]> Git Repo - linux.git/blob - mm/filemap.c
mm + fs: prepare for non-page entries in page cache radix trees
[linux.git] / mm / filemap.c
1 /*
2  *      linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/fs.h>
15 #include <linux/uaccess.h>
16 #include <linux/aio.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/cpuset.h>
33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
34 #include <linux/memcontrol.h>
35 #include <linux/cleancache.h>
36 #include "internal.h"
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/filemap.h>
40
41 /*
42  * FIXME: remove all knowledge of the buffer layer from the core VM
43  */
44 #include <linux/buffer_head.h> /* for try_to_free_buffers */
45
46 #include <asm/mman.h>
47
48 /*
49  * Shared mappings implemented 30.11.1994. It's not fully working yet,
50  * though.
51  *
52  * Shared mappings now work. 15.8.1995  Bruno.
53  *
54  * finished 'unifying' the page and buffer cache and SMP-threaded the
55  * page-cache, 21.05.1999, Ingo Molnar <[email protected]>
56  *
57  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <[email protected]>
58  */
59
60 /*
61  * Lock ordering:
62  *
63  *  ->i_mmap_mutex              (truncate_pagecache)
64  *    ->private_lock            (__free_pte->__set_page_dirty_buffers)
65  *      ->swap_lock             (exclusive_swap_page, others)
66  *        ->mapping->tree_lock
67  *
68  *  ->i_mutex
69  *    ->i_mmap_mutex            (truncate->unmap_mapping_range)
70  *
71  *  ->mmap_sem
72  *    ->i_mmap_mutex
73  *      ->page_table_lock or pte_lock   (various, mainly in memory.c)
74  *        ->mapping->tree_lock  (arch-dependent flush_dcache_mmap_lock)
75  *
76  *  ->mmap_sem
77  *    ->lock_page               (access_process_vm)
78  *
79  *  ->i_mutex                   (generic_file_buffered_write)
80  *    ->mmap_sem                (fault_in_pages_readable->do_page_fault)
81  *
82  *  bdi->wb.list_lock
83  *    sb_lock                   (fs/fs-writeback.c)
84  *    ->mapping->tree_lock      (__sync_single_inode)
85  *
86  *  ->i_mmap_mutex
87  *    ->anon_vma.lock           (vma_adjust)
88  *
89  *  ->anon_vma.lock
90  *    ->page_table_lock or pte_lock     (anon_vma_prepare and various)
91  *
92  *  ->page_table_lock or pte_lock
93  *    ->swap_lock               (try_to_unmap_one)
94  *    ->private_lock            (try_to_unmap_one)
95  *    ->tree_lock               (try_to_unmap_one)
96  *    ->zone.lru_lock           (follow_page->mark_page_accessed)
97  *    ->zone.lru_lock           (check_pte_range->isolate_lru_page)
98  *    ->private_lock            (page_remove_rmap->set_page_dirty)
99  *    ->tree_lock               (page_remove_rmap->set_page_dirty)
100  *    bdi.wb->list_lock         (page_remove_rmap->set_page_dirty)
101  *    ->inode->i_lock           (page_remove_rmap->set_page_dirty)
102  *    bdi.wb->list_lock         (zap_pte_range->set_page_dirty)
103  *    ->inode->i_lock           (zap_pte_range->set_page_dirty)
104  *    ->private_lock            (zap_pte_range->__set_page_dirty_buffers)
105  *
106  * ->i_mmap_mutex
107  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
108  */
109
110 /*
111  * Delete a page from the page cache and free it. Caller has to make
112  * sure the page is locked and that nobody else uses it - or that usage
113  * is safe.  The caller must hold the mapping's tree_lock.
114  */
115 void __delete_from_page_cache(struct page *page)
116 {
117         struct address_space *mapping = page->mapping;
118
119         trace_mm_filemap_delete_from_page_cache(page);
120         /*
121          * if we're uptodate, flush out into the cleancache, otherwise
122          * invalidate any existing cleancache entries.  We can't leave
123          * stale data around in the cleancache once our page is gone
124          */
125         if (PageUptodate(page) && PageMappedToDisk(page))
126                 cleancache_put_page(page);
127         else
128                 cleancache_invalidate_page(mapping, page);
129
130         radix_tree_delete(&mapping->page_tree, page->index);
131         page->mapping = NULL;
132         /* Leave page->index set: truncation lookup relies upon it */
133         mapping->nrpages--;
134         __dec_zone_page_state(page, NR_FILE_PAGES);
135         if (PageSwapBacked(page))
136                 __dec_zone_page_state(page, NR_SHMEM);
137         BUG_ON(page_mapped(page));
138
139         /*
140          * Some filesystems seem to re-dirty the page even after
141          * the VM has canceled the dirty bit (eg ext3 journaling).
142          *
143          * Fix it up by doing a final dirty accounting check after
144          * having removed the page entirely.
145          */
146         if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
147                 dec_zone_page_state(page, NR_FILE_DIRTY);
148                 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
149         }
150 }
151
152 /**
153  * delete_from_page_cache - delete page from page cache
154  * @page: the page which the kernel is trying to remove from page cache
155  *
156  * This must be called only on pages that have been verified to be in the page
157  * cache and locked.  It will never put the page into the free list, the caller
158  * has a reference on the page.
159  */
160 void delete_from_page_cache(struct page *page)
161 {
162         struct address_space *mapping = page->mapping;
163         void (*freepage)(struct page *);
164
165         BUG_ON(!PageLocked(page));
166
167         freepage = mapping->a_ops->freepage;
168         spin_lock_irq(&mapping->tree_lock);
169         __delete_from_page_cache(page);
170         spin_unlock_irq(&mapping->tree_lock);
171         mem_cgroup_uncharge_cache_page(page);
172
173         if (freepage)
174                 freepage(page);
175         page_cache_release(page);
176 }
177 EXPORT_SYMBOL(delete_from_page_cache);
178
179 static int sleep_on_page(void *word)
180 {
181         io_schedule();
182         return 0;
183 }
184
185 static int sleep_on_page_killable(void *word)
186 {
187         sleep_on_page(word);
188         return fatal_signal_pending(current) ? -EINTR : 0;
189 }
190
191 static int filemap_check_errors(struct address_space *mapping)
192 {
193         int ret = 0;
194         /* Check for outstanding write errors */
195         if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
196                 ret = -ENOSPC;
197         if (test_and_clear_bit(AS_EIO, &mapping->flags))
198                 ret = -EIO;
199         return ret;
200 }
201
202 /**
203  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
204  * @mapping:    address space structure to write
205  * @start:      offset in bytes where the range starts
206  * @end:        offset in bytes where the range ends (inclusive)
207  * @sync_mode:  enable synchronous operation
208  *
209  * Start writeback against all of a mapping's dirty pages that lie
210  * within the byte offsets <start, end> inclusive.
211  *
212  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
213  * opposed to a regular memory cleansing writeback.  The difference between
214  * these two operations is that if a dirty page/buffer is encountered, it must
215  * be waited upon, and not just skipped over.
216  */
217 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
218                                 loff_t end, int sync_mode)
219 {
220         int ret;
221         struct writeback_control wbc = {
222                 .sync_mode = sync_mode,
223                 .nr_to_write = LONG_MAX,
224                 .range_start = start,
225                 .range_end = end,
226         };
227
228         if (!mapping_cap_writeback_dirty(mapping))
229                 return 0;
230
231         ret = do_writepages(mapping, &wbc);
232         return ret;
233 }
234
235 static inline int __filemap_fdatawrite(struct address_space *mapping,
236         int sync_mode)
237 {
238         return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
239 }
240
241 int filemap_fdatawrite(struct address_space *mapping)
242 {
243         return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
244 }
245 EXPORT_SYMBOL(filemap_fdatawrite);
246
247 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
248                                 loff_t end)
249 {
250         return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
251 }
252 EXPORT_SYMBOL(filemap_fdatawrite_range);
253
254 /**
255  * filemap_flush - mostly a non-blocking flush
256  * @mapping:    target address_space
257  *
258  * This is a mostly non-blocking flush.  Not suitable for data-integrity
259  * purposes - I/O may not be started against all dirty pages.
260  */
261 int filemap_flush(struct address_space *mapping)
262 {
263         return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
264 }
265 EXPORT_SYMBOL(filemap_flush);
266
267 /**
268  * filemap_fdatawait_range - wait for writeback to complete
269  * @mapping:            address space structure to wait for
270  * @start_byte:         offset in bytes where the range starts
271  * @end_byte:           offset in bytes where the range ends (inclusive)
272  *
273  * Walk the list of under-writeback pages of the given address space
274  * in the given range and wait for all of them.
275  */
276 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
277                             loff_t end_byte)
278 {
279         pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
280         pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
281         struct pagevec pvec;
282         int nr_pages;
283         int ret2, ret = 0;
284
285         if (end_byte < start_byte)
286                 goto out;
287
288         pagevec_init(&pvec, 0);
289         while ((index <= end) &&
290                         (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
291                         PAGECACHE_TAG_WRITEBACK,
292                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
293                 unsigned i;
294
295                 for (i = 0; i < nr_pages; i++) {
296                         struct page *page = pvec.pages[i];
297
298                         /* until radix tree lookup accepts end_index */
299                         if (page->index > end)
300                                 continue;
301
302                         wait_on_page_writeback(page);
303                         if (TestClearPageError(page))
304                                 ret = -EIO;
305                 }
306                 pagevec_release(&pvec);
307                 cond_resched();
308         }
309 out:
310         ret2 = filemap_check_errors(mapping);
311         if (!ret)
312                 ret = ret2;
313
314         return ret;
315 }
316 EXPORT_SYMBOL(filemap_fdatawait_range);
317
318 /**
319  * filemap_fdatawait - wait for all under-writeback pages to complete
320  * @mapping: address space structure to wait for
321  *
322  * Walk the list of under-writeback pages of the given address space
323  * and wait for all of them.
324  */
325 int filemap_fdatawait(struct address_space *mapping)
326 {
327         loff_t i_size = i_size_read(mapping->host);
328
329         if (i_size == 0)
330                 return 0;
331
332         return filemap_fdatawait_range(mapping, 0, i_size - 1);
333 }
334 EXPORT_SYMBOL(filemap_fdatawait);
335
336 int filemap_write_and_wait(struct address_space *mapping)
337 {
338         int err = 0;
339
340         if (mapping->nrpages) {
341                 err = filemap_fdatawrite(mapping);
342                 /*
343                  * Even if the above returned error, the pages may be
344                  * written partially (e.g. -ENOSPC), so we wait for it.
345                  * But the -EIO is special case, it may indicate the worst
346                  * thing (e.g. bug) happened, so we avoid waiting for it.
347                  */
348                 if (err != -EIO) {
349                         int err2 = filemap_fdatawait(mapping);
350                         if (!err)
351                                 err = err2;
352                 }
353         } else {
354                 err = filemap_check_errors(mapping);
355         }
356         return err;
357 }
358 EXPORT_SYMBOL(filemap_write_and_wait);
359
360 /**
361  * filemap_write_and_wait_range - write out & wait on a file range
362  * @mapping:    the address_space for the pages
363  * @lstart:     offset in bytes where the range starts
364  * @lend:       offset in bytes where the range ends (inclusive)
365  *
366  * Write out and wait upon file offsets lstart->lend, inclusive.
367  *
368  * Note that `lend' is inclusive (describes the last byte to be written) so
369  * that this function can be used to write to the very end-of-file (end = -1).
370  */
371 int filemap_write_and_wait_range(struct address_space *mapping,
372                                  loff_t lstart, loff_t lend)
373 {
374         int err = 0;
375
376         if (mapping->nrpages) {
377                 err = __filemap_fdatawrite_range(mapping, lstart, lend,
378                                                  WB_SYNC_ALL);
379                 /* See comment of filemap_write_and_wait() */
380                 if (err != -EIO) {
381                         int err2 = filemap_fdatawait_range(mapping,
382                                                 lstart, lend);
383                         if (!err)
384                                 err = err2;
385                 }
386         } else {
387                 err = filemap_check_errors(mapping);
388         }
389         return err;
390 }
391 EXPORT_SYMBOL(filemap_write_and_wait_range);
392
393 /**
394  * replace_page_cache_page - replace a pagecache page with a new one
395  * @old:        page to be replaced
396  * @new:        page to replace with
397  * @gfp_mask:   allocation mode
398  *
399  * This function replaces a page in the pagecache with a new one.  On
400  * success it acquires the pagecache reference for the new page and
401  * drops it for the old page.  Both the old and new pages must be
402  * locked.  This function does not add the new page to the LRU, the
403  * caller must do that.
404  *
405  * The remove + add is atomic.  The only way this function can fail is
406  * memory allocation failure.
407  */
408 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
409 {
410         int error;
411
412         VM_BUG_ON_PAGE(!PageLocked(old), old);
413         VM_BUG_ON_PAGE(!PageLocked(new), new);
414         VM_BUG_ON_PAGE(new->mapping, new);
415
416         error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
417         if (!error) {
418                 struct address_space *mapping = old->mapping;
419                 void (*freepage)(struct page *);
420
421                 pgoff_t offset = old->index;
422                 freepage = mapping->a_ops->freepage;
423
424                 page_cache_get(new);
425                 new->mapping = mapping;
426                 new->index = offset;
427
428                 spin_lock_irq(&mapping->tree_lock);
429                 __delete_from_page_cache(old);
430                 error = radix_tree_insert(&mapping->page_tree, offset, new);
431                 BUG_ON(error);
432                 mapping->nrpages++;
433                 __inc_zone_page_state(new, NR_FILE_PAGES);
434                 if (PageSwapBacked(new))
435                         __inc_zone_page_state(new, NR_SHMEM);
436                 spin_unlock_irq(&mapping->tree_lock);
437                 /* mem_cgroup codes must not be called under tree_lock */
438                 mem_cgroup_replace_page_cache(old, new);
439                 radix_tree_preload_end();
440                 if (freepage)
441                         freepage(old);
442                 page_cache_release(old);
443         }
444
445         return error;
446 }
447 EXPORT_SYMBOL_GPL(replace_page_cache_page);
448
449 static int page_cache_tree_insert(struct address_space *mapping,
450                                   struct page *page)
451 {
452         void **slot;
453         int error;
454
455         slot = radix_tree_lookup_slot(&mapping->page_tree, page->index);
456         if (slot) {
457                 void *p;
458
459                 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
460                 if (!radix_tree_exceptional_entry(p))
461                         return -EEXIST;
462                 radix_tree_replace_slot(slot, page);
463                 mapping->nrpages++;
464                 return 0;
465         }
466         error = radix_tree_insert(&mapping->page_tree, page->index, page);
467         if (!error)
468                 mapping->nrpages++;
469         return error;
470 }
471
472 /**
473  * add_to_page_cache_locked - add a locked page to the pagecache
474  * @page:       page to add
475  * @mapping:    the page's address_space
476  * @offset:     page index
477  * @gfp_mask:   page allocation mode
478  *
479  * This function is used to add a page to the pagecache. It must be locked.
480  * This function does not add the page to the LRU.  The caller must do that.
481  */
482 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
483                 pgoff_t offset, gfp_t gfp_mask)
484 {
485         int error;
486
487         VM_BUG_ON_PAGE(!PageLocked(page), page);
488         VM_BUG_ON_PAGE(PageSwapBacked(page), page);
489
490         error = mem_cgroup_cache_charge(page, current->mm,
491                                         gfp_mask & GFP_RECLAIM_MASK);
492         if (error)
493                 return error;
494
495         error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
496         if (error) {
497                 mem_cgroup_uncharge_cache_page(page);
498                 return error;
499         }
500
501         page_cache_get(page);
502         page->mapping = mapping;
503         page->index = offset;
504
505         spin_lock_irq(&mapping->tree_lock);
506         error = page_cache_tree_insert(mapping, page);
507         radix_tree_preload_end();
508         if (unlikely(error))
509                 goto err_insert;
510         __inc_zone_page_state(page, NR_FILE_PAGES);
511         spin_unlock_irq(&mapping->tree_lock);
512         trace_mm_filemap_add_to_page_cache(page);
513         return 0;
514 err_insert:
515         page->mapping = NULL;
516         /* Leave page->index set: truncation relies upon it */
517         spin_unlock_irq(&mapping->tree_lock);
518         mem_cgroup_uncharge_cache_page(page);
519         page_cache_release(page);
520         return error;
521 }
522 EXPORT_SYMBOL(add_to_page_cache_locked);
523
524 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
525                                 pgoff_t offset, gfp_t gfp_mask)
526 {
527         int ret;
528
529         ret = add_to_page_cache(page, mapping, offset, gfp_mask);
530         if (ret == 0)
531                 lru_cache_add_file(page);
532         return ret;
533 }
534 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
535
536 #ifdef CONFIG_NUMA
537 struct page *__page_cache_alloc(gfp_t gfp)
538 {
539         int n;
540         struct page *page;
541
542         if (cpuset_do_page_mem_spread()) {
543                 unsigned int cpuset_mems_cookie;
544                 do {
545                         cpuset_mems_cookie = read_mems_allowed_begin();
546                         n = cpuset_mem_spread_node();
547                         page = alloc_pages_exact_node(n, gfp, 0);
548                 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
549
550                 return page;
551         }
552         return alloc_pages(gfp, 0);
553 }
554 EXPORT_SYMBOL(__page_cache_alloc);
555 #endif
556
557 /*
558  * In order to wait for pages to become available there must be
559  * waitqueues associated with pages. By using a hash table of
560  * waitqueues where the bucket discipline is to maintain all
561  * waiters on the same queue and wake all when any of the pages
562  * become available, and for the woken contexts to check to be
563  * sure the appropriate page became available, this saves space
564  * at a cost of "thundering herd" phenomena during rare hash
565  * collisions.
566  */
567 static wait_queue_head_t *page_waitqueue(struct page *page)
568 {
569         const struct zone *zone = page_zone(page);
570
571         return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
572 }
573
574 static inline void wake_up_page(struct page *page, int bit)
575 {
576         __wake_up_bit(page_waitqueue(page), &page->flags, bit);
577 }
578
579 void wait_on_page_bit(struct page *page, int bit_nr)
580 {
581         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
582
583         if (test_bit(bit_nr, &page->flags))
584                 __wait_on_bit(page_waitqueue(page), &wait, sleep_on_page,
585                                                         TASK_UNINTERRUPTIBLE);
586 }
587 EXPORT_SYMBOL(wait_on_page_bit);
588
589 int wait_on_page_bit_killable(struct page *page, int bit_nr)
590 {
591         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
592
593         if (!test_bit(bit_nr, &page->flags))
594                 return 0;
595
596         return __wait_on_bit(page_waitqueue(page), &wait,
597                              sleep_on_page_killable, TASK_KILLABLE);
598 }
599
600 /**
601  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
602  * @page: Page defining the wait queue of interest
603  * @waiter: Waiter to add to the queue
604  *
605  * Add an arbitrary @waiter to the wait queue for the nominated @page.
606  */
607 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
608 {
609         wait_queue_head_t *q = page_waitqueue(page);
610         unsigned long flags;
611
612         spin_lock_irqsave(&q->lock, flags);
613         __add_wait_queue(q, waiter);
614         spin_unlock_irqrestore(&q->lock, flags);
615 }
616 EXPORT_SYMBOL_GPL(add_page_wait_queue);
617
618 /**
619  * unlock_page - unlock a locked page
620  * @page: the page
621  *
622  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
623  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
624  * mechananism between PageLocked pages and PageWriteback pages is shared.
625  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
626  *
627  * The mb is necessary to enforce ordering between the clear_bit and the read
628  * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
629  */
630 void unlock_page(struct page *page)
631 {
632         VM_BUG_ON_PAGE(!PageLocked(page), page);
633         clear_bit_unlock(PG_locked, &page->flags);
634         smp_mb__after_clear_bit();
635         wake_up_page(page, PG_locked);
636 }
637 EXPORT_SYMBOL(unlock_page);
638
639 /**
640  * end_page_writeback - end writeback against a page
641  * @page: the page
642  */
643 void end_page_writeback(struct page *page)
644 {
645         if (TestClearPageReclaim(page))
646                 rotate_reclaimable_page(page);
647
648         if (!test_clear_page_writeback(page))
649                 BUG();
650
651         smp_mb__after_clear_bit();
652         wake_up_page(page, PG_writeback);
653 }
654 EXPORT_SYMBOL(end_page_writeback);
655
656 /**
657  * __lock_page - get a lock on the page, assuming we need to sleep to get it
658  * @page: the page to lock
659  */
660 void __lock_page(struct page *page)
661 {
662         DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
663
664         __wait_on_bit_lock(page_waitqueue(page), &wait, sleep_on_page,
665                                                         TASK_UNINTERRUPTIBLE);
666 }
667 EXPORT_SYMBOL(__lock_page);
668
669 int __lock_page_killable(struct page *page)
670 {
671         DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
672
673         return __wait_on_bit_lock(page_waitqueue(page), &wait,
674                                         sleep_on_page_killable, TASK_KILLABLE);
675 }
676 EXPORT_SYMBOL_GPL(__lock_page_killable);
677
678 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
679                          unsigned int flags)
680 {
681         if (flags & FAULT_FLAG_ALLOW_RETRY) {
682                 /*
683                  * CAUTION! In this case, mmap_sem is not released
684                  * even though return 0.
685                  */
686                 if (flags & FAULT_FLAG_RETRY_NOWAIT)
687                         return 0;
688
689                 up_read(&mm->mmap_sem);
690                 if (flags & FAULT_FLAG_KILLABLE)
691                         wait_on_page_locked_killable(page);
692                 else
693                         wait_on_page_locked(page);
694                 return 0;
695         } else {
696                 if (flags & FAULT_FLAG_KILLABLE) {
697                         int ret;
698
699                         ret = __lock_page_killable(page);
700                         if (ret) {
701                                 up_read(&mm->mmap_sem);
702                                 return 0;
703                         }
704                 } else
705                         __lock_page(page);
706                 return 1;
707         }
708 }
709
710 /**
711  * page_cache_next_hole - find the next hole (not-present entry)
712  * @mapping: mapping
713  * @index: index
714  * @max_scan: maximum range to search
715  *
716  * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
717  * lowest indexed hole.
718  *
719  * Returns: the index of the hole if found, otherwise returns an index
720  * outside of the set specified (in which case 'return - index >=
721  * max_scan' will be true). In rare cases of index wrap-around, 0 will
722  * be returned.
723  *
724  * page_cache_next_hole may be called under rcu_read_lock. However,
725  * like radix_tree_gang_lookup, this will not atomically search a
726  * snapshot of the tree at a single point in time. For example, if a
727  * hole is created at index 5, then subsequently a hole is created at
728  * index 10, page_cache_next_hole covering both indexes may return 10
729  * if called under rcu_read_lock.
730  */
731 pgoff_t page_cache_next_hole(struct address_space *mapping,
732                              pgoff_t index, unsigned long max_scan)
733 {
734         unsigned long i;
735
736         for (i = 0; i < max_scan; i++) {
737                 struct page *page;
738
739                 page = radix_tree_lookup(&mapping->page_tree, index);
740                 if (!page || radix_tree_exceptional_entry(page))
741                         break;
742                 index++;
743                 if (index == 0)
744                         break;
745         }
746
747         return index;
748 }
749 EXPORT_SYMBOL(page_cache_next_hole);
750
751 /**
752  * page_cache_prev_hole - find the prev hole (not-present entry)
753  * @mapping: mapping
754  * @index: index
755  * @max_scan: maximum range to search
756  *
757  * Search backwards in the range [max(index-max_scan+1, 0), index] for
758  * the first hole.
759  *
760  * Returns: the index of the hole if found, otherwise returns an index
761  * outside of the set specified (in which case 'index - return >=
762  * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
763  * will be returned.
764  *
765  * page_cache_prev_hole may be called under rcu_read_lock. However,
766  * like radix_tree_gang_lookup, this will not atomically search a
767  * snapshot of the tree at a single point in time. For example, if a
768  * hole is created at index 10, then subsequently a hole is created at
769  * index 5, page_cache_prev_hole covering both indexes may return 5 if
770  * called under rcu_read_lock.
771  */
772 pgoff_t page_cache_prev_hole(struct address_space *mapping,
773                              pgoff_t index, unsigned long max_scan)
774 {
775         unsigned long i;
776
777         for (i = 0; i < max_scan; i++) {
778                 struct page *page;
779
780                 page = radix_tree_lookup(&mapping->page_tree, index);
781                 if (!page || radix_tree_exceptional_entry(page))
782                         break;
783                 index--;
784                 if (index == ULONG_MAX)
785                         break;
786         }
787
788         return index;
789 }
790 EXPORT_SYMBOL(page_cache_prev_hole);
791
792 /**
793  * find_get_entry - find and get a page cache entry
794  * @mapping: the address_space to search
795  * @offset: the page cache index
796  *
797  * Looks up the page cache slot at @mapping & @offset.  If there is a
798  * page cache page, it is returned with an increased refcount.
799  *
800  * If the slot holds a shadow entry of a previously evicted page, it
801  * is returned.
802  *
803  * Otherwise, %NULL is returned.
804  */
805 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
806 {
807         void **pagep;
808         struct page *page;
809
810         rcu_read_lock();
811 repeat:
812         page = NULL;
813         pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
814         if (pagep) {
815                 page = radix_tree_deref_slot(pagep);
816                 if (unlikely(!page))
817                         goto out;
818                 if (radix_tree_exception(page)) {
819                         if (radix_tree_deref_retry(page))
820                                 goto repeat;
821                         /*
822                          * Otherwise, shmem/tmpfs must be storing a swap entry
823                          * here as an exceptional entry: so return it without
824                          * attempting to raise page count.
825                          */
826                         goto out;
827                 }
828                 if (!page_cache_get_speculative(page))
829                         goto repeat;
830
831                 /*
832                  * Has the page moved?
833                  * This is part of the lockless pagecache protocol. See
834                  * include/linux/pagemap.h for details.
835                  */
836                 if (unlikely(page != *pagep)) {
837                         page_cache_release(page);
838                         goto repeat;
839                 }
840         }
841 out:
842         rcu_read_unlock();
843
844         return page;
845 }
846 EXPORT_SYMBOL(find_get_entry);
847
848 /**
849  * find_get_page - find and get a page reference
850  * @mapping: the address_space to search
851  * @offset: the page index
852  *
853  * Looks up the page cache slot at @mapping & @offset.  If there is a
854  * page cache page, it is returned with an increased refcount.
855  *
856  * Otherwise, %NULL is returned.
857  */
858 struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
859 {
860         struct page *page = find_get_entry(mapping, offset);
861
862         if (radix_tree_exceptional_entry(page))
863                 page = NULL;
864         return page;
865 }
866 EXPORT_SYMBOL(find_get_page);
867
868 /**
869  * find_lock_entry - locate, pin and lock a page cache entry
870  * @mapping: the address_space to search
871  * @offset: the page cache index
872  *
873  * Looks up the page cache slot at @mapping & @offset.  If there is a
874  * page cache page, it is returned locked and with an increased
875  * refcount.
876  *
877  * If the slot holds a shadow entry of a previously evicted page, it
878  * is returned.
879  *
880  * Otherwise, %NULL is returned.
881  *
882  * find_lock_entry() may sleep.
883  */
884 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
885 {
886         struct page *page;
887
888 repeat:
889         page = find_get_entry(mapping, offset);
890         if (page && !radix_tree_exception(page)) {
891                 lock_page(page);
892                 /* Has the page been truncated? */
893                 if (unlikely(page->mapping != mapping)) {
894                         unlock_page(page);
895                         page_cache_release(page);
896                         goto repeat;
897                 }
898                 VM_BUG_ON_PAGE(page->index != offset, page);
899         }
900         return page;
901 }
902 EXPORT_SYMBOL(find_lock_entry);
903
904 /**
905  * find_lock_page - locate, pin and lock a pagecache page
906  * @mapping: the address_space to search
907  * @offset: the page index
908  *
909  * Looks up the page cache slot at @mapping & @offset.  If there is a
910  * page cache page, it is returned locked and with an increased
911  * refcount.
912  *
913  * Otherwise, %NULL is returned.
914  *
915  * find_lock_page() may sleep.
916  */
917 struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
918 {
919         struct page *page = find_lock_entry(mapping, offset);
920
921         if (radix_tree_exceptional_entry(page))
922                 page = NULL;
923         return page;
924 }
925 EXPORT_SYMBOL(find_lock_page);
926
927 /**
928  * find_or_create_page - locate or add a pagecache page
929  * @mapping: the page's address_space
930  * @index: the page's index into the mapping
931  * @gfp_mask: page allocation mode
932  *
933  * Looks up the page cache slot at @mapping & @offset.  If there is a
934  * page cache page, it is returned locked and with an increased
935  * refcount.
936  *
937  * If the page is not present, a new page is allocated using @gfp_mask
938  * and added to the page cache and the VM's LRU list.  The page is
939  * returned locked and with an increased refcount.
940  *
941  * On memory exhaustion, %NULL is returned.
942  *
943  * find_or_create_page() may sleep, even if @gfp_flags specifies an
944  * atomic allocation!
945  */
946 struct page *find_or_create_page(struct address_space *mapping,
947                 pgoff_t index, gfp_t gfp_mask)
948 {
949         struct page *page;
950         int err;
951 repeat:
952         page = find_lock_page(mapping, index);
953         if (!page) {
954                 page = __page_cache_alloc(gfp_mask);
955                 if (!page)
956                         return NULL;
957                 /*
958                  * We want a regular kernel memory (not highmem or DMA etc)
959                  * allocation for the radix tree nodes, but we need to honour
960                  * the context-specific requirements the caller has asked for.
961                  * GFP_RECLAIM_MASK collects those requirements.
962                  */
963                 err = add_to_page_cache_lru(page, mapping, index,
964                         (gfp_mask & GFP_RECLAIM_MASK));
965                 if (unlikely(err)) {
966                         page_cache_release(page);
967                         page = NULL;
968                         if (err == -EEXIST)
969                                 goto repeat;
970                 }
971         }
972         return page;
973 }
974 EXPORT_SYMBOL(find_or_create_page);
975
976 /**
977  * find_get_entries - gang pagecache lookup
978  * @mapping:    The address_space to search
979  * @start:      The starting page cache index
980  * @nr_entries: The maximum number of entries
981  * @entries:    Where the resulting entries are placed
982  * @indices:    The cache indices corresponding to the entries in @entries
983  *
984  * find_get_entries() will search for and return a group of up to
985  * @nr_entries entries in the mapping.  The entries are placed at
986  * @entries.  find_get_entries() takes a reference against any actual
987  * pages it returns.
988  *
989  * The search returns a group of mapping-contiguous page cache entries
990  * with ascending indexes.  There may be holes in the indices due to
991  * not-present pages.
992  *
993  * Any shadow entries of evicted pages are included in the returned
994  * array.
995  *
996  * find_get_entries() returns the number of pages and shadow entries
997  * which were found.
998  */
999 unsigned find_get_entries(struct address_space *mapping,
1000                           pgoff_t start, unsigned int nr_entries,
1001                           struct page **entries, pgoff_t *indices)
1002 {
1003         void **slot;
1004         unsigned int ret = 0;
1005         struct radix_tree_iter iter;
1006
1007         if (!nr_entries)
1008                 return 0;
1009
1010         rcu_read_lock();
1011 restart:
1012         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1013                 struct page *page;
1014 repeat:
1015                 page = radix_tree_deref_slot(slot);
1016                 if (unlikely(!page))
1017                         continue;
1018                 if (radix_tree_exception(page)) {
1019                         if (radix_tree_deref_retry(page))
1020                                 goto restart;
1021                         /*
1022                          * Otherwise, we must be storing a swap entry
1023                          * here as an exceptional entry: so return it
1024                          * without attempting to raise page count.
1025                          */
1026                         goto export;
1027                 }
1028                 if (!page_cache_get_speculative(page))
1029                         goto repeat;
1030
1031                 /* Has the page moved? */
1032                 if (unlikely(page != *slot)) {
1033                         page_cache_release(page);
1034                         goto repeat;
1035                 }
1036 export:
1037                 indices[ret] = iter.index;
1038                 entries[ret] = page;
1039                 if (++ret == nr_entries)
1040                         break;
1041         }
1042         rcu_read_unlock();
1043         return ret;
1044 }
1045
1046 /**
1047  * find_get_pages - gang pagecache lookup
1048  * @mapping:    The address_space to search
1049  * @start:      The starting page index
1050  * @nr_pages:   The maximum number of pages
1051  * @pages:      Where the resulting pages are placed
1052  *
1053  * find_get_pages() will search for and return a group of up to
1054  * @nr_pages pages in the mapping.  The pages are placed at @pages.
1055  * find_get_pages() takes a reference against the returned pages.
1056  *
1057  * The search returns a group of mapping-contiguous pages with ascending
1058  * indexes.  There may be holes in the indices due to not-present pages.
1059  *
1060  * find_get_pages() returns the number of pages which were found.
1061  */
1062 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1063                             unsigned int nr_pages, struct page **pages)
1064 {
1065         struct radix_tree_iter iter;
1066         void **slot;
1067         unsigned ret = 0;
1068
1069         if (unlikely(!nr_pages))
1070                 return 0;
1071
1072         rcu_read_lock();
1073 restart:
1074         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1075                 struct page *page;
1076 repeat:
1077                 page = radix_tree_deref_slot(slot);
1078                 if (unlikely(!page))
1079                         continue;
1080
1081                 if (radix_tree_exception(page)) {
1082                         if (radix_tree_deref_retry(page)) {
1083                                 /*
1084                                  * Transient condition which can only trigger
1085                                  * when entry at index 0 moves out of or back
1086                                  * to root: none yet gotten, safe to restart.
1087                                  */
1088                                 WARN_ON(iter.index);
1089                                 goto restart;
1090                         }
1091                         /*
1092                          * Otherwise, shmem/tmpfs must be storing a swap entry
1093                          * here as an exceptional entry: so skip over it -
1094                          * we only reach this from invalidate_mapping_pages().
1095                          */
1096                         continue;
1097                 }
1098
1099                 if (!page_cache_get_speculative(page))
1100                         goto repeat;
1101
1102                 /* Has the page moved? */
1103                 if (unlikely(page != *slot)) {
1104                         page_cache_release(page);
1105                         goto repeat;
1106                 }
1107
1108                 pages[ret] = page;
1109                 if (++ret == nr_pages)
1110                         break;
1111         }
1112
1113         rcu_read_unlock();
1114         return ret;
1115 }
1116
1117 /**
1118  * find_get_pages_contig - gang contiguous pagecache lookup
1119  * @mapping:    The address_space to search
1120  * @index:      The starting page index
1121  * @nr_pages:   The maximum number of pages
1122  * @pages:      Where the resulting pages are placed
1123  *
1124  * find_get_pages_contig() works exactly like find_get_pages(), except
1125  * that the returned number of pages are guaranteed to be contiguous.
1126  *
1127  * find_get_pages_contig() returns the number of pages which were found.
1128  */
1129 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1130                                unsigned int nr_pages, struct page **pages)
1131 {
1132         struct radix_tree_iter iter;
1133         void **slot;
1134         unsigned int ret = 0;
1135
1136         if (unlikely(!nr_pages))
1137                 return 0;
1138
1139         rcu_read_lock();
1140 restart:
1141         radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1142                 struct page *page;
1143 repeat:
1144                 page = radix_tree_deref_slot(slot);
1145                 /* The hole, there no reason to continue */
1146                 if (unlikely(!page))
1147                         break;
1148
1149                 if (radix_tree_exception(page)) {
1150                         if (radix_tree_deref_retry(page)) {
1151                                 /*
1152                                  * Transient condition which can only trigger
1153                                  * when entry at index 0 moves out of or back
1154                                  * to root: none yet gotten, safe to restart.
1155                                  */
1156                                 goto restart;
1157                         }
1158                         /*
1159                          * Otherwise, shmem/tmpfs must be storing a swap entry
1160                          * here as an exceptional entry: so stop looking for
1161                          * contiguous pages.
1162                          */
1163                         break;
1164                 }
1165
1166                 if (!page_cache_get_speculative(page))
1167                         goto repeat;
1168
1169                 /* Has the page moved? */
1170                 if (unlikely(page != *slot)) {
1171                         page_cache_release(page);
1172                         goto repeat;
1173                 }
1174
1175                 /*
1176                  * must check mapping and index after taking the ref.
1177                  * otherwise we can get both false positives and false
1178                  * negatives, which is just confusing to the caller.
1179                  */
1180                 if (page->mapping == NULL || page->index != iter.index) {
1181                         page_cache_release(page);
1182                         break;
1183                 }
1184
1185                 pages[ret] = page;
1186                 if (++ret == nr_pages)
1187                         break;
1188         }
1189         rcu_read_unlock();
1190         return ret;
1191 }
1192 EXPORT_SYMBOL(find_get_pages_contig);
1193
1194 /**
1195  * find_get_pages_tag - find and return pages that match @tag
1196  * @mapping:    the address_space to search
1197  * @index:      the starting page index
1198  * @tag:        the tag index
1199  * @nr_pages:   the maximum number of pages
1200  * @pages:      where the resulting pages are placed
1201  *
1202  * Like find_get_pages, except we only return pages which are tagged with
1203  * @tag.   We update @index to index the next page for the traversal.
1204  */
1205 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1206                         int tag, unsigned int nr_pages, struct page **pages)
1207 {
1208         struct radix_tree_iter iter;
1209         void **slot;
1210         unsigned ret = 0;
1211
1212         if (unlikely(!nr_pages))
1213                 return 0;
1214
1215         rcu_read_lock();
1216 restart:
1217         radix_tree_for_each_tagged(slot, &mapping->page_tree,
1218                                    &iter, *index, tag) {
1219                 struct page *page;
1220 repeat:
1221                 page = radix_tree_deref_slot(slot);
1222                 if (unlikely(!page))
1223                         continue;
1224
1225                 if (radix_tree_exception(page)) {
1226                         if (radix_tree_deref_retry(page)) {
1227                                 /*
1228                                  * Transient condition which can only trigger
1229                                  * when entry at index 0 moves out of or back
1230                                  * to root: none yet gotten, safe to restart.
1231                                  */
1232                                 goto restart;
1233                         }
1234                         /*
1235                          * This function is never used on a shmem/tmpfs
1236                          * mapping, so a swap entry won't be found here.
1237                          */
1238                         BUG();
1239                 }
1240
1241                 if (!page_cache_get_speculative(page))
1242                         goto repeat;
1243
1244                 /* Has the page moved? */
1245                 if (unlikely(page != *slot)) {
1246                         page_cache_release(page);
1247                         goto repeat;
1248                 }
1249
1250                 pages[ret] = page;
1251                 if (++ret == nr_pages)
1252                         break;
1253         }
1254
1255         rcu_read_unlock();
1256
1257         if (ret)
1258                 *index = pages[ret - 1]->index + 1;
1259
1260         return ret;
1261 }
1262 EXPORT_SYMBOL(find_get_pages_tag);
1263
1264 /**
1265  * grab_cache_page_nowait - returns locked page at given index in given cache
1266  * @mapping: target address_space
1267  * @index: the page index
1268  *
1269  * Same as grab_cache_page(), but do not wait if the page is unavailable.
1270  * This is intended for speculative data generators, where the data can
1271  * be regenerated if the page couldn't be grabbed.  This routine should
1272  * be safe to call while holding the lock for another page.
1273  *
1274  * Clear __GFP_FS when allocating the page to avoid recursion into the fs
1275  * and deadlock against the caller's locked page.
1276  */
1277 struct page *
1278 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
1279 {
1280         struct page *page = find_get_page(mapping, index);
1281
1282         if (page) {
1283                 if (trylock_page(page))
1284                         return page;
1285                 page_cache_release(page);
1286                 return NULL;
1287         }
1288         page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
1289         if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
1290                 page_cache_release(page);
1291                 page = NULL;
1292         }
1293         return page;
1294 }
1295 EXPORT_SYMBOL(grab_cache_page_nowait);
1296
1297 /*
1298  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1299  * a _large_ part of the i/o request. Imagine the worst scenario:
1300  *
1301  *      ---R__________________________________________B__________
1302  *         ^ reading here                             ^ bad block(assume 4k)
1303  *
1304  * read(R) => miss => readahead(R...B) => media error => frustrating retries
1305  * => failing the whole request => read(R) => read(R+1) =>
1306  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1307  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1308  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1309  *
1310  * It is going insane. Fix it by quickly scaling down the readahead size.
1311  */
1312 static void shrink_readahead_size_eio(struct file *filp,
1313                                         struct file_ra_state *ra)
1314 {
1315         ra->ra_pages /= 4;
1316 }
1317
1318 /**
1319  * do_generic_file_read - generic file read routine
1320  * @filp:       the file to read
1321  * @ppos:       current file position
1322  * @desc:       read_descriptor
1323  *
1324  * This is a generic file read routine, and uses the
1325  * mapping->a_ops->readpage() function for the actual low-level stuff.
1326  *
1327  * This is really ugly. But the goto's actually try to clarify some
1328  * of the logic when it comes to error handling etc.
1329  */
1330 static void do_generic_file_read(struct file *filp, loff_t *ppos,
1331                 read_descriptor_t *desc)
1332 {
1333         struct address_space *mapping = filp->f_mapping;
1334         struct inode *inode = mapping->host;
1335         struct file_ra_state *ra = &filp->f_ra;
1336         pgoff_t index;
1337         pgoff_t last_index;
1338         pgoff_t prev_index;
1339         unsigned long offset;      /* offset into pagecache page */
1340         unsigned int prev_offset;
1341         int error;
1342
1343         index = *ppos >> PAGE_CACHE_SHIFT;
1344         prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1345         prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1346         last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1347         offset = *ppos & ~PAGE_CACHE_MASK;
1348
1349         for (;;) {
1350                 struct page *page;
1351                 pgoff_t end_index;
1352                 loff_t isize;
1353                 unsigned long nr, ret;
1354
1355                 cond_resched();
1356 find_page:
1357                 page = find_get_page(mapping, index);
1358                 if (!page) {
1359                         page_cache_sync_readahead(mapping,
1360                                         ra, filp,
1361                                         index, last_index - index);
1362                         page = find_get_page(mapping, index);
1363                         if (unlikely(page == NULL))
1364                                 goto no_cached_page;
1365                 }
1366                 if (PageReadahead(page)) {
1367                         page_cache_async_readahead(mapping,
1368                                         ra, filp, page,
1369                                         index, last_index - index);
1370                 }
1371                 if (!PageUptodate(page)) {
1372                         if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1373                                         !mapping->a_ops->is_partially_uptodate)
1374                                 goto page_not_up_to_date;
1375                         if (!trylock_page(page))
1376                                 goto page_not_up_to_date;
1377                         /* Did it get truncated before we got the lock? */
1378                         if (!page->mapping)
1379                                 goto page_not_up_to_date_locked;
1380                         if (!mapping->a_ops->is_partially_uptodate(page,
1381                                                                 desc, offset))
1382                                 goto page_not_up_to_date_locked;
1383                         unlock_page(page);
1384                 }
1385 page_ok:
1386                 /*
1387                  * i_size must be checked after we know the page is Uptodate.
1388                  *
1389                  * Checking i_size after the check allows us to calculate
1390                  * the correct value for "nr", which means the zero-filled
1391                  * part of the page is not copied back to userspace (unless
1392                  * another truncate extends the file - this is desired though).
1393                  */
1394
1395                 isize = i_size_read(inode);
1396                 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1397                 if (unlikely(!isize || index > end_index)) {
1398                         page_cache_release(page);
1399                         goto out;
1400                 }
1401
1402                 /* nr is the maximum number of bytes to copy from this page */
1403                 nr = PAGE_CACHE_SIZE;
1404                 if (index == end_index) {
1405                         nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1406                         if (nr <= offset) {
1407                                 page_cache_release(page);
1408                                 goto out;
1409                         }
1410                 }
1411                 nr = nr - offset;
1412
1413                 /* If users can be writing to this page using arbitrary
1414                  * virtual addresses, take care about potential aliasing
1415                  * before reading the page on the kernel side.
1416                  */
1417                 if (mapping_writably_mapped(mapping))
1418                         flush_dcache_page(page);
1419
1420                 /*
1421                  * When a sequential read accesses a page several times,
1422                  * only mark it as accessed the first time.
1423                  */
1424                 if (prev_index != index || offset != prev_offset)
1425                         mark_page_accessed(page);
1426                 prev_index = index;
1427
1428                 /*
1429                  * Ok, we have the page, and it's up-to-date, so
1430                  * now we can copy it to user space...
1431                  *
1432                  * The file_read_actor routine returns how many bytes were
1433                  * actually used..
1434                  * NOTE! This may not be the same as how much of a user buffer
1435                  * we filled up (we may be padding etc), so we can only update
1436                  * "pos" here (the actor routine has to update the user buffer
1437                  * pointers and the remaining count).
1438                  */
1439                 ret = file_read_actor(desc, page, offset, nr);
1440                 offset += ret;
1441                 index += offset >> PAGE_CACHE_SHIFT;
1442                 offset &= ~PAGE_CACHE_MASK;
1443                 prev_offset = offset;
1444
1445                 page_cache_release(page);
1446                 if (ret == nr && desc->count)
1447                         continue;
1448                 goto out;
1449
1450 page_not_up_to_date:
1451                 /* Get exclusive access to the page ... */
1452                 error = lock_page_killable(page);
1453                 if (unlikely(error))
1454                         goto readpage_error;
1455
1456 page_not_up_to_date_locked:
1457                 /* Did it get truncated before we got the lock? */
1458                 if (!page->mapping) {
1459                         unlock_page(page);
1460                         page_cache_release(page);
1461                         continue;
1462                 }
1463
1464                 /* Did somebody else fill it already? */
1465                 if (PageUptodate(page)) {
1466                         unlock_page(page);
1467                         goto page_ok;
1468                 }
1469
1470 readpage:
1471                 /*
1472                  * A previous I/O error may have been due to temporary
1473                  * failures, eg. multipath errors.
1474                  * PG_error will be set again if readpage fails.
1475                  */
1476                 ClearPageError(page);
1477                 /* Start the actual read. The read will unlock the page. */
1478                 error = mapping->a_ops->readpage(filp, page);
1479
1480                 if (unlikely(error)) {
1481                         if (error == AOP_TRUNCATED_PAGE) {
1482                                 page_cache_release(page);
1483                                 goto find_page;
1484                         }
1485                         goto readpage_error;
1486                 }
1487
1488                 if (!PageUptodate(page)) {
1489                         error = lock_page_killable(page);
1490                         if (unlikely(error))
1491                                 goto readpage_error;
1492                         if (!PageUptodate(page)) {
1493                                 if (page->mapping == NULL) {
1494                                         /*
1495                                          * invalidate_mapping_pages got it
1496                                          */
1497                                         unlock_page(page);
1498                                         page_cache_release(page);
1499                                         goto find_page;
1500                                 }
1501                                 unlock_page(page);
1502                                 shrink_readahead_size_eio(filp, ra);
1503                                 error = -EIO;
1504                                 goto readpage_error;
1505                         }
1506                         unlock_page(page);
1507                 }
1508
1509                 goto page_ok;
1510
1511 readpage_error:
1512                 /* UHHUH! A synchronous read error occurred. Report it */
1513                 desc->error = error;
1514                 page_cache_release(page);
1515                 goto out;
1516
1517 no_cached_page:
1518                 /*
1519                  * Ok, it wasn't cached, so we need to create a new
1520                  * page..
1521                  */
1522                 page = page_cache_alloc_cold(mapping);
1523                 if (!page) {
1524                         desc->error = -ENOMEM;
1525                         goto out;
1526                 }
1527                 error = add_to_page_cache_lru(page, mapping,
1528                                                 index, GFP_KERNEL);
1529                 if (error) {
1530                         page_cache_release(page);
1531                         if (error == -EEXIST)
1532                                 goto find_page;
1533                         desc->error = error;
1534                         goto out;
1535                 }
1536                 goto readpage;
1537         }
1538
1539 out:
1540         ra->prev_pos = prev_index;
1541         ra->prev_pos <<= PAGE_CACHE_SHIFT;
1542         ra->prev_pos |= prev_offset;
1543
1544         *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1545         file_accessed(filp);
1546 }
1547
1548 int file_read_actor(read_descriptor_t *desc, struct page *page,
1549                         unsigned long offset, unsigned long size)
1550 {
1551         char *kaddr;
1552         unsigned long left, count = desc->count;
1553
1554         if (size > count)
1555                 size = count;
1556
1557         /*
1558          * Faults on the destination of a read are common, so do it before
1559          * taking the kmap.
1560          */
1561         if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1562                 kaddr = kmap_atomic(page);
1563                 left = __copy_to_user_inatomic(desc->arg.buf,
1564                                                 kaddr + offset, size);
1565                 kunmap_atomic(kaddr);
1566                 if (left == 0)
1567                         goto success;
1568         }
1569
1570         /* Do it the slow way */
1571         kaddr = kmap(page);
1572         left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1573         kunmap(page);
1574
1575         if (left) {
1576                 size -= left;
1577                 desc->error = -EFAULT;
1578         }
1579 success:
1580         desc->count = count - size;
1581         desc->written += size;
1582         desc->arg.buf += size;
1583         return size;
1584 }
1585
1586 /*
1587  * Performs necessary checks before doing a write
1588  * @iov:        io vector request
1589  * @nr_segs:    number of segments in the iovec
1590  * @count:      number of bytes to write
1591  * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1592  *
1593  * Adjust number of segments and amount of bytes to write (nr_segs should be
1594  * properly initialized first). Returns appropriate error code that caller
1595  * should return or zero in case that write should be allowed.
1596  */
1597 int generic_segment_checks(const struct iovec *iov,
1598                         unsigned long *nr_segs, size_t *count, int access_flags)
1599 {
1600         unsigned long   seg;
1601         size_t cnt = 0;
1602         for (seg = 0; seg < *nr_segs; seg++) {
1603                 const struct iovec *iv = &iov[seg];
1604
1605                 /*
1606                  * If any segment has a negative length, or the cumulative
1607                  * length ever wraps negative then return -EINVAL.
1608                  */
1609                 cnt += iv->iov_len;
1610                 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1611                         return -EINVAL;
1612                 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1613                         continue;
1614                 if (seg == 0)
1615                         return -EFAULT;
1616                 *nr_segs = seg;
1617                 cnt -= iv->iov_len;     /* This segment is no good */
1618                 break;
1619         }
1620         *count = cnt;
1621         return 0;
1622 }
1623 EXPORT_SYMBOL(generic_segment_checks);
1624
1625 /**
1626  * generic_file_aio_read - generic filesystem read routine
1627  * @iocb:       kernel I/O control block
1628  * @iov:        io vector request
1629  * @nr_segs:    number of segments in the iovec
1630  * @pos:        current file position
1631  *
1632  * This is the "read()" routine for all filesystems
1633  * that can use the page cache directly.
1634  */
1635 ssize_t
1636 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1637                 unsigned long nr_segs, loff_t pos)
1638 {
1639         struct file *filp = iocb->ki_filp;
1640         ssize_t retval;
1641         unsigned long seg = 0;
1642         size_t count;
1643         loff_t *ppos = &iocb->ki_pos;
1644
1645         count = 0;
1646         retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1647         if (retval)
1648                 return retval;
1649
1650         /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1651         if (filp->f_flags & O_DIRECT) {
1652                 loff_t size;
1653                 struct address_space *mapping;
1654                 struct inode *inode;
1655
1656                 mapping = filp->f_mapping;
1657                 inode = mapping->host;
1658                 if (!count)
1659                         goto out; /* skip atime */
1660                 size = i_size_read(inode);
1661                 retval = filemap_write_and_wait_range(mapping, pos,
1662                                         pos + iov_length(iov, nr_segs) - 1);
1663                 if (!retval) {
1664                         retval = mapping->a_ops->direct_IO(READ, iocb,
1665                                                            iov, pos, nr_segs);
1666                 }
1667                 if (retval > 0) {
1668                         *ppos = pos + retval;
1669                         count -= retval;
1670                 }
1671
1672                 /*
1673                  * Btrfs can have a short DIO read if we encounter
1674                  * compressed extents, so if there was an error, or if
1675                  * we've already read everything we wanted to, or if
1676                  * there was a short read because we hit EOF, go ahead
1677                  * and return.  Otherwise fallthrough to buffered io for
1678                  * the rest of the read.
1679                  */
1680                 if (retval < 0 || !count || *ppos >= size) {
1681                         file_accessed(filp);
1682                         goto out;
1683                 }
1684         }
1685
1686         count = retval;
1687         for (seg = 0; seg < nr_segs; seg++) {
1688                 read_descriptor_t desc;
1689                 loff_t offset = 0;
1690
1691                 /*
1692                  * If we did a short DIO read we need to skip the section of the
1693                  * iov that we've already read data into.
1694                  */
1695                 if (count) {
1696                         if (count > iov[seg].iov_len) {
1697                                 count -= iov[seg].iov_len;
1698                                 continue;
1699                         }
1700                         offset = count;
1701                         count = 0;
1702                 }
1703
1704                 desc.written = 0;
1705                 desc.arg.buf = iov[seg].iov_base + offset;
1706                 desc.count = iov[seg].iov_len - offset;
1707                 if (desc.count == 0)
1708                         continue;
1709                 desc.error = 0;
1710                 do_generic_file_read(filp, ppos, &desc);
1711                 retval += desc.written;
1712                 if (desc.error) {
1713                         retval = retval ?: desc.error;
1714                         break;
1715                 }
1716                 if (desc.count > 0)
1717                         break;
1718         }
1719 out:
1720         return retval;
1721 }
1722 EXPORT_SYMBOL(generic_file_aio_read);
1723
1724 #ifdef CONFIG_MMU
1725 /**
1726  * page_cache_read - adds requested page to the page cache if not already there
1727  * @file:       file to read
1728  * @offset:     page index
1729  *
1730  * This adds the requested page to the page cache if it isn't already there,
1731  * and schedules an I/O to read in its contents from disk.
1732  */
1733 static int page_cache_read(struct file *file, pgoff_t offset)
1734 {
1735         struct address_space *mapping = file->f_mapping;
1736         struct page *page; 
1737         int ret;
1738
1739         do {
1740                 page = page_cache_alloc_cold(mapping);
1741                 if (!page)
1742                         return -ENOMEM;
1743
1744                 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1745                 if (ret == 0)
1746                         ret = mapping->a_ops->readpage(file, page);
1747                 else if (ret == -EEXIST)
1748                         ret = 0; /* losing race to add is OK */
1749
1750                 page_cache_release(page);
1751
1752         } while (ret == AOP_TRUNCATED_PAGE);
1753                 
1754         return ret;
1755 }
1756
1757 #define MMAP_LOTSAMISS  (100)
1758
1759 /*
1760  * Synchronous readahead happens when we don't even find
1761  * a page in the page cache at all.
1762  */
1763 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1764                                    struct file_ra_state *ra,
1765                                    struct file *file,
1766                                    pgoff_t offset)
1767 {
1768         unsigned long ra_pages;
1769         struct address_space *mapping = file->f_mapping;
1770
1771         /* If we don't want any read-ahead, don't bother */
1772         if (vma->vm_flags & VM_RAND_READ)
1773                 return;
1774         if (!ra->ra_pages)
1775                 return;
1776
1777         if (vma->vm_flags & VM_SEQ_READ) {
1778                 page_cache_sync_readahead(mapping, ra, file, offset,
1779                                           ra->ra_pages);
1780                 return;
1781         }
1782
1783         /* Avoid banging the cache line if not needed */
1784         if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1785                 ra->mmap_miss++;
1786
1787         /*
1788          * Do we miss much more than hit in this file? If so,
1789          * stop bothering with read-ahead. It will only hurt.
1790          */
1791         if (ra->mmap_miss > MMAP_LOTSAMISS)
1792                 return;
1793
1794         /*
1795          * mmap read-around
1796          */
1797         ra_pages = max_sane_readahead(ra->ra_pages);
1798         ra->start = max_t(long, 0, offset - ra_pages / 2);
1799         ra->size = ra_pages;
1800         ra->async_size = ra_pages / 4;
1801         ra_submit(ra, mapping, file);
1802 }
1803
1804 /*
1805  * Asynchronous readahead happens when we find the page and PG_readahead,
1806  * so we want to possibly extend the readahead further..
1807  */
1808 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1809                                     struct file_ra_state *ra,
1810                                     struct file *file,
1811                                     struct page *page,
1812                                     pgoff_t offset)
1813 {
1814         struct address_space *mapping = file->f_mapping;
1815
1816         /* If we don't want any read-ahead, don't bother */
1817         if (vma->vm_flags & VM_RAND_READ)
1818                 return;
1819         if (ra->mmap_miss > 0)
1820                 ra->mmap_miss--;
1821         if (PageReadahead(page))
1822                 page_cache_async_readahead(mapping, ra, file,
1823                                            page, offset, ra->ra_pages);
1824 }
1825
1826 /**
1827  * filemap_fault - read in file data for page fault handling
1828  * @vma:        vma in which the fault was taken
1829  * @vmf:        struct vm_fault containing details of the fault
1830  *
1831  * filemap_fault() is invoked via the vma operations vector for a
1832  * mapped memory region to read in file data during a page fault.
1833  *
1834  * The goto's are kind of ugly, but this streamlines the normal case of having
1835  * it in the page cache, and handles the special cases reasonably without
1836  * having a lot of duplicated code.
1837  */
1838 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1839 {
1840         int error;
1841         struct file *file = vma->vm_file;
1842         struct address_space *mapping = file->f_mapping;
1843         struct file_ra_state *ra = &file->f_ra;
1844         struct inode *inode = mapping->host;
1845         pgoff_t offset = vmf->pgoff;
1846         struct page *page;
1847         pgoff_t size;
1848         int ret = 0;
1849
1850         size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1851         if (offset >= size)
1852                 return VM_FAULT_SIGBUS;
1853
1854         /*
1855          * Do we have something in the page cache already?
1856          */
1857         page = find_get_page(mapping, offset);
1858         if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
1859                 /*
1860                  * We found the page, so try async readahead before
1861                  * waiting for the lock.
1862                  */
1863                 do_async_mmap_readahead(vma, ra, file, page, offset);
1864         } else if (!page) {
1865                 /* No page in the page cache at all */
1866                 do_sync_mmap_readahead(vma, ra, file, offset);
1867                 count_vm_event(PGMAJFAULT);
1868                 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1869                 ret = VM_FAULT_MAJOR;
1870 retry_find:
1871                 page = find_get_page(mapping, offset);
1872                 if (!page)
1873                         goto no_cached_page;
1874         }
1875
1876         if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1877                 page_cache_release(page);
1878                 return ret | VM_FAULT_RETRY;
1879         }
1880
1881         /* Did it get truncated? */
1882         if (unlikely(page->mapping != mapping)) {
1883                 unlock_page(page);
1884                 put_page(page);
1885                 goto retry_find;
1886         }
1887         VM_BUG_ON_PAGE(page->index != offset, page);
1888
1889         /*
1890          * We have a locked page in the page cache, now we need to check
1891          * that it's up-to-date. If not, it is going to be due to an error.
1892          */
1893         if (unlikely(!PageUptodate(page)))
1894                 goto page_not_uptodate;
1895
1896         /*
1897          * Found the page and have a reference on it.
1898          * We must recheck i_size under page lock.
1899          */
1900         size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1901         if (unlikely(offset >= size)) {
1902                 unlock_page(page);
1903                 page_cache_release(page);
1904                 return VM_FAULT_SIGBUS;
1905         }
1906
1907         vmf->page = page;
1908         return ret | VM_FAULT_LOCKED;
1909
1910 no_cached_page:
1911         /*
1912          * We're only likely to ever get here if MADV_RANDOM is in
1913          * effect.
1914          */
1915         error = page_cache_read(file, offset);
1916
1917         /*
1918          * The page we want has now been added to the page cache.
1919          * In the unlikely event that someone removed it in the
1920          * meantime, we'll just come back here and read it again.
1921          */
1922         if (error >= 0)
1923                 goto retry_find;
1924
1925         /*
1926          * An error return from page_cache_read can result if the
1927          * system is low on memory, or a problem occurs while trying
1928          * to schedule I/O.
1929          */
1930         if (error == -ENOMEM)
1931                 return VM_FAULT_OOM;
1932         return VM_FAULT_SIGBUS;
1933
1934 page_not_uptodate:
1935         /*
1936          * Umm, take care of errors if the page isn't up-to-date.
1937          * Try to re-read it _once_. We do this synchronously,
1938          * because there really aren't any performance issues here
1939          * and we need to check for errors.
1940          */
1941         ClearPageError(page);
1942         error = mapping->a_ops->readpage(file, page);
1943         if (!error) {
1944                 wait_on_page_locked(page);
1945                 if (!PageUptodate(page))
1946                         error = -EIO;
1947         }
1948         page_cache_release(page);
1949
1950         if (!error || error == AOP_TRUNCATED_PAGE)
1951                 goto retry_find;
1952
1953         /* Things didn't work out. Return zero to tell the mm layer so. */
1954         shrink_readahead_size_eio(file, ra);
1955         return VM_FAULT_SIGBUS;
1956 }
1957 EXPORT_SYMBOL(filemap_fault);
1958
1959 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
1960 {
1961         struct page *page = vmf->page;
1962         struct inode *inode = file_inode(vma->vm_file);
1963         int ret = VM_FAULT_LOCKED;
1964
1965         sb_start_pagefault(inode->i_sb);
1966         file_update_time(vma->vm_file);
1967         lock_page(page);
1968         if (page->mapping != inode->i_mapping) {
1969                 unlock_page(page);
1970                 ret = VM_FAULT_NOPAGE;
1971                 goto out;
1972         }
1973         /*
1974          * We mark the page dirty already here so that when freeze is in
1975          * progress, we are guaranteed that writeback during freezing will
1976          * see the dirty page and writeprotect it again.
1977          */
1978         set_page_dirty(page);
1979         wait_for_stable_page(page);
1980 out:
1981         sb_end_pagefault(inode->i_sb);
1982         return ret;
1983 }
1984 EXPORT_SYMBOL(filemap_page_mkwrite);
1985
1986 const struct vm_operations_struct generic_file_vm_ops = {
1987         .fault          = filemap_fault,
1988         .page_mkwrite   = filemap_page_mkwrite,
1989         .remap_pages    = generic_file_remap_pages,
1990 };
1991
1992 /* This is used for a general mmap of a disk file */
1993
1994 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1995 {
1996         struct address_space *mapping = file->f_mapping;
1997
1998         if (!mapping->a_ops->readpage)
1999                 return -ENOEXEC;
2000         file_accessed(file);
2001         vma->vm_ops = &generic_file_vm_ops;
2002         return 0;
2003 }
2004
2005 /*
2006  * This is for filesystems which do not implement ->writepage.
2007  */
2008 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2009 {
2010         if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2011                 return -EINVAL;
2012         return generic_file_mmap(file, vma);
2013 }
2014 #else
2015 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2016 {
2017         return -ENOSYS;
2018 }
2019 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2020 {
2021         return -ENOSYS;
2022 }
2023 #endif /* CONFIG_MMU */
2024
2025 EXPORT_SYMBOL(generic_file_mmap);
2026 EXPORT_SYMBOL(generic_file_readonly_mmap);
2027
2028 static struct page *__read_cache_page(struct address_space *mapping,
2029                                 pgoff_t index,
2030                                 int (*filler)(void *, struct page *),
2031                                 void *data,
2032                                 gfp_t gfp)
2033 {
2034         struct page *page;
2035         int err;
2036 repeat:
2037         page = find_get_page(mapping, index);
2038         if (!page) {
2039                 page = __page_cache_alloc(gfp | __GFP_COLD);
2040                 if (!page)
2041                         return ERR_PTR(-ENOMEM);
2042                 err = add_to_page_cache_lru(page, mapping, index, gfp);
2043                 if (unlikely(err)) {
2044                         page_cache_release(page);
2045                         if (err == -EEXIST)
2046                                 goto repeat;
2047                         /* Presumably ENOMEM for radix tree node */
2048                         return ERR_PTR(err);
2049                 }
2050                 err = filler(data, page);
2051                 if (err < 0) {
2052                         page_cache_release(page);
2053                         page = ERR_PTR(err);
2054                 }
2055         }
2056         return page;
2057 }
2058
2059 static struct page *do_read_cache_page(struct address_space *mapping,
2060                                 pgoff_t index,
2061                                 int (*filler)(void *, struct page *),
2062                                 void *data,
2063                                 gfp_t gfp)
2064
2065 {
2066         struct page *page;
2067         int err;
2068
2069 retry:
2070         page = __read_cache_page(mapping, index, filler, data, gfp);
2071         if (IS_ERR(page))
2072                 return page;
2073         if (PageUptodate(page))
2074                 goto out;
2075
2076         lock_page(page);
2077         if (!page->mapping) {
2078                 unlock_page(page);
2079                 page_cache_release(page);
2080                 goto retry;
2081         }
2082         if (PageUptodate(page)) {
2083                 unlock_page(page);
2084                 goto out;
2085         }
2086         err = filler(data, page);
2087         if (err < 0) {
2088                 page_cache_release(page);
2089                 return ERR_PTR(err);
2090         }
2091 out:
2092         mark_page_accessed(page);
2093         return page;
2094 }
2095
2096 /**
2097  * read_cache_page_async - read into page cache, fill it if needed
2098  * @mapping:    the page's address_space
2099  * @index:      the page index
2100  * @filler:     function to perform the read
2101  * @data:       first arg to filler(data, page) function, often left as NULL
2102  *
2103  * Same as read_cache_page, but don't wait for page to become unlocked
2104  * after submitting it to the filler.
2105  *
2106  * Read into the page cache. If a page already exists, and PageUptodate() is
2107  * not set, try to fill the page but don't wait for it to become unlocked.
2108  *
2109  * If the page does not get brought uptodate, return -EIO.
2110  */
2111 struct page *read_cache_page_async(struct address_space *mapping,
2112                                 pgoff_t index,
2113                                 int (*filler)(void *, struct page *),
2114                                 void *data)
2115 {
2116         return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2117 }
2118 EXPORT_SYMBOL(read_cache_page_async);
2119
2120 static struct page *wait_on_page_read(struct page *page)
2121 {
2122         if (!IS_ERR(page)) {
2123                 wait_on_page_locked(page);
2124                 if (!PageUptodate(page)) {
2125                         page_cache_release(page);
2126                         page = ERR_PTR(-EIO);
2127                 }
2128         }
2129         return page;
2130 }
2131
2132 /**
2133  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2134  * @mapping:    the page's address_space
2135  * @index:      the page index
2136  * @gfp:        the page allocator flags to use if allocating
2137  *
2138  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2139  * any new page allocations done using the specified allocation flags.
2140  *
2141  * If the page does not get brought uptodate, return -EIO.
2142  */
2143 struct page *read_cache_page_gfp(struct address_space *mapping,
2144                                 pgoff_t index,
2145                                 gfp_t gfp)
2146 {
2147         filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2148
2149         return wait_on_page_read(do_read_cache_page(mapping, index, filler, NULL, gfp));
2150 }
2151 EXPORT_SYMBOL(read_cache_page_gfp);
2152
2153 /**
2154  * read_cache_page - read into page cache, fill it if needed
2155  * @mapping:    the page's address_space
2156  * @index:      the page index
2157  * @filler:     function to perform the read
2158  * @data:       first arg to filler(data, page) function, often left as NULL
2159  *
2160  * Read into the page cache. If a page already exists, and PageUptodate() is
2161  * not set, try to fill the page then wait for it to become unlocked.
2162  *
2163  * If the page does not get brought uptodate, return -EIO.
2164  */
2165 struct page *read_cache_page(struct address_space *mapping,
2166                                 pgoff_t index,
2167                                 int (*filler)(void *, struct page *),
2168                                 void *data)
2169 {
2170         return wait_on_page_read(read_cache_page_async(mapping, index, filler, data));
2171 }
2172 EXPORT_SYMBOL(read_cache_page);
2173
2174 static size_t __iovec_copy_from_user_inatomic(char *vaddr,
2175                         const struct iovec *iov, size_t base, size_t bytes)
2176 {
2177         size_t copied = 0, left = 0;
2178
2179         while (bytes) {
2180                 char __user *buf = iov->iov_base + base;
2181                 int copy = min(bytes, iov->iov_len - base);
2182
2183                 base = 0;
2184                 left = __copy_from_user_inatomic(vaddr, buf, copy);
2185                 copied += copy;
2186                 bytes -= copy;
2187                 vaddr += copy;
2188                 iov++;
2189
2190                 if (unlikely(left))
2191                         break;
2192         }
2193         return copied - left;
2194 }
2195
2196 /*
2197  * Copy as much as we can into the page and return the number of bytes which
2198  * were successfully copied.  If a fault is encountered then return the number of
2199  * bytes which were copied.
2200  */
2201 size_t iov_iter_copy_from_user_atomic(struct page *page,
2202                 struct iov_iter *i, unsigned long offset, size_t bytes)
2203 {
2204         char *kaddr;
2205         size_t copied;
2206
2207         BUG_ON(!in_atomic());
2208         kaddr = kmap_atomic(page);
2209         if (likely(i->nr_segs == 1)) {
2210                 int left;
2211                 char __user *buf = i->iov->iov_base + i->iov_offset;
2212                 left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
2213                 copied = bytes - left;
2214         } else {
2215                 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2216                                                 i->iov, i->iov_offset, bytes);
2217         }
2218         kunmap_atomic(kaddr);
2219
2220         return copied;
2221 }
2222 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
2223
2224 /*
2225  * This has the same sideeffects and return value as
2226  * iov_iter_copy_from_user_atomic().
2227  * The difference is that it attempts to resolve faults.
2228  * Page must not be locked.
2229  */
2230 size_t iov_iter_copy_from_user(struct page *page,
2231                 struct iov_iter *i, unsigned long offset, size_t bytes)
2232 {
2233         char *kaddr;
2234         size_t copied;
2235
2236         kaddr = kmap(page);
2237         if (likely(i->nr_segs == 1)) {
2238                 int left;
2239                 char __user *buf = i->iov->iov_base + i->iov_offset;
2240                 left = __copy_from_user(kaddr + offset, buf, bytes);
2241                 copied = bytes - left;
2242         } else {
2243                 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2244                                                 i->iov, i->iov_offset, bytes);
2245         }
2246         kunmap(page);
2247         return copied;
2248 }
2249 EXPORT_SYMBOL(iov_iter_copy_from_user);
2250
2251 void iov_iter_advance(struct iov_iter *i, size_t bytes)
2252 {
2253         BUG_ON(i->count < bytes);
2254
2255         if (likely(i->nr_segs == 1)) {
2256                 i->iov_offset += bytes;
2257                 i->count -= bytes;
2258         } else {
2259                 const struct iovec *iov = i->iov;
2260                 size_t base = i->iov_offset;
2261                 unsigned long nr_segs = i->nr_segs;
2262
2263                 /*
2264                  * The !iov->iov_len check ensures we skip over unlikely
2265                  * zero-length segments (without overruning the iovec).
2266                  */
2267                 while (bytes || unlikely(i->count && !iov->iov_len)) {
2268                         int copy;
2269
2270                         copy = min(bytes, iov->iov_len - base);
2271                         BUG_ON(!i->count || i->count < copy);
2272                         i->count -= copy;
2273                         bytes -= copy;
2274                         base += copy;
2275                         if (iov->iov_len == base) {
2276                                 iov++;
2277                                 nr_segs--;
2278                                 base = 0;
2279                         }
2280                 }
2281                 i->iov = iov;
2282                 i->iov_offset = base;
2283                 i->nr_segs = nr_segs;
2284         }
2285 }
2286 EXPORT_SYMBOL(iov_iter_advance);
2287
2288 /*
2289  * Fault in the first iovec of the given iov_iter, to a maximum length
2290  * of bytes. Returns 0 on success, or non-zero if the memory could not be
2291  * accessed (ie. because it is an invalid address).
2292  *
2293  * writev-intensive code may want this to prefault several iovecs -- that
2294  * would be possible (callers must not rely on the fact that _only_ the
2295  * first iovec will be faulted with the current implementation).
2296  */
2297 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
2298 {
2299         char __user *buf = i->iov->iov_base + i->iov_offset;
2300         bytes = min(bytes, i->iov->iov_len - i->iov_offset);
2301         return fault_in_pages_readable(buf, bytes);
2302 }
2303 EXPORT_SYMBOL(iov_iter_fault_in_readable);
2304
2305 /*
2306  * Return the count of just the current iov_iter segment.
2307  */
2308 size_t iov_iter_single_seg_count(const struct iov_iter *i)
2309 {
2310         const struct iovec *iov = i->iov;
2311         if (i->nr_segs == 1)
2312                 return i->count;
2313         else
2314                 return min(i->count, iov->iov_len - i->iov_offset);
2315 }
2316 EXPORT_SYMBOL(iov_iter_single_seg_count);
2317
2318 /*
2319  * Performs necessary checks before doing a write
2320  *
2321  * Can adjust writing position or amount of bytes to write.
2322  * Returns appropriate error code that caller should return or
2323  * zero in case that write should be allowed.
2324  */
2325 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2326 {
2327         struct inode *inode = file->f_mapping->host;
2328         unsigned long limit = rlimit(RLIMIT_FSIZE);
2329
2330         if (unlikely(*pos < 0))
2331                 return -EINVAL;
2332
2333         if (!isblk) {
2334                 /* FIXME: this is for backwards compatibility with 2.4 */
2335                 if (file->f_flags & O_APPEND)
2336                         *pos = i_size_read(inode);
2337
2338                 if (limit != RLIM_INFINITY) {
2339                         if (*pos >= limit) {
2340                                 send_sig(SIGXFSZ, current, 0);
2341                                 return -EFBIG;
2342                         }
2343                         if (*count > limit - (typeof(limit))*pos) {
2344                                 *count = limit - (typeof(limit))*pos;
2345                         }
2346                 }
2347         }
2348
2349         /*
2350          * LFS rule
2351          */
2352         if (unlikely(*pos + *count > MAX_NON_LFS &&
2353                                 !(file->f_flags & O_LARGEFILE))) {
2354                 if (*pos >= MAX_NON_LFS) {
2355                         return -EFBIG;
2356                 }
2357                 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2358                         *count = MAX_NON_LFS - (unsigned long)*pos;
2359                 }
2360         }
2361
2362         /*
2363          * Are we about to exceed the fs block limit ?
2364          *
2365          * If we have written data it becomes a short write.  If we have
2366          * exceeded without writing data we send a signal and return EFBIG.
2367          * Linus frestrict idea will clean these up nicely..
2368          */
2369         if (likely(!isblk)) {
2370                 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2371                         if (*count || *pos > inode->i_sb->s_maxbytes) {
2372                                 return -EFBIG;
2373                         }
2374                         /* zero-length writes at ->s_maxbytes are OK */
2375                 }
2376
2377                 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2378                         *count = inode->i_sb->s_maxbytes - *pos;
2379         } else {
2380 #ifdef CONFIG_BLOCK
2381                 loff_t isize;
2382                 if (bdev_read_only(I_BDEV(inode)))
2383                         return -EPERM;
2384                 isize = i_size_read(inode);
2385                 if (*pos >= isize) {
2386                         if (*count || *pos > isize)
2387                                 return -ENOSPC;
2388                 }
2389
2390                 if (*pos + *count > isize)
2391                         *count = isize - *pos;
2392 #else
2393                 return -EPERM;
2394 #endif
2395         }
2396         return 0;
2397 }
2398 EXPORT_SYMBOL(generic_write_checks);
2399
2400 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2401                                 loff_t pos, unsigned len, unsigned flags,
2402                                 struct page **pagep, void **fsdata)
2403 {
2404         const struct address_space_operations *aops = mapping->a_ops;
2405
2406         return aops->write_begin(file, mapping, pos, len, flags,
2407                                                         pagep, fsdata);
2408 }
2409 EXPORT_SYMBOL(pagecache_write_begin);
2410
2411 int pagecache_write_end(struct file *file, struct address_space *mapping,
2412                                 loff_t pos, unsigned len, unsigned copied,
2413                                 struct page *page, void *fsdata)
2414 {
2415         const struct address_space_operations *aops = mapping->a_ops;
2416
2417         mark_page_accessed(page);
2418         return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2419 }
2420 EXPORT_SYMBOL(pagecache_write_end);
2421
2422 ssize_t
2423 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2424                 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2425                 size_t count, size_t ocount)
2426 {
2427         struct file     *file = iocb->ki_filp;
2428         struct address_space *mapping = file->f_mapping;
2429         struct inode    *inode = mapping->host;
2430         ssize_t         written;
2431         size_t          write_len;
2432         pgoff_t         end;
2433
2434         if (count != ocount)
2435                 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2436
2437         write_len = iov_length(iov, *nr_segs);
2438         end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2439
2440         written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2441         if (written)
2442                 goto out;
2443
2444         /*
2445          * After a write we want buffered reads to be sure to go to disk to get
2446          * the new data.  We invalidate clean cached page from the region we're
2447          * about to write.  We do this *before* the write so that we can return
2448          * without clobbering -EIOCBQUEUED from ->direct_IO().
2449          */
2450         if (mapping->nrpages) {
2451                 written = invalidate_inode_pages2_range(mapping,
2452                                         pos >> PAGE_CACHE_SHIFT, end);
2453                 /*
2454                  * If a page can not be invalidated, return 0 to fall back
2455                  * to buffered write.
2456                  */
2457                 if (written) {
2458                         if (written == -EBUSY)
2459                                 return 0;
2460                         goto out;
2461                 }
2462         }
2463
2464         written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2465
2466         /*
2467          * Finally, try again to invalidate clean pages which might have been
2468          * cached by non-direct readahead, or faulted in by get_user_pages()
2469          * if the source of the write was an mmap'ed region of the file
2470          * we're writing.  Either one is a pretty crazy thing to do,
2471          * so we don't support it 100%.  If this invalidation
2472          * fails, tough, the write still worked...
2473          */
2474         if (mapping->nrpages) {
2475                 invalidate_inode_pages2_range(mapping,
2476                                               pos >> PAGE_CACHE_SHIFT, end);
2477         }
2478
2479         if (written > 0) {
2480                 pos += written;
2481                 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2482                         i_size_write(inode, pos);
2483                         mark_inode_dirty(inode);
2484                 }
2485                 *ppos = pos;
2486         }
2487 out:
2488         return written;
2489 }
2490 EXPORT_SYMBOL(generic_file_direct_write);
2491
2492 /*
2493  * Find or create a page at the given pagecache position. Return the locked
2494  * page. This function is specifically for buffered writes.
2495  */
2496 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2497                                         pgoff_t index, unsigned flags)
2498 {
2499         int status;
2500         gfp_t gfp_mask;
2501         struct page *page;
2502         gfp_t gfp_notmask = 0;
2503
2504         gfp_mask = mapping_gfp_mask(mapping);
2505         if (mapping_cap_account_dirty(mapping))
2506                 gfp_mask |= __GFP_WRITE;
2507         if (flags & AOP_FLAG_NOFS)
2508                 gfp_notmask = __GFP_FS;
2509 repeat:
2510         page = find_lock_page(mapping, index);
2511         if (page)
2512                 goto found;
2513
2514         page = __page_cache_alloc(gfp_mask & ~gfp_notmask);
2515         if (!page)
2516                 return NULL;
2517         status = add_to_page_cache_lru(page, mapping, index,
2518                                                 GFP_KERNEL & ~gfp_notmask);
2519         if (unlikely(status)) {
2520                 page_cache_release(page);
2521                 if (status == -EEXIST)
2522                         goto repeat;
2523                 return NULL;
2524         }
2525 found:
2526         wait_for_stable_page(page);
2527         return page;
2528 }
2529 EXPORT_SYMBOL(grab_cache_page_write_begin);
2530
2531 static ssize_t generic_perform_write(struct file *file,
2532                                 struct iov_iter *i, loff_t pos)
2533 {
2534         struct address_space *mapping = file->f_mapping;
2535         const struct address_space_operations *a_ops = mapping->a_ops;
2536         long status = 0;
2537         ssize_t written = 0;
2538         unsigned int flags = 0;
2539
2540         /*
2541          * Copies from kernel address space cannot fail (NFSD is a big user).
2542          */
2543         if (segment_eq(get_fs(), KERNEL_DS))
2544                 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2545
2546         do {
2547                 struct page *page;
2548                 unsigned long offset;   /* Offset into pagecache page */
2549                 unsigned long bytes;    /* Bytes to write to page */
2550                 size_t copied;          /* Bytes copied from user */
2551                 void *fsdata;
2552
2553                 offset = (pos & (PAGE_CACHE_SIZE - 1));
2554                 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2555                                                 iov_iter_count(i));
2556
2557 again:
2558                 /*
2559                  * Bring in the user page that we will copy from _first_.
2560                  * Otherwise there's a nasty deadlock on copying from the
2561                  * same page as we're writing to, without it being marked
2562                  * up-to-date.
2563                  *
2564                  * Not only is this an optimisation, but it is also required
2565                  * to check that the address is actually valid, when atomic
2566                  * usercopies are used, below.
2567                  */
2568                 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2569                         status = -EFAULT;
2570                         break;
2571                 }
2572
2573                 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2574                                                 &page, &fsdata);
2575                 if (unlikely(status))
2576                         break;
2577
2578                 if (mapping_writably_mapped(mapping))
2579                         flush_dcache_page(page);
2580
2581                 pagefault_disable();
2582                 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2583                 pagefault_enable();
2584                 flush_dcache_page(page);
2585
2586                 mark_page_accessed(page);
2587                 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2588                                                 page, fsdata);
2589                 if (unlikely(status < 0))
2590                         break;
2591                 copied = status;
2592
2593                 cond_resched();
2594
2595                 iov_iter_advance(i, copied);
2596                 if (unlikely(copied == 0)) {
2597                         /*
2598                          * If we were unable to copy any data at all, we must
2599                          * fall back to a single segment length write.
2600                          *
2601                          * If we didn't fallback here, we could livelock
2602                          * because not all segments in the iov can be copied at
2603                          * once without a pagefault.
2604                          */
2605                         bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2606                                                 iov_iter_single_seg_count(i));
2607                         goto again;
2608                 }
2609                 pos += copied;
2610                 written += copied;
2611
2612                 balance_dirty_pages_ratelimited(mapping);
2613                 if (fatal_signal_pending(current)) {
2614                         status = -EINTR;
2615                         break;
2616                 }
2617         } while (iov_iter_count(i));
2618
2619         return written ? written : status;
2620 }
2621
2622 ssize_t
2623 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2624                 unsigned long nr_segs, loff_t pos, loff_t *ppos,
2625                 size_t count, ssize_t written)
2626 {
2627         struct file *file = iocb->ki_filp;
2628         ssize_t status;
2629         struct iov_iter i;
2630
2631         iov_iter_init(&i, iov, nr_segs, count, written);
2632         status = generic_perform_write(file, &i, pos);
2633
2634         if (likely(status >= 0)) {
2635                 written += status;
2636                 *ppos = pos + status;
2637         }
2638         
2639         return written ? written : status;
2640 }
2641 EXPORT_SYMBOL(generic_file_buffered_write);
2642
2643 /**
2644  * __generic_file_aio_write - write data to a file
2645  * @iocb:       IO state structure (file, offset, etc.)
2646  * @iov:        vector with data to write
2647  * @nr_segs:    number of segments in the vector
2648  * @ppos:       position where to write
2649  *
2650  * This function does all the work needed for actually writing data to a
2651  * file. It does all basic checks, removes SUID from the file, updates
2652  * modification times and calls proper subroutines depending on whether we
2653  * do direct IO or a standard buffered write.
2654  *
2655  * It expects i_mutex to be grabbed unless we work on a block device or similar
2656  * object which does not need locking at all.
2657  *
2658  * This function does *not* take care of syncing data in case of O_SYNC write.
2659  * A caller has to handle it. This is mainly due to the fact that we want to
2660  * avoid syncing under i_mutex.
2661  */
2662 ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2663                                  unsigned long nr_segs, loff_t *ppos)
2664 {
2665         struct file *file = iocb->ki_filp;
2666         struct address_space * mapping = file->f_mapping;
2667         size_t ocount;          /* original count */
2668         size_t count;           /* after file limit checks */
2669         struct inode    *inode = mapping->host;
2670         loff_t          pos;
2671         ssize_t         written;
2672         ssize_t         err;
2673
2674         ocount = 0;
2675         err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2676         if (err)
2677                 return err;
2678
2679         count = ocount;
2680         pos = *ppos;
2681
2682         /* We can write back this queue in page reclaim */
2683         current->backing_dev_info = mapping->backing_dev_info;
2684         written = 0;
2685
2686         err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2687         if (err)
2688                 goto out;
2689
2690         if (count == 0)
2691                 goto out;
2692
2693         err = file_remove_suid(file);
2694         if (err)
2695                 goto out;
2696
2697         err = file_update_time(file);
2698         if (err)
2699                 goto out;
2700
2701         /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2702         if (unlikely(file->f_flags & O_DIRECT)) {
2703                 loff_t endbyte;
2704                 ssize_t written_buffered;
2705
2706                 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2707                                                         ppos, count, ocount);
2708                 if (written < 0 || written == count)
2709                         goto out;
2710                 /*
2711                  * direct-io write to a hole: fall through to buffered I/O
2712                  * for completing the rest of the request.
2713                  */
2714                 pos += written;
2715                 count -= written;
2716                 written_buffered = generic_file_buffered_write(iocb, iov,
2717                                                 nr_segs, pos, ppos, count,
2718                                                 written);
2719                 /*
2720                  * If generic_file_buffered_write() retuned a synchronous error
2721                  * then we want to return the number of bytes which were
2722                  * direct-written, or the error code if that was zero.  Note
2723                  * that this differs from normal direct-io semantics, which
2724                  * will return -EFOO even if some bytes were written.
2725                  */
2726                 if (written_buffered < 0) {
2727                         err = written_buffered;
2728                         goto out;
2729                 }
2730
2731                 /*
2732                  * We need to ensure that the page cache pages are written to
2733                  * disk and invalidated to preserve the expected O_DIRECT
2734                  * semantics.
2735                  */
2736                 endbyte = pos + written_buffered - written - 1;
2737                 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
2738                 if (err == 0) {
2739                         written = written_buffered;
2740                         invalidate_mapping_pages(mapping,
2741                                                  pos >> PAGE_CACHE_SHIFT,
2742                                                  endbyte >> PAGE_CACHE_SHIFT);
2743                 } else {
2744                         /*
2745                          * We don't know how much we wrote, so just return
2746                          * the number of bytes which were direct-written
2747                          */
2748                 }
2749         } else {
2750                 written = generic_file_buffered_write(iocb, iov, nr_segs,
2751                                 pos, ppos, count, written);
2752         }
2753 out:
2754         current->backing_dev_info = NULL;
2755         return written ? written : err;
2756 }
2757 EXPORT_SYMBOL(__generic_file_aio_write);
2758
2759 /**
2760  * generic_file_aio_write - write data to a file
2761  * @iocb:       IO state structure
2762  * @iov:        vector with data to write
2763  * @nr_segs:    number of segments in the vector
2764  * @pos:        position in file where to write
2765  *
2766  * This is a wrapper around __generic_file_aio_write() to be used by most
2767  * filesystems. It takes care of syncing the file in case of O_SYNC file
2768  * and acquires i_mutex as needed.
2769  */
2770 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2771                 unsigned long nr_segs, loff_t pos)
2772 {
2773         struct file *file = iocb->ki_filp;
2774         struct inode *inode = file->f_mapping->host;
2775         ssize_t ret;
2776
2777         BUG_ON(iocb->ki_pos != pos);
2778
2779         mutex_lock(&inode->i_mutex);
2780         ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
2781         mutex_unlock(&inode->i_mutex);
2782
2783         if (ret > 0) {
2784                 ssize_t err;
2785
2786                 err = generic_write_sync(file, iocb->ki_pos - ret, ret);
2787                 if (err < 0)
2788                         ret = err;
2789         }
2790         return ret;
2791 }
2792 EXPORT_SYMBOL(generic_file_aio_write);
2793
2794 /**
2795  * try_to_release_page() - release old fs-specific metadata on a page
2796  *
2797  * @page: the page which the kernel is trying to free
2798  * @gfp_mask: memory allocation flags (and I/O mode)
2799  *
2800  * The address_space is to try to release any data against the page
2801  * (presumably at page->private).  If the release was successful, return `1'.
2802  * Otherwise return zero.
2803  *
2804  * This may also be called if PG_fscache is set on a page, indicating that the
2805  * page is known to the local caching routines.
2806  *
2807  * The @gfp_mask argument specifies whether I/O may be performed to release
2808  * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2809  *
2810  */
2811 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2812 {
2813         struct address_space * const mapping = page->mapping;
2814
2815         BUG_ON(!PageLocked(page));
2816         if (PageWriteback(page))
2817                 return 0;
2818
2819         if (mapping && mapping->a_ops->releasepage)
2820                 return mapping->a_ops->releasepage(page, gfp_mask);
2821         return try_to_free_buffers(page);
2822 }
2823
2824 EXPORT_SYMBOL(try_to_release_page);
This page took 0.192261 seconds and 4 git commands to generate.