2 * processor_idle - idle state submodule to the ACPI processor driver
8 * - Added processor hotplug support
10 * - Added support for C3 on SMP
12 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or (at
17 * your option) any later version.
19 * This program is distributed in the hope that it will be useful, but
20 * WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
22 * General Public License for more details.
24 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
26 #define pr_fmt(fmt) "ACPI: " fmt
28 #include <linux/module.h>
29 #include <linux/acpi.h>
30 #include <linux/dmi.h>
31 #include <linux/sched.h> /* need_resched() */
32 #include <linux/tick.h>
33 #include <linux/cpuidle.h>
34 #include <linux/cpu.h>
35 #include <acpi/processor.h>
38 * Include the apic definitions for x86 to have the APIC timer related defines
39 * available also for UP (on SMP it gets magically included via linux/smp.h).
40 * asm/acpi.h is not an option, as it would require more include magic. Also
41 * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
47 #define ACPI_PROCESSOR_CLASS "processor"
48 #define _COMPONENT ACPI_PROCESSOR_COMPONENT
49 ACPI_MODULE_NAME("processor_idle");
51 #define ACPI_IDLE_STATE_START (IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX) ? 1 : 0)
53 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
54 module_param(max_cstate, uint, 0000);
55 static unsigned int nocst __read_mostly;
56 module_param(nocst, uint, 0000);
57 static int bm_check_disable __read_mostly;
58 module_param(bm_check_disable, uint, 0000);
60 static unsigned int latency_factor __read_mostly = 2;
61 module_param(latency_factor, uint, 0644);
63 static DEFINE_PER_CPU(struct cpuidle_device *, acpi_cpuidle_device);
65 struct cpuidle_driver acpi_idle_driver = {
70 #ifdef CONFIG_ACPI_PROCESSOR_CSTATE
72 DEFINE_PER_CPU(struct acpi_processor_cx * [CPUIDLE_STATE_MAX], acpi_cstate);
74 static int disabled_by_idle_boot_param(void)
76 return boot_option_idle_override == IDLE_POLL ||
77 boot_option_idle_override == IDLE_HALT;
81 * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
82 * For now disable this. Probably a bug somewhere else.
84 * To skip this limit, boot/load with a large max_cstate limit.
86 static int set_max_cstate(const struct dmi_system_id *id)
88 if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
91 pr_notice("%s detected - limiting to C%ld max_cstate."
92 " Override with \"processor.max_cstate=%d\"\n", id->ident,
93 (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
95 max_cstate = (long)id->driver_data;
100 static const struct dmi_system_id processor_power_dmi_table[] = {
101 { set_max_cstate, "Clevo 5600D", {
102 DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
103 DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
105 { set_max_cstate, "Pavilion zv5000", {
106 DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
107 DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")},
109 { set_max_cstate, "Asus L8400B", {
110 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
111 DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")},
118 * Callers should disable interrupts before the call and enable
119 * interrupts after return.
121 static void __cpuidle acpi_safe_halt(void)
123 if (!tif_need_resched()) {
129 #ifdef ARCH_APICTIMER_STOPS_ON_C3
132 * Some BIOS implementations switch to C3 in the published C2 state.
133 * This seems to be a common problem on AMD boxen, but other vendors
134 * are affected too. We pick the most conservative approach: we assume
135 * that the local APIC stops in both C2 and C3.
137 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
138 struct acpi_processor_cx *cx)
140 struct acpi_processor_power *pwr = &pr->power;
141 u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
143 if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
146 if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E))
147 type = ACPI_STATE_C1;
150 * Check, if one of the previous states already marked the lapic
153 if (pwr->timer_broadcast_on_state < state)
156 if (cx->type >= type)
157 pr->power.timer_broadcast_on_state = state;
160 static void __lapic_timer_propagate_broadcast(void *arg)
162 struct acpi_processor *pr = (struct acpi_processor *) arg;
164 if (pr->power.timer_broadcast_on_state < INT_MAX)
165 tick_broadcast_enable();
167 tick_broadcast_disable();
170 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
172 smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
176 /* Power(C) State timer broadcast control */
177 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
178 struct acpi_processor_cx *cx,
181 int state = cx - pr->power.states;
183 if (state >= pr->power.timer_broadcast_on_state) {
185 tick_broadcast_enter();
187 tick_broadcast_exit();
193 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
194 struct acpi_processor_cx *cstate) { }
195 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
196 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
197 struct acpi_processor_cx *cx,
204 #if defined(CONFIG_X86)
205 static void tsc_check_state(int state)
207 switch (boot_cpu_data.x86_vendor) {
209 case X86_VENDOR_INTEL:
211 * AMD Fam10h TSC will tick in all
212 * C/P/S0/S1 states when this bit is set.
214 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
219 /* TSC could halt in idle, so notify users */
220 if (state > ACPI_STATE_C1)
221 mark_tsc_unstable("TSC halts in idle");
225 static void tsc_check_state(int state) { return; }
228 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
234 /* if info is obtained from pblk/fadt, type equals state */
235 pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
236 pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
238 #ifndef CONFIG_HOTPLUG_CPU
240 * Check for P_LVL2_UP flag before entering C2 and above on
243 if ((num_online_cpus() > 1) &&
244 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
248 /* determine C2 and C3 address from pblk */
249 pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
250 pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
252 /* determine latencies from FADT */
253 pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.c2_latency;
254 pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.c3_latency;
257 * FADT specified C2 latency must be less than or equal to
260 if (acpi_gbl_FADT.c2_latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
261 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
262 "C2 latency too large [%d]\n", acpi_gbl_FADT.c2_latency));
264 pr->power.states[ACPI_STATE_C2].address = 0;
268 * FADT supplied C3 latency must be less than or equal to
271 if (acpi_gbl_FADT.c3_latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
272 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
273 "C3 latency too large [%d]\n", acpi_gbl_FADT.c3_latency));
275 pr->power.states[ACPI_STATE_C3].address = 0;
278 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
279 "lvl2[0x%08x] lvl3[0x%08x]\n",
280 pr->power.states[ACPI_STATE_C2].address,
281 pr->power.states[ACPI_STATE_C3].address));
286 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
288 if (!pr->power.states[ACPI_STATE_C1].valid) {
289 /* set the first C-State to C1 */
290 /* all processors need to support C1 */
291 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
292 pr->power.states[ACPI_STATE_C1].valid = 1;
293 pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
295 /* the C0 state only exists as a filler in our array */
296 pr->power.states[ACPI_STATE_C0].valid = 1;
300 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
306 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
307 union acpi_object *cst;
314 status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
315 if (ACPI_FAILURE(status)) {
316 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
320 cst = buffer.pointer;
322 /* There must be at least 2 elements */
323 if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
324 pr_err("not enough elements in _CST\n");
329 count = cst->package.elements[0].integer.value;
331 /* Validate number of power states. */
332 if (count < 1 || count != cst->package.count - 1) {
333 pr_err("count given by _CST is not valid\n");
338 /* Tell driver that at least _CST is supported. */
339 pr->flags.has_cst = 1;
341 for (i = 1; i <= count; i++) {
342 union acpi_object *element;
343 union acpi_object *obj;
344 struct acpi_power_register *reg;
345 struct acpi_processor_cx cx;
347 memset(&cx, 0, sizeof(cx));
349 element = &(cst->package.elements[i]);
350 if (element->type != ACPI_TYPE_PACKAGE)
353 if (element->package.count != 4)
356 obj = &(element->package.elements[0]);
358 if (obj->type != ACPI_TYPE_BUFFER)
361 reg = (struct acpi_power_register *)obj->buffer.pointer;
363 if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
364 (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
367 /* There should be an easy way to extract an integer... */
368 obj = &(element->package.elements[1]);
369 if (obj->type != ACPI_TYPE_INTEGER)
372 cx.type = obj->integer.value;
374 * Some buggy BIOSes won't list C1 in _CST -
375 * Let acpi_processor_get_power_info_default() handle them later
377 if (i == 1 && cx.type != ACPI_STATE_C1)
380 cx.address = reg->address;
381 cx.index = current_count + 1;
383 cx.entry_method = ACPI_CSTATE_SYSTEMIO;
384 if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
385 if (acpi_processor_ffh_cstate_probe
386 (pr->id, &cx, reg) == 0) {
387 cx.entry_method = ACPI_CSTATE_FFH;
388 } else if (cx.type == ACPI_STATE_C1) {
390 * C1 is a special case where FIXED_HARDWARE
391 * can be handled in non-MWAIT way as well.
392 * In that case, save this _CST entry info.
393 * Otherwise, ignore this info and continue.
395 cx.entry_method = ACPI_CSTATE_HALT;
396 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
400 if (cx.type == ACPI_STATE_C1 &&
401 (boot_option_idle_override == IDLE_NOMWAIT)) {
403 * In most cases the C1 space_id obtained from
404 * _CST object is FIXED_HARDWARE access mode.
405 * But when the option of idle=halt is added,
406 * the entry_method type should be changed from
407 * CSTATE_FFH to CSTATE_HALT.
408 * When the option of idle=nomwait is added,
409 * the C1 entry_method type should be
412 cx.entry_method = ACPI_CSTATE_HALT;
413 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
416 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x",
420 if (cx.type == ACPI_STATE_C1) {
424 obj = &(element->package.elements[2]);
425 if (obj->type != ACPI_TYPE_INTEGER)
428 cx.latency = obj->integer.value;
430 obj = &(element->package.elements[3]);
431 if (obj->type != ACPI_TYPE_INTEGER)
435 memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
438 * We support total ACPI_PROCESSOR_MAX_POWER - 1
439 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
441 if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
442 pr_warn("Limiting number of power states to max (%d)\n",
443 ACPI_PROCESSOR_MAX_POWER);
444 pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
449 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
452 /* Validate number of power states discovered */
453 if (current_count < 2)
457 kfree(buffer.pointer);
462 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
463 struct acpi_processor_cx *cx)
465 static int bm_check_flag = -1;
466 static int bm_control_flag = -1;
473 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
474 * DMA transfers are used by any ISA device to avoid livelock.
475 * Note that we could disable Type-F DMA (as recommended by
476 * the erratum), but this is known to disrupt certain ISA
477 * devices thus we take the conservative approach.
479 else if (errata.piix4.fdma) {
480 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
481 "C3 not supported on PIIX4 with Type-F DMA\n"));
485 /* All the logic here assumes flags.bm_check is same across all CPUs */
486 if (bm_check_flag == -1) {
487 /* Determine whether bm_check is needed based on CPU */
488 acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
489 bm_check_flag = pr->flags.bm_check;
490 bm_control_flag = pr->flags.bm_control;
492 pr->flags.bm_check = bm_check_flag;
493 pr->flags.bm_control = bm_control_flag;
496 if (pr->flags.bm_check) {
497 if (!pr->flags.bm_control) {
498 if (pr->flags.has_cst != 1) {
499 /* bus mastering control is necessary */
500 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
501 "C3 support requires BM control\n"));
504 /* Here we enter C3 without bus mastering */
505 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
506 "C3 support without BM control\n"));
511 * WBINVD should be set in fadt, for C3 state to be
512 * supported on when bm_check is not required.
514 if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
515 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
516 "Cache invalidation should work properly"
517 " for C3 to be enabled on SMP systems\n"));
523 * Otherwise we've met all of our C3 requirements.
524 * Normalize the C3 latency to expidite policy. Enable
525 * checking of bus mastering status (bm_check) so we can
526 * use this in our C3 policy
531 * On older chipsets, BM_RLD needs to be set
532 * in order for Bus Master activity to wake the
533 * system from C3. Newer chipsets handle DMA
534 * during C3 automatically and BM_RLD is a NOP.
535 * In either case, the proper way to
536 * handle BM_RLD is to set it and leave it set.
538 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
543 static int acpi_processor_power_verify(struct acpi_processor *pr)
546 unsigned int working = 0;
548 pr->power.timer_broadcast_on_state = INT_MAX;
550 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
551 struct acpi_processor_cx *cx = &pr->power.states[i];
565 acpi_processor_power_verify_c3(pr, cx);
571 lapic_timer_check_state(i, pr, cx);
572 tsc_check_state(cx->type);
576 lapic_timer_propagate_broadcast(pr);
581 static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
587 /* NOTE: the idle thread may not be running while calling
590 /* Zero initialize all the C-states info. */
591 memset(pr->power.states, 0, sizeof(pr->power.states));
593 result = acpi_processor_get_power_info_cst(pr);
594 if (result == -ENODEV)
595 result = acpi_processor_get_power_info_fadt(pr);
600 acpi_processor_get_power_info_default(pr);
602 pr->power.count = acpi_processor_power_verify(pr);
605 * if one state of type C2 or C3 is available, mark this
606 * CPU as being "idle manageable"
608 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
609 if (pr->power.states[i].valid) {
611 if (pr->power.states[i].type >= ACPI_STATE_C2)
620 * acpi_idle_bm_check - checks if bus master activity was detected
622 static int acpi_idle_bm_check(void)
626 if (bm_check_disable)
629 acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
631 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
633 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
634 * the true state of bus mastering activity; forcing us to
635 * manually check the BMIDEA bit of each IDE channel.
637 else if (errata.piix4.bmisx) {
638 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
639 || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
646 * acpi_idle_do_entry - enter idle state using the appropriate method
649 * Caller disables interrupt before call and enables interrupt after return.
651 static void __cpuidle acpi_idle_do_entry(struct acpi_processor_cx *cx)
653 if (cx->entry_method == ACPI_CSTATE_FFH) {
654 /* Call into architectural FFH based C-state */
655 acpi_processor_ffh_cstate_enter(cx);
656 } else if (cx->entry_method == ACPI_CSTATE_HALT) {
659 /* IO port based C-state */
661 /* Dummy wait op - must do something useless after P_LVL2 read
662 because chipsets cannot guarantee that STPCLK# signal
663 gets asserted in time to freeze execution properly. */
664 inl(acpi_gbl_FADT.xpm_timer_block.address);
669 * acpi_idle_play_dead - enters an ACPI state for long-term idle (i.e. off-lining)
670 * @dev: the target CPU
671 * @index: the index of suggested state
673 static int acpi_idle_play_dead(struct cpuidle_device *dev, int index)
675 struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
677 ACPI_FLUSH_CPU_CACHE();
681 if (cx->entry_method == ACPI_CSTATE_HALT)
683 else if (cx->entry_method == ACPI_CSTATE_SYSTEMIO) {
685 /* See comment in acpi_idle_do_entry() */
686 inl(acpi_gbl_FADT.xpm_timer_block.address);
695 static bool acpi_idle_fallback_to_c1(struct acpi_processor *pr)
697 return IS_ENABLED(CONFIG_HOTPLUG_CPU) && !pr->flags.has_cst &&
698 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED);
701 static int c3_cpu_count;
702 static DEFINE_RAW_SPINLOCK(c3_lock);
705 * acpi_idle_enter_bm - enters C3 with proper BM handling
706 * @pr: Target processor
707 * @cx: Target state context
708 * @timer_bc: Whether or not to change timer mode to broadcast
710 static void acpi_idle_enter_bm(struct acpi_processor *pr,
711 struct acpi_processor_cx *cx, bool timer_bc)
714 * Must be done before busmaster disable as we might need to
718 lapic_timer_state_broadcast(pr, cx, 1);
722 * bm_check implies we need ARB_DIS
723 * bm_control implies whether we can do ARB_DIS
725 * That leaves a case where bm_check is set and bm_control is
726 * not set. In that case we cannot do much, we enter C3
727 * without doing anything.
729 if (pr->flags.bm_control) {
730 raw_spin_lock(&c3_lock);
732 /* Disable bus master arbitration when all CPUs are in C3 */
733 if (c3_cpu_count == num_online_cpus())
734 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
735 raw_spin_unlock(&c3_lock);
738 acpi_idle_do_entry(cx);
740 /* Re-enable bus master arbitration */
741 if (pr->flags.bm_control) {
742 raw_spin_lock(&c3_lock);
743 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
745 raw_spin_unlock(&c3_lock);
749 lapic_timer_state_broadcast(pr, cx, 0);
752 static int acpi_idle_enter(struct cpuidle_device *dev,
753 struct cpuidle_driver *drv, int index)
755 struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
756 struct acpi_processor *pr;
758 pr = __this_cpu_read(processors);
762 if (cx->type != ACPI_STATE_C1) {
763 if (acpi_idle_fallback_to_c1(pr) && num_online_cpus() > 1) {
764 index = ACPI_IDLE_STATE_START;
765 cx = per_cpu(acpi_cstate[index], dev->cpu);
766 } else if (cx->type == ACPI_STATE_C3 && pr->flags.bm_check) {
767 if (cx->bm_sts_skip || !acpi_idle_bm_check()) {
768 acpi_idle_enter_bm(pr, cx, true);
770 } else if (drv->safe_state_index >= 0) {
771 index = drv->safe_state_index;
772 cx = per_cpu(acpi_cstate[index], dev->cpu);
780 lapic_timer_state_broadcast(pr, cx, 1);
782 if (cx->type == ACPI_STATE_C3)
783 ACPI_FLUSH_CPU_CACHE();
785 acpi_idle_do_entry(cx);
787 lapic_timer_state_broadcast(pr, cx, 0);
792 static void acpi_idle_enter_s2idle(struct cpuidle_device *dev,
793 struct cpuidle_driver *drv, int index)
795 struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
797 if (cx->type == ACPI_STATE_C3) {
798 struct acpi_processor *pr = __this_cpu_read(processors);
803 if (pr->flags.bm_check) {
804 acpi_idle_enter_bm(pr, cx, false);
807 ACPI_FLUSH_CPU_CACHE();
810 acpi_idle_do_entry(cx);
813 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
814 struct cpuidle_device *dev)
816 int i, count = ACPI_IDLE_STATE_START;
817 struct acpi_processor_cx *cx;
822 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
823 cx = &pr->power.states[i];
828 per_cpu(acpi_cstate[count], dev->cpu) = cx;
831 if (count == CPUIDLE_STATE_MAX)
841 static int acpi_processor_setup_cstates(struct acpi_processor *pr)
844 struct acpi_processor_cx *cx;
845 struct cpuidle_state *state;
846 struct cpuidle_driver *drv = &acpi_idle_driver;
851 if (IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX)) {
852 cpuidle_poll_state_init(drv);
858 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
859 cx = &pr->power.states[i];
864 state = &drv->states[count];
865 snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
866 strlcpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
867 state->exit_latency = cx->latency;
868 state->target_residency = cx->latency * latency_factor;
869 state->enter = acpi_idle_enter;
872 if (cx->type == ACPI_STATE_C1 || cx->type == ACPI_STATE_C2) {
873 state->enter_dead = acpi_idle_play_dead;
874 drv->safe_state_index = count;
877 * Halt-induced C1 is not good for ->enter_s2idle, because it
878 * re-enables interrupts on exit. Moreover, C1 is generally not
879 * particularly interesting from the suspend-to-idle angle, so
880 * avoid C1 and the situations in which we may need to fall back
883 if (cx->type != ACPI_STATE_C1 && !acpi_idle_fallback_to_c1(pr))
884 state->enter_s2idle = acpi_idle_enter_s2idle;
887 if (count == CPUIDLE_STATE_MAX)
891 drv->state_count = count;
899 static inline void acpi_processor_cstate_first_run_checks(void)
902 static int first_run;
906 dmi_check_system(processor_power_dmi_table);
907 max_cstate = acpi_processor_cstate_check(max_cstate);
908 if (max_cstate < ACPI_C_STATES_MAX)
909 pr_notice("ACPI: processor limited to max C-state %d\n",
913 if (acpi_gbl_FADT.cst_control && !nocst) {
914 status = acpi_os_write_port(acpi_gbl_FADT.smi_command,
915 acpi_gbl_FADT.cst_control, 8);
916 if (ACPI_FAILURE(status))
917 ACPI_EXCEPTION((AE_INFO, status,
918 "Notifying BIOS of _CST ability failed"));
923 static inline int disabled_by_idle_boot_param(void) { return 0; }
924 static inline void acpi_processor_cstate_first_run_checks(void) { }
925 static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
930 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
931 struct cpuidle_device *dev)
936 static int acpi_processor_setup_cstates(struct acpi_processor *pr)
941 #endif /* CONFIG_ACPI_PROCESSOR_CSTATE */
943 struct acpi_lpi_states_array {
945 unsigned int composite_states_size;
946 struct acpi_lpi_state *entries;
947 struct acpi_lpi_state *composite_states[ACPI_PROCESSOR_MAX_POWER];
950 static int obj_get_integer(union acpi_object *obj, u32 *value)
952 if (obj->type != ACPI_TYPE_INTEGER)
955 *value = obj->integer.value;
959 static int acpi_processor_evaluate_lpi(acpi_handle handle,
960 struct acpi_lpi_states_array *info)
964 int pkg_count, state_idx = 1, loop;
965 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
966 union acpi_object *lpi_data;
967 struct acpi_lpi_state *lpi_state;
969 status = acpi_evaluate_object(handle, "_LPI", NULL, &buffer);
970 if (ACPI_FAILURE(status)) {
971 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _LPI, giving up\n"));
975 lpi_data = buffer.pointer;
977 /* There must be at least 4 elements = 3 elements + 1 package */
978 if (!lpi_data || lpi_data->type != ACPI_TYPE_PACKAGE ||
979 lpi_data->package.count < 4) {
980 pr_debug("not enough elements in _LPI\n");
985 pkg_count = lpi_data->package.elements[2].integer.value;
987 /* Validate number of power states. */
988 if (pkg_count < 1 || pkg_count != lpi_data->package.count - 3) {
989 pr_debug("count given by _LPI is not valid\n");
994 lpi_state = kcalloc(pkg_count, sizeof(*lpi_state), GFP_KERNEL);
1000 info->size = pkg_count;
1001 info->entries = lpi_state;
1003 /* LPI States start at index 3 */
1004 for (loop = 3; state_idx <= pkg_count; loop++, state_idx++, lpi_state++) {
1005 union acpi_object *element, *pkg_elem, *obj;
1007 element = &lpi_data->package.elements[loop];
1008 if (element->type != ACPI_TYPE_PACKAGE || element->package.count < 7)
1011 pkg_elem = element->package.elements;
1014 if (obj->type == ACPI_TYPE_BUFFER) {
1015 struct acpi_power_register *reg;
1017 reg = (struct acpi_power_register *)obj->buffer.pointer;
1018 if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
1019 reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)
1022 lpi_state->address = reg->address;
1023 lpi_state->entry_method =
1024 reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE ?
1025 ACPI_CSTATE_FFH : ACPI_CSTATE_SYSTEMIO;
1026 } else if (obj->type == ACPI_TYPE_INTEGER) {
1027 lpi_state->entry_method = ACPI_CSTATE_INTEGER;
1028 lpi_state->address = obj->integer.value;
1033 /* elements[7,8] skipped for now i.e. Residency/Usage counter*/
1036 if (obj->type == ACPI_TYPE_STRING)
1037 strlcpy(lpi_state->desc, obj->string.pointer,
1040 lpi_state->index = state_idx;
1041 if (obj_get_integer(pkg_elem + 0, &lpi_state->min_residency)) {
1042 pr_debug("No min. residency found, assuming 10 us\n");
1043 lpi_state->min_residency = 10;
1046 if (obj_get_integer(pkg_elem + 1, &lpi_state->wake_latency)) {
1047 pr_debug("No wakeup residency found, assuming 10 us\n");
1048 lpi_state->wake_latency = 10;
1051 if (obj_get_integer(pkg_elem + 2, &lpi_state->flags))
1052 lpi_state->flags = 0;
1054 if (obj_get_integer(pkg_elem + 3, &lpi_state->arch_flags))
1055 lpi_state->arch_flags = 0;
1057 if (obj_get_integer(pkg_elem + 4, &lpi_state->res_cnt_freq))
1058 lpi_state->res_cnt_freq = 1;
1060 if (obj_get_integer(pkg_elem + 5, &lpi_state->enable_parent_state))
1061 lpi_state->enable_parent_state = 0;
1064 acpi_handle_debug(handle, "Found %d power states\n", state_idx);
1066 kfree(buffer.pointer);
1071 * flat_state_cnt - the number of composite LPI states after the process of flattening
1073 static int flat_state_cnt;
1076 * combine_lpi_states - combine local and parent LPI states to form a composite LPI state
1078 * @local: local LPI state
1079 * @parent: parent LPI state
1080 * @result: composite LPI state
1082 static bool combine_lpi_states(struct acpi_lpi_state *local,
1083 struct acpi_lpi_state *parent,
1084 struct acpi_lpi_state *result)
1086 if (parent->entry_method == ACPI_CSTATE_INTEGER) {
1087 if (!parent->address) /* 0 means autopromotable */
1089 result->address = local->address + parent->address;
1091 result->address = parent->address;
1094 result->min_residency = max(local->min_residency, parent->min_residency);
1095 result->wake_latency = local->wake_latency + parent->wake_latency;
1096 result->enable_parent_state = parent->enable_parent_state;
1097 result->entry_method = local->entry_method;
1099 result->flags = parent->flags;
1100 result->arch_flags = parent->arch_flags;
1101 result->index = parent->index;
1103 strlcpy(result->desc, local->desc, ACPI_CX_DESC_LEN);
1104 strlcat(result->desc, "+", ACPI_CX_DESC_LEN);
1105 strlcat(result->desc, parent->desc, ACPI_CX_DESC_LEN);
1109 #define ACPI_LPI_STATE_FLAGS_ENABLED BIT(0)
1111 static void stash_composite_state(struct acpi_lpi_states_array *curr_level,
1112 struct acpi_lpi_state *t)
1114 curr_level->composite_states[curr_level->composite_states_size++] = t;
1117 static int flatten_lpi_states(struct acpi_processor *pr,
1118 struct acpi_lpi_states_array *curr_level,
1119 struct acpi_lpi_states_array *prev_level)
1121 int i, j, state_count = curr_level->size;
1122 struct acpi_lpi_state *p, *t = curr_level->entries;
1124 curr_level->composite_states_size = 0;
1125 for (j = 0; j < state_count; j++, t++) {
1126 struct acpi_lpi_state *flpi;
1128 if (!(t->flags & ACPI_LPI_STATE_FLAGS_ENABLED))
1131 if (flat_state_cnt >= ACPI_PROCESSOR_MAX_POWER) {
1132 pr_warn("Limiting number of LPI states to max (%d)\n",
1133 ACPI_PROCESSOR_MAX_POWER);
1134 pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
1138 flpi = &pr->power.lpi_states[flat_state_cnt];
1140 if (!prev_level) { /* leaf/processor node */
1141 memcpy(flpi, t, sizeof(*t));
1142 stash_composite_state(curr_level, flpi);
1147 for (i = 0; i < prev_level->composite_states_size; i++) {
1148 p = prev_level->composite_states[i];
1149 if (t->index <= p->enable_parent_state &&
1150 combine_lpi_states(p, t, flpi)) {
1151 stash_composite_state(curr_level, flpi);
1158 kfree(curr_level->entries);
1162 static int acpi_processor_get_lpi_info(struct acpi_processor *pr)
1166 acpi_handle handle = pr->handle, pr_ahandle;
1167 struct acpi_device *d = NULL;
1168 struct acpi_lpi_states_array info[2], *tmp, *prev, *curr;
1170 if (!osc_pc_lpi_support_confirmed)
1173 if (!acpi_has_method(handle, "_LPI"))
1179 handle = pr->handle;
1180 ret = acpi_processor_evaluate_lpi(handle, prev);
1183 flatten_lpi_states(pr, prev, NULL);
1185 status = acpi_get_parent(handle, &pr_ahandle);
1186 while (ACPI_SUCCESS(status)) {
1187 acpi_bus_get_device(pr_ahandle, &d);
1188 handle = pr_ahandle;
1190 if (strcmp(acpi_device_hid(d), ACPI_PROCESSOR_CONTAINER_HID))
1193 /* can be optional ? */
1194 if (!acpi_has_method(handle, "_LPI"))
1197 ret = acpi_processor_evaluate_lpi(handle, curr);
1201 /* flatten all the LPI states in this level of hierarchy */
1202 flatten_lpi_states(pr, curr, prev);
1204 tmp = prev, prev = curr, curr = tmp;
1206 status = acpi_get_parent(handle, &pr_ahandle);
1209 pr->power.count = flat_state_cnt;
1210 /* reset the index after flattening */
1211 for (i = 0; i < pr->power.count; i++)
1212 pr->power.lpi_states[i].index = i;
1214 /* Tell driver that _LPI is supported. */
1215 pr->flags.has_lpi = 1;
1216 pr->flags.power = 1;
1221 int __weak acpi_processor_ffh_lpi_probe(unsigned int cpu)
1226 int __weak acpi_processor_ffh_lpi_enter(struct acpi_lpi_state *lpi)
1232 * acpi_idle_lpi_enter - enters an ACPI any LPI state
1233 * @dev: the target CPU
1234 * @drv: cpuidle driver containing cpuidle state info
1235 * @index: index of target state
1237 * Return: 0 for success or negative value for error
1239 static int acpi_idle_lpi_enter(struct cpuidle_device *dev,
1240 struct cpuidle_driver *drv, int index)
1242 struct acpi_processor *pr;
1243 struct acpi_lpi_state *lpi;
1245 pr = __this_cpu_read(processors);
1250 lpi = &pr->power.lpi_states[index];
1251 if (lpi->entry_method == ACPI_CSTATE_FFH)
1252 return acpi_processor_ffh_lpi_enter(lpi);
1257 static int acpi_processor_setup_lpi_states(struct acpi_processor *pr)
1260 struct acpi_lpi_state *lpi;
1261 struct cpuidle_state *state;
1262 struct cpuidle_driver *drv = &acpi_idle_driver;
1264 if (!pr->flags.has_lpi)
1267 for (i = 0; i < pr->power.count && i < CPUIDLE_STATE_MAX; i++) {
1268 lpi = &pr->power.lpi_states[i];
1270 state = &drv->states[i];
1271 snprintf(state->name, CPUIDLE_NAME_LEN, "LPI-%d", i);
1272 strlcpy(state->desc, lpi->desc, CPUIDLE_DESC_LEN);
1273 state->exit_latency = lpi->wake_latency;
1274 state->target_residency = lpi->min_residency;
1275 if (lpi->arch_flags)
1276 state->flags |= CPUIDLE_FLAG_TIMER_STOP;
1277 state->enter = acpi_idle_lpi_enter;
1278 drv->safe_state_index = i;
1281 drv->state_count = i;
1287 * acpi_processor_setup_cpuidle_states- prepares and configures cpuidle
1288 * global state data i.e. idle routines
1290 * @pr: the ACPI processor
1292 static int acpi_processor_setup_cpuidle_states(struct acpi_processor *pr)
1295 struct cpuidle_driver *drv = &acpi_idle_driver;
1297 if (!pr->flags.power_setup_done || !pr->flags.power)
1300 drv->safe_state_index = -1;
1301 for (i = ACPI_IDLE_STATE_START; i < CPUIDLE_STATE_MAX; i++) {
1302 drv->states[i].name[0] = '\0';
1303 drv->states[i].desc[0] = '\0';
1306 if (pr->flags.has_lpi)
1307 return acpi_processor_setup_lpi_states(pr);
1309 return acpi_processor_setup_cstates(pr);
1313 * acpi_processor_setup_cpuidle_dev - prepares and configures CPUIDLE
1314 * device i.e. per-cpu data
1316 * @pr: the ACPI processor
1317 * @dev : the cpuidle device
1319 static int acpi_processor_setup_cpuidle_dev(struct acpi_processor *pr,
1320 struct cpuidle_device *dev)
1322 if (!pr->flags.power_setup_done || !pr->flags.power || !dev)
1326 if (pr->flags.has_lpi)
1327 return acpi_processor_ffh_lpi_probe(pr->id);
1329 return acpi_processor_setup_cpuidle_cx(pr, dev);
1332 static int acpi_processor_get_power_info(struct acpi_processor *pr)
1336 ret = acpi_processor_get_lpi_info(pr);
1338 ret = acpi_processor_get_cstate_info(pr);
1343 int acpi_processor_hotplug(struct acpi_processor *pr)
1346 struct cpuidle_device *dev;
1348 if (disabled_by_idle_boot_param())
1351 if (!pr->flags.power_setup_done)
1354 dev = per_cpu(acpi_cpuidle_device, pr->id);
1355 cpuidle_pause_and_lock();
1356 cpuidle_disable_device(dev);
1357 ret = acpi_processor_get_power_info(pr);
1358 if (!ret && pr->flags.power) {
1359 acpi_processor_setup_cpuidle_dev(pr, dev);
1360 ret = cpuidle_enable_device(dev);
1362 cpuidle_resume_and_unlock();
1367 int acpi_processor_power_state_has_changed(struct acpi_processor *pr)
1370 struct acpi_processor *_pr;
1371 struct cpuidle_device *dev;
1373 if (disabled_by_idle_boot_param())
1376 if (!pr->flags.power_setup_done)
1380 * FIXME: Design the ACPI notification to make it once per
1381 * system instead of once per-cpu. This condition is a hack
1382 * to make the code that updates C-States be called once.
1385 if (pr->id == 0 && cpuidle_get_driver() == &acpi_idle_driver) {
1387 /* Protect against cpu-hotplug */
1389 cpuidle_pause_and_lock();
1391 /* Disable all cpuidle devices */
1392 for_each_online_cpu(cpu) {
1393 _pr = per_cpu(processors, cpu);
1394 if (!_pr || !_pr->flags.power_setup_done)
1396 dev = per_cpu(acpi_cpuidle_device, cpu);
1397 cpuidle_disable_device(dev);
1400 /* Populate Updated C-state information */
1401 acpi_processor_get_power_info(pr);
1402 acpi_processor_setup_cpuidle_states(pr);
1404 /* Enable all cpuidle devices */
1405 for_each_online_cpu(cpu) {
1406 _pr = per_cpu(processors, cpu);
1407 if (!_pr || !_pr->flags.power_setup_done)
1409 acpi_processor_get_power_info(_pr);
1410 if (_pr->flags.power) {
1411 dev = per_cpu(acpi_cpuidle_device, cpu);
1412 acpi_processor_setup_cpuidle_dev(_pr, dev);
1413 cpuidle_enable_device(dev);
1416 cpuidle_resume_and_unlock();
1423 static int acpi_processor_registered;
1425 int acpi_processor_power_init(struct acpi_processor *pr)
1428 struct cpuidle_device *dev;
1430 if (disabled_by_idle_boot_param())
1433 acpi_processor_cstate_first_run_checks();
1435 if (!acpi_processor_get_power_info(pr))
1436 pr->flags.power_setup_done = 1;
1439 * Install the idle handler if processor power management is supported.
1440 * Note that we use previously set idle handler will be used on
1441 * platforms that only support C1.
1443 if (pr->flags.power) {
1444 /* Register acpi_idle_driver if not already registered */
1445 if (!acpi_processor_registered) {
1446 acpi_processor_setup_cpuidle_states(pr);
1447 retval = cpuidle_register_driver(&acpi_idle_driver);
1450 pr_debug("%s registered with cpuidle\n",
1451 acpi_idle_driver.name);
1454 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1457 per_cpu(acpi_cpuidle_device, pr->id) = dev;
1459 acpi_processor_setup_cpuidle_dev(pr, dev);
1461 /* Register per-cpu cpuidle_device. Cpuidle driver
1462 * must already be registered before registering device
1464 retval = cpuidle_register_device(dev);
1466 if (acpi_processor_registered == 0)
1467 cpuidle_unregister_driver(&acpi_idle_driver);
1470 acpi_processor_registered++;
1475 int acpi_processor_power_exit(struct acpi_processor *pr)
1477 struct cpuidle_device *dev = per_cpu(acpi_cpuidle_device, pr->id);
1479 if (disabled_by_idle_boot_param())
1482 if (pr->flags.power) {
1483 cpuidle_unregister_device(dev);
1484 acpi_processor_registered--;
1485 if (acpi_processor_registered == 0)
1486 cpuidle_unregister_driver(&acpi_idle_driver);
1489 pr->flags.power_setup_done = 0;