]> Git Repo - linux.git/blob - kernel/rcu/tree_plugin.h
can: flexcan: fix endianess detection
[linux.git] / kernel / rcu / tree_plugin.h
1 /*
2  * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3  * Internal non-public definitions that provide either classic
4  * or preemptible semantics.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, you can access it online at
18  * http://www.gnu.org/licenses/gpl-2.0.html.
19  *
20  * Copyright Red Hat, 2009
21  * Copyright IBM Corporation, 2009
22  *
23  * Author: Ingo Molnar <[email protected]>
24  *         Paul E. McKenney <[email protected]>
25  */
26
27 #include <linux/delay.h>
28 #include <linux/gfp.h>
29 #include <linux/oom.h>
30 #include <linux/sched/debug.h>
31 #include <linux/smpboot.h>
32 #include <linux/sched/isolation.h>
33 #include <uapi/linux/sched/types.h>
34 #include "../time/tick-internal.h"
35
36 #ifdef CONFIG_RCU_BOOST
37
38 #include "../locking/rtmutex_common.h"
39
40 /*
41  * Control variables for per-CPU and per-rcu_node kthreads.  These
42  * handle all flavors of RCU.
43  */
44 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
45 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
46 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
47 DEFINE_PER_CPU(char, rcu_cpu_has_work);
48
49 #else /* #ifdef CONFIG_RCU_BOOST */
50
51 /*
52  * Some architectures do not define rt_mutexes, but if !CONFIG_RCU_BOOST,
53  * all uses are in dead code.  Provide a definition to keep the compiler
54  * happy, but add WARN_ON_ONCE() to complain if used in the wrong place.
55  * This probably needs to be excluded from -rt builds.
56  */
57 #define rt_mutex_owner(a) ({ WARN_ON_ONCE(1); NULL; })
58 #define rt_mutex_futex_unlock(x) WARN_ON_ONCE(1)
59
60 #endif /* #else #ifdef CONFIG_RCU_BOOST */
61
62 #ifdef CONFIG_RCU_NOCB_CPU
63 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
64 static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
65 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
66
67 /*
68  * Check the RCU kernel configuration parameters and print informative
69  * messages about anything out of the ordinary.
70  */
71 static void __init rcu_bootup_announce_oddness(void)
72 {
73         if (IS_ENABLED(CONFIG_RCU_TRACE))
74                 pr_info("\tRCU event tracing is enabled.\n");
75         if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
76             (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
77                 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
78                        RCU_FANOUT);
79         if (rcu_fanout_exact)
80                 pr_info("\tHierarchical RCU autobalancing is disabled.\n");
81         if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
82                 pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
83         if (IS_ENABLED(CONFIG_PROVE_RCU))
84                 pr_info("\tRCU lockdep checking is enabled.\n");
85         if (RCU_NUM_LVLS >= 4)
86                 pr_info("\tFour(or more)-level hierarchy is enabled.\n");
87         if (RCU_FANOUT_LEAF != 16)
88                 pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
89                         RCU_FANOUT_LEAF);
90         if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
91                 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
92         if (nr_cpu_ids != NR_CPUS)
93                 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%u.\n", NR_CPUS, nr_cpu_ids);
94 #ifdef CONFIG_RCU_BOOST
95         pr_info("\tRCU priority boosting: priority %d delay %d ms.\n", kthread_prio, CONFIG_RCU_BOOST_DELAY);
96 #endif
97         if (blimit != DEFAULT_RCU_BLIMIT)
98                 pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit);
99         if (qhimark != DEFAULT_RCU_QHIMARK)
100                 pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark);
101         if (qlowmark != DEFAULT_RCU_QLOMARK)
102                 pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark);
103         if (jiffies_till_first_fqs != ULONG_MAX)
104                 pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs);
105         if (jiffies_till_next_fqs != ULONG_MAX)
106                 pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs);
107         if (rcu_kick_kthreads)
108                 pr_info("\tKick kthreads if too-long grace period.\n");
109         if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD))
110                 pr_info("\tRCU callback double-/use-after-free debug enabled.\n");
111         if (gp_preinit_delay)
112                 pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay);
113         if (gp_init_delay)
114                 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay);
115         if (gp_cleanup_delay)
116                 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_cleanup_delay);
117         if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG))
118                 pr_info("\tRCU debug extended QS entry/exit.\n");
119         rcupdate_announce_bootup_oddness();
120 }
121
122 #ifdef CONFIG_PREEMPT_RCU
123
124 RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
125 static struct rcu_state *const rcu_state_p = &rcu_preempt_state;
126 static struct rcu_data __percpu *const rcu_data_p = &rcu_preempt_data;
127
128 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
129                                bool wake);
130
131 /*
132  * Tell them what RCU they are running.
133  */
134 static void __init rcu_bootup_announce(void)
135 {
136         pr_info("Preemptible hierarchical RCU implementation.\n");
137         rcu_bootup_announce_oddness();
138 }
139
140 /* Flags for rcu_preempt_ctxt_queue() decision table. */
141 #define RCU_GP_TASKS    0x8
142 #define RCU_EXP_TASKS   0x4
143 #define RCU_GP_BLKD     0x2
144 #define RCU_EXP_BLKD    0x1
145
146 /*
147  * Queues a task preempted within an RCU-preempt read-side critical
148  * section into the appropriate location within the ->blkd_tasks list,
149  * depending on the states of any ongoing normal and expedited grace
150  * periods.  The ->gp_tasks pointer indicates which element the normal
151  * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
152  * indicates which element the expedited grace period is waiting on (again,
153  * NULL if none).  If a grace period is waiting on a given element in the
154  * ->blkd_tasks list, it also waits on all subsequent elements.  Thus,
155  * adding a task to the tail of the list blocks any grace period that is
156  * already waiting on one of the elements.  In contrast, adding a task
157  * to the head of the list won't block any grace period that is already
158  * waiting on one of the elements.
159  *
160  * This queuing is imprecise, and can sometimes make an ongoing grace
161  * period wait for a task that is not strictly speaking blocking it.
162  * Given the choice, we needlessly block a normal grace period rather than
163  * blocking an expedited grace period.
164  *
165  * Note that an endless sequence of expedited grace periods still cannot
166  * indefinitely postpone a normal grace period.  Eventually, all of the
167  * fixed number of preempted tasks blocking the normal grace period that are
168  * not also blocking the expedited grace period will resume and complete
169  * their RCU read-side critical sections.  At that point, the ->gp_tasks
170  * pointer will equal the ->exp_tasks pointer, at which point the end of
171  * the corresponding expedited grace period will also be the end of the
172  * normal grace period.
173  */
174 static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp)
175         __releases(rnp->lock) /* But leaves rrupts disabled. */
176 {
177         int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) +
178                          (rnp->exp_tasks ? RCU_EXP_TASKS : 0) +
179                          (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) +
180                          (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0);
181         struct task_struct *t = current;
182
183         raw_lockdep_assert_held_rcu_node(rnp);
184         WARN_ON_ONCE(rdp->mynode != rnp);
185         WARN_ON_ONCE(rnp->level != rcu_num_lvls - 1);
186
187         /*
188          * Decide where to queue the newly blocked task.  In theory,
189          * this could be an if-statement.  In practice, when I tried
190          * that, it was quite messy.
191          */
192         switch (blkd_state) {
193         case 0:
194         case                RCU_EXP_TASKS:
195         case                RCU_EXP_TASKS + RCU_GP_BLKD:
196         case RCU_GP_TASKS:
197         case RCU_GP_TASKS + RCU_EXP_TASKS:
198
199                 /*
200                  * Blocking neither GP, or first task blocking the normal
201                  * GP but not blocking the already-waiting expedited GP.
202                  * Queue at the head of the list to avoid unnecessarily
203                  * blocking the already-waiting GPs.
204                  */
205                 list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
206                 break;
207
208         case                                              RCU_EXP_BLKD:
209         case                                RCU_GP_BLKD:
210         case                                RCU_GP_BLKD + RCU_EXP_BLKD:
211         case RCU_GP_TASKS +                               RCU_EXP_BLKD:
212         case RCU_GP_TASKS +                 RCU_GP_BLKD + RCU_EXP_BLKD:
213         case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
214
215                 /*
216                  * First task arriving that blocks either GP, or first task
217                  * arriving that blocks the expedited GP (with the normal
218                  * GP already waiting), or a task arriving that blocks
219                  * both GPs with both GPs already waiting.  Queue at the
220                  * tail of the list to avoid any GP waiting on any of the
221                  * already queued tasks that are not blocking it.
222                  */
223                 list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
224                 break;
225
226         case                RCU_EXP_TASKS +               RCU_EXP_BLKD:
227         case                RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
228         case RCU_GP_TASKS + RCU_EXP_TASKS +               RCU_EXP_BLKD:
229
230                 /*
231                  * Second or subsequent task blocking the expedited GP.
232                  * The task either does not block the normal GP, or is the
233                  * first task blocking the normal GP.  Queue just after
234                  * the first task blocking the expedited GP.
235                  */
236                 list_add(&t->rcu_node_entry, rnp->exp_tasks);
237                 break;
238
239         case RCU_GP_TASKS +                 RCU_GP_BLKD:
240         case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD:
241
242                 /*
243                  * Second or subsequent task blocking the normal GP.
244                  * The task does not block the expedited GP. Queue just
245                  * after the first task blocking the normal GP.
246                  */
247                 list_add(&t->rcu_node_entry, rnp->gp_tasks);
248                 break;
249
250         default:
251
252                 /* Yet another exercise in excessive paranoia. */
253                 WARN_ON_ONCE(1);
254                 break;
255         }
256
257         /*
258          * We have now queued the task.  If it was the first one to
259          * block either grace period, update the ->gp_tasks and/or
260          * ->exp_tasks pointers, respectively, to reference the newly
261          * blocked tasks.
262          */
263         if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD))
264                 rnp->gp_tasks = &t->rcu_node_entry;
265         if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD))
266                 rnp->exp_tasks = &t->rcu_node_entry;
267         WARN_ON_ONCE(!(blkd_state & RCU_GP_BLKD) !=
268                      !(rnp->qsmask & rdp->grpmask));
269         WARN_ON_ONCE(!(blkd_state & RCU_EXP_BLKD) !=
270                      !(rnp->expmask & rdp->grpmask));
271         raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */
272
273         /*
274          * Report the quiescent state for the expedited GP.  This expedited
275          * GP should not be able to end until we report, so there should be
276          * no need to check for a subsequent expedited GP.  (Though we are
277          * still in a quiescent state in any case.)
278          */
279         if (blkd_state & RCU_EXP_BLKD &&
280             t->rcu_read_unlock_special.b.exp_need_qs) {
281                 t->rcu_read_unlock_special.b.exp_need_qs = false;
282                 rcu_report_exp_rdp(rdp->rsp, rdp, true);
283         } else {
284                 WARN_ON_ONCE(t->rcu_read_unlock_special.b.exp_need_qs);
285         }
286 }
287
288 /*
289  * Record a preemptible-RCU quiescent state for the specified CPU.  Note
290  * that this just means that the task currently running on the CPU is
291  * not in a quiescent state.  There might be any number of tasks blocked
292  * while in an RCU read-side critical section.
293  *
294  * As with the other rcu_*_qs() functions, callers to this function
295  * must disable preemption.
296  */
297 static void rcu_preempt_qs(void)
298 {
299         RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_qs() invoked with preemption enabled!!!\n");
300         if (__this_cpu_read(rcu_data_p->cpu_no_qs.s)) {
301                 trace_rcu_grace_period(TPS("rcu_preempt"),
302                                        __this_cpu_read(rcu_data_p->gpnum),
303                                        TPS("cpuqs"));
304                 __this_cpu_write(rcu_data_p->cpu_no_qs.b.norm, false);
305                 barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */
306                 current->rcu_read_unlock_special.b.need_qs = false;
307         }
308 }
309
310 /*
311  * We have entered the scheduler, and the current task might soon be
312  * context-switched away from.  If this task is in an RCU read-side
313  * critical section, we will no longer be able to rely on the CPU to
314  * record that fact, so we enqueue the task on the blkd_tasks list.
315  * The task will dequeue itself when it exits the outermost enclosing
316  * RCU read-side critical section.  Therefore, the current grace period
317  * cannot be permitted to complete until the blkd_tasks list entries
318  * predating the current grace period drain, in other words, until
319  * rnp->gp_tasks becomes NULL.
320  *
321  * Caller must disable interrupts.
322  */
323 static void rcu_preempt_note_context_switch(bool preempt)
324 {
325         struct task_struct *t = current;
326         struct rcu_data *rdp;
327         struct rcu_node *rnp;
328
329         lockdep_assert_irqs_disabled();
330         WARN_ON_ONCE(!preempt && t->rcu_read_lock_nesting > 0);
331         if (t->rcu_read_lock_nesting > 0 &&
332             !t->rcu_read_unlock_special.b.blocked) {
333
334                 /* Possibly blocking in an RCU read-side critical section. */
335                 rdp = this_cpu_ptr(rcu_state_p->rda);
336                 rnp = rdp->mynode;
337                 raw_spin_lock_rcu_node(rnp);
338                 t->rcu_read_unlock_special.b.blocked = true;
339                 t->rcu_blocked_node = rnp;
340
341                 /*
342                  * Verify the CPU's sanity, trace the preemption, and
343                  * then queue the task as required based on the states
344                  * of any ongoing and expedited grace periods.
345                  */
346                 WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
347                 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
348                 trace_rcu_preempt_task(rdp->rsp->name,
349                                        t->pid,
350                                        (rnp->qsmask & rdp->grpmask)
351                                        ? rnp->gpnum
352                                        : rnp->gpnum + 1);
353                 rcu_preempt_ctxt_queue(rnp, rdp);
354         } else if (t->rcu_read_lock_nesting < 0 &&
355                    t->rcu_read_unlock_special.s) {
356
357                 /*
358                  * Complete exit from RCU read-side critical section on
359                  * behalf of preempted instance of __rcu_read_unlock().
360                  */
361                 rcu_read_unlock_special(t);
362         }
363
364         /*
365          * Either we were not in an RCU read-side critical section to
366          * begin with, or we have now recorded that critical section
367          * globally.  Either way, we can now note a quiescent state
368          * for this CPU.  Again, if we were in an RCU read-side critical
369          * section, and if that critical section was blocking the current
370          * grace period, then the fact that the task has been enqueued
371          * means that we continue to block the current grace period.
372          */
373         rcu_preempt_qs();
374 }
375
376 /*
377  * Check for preempted RCU readers blocking the current grace period
378  * for the specified rcu_node structure.  If the caller needs a reliable
379  * answer, it must hold the rcu_node's ->lock.
380  */
381 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
382 {
383         return rnp->gp_tasks != NULL;
384 }
385
386 /*
387  * Advance a ->blkd_tasks-list pointer to the next entry, instead
388  * returning NULL if at the end of the list.
389  */
390 static struct list_head *rcu_next_node_entry(struct task_struct *t,
391                                              struct rcu_node *rnp)
392 {
393         struct list_head *np;
394
395         np = t->rcu_node_entry.next;
396         if (np == &rnp->blkd_tasks)
397                 np = NULL;
398         return np;
399 }
400
401 /*
402  * Return true if the specified rcu_node structure has tasks that were
403  * preempted within an RCU read-side critical section.
404  */
405 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
406 {
407         return !list_empty(&rnp->blkd_tasks);
408 }
409
410 /*
411  * Handle special cases during rcu_read_unlock(), such as needing to
412  * notify RCU core processing or task having blocked during the RCU
413  * read-side critical section.
414  */
415 void rcu_read_unlock_special(struct task_struct *t)
416 {
417         bool empty_exp;
418         bool empty_norm;
419         bool empty_exp_now;
420         unsigned long flags;
421         struct list_head *np;
422         bool drop_boost_mutex = false;
423         struct rcu_data *rdp;
424         struct rcu_node *rnp;
425         union rcu_special special;
426
427         /* NMI handlers cannot block and cannot safely manipulate state. */
428         if (in_nmi())
429                 return;
430
431         local_irq_save(flags);
432
433         /*
434          * If RCU core is waiting for this CPU to exit its critical section,
435          * report the fact that it has exited.  Because irqs are disabled,
436          * t->rcu_read_unlock_special cannot change.
437          */
438         special = t->rcu_read_unlock_special;
439         if (special.b.need_qs) {
440                 rcu_preempt_qs();
441                 t->rcu_read_unlock_special.b.need_qs = false;
442                 if (!t->rcu_read_unlock_special.s) {
443                         local_irq_restore(flags);
444                         return;
445                 }
446         }
447
448         /*
449          * Respond to a request for an expedited grace period, but only if
450          * we were not preempted, meaning that we were running on the same
451          * CPU throughout.  If we were preempted, the exp_need_qs flag
452          * would have been cleared at the time of the first preemption,
453          * and the quiescent state would be reported when we were dequeued.
454          */
455         if (special.b.exp_need_qs) {
456                 WARN_ON_ONCE(special.b.blocked);
457                 t->rcu_read_unlock_special.b.exp_need_qs = false;
458                 rdp = this_cpu_ptr(rcu_state_p->rda);
459                 rcu_report_exp_rdp(rcu_state_p, rdp, true);
460                 if (!t->rcu_read_unlock_special.s) {
461                         local_irq_restore(flags);
462                         return;
463                 }
464         }
465
466         /* Hardware IRQ handlers cannot block, complain if they get here. */
467         if (in_irq() || in_serving_softirq()) {
468                 lockdep_rcu_suspicious(__FILE__, __LINE__,
469                                        "rcu_read_unlock() from irq or softirq with blocking in critical section!!!\n");
470                 pr_alert("->rcu_read_unlock_special: %#x (b: %d, enq: %d nq: %d)\n",
471                          t->rcu_read_unlock_special.s,
472                          t->rcu_read_unlock_special.b.blocked,
473                          t->rcu_read_unlock_special.b.exp_need_qs,
474                          t->rcu_read_unlock_special.b.need_qs);
475                 local_irq_restore(flags);
476                 return;
477         }
478
479         /* Clean up if blocked during RCU read-side critical section. */
480         if (special.b.blocked) {
481                 t->rcu_read_unlock_special.b.blocked = false;
482
483                 /*
484                  * Remove this task from the list it blocked on.  The task
485                  * now remains queued on the rcu_node corresponding to the
486                  * CPU it first blocked on, so there is no longer any need
487                  * to loop.  Retain a WARN_ON_ONCE() out of sheer paranoia.
488                  */
489                 rnp = t->rcu_blocked_node;
490                 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
491                 WARN_ON_ONCE(rnp != t->rcu_blocked_node);
492                 WARN_ON_ONCE(rnp->level != rcu_num_lvls - 1);
493                 empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
494                 empty_exp = sync_rcu_preempt_exp_done(rnp);
495                 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
496                 np = rcu_next_node_entry(t, rnp);
497                 list_del_init(&t->rcu_node_entry);
498                 t->rcu_blocked_node = NULL;
499                 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
500                                                 rnp->gpnum, t->pid);
501                 if (&t->rcu_node_entry == rnp->gp_tasks)
502                         rnp->gp_tasks = np;
503                 if (&t->rcu_node_entry == rnp->exp_tasks)
504                         rnp->exp_tasks = np;
505                 if (IS_ENABLED(CONFIG_RCU_BOOST)) {
506                         /* Snapshot ->boost_mtx ownership w/rnp->lock held. */
507                         drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
508                         if (&t->rcu_node_entry == rnp->boost_tasks)
509                                 rnp->boost_tasks = np;
510                 }
511
512                 /*
513                  * If this was the last task on the current list, and if
514                  * we aren't waiting on any CPUs, report the quiescent state.
515                  * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
516                  * so we must take a snapshot of the expedited state.
517                  */
518                 empty_exp_now = sync_rcu_preempt_exp_done(rnp);
519                 if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
520                         trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
521                                                          rnp->gpnum,
522                                                          0, rnp->qsmask,
523                                                          rnp->level,
524                                                          rnp->grplo,
525                                                          rnp->grphi,
526                                                          !!rnp->gp_tasks);
527                         rcu_report_unblock_qs_rnp(rcu_state_p, rnp, flags);
528                 } else {
529                         raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
530                 }
531
532                 /* Unboost if we were boosted. */
533                 if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
534                         rt_mutex_futex_unlock(&rnp->boost_mtx);
535
536                 /*
537                  * If this was the last task on the expedited lists,
538                  * then we need to report up the rcu_node hierarchy.
539                  */
540                 if (!empty_exp && empty_exp_now)
541                         rcu_report_exp_rnp(rcu_state_p, rnp, true);
542         } else {
543                 local_irq_restore(flags);
544         }
545 }
546
547 /*
548  * Dump detailed information for all tasks blocking the current RCU
549  * grace period on the specified rcu_node structure.
550  */
551 static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
552 {
553         unsigned long flags;
554         struct task_struct *t;
555
556         raw_spin_lock_irqsave_rcu_node(rnp, flags);
557         if (!rcu_preempt_blocked_readers_cgp(rnp)) {
558                 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
559                 return;
560         }
561         t = list_entry(rnp->gp_tasks->prev,
562                        struct task_struct, rcu_node_entry);
563         list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
564                 /*
565                  * We could be printing a lot while holding a spinlock.
566                  * Avoid triggering hard lockup.
567                  */
568                 touch_nmi_watchdog();
569                 sched_show_task(t);
570         }
571         raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
572 }
573
574 /*
575  * Dump detailed information for all tasks blocking the current RCU
576  * grace period.
577  */
578 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
579 {
580         struct rcu_node *rnp = rcu_get_root(rsp);
581
582         rcu_print_detail_task_stall_rnp(rnp);
583         rcu_for_each_leaf_node(rsp, rnp)
584                 rcu_print_detail_task_stall_rnp(rnp);
585 }
586
587 static void rcu_print_task_stall_begin(struct rcu_node *rnp)
588 {
589         pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
590                rnp->level, rnp->grplo, rnp->grphi);
591 }
592
593 static void rcu_print_task_stall_end(void)
594 {
595         pr_cont("\n");
596 }
597
598 /*
599  * Scan the current list of tasks blocked within RCU read-side critical
600  * sections, printing out the tid of each.
601  */
602 static int rcu_print_task_stall(struct rcu_node *rnp)
603 {
604         struct task_struct *t;
605         int ndetected = 0;
606
607         if (!rcu_preempt_blocked_readers_cgp(rnp))
608                 return 0;
609         rcu_print_task_stall_begin(rnp);
610         t = list_entry(rnp->gp_tasks->prev,
611                        struct task_struct, rcu_node_entry);
612         list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
613                 pr_cont(" P%d", t->pid);
614                 ndetected++;
615         }
616         rcu_print_task_stall_end();
617         return ndetected;
618 }
619
620 /*
621  * Scan the current list of tasks blocked within RCU read-side critical
622  * sections, printing out the tid of each that is blocking the current
623  * expedited grace period.
624  */
625 static int rcu_print_task_exp_stall(struct rcu_node *rnp)
626 {
627         struct task_struct *t;
628         int ndetected = 0;
629
630         if (!rnp->exp_tasks)
631                 return 0;
632         t = list_entry(rnp->exp_tasks->prev,
633                        struct task_struct, rcu_node_entry);
634         list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
635                 pr_cont(" P%d", t->pid);
636                 ndetected++;
637         }
638         return ndetected;
639 }
640
641 /*
642  * Check that the list of blocked tasks for the newly completed grace
643  * period is in fact empty.  It is a serious bug to complete a grace
644  * period that still has RCU readers blocked!  This function must be
645  * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
646  * must be held by the caller.
647  *
648  * Also, if there are blocked tasks on the list, they automatically
649  * block the newly created grace period, so set up ->gp_tasks accordingly.
650  */
651 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
652 {
653         struct task_struct *t;
654
655         RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n");
656         WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
657         if (rcu_preempt_has_tasks(rnp)) {
658                 rnp->gp_tasks = rnp->blkd_tasks.next;
659                 t = container_of(rnp->gp_tasks, struct task_struct,
660                                  rcu_node_entry);
661                 trace_rcu_unlock_preempted_task(TPS("rcu_preempt-GPS"),
662                                                 rnp->gpnum, t->pid);
663         }
664         WARN_ON_ONCE(rnp->qsmask);
665 }
666
667 /*
668  * Check for a quiescent state from the current CPU.  When a task blocks,
669  * the task is recorded in the corresponding CPU's rcu_node structure,
670  * which is checked elsewhere.
671  *
672  * Caller must disable hard irqs.
673  */
674 static void rcu_preempt_check_callbacks(void)
675 {
676         struct task_struct *t = current;
677
678         if (t->rcu_read_lock_nesting == 0) {
679                 rcu_preempt_qs();
680                 return;
681         }
682         if (t->rcu_read_lock_nesting > 0 &&
683             __this_cpu_read(rcu_data_p->core_needs_qs) &&
684             __this_cpu_read(rcu_data_p->cpu_no_qs.b.norm))
685                 t->rcu_read_unlock_special.b.need_qs = true;
686 }
687
688 #ifdef CONFIG_RCU_BOOST
689
690 static void rcu_preempt_do_callbacks(void)
691 {
692         rcu_do_batch(rcu_state_p, this_cpu_ptr(rcu_data_p));
693 }
694
695 #endif /* #ifdef CONFIG_RCU_BOOST */
696
697 /**
698  * call_rcu() - Queue an RCU callback for invocation after a grace period.
699  * @head: structure to be used for queueing the RCU updates.
700  * @func: actual callback function to be invoked after the grace period
701  *
702  * The callback function will be invoked some time after a full grace
703  * period elapses, in other words after all pre-existing RCU read-side
704  * critical sections have completed.  However, the callback function
705  * might well execute concurrently with RCU read-side critical sections
706  * that started after call_rcu() was invoked.  RCU read-side critical
707  * sections are delimited by rcu_read_lock() and rcu_read_unlock(),
708  * and may be nested.
709  *
710  * Note that all CPUs must agree that the grace period extended beyond
711  * all pre-existing RCU read-side critical section.  On systems with more
712  * than one CPU, this means that when "func()" is invoked, each CPU is
713  * guaranteed to have executed a full memory barrier since the end of its
714  * last RCU read-side critical section whose beginning preceded the call
715  * to call_rcu().  It also means that each CPU executing an RCU read-side
716  * critical section that continues beyond the start of "func()" must have
717  * executed a memory barrier after the call_rcu() but before the beginning
718  * of that RCU read-side critical section.  Note that these guarantees
719  * include CPUs that are offline, idle, or executing in user mode, as
720  * well as CPUs that are executing in the kernel.
721  *
722  * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
723  * resulting RCU callback function "func()", then both CPU A and CPU B are
724  * guaranteed to execute a full memory barrier during the time interval
725  * between the call to call_rcu() and the invocation of "func()" -- even
726  * if CPU A and CPU B are the same CPU (but again only if the system has
727  * more than one CPU).
728  */
729 void call_rcu(struct rcu_head *head, rcu_callback_t func)
730 {
731         __call_rcu(head, func, rcu_state_p, -1, 0);
732 }
733 EXPORT_SYMBOL_GPL(call_rcu);
734
735 /**
736  * synchronize_rcu - wait until a grace period has elapsed.
737  *
738  * Control will return to the caller some time after a full grace
739  * period has elapsed, in other words after all currently executing RCU
740  * read-side critical sections have completed.  Note, however, that
741  * upon return from synchronize_rcu(), the caller might well be executing
742  * concurrently with new RCU read-side critical sections that began while
743  * synchronize_rcu() was waiting.  RCU read-side critical sections are
744  * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
745  *
746  * See the description of synchronize_sched() for more detailed
747  * information on memory-ordering guarantees.  However, please note
748  * that -only- the memory-ordering guarantees apply.  For example,
749  * synchronize_rcu() is -not- guaranteed to wait on things like code
750  * protected by preempt_disable(), instead, synchronize_rcu() is -only-
751  * guaranteed to wait on RCU read-side critical sections, that is, sections
752  * of code protected by rcu_read_lock().
753  */
754 void synchronize_rcu(void)
755 {
756         RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
757                          lock_is_held(&rcu_lock_map) ||
758                          lock_is_held(&rcu_sched_lock_map),
759                          "Illegal synchronize_rcu() in RCU read-side critical section");
760         if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
761                 return;
762         if (rcu_gp_is_expedited())
763                 synchronize_rcu_expedited();
764         else
765                 wait_rcu_gp(call_rcu);
766 }
767 EXPORT_SYMBOL_GPL(synchronize_rcu);
768
769 /**
770  * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
771  *
772  * Note that this primitive does not necessarily wait for an RCU grace period
773  * to complete.  For example, if there are no RCU callbacks queued anywhere
774  * in the system, then rcu_barrier() is within its rights to return
775  * immediately, without waiting for anything, much less an RCU grace period.
776  */
777 void rcu_barrier(void)
778 {
779         _rcu_barrier(rcu_state_p);
780 }
781 EXPORT_SYMBOL_GPL(rcu_barrier);
782
783 /*
784  * Initialize preemptible RCU's state structures.
785  */
786 static void __init __rcu_init_preempt(void)
787 {
788         rcu_init_one(rcu_state_p);
789 }
790
791 /*
792  * Check for a task exiting while in a preemptible-RCU read-side
793  * critical section, clean up if so.  No need to issue warnings,
794  * as debug_check_no_locks_held() already does this if lockdep
795  * is enabled.
796  */
797 void exit_rcu(void)
798 {
799         struct task_struct *t = current;
800
801         if (likely(list_empty(&current->rcu_node_entry)))
802                 return;
803         t->rcu_read_lock_nesting = 1;
804         barrier();
805         t->rcu_read_unlock_special.b.blocked = true;
806         __rcu_read_unlock();
807 }
808
809 #else /* #ifdef CONFIG_PREEMPT_RCU */
810
811 static struct rcu_state *const rcu_state_p = &rcu_sched_state;
812
813 /*
814  * Tell them what RCU they are running.
815  */
816 static void __init rcu_bootup_announce(void)
817 {
818         pr_info("Hierarchical RCU implementation.\n");
819         rcu_bootup_announce_oddness();
820 }
821
822 /*
823  * Because preemptible RCU does not exist, we never have to check for
824  * CPUs being in quiescent states.
825  */
826 static void rcu_preempt_note_context_switch(bool preempt)
827 {
828 }
829
830 /*
831  * Because preemptible RCU does not exist, there are never any preempted
832  * RCU readers.
833  */
834 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
835 {
836         return 0;
837 }
838
839 /*
840  * Because there is no preemptible RCU, there can be no readers blocked.
841  */
842 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
843 {
844         return false;
845 }
846
847 /*
848  * Because preemptible RCU does not exist, we never have to check for
849  * tasks blocked within RCU read-side critical sections.
850  */
851 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
852 {
853 }
854
855 /*
856  * Because preemptible RCU does not exist, we never have to check for
857  * tasks blocked within RCU read-side critical sections.
858  */
859 static int rcu_print_task_stall(struct rcu_node *rnp)
860 {
861         return 0;
862 }
863
864 /*
865  * Because preemptible RCU does not exist, we never have to check for
866  * tasks blocked within RCU read-side critical sections that are
867  * blocking the current expedited grace period.
868  */
869 static int rcu_print_task_exp_stall(struct rcu_node *rnp)
870 {
871         return 0;
872 }
873
874 /*
875  * Because there is no preemptible RCU, there can be no readers blocked,
876  * so there is no need to check for blocked tasks.  So check only for
877  * bogus qsmask values.
878  */
879 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
880 {
881         WARN_ON_ONCE(rnp->qsmask);
882 }
883
884 /*
885  * Because preemptible RCU does not exist, it never has any callbacks
886  * to check.
887  */
888 static void rcu_preempt_check_callbacks(void)
889 {
890 }
891
892 /*
893  * Because preemptible RCU does not exist, rcu_barrier() is just
894  * another name for rcu_barrier_sched().
895  */
896 void rcu_barrier(void)
897 {
898         rcu_barrier_sched();
899 }
900 EXPORT_SYMBOL_GPL(rcu_barrier);
901
902 /*
903  * Because preemptible RCU does not exist, it need not be initialized.
904  */
905 static void __init __rcu_init_preempt(void)
906 {
907 }
908
909 /*
910  * Because preemptible RCU does not exist, tasks cannot possibly exit
911  * while in preemptible RCU read-side critical sections.
912  */
913 void exit_rcu(void)
914 {
915 }
916
917 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
918
919 #ifdef CONFIG_RCU_BOOST
920
921 static void rcu_wake_cond(struct task_struct *t, int status)
922 {
923         /*
924          * If the thread is yielding, only wake it when this
925          * is invoked from idle
926          */
927         if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
928                 wake_up_process(t);
929 }
930
931 /*
932  * Carry out RCU priority boosting on the task indicated by ->exp_tasks
933  * or ->boost_tasks, advancing the pointer to the next task in the
934  * ->blkd_tasks list.
935  *
936  * Note that irqs must be enabled: boosting the task can block.
937  * Returns 1 if there are more tasks needing to be boosted.
938  */
939 static int rcu_boost(struct rcu_node *rnp)
940 {
941         unsigned long flags;
942         struct task_struct *t;
943         struct list_head *tb;
944
945         if (READ_ONCE(rnp->exp_tasks) == NULL &&
946             READ_ONCE(rnp->boost_tasks) == NULL)
947                 return 0;  /* Nothing left to boost. */
948
949         raw_spin_lock_irqsave_rcu_node(rnp, flags);
950
951         /*
952          * Recheck under the lock: all tasks in need of boosting
953          * might exit their RCU read-side critical sections on their own.
954          */
955         if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
956                 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
957                 return 0;
958         }
959
960         /*
961          * Preferentially boost tasks blocking expedited grace periods.
962          * This cannot starve the normal grace periods because a second
963          * expedited grace period must boost all blocked tasks, including
964          * those blocking the pre-existing normal grace period.
965          */
966         if (rnp->exp_tasks != NULL)
967                 tb = rnp->exp_tasks;
968         else
969                 tb = rnp->boost_tasks;
970
971         /*
972          * We boost task t by manufacturing an rt_mutex that appears to
973          * be held by task t.  We leave a pointer to that rt_mutex where
974          * task t can find it, and task t will release the mutex when it
975          * exits its outermost RCU read-side critical section.  Then
976          * simply acquiring this artificial rt_mutex will boost task
977          * t's priority.  (Thanks to tglx for suggesting this approach!)
978          *
979          * Note that task t must acquire rnp->lock to remove itself from
980          * the ->blkd_tasks list, which it will do from exit() if from
981          * nowhere else.  We therefore are guaranteed that task t will
982          * stay around at least until we drop rnp->lock.  Note that
983          * rnp->lock also resolves races between our priority boosting
984          * and task t's exiting its outermost RCU read-side critical
985          * section.
986          */
987         t = container_of(tb, struct task_struct, rcu_node_entry);
988         rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
989         raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
990         /* Lock only for side effect: boosts task t's priority. */
991         rt_mutex_lock(&rnp->boost_mtx);
992         rt_mutex_unlock(&rnp->boost_mtx);  /* Then keep lockdep happy. */
993
994         return READ_ONCE(rnp->exp_tasks) != NULL ||
995                READ_ONCE(rnp->boost_tasks) != NULL;
996 }
997
998 /*
999  * Priority-boosting kthread, one per leaf rcu_node.
1000  */
1001 static int rcu_boost_kthread(void *arg)
1002 {
1003         struct rcu_node *rnp = (struct rcu_node *)arg;
1004         int spincnt = 0;
1005         int more2boost;
1006
1007         trace_rcu_utilization(TPS("Start boost kthread@init"));
1008         for (;;) {
1009                 rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
1010                 trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1011                 rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1012                 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1013                 rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
1014                 more2boost = rcu_boost(rnp);
1015                 if (more2boost)
1016                         spincnt++;
1017                 else
1018                         spincnt = 0;
1019                 if (spincnt > 10) {
1020                         rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
1021                         trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1022                         schedule_timeout_interruptible(2);
1023                         trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1024                         spincnt = 0;
1025                 }
1026         }
1027         /* NOTREACHED */
1028         trace_rcu_utilization(TPS("End boost kthread@notreached"));
1029         return 0;
1030 }
1031
1032 /*
1033  * Check to see if it is time to start boosting RCU readers that are
1034  * blocking the current grace period, and, if so, tell the per-rcu_node
1035  * kthread to start boosting them.  If there is an expedited grace
1036  * period in progress, it is always time to boost.
1037  *
1038  * The caller must hold rnp->lock, which this function releases.
1039  * The ->boost_kthread_task is immortal, so we don't need to worry
1040  * about it going away.
1041  */
1042 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1043         __releases(rnp->lock)
1044 {
1045         struct task_struct *t;
1046
1047         raw_lockdep_assert_held_rcu_node(rnp);
1048         if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1049                 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1050                 return;
1051         }
1052         if (rnp->exp_tasks != NULL ||
1053             (rnp->gp_tasks != NULL &&
1054              rnp->boost_tasks == NULL &&
1055              rnp->qsmask == 0 &&
1056              ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1057                 if (rnp->exp_tasks == NULL)
1058                         rnp->boost_tasks = rnp->gp_tasks;
1059                 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1060                 t = rnp->boost_kthread_task;
1061                 if (t)
1062                         rcu_wake_cond(t, rnp->boost_kthread_status);
1063         } else {
1064                 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1065         }
1066 }
1067
1068 /*
1069  * Wake up the per-CPU kthread to invoke RCU callbacks.
1070  */
1071 static void invoke_rcu_callbacks_kthread(void)
1072 {
1073         unsigned long flags;
1074
1075         local_irq_save(flags);
1076         __this_cpu_write(rcu_cpu_has_work, 1);
1077         if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
1078             current != __this_cpu_read(rcu_cpu_kthread_task)) {
1079                 rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
1080                               __this_cpu_read(rcu_cpu_kthread_status));
1081         }
1082         local_irq_restore(flags);
1083 }
1084
1085 /*
1086  * Is the current CPU running the RCU-callbacks kthread?
1087  * Caller must have preemption disabled.
1088  */
1089 static bool rcu_is_callbacks_kthread(void)
1090 {
1091         return __this_cpu_read(rcu_cpu_kthread_task) == current;
1092 }
1093
1094 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1095
1096 /*
1097  * Do priority-boost accounting for the start of a new grace period.
1098  */
1099 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1100 {
1101         rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1102 }
1103
1104 /*
1105  * Create an RCU-boost kthread for the specified node if one does not
1106  * already exist.  We only create this kthread for preemptible RCU.
1107  * Returns zero if all is well, a negated errno otherwise.
1108  */
1109 static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
1110                                        struct rcu_node *rnp)
1111 {
1112         int rnp_index = rnp - &rsp->node[0];
1113         unsigned long flags;
1114         struct sched_param sp;
1115         struct task_struct *t;
1116
1117         if (rcu_state_p != rsp)
1118                 return 0;
1119
1120         if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0)
1121                 return 0;
1122
1123         rsp->boost = 1;
1124         if (rnp->boost_kthread_task != NULL)
1125                 return 0;
1126         t = kthread_create(rcu_boost_kthread, (void *)rnp,
1127                            "rcub/%d", rnp_index);
1128         if (IS_ERR(t))
1129                 return PTR_ERR(t);
1130         raw_spin_lock_irqsave_rcu_node(rnp, flags);
1131         rnp->boost_kthread_task = t;
1132         raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1133         sp.sched_priority = kthread_prio;
1134         sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1135         wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1136         return 0;
1137 }
1138
1139 static void rcu_kthread_do_work(void)
1140 {
1141         rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
1142         rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
1143         rcu_preempt_do_callbacks();
1144 }
1145
1146 static void rcu_cpu_kthread_setup(unsigned int cpu)
1147 {
1148         struct sched_param sp;
1149
1150         sp.sched_priority = kthread_prio;
1151         sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1152 }
1153
1154 static void rcu_cpu_kthread_park(unsigned int cpu)
1155 {
1156         per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1157 }
1158
1159 static int rcu_cpu_kthread_should_run(unsigned int cpu)
1160 {
1161         return __this_cpu_read(rcu_cpu_has_work);
1162 }
1163
1164 /*
1165  * Per-CPU kernel thread that invokes RCU callbacks.  This replaces the
1166  * RCU softirq used in flavors and configurations of RCU that do not
1167  * support RCU priority boosting.
1168  */
1169 static void rcu_cpu_kthread(unsigned int cpu)
1170 {
1171         unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
1172         char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
1173         int spincnt;
1174
1175         for (spincnt = 0; spincnt < 10; spincnt++) {
1176                 trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
1177                 local_bh_disable();
1178                 *statusp = RCU_KTHREAD_RUNNING;
1179                 this_cpu_inc(rcu_cpu_kthread_loops);
1180                 local_irq_disable();
1181                 work = *workp;
1182                 *workp = 0;
1183                 local_irq_enable();
1184                 if (work)
1185                         rcu_kthread_do_work();
1186                 local_bh_enable();
1187                 if (*workp == 0) {
1188                         trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
1189                         *statusp = RCU_KTHREAD_WAITING;
1190                         return;
1191                 }
1192         }
1193         *statusp = RCU_KTHREAD_YIELDING;
1194         trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
1195         schedule_timeout_interruptible(2);
1196         trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
1197         *statusp = RCU_KTHREAD_WAITING;
1198 }
1199
1200 /*
1201  * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1202  * served by the rcu_node in question.  The CPU hotplug lock is still
1203  * held, so the value of rnp->qsmaskinit will be stable.
1204  *
1205  * We don't include outgoingcpu in the affinity set, use -1 if there is
1206  * no outgoing CPU.  If there are no CPUs left in the affinity set,
1207  * this function allows the kthread to execute on any CPU.
1208  */
1209 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1210 {
1211         struct task_struct *t = rnp->boost_kthread_task;
1212         unsigned long mask = rcu_rnp_online_cpus(rnp);
1213         cpumask_var_t cm;
1214         int cpu;
1215
1216         if (!t)
1217                 return;
1218         if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1219                 return;
1220         for_each_leaf_node_possible_cpu(rnp, cpu)
1221                 if ((mask & leaf_node_cpu_bit(rnp, cpu)) &&
1222                     cpu != outgoingcpu)
1223                         cpumask_set_cpu(cpu, cm);
1224         if (cpumask_weight(cm) == 0)
1225                 cpumask_setall(cm);
1226         set_cpus_allowed_ptr(t, cm);
1227         free_cpumask_var(cm);
1228 }
1229
1230 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
1231         .store                  = &rcu_cpu_kthread_task,
1232         .thread_should_run      = rcu_cpu_kthread_should_run,
1233         .thread_fn              = rcu_cpu_kthread,
1234         .thread_comm            = "rcuc/%u",
1235         .setup                  = rcu_cpu_kthread_setup,
1236         .park                   = rcu_cpu_kthread_park,
1237 };
1238
1239 /*
1240  * Spawn boost kthreads -- called as soon as the scheduler is running.
1241  */
1242 static void __init rcu_spawn_boost_kthreads(void)
1243 {
1244         struct rcu_node *rnp;
1245         int cpu;
1246
1247         for_each_possible_cpu(cpu)
1248                 per_cpu(rcu_cpu_has_work, cpu) = 0;
1249         BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
1250         rcu_for_each_leaf_node(rcu_state_p, rnp)
1251                 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1252 }
1253
1254 static void rcu_prepare_kthreads(int cpu)
1255 {
1256         struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
1257         struct rcu_node *rnp = rdp->mynode;
1258
1259         /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1260         if (rcu_scheduler_fully_active)
1261                 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1262 }
1263
1264 #else /* #ifdef CONFIG_RCU_BOOST */
1265
1266 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1267         __releases(rnp->lock)
1268 {
1269         raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1270 }
1271
1272 static void invoke_rcu_callbacks_kthread(void)
1273 {
1274         WARN_ON_ONCE(1);
1275 }
1276
1277 static bool rcu_is_callbacks_kthread(void)
1278 {
1279         return false;
1280 }
1281
1282 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1283 {
1284 }
1285
1286 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1287 {
1288 }
1289
1290 static void __init rcu_spawn_boost_kthreads(void)
1291 {
1292 }
1293
1294 static void rcu_prepare_kthreads(int cpu)
1295 {
1296 }
1297
1298 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1299
1300 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1301
1302 /*
1303  * Check to see if any future RCU-related work will need to be done
1304  * by the current CPU, even if none need be done immediately, returning
1305  * 1 if so.  This function is part of the RCU implementation; it is -not-
1306  * an exported member of the RCU API.
1307  *
1308  * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1309  * any flavor of RCU.
1310  */
1311 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1312 {
1313         *nextevt = KTIME_MAX;
1314         return rcu_cpu_has_callbacks(NULL);
1315 }
1316
1317 /*
1318  * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1319  * after it.
1320  */
1321 static void rcu_cleanup_after_idle(void)
1322 {
1323 }
1324
1325 /*
1326  * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1327  * is nothing.
1328  */
1329 static void rcu_prepare_for_idle(void)
1330 {
1331 }
1332
1333 /*
1334  * Don't bother keeping a running count of the number of RCU callbacks
1335  * posted because CONFIG_RCU_FAST_NO_HZ=n.
1336  */
1337 static void rcu_idle_count_callbacks_posted(void)
1338 {
1339 }
1340
1341 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1342
1343 /*
1344  * This code is invoked when a CPU goes idle, at which point we want
1345  * to have the CPU do everything required for RCU so that it can enter
1346  * the energy-efficient dyntick-idle mode.  This is handled by a
1347  * state machine implemented by rcu_prepare_for_idle() below.
1348  *
1349  * The following three proprocessor symbols control this state machine:
1350  *
1351  * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1352  *      to sleep in dyntick-idle mode with RCU callbacks pending.  This
1353  *      is sized to be roughly one RCU grace period.  Those energy-efficiency
1354  *      benchmarkers who might otherwise be tempted to set this to a large
1355  *      number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1356  *      system.  And if you are -that- concerned about energy efficiency,
1357  *      just power the system down and be done with it!
1358  * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1359  *      permitted to sleep in dyntick-idle mode with only lazy RCU
1360  *      callbacks pending.  Setting this too high can OOM your system.
1361  *
1362  * The values below work well in practice.  If future workloads require
1363  * adjustment, they can be converted into kernel config parameters, though
1364  * making the state machine smarter might be a better option.
1365  */
1366 #define RCU_IDLE_GP_DELAY 4             /* Roughly one grace period. */
1367 #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */
1368
1369 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1370 module_param(rcu_idle_gp_delay, int, 0644);
1371 static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1372 module_param(rcu_idle_lazy_gp_delay, int, 0644);
1373
1374 /*
1375  * Try to advance callbacks for all flavors of RCU on the current CPU, but
1376  * only if it has been awhile since the last time we did so.  Afterwards,
1377  * if there are any callbacks ready for immediate invocation, return true.
1378  */
1379 static bool __maybe_unused rcu_try_advance_all_cbs(void)
1380 {
1381         bool cbs_ready = false;
1382         struct rcu_data *rdp;
1383         struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1384         struct rcu_node *rnp;
1385         struct rcu_state *rsp;
1386
1387         /* Exit early if we advanced recently. */
1388         if (jiffies == rdtp->last_advance_all)
1389                 return false;
1390         rdtp->last_advance_all = jiffies;
1391
1392         for_each_rcu_flavor(rsp) {
1393                 rdp = this_cpu_ptr(rsp->rda);
1394                 rnp = rdp->mynode;
1395
1396                 /*
1397                  * Don't bother checking unless a grace period has
1398                  * completed since we last checked and there are
1399                  * callbacks not yet ready to invoke.
1400                  */
1401                 if ((rdp->completed != rnp->completed ||
1402                      unlikely(READ_ONCE(rdp->gpwrap))) &&
1403                     rcu_segcblist_pend_cbs(&rdp->cblist))
1404                         note_gp_changes(rsp, rdp);
1405
1406                 if (rcu_segcblist_ready_cbs(&rdp->cblist))
1407                         cbs_ready = true;
1408         }
1409         return cbs_ready;
1410 }
1411
1412 /*
1413  * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1414  * to invoke.  If the CPU has callbacks, try to advance them.  Tell the
1415  * caller to set the timeout based on whether or not there are non-lazy
1416  * callbacks.
1417  *
1418  * The caller must have disabled interrupts.
1419  */
1420 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1421 {
1422         struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1423         unsigned long dj;
1424
1425         lockdep_assert_irqs_disabled();
1426
1427         /* Snapshot to detect later posting of non-lazy callback. */
1428         rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1429
1430         /* If no callbacks, RCU doesn't need the CPU. */
1431         if (!rcu_cpu_has_callbacks(&rdtp->all_lazy)) {
1432                 *nextevt = KTIME_MAX;
1433                 return 0;
1434         }
1435
1436         /* Attempt to advance callbacks. */
1437         if (rcu_try_advance_all_cbs()) {
1438                 /* Some ready to invoke, so initiate later invocation. */
1439                 invoke_rcu_core();
1440                 return 1;
1441         }
1442         rdtp->last_accelerate = jiffies;
1443
1444         /* Request timer delay depending on laziness, and round. */
1445         if (!rdtp->all_lazy) {
1446                 dj = round_up(rcu_idle_gp_delay + jiffies,
1447                                rcu_idle_gp_delay) - jiffies;
1448         } else {
1449                 dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
1450         }
1451         *nextevt = basemono + dj * TICK_NSEC;
1452         return 0;
1453 }
1454
1455 /*
1456  * Prepare a CPU for idle from an RCU perspective.  The first major task
1457  * is to sense whether nohz mode has been enabled or disabled via sysfs.
1458  * The second major task is to check to see if a non-lazy callback has
1459  * arrived at a CPU that previously had only lazy callbacks.  The third
1460  * major task is to accelerate (that is, assign grace-period numbers to)
1461  * any recently arrived callbacks.
1462  *
1463  * The caller must have disabled interrupts.
1464  */
1465 static void rcu_prepare_for_idle(void)
1466 {
1467         bool needwake;
1468         struct rcu_data *rdp;
1469         struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1470         struct rcu_node *rnp;
1471         struct rcu_state *rsp;
1472         int tne;
1473
1474         lockdep_assert_irqs_disabled();
1475         if (rcu_is_nocb_cpu(smp_processor_id()))
1476                 return;
1477
1478         /* Handle nohz enablement switches conservatively. */
1479         tne = READ_ONCE(tick_nohz_active);
1480         if (tne != rdtp->tick_nohz_enabled_snap) {
1481                 if (rcu_cpu_has_callbacks(NULL))
1482                         invoke_rcu_core(); /* force nohz to see update. */
1483                 rdtp->tick_nohz_enabled_snap = tne;
1484                 return;
1485         }
1486         if (!tne)
1487                 return;
1488
1489         /*
1490          * If a non-lazy callback arrived at a CPU having only lazy
1491          * callbacks, invoke RCU core for the side-effect of recalculating
1492          * idle duration on re-entry to idle.
1493          */
1494         if (rdtp->all_lazy &&
1495             rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
1496                 rdtp->all_lazy = false;
1497                 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1498                 invoke_rcu_core();
1499                 return;
1500         }
1501
1502         /*
1503          * If we have not yet accelerated this jiffy, accelerate all
1504          * callbacks on this CPU.
1505          */
1506         if (rdtp->last_accelerate == jiffies)
1507                 return;
1508         rdtp->last_accelerate = jiffies;
1509         for_each_rcu_flavor(rsp) {
1510                 rdp = this_cpu_ptr(rsp->rda);
1511                 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1512                         continue;
1513                 rnp = rdp->mynode;
1514                 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1515                 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
1516                 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1517                 if (needwake)
1518                         rcu_gp_kthread_wake(rsp);
1519         }
1520 }
1521
1522 /*
1523  * Clean up for exit from idle.  Attempt to advance callbacks based on
1524  * any grace periods that elapsed while the CPU was idle, and if any
1525  * callbacks are now ready to invoke, initiate invocation.
1526  */
1527 static void rcu_cleanup_after_idle(void)
1528 {
1529         lockdep_assert_irqs_disabled();
1530         if (rcu_is_nocb_cpu(smp_processor_id()))
1531                 return;
1532         if (rcu_try_advance_all_cbs())
1533                 invoke_rcu_core();
1534 }
1535
1536 /*
1537  * Keep a running count of the number of non-lazy callbacks posted
1538  * on this CPU.  This running counter (which is never decremented) allows
1539  * rcu_prepare_for_idle() to detect when something out of the idle loop
1540  * posts a callback, even if an equal number of callbacks are invoked.
1541  * Of course, callbacks should only be posted from within a trace event
1542  * designed to be called from idle or from within RCU_NONIDLE().
1543  */
1544 static void rcu_idle_count_callbacks_posted(void)
1545 {
1546         __this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
1547 }
1548
1549 /*
1550  * Data for flushing lazy RCU callbacks at OOM time.
1551  */
1552 static atomic_t oom_callback_count;
1553 static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
1554
1555 /*
1556  * RCU OOM callback -- decrement the outstanding count and deliver the
1557  * wake-up if we are the last one.
1558  */
1559 static void rcu_oom_callback(struct rcu_head *rhp)
1560 {
1561         if (atomic_dec_and_test(&oom_callback_count))
1562                 wake_up(&oom_callback_wq);
1563 }
1564
1565 /*
1566  * Post an rcu_oom_notify callback on the current CPU if it has at
1567  * least one lazy callback.  This will unnecessarily post callbacks
1568  * to CPUs that already have a non-lazy callback at the end of their
1569  * callback list, but this is an infrequent operation, so accept some
1570  * extra overhead to keep things simple.
1571  */
1572 static void rcu_oom_notify_cpu(void *unused)
1573 {
1574         struct rcu_state *rsp;
1575         struct rcu_data *rdp;
1576
1577         for_each_rcu_flavor(rsp) {
1578                 rdp = raw_cpu_ptr(rsp->rda);
1579                 if (rcu_segcblist_n_lazy_cbs(&rdp->cblist)) {
1580                         atomic_inc(&oom_callback_count);
1581                         rsp->call(&rdp->oom_head, rcu_oom_callback);
1582                 }
1583         }
1584 }
1585
1586 /*
1587  * If low on memory, ensure that each CPU has a non-lazy callback.
1588  * This will wake up CPUs that have only lazy callbacks, in turn
1589  * ensuring that they free up the corresponding memory in a timely manner.
1590  * Because an uncertain amount of memory will be freed in some uncertain
1591  * timeframe, we do not claim to have freed anything.
1592  */
1593 static int rcu_oom_notify(struct notifier_block *self,
1594                           unsigned long notused, void *nfreed)
1595 {
1596         int cpu;
1597
1598         /* Wait for callbacks from earlier instance to complete. */
1599         wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
1600         smp_mb(); /* Ensure callback reuse happens after callback invocation. */
1601
1602         /*
1603          * Prevent premature wakeup: ensure that all increments happen
1604          * before there is a chance of the counter reaching zero.
1605          */
1606         atomic_set(&oom_callback_count, 1);
1607
1608         for_each_online_cpu(cpu) {
1609                 smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
1610                 cond_resched_rcu_qs();
1611         }
1612
1613         /* Unconditionally decrement: no need to wake ourselves up. */
1614         atomic_dec(&oom_callback_count);
1615
1616         return NOTIFY_OK;
1617 }
1618
1619 static struct notifier_block rcu_oom_nb = {
1620         .notifier_call = rcu_oom_notify
1621 };
1622
1623 static int __init rcu_register_oom_notifier(void)
1624 {
1625         register_oom_notifier(&rcu_oom_nb);
1626         return 0;
1627 }
1628 early_initcall(rcu_register_oom_notifier);
1629
1630 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1631
1632 #ifdef CONFIG_RCU_FAST_NO_HZ
1633
1634 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1635 {
1636         struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1637         unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
1638
1639         sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
1640                 rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
1641                 ulong2long(nlpd),
1642                 rdtp->all_lazy ? 'L' : '.',
1643                 rdtp->tick_nohz_enabled_snap ? '.' : 'D');
1644 }
1645
1646 #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
1647
1648 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1649 {
1650         *cp = '\0';
1651 }
1652
1653 #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
1654
1655 /* Initiate the stall-info list. */
1656 static void print_cpu_stall_info_begin(void)
1657 {
1658         pr_cont("\n");
1659 }
1660
1661 /*
1662  * Print out diagnostic information for the specified stalled CPU.
1663  *
1664  * If the specified CPU is aware of the current RCU grace period
1665  * (flavor specified by rsp), then print the number of scheduling
1666  * clock interrupts the CPU has taken during the time that it has
1667  * been aware.  Otherwise, print the number of RCU grace periods
1668  * that this CPU is ignorant of, for example, "1" if the CPU was
1669  * aware of the previous grace period.
1670  *
1671  * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
1672  */
1673 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1674 {
1675         unsigned long delta;
1676         char fast_no_hz[72];
1677         struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1678         struct rcu_dynticks *rdtp = rdp->dynticks;
1679         char *ticks_title;
1680         unsigned long ticks_value;
1681
1682         /*
1683          * We could be printing a lot while holding a spinlock.  Avoid
1684          * triggering hard lockup.
1685          */
1686         touch_nmi_watchdog();
1687
1688         if (rsp->gpnum == rdp->gpnum) {
1689                 ticks_title = "ticks this GP";
1690                 ticks_value = rdp->ticks_this_gp;
1691         } else {
1692                 ticks_title = "GPs behind";
1693                 ticks_value = rsp->gpnum - rdp->gpnum;
1694         }
1695         print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
1696         delta = rdp->mynode->gpnum - rdp->rcu_iw_gpnum;
1697         pr_err("\t%d-%c%c%c%c: (%lu %s) idle=%03x/%ld/%ld softirq=%u/%u fqs=%ld %s\n",
1698                cpu,
1699                "O."[!!cpu_online(cpu)],
1700                "o."[!!(rdp->grpmask & rdp->mynode->qsmaskinit)],
1701                "N."[!!(rdp->grpmask & rdp->mynode->qsmaskinitnext)],
1702                !IS_ENABLED(CONFIG_IRQ_WORK) ? '?' :
1703                         rdp->rcu_iw_pending ? (int)min(delta, 9UL) + '0' :
1704                                 "!."[!delta],
1705                ticks_value, ticks_title,
1706                rcu_dynticks_snap(rdtp) & 0xfff,
1707                rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
1708                rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
1709                READ_ONCE(rsp->n_force_qs) - rsp->n_force_qs_gpstart,
1710                fast_no_hz);
1711 }
1712
1713 /* Terminate the stall-info list. */
1714 static void print_cpu_stall_info_end(void)
1715 {
1716         pr_err("\t");
1717 }
1718
1719 /* Zero ->ticks_this_gp for all flavors of RCU. */
1720 static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1721 {
1722         rdp->ticks_this_gp = 0;
1723         rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
1724 }
1725
1726 /* Increment ->ticks_this_gp for all flavors of RCU. */
1727 static void increment_cpu_stall_ticks(void)
1728 {
1729         struct rcu_state *rsp;
1730
1731         for_each_rcu_flavor(rsp)
1732                 raw_cpu_inc(rsp->rda->ticks_this_gp);
1733 }
1734
1735 #ifdef CONFIG_RCU_NOCB_CPU
1736
1737 /*
1738  * Offload callback processing from the boot-time-specified set of CPUs
1739  * specified by rcu_nocb_mask.  For each CPU in the set, there is a
1740  * kthread created that pulls the callbacks from the corresponding CPU,
1741  * waits for a grace period to elapse, and invokes the callbacks.
1742  * The no-CBs CPUs do a wake_up() on their kthread when they insert
1743  * a callback into any empty list, unless the rcu_nocb_poll boot parameter
1744  * has been specified, in which case each kthread actively polls its
1745  * CPU.  (Which isn't so great for energy efficiency, but which does
1746  * reduce RCU's overhead on that CPU.)
1747  *
1748  * This is intended to be used in conjunction with Frederic Weisbecker's
1749  * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1750  * running CPU-bound user-mode computations.
1751  *
1752  * Offloading of callback processing could also in theory be used as
1753  * an energy-efficiency measure because CPUs with no RCU callbacks
1754  * queued are more aggressive about entering dyntick-idle mode.
1755  */
1756
1757
1758 /* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
1759 static int __init rcu_nocb_setup(char *str)
1760 {
1761         alloc_bootmem_cpumask_var(&rcu_nocb_mask);
1762         cpulist_parse(str, rcu_nocb_mask);
1763         return 1;
1764 }
1765 __setup("rcu_nocbs=", rcu_nocb_setup);
1766
1767 static int __init parse_rcu_nocb_poll(char *arg)
1768 {
1769         rcu_nocb_poll = true;
1770         return 0;
1771 }
1772 early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1773
1774 /*
1775  * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1776  * grace period.
1777  */
1778 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
1779 {
1780         swake_up_all(sq);
1781 }
1782
1783 /*
1784  * Set the root rcu_node structure's ->need_future_gp field
1785  * based on the sum of those of all rcu_node structures.  This does
1786  * double-count the root rcu_node structure's requests, but this
1787  * is necessary to handle the possibility of a rcu_nocb_kthread()
1788  * having awakened during the time that the rcu_node structures
1789  * were being updated for the end of the previous grace period.
1790  */
1791 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
1792 {
1793         rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
1794 }
1795
1796 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
1797 {
1798         return &rnp->nocb_gp_wq[rnp->completed & 0x1];
1799 }
1800
1801 static void rcu_init_one_nocb(struct rcu_node *rnp)
1802 {
1803         init_swait_queue_head(&rnp->nocb_gp_wq[0]);
1804         init_swait_queue_head(&rnp->nocb_gp_wq[1]);
1805 }
1806
1807 /* Is the specified CPU a no-CBs CPU? */
1808 bool rcu_is_nocb_cpu(int cpu)
1809 {
1810         if (cpumask_available(rcu_nocb_mask))
1811                 return cpumask_test_cpu(cpu, rcu_nocb_mask);
1812         return false;
1813 }
1814
1815 /*
1816  * Kick the leader kthread for this NOCB group.  Caller holds ->nocb_lock
1817  * and this function releases it.
1818  */
1819 static void __wake_nocb_leader(struct rcu_data *rdp, bool force,
1820                                unsigned long flags)
1821         __releases(rdp->nocb_lock)
1822 {
1823         struct rcu_data *rdp_leader = rdp->nocb_leader;
1824
1825         lockdep_assert_held(&rdp->nocb_lock);
1826         if (!READ_ONCE(rdp_leader->nocb_kthread)) {
1827                 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1828                 return;
1829         }
1830         if (rdp_leader->nocb_leader_sleep || force) {
1831                 /* Prior smp_mb__after_atomic() orders against prior enqueue. */
1832                 WRITE_ONCE(rdp_leader->nocb_leader_sleep, false);
1833                 del_timer(&rdp->nocb_timer);
1834                 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1835                 smp_mb(); /* ->nocb_leader_sleep before swake_up(). */
1836                 swake_up(&rdp_leader->nocb_wq);
1837         } else {
1838                 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1839         }
1840 }
1841
1842 /*
1843  * Kick the leader kthread for this NOCB group, but caller has not
1844  * acquired locks.
1845  */
1846 static void wake_nocb_leader(struct rcu_data *rdp, bool force)
1847 {
1848         unsigned long flags;
1849
1850         raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
1851         __wake_nocb_leader(rdp, force, flags);
1852 }
1853
1854 /*
1855  * Arrange to wake the leader kthread for this NOCB group at some
1856  * future time when it is safe to do so.
1857  */
1858 static void wake_nocb_leader_defer(struct rcu_data *rdp, int waketype,
1859                                    const char *reason)
1860 {
1861         unsigned long flags;
1862
1863         raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
1864         if (rdp->nocb_defer_wakeup == RCU_NOCB_WAKE_NOT)
1865                 mod_timer(&rdp->nocb_timer, jiffies + 1);
1866         WRITE_ONCE(rdp->nocb_defer_wakeup, waketype);
1867         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, reason);
1868         raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1869 }
1870
1871 /*
1872  * Does the specified CPU need an RCU callback for the specified flavor
1873  * of rcu_barrier()?
1874  */
1875 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
1876 {
1877         struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1878         unsigned long ret;
1879 #ifdef CONFIG_PROVE_RCU
1880         struct rcu_head *rhp;
1881 #endif /* #ifdef CONFIG_PROVE_RCU */
1882
1883         /*
1884          * Check count of all no-CBs callbacks awaiting invocation.
1885          * There needs to be a barrier before this function is called,
1886          * but associated with a prior determination that no more
1887          * callbacks would be posted.  In the worst case, the first
1888          * barrier in _rcu_barrier() suffices (but the caller cannot
1889          * necessarily rely on this, not a substitute for the caller
1890          * getting the concurrency design right!).  There must also be
1891          * a barrier between the following load an posting of a callback
1892          * (if a callback is in fact needed).  This is associated with an
1893          * atomic_inc() in the caller.
1894          */
1895         ret = atomic_long_read(&rdp->nocb_q_count);
1896
1897 #ifdef CONFIG_PROVE_RCU
1898         rhp = READ_ONCE(rdp->nocb_head);
1899         if (!rhp)
1900                 rhp = READ_ONCE(rdp->nocb_gp_head);
1901         if (!rhp)
1902                 rhp = READ_ONCE(rdp->nocb_follower_head);
1903
1904         /* Having no rcuo kthread but CBs after scheduler starts is bad! */
1905         if (!READ_ONCE(rdp->nocb_kthread) && rhp &&
1906             rcu_scheduler_fully_active) {
1907                 /* RCU callback enqueued before CPU first came online??? */
1908                 pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n",
1909                        cpu, rhp->func);
1910                 WARN_ON_ONCE(1);
1911         }
1912 #endif /* #ifdef CONFIG_PROVE_RCU */
1913
1914         return !!ret;
1915 }
1916
1917 /*
1918  * Enqueue the specified string of rcu_head structures onto the specified
1919  * CPU's no-CBs lists.  The CPU is specified by rdp, the head of the
1920  * string by rhp, and the tail of the string by rhtp.  The non-lazy/lazy
1921  * counts are supplied by rhcount and rhcount_lazy.
1922  *
1923  * If warranted, also wake up the kthread servicing this CPUs queues.
1924  */
1925 static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
1926                                     struct rcu_head *rhp,
1927                                     struct rcu_head **rhtp,
1928                                     int rhcount, int rhcount_lazy,
1929                                     unsigned long flags)
1930 {
1931         int len;
1932         struct rcu_head **old_rhpp;
1933         struct task_struct *t;
1934
1935         /* Enqueue the callback on the nocb list and update counts. */
1936         atomic_long_add(rhcount, &rdp->nocb_q_count);
1937         /* rcu_barrier() relies on ->nocb_q_count add before xchg. */
1938         old_rhpp = xchg(&rdp->nocb_tail, rhtp);
1939         WRITE_ONCE(*old_rhpp, rhp);
1940         atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
1941         smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */
1942
1943         /* If we are not being polled and there is a kthread, awaken it ... */
1944         t = READ_ONCE(rdp->nocb_kthread);
1945         if (rcu_nocb_poll || !t) {
1946                 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1947                                     TPS("WakeNotPoll"));
1948                 return;
1949         }
1950         len = atomic_long_read(&rdp->nocb_q_count);
1951         if (old_rhpp == &rdp->nocb_head) {
1952                 if (!irqs_disabled_flags(flags)) {
1953                         /* ... if queue was empty ... */
1954                         wake_nocb_leader(rdp, false);
1955                         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1956                                             TPS("WakeEmpty"));
1957                 } else {
1958                         wake_nocb_leader_defer(rdp, RCU_NOCB_WAKE,
1959                                                TPS("WakeEmptyIsDeferred"));
1960                 }
1961                 rdp->qlen_last_fqs_check = 0;
1962         } else if (len > rdp->qlen_last_fqs_check + qhimark) {
1963                 /* ... or if many callbacks queued. */
1964                 if (!irqs_disabled_flags(flags)) {
1965                         wake_nocb_leader(rdp, true);
1966                         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1967                                             TPS("WakeOvf"));
1968                 } else {
1969                         wake_nocb_leader_defer(rdp, RCU_NOCB_WAKE,
1970                                                TPS("WakeOvfIsDeferred"));
1971                 }
1972                 rdp->qlen_last_fqs_check = LONG_MAX / 2;
1973         } else {
1974                 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
1975         }
1976         return;
1977 }
1978
1979 /*
1980  * This is a helper for __call_rcu(), which invokes this when the normal
1981  * callback queue is inoperable.  If this is not a no-CBs CPU, this
1982  * function returns failure back to __call_rcu(), which can complain
1983  * appropriately.
1984  *
1985  * Otherwise, this function queues the callback where the corresponding
1986  * "rcuo" kthread can find it.
1987  */
1988 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
1989                             bool lazy, unsigned long flags)
1990 {
1991
1992         if (!rcu_is_nocb_cpu(rdp->cpu))
1993                 return false;
1994         __call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
1995         if (__is_kfree_rcu_offset((unsigned long)rhp->func))
1996                 trace_rcu_kfree_callback(rdp->rsp->name, rhp,
1997                                          (unsigned long)rhp->func,
1998                                          -atomic_long_read(&rdp->nocb_q_count_lazy),
1999                                          -atomic_long_read(&rdp->nocb_q_count));
2000         else
2001                 trace_rcu_callback(rdp->rsp->name, rhp,
2002                                    -atomic_long_read(&rdp->nocb_q_count_lazy),
2003                                    -atomic_long_read(&rdp->nocb_q_count));
2004
2005         /*
2006          * If called from an extended quiescent state with interrupts
2007          * disabled, invoke the RCU core in order to allow the idle-entry
2008          * deferred-wakeup check to function.
2009          */
2010         if (irqs_disabled_flags(flags) &&
2011             !rcu_is_watching() &&
2012             cpu_online(smp_processor_id()))
2013                 invoke_rcu_core();
2014
2015         return true;
2016 }
2017
2018 /*
2019  * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
2020  * not a no-CBs CPU.
2021  */
2022 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_data *my_rdp,
2023                                                      struct rcu_data *rdp,
2024                                                      unsigned long flags)
2025 {
2026         lockdep_assert_irqs_disabled();
2027         if (!rcu_is_nocb_cpu(smp_processor_id()))
2028                 return false; /* Not NOCBs CPU, caller must migrate CBs. */
2029         __call_rcu_nocb_enqueue(my_rdp, rcu_segcblist_head(&rdp->cblist),
2030                                 rcu_segcblist_tail(&rdp->cblist),
2031                                 rcu_segcblist_n_cbs(&rdp->cblist),
2032                                 rcu_segcblist_n_lazy_cbs(&rdp->cblist), flags);
2033         rcu_segcblist_init(&rdp->cblist);
2034         rcu_segcblist_disable(&rdp->cblist);
2035         return true;
2036 }
2037
2038 /*
2039  * If necessary, kick off a new grace period, and either way wait
2040  * for a subsequent grace period to complete.
2041  */
2042 static void rcu_nocb_wait_gp(struct rcu_data *rdp)
2043 {
2044         unsigned long c;
2045         bool d;
2046         unsigned long flags;
2047         bool needwake;
2048         struct rcu_node *rnp = rdp->mynode;
2049
2050         raw_spin_lock_irqsave_rcu_node(rnp, flags);
2051         needwake = rcu_start_future_gp(rnp, rdp, &c);
2052         raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2053         if (needwake)
2054                 rcu_gp_kthread_wake(rdp->rsp);
2055
2056         /*
2057          * Wait for the grace period.  Do so interruptibly to avoid messing
2058          * up the load average.
2059          */
2060         trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
2061         for (;;) {
2062                 swait_event_interruptible(
2063                         rnp->nocb_gp_wq[c & 0x1],
2064                         (d = ULONG_CMP_GE(READ_ONCE(rnp->completed), c)));
2065                 if (likely(d))
2066                         break;
2067                 WARN_ON(signal_pending(current));
2068                 trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
2069         }
2070         trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
2071         smp_mb(); /* Ensure that CB invocation happens after GP end. */
2072 }
2073
2074 /*
2075  * Leaders come here to wait for additional callbacks to show up.
2076  * This function does not return until callbacks appear.
2077  */
2078 static void nocb_leader_wait(struct rcu_data *my_rdp)
2079 {
2080         bool firsttime = true;
2081         unsigned long flags;
2082         bool gotcbs;
2083         struct rcu_data *rdp;
2084         struct rcu_head **tail;
2085
2086 wait_again:
2087
2088         /* Wait for callbacks to appear. */
2089         if (!rcu_nocb_poll) {
2090                 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, TPS("Sleep"));
2091                 swait_event_interruptible(my_rdp->nocb_wq,
2092                                 !READ_ONCE(my_rdp->nocb_leader_sleep));
2093                 raw_spin_lock_irqsave(&my_rdp->nocb_lock, flags);
2094                 my_rdp->nocb_leader_sleep = true;
2095                 WRITE_ONCE(my_rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
2096                 del_timer(&my_rdp->nocb_timer);
2097                 raw_spin_unlock_irqrestore(&my_rdp->nocb_lock, flags);
2098         } else if (firsttime) {
2099                 firsttime = false; /* Don't drown trace log with "Poll"! */
2100                 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, TPS("Poll"));
2101         }
2102
2103         /*
2104          * Each pass through the following loop checks a follower for CBs.
2105          * We are our own first follower.  Any CBs found are moved to
2106          * nocb_gp_head, where they await a grace period.
2107          */
2108         gotcbs = false;
2109         smp_mb(); /* wakeup and _sleep before ->nocb_head reads. */
2110         for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2111                 rdp->nocb_gp_head = READ_ONCE(rdp->nocb_head);
2112                 if (!rdp->nocb_gp_head)
2113                         continue;  /* No CBs here, try next follower. */
2114
2115                 /* Move callbacks to wait-for-GP list, which is empty. */
2116                 WRITE_ONCE(rdp->nocb_head, NULL);
2117                 rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
2118                 gotcbs = true;
2119         }
2120
2121         /* No callbacks?  Sleep a bit if polling, and go retry.  */
2122         if (unlikely(!gotcbs)) {
2123                 WARN_ON(signal_pending(current));
2124                 if (rcu_nocb_poll) {
2125                         schedule_timeout_interruptible(1);
2126                 } else {
2127                         trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu,
2128                                             TPS("WokeEmpty"));
2129                 }
2130                 goto wait_again;
2131         }
2132
2133         /* Wait for one grace period. */
2134         rcu_nocb_wait_gp(my_rdp);
2135
2136         /* Each pass through the following loop wakes a follower, if needed. */
2137         for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2138                 if (!rcu_nocb_poll &&
2139                     READ_ONCE(rdp->nocb_head) &&
2140                     READ_ONCE(my_rdp->nocb_leader_sleep)) {
2141                         raw_spin_lock_irqsave(&my_rdp->nocb_lock, flags);
2142                         my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/
2143                         raw_spin_unlock_irqrestore(&my_rdp->nocb_lock, flags);
2144                 }
2145                 if (!rdp->nocb_gp_head)
2146                         continue; /* No CBs, so no need to wake follower. */
2147
2148                 /* Append callbacks to follower's "done" list. */
2149                 raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
2150                 tail = rdp->nocb_follower_tail;
2151                 rdp->nocb_follower_tail = rdp->nocb_gp_tail;
2152                 *tail = rdp->nocb_gp_head;
2153                 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
2154                 if (rdp != my_rdp && tail == &rdp->nocb_follower_head) {
2155                         /* List was empty, so wake up the follower.  */
2156                         swake_up(&rdp->nocb_wq);
2157                 }
2158         }
2159
2160         /* If we (the leader) don't have CBs, go wait some more. */
2161         if (!my_rdp->nocb_follower_head)
2162                 goto wait_again;
2163 }
2164
2165 /*
2166  * Followers come here to wait for additional callbacks to show up.
2167  * This function does not return until callbacks appear.
2168  */
2169 static void nocb_follower_wait(struct rcu_data *rdp)
2170 {
2171         for (;;) {
2172                 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("FollowerSleep"));
2173                 swait_event_interruptible(rdp->nocb_wq,
2174                                          READ_ONCE(rdp->nocb_follower_head));
2175                 if (smp_load_acquire(&rdp->nocb_follower_head)) {
2176                         /* ^^^ Ensure CB invocation follows _head test. */
2177                         return;
2178                 }
2179                 WARN_ON(signal_pending(current));
2180                 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WokeEmpty"));
2181         }
2182 }
2183
2184 /*
2185  * Per-rcu_data kthread, but only for no-CBs CPUs.  Each kthread invokes
2186  * callbacks queued by the corresponding no-CBs CPU, however, there is
2187  * an optional leader-follower relationship so that the grace-period
2188  * kthreads don't have to do quite so many wakeups.
2189  */
2190 static int rcu_nocb_kthread(void *arg)
2191 {
2192         int c, cl;
2193         unsigned long flags;
2194         struct rcu_head *list;
2195         struct rcu_head *next;
2196         struct rcu_head **tail;
2197         struct rcu_data *rdp = arg;
2198
2199         /* Each pass through this loop invokes one batch of callbacks */
2200         for (;;) {
2201                 /* Wait for callbacks. */
2202                 if (rdp->nocb_leader == rdp)
2203                         nocb_leader_wait(rdp);
2204                 else
2205                         nocb_follower_wait(rdp);
2206
2207                 /* Pull the ready-to-invoke callbacks onto local list. */
2208                 raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
2209                 list = rdp->nocb_follower_head;
2210                 rdp->nocb_follower_head = NULL;
2211                 tail = rdp->nocb_follower_tail;
2212                 rdp->nocb_follower_tail = &rdp->nocb_follower_head;
2213                 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
2214                 BUG_ON(!list);
2215                 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WokeNonEmpty"));
2216
2217                 /* Each pass through the following loop invokes a callback. */
2218                 trace_rcu_batch_start(rdp->rsp->name,
2219                                       atomic_long_read(&rdp->nocb_q_count_lazy),
2220                                       atomic_long_read(&rdp->nocb_q_count), -1);
2221                 c = cl = 0;
2222                 while (list) {
2223                         next = list->next;
2224                         /* Wait for enqueuing to complete, if needed. */
2225                         while (next == NULL && &list->next != tail) {
2226                                 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2227                                                     TPS("WaitQueue"));
2228                                 schedule_timeout_interruptible(1);
2229                                 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2230                                                     TPS("WokeQueue"));
2231                                 next = list->next;
2232                         }
2233                         debug_rcu_head_unqueue(list);
2234                         local_bh_disable();
2235                         if (__rcu_reclaim(rdp->rsp->name, list))
2236                                 cl++;
2237                         c++;
2238                         local_bh_enable();
2239                         cond_resched_rcu_qs();
2240                         list = next;
2241                 }
2242                 trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
2243                 smp_mb__before_atomic();  /* _add after CB invocation. */
2244                 atomic_long_add(-c, &rdp->nocb_q_count);
2245                 atomic_long_add(-cl, &rdp->nocb_q_count_lazy);
2246         }
2247         return 0;
2248 }
2249
2250 /* Is a deferred wakeup of rcu_nocb_kthread() required? */
2251 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2252 {
2253         return READ_ONCE(rdp->nocb_defer_wakeup);
2254 }
2255
2256 /* Do a deferred wakeup of rcu_nocb_kthread(). */
2257 static void do_nocb_deferred_wakeup_common(struct rcu_data *rdp)
2258 {
2259         unsigned long flags;
2260         int ndw;
2261
2262         raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
2263         if (!rcu_nocb_need_deferred_wakeup(rdp)) {
2264                 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
2265                 return;
2266         }
2267         ndw = READ_ONCE(rdp->nocb_defer_wakeup);
2268         WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
2269         __wake_nocb_leader(rdp, ndw == RCU_NOCB_WAKE_FORCE, flags);
2270         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWake"));
2271 }
2272
2273 /* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */
2274 static void do_nocb_deferred_wakeup_timer(struct timer_list *t)
2275 {
2276         struct rcu_data *rdp = from_timer(rdp, t, nocb_timer);
2277
2278         do_nocb_deferred_wakeup_common(rdp);
2279 }
2280
2281 /*
2282  * Do a deferred wakeup of rcu_nocb_kthread() from fastpath.
2283  * This means we do an inexact common-case check.  Note that if
2284  * we miss, ->nocb_timer will eventually clean things up.
2285  */
2286 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2287 {
2288         if (rcu_nocb_need_deferred_wakeup(rdp))
2289                 do_nocb_deferred_wakeup_common(rdp);
2290 }
2291
2292 void __init rcu_init_nohz(void)
2293 {
2294         int cpu;
2295         bool need_rcu_nocb_mask = true;
2296         struct rcu_state *rsp;
2297
2298 #if defined(CONFIG_NO_HZ_FULL)
2299         if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2300                 need_rcu_nocb_mask = true;
2301 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2302
2303         if (!cpumask_available(rcu_nocb_mask) && need_rcu_nocb_mask) {
2304                 if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2305                         pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2306                         return;
2307                 }
2308         }
2309         if (!cpumask_available(rcu_nocb_mask))
2310                 return;
2311
2312 #if defined(CONFIG_NO_HZ_FULL)
2313         if (tick_nohz_full_running)
2314                 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2315 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2316
2317         if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
2318                 pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
2319                 cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2320                             rcu_nocb_mask);
2321         }
2322         if (cpumask_empty(rcu_nocb_mask))
2323                 pr_info("\tOffload RCU callbacks from CPUs: (none).\n");
2324         else
2325                 pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
2326                         cpumask_pr_args(rcu_nocb_mask));
2327         if (rcu_nocb_poll)
2328                 pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2329
2330         for_each_rcu_flavor(rsp) {
2331                 for_each_cpu(cpu, rcu_nocb_mask)
2332                         init_nocb_callback_list(per_cpu_ptr(rsp->rda, cpu));
2333                 rcu_organize_nocb_kthreads(rsp);
2334         }
2335 }
2336
2337 /* Initialize per-rcu_data variables for no-CBs CPUs. */
2338 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2339 {
2340         rdp->nocb_tail = &rdp->nocb_head;
2341         init_swait_queue_head(&rdp->nocb_wq);
2342         rdp->nocb_follower_tail = &rdp->nocb_follower_head;
2343         raw_spin_lock_init(&rdp->nocb_lock);
2344         timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0);
2345 }
2346
2347 /*
2348  * If the specified CPU is a no-CBs CPU that does not already have its
2349  * rcuo kthread for the specified RCU flavor, spawn it.  If the CPUs are
2350  * brought online out of order, this can require re-organizing the
2351  * leader-follower relationships.
2352  */
2353 static void rcu_spawn_one_nocb_kthread(struct rcu_state *rsp, int cpu)
2354 {
2355         struct rcu_data *rdp;
2356         struct rcu_data *rdp_last;
2357         struct rcu_data *rdp_old_leader;
2358         struct rcu_data *rdp_spawn = per_cpu_ptr(rsp->rda, cpu);
2359         struct task_struct *t;
2360
2361         /*
2362          * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2363          * then nothing to do.
2364          */
2365         if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread)
2366                 return;
2367
2368         /* If we didn't spawn the leader first, reorganize! */
2369         rdp_old_leader = rdp_spawn->nocb_leader;
2370         if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) {
2371                 rdp_last = NULL;
2372                 rdp = rdp_old_leader;
2373                 do {
2374                         rdp->nocb_leader = rdp_spawn;
2375                         if (rdp_last && rdp != rdp_spawn)
2376                                 rdp_last->nocb_next_follower = rdp;
2377                         if (rdp == rdp_spawn) {
2378                                 rdp = rdp->nocb_next_follower;
2379                         } else {
2380                                 rdp_last = rdp;
2381                                 rdp = rdp->nocb_next_follower;
2382                                 rdp_last->nocb_next_follower = NULL;
2383                         }
2384                 } while (rdp);
2385                 rdp_spawn->nocb_next_follower = rdp_old_leader;
2386         }
2387
2388         /* Spawn the kthread for this CPU and RCU flavor. */
2389         t = kthread_run(rcu_nocb_kthread, rdp_spawn,
2390                         "rcuo%c/%d", rsp->abbr, cpu);
2391         BUG_ON(IS_ERR(t));
2392         WRITE_ONCE(rdp_spawn->nocb_kthread, t);
2393 }
2394
2395 /*
2396  * If the specified CPU is a no-CBs CPU that does not already have its
2397  * rcuo kthreads, spawn them.
2398  */
2399 static void rcu_spawn_all_nocb_kthreads(int cpu)
2400 {
2401         struct rcu_state *rsp;
2402
2403         if (rcu_scheduler_fully_active)
2404                 for_each_rcu_flavor(rsp)
2405                         rcu_spawn_one_nocb_kthread(rsp, cpu);
2406 }
2407
2408 /*
2409  * Once the scheduler is running, spawn rcuo kthreads for all online
2410  * no-CBs CPUs.  This assumes that the early_initcall()s happen before
2411  * non-boot CPUs come online -- if this changes, we will need to add
2412  * some mutual exclusion.
2413  */
2414 static void __init rcu_spawn_nocb_kthreads(void)
2415 {
2416         int cpu;
2417
2418         for_each_online_cpu(cpu)
2419                 rcu_spawn_all_nocb_kthreads(cpu);
2420 }
2421
2422 /* How many follower CPU IDs per leader?  Default of -1 for sqrt(nr_cpu_ids). */
2423 static int rcu_nocb_leader_stride = -1;
2424 module_param(rcu_nocb_leader_stride, int, 0444);
2425
2426 /*
2427  * Initialize leader-follower relationships for all no-CBs CPU.
2428  */
2429 static void __init rcu_organize_nocb_kthreads(struct rcu_state *rsp)
2430 {
2431         int cpu;
2432         int ls = rcu_nocb_leader_stride;
2433         int nl = 0;  /* Next leader. */
2434         struct rcu_data *rdp;
2435         struct rcu_data *rdp_leader = NULL;  /* Suppress misguided gcc warn. */
2436         struct rcu_data *rdp_prev = NULL;
2437
2438         if (!cpumask_available(rcu_nocb_mask))
2439                 return;
2440         if (ls == -1) {
2441                 ls = int_sqrt(nr_cpu_ids);
2442                 rcu_nocb_leader_stride = ls;
2443         }
2444
2445         /*
2446          * Each pass through this loop sets up one rcu_data structure.
2447          * Should the corresponding CPU come online in the future, then
2448          * we will spawn the needed set of rcu_nocb_kthread() kthreads.
2449          */
2450         for_each_cpu(cpu, rcu_nocb_mask) {
2451                 rdp = per_cpu_ptr(rsp->rda, cpu);
2452                 if (rdp->cpu >= nl) {
2453                         /* New leader, set up for followers & next leader. */
2454                         nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2455                         rdp->nocb_leader = rdp;
2456                         rdp_leader = rdp;
2457                 } else {
2458                         /* Another follower, link to previous leader. */
2459                         rdp->nocb_leader = rdp_leader;
2460                         rdp_prev->nocb_next_follower = rdp;
2461                 }
2462                 rdp_prev = rdp;
2463         }
2464 }
2465
2466 /* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
2467 static bool init_nocb_callback_list(struct rcu_data *rdp)
2468 {
2469         if (!rcu_is_nocb_cpu(rdp->cpu))
2470                 return false;
2471
2472         /* If there are early-boot callbacks, move them to nocb lists. */
2473         if (!rcu_segcblist_empty(&rdp->cblist)) {
2474                 rdp->nocb_head = rcu_segcblist_head(&rdp->cblist);
2475                 rdp->nocb_tail = rcu_segcblist_tail(&rdp->cblist);
2476                 atomic_long_set(&rdp->nocb_q_count,
2477                                 rcu_segcblist_n_cbs(&rdp->cblist));
2478                 atomic_long_set(&rdp->nocb_q_count_lazy,
2479                                 rcu_segcblist_n_lazy_cbs(&rdp->cblist));
2480                 rcu_segcblist_init(&rdp->cblist);
2481         }
2482         rcu_segcblist_disable(&rdp->cblist);
2483         return true;
2484 }
2485
2486 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
2487
2488 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
2489 {
2490         WARN_ON_ONCE(1); /* Should be dead code. */
2491         return false;
2492 }
2493
2494 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
2495 {
2496 }
2497
2498 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2499 {
2500 }
2501
2502 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
2503 {
2504         return NULL;
2505 }
2506
2507 static void rcu_init_one_nocb(struct rcu_node *rnp)
2508 {
2509 }
2510
2511 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2512                             bool lazy, unsigned long flags)
2513 {
2514         return false;
2515 }
2516
2517 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_data *my_rdp,
2518                                                      struct rcu_data *rdp,
2519                                                      unsigned long flags)
2520 {
2521         return false;
2522 }
2523
2524 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2525 {
2526 }
2527
2528 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2529 {
2530         return false;
2531 }
2532
2533 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2534 {
2535 }
2536
2537 static void rcu_spawn_all_nocb_kthreads(int cpu)
2538 {
2539 }
2540
2541 static void __init rcu_spawn_nocb_kthreads(void)
2542 {
2543 }
2544
2545 static bool init_nocb_callback_list(struct rcu_data *rdp)
2546 {
2547         return false;
2548 }
2549
2550 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2551
2552 /*
2553  * An adaptive-ticks CPU can potentially execute in kernel mode for an
2554  * arbitrarily long period of time with the scheduling-clock tick turned
2555  * off.  RCU will be paying attention to this CPU because it is in the
2556  * kernel, but the CPU cannot be guaranteed to be executing the RCU state
2557  * machine because the scheduling-clock tick has been disabled.  Therefore,
2558  * if an adaptive-ticks CPU is failing to respond to the current grace
2559  * period and has not be idle from an RCU perspective, kick it.
2560  */
2561 static void __maybe_unused rcu_kick_nohz_cpu(int cpu)
2562 {
2563 #ifdef CONFIG_NO_HZ_FULL
2564         if (tick_nohz_full_cpu(cpu))
2565                 smp_send_reschedule(cpu);
2566 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2567 }
2568
2569 /*
2570  * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
2571  * grace-period kthread will do force_quiescent_state() processing?
2572  * The idea is to avoid waking up RCU core processing on such a
2573  * CPU unless the grace period has extended for too long.
2574  *
2575  * This code relies on the fact that all NO_HZ_FULL CPUs are also
2576  * CONFIG_RCU_NOCB_CPU CPUs.
2577  */
2578 static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
2579 {
2580 #ifdef CONFIG_NO_HZ_FULL
2581         if (tick_nohz_full_cpu(smp_processor_id()) &&
2582             (!rcu_gp_in_progress(rsp) ||
2583              ULONG_CMP_LT(jiffies, READ_ONCE(rsp->gp_start) + HZ)))
2584                 return true;
2585 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2586         return false;
2587 }
2588
2589 /*
2590  * Bind the grace-period kthread for the sysidle flavor of RCU to the
2591  * timekeeping CPU.
2592  */
2593 static void rcu_bind_gp_kthread(void)
2594 {
2595         int __maybe_unused cpu;
2596
2597         if (!tick_nohz_full_enabled())
2598                 return;
2599         housekeeping_affine(current, HK_FLAG_RCU);
2600 }
2601
2602 /* Record the current task on dyntick-idle entry. */
2603 static void rcu_dynticks_task_enter(void)
2604 {
2605 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2606         WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
2607 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2608 }
2609
2610 /* Record no current task on dyntick-idle exit. */
2611 static void rcu_dynticks_task_exit(void)
2612 {
2613 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2614         WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
2615 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2616 }
This page took 0.187641 seconds and 4 git commands to generate.