4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
11 * Multiqueue VM started 5.8.00, Rik van Riel.
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmpressure.h>
23 #include <linux/vmstat.h>
24 #include <linux/file.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/buffer_head.h> /* for try_to_release_page(),
28 buffer_heads_over_limit */
29 #include <linux/mm_inline.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/compaction.h>
36 #include <linux/notifier.h>
37 #include <linux/rwsem.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/delayacct.h>
43 #include <linux/sysctl.h>
44 #include <linux/oom.h>
45 #include <linux/prefetch.h>
47 #include <asm/tlbflush.h>
48 #include <asm/div64.h>
50 #include <linux/swapops.h>
51 #include <linux/balloon_compaction.h>
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/vmscan.h>
59 /* Incremented by the number of inactive pages that were scanned */
60 unsigned long nr_scanned;
62 /* Number of pages freed so far during a call to shrink_zones() */
63 unsigned long nr_reclaimed;
65 /* How many pages shrink_list() should reclaim */
66 unsigned long nr_to_reclaim;
68 unsigned long hibernation_mode;
70 /* This context's GFP mask */
75 /* Can mapped pages be reclaimed? */
78 /* Can pages be swapped as part of reclaim? */
83 /* Scan (total_size >> priority) pages at once */
87 * The memory cgroup that hit its limit and as a result is the
88 * primary target of this reclaim invocation.
90 struct mem_cgroup *target_mem_cgroup;
93 * Nodemask of nodes allowed by the caller. If NULL, all nodes
99 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
101 #ifdef ARCH_HAS_PREFETCH
102 #define prefetch_prev_lru_page(_page, _base, _field) \
104 if ((_page)->lru.prev != _base) { \
107 prev = lru_to_page(&(_page->lru)); \
108 prefetch(&prev->_field); \
112 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
115 #ifdef ARCH_HAS_PREFETCHW
116 #define prefetchw_prev_lru_page(_page, _base, _field) \
118 if ((_page)->lru.prev != _base) { \
121 prev = lru_to_page(&(_page->lru)); \
122 prefetchw(&prev->_field); \
126 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
130 * From 0 .. 100. Higher means more swappy.
132 int vm_swappiness = 60;
133 unsigned long vm_total_pages; /* The total number of pages which the VM controls */
135 static LIST_HEAD(shrinker_list);
136 static DECLARE_RWSEM(shrinker_rwsem);
139 static bool global_reclaim(struct scan_control *sc)
141 return !sc->target_mem_cgroup;
144 static bool global_reclaim(struct scan_control *sc)
150 static unsigned long zone_reclaimable_pages(struct zone *zone)
154 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
155 zone_page_state(zone, NR_INACTIVE_FILE);
157 if (get_nr_swap_pages() > 0)
158 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
159 zone_page_state(zone, NR_INACTIVE_ANON);
164 bool zone_reclaimable(struct zone *zone)
166 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
169 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
171 if (!mem_cgroup_disabled())
172 return mem_cgroup_get_lru_size(lruvec, lru);
174 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
178 * Add a shrinker callback to be called from the vm.
180 int register_shrinker(struct shrinker *shrinker)
182 size_t size = sizeof(*shrinker->nr_deferred);
185 * If we only have one possible node in the system anyway, save
186 * ourselves the trouble and disable NUMA aware behavior. This way we
187 * will save memory and some small loop time later.
189 if (nr_node_ids == 1)
190 shrinker->flags &= ~SHRINKER_NUMA_AWARE;
192 if (shrinker->flags & SHRINKER_NUMA_AWARE)
195 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
196 if (!shrinker->nr_deferred)
199 down_write(&shrinker_rwsem);
200 list_add_tail(&shrinker->list, &shrinker_list);
201 up_write(&shrinker_rwsem);
204 EXPORT_SYMBOL(register_shrinker);
209 void unregister_shrinker(struct shrinker *shrinker)
211 down_write(&shrinker_rwsem);
212 list_del(&shrinker->list);
213 up_write(&shrinker_rwsem);
214 kfree(shrinker->nr_deferred);
216 EXPORT_SYMBOL(unregister_shrinker);
218 #define SHRINK_BATCH 128
221 shrink_slab_node(struct shrink_control *shrinkctl, struct shrinker *shrinker,
222 unsigned long nr_pages_scanned, unsigned long lru_pages)
224 unsigned long freed = 0;
225 unsigned long long delta;
230 int nid = shrinkctl->nid;
231 long batch_size = shrinker->batch ? shrinker->batch
234 freeable = shrinker->count_objects(shrinker, shrinkctl);
239 * copy the current shrinker scan count into a local variable
240 * and zero it so that other concurrent shrinker invocations
241 * don't also do this scanning work.
243 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
246 delta = (4 * nr_pages_scanned) / shrinker->seeks;
248 do_div(delta, lru_pages + 1);
250 if (total_scan < 0) {
252 "shrink_slab: %pF negative objects to delete nr=%ld\n",
253 shrinker->scan_objects, total_scan);
254 total_scan = freeable;
258 * We need to avoid excessive windup on filesystem shrinkers
259 * due to large numbers of GFP_NOFS allocations causing the
260 * shrinkers to return -1 all the time. This results in a large
261 * nr being built up so when a shrink that can do some work
262 * comes along it empties the entire cache due to nr >>>
263 * freeable. This is bad for sustaining a working set in
266 * Hence only allow the shrinker to scan the entire cache when
267 * a large delta change is calculated directly.
269 if (delta < freeable / 4)
270 total_scan = min(total_scan, freeable / 2);
273 * Avoid risking looping forever due to too large nr value:
274 * never try to free more than twice the estimate number of
277 if (total_scan > freeable * 2)
278 total_scan = freeable * 2;
280 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
281 nr_pages_scanned, lru_pages,
282 freeable, delta, total_scan);
285 * Normally, we should not scan less than batch_size objects in one
286 * pass to avoid too frequent shrinker calls, but if the slab has less
287 * than batch_size objects in total and we are really tight on memory,
288 * we will try to reclaim all available objects, otherwise we can end
289 * up failing allocations although there are plenty of reclaimable
290 * objects spread over several slabs with usage less than the
293 * We detect the "tight on memory" situations by looking at the total
294 * number of objects we want to scan (total_scan). If it is greater
295 * than the total number of objects on slab (freeable), we must be
296 * scanning at high prio and therefore should try to reclaim as much as
299 while (total_scan >= batch_size ||
300 total_scan >= freeable) {
302 unsigned long nr_to_scan = min(batch_size, total_scan);
304 shrinkctl->nr_to_scan = nr_to_scan;
305 ret = shrinker->scan_objects(shrinker, shrinkctl);
306 if (ret == SHRINK_STOP)
310 count_vm_events(SLABS_SCANNED, nr_to_scan);
311 total_scan -= nr_to_scan;
317 * move the unused scan count back into the shrinker in a
318 * manner that handles concurrent updates. If we exhausted the
319 * scan, there is no need to do an update.
322 new_nr = atomic_long_add_return(total_scan,
323 &shrinker->nr_deferred[nid]);
325 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
327 trace_mm_shrink_slab_end(shrinker, freed, nr, new_nr);
332 * Call the shrink functions to age shrinkable caches
334 * Here we assume it costs one seek to replace a lru page and that it also
335 * takes a seek to recreate a cache object. With this in mind we age equal
336 * percentages of the lru and ageable caches. This should balance the seeks
337 * generated by these structures.
339 * If the vm encountered mapped pages on the LRU it increase the pressure on
340 * slab to avoid swapping.
342 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
344 * `lru_pages' represents the number of on-LRU pages in all the zones which
345 * are eligible for the caller's allocation attempt. It is used for balancing
346 * slab reclaim versus page reclaim.
348 * Returns the number of slab objects which we shrunk.
350 unsigned long shrink_slab(struct shrink_control *shrinkctl,
351 unsigned long nr_pages_scanned,
352 unsigned long lru_pages)
354 struct shrinker *shrinker;
355 unsigned long freed = 0;
357 if (nr_pages_scanned == 0)
358 nr_pages_scanned = SWAP_CLUSTER_MAX;
360 if (!down_read_trylock(&shrinker_rwsem)) {
362 * If we would return 0, our callers would understand that we
363 * have nothing else to shrink and give up trying. By returning
364 * 1 we keep it going and assume we'll be able to shrink next
371 list_for_each_entry(shrinker, &shrinker_list, list) {
372 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) {
374 freed += shrink_slab_node(shrinkctl, shrinker,
375 nr_pages_scanned, lru_pages);
379 for_each_node_mask(shrinkctl->nid, shrinkctl->nodes_to_scan) {
380 if (node_online(shrinkctl->nid))
381 freed += shrink_slab_node(shrinkctl, shrinker,
382 nr_pages_scanned, lru_pages);
386 up_read(&shrinker_rwsem);
392 static inline int is_page_cache_freeable(struct page *page)
395 * A freeable page cache page is referenced only by the caller
396 * that isolated the page, the page cache radix tree and
397 * optional buffer heads at page->private.
399 return page_count(page) - page_has_private(page) == 2;
402 static int may_write_to_queue(struct backing_dev_info *bdi,
403 struct scan_control *sc)
405 if (current->flags & PF_SWAPWRITE)
407 if (!bdi_write_congested(bdi))
409 if (bdi == current->backing_dev_info)
415 * We detected a synchronous write error writing a page out. Probably
416 * -ENOSPC. We need to propagate that into the address_space for a subsequent
417 * fsync(), msync() or close().
419 * The tricky part is that after writepage we cannot touch the mapping: nothing
420 * prevents it from being freed up. But we have a ref on the page and once
421 * that page is locked, the mapping is pinned.
423 * We're allowed to run sleeping lock_page() here because we know the caller has
426 static void handle_write_error(struct address_space *mapping,
427 struct page *page, int error)
430 if (page_mapping(page) == mapping)
431 mapping_set_error(mapping, error);
435 /* possible outcome of pageout() */
437 /* failed to write page out, page is locked */
439 /* move page to the active list, page is locked */
441 /* page has been sent to the disk successfully, page is unlocked */
443 /* page is clean and locked */
448 * pageout is called by shrink_page_list() for each dirty page.
449 * Calls ->writepage().
451 static pageout_t pageout(struct page *page, struct address_space *mapping,
452 struct scan_control *sc)
455 * If the page is dirty, only perform writeback if that write
456 * will be non-blocking. To prevent this allocation from being
457 * stalled by pagecache activity. But note that there may be
458 * stalls if we need to run get_block(). We could test
459 * PagePrivate for that.
461 * If this process is currently in __generic_file_aio_write() against
462 * this page's queue, we can perform writeback even if that
465 * If the page is swapcache, write it back even if that would
466 * block, for some throttling. This happens by accident, because
467 * swap_backing_dev_info is bust: it doesn't reflect the
468 * congestion state of the swapdevs. Easy to fix, if needed.
470 if (!is_page_cache_freeable(page))
474 * Some data journaling orphaned pages can have
475 * page->mapping == NULL while being dirty with clean buffers.
477 if (page_has_private(page)) {
478 if (try_to_free_buffers(page)) {
479 ClearPageDirty(page);
480 printk("%s: orphaned page\n", __func__);
486 if (mapping->a_ops->writepage == NULL)
487 return PAGE_ACTIVATE;
488 if (!may_write_to_queue(mapping->backing_dev_info, sc))
491 if (clear_page_dirty_for_io(page)) {
493 struct writeback_control wbc = {
494 .sync_mode = WB_SYNC_NONE,
495 .nr_to_write = SWAP_CLUSTER_MAX,
497 .range_end = LLONG_MAX,
501 SetPageReclaim(page);
502 res = mapping->a_ops->writepage(page, &wbc);
504 handle_write_error(mapping, page, res);
505 if (res == AOP_WRITEPAGE_ACTIVATE) {
506 ClearPageReclaim(page);
507 return PAGE_ACTIVATE;
510 if (!PageWriteback(page)) {
511 /* synchronous write or broken a_ops? */
512 ClearPageReclaim(page);
514 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
515 inc_zone_page_state(page, NR_VMSCAN_WRITE);
523 * Same as remove_mapping, but if the page is removed from the mapping, it
524 * gets returned with a refcount of 0.
526 static int __remove_mapping(struct address_space *mapping, struct page *page)
528 BUG_ON(!PageLocked(page));
529 BUG_ON(mapping != page_mapping(page));
531 spin_lock_irq(&mapping->tree_lock);
533 * The non racy check for a busy page.
535 * Must be careful with the order of the tests. When someone has
536 * a ref to the page, it may be possible that they dirty it then
537 * drop the reference. So if PageDirty is tested before page_count
538 * here, then the following race may occur:
540 * get_user_pages(&page);
541 * [user mapping goes away]
543 * !PageDirty(page) [good]
544 * SetPageDirty(page);
546 * !page_count(page) [good, discard it]
548 * [oops, our write_to data is lost]
550 * Reversing the order of the tests ensures such a situation cannot
551 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
552 * load is not satisfied before that of page->_count.
554 * Note that if SetPageDirty is always performed via set_page_dirty,
555 * and thus under tree_lock, then this ordering is not required.
557 if (!page_freeze_refs(page, 2))
559 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
560 if (unlikely(PageDirty(page))) {
561 page_unfreeze_refs(page, 2);
565 if (PageSwapCache(page)) {
566 swp_entry_t swap = { .val = page_private(page) };
567 __delete_from_swap_cache(page);
568 spin_unlock_irq(&mapping->tree_lock);
569 swapcache_free(swap, page);
571 void (*freepage)(struct page *);
573 freepage = mapping->a_ops->freepage;
575 __delete_from_page_cache(page);
576 spin_unlock_irq(&mapping->tree_lock);
577 mem_cgroup_uncharge_cache_page(page);
579 if (freepage != NULL)
586 spin_unlock_irq(&mapping->tree_lock);
591 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
592 * someone else has a ref on the page, abort and return 0. If it was
593 * successfully detached, return 1. Assumes the caller has a single ref on
596 int remove_mapping(struct address_space *mapping, struct page *page)
598 if (__remove_mapping(mapping, page)) {
600 * Unfreezing the refcount with 1 rather than 2 effectively
601 * drops the pagecache ref for us without requiring another
604 page_unfreeze_refs(page, 1);
611 * putback_lru_page - put previously isolated page onto appropriate LRU list
612 * @page: page to be put back to appropriate lru list
614 * Add previously isolated @page to appropriate LRU list.
615 * Page may still be unevictable for other reasons.
617 * lru_lock must not be held, interrupts must be enabled.
619 void putback_lru_page(struct page *page)
622 int was_unevictable = PageUnevictable(page);
624 VM_BUG_ON_PAGE(PageLRU(page), page);
627 ClearPageUnevictable(page);
629 if (page_evictable(page)) {
631 * For evictable pages, we can use the cache.
632 * In event of a race, worst case is we end up with an
633 * unevictable page on [in]active list.
634 * We know how to handle that.
636 is_unevictable = false;
640 * Put unevictable pages directly on zone's unevictable
643 is_unevictable = true;
644 add_page_to_unevictable_list(page);
646 * When racing with an mlock or AS_UNEVICTABLE clearing
647 * (page is unlocked) make sure that if the other thread
648 * does not observe our setting of PG_lru and fails
649 * isolation/check_move_unevictable_pages,
650 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
651 * the page back to the evictable list.
653 * The other side is TestClearPageMlocked() or shmem_lock().
659 * page's status can change while we move it among lru. If an evictable
660 * page is on unevictable list, it never be freed. To avoid that,
661 * check after we added it to the list, again.
663 if (is_unevictable && page_evictable(page)) {
664 if (!isolate_lru_page(page)) {
668 /* This means someone else dropped this page from LRU
669 * So, it will be freed or putback to LRU again. There is
670 * nothing to do here.
674 if (was_unevictable && !is_unevictable)
675 count_vm_event(UNEVICTABLE_PGRESCUED);
676 else if (!was_unevictable && is_unevictable)
677 count_vm_event(UNEVICTABLE_PGCULLED);
679 put_page(page); /* drop ref from isolate */
682 enum page_references {
684 PAGEREF_RECLAIM_CLEAN,
689 static enum page_references page_check_references(struct page *page,
690 struct scan_control *sc)
692 int referenced_ptes, referenced_page;
693 unsigned long vm_flags;
695 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
697 referenced_page = TestClearPageReferenced(page);
700 * Mlock lost the isolation race with us. Let try_to_unmap()
701 * move the page to the unevictable list.
703 if (vm_flags & VM_LOCKED)
704 return PAGEREF_RECLAIM;
706 if (referenced_ptes) {
707 if (PageSwapBacked(page))
708 return PAGEREF_ACTIVATE;
710 * All mapped pages start out with page table
711 * references from the instantiating fault, so we need
712 * to look twice if a mapped file page is used more
715 * Mark it and spare it for another trip around the
716 * inactive list. Another page table reference will
717 * lead to its activation.
719 * Note: the mark is set for activated pages as well
720 * so that recently deactivated but used pages are
723 SetPageReferenced(page);
725 if (referenced_page || referenced_ptes > 1)
726 return PAGEREF_ACTIVATE;
729 * Activate file-backed executable pages after first usage.
731 if (vm_flags & VM_EXEC)
732 return PAGEREF_ACTIVATE;
737 /* Reclaim if clean, defer dirty pages to writeback */
738 if (referenced_page && !PageSwapBacked(page))
739 return PAGEREF_RECLAIM_CLEAN;
741 return PAGEREF_RECLAIM;
744 /* Check if a page is dirty or under writeback */
745 static void page_check_dirty_writeback(struct page *page,
746 bool *dirty, bool *writeback)
748 struct address_space *mapping;
751 * Anonymous pages are not handled by flushers and must be written
752 * from reclaim context. Do not stall reclaim based on them
754 if (!page_is_file_cache(page)) {
760 /* By default assume that the page flags are accurate */
761 *dirty = PageDirty(page);
762 *writeback = PageWriteback(page);
764 /* Verify dirty/writeback state if the filesystem supports it */
765 if (!page_has_private(page))
768 mapping = page_mapping(page);
769 if (mapping && mapping->a_ops->is_dirty_writeback)
770 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
774 * shrink_page_list() returns the number of reclaimed pages
776 static unsigned long shrink_page_list(struct list_head *page_list,
778 struct scan_control *sc,
779 enum ttu_flags ttu_flags,
780 unsigned long *ret_nr_dirty,
781 unsigned long *ret_nr_unqueued_dirty,
782 unsigned long *ret_nr_congested,
783 unsigned long *ret_nr_writeback,
784 unsigned long *ret_nr_immediate,
787 LIST_HEAD(ret_pages);
788 LIST_HEAD(free_pages);
790 unsigned long nr_unqueued_dirty = 0;
791 unsigned long nr_dirty = 0;
792 unsigned long nr_congested = 0;
793 unsigned long nr_reclaimed = 0;
794 unsigned long nr_writeback = 0;
795 unsigned long nr_immediate = 0;
799 mem_cgroup_uncharge_start();
800 while (!list_empty(page_list)) {
801 struct address_space *mapping;
804 enum page_references references = PAGEREF_RECLAIM_CLEAN;
805 bool dirty, writeback;
809 page = lru_to_page(page_list);
810 list_del(&page->lru);
812 if (!trylock_page(page))
815 VM_BUG_ON_PAGE(PageActive(page), page);
816 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
820 if (unlikely(!page_evictable(page)))
823 if (!sc->may_unmap && page_mapped(page))
826 /* Double the slab pressure for mapped and swapcache pages */
827 if (page_mapped(page) || PageSwapCache(page))
830 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
831 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
834 * The number of dirty pages determines if a zone is marked
835 * reclaim_congested which affects wait_iff_congested. kswapd
836 * will stall and start writing pages if the tail of the LRU
837 * is all dirty unqueued pages.
839 page_check_dirty_writeback(page, &dirty, &writeback);
840 if (dirty || writeback)
843 if (dirty && !writeback)
847 * Treat this page as congested if the underlying BDI is or if
848 * pages are cycling through the LRU so quickly that the
849 * pages marked for immediate reclaim are making it to the
850 * end of the LRU a second time.
852 mapping = page_mapping(page);
853 if ((mapping && bdi_write_congested(mapping->backing_dev_info)) ||
854 (writeback && PageReclaim(page)))
858 * If a page at the tail of the LRU is under writeback, there
859 * are three cases to consider.
861 * 1) If reclaim is encountering an excessive number of pages
862 * under writeback and this page is both under writeback and
863 * PageReclaim then it indicates that pages are being queued
864 * for IO but are being recycled through the LRU before the
865 * IO can complete. Waiting on the page itself risks an
866 * indefinite stall if it is impossible to writeback the
867 * page due to IO error or disconnected storage so instead
868 * note that the LRU is being scanned too quickly and the
869 * caller can stall after page list has been processed.
871 * 2) Global reclaim encounters a page, memcg encounters a
872 * page that is not marked for immediate reclaim or
873 * the caller does not have __GFP_IO. In this case mark
874 * the page for immediate reclaim and continue scanning.
876 * __GFP_IO is checked because a loop driver thread might
877 * enter reclaim, and deadlock if it waits on a page for
878 * which it is needed to do the write (loop masks off
879 * __GFP_IO|__GFP_FS for this reason); but more thought
880 * would probably show more reasons.
882 * Don't require __GFP_FS, since we're not going into the
883 * FS, just waiting on its writeback completion. Worryingly,
884 * ext4 gfs2 and xfs allocate pages with
885 * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing
886 * may_enter_fs here is liable to OOM on them.
888 * 3) memcg encounters a page that is not already marked
889 * PageReclaim. memcg does not have any dirty pages
890 * throttling so we could easily OOM just because too many
891 * pages are in writeback and there is nothing else to
892 * reclaim. Wait for the writeback to complete.
894 if (PageWriteback(page)) {
896 if (current_is_kswapd() &&
898 zone_is_reclaim_writeback(zone)) {
903 } else if (global_reclaim(sc) ||
904 !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
906 * This is slightly racy - end_page_writeback()
907 * might have just cleared PageReclaim, then
908 * setting PageReclaim here end up interpreted
909 * as PageReadahead - but that does not matter
910 * enough to care. What we do want is for this
911 * page to have PageReclaim set next time memcg
912 * reclaim reaches the tests above, so it will
913 * then wait_on_page_writeback() to avoid OOM;
914 * and it's also appropriate in global reclaim.
916 SetPageReclaim(page);
923 wait_on_page_writeback(page);
928 references = page_check_references(page, sc);
930 switch (references) {
931 case PAGEREF_ACTIVATE:
932 goto activate_locked;
935 case PAGEREF_RECLAIM:
936 case PAGEREF_RECLAIM_CLEAN:
937 ; /* try to reclaim the page below */
941 * Anonymous process memory has backing store?
942 * Try to allocate it some swap space here.
944 if (PageAnon(page) && !PageSwapCache(page)) {
945 if (!(sc->gfp_mask & __GFP_IO))
947 if (!add_to_swap(page, page_list))
948 goto activate_locked;
951 /* Adding to swap updated mapping */
952 mapping = page_mapping(page);
956 * The page is mapped into the page tables of one or more
957 * processes. Try to unmap it here.
959 if (page_mapped(page) && mapping) {
960 switch (try_to_unmap(page, ttu_flags)) {
962 goto activate_locked;
968 ; /* try to free the page below */
972 if (PageDirty(page)) {
974 * Only kswapd can writeback filesystem pages to
975 * avoid risk of stack overflow but only writeback
976 * if many dirty pages have been encountered.
978 if (page_is_file_cache(page) &&
979 (!current_is_kswapd() ||
980 !zone_is_reclaim_dirty(zone))) {
982 * Immediately reclaim when written back.
983 * Similar in principal to deactivate_page()
984 * except we already have the page isolated
985 * and know it's dirty
987 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
988 SetPageReclaim(page);
993 if (references == PAGEREF_RECLAIM_CLEAN)
997 if (!sc->may_writepage)
1000 /* Page is dirty, try to write it out here */
1001 switch (pageout(page, mapping, sc)) {
1005 goto activate_locked;
1007 if (PageWriteback(page))
1009 if (PageDirty(page))
1013 * A synchronous write - probably a ramdisk. Go
1014 * ahead and try to reclaim the page.
1016 if (!trylock_page(page))
1018 if (PageDirty(page) || PageWriteback(page))
1020 mapping = page_mapping(page);
1022 ; /* try to free the page below */
1027 * If the page has buffers, try to free the buffer mappings
1028 * associated with this page. If we succeed we try to free
1031 * We do this even if the page is PageDirty().
1032 * try_to_release_page() does not perform I/O, but it is
1033 * possible for a page to have PageDirty set, but it is actually
1034 * clean (all its buffers are clean). This happens if the
1035 * buffers were written out directly, with submit_bh(). ext3
1036 * will do this, as well as the blockdev mapping.
1037 * try_to_release_page() will discover that cleanness and will
1038 * drop the buffers and mark the page clean - it can be freed.
1040 * Rarely, pages can have buffers and no ->mapping. These are
1041 * the pages which were not successfully invalidated in
1042 * truncate_complete_page(). We try to drop those buffers here
1043 * and if that worked, and the page is no longer mapped into
1044 * process address space (page_count == 1) it can be freed.
1045 * Otherwise, leave the page on the LRU so it is swappable.
1047 if (page_has_private(page)) {
1048 if (!try_to_release_page(page, sc->gfp_mask))
1049 goto activate_locked;
1050 if (!mapping && page_count(page) == 1) {
1052 if (put_page_testzero(page))
1056 * rare race with speculative reference.
1057 * the speculative reference will free
1058 * this page shortly, so we may
1059 * increment nr_reclaimed here (and
1060 * leave it off the LRU).
1068 if (!mapping || !__remove_mapping(mapping, page))
1072 * At this point, we have no other references and there is
1073 * no way to pick any more up (removed from LRU, removed
1074 * from pagecache). Can use non-atomic bitops now (and
1075 * we obviously don't have to worry about waking up a process
1076 * waiting on the page lock, because there are no references.
1078 __clear_page_locked(page);
1083 * Is there need to periodically free_page_list? It would
1084 * appear not as the counts should be low
1086 list_add(&page->lru, &free_pages);
1090 if (PageSwapCache(page))
1091 try_to_free_swap(page);
1093 putback_lru_page(page);
1097 /* Not a candidate for swapping, so reclaim swap space. */
1098 if (PageSwapCache(page) && vm_swap_full())
1099 try_to_free_swap(page);
1100 VM_BUG_ON_PAGE(PageActive(page), page);
1101 SetPageActive(page);
1106 list_add(&page->lru, &ret_pages);
1107 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1110 free_hot_cold_page_list(&free_pages, 1);
1112 list_splice(&ret_pages, page_list);
1113 count_vm_events(PGACTIVATE, pgactivate);
1114 mem_cgroup_uncharge_end();
1115 *ret_nr_dirty += nr_dirty;
1116 *ret_nr_congested += nr_congested;
1117 *ret_nr_unqueued_dirty += nr_unqueued_dirty;
1118 *ret_nr_writeback += nr_writeback;
1119 *ret_nr_immediate += nr_immediate;
1120 return nr_reclaimed;
1123 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1124 struct list_head *page_list)
1126 struct scan_control sc = {
1127 .gfp_mask = GFP_KERNEL,
1128 .priority = DEF_PRIORITY,
1131 unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
1132 struct page *page, *next;
1133 LIST_HEAD(clean_pages);
1135 list_for_each_entry_safe(page, next, page_list, lru) {
1136 if (page_is_file_cache(page) && !PageDirty(page) &&
1137 !isolated_balloon_page(page)) {
1138 ClearPageActive(page);
1139 list_move(&page->lru, &clean_pages);
1143 ret = shrink_page_list(&clean_pages, zone, &sc,
1144 TTU_UNMAP|TTU_IGNORE_ACCESS,
1145 &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
1146 list_splice(&clean_pages, page_list);
1147 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
1152 * Attempt to remove the specified page from its LRU. Only take this page
1153 * if it is of the appropriate PageActive status. Pages which are being
1154 * freed elsewhere are also ignored.
1156 * page: page to consider
1157 * mode: one of the LRU isolation modes defined above
1159 * returns 0 on success, -ve errno on failure.
1161 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1165 /* Only take pages on the LRU. */
1169 /* Compaction should not handle unevictable pages but CMA can do so */
1170 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1176 * To minimise LRU disruption, the caller can indicate that it only
1177 * wants to isolate pages it will be able to operate on without
1178 * blocking - clean pages for the most part.
1180 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1181 * is used by reclaim when it is cannot write to backing storage
1183 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1184 * that it is possible to migrate without blocking
1186 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1187 /* All the caller can do on PageWriteback is block */
1188 if (PageWriteback(page))
1191 if (PageDirty(page)) {
1192 struct address_space *mapping;
1194 /* ISOLATE_CLEAN means only clean pages */
1195 if (mode & ISOLATE_CLEAN)
1199 * Only pages without mappings or that have a
1200 * ->migratepage callback are possible to migrate
1203 mapping = page_mapping(page);
1204 if (mapping && !mapping->a_ops->migratepage)
1209 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1212 if (likely(get_page_unless_zero(page))) {
1214 * Be careful not to clear PageLRU until after we're
1215 * sure the page is not being freed elsewhere -- the
1216 * page release code relies on it.
1226 * zone->lru_lock is heavily contended. Some of the functions that
1227 * shrink the lists perform better by taking out a batch of pages
1228 * and working on them outside the LRU lock.
1230 * For pagecache intensive workloads, this function is the hottest
1231 * spot in the kernel (apart from copy_*_user functions).
1233 * Appropriate locks must be held before calling this function.
1235 * @nr_to_scan: The number of pages to look through on the list.
1236 * @lruvec: The LRU vector to pull pages from.
1237 * @dst: The temp list to put pages on to.
1238 * @nr_scanned: The number of pages that were scanned.
1239 * @sc: The scan_control struct for this reclaim session
1240 * @mode: One of the LRU isolation modes
1241 * @lru: LRU list id for isolating
1243 * returns how many pages were moved onto *@dst.
1245 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1246 struct lruvec *lruvec, struct list_head *dst,
1247 unsigned long *nr_scanned, struct scan_control *sc,
1248 isolate_mode_t mode, enum lru_list lru)
1250 struct list_head *src = &lruvec->lists[lru];
1251 unsigned long nr_taken = 0;
1254 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1258 page = lru_to_page(src);
1259 prefetchw_prev_lru_page(page, src, flags);
1261 VM_BUG_ON_PAGE(!PageLRU(page), page);
1263 switch (__isolate_lru_page(page, mode)) {
1265 nr_pages = hpage_nr_pages(page);
1266 mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
1267 list_move(&page->lru, dst);
1268 nr_taken += nr_pages;
1272 /* else it is being freed elsewhere */
1273 list_move(&page->lru, src);
1282 trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1283 nr_taken, mode, is_file_lru(lru));
1288 * isolate_lru_page - tries to isolate a page from its LRU list
1289 * @page: page to isolate from its LRU list
1291 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1292 * vmstat statistic corresponding to whatever LRU list the page was on.
1294 * Returns 0 if the page was removed from an LRU list.
1295 * Returns -EBUSY if the page was not on an LRU list.
1297 * The returned page will have PageLRU() cleared. If it was found on
1298 * the active list, it will have PageActive set. If it was found on
1299 * the unevictable list, it will have the PageUnevictable bit set. That flag
1300 * may need to be cleared by the caller before letting the page go.
1302 * The vmstat statistic corresponding to the list on which the page was
1303 * found will be decremented.
1306 * (1) Must be called with an elevated refcount on the page. This is a
1307 * fundamentnal difference from isolate_lru_pages (which is called
1308 * without a stable reference).
1309 * (2) the lru_lock must not be held.
1310 * (3) interrupts must be enabled.
1312 int isolate_lru_page(struct page *page)
1316 VM_BUG_ON_PAGE(!page_count(page), page);
1318 if (PageLRU(page)) {
1319 struct zone *zone = page_zone(page);
1320 struct lruvec *lruvec;
1322 spin_lock_irq(&zone->lru_lock);
1323 lruvec = mem_cgroup_page_lruvec(page, zone);
1324 if (PageLRU(page)) {
1325 int lru = page_lru(page);
1328 del_page_from_lru_list(page, lruvec, lru);
1331 spin_unlock_irq(&zone->lru_lock);
1337 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1338 * then get resheduled. When there are massive number of tasks doing page
1339 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1340 * the LRU list will go small and be scanned faster than necessary, leading to
1341 * unnecessary swapping, thrashing and OOM.
1343 static int too_many_isolated(struct zone *zone, int file,
1344 struct scan_control *sc)
1346 unsigned long inactive, isolated;
1348 if (current_is_kswapd())
1351 if (!global_reclaim(sc))
1355 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1356 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1358 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1359 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1363 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1364 * won't get blocked by normal direct-reclaimers, forming a circular
1367 if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
1370 return isolated > inactive;
1373 static noinline_for_stack void
1374 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1376 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1377 struct zone *zone = lruvec_zone(lruvec);
1378 LIST_HEAD(pages_to_free);
1381 * Put back any unfreeable pages.
1383 while (!list_empty(page_list)) {
1384 struct page *page = lru_to_page(page_list);
1387 VM_BUG_ON_PAGE(PageLRU(page), page);
1388 list_del(&page->lru);
1389 if (unlikely(!page_evictable(page))) {
1390 spin_unlock_irq(&zone->lru_lock);
1391 putback_lru_page(page);
1392 spin_lock_irq(&zone->lru_lock);
1396 lruvec = mem_cgroup_page_lruvec(page, zone);
1399 lru = page_lru(page);
1400 add_page_to_lru_list(page, lruvec, lru);
1402 if (is_active_lru(lru)) {
1403 int file = is_file_lru(lru);
1404 int numpages = hpage_nr_pages(page);
1405 reclaim_stat->recent_rotated[file] += numpages;
1407 if (put_page_testzero(page)) {
1408 __ClearPageLRU(page);
1409 __ClearPageActive(page);
1410 del_page_from_lru_list(page, lruvec, lru);
1412 if (unlikely(PageCompound(page))) {
1413 spin_unlock_irq(&zone->lru_lock);
1414 (*get_compound_page_dtor(page))(page);
1415 spin_lock_irq(&zone->lru_lock);
1417 list_add(&page->lru, &pages_to_free);
1422 * To save our caller's stack, now use input list for pages to free.
1424 list_splice(&pages_to_free, page_list);
1428 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1429 * of reclaimed pages
1431 static noinline_for_stack unsigned long
1432 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1433 struct scan_control *sc, enum lru_list lru)
1435 LIST_HEAD(page_list);
1436 unsigned long nr_scanned;
1437 unsigned long nr_reclaimed = 0;
1438 unsigned long nr_taken;
1439 unsigned long nr_dirty = 0;
1440 unsigned long nr_congested = 0;
1441 unsigned long nr_unqueued_dirty = 0;
1442 unsigned long nr_writeback = 0;
1443 unsigned long nr_immediate = 0;
1444 isolate_mode_t isolate_mode = 0;
1445 int file = is_file_lru(lru);
1446 struct zone *zone = lruvec_zone(lruvec);
1447 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1449 while (unlikely(too_many_isolated(zone, file, sc))) {
1450 congestion_wait(BLK_RW_ASYNC, HZ/10);
1452 /* We are about to die and free our memory. Return now. */
1453 if (fatal_signal_pending(current))
1454 return SWAP_CLUSTER_MAX;
1460 isolate_mode |= ISOLATE_UNMAPPED;
1461 if (!sc->may_writepage)
1462 isolate_mode |= ISOLATE_CLEAN;
1464 spin_lock_irq(&zone->lru_lock);
1466 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1467 &nr_scanned, sc, isolate_mode, lru);
1469 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1470 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1472 if (global_reclaim(sc)) {
1473 zone->pages_scanned += nr_scanned;
1474 if (current_is_kswapd())
1475 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1477 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1479 spin_unlock_irq(&zone->lru_lock);
1484 nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1485 &nr_dirty, &nr_unqueued_dirty, &nr_congested,
1486 &nr_writeback, &nr_immediate,
1489 spin_lock_irq(&zone->lru_lock);
1491 reclaim_stat->recent_scanned[file] += nr_taken;
1493 if (global_reclaim(sc)) {
1494 if (current_is_kswapd())
1495 __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1498 __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1502 putback_inactive_pages(lruvec, &page_list);
1504 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1506 spin_unlock_irq(&zone->lru_lock);
1508 free_hot_cold_page_list(&page_list, 1);
1511 * If reclaim is isolating dirty pages under writeback, it implies
1512 * that the long-lived page allocation rate is exceeding the page
1513 * laundering rate. Either the global limits are not being effective
1514 * at throttling processes due to the page distribution throughout
1515 * zones or there is heavy usage of a slow backing device. The
1516 * only option is to throttle from reclaim context which is not ideal
1517 * as there is no guarantee the dirtying process is throttled in the
1518 * same way balance_dirty_pages() manages.
1520 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1521 * of pages under pages flagged for immediate reclaim and stall if any
1522 * are encountered in the nr_immediate check below.
1524 if (nr_writeback && nr_writeback == nr_taken)
1525 zone_set_flag(zone, ZONE_WRITEBACK);
1528 * memcg will stall in page writeback so only consider forcibly
1529 * stalling for global reclaim
1531 if (global_reclaim(sc)) {
1533 * Tag a zone as congested if all the dirty pages scanned were
1534 * backed by a congested BDI and wait_iff_congested will stall.
1536 if (nr_dirty && nr_dirty == nr_congested)
1537 zone_set_flag(zone, ZONE_CONGESTED);
1540 * If dirty pages are scanned that are not queued for IO, it
1541 * implies that flushers are not keeping up. In this case, flag
1542 * the zone ZONE_TAIL_LRU_DIRTY and kswapd will start writing
1543 * pages from reclaim context. It will forcibly stall in the
1546 if (nr_unqueued_dirty == nr_taken)
1547 zone_set_flag(zone, ZONE_TAIL_LRU_DIRTY);
1550 * In addition, if kswapd scans pages marked marked for
1551 * immediate reclaim and under writeback (nr_immediate), it
1552 * implies that pages are cycling through the LRU faster than
1553 * they are written so also forcibly stall.
1555 if (nr_unqueued_dirty == nr_taken || nr_immediate)
1556 congestion_wait(BLK_RW_ASYNC, HZ/10);
1560 * Stall direct reclaim for IO completions if underlying BDIs or zone
1561 * is congested. Allow kswapd to continue until it starts encountering
1562 * unqueued dirty pages or cycling through the LRU too quickly.
1564 if (!sc->hibernation_mode && !current_is_kswapd())
1565 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1567 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1569 nr_scanned, nr_reclaimed,
1571 trace_shrink_flags(file));
1572 return nr_reclaimed;
1576 * This moves pages from the active list to the inactive list.
1578 * We move them the other way if the page is referenced by one or more
1579 * processes, from rmap.
1581 * If the pages are mostly unmapped, the processing is fast and it is
1582 * appropriate to hold zone->lru_lock across the whole operation. But if
1583 * the pages are mapped, the processing is slow (page_referenced()) so we
1584 * should drop zone->lru_lock around each page. It's impossible to balance
1585 * this, so instead we remove the pages from the LRU while processing them.
1586 * It is safe to rely on PG_active against the non-LRU pages in here because
1587 * nobody will play with that bit on a non-LRU page.
1589 * The downside is that we have to touch page->_count against each page.
1590 * But we had to alter page->flags anyway.
1593 static void move_active_pages_to_lru(struct lruvec *lruvec,
1594 struct list_head *list,
1595 struct list_head *pages_to_free,
1598 struct zone *zone = lruvec_zone(lruvec);
1599 unsigned long pgmoved = 0;
1603 while (!list_empty(list)) {
1604 page = lru_to_page(list);
1605 lruvec = mem_cgroup_page_lruvec(page, zone);
1607 VM_BUG_ON_PAGE(PageLRU(page), page);
1610 nr_pages = hpage_nr_pages(page);
1611 mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1612 list_move(&page->lru, &lruvec->lists[lru]);
1613 pgmoved += nr_pages;
1615 if (put_page_testzero(page)) {
1616 __ClearPageLRU(page);
1617 __ClearPageActive(page);
1618 del_page_from_lru_list(page, lruvec, lru);
1620 if (unlikely(PageCompound(page))) {
1621 spin_unlock_irq(&zone->lru_lock);
1622 (*get_compound_page_dtor(page))(page);
1623 spin_lock_irq(&zone->lru_lock);
1625 list_add(&page->lru, pages_to_free);
1628 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1629 if (!is_active_lru(lru))
1630 __count_vm_events(PGDEACTIVATE, pgmoved);
1633 static void shrink_active_list(unsigned long nr_to_scan,
1634 struct lruvec *lruvec,
1635 struct scan_control *sc,
1638 unsigned long nr_taken;
1639 unsigned long nr_scanned;
1640 unsigned long vm_flags;
1641 LIST_HEAD(l_hold); /* The pages which were snipped off */
1642 LIST_HEAD(l_active);
1643 LIST_HEAD(l_inactive);
1645 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1646 unsigned long nr_rotated = 0;
1647 isolate_mode_t isolate_mode = 0;
1648 int file = is_file_lru(lru);
1649 struct zone *zone = lruvec_zone(lruvec);
1654 isolate_mode |= ISOLATE_UNMAPPED;
1655 if (!sc->may_writepage)
1656 isolate_mode |= ISOLATE_CLEAN;
1658 spin_lock_irq(&zone->lru_lock);
1660 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1661 &nr_scanned, sc, isolate_mode, lru);
1662 if (global_reclaim(sc))
1663 zone->pages_scanned += nr_scanned;
1665 reclaim_stat->recent_scanned[file] += nr_taken;
1667 __count_zone_vm_events(PGREFILL, zone, nr_scanned);
1668 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1669 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1670 spin_unlock_irq(&zone->lru_lock);
1672 while (!list_empty(&l_hold)) {
1674 page = lru_to_page(&l_hold);
1675 list_del(&page->lru);
1677 if (unlikely(!page_evictable(page))) {
1678 putback_lru_page(page);
1682 if (unlikely(buffer_heads_over_limit)) {
1683 if (page_has_private(page) && trylock_page(page)) {
1684 if (page_has_private(page))
1685 try_to_release_page(page, 0);
1690 if (page_referenced(page, 0, sc->target_mem_cgroup,
1692 nr_rotated += hpage_nr_pages(page);
1694 * Identify referenced, file-backed active pages and
1695 * give them one more trip around the active list. So
1696 * that executable code get better chances to stay in
1697 * memory under moderate memory pressure. Anon pages
1698 * are not likely to be evicted by use-once streaming
1699 * IO, plus JVM can create lots of anon VM_EXEC pages,
1700 * so we ignore them here.
1702 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1703 list_add(&page->lru, &l_active);
1708 ClearPageActive(page); /* we are de-activating */
1709 list_add(&page->lru, &l_inactive);
1713 * Move pages back to the lru list.
1715 spin_lock_irq(&zone->lru_lock);
1717 * Count referenced pages from currently used mappings as rotated,
1718 * even though only some of them are actually re-activated. This
1719 * helps balance scan pressure between file and anonymous pages in
1722 reclaim_stat->recent_rotated[file] += nr_rotated;
1724 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1725 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1726 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1727 spin_unlock_irq(&zone->lru_lock);
1729 free_hot_cold_page_list(&l_hold, 1);
1733 static int inactive_anon_is_low_global(struct zone *zone)
1735 unsigned long active, inactive;
1737 active = zone_page_state(zone, NR_ACTIVE_ANON);
1738 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1740 if (inactive * zone->inactive_ratio < active)
1747 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1748 * @lruvec: LRU vector to check
1750 * Returns true if the zone does not have enough inactive anon pages,
1751 * meaning some active anon pages need to be deactivated.
1753 static int inactive_anon_is_low(struct lruvec *lruvec)
1756 * If we don't have swap space, anonymous page deactivation
1759 if (!total_swap_pages)
1762 if (!mem_cgroup_disabled())
1763 return mem_cgroup_inactive_anon_is_low(lruvec);
1765 return inactive_anon_is_low_global(lruvec_zone(lruvec));
1768 static inline int inactive_anon_is_low(struct lruvec *lruvec)
1775 * inactive_file_is_low - check if file pages need to be deactivated
1776 * @lruvec: LRU vector to check
1778 * When the system is doing streaming IO, memory pressure here
1779 * ensures that active file pages get deactivated, until more
1780 * than half of the file pages are on the inactive list.
1782 * Once we get to that situation, protect the system's working
1783 * set from being evicted by disabling active file page aging.
1785 * This uses a different ratio than the anonymous pages, because
1786 * the page cache uses a use-once replacement algorithm.
1788 static int inactive_file_is_low(struct lruvec *lruvec)
1790 unsigned long inactive;
1791 unsigned long active;
1793 inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1794 active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
1796 return active > inactive;
1799 static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1801 if (is_file_lru(lru))
1802 return inactive_file_is_low(lruvec);
1804 return inactive_anon_is_low(lruvec);
1807 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1808 struct lruvec *lruvec, struct scan_control *sc)
1810 if (is_active_lru(lru)) {
1811 if (inactive_list_is_low(lruvec, lru))
1812 shrink_active_list(nr_to_scan, lruvec, sc, lru);
1816 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1819 static int vmscan_swappiness(struct scan_control *sc)
1821 if (global_reclaim(sc))
1822 return vm_swappiness;
1823 return mem_cgroup_swappiness(sc->target_mem_cgroup);
1834 * Determine how aggressively the anon and file LRU lists should be
1835 * scanned. The relative value of each set of LRU lists is determined
1836 * by looking at the fraction of the pages scanned we did rotate back
1837 * onto the active list instead of evict.
1839 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1840 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1842 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
1845 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1847 u64 denominator = 0; /* gcc */
1848 struct zone *zone = lruvec_zone(lruvec);
1849 unsigned long anon_prio, file_prio;
1850 enum scan_balance scan_balance;
1851 unsigned long anon, file, free;
1852 bool force_scan = false;
1853 unsigned long ap, fp;
1857 * If the zone or memcg is small, nr[l] can be 0. This
1858 * results in no scanning on this priority and a potential
1859 * priority drop. Global direct reclaim can go to the next
1860 * zone and tends to have no problems. Global kswapd is for
1861 * zone balancing and it needs to scan a minimum amount. When
1862 * reclaiming for a memcg, a priority drop can cause high
1863 * latencies, so it's better to scan a minimum amount there as
1866 if (current_is_kswapd() && !zone_reclaimable(zone))
1868 if (!global_reclaim(sc))
1871 /* If we have no swap space, do not bother scanning anon pages. */
1872 if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
1873 scan_balance = SCAN_FILE;
1878 * Global reclaim will swap to prevent OOM even with no
1879 * swappiness, but memcg users want to use this knob to
1880 * disable swapping for individual groups completely when
1881 * using the memory controller's swap limit feature would be
1884 if (!global_reclaim(sc) && !vmscan_swappiness(sc)) {
1885 scan_balance = SCAN_FILE;
1890 * Do not apply any pressure balancing cleverness when the
1891 * system is close to OOM, scan both anon and file equally
1892 * (unless the swappiness setting disagrees with swapping).
1894 if (!sc->priority && vmscan_swappiness(sc)) {
1895 scan_balance = SCAN_EQUAL;
1899 anon = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
1900 get_lru_size(lruvec, LRU_INACTIVE_ANON);
1901 file = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
1902 get_lru_size(lruvec, LRU_INACTIVE_FILE);
1905 * If it's foreseeable that reclaiming the file cache won't be
1906 * enough to get the zone back into a desirable shape, we have
1907 * to swap. Better start now and leave the - probably heavily
1908 * thrashing - remaining file pages alone.
1910 if (global_reclaim(sc)) {
1911 free = zone_page_state(zone, NR_FREE_PAGES);
1912 if (unlikely(file + free <= high_wmark_pages(zone))) {
1913 scan_balance = SCAN_ANON;
1919 * There is enough inactive page cache, do not reclaim
1920 * anything from the anonymous working set right now.
1922 if (!inactive_file_is_low(lruvec)) {
1923 scan_balance = SCAN_FILE;
1927 scan_balance = SCAN_FRACT;
1930 * With swappiness at 100, anonymous and file have the same priority.
1931 * This scanning priority is essentially the inverse of IO cost.
1933 anon_prio = vmscan_swappiness(sc);
1934 file_prio = 200 - anon_prio;
1937 * OK, so we have swap space and a fair amount of page cache
1938 * pages. We use the recently rotated / recently scanned
1939 * ratios to determine how valuable each cache is.
1941 * Because workloads change over time (and to avoid overflow)
1942 * we keep these statistics as a floating average, which ends
1943 * up weighing recent references more than old ones.
1945 * anon in [0], file in [1]
1947 spin_lock_irq(&zone->lru_lock);
1948 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1949 reclaim_stat->recent_scanned[0] /= 2;
1950 reclaim_stat->recent_rotated[0] /= 2;
1953 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1954 reclaim_stat->recent_scanned[1] /= 2;
1955 reclaim_stat->recent_rotated[1] /= 2;
1959 * The amount of pressure on anon vs file pages is inversely
1960 * proportional to the fraction of recently scanned pages on
1961 * each list that were recently referenced and in active use.
1963 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1964 ap /= reclaim_stat->recent_rotated[0] + 1;
1966 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
1967 fp /= reclaim_stat->recent_rotated[1] + 1;
1968 spin_unlock_irq(&zone->lru_lock);
1972 denominator = ap + fp + 1;
1974 for_each_evictable_lru(lru) {
1975 int file = is_file_lru(lru);
1979 size = get_lru_size(lruvec, lru);
1980 scan = size >> sc->priority;
1982 if (!scan && force_scan)
1983 scan = min(size, SWAP_CLUSTER_MAX);
1985 switch (scan_balance) {
1987 /* Scan lists relative to size */
1991 * Scan types proportional to swappiness and
1992 * their relative recent reclaim efficiency.
1994 scan = div64_u64(scan * fraction[file], denominator);
1998 /* Scan one type exclusively */
1999 if ((scan_balance == SCAN_FILE) != file)
2003 /* Look ma, no brain */
2011 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
2013 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
2015 unsigned long nr[NR_LRU_LISTS];
2016 unsigned long targets[NR_LRU_LISTS];
2017 unsigned long nr_to_scan;
2019 unsigned long nr_reclaimed = 0;
2020 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2021 struct blk_plug plug;
2022 bool scan_adjusted = false;
2024 get_scan_count(lruvec, sc, nr);
2026 /* Record the original scan target for proportional adjustments later */
2027 memcpy(targets, nr, sizeof(nr));
2029 blk_start_plug(&plug);
2030 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2031 nr[LRU_INACTIVE_FILE]) {
2032 unsigned long nr_anon, nr_file, percentage;
2033 unsigned long nr_scanned;
2035 for_each_evictable_lru(lru) {
2037 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2038 nr[lru] -= nr_to_scan;
2040 nr_reclaimed += shrink_list(lru, nr_to_scan,
2045 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2049 * For global direct reclaim, reclaim only the number of pages
2050 * requested. Less care is taken to scan proportionally as it
2051 * is more important to minimise direct reclaim stall latency
2052 * than it is to properly age the LRU lists.
2054 if (global_reclaim(sc) && !current_is_kswapd())
2058 * For kswapd and memcg, reclaim at least the number of pages
2059 * requested. Ensure that the anon and file LRUs shrink
2060 * proportionally what was requested by get_scan_count(). We
2061 * stop reclaiming one LRU and reduce the amount scanning
2062 * proportional to the original scan target.
2064 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2065 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2067 if (nr_file > nr_anon) {
2068 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2069 targets[LRU_ACTIVE_ANON] + 1;
2071 percentage = nr_anon * 100 / scan_target;
2073 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2074 targets[LRU_ACTIVE_FILE] + 1;
2076 percentage = nr_file * 100 / scan_target;
2079 /* Stop scanning the smaller of the LRU */
2081 nr[lru + LRU_ACTIVE] = 0;
2084 * Recalculate the other LRU scan count based on its original
2085 * scan target and the percentage scanning already complete
2087 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2088 nr_scanned = targets[lru] - nr[lru];
2089 nr[lru] = targets[lru] * (100 - percentage) / 100;
2090 nr[lru] -= min(nr[lru], nr_scanned);
2093 nr_scanned = targets[lru] - nr[lru];
2094 nr[lru] = targets[lru] * (100 - percentage) / 100;
2095 nr[lru] -= min(nr[lru], nr_scanned);
2097 scan_adjusted = true;
2099 blk_finish_plug(&plug);
2100 sc->nr_reclaimed += nr_reclaimed;
2103 * Even if we did not try to evict anon pages at all, we want to
2104 * rebalance the anon lru active/inactive ratio.
2106 if (inactive_anon_is_low(lruvec))
2107 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2108 sc, LRU_ACTIVE_ANON);
2110 throttle_vm_writeout(sc->gfp_mask);
2113 /* Use reclaim/compaction for costly allocs or under memory pressure */
2114 static bool in_reclaim_compaction(struct scan_control *sc)
2116 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2117 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2118 sc->priority < DEF_PRIORITY - 2))
2125 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2126 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2127 * true if more pages should be reclaimed such that when the page allocator
2128 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2129 * It will give up earlier than that if there is difficulty reclaiming pages.
2131 static inline bool should_continue_reclaim(struct zone *zone,
2132 unsigned long nr_reclaimed,
2133 unsigned long nr_scanned,
2134 struct scan_control *sc)
2136 unsigned long pages_for_compaction;
2137 unsigned long inactive_lru_pages;
2139 /* If not in reclaim/compaction mode, stop */
2140 if (!in_reclaim_compaction(sc))
2143 /* Consider stopping depending on scan and reclaim activity */
2144 if (sc->gfp_mask & __GFP_REPEAT) {
2146 * For __GFP_REPEAT allocations, stop reclaiming if the
2147 * full LRU list has been scanned and we are still failing
2148 * to reclaim pages. This full LRU scan is potentially
2149 * expensive but a __GFP_REPEAT caller really wants to succeed
2151 if (!nr_reclaimed && !nr_scanned)
2155 * For non-__GFP_REPEAT allocations which can presumably
2156 * fail without consequence, stop if we failed to reclaim
2157 * any pages from the last SWAP_CLUSTER_MAX number of
2158 * pages that were scanned. This will return to the
2159 * caller faster at the risk reclaim/compaction and
2160 * the resulting allocation attempt fails
2167 * If we have not reclaimed enough pages for compaction and the
2168 * inactive lists are large enough, continue reclaiming
2170 pages_for_compaction = (2UL << sc->order);
2171 inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
2172 if (get_nr_swap_pages() > 0)
2173 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
2174 if (sc->nr_reclaimed < pages_for_compaction &&
2175 inactive_lru_pages > pages_for_compaction)
2178 /* If compaction would go ahead or the allocation would succeed, stop */
2179 switch (compaction_suitable(zone, sc->order)) {
2180 case COMPACT_PARTIAL:
2181 case COMPACT_CONTINUE:
2188 static void shrink_zone(struct zone *zone, struct scan_control *sc)
2190 unsigned long nr_reclaimed, nr_scanned;
2193 struct mem_cgroup *root = sc->target_mem_cgroup;
2194 struct mem_cgroup_reclaim_cookie reclaim = {
2196 .priority = sc->priority,
2198 struct mem_cgroup *memcg;
2200 nr_reclaimed = sc->nr_reclaimed;
2201 nr_scanned = sc->nr_scanned;
2203 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2205 struct lruvec *lruvec;
2207 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2209 shrink_lruvec(lruvec, sc);
2212 * Direct reclaim and kswapd have to scan all memory
2213 * cgroups to fulfill the overall scan target for the
2216 * Limit reclaim, on the other hand, only cares about
2217 * nr_to_reclaim pages to be reclaimed and it will
2218 * retry with decreasing priority if one round over the
2219 * whole hierarchy is not sufficient.
2221 if (!global_reclaim(sc) &&
2222 sc->nr_reclaimed >= sc->nr_to_reclaim) {
2223 mem_cgroup_iter_break(root, memcg);
2226 memcg = mem_cgroup_iter(root, memcg, &reclaim);
2229 vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
2230 sc->nr_scanned - nr_scanned,
2231 sc->nr_reclaimed - nr_reclaimed);
2233 } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2234 sc->nr_scanned - nr_scanned, sc));
2237 /* Returns true if compaction should go ahead for a high-order request */
2238 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2240 unsigned long balance_gap, watermark;
2243 /* Do not consider compaction for orders reclaim is meant to satisfy */
2244 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
2248 * Compaction takes time to run and there are potentially other
2249 * callers using the pages just freed. Continue reclaiming until
2250 * there is a buffer of free pages available to give compaction
2251 * a reasonable chance of completing and allocating the page
2253 balance_gap = min(low_wmark_pages(zone),
2254 (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2255 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2256 watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
2257 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2260 * If compaction is deferred, reclaim up to a point where
2261 * compaction will have a chance of success when re-enabled
2263 if (compaction_deferred(zone, sc->order))
2264 return watermark_ok;
2266 /* If compaction is not ready to start, keep reclaiming */
2267 if (!compaction_suitable(zone, sc->order))
2270 return watermark_ok;
2274 * This is the direct reclaim path, for page-allocating processes. We only
2275 * try to reclaim pages from zones which will satisfy the caller's allocation
2278 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2280 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2282 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2283 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2284 * zone defense algorithm.
2286 * If a zone is deemed to be full of pinned pages then just give it a light
2287 * scan then give up on it.
2289 * This function returns true if a zone is being reclaimed for a costly
2290 * high-order allocation and compaction is ready to begin. This indicates to
2291 * the caller that it should consider retrying the allocation instead of
2294 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2298 unsigned long nr_soft_reclaimed;
2299 unsigned long nr_soft_scanned;
2300 unsigned long lru_pages = 0;
2301 bool aborted_reclaim = false;
2302 struct reclaim_state *reclaim_state = current->reclaim_state;
2303 struct shrink_control shrink = {
2304 .gfp_mask = sc->gfp_mask,
2308 * If the number of buffer_heads in the machine exceeds the maximum
2309 * allowed level, force direct reclaim to scan the highmem zone as
2310 * highmem pages could be pinning lowmem pages storing buffer_heads
2312 if (buffer_heads_over_limit)
2313 sc->gfp_mask |= __GFP_HIGHMEM;
2315 nodes_clear(shrink.nodes_to_scan);
2317 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2318 gfp_zone(sc->gfp_mask), sc->nodemask) {
2319 if (!populated_zone(zone))
2322 * Take care memory controller reclaiming has small influence
2325 if (global_reclaim(sc)) {
2326 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2329 lru_pages += zone_reclaimable_pages(zone);
2330 node_set(zone_to_nid(zone), shrink.nodes_to_scan);
2332 if (sc->priority != DEF_PRIORITY &&
2333 !zone_reclaimable(zone))
2334 continue; /* Let kswapd poll it */
2335 if (IS_ENABLED(CONFIG_COMPACTION)) {
2337 * If we already have plenty of memory free for
2338 * compaction in this zone, don't free any more.
2339 * Even though compaction is invoked for any
2340 * non-zero order, only frequent costly order
2341 * reclamation is disruptive enough to become a
2342 * noticeable problem, like transparent huge
2345 if (compaction_ready(zone, sc)) {
2346 aborted_reclaim = true;
2351 * This steals pages from memory cgroups over softlimit
2352 * and returns the number of reclaimed pages and
2353 * scanned pages. This works for global memory pressure
2354 * and balancing, not for a memcg's limit.
2356 nr_soft_scanned = 0;
2357 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2358 sc->order, sc->gfp_mask,
2360 sc->nr_reclaimed += nr_soft_reclaimed;
2361 sc->nr_scanned += nr_soft_scanned;
2362 /* need some check for avoid more shrink_zone() */
2365 shrink_zone(zone, sc);
2369 * Don't shrink slabs when reclaiming memory from over limit cgroups
2370 * but do shrink slab at least once when aborting reclaim for
2371 * compaction to avoid unevenly scanning file/anon LRU pages over slab
2374 if (global_reclaim(sc)) {
2375 shrink_slab(&shrink, sc->nr_scanned, lru_pages);
2376 if (reclaim_state) {
2377 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2378 reclaim_state->reclaimed_slab = 0;
2382 return aborted_reclaim;
2385 /* All zones in zonelist are unreclaimable? */
2386 static bool all_unreclaimable(struct zonelist *zonelist,
2387 struct scan_control *sc)
2392 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2393 gfp_zone(sc->gfp_mask), sc->nodemask) {
2394 if (!populated_zone(zone))
2396 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2398 if (zone_reclaimable(zone))
2406 * This is the main entry point to direct page reclaim.
2408 * If a full scan of the inactive list fails to free enough memory then we
2409 * are "out of memory" and something needs to be killed.
2411 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2412 * high - the zone may be full of dirty or under-writeback pages, which this
2413 * caller can't do much about. We kick the writeback threads and take explicit
2414 * naps in the hope that some of these pages can be written. But if the
2415 * allocating task holds filesystem locks which prevent writeout this might not
2416 * work, and the allocation attempt will fail.
2418 * returns: 0, if no pages reclaimed
2419 * else, the number of pages reclaimed
2421 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2422 struct scan_control *sc)
2424 unsigned long total_scanned = 0;
2425 unsigned long writeback_threshold;
2426 bool aborted_reclaim;
2428 delayacct_freepages_start();
2430 if (global_reclaim(sc))
2431 count_vm_event(ALLOCSTALL);
2434 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2437 aborted_reclaim = shrink_zones(zonelist, sc);
2439 total_scanned += sc->nr_scanned;
2440 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2444 * If we're getting trouble reclaiming, start doing
2445 * writepage even in laptop mode.
2447 if (sc->priority < DEF_PRIORITY - 2)
2448 sc->may_writepage = 1;
2451 * Try to write back as many pages as we just scanned. This
2452 * tends to cause slow streaming writers to write data to the
2453 * disk smoothly, at the dirtying rate, which is nice. But
2454 * that's undesirable in laptop mode, where we *want* lumpy
2455 * writeout. So in laptop mode, write out the whole world.
2457 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2458 if (total_scanned > writeback_threshold) {
2459 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2460 WB_REASON_TRY_TO_FREE_PAGES);
2461 sc->may_writepage = 1;
2463 } while (--sc->priority >= 0 && !aborted_reclaim);
2466 delayacct_freepages_end();
2468 if (sc->nr_reclaimed)
2469 return sc->nr_reclaimed;
2472 * As hibernation is going on, kswapd is freezed so that it can't mark
2473 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2476 if (oom_killer_disabled)
2479 /* Aborted reclaim to try compaction? don't OOM, then */
2480 if (aborted_reclaim)
2483 /* top priority shrink_zones still had more to do? don't OOM, then */
2484 if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2490 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2493 unsigned long pfmemalloc_reserve = 0;
2494 unsigned long free_pages = 0;
2498 for (i = 0; i <= ZONE_NORMAL; i++) {
2499 zone = &pgdat->node_zones[i];
2500 pfmemalloc_reserve += min_wmark_pages(zone);
2501 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2504 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2506 /* kswapd must be awake if processes are being throttled */
2507 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2508 pgdat->classzone_idx = min(pgdat->classzone_idx,
2509 (enum zone_type)ZONE_NORMAL);
2510 wake_up_interruptible(&pgdat->kswapd_wait);
2517 * Throttle direct reclaimers if backing storage is backed by the network
2518 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2519 * depleted. kswapd will continue to make progress and wake the processes
2520 * when the low watermark is reached.
2522 * Returns true if a fatal signal was delivered during throttling. If this
2523 * happens, the page allocator should not consider triggering the OOM killer.
2525 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2526 nodemask_t *nodemask)
2529 int high_zoneidx = gfp_zone(gfp_mask);
2533 * Kernel threads should not be throttled as they may be indirectly
2534 * responsible for cleaning pages necessary for reclaim to make forward
2535 * progress. kjournald for example may enter direct reclaim while
2536 * committing a transaction where throttling it could forcing other
2537 * processes to block on log_wait_commit().
2539 if (current->flags & PF_KTHREAD)
2543 * If a fatal signal is pending, this process should not throttle.
2544 * It should return quickly so it can exit and free its memory
2546 if (fatal_signal_pending(current))
2549 /* Check if the pfmemalloc reserves are ok */
2550 first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone);
2551 pgdat = zone->zone_pgdat;
2552 if (pfmemalloc_watermark_ok(pgdat))
2555 /* Account for the throttling */
2556 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2559 * If the caller cannot enter the filesystem, it's possible that it
2560 * is due to the caller holding an FS lock or performing a journal
2561 * transaction in the case of a filesystem like ext[3|4]. In this case,
2562 * it is not safe to block on pfmemalloc_wait as kswapd could be
2563 * blocked waiting on the same lock. Instead, throttle for up to a
2564 * second before continuing.
2566 if (!(gfp_mask & __GFP_FS)) {
2567 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2568 pfmemalloc_watermark_ok(pgdat), HZ);
2573 /* Throttle until kswapd wakes the process */
2574 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2575 pfmemalloc_watermark_ok(pgdat));
2578 if (fatal_signal_pending(current))
2585 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2586 gfp_t gfp_mask, nodemask_t *nodemask)
2588 unsigned long nr_reclaimed;
2589 struct scan_control sc = {
2590 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2591 .may_writepage = !laptop_mode,
2592 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2596 .priority = DEF_PRIORITY,
2597 .target_mem_cgroup = NULL,
2598 .nodemask = nodemask,
2602 * Do not enter reclaim if fatal signal was delivered while throttled.
2603 * 1 is returned so that the page allocator does not OOM kill at this
2606 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2609 trace_mm_vmscan_direct_reclaim_begin(order,
2613 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2615 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2617 return nr_reclaimed;
2622 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2623 gfp_t gfp_mask, bool noswap,
2625 unsigned long *nr_scanned)
2627 struct scan_control sc = {
2629 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2630 .may_writepage = !laptop_mode,
2632 .may_swap = !noswap,
2635 .target_mem_cgroup = memcg,
2637 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2639 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2640 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2642 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2647 * NOTE: Although we can get the priority field, using it
2648 * here is not a good idea, since it limits the pages we can scan.
2649 * if we don't reclaim here, the shrink_zone from balance_pgdat
2650 * will pick up pages from other mem cgroup's as well. We hack
2651 * the priority and make it zero.
2653 shrink_lruvec(lruvec, &sc);
2655 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2657 *nr_scanned = sc.nr_scanned;
2658 return sc.nr_reclaimed;
2661 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2665 struct zonelist *zonelist;
2666 unsigned long nr_reclaimed;
2668 struct scan_control sc = {
2669 .may_writepage = !laptop_mode,
2671 .may_swap = !noswap,
2672 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2674 .priority = DEF_PRIORITY,
2675 .target_mem_cgroup = memcg,
2676 .nodemask = NULL, /* we don't care the placement */
2677 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2678 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2682 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2683 * take care of from where we get pages. So the node where we start the
2684 * scan does not need to be the current node.
2686 nid = mem_cgroup_select_victim_node(memcg);
2688 zonelist = NODE_DATA(nid)->node_zonelists;
2690 trace_mm_vmscan_memcg_reclaim_begin(0,
2694 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2696 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2698 return nr_reclaimed;
2702 static void age_active_anon(struct zone *zone, struct scan_control *sc)
2704 struct mem_cgroup *memcg;
2706 if (!total_swap_pages)
2709 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2711 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2713 if (inactive_anon_is_low(lruvec))
2714 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2715 sc, LRU_ACTIVE_ANON);
2717 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2721 static bool zone_balanced(struct zone *zone, int order,
2722 unsigned long balance_gap, int classzone_idx)
2724 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2725 balance_gap, classzone_idx, 0))
2728 if (IS_ENABLED(CONFIG_COMPACTION) && order &&
2729 !compaction_suitable(zone, order))
2736 * pgdat_balanced() is used when checking if a node is balanced.
2738 * For order-0, all zones must be balanced!
2740 * For high-order allocations only zones that meet watermarks and are in a
2741 * zone allowed by the callers classzone_idx are added to balanced_pages. The
2742 * total of balanced pages must be at least 25% of the zones allowed by
2743 * classzone_idx for the node to be considered balanced. Forcing all zones to
2744 * be balanced for high orders can cause excessive reclaim when there are
2746 * The choice of 25% is due to
2747 * o a 16M DMA zone that is balanced will not balance a zone on any
2748 * reasonable sized machine
2749 * o On all other machines, the top zone must be at least a reasonable
2750 * percentage of the middle zones. For example, on 32-bit x86, highmem
2751 * would need to be at least 256M for it to be balance a whole node.
2752 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2753 * to balance a node on its own. These seemed like reasonable ratios.
2755 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
2757 unsigned long managed_pages = 0;
2758 unsigned long balanced_pages = 0;
2761 /* Check the watermark levels */
2762 for (i = 0; i <= classzone_idx; i++) {
2763 struct zone *zone = pgdat->node_zones + i;
2765 if (!populated_zone(zone))
2768 managed_pages += zone->managed_pages;
2771 * A special case here:
2773 * balance_pgdat() skips over all_unreclaimable after
2774 * DEF_PRIORITY. Effectively, it considers them balanced so
2775 * they must be considered balanced here as well!
2777 if (!zone_reclaimable(zone)) {
2778 balanced_pages += zone->managed_pages;
2782 if (zone_balanced(zone, order, 0, i))
2783 balanced_pages += zone->managed_pages;
2789 return balanced_pages >= (managed_pages >> 2);
2795 * Prepare kswapd for sleeping. This verifies that there are no processes
2796 * waiting in throttle_direct_reclaim() and that watermarks have been met.
2798 * Returns true if kswapd is ready to sleep
2800 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
2803 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2808 * There is a potential race between when kswapd checks its watermarks
2809 * and a process gets throttled. There is also a potential race if
2810 * processes get throttled, kswapd wakes, a large process exits therby
2811 * balancing the zones that causes kswapd to miss a wakeup. If kswapd
2812 * is going to sleep, no process should be sleeping on pfmemalloc_wait
2813 * so wake them now if necessary. If necessary, processes will wake
2814 * kswapd and get throttled again
2816 if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
2817 wake_up(&pgdat->pfmemalloc_wait);
2821 return pgdat_balanced(pgdat, order, classzone_idx);
2825 * kswapd shrinks the zone by the number of pages required to reach
2826 * the high watermark.
2828 * Returns true if kswapd scanned at least the requested number of pages to
2829 * reclaim or if the lack of progress was due to pages under writeback.
2830 * This is used to determine if the scanning priority needs to be raised.
2832 static bool kswapd_shrink_zone(struct zone *zone,
2834 struct scan_control *sc,
2835 unsigned long lru_pages,
2836 unsigned long *nr_attempted)
2838 int testorder = sc->order;
2839 unsigned long balance_gap;
2840 struct reclaim_state *reclaim_state = current->reclaim_state;
2841 struct shrink_control shrink = {
2842 .gfp_mask = sc->gfp_mask,
2844 bool lowmem_pressure;
2846 /* Reclaim above the high watermark. */
2847 sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
2850 * Kswapd reclaims only single pages with compaction enabled. Trying
2851 * too hard to reclaim until contiguous free pages have become
2852 * available can hurt performance by evicting too much useful data
2853 * from memory. Do not reclaim more than needed for compaction.
2855 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2856 compaction_suitable(zone, sc->order) !=
2861 * We put equal pressure on every zone, unless one zone has way too
2862 * many pages free already. The "too many pages" is defined as the
2863 * high wmark plus a "gap" where the gap is either the low
2864 * watermark or 1% of the zone, whichever is smaller.
2866 balance_gap = min(low_wmark_pages(zone),
2867 (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2868 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2871 * If there is no low memory pressure or the zone is balanced then no
2872 * reclaim is necessary
2874 lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
2875 if (!lowmem_pressure && zone_balanced(zone, testorder,
2876 balance_gap, classzone_idx))
2879 shrink_zone(zone, sc);
2880 nodes_clear(shrink.nodes_to_scan);
2881 node_set(zone_to_nid(zone), shrink.nodes_to_scan);
2883 reclaim_state->reclaimed_slab = 0;
2884 shrink_slab(&shrink, sc->nr_scanned, lru_pages);
2885 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2887 /* Account for the number of pages attempted to reclaim */
2888 *nr_attempted += sc->nr_to_reclaim;
2890 zone_clear_flag(zone, ZONE_WRITEBACK);
2893 * If a zone reaches its high watermark, consider it to be no longer
2894 * congested. It's possible there are dirty pages backed by congested
2895 * BDIs but as pressure is relieved, speculatively avoid congestion
2898 if (zone_reclaimable(zone) &&
2899 zone_balanced(zone, testorder, 0, classzone_idx)) {
2900 zone_clear_flag(zone, ZONE_CONGESTED);
2901 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
2904 return sc->nr_scanned >= sc->nr_to_reclaim;
2908 * For kswapd, balance_pgdat() will work across all this node's zones until
2909 * they are all at high_wmark_pages(zone).
2911 * Returns the final order kswapd was reclaiming at
2913 * There is special handling here for zones which are full of pinned pages.
2914 * This can happen if the pages are all mlocked, or if they are all used by
2915 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2916 * What we do is to detect the case where all pages in the zone have been
2917 * scanned twice and there has been zero successful reclaim. Mark the zone as
2918 * dead and from now on, only perform a short scan. Basically we're polling
2919 * the zone for when the problem goes away.
2921 * kswapd scans the zones in the highmem->normal->dma direction. It skips
2922 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2923 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2924 * lower zones regardless of the number of free pages in the lower zones. This
2925 * interoperates with the page allocator fallback scheme to ensure that aging
2926 * of pages is balanced across the zones.
2928 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2932 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
2933 unsigned long nr_soft_reclaimed;
2934 unsigned long nr_soft_scanned;
2935 struct scan_control sc = {
2936 .gfp_mask = GFP_KERNEL,
2937 .priority = DEF_PRIORITY,
2940 .may_writepage = !laptop_mode,
2942 .target_mem_cgroup = NULL,
2944 count_vm_event(PAGEOUTRUN);
2947 unsigned long lru_pages = 0;
2948 unsigned long nr_attempted = 0;
2949 bool raise_priority = true;
2950 bool pgdat_needs_compaction = (order > 0);
2952 sc.nr_reclaimed = 0;
2955 * Scan in the highmem->dma direction for the highest
2956 * zone which needs scanning
2958 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2959 struct zone *zone = pgdat->node_zones + i;
2961 if (!populated_zone(zone))
2964 if (sc.priority != DEF_PRIORITY &&
2965 !zone_reclaimable(zone))
2969 * Do some background aging of the anon list, to give
2970 * pages a chance to be referenced before reclaiming.
2972 age_active_anon(zone, &sc);
2975 * If the number of buffer_heads in the machine
2976 * exceeds the maximum allowed level and this node
2977 * has a highmem zone, force kswapd to reclaim from
2978 * it to relieve lowmem pressure.
2980 if (buffer_heads_over_limit && is_highmem_idx(i)) {
2985 if (!zone_balanced(zone, order, 0, 0)) {
2990 * If balanced, clear the dirty and congested
2993 zone_clear_flag(zone, ZONE_CONGESTED);
2994 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
3001 for (i = 0; i <= end_zone; i++) {
3002 struct zone *zone = pgdat->node_zones + i;
3004 if (!populated_zone(zone))
3007 lru_pages += zone_reclaimable_pages(zone);
3010 * If any zone is currently balanced then kswapd will
3011 * not call compaction as it is expected that the
3012 * necessary pages are already available.
3014 if (pgdat_needs_compaction &&
3015 zone_watermark_ok(zone, order,
3016 low_wmark_pages(zone),
3018 pgdat_needs_compaction = false;
3022 * If we're getting trouble reclaiming, start doing writepage
3023 * even in laptop mode.
3025 if (sc.priority < DEF_PRIORITY - 2)
3026 sc.may_writepage = 1;
3029 * Now scan the zone in the dma->highmem direction, stopping
3030 * at the last zone which needs scanning.
3032 * We do this because the page allocator works in the opposite
3033 * direction. This prevents the page allocator from allocating
3034 * pages behind kswapd's direction of progress, which would
3035 * cause too much scanning of the lower zones.
3037 for (i = 0; i <= end_zone; i++) {
3038 struct zone *zone = pgdat->node_zones + i;
3040 if (!populated_zone(zone))
3043 if (sc.priority != DEF_PRIORITY &&
3044 !zone_reclaimable(zone))
3049 nr_soft_scanned = 0;
3051 * Call soft limit reclaim before calling shrink_zone.
3053 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
3056 sc.nr_reclaimed += nr_soft_reclaimed;
3059 * There should be no need to raise the scanning
3060 * priority if enough pages are already being scanned
3061 * that that high watermark would be met at 100%
3064 if (kswapd_shrink_zone(zone, end_zone, &sc,
3065 lru_pages, &nr_attempted))
3066 raise_priority = false;
3070 * If the low watermark is met there is no need for processes
3071 * to be throttled on pfmemalloc_wait as they should not be
3072 * able to safely make forward progress. Wake them
3074 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3075 pfmemalloc_watermark_ok(pgdat))
3076 wake_up(&pgdat->pfmemalloc_wait);
3079 * Fragmentation may mean that the system cannot be rebalanced
3080 * for high-order allocations in all zones. If twice the
3081 * allocation size has been reclaimed and the zones are still
3082 * not balanced then recheck the watermarks at order-0 to
3083 * prevent kswapd reclaiming excessively. Assume that a
3084 * process requested a high-order can direct reclaim/compact.
3086 if (order && sc.nr_reclaimed >= 2UL << order)
3087 order = sc.order = 0;
3089 /* Check if kswapd should be suspending */
3090 if (try_to_freeze() || kthread_should_stop())
3094 * Compact if necessary and kswapd is reclaiming at least the
3095 * high watermark number of pages as requsted
3097 if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
3098 compact_pgdat(pgdat, order);
3101 * Raise priority if scanning rate is too low or there was no
3102 * progress in reclaiming pages
3104 if (raise_priority || !sc.nr_reclaimed)
3106 } while (sc.priority >= 1 &&
3107 !pgdat_balanced(pgdat, order, *classzone_idx));
3111 * Return the order we were reclaiming at so prepare_kswapd_sleep()
3112 * makes a decision on the order we were last reclaiming at. However,
3113 * if another caller entered the allocator slow path while kswapd
3114 * was awake, order will remain at the higher level
3116 *classzone_idx = end_zone;
3120 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3125 if (freezing(current) || kthread_should_stop())
3128 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3130 /* Try to sleep for a short interval */
3131 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3132 remaining = schedule_timeout(HZ/10);
3133 finish_wait(&pgdat->kswapd_wait, &wait);
3134 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3138 * After a short sleep, check if it was a premature sleep. If not, then
3139 * go fully to sleep until explicitly woken up.
3141 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3142 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3145 * vmstat counters are not perfectly accurate and the estimated
3146 * value for counters such as NR_FREE_PAGES can deviate from the
3147 * true value by nr_online_cpus * threshold. To avoid the zone
3148 * watermarks being breached while under pressure, we reduce the
3149 * per-cpu vmstat threshold while kswapd is awake and restore
3150 * them before going back to sleep.
3152 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3155 * Compaction records what page blocks it recently failed to
3156 * isolate pages from and skips them in the future scanning.
3157 * When kswapd is going to sleep, it is reasonable to assume
3158 * that pages and compaction may succeed so reset the cache.
3160 reset_isolation_suitable(pgdat);
3162 if (!kthread_should_stop())
3165 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3168 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3170 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3172 finish_wait(&pgdat->kswapd_wait, &wait);
3176 * The background pageout daemon, started as a kernel thread
3177 * from the init process.
3179 * This basically trickles out pages so that we have _some_
3180 * free memory available even if there is no other activity
3181 * that frees anything up. This is needed for things like routing
3182 * etc, where we otherwise might have all activity going on in
3183 * asynchronous contexts that cannot page things out.
3185 * If there are applications that are active memory-allocators
3186 * (most normal use), this basically shouldn't matter.
3188 static int kswapd(void *p)
3190 unsigned long order, new_order;
3191 unsigned balanced_order;
3192 int classzone_idx, new_classzone_idx;
3193 int balanced_classzone_idx;
3194 pg_data_t *pgdat = (pg_data_t*)p;
3195 struct task_struct *tsk = current;
3197 struct reclaim_state reclaim_state = {
3198 .reclaimed_slab = 0,
3200 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3202 lockdep_set_current_reclaim_state(GFP_KERNEL);
3204 if (!cpumask_empty(cpumask))
3205 set_cpus_allowed_ptr(tsk, cpumask);
3206 current->reclaim_state = &reclaim_state;
3209 * Tell the memory management that we're a "memory allocator",
3210 * and that if we need more memory we should get access to it
3211 * regardless (see "__alloc_pages()"). "kswapd" should
3212 * never get caught in the normal page freeing logic.
3214 * (Kswapd normally doesn't need memory anyway, but sometimes
3215 * you need a small amount of memory in order to be able to
3216 * page out something else, and this flag essentially protects
3217 * us from recursively trying to free more memory as we're
3218 * trying to free the first piece of memory in the first place).
3220 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3223 order = new_order = 0;
3225 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3226 balanced_classzone_idx = classzone_idx;
3231 * If the last balance_pgdat was unsuccessful it's unlikely a
3232 * new request of a similar or harder type will succeed soon
3233 * so consider going to sleep on the basis we reclaimed at
3235 if (balanced_classzone_idx >= new_classzone_idx &&
3236 balanced_order == new_order) {
3237 new_order = pgdat->kswapd_max_order;
3238 new_classzone_idx = pgdat->classzone_idx;
3239 pgdat->kswapd_max_order = 0;
3240 pgdat->classzone_idx = pgdat->nr_zones - 1;
3243 if (order < new_order || classzone_idx > new_classzone_idx) {
3245 * Don't sleep if someone wants a larger 'order'
3246 * allocation or has tigher zone constraints
3249 classzone_idx = new_classzone_idx;
3251 kswapd_try_to_sleep(pgdat, balanced_order,
3252 balanced_classzone_idx);
3253 order = pgdat->kswapd_max_order;
3254 classzone_idx = pgdat->classzone_idx;
3256 new_classzone_idx = classzone_idx;
3257 pgdat->kswapd_max_order = 0;
3258 pgdat->classzone_idx = pgdat->nr_zones - 1;
3261 ret = try_to_freeze();
3262 if (kthread_should_stop())
3266 * We can speed up thawing tasks if we don't call balance_pgdat
3267 * after returning from the refrigerator
3270 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3271 balanced_classzone_idx = classzone_idx;
3272 balanced_order = balance_pgdat(pgdat, order,
3273 &balanced_classzone_idx);
3277 current->reclaim_state = NULL;
3282 * A zone is low on free memory, so wake its kswapd task to service it.
3284 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3288 if (!populated_zone(zone))
3291 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
3293 pgdat = zone->zone_pgdat;
3294 if (pgdat->kswapd_max_order < order) {
3295 pgdat->kswapd_max_order = order;
3296 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3298 if (!waitqueue_active(&pgdat->kswapd_wait))
3300 if (zone_balanced(zone, order, 0, 0))
3303 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3304 wake_up_interruptible(&pgdat->kswapd_wait);
3307 #ifdef CONFIG_HIBERNATION
3309 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3312 * Rather than trying to age LRUs the aim is to preserve the overall
3313 * LRU order by reclaiming preferentially
3314 * inactive > active > active referenced > active mapped
3316 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3318 struct reclaim_state reclaim_state;
3319 struct scan_control sc = {
3320 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3324 .nr_to_reclaim = nr_to_reclaim,
3325 .hibernation_mode = 1,
3327 .priority = DEF_PRIORITY,
3329 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3330 struct task_struct *p = current;
3331 unsigned long nr_reclaimed;
3333 p->flags |= PF_MEMALLOC;
3334 lockdep_set_current_reclaim_state(sc.gfp_mask);
3335 reclaim_state.reclaimed_slab = 0;
3336 p->reclaim_state = &reclaim_state;
3338 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3340 p->reclaim_state = NULL;
3341 lockdep_clear_current_reclaim_state();
3342 p->flags &= ~PF_MEMALLOC;
3344 return nr_reclaimed;
3346 #endif /* CONFIG_HIBERNATION */
3348 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3349 not required for correctness. So if the last cpu in a node goes
3350 away, we get changed to run anywhere: as the first one comes back,
3351 restore their cpu bindings. */
3352 static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3357 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3358 for_each_node_state(nid, N_MEMORY) {
3359 pg_data_t *pgdat = NODE_DATA(nid);
3360 const struct cpumask *mask;
3362 mask = cpumask_of_node(pgdat->node_id);
3364 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3365 /* One of our CPUs online: restore mask */
3366 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3373 * This kswapd start function will be called by init and node-hot-add.
3374 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3376 int kswapd_run(int nid)
3378 pg_data_t *pgdat = NODE_DATA(nid);
3384 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3385 if (IS_ERR(pgdat->kswapd)) {
3386 /* failure at boot is fatal */
3387 BUG_ON(system_state == SYSTEM_BOOTING);
3388 pr_err("Failed to start kswapd on node %d\n", nid);
3389 ret = PTR_ERR(pgdat->kswapd);
3390 pgdat->kswapd = NULL;
3396 * Called by memory hotplug when all memory in a node is offlined. Caller must
3397 * hold lock_memory_hotplug().
3399 void kswapd_stop(int nid)
3401 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3404 kthread_stop(kswapd);
3405 NODE_DATA(nid)->kswapd = NULL;
3409 static int __init kswapd_init(void)
3414 for_each_node_state(nid, N_MEMORY)
3416 hotcpu_notifier(cpu_callback, 0);
3420 module_init(kswapd_init)
3426 * If non-zero call zone_reclaim when the number of free pages falls below
3429 int zone_reclaim_mode __read_mostly;
3431 #define RECLAIM_OFF 0
3432 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3433 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3434 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
3437 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3438 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3441 #define ZONE_RECLAIM_PRIORITY 4
3444 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3447 int sysctl_min_unmapped_ratio = 1;
3450 * If the number of slab pages in a zone grows beyond this percentage then
3451 * slab reclaim needs to occur.
3453 int sysctl_min_slab_ratio = 5;
3455 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3457 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3458 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3459 zone_page_state(zone, NR_ACTIVE_FILE);
3462 * It's possible for there to be more file mapped pages than
3463 * accounted for by the pages on the file LRU lists because
3464 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3466 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3469 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3470 static long zone_pagecache_reclaimable(struct zone *zone)
3472 long nr_pagecache_reclaimable;
3476 * If RECLAIM_SWAP is set, then all file pages are considered
3477 * potentially reclaimable. Otherwise, we have to worry about
3478 * pages like swapcache and zone_unmapped_file_pages() provides
3481 if (zone_reclaim_mode & RECLAIM_SWAP)
3482 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3484 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3486 /* If we can't clean pages, remove dirty pages from consideration */
3487 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3488 delta += zone_page_state(zone, NR_FILE_DIRTY);
3490 /* Watch for any possible underflows due to delta */
3491 if (unlikely(delta > nr_pagecache_reclaimable))
3492 delta = nr_pagecache_reclaimable;
3494 return nr_pagecache_reclaimable - delta;
3498 * Try to free up some pages from this zone through reclaim.
3500 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3502 /* Minimum pages needed in order to stay on node */
3503 const unsigned long nr_pages = 1 << order;
3504 struct task_struct *p = current;
3505 struct reclaim_state reclaim_state;
3506 struct scan_control sc = {
3507 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3508 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3510 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3511 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3513 .priority = ZONE_RECLAIM_PRIORITY,
3515 struct shrink_control shrink = {
3516 .gfp_mask = sc.gfp_mask,
3518 unsigned long nr_slab_pages0, nr_slab_pages1;
3522 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3523 * and we also need to be able to write out pages for RECLAIM_WRITE
3526 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3527 lockdep_set_current_reclaim_state(gfp_mask);
3528 reclaim_state.reclaimed_slab = 0;
3529 p->reclaim_state = &reclaim_state;
3531 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3533 * Free memory by calling shrink zone with increasing
3534 * priorities until we have enough memory freed.
3537 shrink_zone(zone, &sc);
3538 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3541 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3542 if (nr_slab_pages0 > zone->min_slab_pages) {
3544 * shrink_slab() does not currently allow us to determine how
3545 * many pages were freed in this zone. So we take the current
3546 * number of slab pages and shake the slab until it is reduced
3547 * by the same nr_pages that we used for reclaiming unmapped
3550 nodes_clear(shrink.nodes_to_scan);
3551 node_set(zone_to_nid(zone), shrink.nodes_to_scan);
3553 unsigned long lru_pages = zone_reclaimable_pages(zone);
3555 /* No reclaimable slab or very low memory pressure */
3556 if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3559 /* Freed enough memory */
3560 nr_slab_pages1 = zone_page_state(zone,
3561 NR_SLAB_RECLAIMABLE);
3562 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3567 * Update nr_reclaimed by the number of slab pages we
3568 * reclaimed from this zone.
3570 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3571 if (nr_slab_pages1 < nr_slab_pages0)
3572 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3575 p->reclaim_state = NULL;
3576 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3577 lockdep_clear_current_reclaim_state();
3578 return sc.nr_reclaimed >= nr_pages;
3581 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3587 * Zone reclaim reclaims unmapped file backed pages and
3588 * slab pages if we are over the defined limits.
3590 * A small portion of unmapped file backed pages is needed for
3591 * file I/O otherwise pages read by file I/O will be immediately
3592 * thrown out if the zone is overallocated. So we do not reclaim
3593 * if less than a specified percentage of the zone is used by
3594 * unmapped file backed pages.
3596 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3597 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3598 return ZONE_RECLAIM_FULL;
3600 if (!zone_reclaimable(zone))
3601 return ZONE_RECLAIM_FULL;
3604 * Do not scan if the allocation should not be delayed.
3606 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3607 return ZONE_RECLAIM_NOSCAN;
3610 * Only run zone reclaim on the local zone or on zones that do not
3611 * have associated processors. This will favor the local processor
3612 * over remote processors and spread off node memory allocations
3613 * as wide as possible.
3615 node_id = zone_to_nid(zone);
3616 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3617 return ZONE_RECLAIM_NOSCAN;
3619 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3620 return ZONE_RECLAIM_NOSCAN;
3622 ret = __zone_reclaim(zone, gfp_mask, order);
3623 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3626 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3633 * page_evictable - test whether a page is evictable
3634 * @page: the page to test
3636 * Test whether page is evictable--i.e., should be placed on active/inactive
3637 * lists vs unevictable list.
3639 * Reasons page might not be evictable:
3640 * (1) page's mapping marked unevictable
3641 * (2) page is part of an mlocked VMA
3644 int page_evictable(struct page *page)
3646 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3651 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3652 * @pages: array of pages to check
3653 * @nr_pages: number of pages to check
3655 * Checks pages for evictability and moves them to the appropriate lru list.
3657 * This function is only used for SysV IPC SHM_UNLOCK.
3659 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3661 struct lruvec *lruvec;
3662 struct zone *zone = NULL;
3667 for (i = 0; i < nr_pages; i++) {
3668 struct page *page = pages[i];
3669 struct zone *pagezone;
3672 pagezone = page_zone(page);
3673 if (pagezone != zone) {
3675 spin_unlock_irq(&zone->lru_lock);
3677 spin_lock_irq(&zone->lru_lock);
3679 lruvec = mem_cgroup_page_lruvec(page, zone);
3681 if (!PageLRU(page) || !PageUnevictable(page))
3684 if (page_evictable(page)) {
3685 enum lru_list lru = page_lru_base_type(page);
3687 VM_BUG_ON_PAGE(PageActive(page), page);
3688 ClearPageUnevictable(page);
3689 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3690 add_page_to_lru_list(page, lruvec, lru);
3696 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3697 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3698 spin_unlock_irq(&zone->lru_lock);
3701 #endif /* CONFIG_SHMEM */
3703 static void warn_scan_unevictable_pages(void)
3705 printk_once(KERN_WARNING
3706 "%s: The scan_unevictable_pages sysctl/node-interface has been "
3707 "disabled for lack of a legitimate use case. If you have "
3713 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
3714 * all nodes' unevictable lists for evictable pages
3716 unsigned long scan_unevictable_pages;
3718 int scan_unevictable_handler(struct ctl_table *table, int write,
3719 void __user *buffer,
3720 size_t *length, loff_t *ppos)
3722 warn_scan_unevictable_pages();
3723 proc_doulongvec_minmax(table, write, buffer, length, ppos);
3724 scan_unevictable_pages = 0;
3730 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3731 * a specified node's per zone unevictable lists for evictable pages.
3734 static ssize_t read_scan_unevictable_node(struct device *dev,
3735 struct device_attribute *attr,
3738 warn_scan_unevictable_pages();
3739 return sprintf(buf, "0\n"); /* always zero; should fit... */
3742 static ssize_t write_scan_unevictable_node(struct device *dev,
3743 struct device_attribute *attr,
3744 const char *buf, size_t count)
3746 warn_scan_unevictable_pages();
3751 static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3752 read_scan_unevictable_node,
3753 write_scan_unevictable_node);
3755 int scan_unevictable_register_node(struct node *node)
3757 return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3760 void scan_unevictable_unregister_node(struct node *node)
3762 device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);