
1705 err = page ? page_to_nid(page) : -ENOENT;
1713 up_read(&mm->mmap_sem);
1717 * Determine the nodes of a user array of pages and store it in
1718 * a user array of status.
1720 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1721 const void __user * __user *pages,
1724 #define DO_PAGES_STAT_CHUNK_NR 16
1725 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1726 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1729 unsigned long chunk_nr;
1731 chunk_nr = nr_pages;
1732 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1733 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1735 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1738 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1740 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1745 nr_pages -= chunk_nr;
1747 return nr_pages ? -EFAULT : 0;
1751 * Move a list of pages in the address space of the currently executing
1754 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1755 const void __user * __user *pages,
1756 const int __user *nodes,
1757 int __user *status, int flags)
1759 struct task_struct *task;
1760 struct mm_struct *mm;
1762 nodemask_t task_nodes;
1765 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1768 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1771 /* Find the mm_struct */
1773 task = pid ? find_task_by_vpid(pid) : current;
1778 get_task_struct(task);
1781 * Check if this process has the right to modify the specified
1782 * process. Use the regular "ptrace_may_access()" checks.
1784 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1791 err = security_task_movememory(task);
1795 task_nodes = cpuset_mems_allowed(task);
1796 mm = get_task_mm(task);
1797 put_task_struct(task);
1803 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1804 nodes, status, flags);
1806 err = do_pages_stat(mm, nr_pages, pages, status);
1812 put_task_struct(task);
1816 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1817 const void __user * __user *, pages,
1818 const int __user *, nodes,
1819 int __user *, status, int, flags)
1821 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1824 #ifdef CONFIG_COMPAT
1825 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1826 compat_uptr_t __user *, pages32,
1827 const int __user *, nodes,
1828 int __user *, status,
1831 const void __user * __user *pages;
1834 pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1835 for (i = 0; i < nr_pages; i++) {
1838 if (get_user(p, pages32 + i) ||
1839 put_user(compat_ptr(p), pages + i))
1842 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1844 #endif /* CONFIG_COMPAT */
1846 #ifdef CONFIG_NUMA_BALANCING
1848 * Returns true if this is a safe migration target node for misplaced NUMA
1849 * pages. Currently it only checks the watermarks which crude
1851 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1852 unsigned long nr_migrate_pages)
1856 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1857 struct zone *zone = pgdat->node_zones + z;
1859 if (!populated_zone(zone))
1862 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1863 if (!zone_watermark_ok(zone, 0,
1864 high_wmark_pages(zone) +
1873 static struct page *alloc_misplaced_dst_page(struct page *page,
1876 int nid = (int) data;
1877 struct page *newpage;
1879 newpage = __alloc_pages_node(nid,
1880 (GFP_HIGHUSER_MOVABLE |
1881 __GFP_THISNODE | __GFP_NOMEMALLOC |
1882 __GFP_NORETRY | __GFP_NOWARN) &
1888 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1892 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1894 /* Avoid migrating to a node that is nearly full */
1895 if (!migrate_balanced_pgdat(pgdat, compound_nr(page)))
1898 if (isolate_lru_page(page))
1902 * migrate_misplaced_transhuge_page() skips page migration's usual
1903 * check on page_count(), so we must do it here, now that the page
1904 * has been isolated: a GUP pin, or any other pin, prevents migration.
1905 * The expected page count is 3: 1 for page's mapcount and 1 for the
1906 * caller's pin and 1 for the reference taken by isolate_lru_page().
1908 if (PageTransHuge(page) && page_count(page) != 3) {
1909 putback_lru_page(page);
1913 page_lru = page_is_file_cache(page);
1914 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1915 hpage_nr_pages(page));
1918 * Isolating the page has taken another reference, so the
1919 * caller's reference can be safely dropped without the page
1920 * disappearing underneath us during migration.
1926 bool pmd_trans_migrating(pmd_t pmd)
1928 struct page *page = pmd_page(pmd);
1929 return PageLocked(page);
1933 * Attempt to migrate a misplaced page to the specified destination
1934 * node. Caller is expected to have an elevated reference count on
1935 * the page that will be dropped by this function before returning.
1937 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1940 pg_data_t *pgdat = NODE_DATA(node);
1943 LIST_HEAD(migratepages);
1946 * Don't migrate file pages that are mapped in multiple processes
1947 * with execute permissions as they are probably shared libraries.
1949 if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1950 (vma->vm_flags & VM_EXEC))
1954 * Also do not migrate dirty pages as not all filesystems can move
1955 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
1957 if (page_is_file_cache(page) && PageDirty(page))
1960 isolated = numamigrate_isolate_page(pgdat, page);
1964 list_add(&page->lru, &migratepages);
1965 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1966 NULL, node, MIGRATE_ASYNC,
1969 if (!list_empty(&migratepages)) {
1970 list_del(&page->lru);
1971 dec_node_page_state(page, NR_ISOLATED_ANON +
1972 page_is_file_cache(page));
1973 putback_lru_page(page);
1977 count_vm_numa_event(NUMA_PAGE_MIGRATE);
1978 BUG_ON(!list_empty(&migratepages));
1985 #endif /* CONFIG_NUMA_BALANCING */
1987 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1989 * Migrates a THP to a given target node. page must be locked and is unlocked
1992 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1993 struct vm_area_struct *vma,
1994 pmd_t *pmd, pmd_t entry,
1995 unsigned long address,
1996 struct page *page, int node)
1999 pg_data_t *pgdat = NODE_DATA(node);
2001 struct page *new_page = NULL;
2002 int page_lru = page_is_file_cache(page);
2003 unsigned long start = address & HPAGE_PMD_MASK;
2005 new_page = alloc_pages_node(node,
2006 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2010 prep_transhuge_page(new_page);
2012 isolated = numamigrate_isolate_page(pgdat, page);
2018 /* Prepare a page as a migration target */
2019 __SetPageLocked(new_page);
2020 if (PageSwapBacked(page))
2021 __SetPageSwapBacked(new_page);
2023 /* anon mapping, we can simply copy page->mapping to the new page: */
2024 new_page->mapping = page->mapping;
2025 new_page->index = page->index;
2026 /* flush the cache before copying using the kernel virtual address */
2027 flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
2028 migrate_page_copy(new_page, page);
2029 WARN_ON(PageLRU(new_page));
2031 /* Recheck the target PMD */
2032 ptl = pmd_lock(mm, pmd);
2033 if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2036 /* Reverse changes made by migrate_page_copy() */
2037 if (TestClearPageActive(new_page))
2038 SetPageActive(page);
2039 if (TestClearPageUnevictable(new_page))
2040 SetPageUnevictable(page);
2042 unlock_page(new_page);
2043 put_page(new_page); /* Free it */
2045 /* Retake the callers reference and putback on LRU */
2047 putback_lru_page(page);
2048 mod_node_page_state(page_pgdat(page),
2049 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2054 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2055 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2058 * Overwrite the old entry under pagetable lock and establish
2059 * the new PTE. Any parallel GUP will either observe the old
2060 * page blocking on the page lock, block on the page table
2061 * lock or observe the new page. The SetPageUptodate on the
2062 * new page and page_add_new_anon_rmap guarantee the copy is
2063 * visible before the pagetable update.
2065 page_add_anon_rmap(new_page, vma, start, true);
2067 * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2068 * has already been flushed globally. So no TLB can be currently
2069 * caching this non present pmd mapping. There's no need to clear the
2070 * pmd before doing set_pmd_at(), nor to flush the TLB after
2071 * set_pmd_at(). Clearing the pmd here would introduce a race
2072 * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
2073 * mmap_sem for reading. If the pmd is set to NULL at any given time,
2074 * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2077 set_pmd_at(mm, start, pmd, entry);
2078 update_mmu_cache_pmd(vma, address, &entry);
2080 page_ref_unfreeze(page, 2);
2081 mlock_migrate_page(new_page, page);
2082 page_remove_rmap(page, true);
2083 set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2087 /* Take an "isolate" reference and put new page on the LRU. */
2089 putback_lru_page(new_page);
2091 unlock_page(new_page);
2093 put_page(page); /* Drop the rmap reference */
2094 put_page(page); /* Drop the LRU isolation reference */
2096 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2097 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2099 mod_node_page_state(page_pgdat(page),
2100 NR_ISOLATED_ANON + page_lru,
2105 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2106 ptl = pmd_lock(mm, pmd);
2107 if (pmd_same(*pmd, entry)) {
2108 entry = pmd_modify(entry, vma->vm_page_prot);
2109 set_pmd_at(mm, start, pmd, entry);
2110 update_mmu_cache_pmd(vma, address, &entry);
2119 #endif /* CONFIG_NUMA_BALANCING */
2121 #endif /* CONFIG_NUMA */
2123 #ifdef CONFIG_DEVICE_PRIVATE
2124 static int migrate_vma_collect_hole(unsigned long start,
2126 struct mm_walk *walk)
2128 struct migrate_vma *migrate = walk->private;
2131 for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2132 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2133 migrate->dst[migrate->npages] = 0;
2141 static int migrate_vma_collect_skip(unsigned long start,
2143 struct mm_walk *walk)
2145 struct migrate_vma *migrate = walk->private;
2148 for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2149 migrate->dst[migrate->npages] = 0;
2150 migrate->src[migrate->npages++] = 0;
2156 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2157 unsigned long start,
2159 struct mm_walk *walk)
2161 struct migrate_vma *migrate = walk->private;
2162 struct vm_area_struct *vma = walk->vma;
2163 struct mm_struct *mm = vma->vm_mm;
2164 unsigned long addr = start, unmapped = 0;
2169 if (pmd_none(*pmdp))
2170 return migrate_vma_collect_hole(start, end, walk);
2172 if (pmd_trans_huge(*pmdp)) {
2175 ptl = pmd_lock(mm, pmdp);
2176 if (unlikely(!pmd_trans_huge(*pmdp))) {
2181 page = pmd_page(*pmdp);
2182 if (is_huge_zero_page(page)) {
2184 split_huge_pmd(vma, pmdp, addr);
2185 if (pmd_trans_unstable(pmdp))
2186 return migrate_vma_collect_skip(start, end,
2193 if (unlikely(!trylock_page(page)))
2194 return migrate_vma_collect_skip(start, end,
2196 ret = split_huge_page(page);
2200 return migrate_vma_collect_skip(start, end,
2202 if (pmd_none(*pmdp))
2203 return migrate_vma_collect_hole(start, end,
2208 if (unlikely(pmd_bad(*pmdp)))
2209 return migrate_vma_collect_skip(start, end, walk);
2211 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2212 arch_enter_lazy_mmu_mode();
2214 for (; addr < end; addr += PAGE_SIZE, ptep++) {
2215 unsigned long mpfn, pfn;
2222 if (pte_none(pte)) {
2223 mpfn = MIGRATE_PFN_MIGRATE;
2228 if (!pte_present(pte)) {
2232 * Only care about unaddressable device page special
2233 * page table entry. Other special swap entries are not
2234 * migratable, and we ignore regular swapped page.
2236 entry = pte_to_swp_entry(pte);
2237 if (!is_device_private_entry(entry))
2240 page = device_private_entry_to_page(entry);
2241 mpfn = migrate_pfn(page_to_pfn(page)) |
2242 MIGRATE_PFN_MIGRATE;
2243 if (is_write_device_private_entry(entry))
2244 mpfn |= MIGRATE_PFN_WRITE;
2247 if (is_zero_pfn(pfn)) {
2248 mpfn = MIGRATE_PFN_MIGRATE;
2252 page = vm_normal_page(migrate->vma, addr, pte);
2253 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2254 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2257 /* FIXME support THP */
2258 if (!page || !page->mapping || PageTransCompound(page)) {
2264 * By getting a reference on the page we pin it and that blocks
2265 * any kind of migration. Side effect is that it "freezes" the
2268 * We drop this reference after isolating the page from the lru
2269 * for non device page (device page are not on the lru and thus
2270 * can't be dropped from it).
2276 * Optimize for the common case where page is only mapped once
2277 * in one process. If we can lock the page, then we can safely
2278 * set up a special migration page table entry now.
2280 if (trylock_page(page)) {
2283 mpfn |= MIGRATE_PFN_LOCKED;
2284 ptep_get_and_clear(mm, addr, ptep);
2286 /* Setup special migration page table entry */
2287 entry = make_migration_entry(page, mpfn &
2289 swp_pte = swp_entry_to_pte(entry);
2290 if (pte_soft_dirty(pte))
2291 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2292 set_pte_at(mm, addr, ptep, swp_pte);
2295 * This is like regular unmap: we remove the rmap and
2296 * drop page refcount. Page won't be freed, as we took
2297 * a reference just above.
2299 page_remove_rmap(page, false);
2302 if (pte_present(pte))
2307 migrate->dst[migrate->npages] = 0;
2308 migrate->src[migrate->npages++] = mpfn;
2310 arch_leave_lazy_mmu_mode();
2311 pte_unmap_unlock(ptep - 1, ptl);
2313 /* Only flush the TLB if we actually modified any entries */
2315 flush_tlb_range(walk->vma, start, end);
2320 static const struct mm_walk_ops migrate_vma_walk_ops = {
2321 .pmd_entry = migrate_vma_collect_pmd,
2322 .pte_hole = migrate_vma_collect_hole,
2326 * migrate_vma_collect() - collect pages over a range of virtual addresses
2327 * @migrate: migrate struct containing all migration information
2329 * This will walk the CPU page table. For each virtual address backed by a
2330 * valid page, it updates the src array and takes a reference on the page, in
2331 * order to pin the page until we lock it and unmap it.
2333 static void migrate_vma_collect(struct migrate_vma *migrate)
2335 struct mmu_notifier_range range;
2337 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL,
2338 migrate->vma->vm_mm, migrate->start, migrate->end);
2339 mmu_notifier_invalidate_range_start(&range);
2341 walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
2342 &migrate_vma_walk_ops, migrate);
2344 mmu_notifier_invalidate_range_end(&range);
2345 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2349 * migrate_vma_check_page() - check if page is pinned or not
2350 * @page: struct page to check
2352 * Pinned pages cannot be migrated. This is the same test as in
2353 * migrate_page_move_mapping(), except that here we allow migration of a
2356 static bool migrate_vma_check_page(struct page *page)
2359 * One extra ref because caller holds an extra reference, either from
2360 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2366 * FIXME support THP (transparent huge page), it is bit more complex to
2367 * check them than regular pages, because they can be mapped with a pmd
2368 * or with a pte (split pte mapping).
2370 if (PageCompound(page))
2373 /* Page from ZONE_DEVICE have one extra reference */
2374 if (is_zone_device_page(page)) {
2376 * Private page can never be pin as they have no valid pte and
2377 * GUP will fail for those. Yet if there is a pending migration
2378 * a thread might try to wait on the pte migration entry and
2379 * will bump the page reference count. Sadly there is no way to
2380 * differentiate a regular pin from migration wait. Hence to
2381 * avoid 2 racing thread trying to migrate back to CPU to enter
2382 * infinite loop (one stoping migration because the other is
2383 * waiting on pte migration entry). We always return true here.
2385 * FIXME proper solution is to rework migration_entry_wait() so
2386 * it does not need to take a reference on page.
2388 return is_device_private_page(page);
2391 /* For file back page */
2392 if (page_mapping(page))
2393 extra += 1 + page_has_private(page);
2395 if ((page_count(page) - extra) > page_mapcount(page))
2402 * migrate_vma_prepare() - lock pages and isolate them from the lru
2403 * @migrate: migrate struct containing all migration information
2405 * This locks pages that have been collected by migrate_vma_collect(). Once each
2406 * page is locked it is isolated from the lru (for non-device pages). Finally,
2407 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2408 * migrated by concurrent kernel threads.
2410 static void migrate_vma_prepare(struct migrate_vma *migrate)
2412 const unsigned long npages = migrate->npages;
2413 const unsigned long start = migrate->start;
2414 unsigned long addr, i, restore = 0;
2415 bool allow_drain = true;
2419 for (i = 0; (i < npages) && migrate->cpages; i++) {
2420 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2426 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2428 * Because we are migrating several pages there can be
2429 * a deadlock between 2 concurrent migration where each
2430 * are waiting on each other page lock.
2432 * Make migrate_vma() a best effort thing and backoff
2433 * for any page we can not lock right away.
2435 if (!trylock_page(page)) {
2436 migrate->src[i] = 0;
2442 migrate->src[i] |= MIGRATE_PFN_LOCKED;
2445 /* ZONE_DEVICE pages are not on LRU */
2446 if (!is_zone_device_page(page)) {
2447 if (!PageLRU(page) && allow_drain) {
2448 /* Drain CPU's pagevec */
2449 lru_add_drain_all();
2450 allow_drain = false;
2453 if (isolate_lru_page(page)) {
2455 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2459 migrate->src[i] = 0;
2467 /* Drop the reference we took in collect */
2471 if (!migrate_vma_check_page(page)) {
2473 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2477 if (!is_zone_device_page(page)) {
2479 putback_lru_page(page);
2482 migrate->src[i] = 0;
2486 if (!is_zone_device_page(page))
2487 putback_lru_page(page);
2494 for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2495 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2497 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2500 remove_migration_pte(page, migrate->vma, addr, page);
2502 migrate->src[i] = 0;
2510 * migrate_vma_unmap() - replace page mapping with special migration pte entry
2511 * @migrate: migrate struct containing all migration information
2513 * Replace page mapping (CPU page table pte) with a special migration pte entry
2514 * and check again if it has been pinned. Pinned pages are restored because we
2515 * cannot migrate them.
2517 * This is the last step before we call the device driver callback to allocate
2518 * destination memory and copy contents of original page over to new page.
2520 static void migrate_vma_unmap(struct migrate_vma *migrate)
2522 int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
2523 const unsigned long npages = migrate->npages;
2524 const unsigned long start = migrate->start;
2525 unsigned long addr, i, restore = 0;
2527 for (i = 0; i < npages; i++) {
2528 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2530 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2533 if (page_mapped(page)) {
2534 try_to_unmap(page, flags);
2535 if (page_mapped(page))
2539 if (migrate_vma_check_page(page))
2543 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2548 for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2549 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2551 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2554 remove_migration_ptes(page, page, false);
2556 migrate->src[i] = 0;
2560 if (is_zone_device_page(page))
2563 putback_lru_page(page);
2568 * migrate_vma_setup() - prepare to migrate a range of memory
2569 * @args: contains the vma, start, and and pfns arrays for the migration
2571 * Returns: negative errno on failures, 0 when 0 or more pages were migrated
2574 * Prepare to migrate a range of memory virtual address range by collecting all
2575 * the pages backing each virtual address in the range, saving them inside the
2576 * src array. Then lock those pages and unmap them. Once the pages are locked
2577 * and unmapped, check whether each page is pinned or not. Pages that aren't
2578 * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
2579 * corresponding src array entry. Then restores any pages that are pinned, by
2580 * remapping and unlocking those pages.
2582 * The caller should then allocate destination memory and copy source memory to
2583 * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
2584 * flag set). Once these are allocated and copied, the caller must update each
2585 * corresponding entry in the dst array with the pfn value of the destination
2586 * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set
2587 * (destination pages must have their struct pages locked, via lock_page()).
2589 * Note that the caller does not have to migrate all the pages that are marked
2590 * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
2591 * device memory to system memory. If the caller cannot migrate a device page
2592 * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
2593 * consequences for the userspace process, so it must be avoided if at all
2596 * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
2597 * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
2598 * allowing the caller to allocate device memory for those unback virtual
2599 * address. For this the caller simply has to allocate device memory and
2600 * properly set the destination entry like for regular migration. Note that
2601 * this can still fails and thus inside the device driver must check if the
2602 * migration was successful for those entries after calling migrate_vma_pages()
2603 * just like for regular migration.
2605 * After that, the callers must call migrate_vma_pages() to go over each entry
2606 * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2607 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2608 * then migrate_vma_pages() to migrate struct page information from the source
2609 * struct page to the destination struct page. If it fails to migrate the
2610 * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
2613 * At this point all successfully migrated pages have an entry in the src
2614 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2615 * array entry with MIGRATE_PFN_VALID flag set.
2617 * Once migrate_vma_pages() returns the caller may inspect which pages were
2618 * successfully migrated, and which were not. Successfully migrated pages will
2619 * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
2621 * It is safe to update device page table after migrate_vma_pages() because
2622 * both destination and source page are still locked, and the mmap_sem is held
2623 * in read mode (hence no one can unmap the range being migrated).
2625 * Once the caller is done cleaning up things and updating its page table (if it
2626 * chose to do so, this is not an obligation) it finally calls
2627 * migrate_vma_finalize() to update the CPU page table to point to new pages
2628 * for successfully migrated pages or otherwise restore the CPU page table to
2629 * point to the original source pages.
2631 int migrate_vma_setup(struct migrate_vma *args)
2633 long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
2635 args->start &= PAGE_MASK;
2636 args->end &= PAGE_MASK;
2637 if (!args->vma || is_vm_hugetlb_page(args->vma) ||
2638 (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
2642 if (args->start < args->vma->vm_start ||
2643 args->start >= args->vma->vm_end)
2645 if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
2647 if (!args->src || !args->dst)
2650 memset(args->src, 0, sizeof(*args->src) * nr_pages);
2654 migrate_vma_collect(args);
2657 migrate_vma_prepare(args);
2659 migrate_vma_unmap(args);
2662 * At this point pages are locked and unmapped, and thus they have
2663 * stable content and can safely be copied to destination memory that
2664 * is allocated by the drivers.
2669 EXPORT_SYMBOL(migrate_vma_setup);
2671 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2677 struct vm_area_struct *vma = migrate->vma;
2678 struct mm_struct *mm = vma->vm_mm;
2679 struct mem_cgroup *memcg;
2689 /* Only allow populating anonymous memory */
2690 if (!vma_is_anonymous(vma))
2693 pgdp = pgd_offset(mm, addr);
2694 p4dp = p4d_alloc(mm, pgdp, addr);
2697 pudp = pud_alloc(mm, p4dp, addr);
2700 pmdp = pmd_alloc(mm, pudp, addr);
2704 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2708 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2709 * pte_offset_map() on pmds where a huge pmd might be created
2710 * from a different thread.
2712 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2713 * parallel threads are excluded by other means.
2715 * Here we only have down_read(mmap_sem).
2717 if (pte_alloc(mm, pmdp))
2720 /* See the comment in pte_alloc_one_map() */
2721 if (unlikely(pmd_trans_unstable(pmdp)))
2724 if (unlikely(anon_vma_prepare(vma)))
2726 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2730 * The memory barrier inside __SetPageUptodate makes sure that
2731 * preceding stores to the page contents become visible before
2732 * the set_pte_at() write.
2734 __SetPageUptodate(page);
2736 if (is_zone_device_page(page)) {
2737 if (is_device_private_page(page)) {
2738 swp_entry_t swp_entry;
2740 swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2741 entry = swp_entry_to_pte(swp_entry);
2744 entry = mk_pte(page, vma->vm_page_prot);
2745 if (vma->vm_flags & VM_WRITE)
2746 entry = pte_mkwrite(pte_mkdirty(entry));
2749 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2751 if (pte_present(*ptep)) {
2752 unsigned long pfn = pte_pfn(*ptep);
2754 if (!is_zero_pfn(pfn)) {
2755 pte_unmap_unlock(ptep, ptl);
2756 mem_cgroup_cancel_charge(page, memcg, false);
2760 } else if (!pte_none(*ptep)) {
2761 pte_unmap_unlock(ptep, ptl);
2762 mem_cgroup_cancel_charge(page, memcg, false);
2767 * Check for usefaultfd but do not deliver the fault. Instead,
2770 if (userfaultfd_missing(vma)) {
2771 pte_unmap_unlock(ptep, ptl);
2772 mem_cgroup_cancel_charge(page, memcg, false);
2776 inc_mm_counter(mm, MM_ANONPAGES);
2777 page_add_new_anon_rmap(page, vma, addr, false);
2778 mem_cgroup_commit_charge(page, memcg, false, false);
2779 if (!is_zone_device_page(page))
2780 lru_cache_add_active_or_unevictable(page, vma);
2784 flush_cache_page(vma, addr, pte_pfn(*ptep));
2785 ptep_clear_flush_notify(vma, addr, ptep);
2786 set_pte_at_notify(mm, addr, ptep, entry);
2787 update_mmu_cache(vma, addr, ptep);
2789 /* No need to invalidate - it was non-present before */
2790 set_pte_at(mm, addr, ptep, entry);
2791 update_mmu_cache(vma, addr, ptep);
2794 pte_unmap_unlock(ptep, ptl);
2795 *src = MIGRATE_PFN_MIGRATE;
2799 *src &= ~MIGRATE_PFN_MIGRATE;
2803 * migrate_vma_pages() - migrate meta-data from src page to dst page
2804 * @migrate: migrate struct containing all migration information
2806 * This migrates struct page meta-data from source struct page to destination
2807 * struct page. This effectively finishes the migration from source page to the
2810 void migrate_vma_pages(struct migrate_vma *migrate)
2812 const unsigned long npages = migrate->npages;
2813 const unsigned long start = migrate->start;
2814 struct mmu_notifier_range range;
2815 unsigned long addr, i;
2816 bool notified = false;
2818 for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2819 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2820 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2821 struct address_space *mapping;
2825 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2830 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) {
2836 mmu_notifier_range_init(&range,
2837 MMU_NOTIFY_CLEAR, 0,
2839 migrate->vma->vm_mm,
2840 addr, migrate->end);
2841 mmu_notifier_invalidate_range_start(&range);
2843 migrate_vma_insert_page(migrate, addr, newpage,
2849 mapping = page_mapping(page);
2851 if (is_zone_device_page(newpage)) {
2852 if (is_device_private_page(newpage)) {
2854 * For now only support private anonymous when
2855 * migrating to un-addressable device memory.
2858 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2863 * Other types of ZONE_DEVICE page are not
2866 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2871 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2872 if (r != MIGRATEPAGE_SUCCESS)
2873 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2877 * No need to double call mmu_notifier->invalidate_range() callback as
2878 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2879 * did already call it.
2882 mmu_notifier_invalidate_range_only_end(&range);
2884 EXPORT_SYMBOL(migrate_vma_pages);
2887 * migrate_vma_finalize() - restore CPU page table entry
2888 * @migrate: migrate struct containing all migration information
2890 * This replaces the special migration pte entry with either a mapping to the
2891 * new page if migration was successful for that page, or to the original page
2894 * This also unlocks the pages and puts them back on the lru, or drops the extra
2895 * refcount, for device pages.
2897 void migrate_vma_finalize(struct migrate_vma *migrate)
2899 const unsigned long npages = migrate->npages;
2902 for (i = 0; i < npages; i++) {
2903 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2904 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2908 unlock_page(newpage);
2914 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
2916 unlock_page(newpage);
2922 remove_migration_ptes(page, newpage, false);
2926 if (is_zone_device_page(page))
2929 putback_lru_page(page);
2931 if (newpage != page) {
2932 unlock_page(newpage);
2933 if (is_zone_device_page(newpage))
2936 putback_lru_page(newpage);
2940 EXPORT_SYMBOL(migrate_vma_finalize);
2941 #endif /* CONFIG_DEVICE_PRIVATE */