4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 #include <linux/context_tracking.h>
77 #include <asm/switch_to.h>
79 #include <asm/irq_regs.h>
80 #include <asm/mutex.h>
81 #ifdef CONFIG_PARAVIRT
82 #include <asm/paravirt.h>
86 #include "../workqueue_internal.h"
87 #include "../smpboot.h"
89 #define CREATE_TRACE_POINTS
90 #include <trace/events/sched.h>
92 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
95 ktime_t soft, hard, now;
98 if (hrtimer_active(period_timer))
101 now = hrtimer_cb_get_time(period_timer);
102 hrtimer_forward(period_timer, now, period);
104 soft = hrtimer_get_softexpires(period_timer);
105 hard = hrtimer_get_expires(period_timer);
106 delta = ktime_to_ns(ktime_sub(hard, soft));
107 __hrtimer_start_range_ns(period_timer, soft, delta,
108 HRTIMER_MODE_ABS_PINNED, 0);
112 DEFINE_MUTEX(sched_domains_mutex);
113 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
115 static void update_rq_clock_task(struct rq *rq, s64 delta);
117 void update_rq_clock(struct rq *rq)
121 if (rq->skip_clock_update > 0)
124 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
126 update_rq_clock_task(rq, delta);
130 * Debugging: various feature bits
133 #define SCHED_FEAT(name, enabled) \
134 (1UL << __SCHED_FEAT_##name) * enabled |
136 const_debug unsigned int sysctl_sched_features =
137 #include "features.h"
142 #ifdef CONFIG_SCHED_DEBUG
143 #define SCHED_FEAT(name, enabled) \
146 static const char * const sched_feat_names[] = {
147 #include "features.h"
152 static int sched_feat_show(struct seq_file *m, void *v)
156 for (i = 0; i < __SCHED_FEAT_NR; i++) {
157 if (!(sysctl_sched_features & (1UL << i)))
159 seq_printf(m, "%s ", sched_feat_names[i]);
166 #ifdef HAVE_JUMP_LABEL
168 #define jump_label_key__true STATIC_KEY_INIT_TRUE
169 #define jump_label_key__false STATIC_KEY_INIT_FALSE
171 #define SCHED_FEAT(name, enabled) \
172 jump_label_key__##enabled ,
174 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
175 #include "features.h"
180 static void sched_feat_disable(int i)
182 if (static_key_enabled(&sched_feat_keys[i]))
183 static_key_slow_dec(&sched_feat_keys[i]);
186 static void sched_feat_enable(int i)
188 if (!static_key_enabled(&sched_feat_keys[i]))
189 static_key_slow_inc(&sched_feat_keys[i]);
192 static void sched_feat_disable(int i) { };
193 static void sched_feat_enable(int i) { };
194 #endif /* HAVE_JUMP_LABEL */
196 static int sched_feat_set(char *cmp)
201 if (strncmp(cmp, "NO_", 3) == 0) {
206 for (i = 0; i < __SCHED_FEAT_NR; i++) {
207 if (strcmp(cmp, sched_feat_names[i]) == 0) {
209 sysctl_sched_features &= ~(1UL << i);
210 sched_feat_disable(i);
212 sysctl_sched_features |= (1UL << i);
213 sched_feat_enable(i);
223 sched_feat_write(struct file *filp, const char __user *ubuf,
224 size_t cnt, loff_t *ppos)
233 if (copy_from_user(&buf, ubuf, cnt))
239 i = sched_feat_set(cmp);
240 if (i == __SCHED_FEAT_NR)
248 static int sched_feat_open(struct inode *inode, struct file *filp)
250 return single_open(filp, sched_feat_show, NULL);
253 static const struct file_operations sched_feat_fops = {
254 .open = sched_feat_open,
255 .write = sched_feat_write,
258 .release = single_release,
261 static __init int sched_init_debug(void)
263 debugfs_create_file("sched_features", 0644, NULL, NULL,
268 late_initcall(sched_init_debug);
269 #endif /* CONFIG_SCHED_DEBUG */
272 * Number of tasks to iterate in a single balance run.
273 * Limited because this is done with IRQs disabled.
275 const_debug unsigned int sysctl_sched_nr_migrate = 32;
278 * period over which we average the RT time consumption, measured
283 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
286 * period over which we measure -rt task cpu usage in us.
289 unsigned int sysctl_sched_rt_period = 1000000;
291 __read_mostly int scheduler_running;
294 * part of the period that we allow rt tasks to run in us.
297 int sysctl_sched_rt_runtime = 950000;
300 * __task_rq_lock - lock the rq @p resides on.
302 static inline struct rq *__task_rq_lock(struct task_struct *p)
307 lockdep_assert_held(&p->pi_lock);
311 raw_spin_lock(&rq->lock);
312 if (likely(rq == task_rq(p)))
314 raw_spin_unlock(&rq->lock);
319 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
321 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
322 __acquires(p->pi_lock)
328 raw_spin_lock_irqsave(&p->pi_lock, *flags);
330 raw_spin_lock(&rq->lock);
331 if (likely(rq == task_rq(p)))
333 raw_spin_unlock(&rq->lock);
334 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
338 static void __task_rq_unlock(struct rq *rq)
341 raw_spin_unlock(&rq->lock);
345 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
347 __releases(p->pi_lock)
349 raw_spin_unlock(&rq->lock);
350 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
354 * this_rq_lock - lock this runqueue and disable interrupts.
356 static struct rq *this_rq_lock(void)
363 raw_spin_lock(&rq->lock);
368 #ifdef CONFIG_SCHED_HRTICK
370 * Use HR-timers to deliver accurate preemption points.
373 static void hrtick_clear(struct rq *rq)
375 if (hrtimer_active(&rq->hrtick_timer))
376 hrtimer_cancel(&rq->hrtick_timer);
380 * High-resolution timer tick.
381 * Runs from hardirq context with interrupts disabled.
383 static enum hrtimer_restart hrtick(struct hrtimer *timer)
385 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
387 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
389 raw_spin_lock(&rq->lock);
391 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
392 raw_spin_unlock(&rq->lock);
394 return HRTIMER_NORESTART;
399 static int __hrtick_restart(struct rq *rq)
401 struct hrtimer *timer = &rq->hrtick_timer;
402 ktime_t time = hrtimer_get_softexpires(timer);
404 return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
408 * called from hardirq (IPI) context
410 static void __hrtick_start(void *arg)
414 raw_spin_lock(&rq->lock);
415 __hrtick_restart(rq);
416 rq->hrtick_csd_pending = 0;
417 raw_spin_unlock(&rq->lock);
421 * Called to set the hrtick timer state.
423 * called with rq->lock held and irqs disabled
425 void hrtick_start(struct rq *rq, u64 delay)
427 struct hrtimer *timer = &rq->hrtick_timer;
428 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
430 hrtimer_set_expires(timer, time);
432 if (rq == this_rq()) {
433 __hrtick_restart(rq);
434 } else if (!rq->hrtick_csd_pending) {
435 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
436 rq->hrtick_csd_pending = 1;
441 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
443 int cpu = (int)(long)hcpu;
446 case CPU_UP_CANCELED:
447 case CPU_UP_CANCELED_FROZEN:
448 case CPU_DOWN_PREPARE:
449 case CPU_DOWN_PREPARE_FROZEN:
451 case CPU_DEAD_FROZEN:
452 hrtick_clear(cpu_rq(cpu));
459 static __init void init_hrtick(void)
461 hotcpu_notifier(hotplug_hrtick, 0);
465 * Called to set the hrtick timer state.
467 * called with rq->lock held and irqs disabled
469 void hrtick_start(struct rq *rq, u64 delay)
471 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
472 HRTIMER_MODE_REL_PINNED, 0);
475 static inline void init_hrtick(void)
478 #endif /* CONFIG_SMP */
480 static void init_rq_hrtick(struct rq *rq)
483 rq->hrtick_csd_pending = 0;
485 rq->hrtick_csd.flags = 0;
486 rq->hrtick_csd.func = __hrtick_start;
487 rq->hrtick_csd.info = rq;
490 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
491 rq->hrtick_timer.function = hrtick;
493 #else /* CONFIG_SCHED_HRTICK */
494 static inline void hrtick_clear(struct rq *rq)
498 static inline void init_rq_hrtick(struct rq *rq)
502 static inline void init_hrtick(void)
505 #endif /* CONFIG_SCHED_HRTICK */
508 * resched_task - mark a task 'to be rescheduled now'.
510 * On UP this means the setting of the need_resched flag, on SMP it
511 * might also involve a cross-CPU call to trigger the scheduler on
514 void resched_task(struct task_struct *p)
518 lockdep_assert_held(&task_rq(p)->lock);
520 if (test_tsk_need_resched(p))
523 set_tsk_need_resched(p);
526 if (cpu == smp_processor_id()) {
527 set_preempt_need_resched();
531 /* NEED_RESCHED must be visible before we test polling */
533 if (!tsk_is_polling(p))
534 smp_send_reschedule(cpu);
537 void resched_cpu(int cpu)
539 struct rq *rq = cpu_rq(cpu);
542 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
544 resched_task(cpu_curr(cpu));
545 raw_spin_unlock_irqrestore(&rq->lock, flags);
549 #ifdef CONFIG_NO_HZ_COMMON
551 * In the semi idle case, use the nearest busy cpu for migrating timers
552 * from an idle cpu. This is good for power-savings.
554 * We don't do similar optimization for completely idle system, as
555 * selecting an idle cpu will add more delays to the timers than intended
556 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
558 int get_nohz_timer_target(int pinned)
560 int cpu = smp_processor_id();
562 struct sched_domain *sd;
564 if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
568 for_each_domain(cpu, sd) {
569 for_each_cpu(i, sched_domain_span(sd)) {
581 * When add_timer_on() enqueues a timer into the timer wheel of an
582 * idle CPU then this timer might expire before the next timer event
583 * which is scheduled to wake up that CPU. In case of a completely
584 * idle system the next event might even be infinite time into the
585 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
586 * leaves the inner idle loop so the newly added timer is taken into
587 * account when the CPU goes back to idle and evaluates the timer
588 * wheel for the next timer event.
590 static void wake_up_idle_cpu(int cpu)
592 struct rq *rq = cpu_rq(cpu);
594 if (cpu == smp_processor_id())
598 * This is safe, as this function is called with the timer
599 * wheel base lock of (cpu) held. When the CPU is on the way
600 * to idle and has not yet set rq->curr to idle then it will
601 * be serialized on the timer wheel base lock and take the new
602 * timer into account automatically.
604 if (rq->curr != rq->idle)
608 * We can set TIF_RESCHED on the idle task of the other CPU
609 * lockless. The worst case is that the other CPU runs the
610 * idle task through an additional NOOP schedule()
612 set_tsk_need_resched(rq->idle);
614 /* NEED_RESCHED must be visible before we test polling */
616 if (!tsk_is_polling(rq->idle))
617 smp_send_reschedule(cpu);
620 static bool wake_up_full_nohz_cpu(int cpu)
622 if (tick_nohz_full_cpu(cpu)) {
623 if (cpu != smp_processor_id() ||
624 tick_nohz_tick_stopped())
625 smp_send_reschedule(cpu);
632 void wake_up_nohz_cpu(int cpu)
634 if (!wake_up_full_nohz_cpu(cpu))
635 wake_up_idle_cpu(cpu);
638 static inline bool got_nohz_idle_kick(void)
640 int cpu = smp_processor_id();
642 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
645 if (idle_cpu(cpu) && !need_resched())
649 * We can't run Idle Load Balance on this CPU for this time so we
650 * cancel it and clear NOHZ_BALANCE_KICK
652 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
656 #else /* CONFIG_NO_HZ_COMMON */
658 static inline bool got_nohz_idle_kick(void)
663 #endif /* CONFIG_NO_HZ_COMMON */
665 #ifdef CONFIG_NO_HZ_FULL
666 bool sched_can_stop_tick(void)
672 /* Make sure rq->nr_running update is visible after the IPI */
675 /* More than one running task need preemption */
676 if (rq->nr_running > 1)
681 #endif /* CONFIG_NO_HZ_FULL */
683 void sched_avg_update(struct rq *rq)
685 s64 period = sched_avg_period();
687 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
689 * Inline assembly required to prevent the compiler
690 * optimising this loop into a divmod call.
691 * See __iter_div_u64_rem() for another example of this.
693 asm("" : "+rm" (rq->age_stamp));
694 rq->age_stamp += period;
699 #endif /* CONFIG_SMP */
701 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
702 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
704 * Iterate task_group tree rooted at *from, calling @down when first entering a
705 * node and @up when leaving it for the final time.
707 * Caller must hold rcu_lock or sufficient equivalent.
709 int walk_tg_tree_from(struct task_group *from,
710 tg_visitor down, tg_visitor up, void *data)
712 struct task_group *parent, *child;
718 ret = (*down)(parent, data);
721 list_for_each_entry_rcu(child, &parent->children, siblings) {
728 ret = (*up)(parent, data);
729 if (ret || parent == from)
733 parent = parent->parent;
740 int tg_nop(struct task_group *tg, void *data)
746 static void set_load_weight(struct task_struct *p)
748 int prio = p->static_prio - MAX_RT_PRIO;
749 struct load_weight *load = &p->se.load;
752 * SCHED_IDLE tasks get minimal weight:
754 if (p->policy == SCHED_IDLE) {
755 load->weight = scale_load(WEIGHT_IDLEPRIO);
756 load->inv_weight = WMULT_IDLEPRIO;
760 load->weight = scale_load(prio_to_weight[prio]);
761 load->inv_weight = prio_to_wmult[prio];
764 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
767 sched_info_queued(rq, p);
768 p->sched_class->enqueue_task(rq, p, flags);
771 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
774 sched_info_dequeued(rq, p);
775 p->sched_class->dequeue_task(rq, p, flags);
778 void activate_task(struct rq *rq, struct task_struct *p, int flags)
780 if (task_contributes_to_load(p))
781 rq->nr_uninterruptible--;
783 enqueue_task(rq, p, flags);
786 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
788 if (task_contributes_to_load(p))
789 rq->nr_uninterruptible++;
791 dequeue_task(rq, p, flags);
794 static void update_rq_clock_task(struct rq *rq, s64 delta)
797 * In theory, the compile should just see 0 here, and optimize out the call
798 * to sched_rt_avg_update. But I don't trust it...
800 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
801 s64 steal = 0, irq_delta = 0;
803 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
804 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
807 * Since irq_time is only updated on {soft,}irq_exit, we might run into
808 * this case when a previous update_rq_clock() happened inside a
811 * When this happens, we stop ->clock_task and only update the
812 * prev_irq_time stamp to account for the part that fit, so that a next
813 * update will consume the rest. This ensures ->clock_task is
816 * It does however cause some slight miss-attribution of {soft,}irq
817 * time, a more accurate solution would be to update the irq_time using
818 * the current rq->clock timestamp, except that would require using
821 if (irq_delta > delta)
824 rq->prev_irq_time += irq_delta;
827 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
828 if (static_key_false((¶virt_steal_rq_enabled))) {
829 steal = paravirt_steal_clock(cpu_of(rq));
830 steal -= rq->prev_steal_time_rq;
832 if (unlikely(steal > delta))
835 rq->prev_steal_time_rq += steal;
840 rq->clock_task += delta;
842 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
843 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
844 sched_rt_avg_update(rq, irq_delta + steal);
848 void sched_set_stop_task(int cpu, struct task_struct *stop)
850 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
851 struct task_struct *old_stop = cpu_rq(cpu)->stop;
855 * Make it appear like a SCHED_FIFO task, its something
856 * userspace knows about and won't get confused about.
858 * Also, it will make PI more or less work without too
859 * much confusion -- but then, stop work should not
860 * rely on PI working anyway.
862 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m);
864 stop->sched_class = &stop_sched_class;
867 cpu_rq(cpu)->stop = stop;
871 * Reset it back to a normal scheduling class so that
872 * it can die in pieces.
874 old_stop->sched_class = &rt_sched_class;
879 * __normal_prio - return the priority that is based on the static prio
881 static inline int __normal_prio(struct task_struct *p)
883 return p->static_prio;
887 * Calculate the expected normal priority: i.e. priority
888 * without taking RT-inheritance into account. Might be
889 * boosted by interactivity modifiers. Changes upon fork,
890 * setprio syscalls, and whenever the interactivity
891 * estimator recalculates.
893 static inline int normal_prio(struct task_struct *p)
897 if (task_has_dl_policy(p))
898 prio = MAX_DL_PRIO-1;
899 else if (task_has_rt_policy(p))
900 prio = MAX_RT_PRIO-1 - p->rt_priority;
902 prio = __normal_prio(p);
907 * Calculate the current priority, i.e. the priority
908 * taken into account by the scheduler. This value might
909 * be boosted by RT tasks, or might be boosted by
910 * interactivity modifiers. Will be RT if the task got
911 * RT-boosted. If not then it returns p->normal_prio.
913 static int effective_prio(struct task_struct *p)
915 p->normal_prio = normal_prio(p);
917 * If we are RT tasks or we were boosted to RT priority,
918 * keep the priority unchanged. Otherwise, update priority
919 * to the normal priority:
921 if (!rt_prio(p->prio))
922 return p->normal_prio;
927 * task_curr - is this task currently executing on a CPU?
928 * @p: the task in question.
930 * Return: 1 if the task is currently executing. 0 otherwise.
932 inline int task_curr(const struct task_struct *p)
934 return cpu_curr(task_cpu(p)) == p;
937 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
938 const struct sched_class *prev_class,
941 if (prev_class != p->sched_class) {
942 if (prev_class->switched_from)
943 prev_class->switched_from(rq, p);
944 p->sched_class->switched_to(rq, p);
945 } else if (oldprio != p->prio || dl_task(p))
946 p->sched_class->prio_changed(rq, p, oldprio);
949 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
951 const struct sched_class *class;
953 if (p->sched_class == rq->curr->sched_class) {
954 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
956 for_each_class(class) {
957 if (class == rq->curr->sched_class)
959 if (class == p->sched_class) {
960 resched_task(rq->curr);
967 * A queue event has occurred, and we're going to schedule. In
968 * this case, we can save a useless back to back clock update.
970 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
971 rq->skip_clock_update = 1;
975 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
977 #ifdef CONFIG_SCHED_DEBUG
979 * We should never call set_task_cpu() on a blocked task,
980 * ttwu() will sort out the placement.
982 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
983 !(task_preempt_count(p) & PREEMPT_ACTIVE));
985 #ifdef CONFIG_LOCKDEP
987 * The caller should hold either p->pi_lock or rq->lock, when changing
988 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
990 * sched_move_task() holds both and thus holding either pins the cgroup,
993 * Furthermore, all task_rq users should acquire both locks, see
996 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
997 lockdep_is_held(&task_rq(p)->lock)));
1001 trace_sched_migrate_task(p, new_cpu);
1003 if (task_cpu(p) != new_cpu) {
1004 if (p->sched_class->migrate_task_rq)
1005 p->sched_class->migrate_task_rq(p, new_cpu);
1006 p->se.nr_migrations++;
1007 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1010 __set_task_cpu(p, new_cpu);
1013 static void __migrate_swap_task(struct task_struct *p, int cpu)
1016 struct rq *src_rq, *dst_rq;
1018 src_rq = task_rq(p);
1019 dst_rq = cpu_rq(cpu);
1021 deactivate_task(src_rq, p, 0);
1022 set_task_cpu(p, cpu);
1023 activate_task(dst_rq, p, 0);
1024 check_preempt_curr(dst_rq, p, 0);
1027 * Task isn't running anymore; make it appear like we migrated
1028 * it before it went to sleep. This means on wakeup we make the
1029 * previous cpu our targer instead of where it really is.
1035 struct migration_swap_arg {
1036 struct task_struct *src_task, *dst_task;
1037 int src_cpu, dst_cpu;
1040 static int migrate_swap_stop(void *data)
1042 struct migration_swap_arg *arg = data;
1043 struct rq *src_rq, *dst_rq;
1046 src_rq = cpu_rq(arg->src_cpu);
1047 dst_rq = cpu_rq(arg->dst_cpu);
1049 double_raw_lock(&arg->src_task->pi_lock,
1050 &arg->dst_task->pi_lock);
1051 double_rq_lock(src_rq, dst_rq);
1052 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1055 if (task_cpu(arg->src_task) != arg->src_cpu)
1058 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1061 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1064 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1065 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1070 double_rq_unlock(src_rq, dst_rq);
1071 raw_spin_unlock(&arg->dst_task->pi_lock);
1072 raw_spin_unlock(&arg->src_task->pi_lock);
1078 * Cross migrate two tasks
1080 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1082 struct migration_swap_arg arg;
1085 arg = (struct migration_swap_arg){
1087 .src_cpu = task_cpu(cur),
1089 .dst_cpu = task_cpu(p),
1092 if (arg.src_cpu == arg.dst_cpu)
1096 * These three tests are all lockless; this is OK since all of them
1097 * will be re-checked with proper locks held further down the line.
1099 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1102 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1105 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1108 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1109 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1115 struct migration_arg {
1116 struct task_struct *task;
1120 static int migration_cpu_stop(void *data);
1123 * wait_task_inactive - wait for a thread to unschedule.
1125 * If @match_state is nonzero, it's the @p->state value just checked and
1126 * not expected to change. If it changes, i.e. @p might have woken up,
1127 * then return zero. When we succeed in waiting for @p to be off its CPU,
1128 * we return a positive number (its total switch count). If a second call
1129 * a short while later returns the same number, the caller can be sure that
1130 * @p has remained unscheduled the whole time.
1132 * The caller must ensure that the task *will* unschedule sometime soon,
1133 * else this function might spin for a *long* time. This function can't
1134 * be called with interrupts off, or it may introduce deadlock with
1135 * smp_call_function() if an IPI is sent by the same process we are
1136 * waiting to become inactive.
1138 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1140 unsigned long flags;
1147 * We do the initial early heuristics without holding
1148 * any task-queue locks at all. We'll only try to get
1149 * the runqueue lock when things look like they will
1155 * If the task is actively running on another CPU
1156 * still, just relax and busy-wait without holding
1159 * NOTE! Since we don't hold any locks, it's not
1160 * even sure that "rq" stays as the right runqueue!
1161 * But we don't care, since "task_running()" will
1162 * return false if the runqueue has changed and p
1163 * is actually now running somewhere else!
1165 while (task_running(rq, p)) {
1166 if (match_state && unlikely(p->state != match_state))
1172 * Ok, time to look more closely! We need the rq
1173 * lock now, to be *sure*. If we're wrong, we'll
1174 * just go back and repeat.
1176 rq = task_rq_lock(p, &flags);
1177 trace_sched_wait_task(p);
1178 running = task_running(rq, p);
1181 if (!match_state || p->state == match_state)
1182 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1183 task_rq_unlock(rq, p, &flags);
1186 * If it changed from the expected state, bail out now.
1188 if (unlikely(!ncsw))
1192 * Was it really running after all now that we
1193 * checked with the proper locks actually held?
1195 * Oops. Go back and try again..
1197 if (unlikely(running)) {
1203 * It's not enough that it's not actively running,
1204 * it must be off the runqueue _entirely_, and not
1207 * So if it was still runnable (but just not actively
1208 * running right now), it's preempted, and we should
1209 * yield - it could be a while.
1211 if (unlikely(on_rq)) {
1212 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1214 set_current_state(TASK_UNINTERRUPTIBLE);
1215 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1220 * Ahh, all good. It wasn't running, and it wasn't
1221 * runnable, which means that it will never become
1222 * running in the future either. We're all done!
1231 * kick_process - kick a running thread to enter/exit the kernel
1232 * @p: the to-be-kicked thread
1234 * Cause a process which is running on another CPU to enter
1235 * kernel-mode, without any delay. (to get signals handled.)
1237 * NOTE: this function doesn't have to take the runqueue lock,
1238 * because all it wants to ensure is that the remote task enters
1239 * the kernel. If the IPI races and the task has been migrated
1240 * to another CPU then no harm is done and the purpose has been
1243 void kick_process(struct task_struct *p)
1249 if ((cpu != smp_processor_id()) && task_curr(p))
1250 smp_send_reschedule(cpu);
1253 EXPORT_SYMBOL_GPL(kick_process);
1254 #endif /* CONFIG_SMP */
1258 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1260 static int select_fallback_rq(int cpu, struct task_struct *p)
1262 int nid = cpu_to_node(cpu);
1263 const struct cpumask *nodemask = NULL;
1264 enum { cpuset, possible, fail } state = cpuset;
1268 * If the node that the cpu is on has been offlined, cpu_to_node()
1269 * will return -1. There is no cpu on the node, and we should
1270 * select the cpu on the other node.
1273 nodemask = cpumask_of_node(nid);
1275 /* Look for allowed, online CPU in same node. */
1276 for_each_cpu(dest_cpu, nodemask) {
1277 if (!cpu_online(dest_cpu))
1279 if (!cpu_active(dest_cpu))
1281 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1287 /* Any allowed, online CPU? */
1288 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1289 if (!cpu_online(dest_cpu))
1291 if (!cpu_active(dest_cpu))
1298 /* No more Mr. Nice Guy. */
1299 cpuset_cpus_allowed_fallback(p);
1304 do_set_cpus_allowed(p, cpu_possible_mask);
1315 if (state != cpuset) {
1317 * Don't tell them about moving exiting tasks or
1318 * kernel threads (both mm NULL), since they never
1321 if (p->mm && printk_ratelimit()) {
1322 printk_sched("process %d (%s) no longer affine to cpu%d\n",
1323 task_pid_nr(p), p->comm, cpu);
1331 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1334 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1336 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1339 * In order not to call set_task_cpu() on a blocking task we need
1340 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1343 * Since this is common to all placement strategies, this lives here.
1345 * [ this allows ->select_task() to simply return task_cpu(p) and
1346 * not worry about this generic constraint ]
1348 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1350 cpu = select_fallback_rq(task_cpu(p), p);
1355 static void update_avg(u64 *avg, u64 sample)
1357 s64 diff = sample - *avg;
1363 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1365 #ifdef CONFIG_SCHEDSTATS
1366 struct rq *rq = this_rq();
1369 int this_cpu = smp_processor_id();
1371 if (cpu == this_cpu) {
1372 schedstat_inc(rq, ttwu_local);
1373 schedstat_inc(p, se.statistics.nr_wakeups_local);
1375 struct sched_domain *sd;
1377 schedstat_inc(p, se.statistics.nr_wakeups_remote);
1379 for_each_domain(this_cpu, sd) {
1380 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1381 schedstat_inc(sd, ttwu_wake_remote);
1388 if (wake_flags & WF_MIGRATED)
1389 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1391 #endif /* CONFIG_SMP */
1393 schedstat_inc(rq, ttwu_count);
1394 schedstat_inc(p, se.statistics.nr_wakeups);
1396 if (wake_flags & WF_SYNC)
1397 schedstat_inc(p, se.statistics.nr_wakeups_sync);
1399 #endif /* CONFIG_SCHEDSTATS */
1402 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1404 activate_task(rq, p, en_flags);
1407 /* if a worker is waking up, notify workqueue */
1408 if (p->flags & PF_WQ_WORKER)
1409 wq_worker_waking_up(p, cpu_of(rq));
1413 * Mark the task runnable and perform wakeup-preemption.
1416 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1418 check_preempt_curr(rq, p, wake_flags);
1419 trace_sched_wakeup(p, true);
1421 p->state = TASK_RUNNING;
1423 if (p->sched_class->task_woken)
1424 p->sched_class->task_woken(rq, p);
1426 if (rq->idle_stamp) {
1427 u64 delta = rq_clock(rq) - rq->idle_stamp;
1428 u64 max = 2*rq->max_idle_balance_cost;
1430 update_avg(&rq->avg_idle, delta);
1432 if (rq->avg_idle > max)
1441 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1444 if (p->sched_contributes_to_load)
1445 rq->nr_uninterruptible--;
1448 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1449 ttwu_do_wakeup(rq, p, wake_flags);
1453 * Called in case the task @p isn't fully descheduled from its runqueue,
1454 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1455 * since all we need to do is flip p->state to TASK_RUNNING, since
1456 * the task is still ->on_rq.
1458 static int ttwu_remote(struct task_struct *p, int wake_flags)
1463 rq = __task_rq_lock(p);
1465 /* check_preempt_curr() may use rq clock */
1466 update_rq_clock(rq);
1467 ttwu_do_wakeup(rq, p, wake_flags);
1470 __task_rq_unlock(rq);
1476 static void sched_ttwu_pending(void)
1478 struct rq *rq = this_rq();
1479 struct llist_node *llist = llist_del_all(&rq->wake_list);
1480 struct task_struct *p;
1482 raw_spin_lock(&rq->lock);
1485 p = llist_entry(llist, struct task_struct, wake_entry);
1486 llist = llist_next(llist);
1487 ttwu_do_activate(rq, p, 0);
1490 raw_spin_unlock(&rq->lock);
1493 void scheduler_ipi(void)
1496 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1497 * TIF_NEED_RESCHED remotely (for the first time) will also send
1500 preempt_fold_need_resched();
1502 if (llist_empty(&this_rq()->wake_list)
1503 && !tick_nohz_full_cpu(smp_processor_id())
1504 && !got_nohz_idle_kick())
1508 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1509 * traditionally all their work was done from the interrupt return
1510 * path. Now that we actually do some work, we need to make sure
1513 * Some archs already do call them, luckily irq_enter/exit nest
1516 * Arguably we should visit all archs and update all handlers,
1517 * however a fair share of IPIs are still resched only so this would
1518 * somewhat pessimize the simple resched case.
1521 tick_nohz_full_check();
1522 sched_ttwu_pending();
1525 * Check if someone kicked us for doing the nohz idle load balance.
1527 if (unlikely(got_nohz_idle_kick())) {
1528 this_rq()->idle_balance = 1;
1529 raise_softirq_irqoff(SCHED_SOFTIRQ);
1534 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1536 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1537 smp_send_reschedule(cpu);
1540 bool cpus_share_cache(int this_cpu, int that_cpu)
1542 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1544 #endif /* CONFIG_SMP */
1546 static void ttwu_queue(struct task_struct *p, int cpu)
1548 struct rq *rq = cpu_rq(cpu);
1550 #if defined(CONFIG_SMP)
1551 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1552 sched_clock_cpu(cpu); /* sync clocks x-cpu */
1553 ttwu_queue_remote(p, cpu);
1558 raw_spin_lock(&rq->lock);
1559 ttwu_do_activate(rq, p, 0);
1560 raw_spin_unlock(&rq->lock);
1564 * try_to_wake_up - wake up a thread
1565 * @p: the thread to be awakened
1566 * @state: the mask of task states that can be woken
1567 * @wake_flags: wake modifier flags (WF_*)
1569 * Put it on the run-queue if it's not already there. The "current"
1570 * thread is always on the run-queue (except when the actual
1571 * re-schedule is in progress), and as such you're allowed to do
1572 * the simpler "current->state = TASK_RUNNING" to mark yourself
1573 * runnable without the overhead of this.
1575 * Return: %true if @p was woken up, %false if it was already running.
1576 * or @state didn't match @p's state.
1579 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1581 unsigned long flags;
1582 int cpu, success = 0;
1585 * If we are going to wake up a thread waiting for CONDITION we
1586 * need to ensure that CONDITION=1 done by the caller can not be
1587 * reordered with p->state check below. This pairs with mb() in
1588 * set_current_state() the waiting thread does.
1590 smp_mb__before_spinlock();
1591 raw_spin_lock_irqsave(&p->pi_lock, flags);
1592 if (!(p->state & state))
1595 success = 1; /* we're going to change ->state */
1598 if (p->on_rq && ttwu_remote(p, wake_flags))
1603 * If the owning (remote) cpu is still in the middle of schedule() with
1604 * this task as prev, wait until its done referencing the task.
1609 * Pairs with the smp_wmb() in finish_lock_switch().
1613 p->sched_contributes_to_load = !!task_contributes_to_load(p);
1614 p->state = TASK_WAKING;
1616 if (p->sched_class->task_waking)
1617 p->sched_class->task_waking(p);
1619 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1620 if (task_cpu(p) != cpu) {
1621 wake_flags |= WF_MIGRATED;
1622 set_task_cpu(p, cpu);
1624 #endif /* CONFIG_SMP */
1628 ttwu_stat(p, cpu, wake_flags);
1630 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1636 * try_to_wake_up_local - try to wake up a local task with rq lock held
1637 * @p: the thread to be awakened
1639 * Put @p on the run-queue if it's not already there. The caller must
1640 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1643 static void try_to_wake_up_local(struct task_struct *p)
1645 struct rq *rq = task_rq(p);
1647 if (WARN_ON_ONCE(rq != this_rq()) ||
1648 WARN_ON_ONCE(p == current))
1651 lockdep_assert_held(&rq->lock);
1653 if (!raw_spin_trylock(&p->pi_lock)) {
1654 raw_spin_unlock(&rq->lock);
1655 raw_spin_lock(&p->pi_lock);
1656 raw_spin_lock(&rq->lock);
1659 if (!(p->state & TASK_NORMAL))
1663 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1665 ttwu_do_wakeup(rq, p, 0);
1666 ttwu_stat(p, smp_processor_id(), 0);
1668 raw_spin_unlock(&p->pi_lock);
1672 * wake_up_process - Wake up a specific process
1673 * @p: The process to be woken up.
1675 * Attempt to wake up the nominated process and move it to the set of runnable
1678 * Return: 1 if the process was woken up, 0 if it was already running.
1680 * It may be assumed that this function implies a write memory barrier before
1681 * changing the task state if and only if any tasks are woken up.
1683 int wake_up_process(struct task_struct *p)
1685 WARN_ON(task_is_stopped_or_traced(p));
1686 return try_to_wake_up(p, TASK_NORMAL, 0);
1688 EXPORT_SYMBOL(wake_up_process);
1690 int wake_up_state(struct task_struct *p, unsigned int state)
1692 return try_to_wake_up(p, state, 0);
1696 * Perform scheduler related setup for a newly forked process p.
1697 * p is forked by current.
1699 * __sched_fork() is basic setup used by init_idle() too:
1701 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
1706 p->se.exec_start = 0;
1707 p->se.sum_exec_runtime = 0;
1708 p->se.prev_sum_exec_runtime = 0;
1709 p->se.nr_migrations = 0;
1711 INIT_LIST_HEAD(&p->se.group_node);
1713 #ifdef CONFIG_SCHEDSTATS
1714 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1717 RB_CLEAR_NODE(&p->dl.rb_node);
1718 hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1719 p->dl.dl_runtime = p->dl.runtime = 0;
1720 p->dl.dl_deadline = p->dl.deadline = 0;
1721 p->dl.dl_period = 0;
1724 INIT_LIST_HEAD(&p->rt.run_list);
1726 #ifdef CONFIG_PREEMPT_NOTIFIERS
1727 INIT_HLIST_HEAD(&p->preempt_notifiers);
1730 #ifdef CONFIG_NUMA_BALANCING
1731 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1732 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1733 p->mm->numa_scan_seq = 0;
1736 if (clone_flags & CLONE_VM)
1737 p->numa_preferred_nid = current->numa_preferred_nid;
1739 p->numa_preferred_nid = -1;
1741 p->node_stamp = 0ULL;
1742 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1743 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1744 p->numa_work.next = &p->numa_work;
1745 p->numa_faults_memory = NULL;
1746 p->numa_faults_buffer_memory = NULL;
1747 p->last_task_numa_placement = 0;
1748 p->last_sum_exec_runtime = 0;
1750 INIT_LIST_HEAD(&p->numa_entry);
1751 p->numa_group = NULL;
1752 #endif /* CONFIG_NUMA_BALANCING */
1755 #ifdef CONFIG_NUMA_BALANCING
1756 #ifdef CONFIG_SCHED_DEBUG
1757 void set_numabalancing_state(bool enabled)
1760 sched_feat_set("NUMA");
1762 sched_feat_set("NO_NUMA");
1765 __read_mostly bool numabalancing_enabled;
1767 void set_numabalancing_state(bool enabled)
1769 numabalancing_enabled = enabled;
1771 #endif /* CONFIG_SCHED_DEBUG */
1773 #ifdef CONFIG_PROC_SYSCTL
1774 int sysctl_numa_balancing(struct ctl_table *table, int write,
1775 void __user *buffer, size_t *lenp, loff_t *ppos)
1779 int state = numabalancing_enabled;
1781 if (write && !capable(CAP_SYS_ADMIN))
1786 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1790 set_numabalancing_state(state);
1797 * fork()/clone()-time setup:
1799 int sched_fork(unsigned long clone_flags, struct task_struct *p)
1801 unsigned long flags;
1802 int cpu = get_cpu();
1804 __sched_fork(clone_flags, p);
1806 * We mark the process as running here. This guarantees that
1807 * nobody will actually run it, and a signal or other external
1808 * event cannot wake it up and insert it on the runqueue either.
1810 p->state = TASK_RUNNING;
1813 * Make sure we do not leak PI boosting priority to the child.
1815 p->prio = current->normal_prio;
1818 * Revert to default priority/policy on fork if requested.
1820 if (unlikely(p->sched_reset_on_fork)) {
1821 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1822 p->policy = SCHED_NORMAL;
1823 p->static_prio = NICE_TO_PRIO(0);
1825 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1826 p->static_prio = NICE_TO_PRIO(0);
1828 p->prio = p->normal_prio = __normal_prio(p);
1832 * We don't need the reset flag anymore after the fork. It has
1833 * fulfilled its duty:
1835 p->sched_reset_on_fork = 0;
1838 if (dl_prio(p->prio)) {
1841 } else if (rt_prio(p->prio)) {
1842 p->sched_class = &rt_sched_class;
1844 p->sched_class = &fair_sched_class;
1847 if (p->sched_class->task_fork)
1848 p->sched_class->task_fork(p);
1851 * The child is not yet in the pid-hash so no cgroup attach races,
1852 * and the cgroup is pinned to this child due to cgroup_fork()
1853 * is ran before sched_fork().
1855 * Silence PROVE_RCU.
1857 raw_spin_lock_irqsave(&p->pi_lock, flags);
1858 set_task_cpu(p, cpu);
1859 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1861 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1862 if (likely(sched_info_on()))
1863 memset(&p->sched_info, 0, sizeof(p->sched_info));
1865 #if defined(CONFIG_SMP)
1868 init_task_preempt_count(p);
1870 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1871 RB_CLEAR_NODE(&p->pushable_dl_tasks);
1878 unsigned long to_ratio(u64 period, u64 runtime)
1880 if (runtime == RUNTIME_INF)
1884 * Doing this here saves a lot of checks in all
1885 * the calling paths, and returning zero seems
1886 * safe for them anyway.
1891 return div64_u64(runtime << 20, period);
1895 inline struct dl_bw *dl_bw_of(int i)
1897 return &cpu_rq(i)->rd->dl_bw;
1900 static inline int dl_bw_cpus(int i)
1902 struct root_domain *rd = cpu_rq(i)->rd;
1905 for_each_cpu_and(i, rd->span, cpu_active_mask)
1911 inline struct dl_bw *dl_bw_of(int i)
1913 return &cpu_rq(i)->dl.dl_bw;
1916 static inline int dl_bw_cpus(int i)
1923 void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
1925 dl_b->total_bw -= tsk_bw;
1929 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
1931 dl_b->total_bw += tsk_bw;
1935 bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
1937 return dl_b->bw != -1 &&
1938 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
1942 * We must be sure that accepting a new task (or allowing changing the
1943 * parameters of an existing one) is consistent with the bandwidth
1944 * constraints. If yes, this function also accordingly updates the currently
1945 * allocated bandwidth to reflect the new situation.
1947 * This function is called while holding p's rq->lock.
1949 static int dl_overflow(struct task_struct *p, int policy,
1950 const struct sched_attr *attr)
1953 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1954 u64 period = attr->sched_period ?: attr->sched_deadline;
1955 u64 runtime = attr->sched_runtime;
1956 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
1959 if (new_bw == p->dl.dl_bw)
1963 * Either if a task, enters, leave, or stays -deadline but changes
1964 * its parameters, we may need to update accordingly the total
1965 * allocated bandwidth of the container.
1967 raw_spin_lock(&dl_b->lock);
1968 cpus = dl_bw_cpus(task_cpu(p));
1969 if (dl_policy(policy) && !task_has_dl_policy(p) &&
1970 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
1971 __dl_add(dl_b, new_bw);
1973 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
1974 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
1975 __dl_clear(dl_b, p->dl.dl_bw);
1976 __dl_add(dl_b, new_bw);
1978 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
1979 __dl_clear(dl_b, p->dl.dl_bw);
1982 raw_spin_unlock(&dl_b->lock);
1987 extern void init_dl_bw(struct dl_bw *dl_b);
1990 * wake_up_new_task - wake up a newly created task for the first time.
1992 * This function will do some initial scheduler statistics housekeeping
1993 * that must be done for every newly created context, then puts the task
1994 * on the runqueue and wakes it.
1996 void wake_up_new_task(struct task_struct *p)
1998 unsigned long flags;
2001 raw_spin_lock_irqsave(&p->pi_lock, flags);
2004 * Fork balancing, do it here and not earlier because:
2005 * - cpus_allowed can change in the fork path
2006 * - any previously selected cpu might disappear through hotplug
2008 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2011 /* Initialize new task's runnable average */
2012 init_task_runnable_average(p);
2013 rq = __task_rq_lock(p);
2014 activate_task(rq, p, 0);
2016 trace_sched_wakeup_new(p, true);
2017 check_preempt_curr(rq, p, WF_FORK);
2019 if (p->sched_class->task_woken)
2020 p->sched_class->task_woken(rq, p);
2022 task_rq_unlock(rq, p, &flags);
2025 #ifdef CONFIG_PREEMPT_NOTIFIERS
2028 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2029 * @notifier: notifier struct to register
2031 void preempt_notifier_register(struct preempt_notifier *notifier)
2033 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers);
2035 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2038 * preempt_notifier_unregister - no longer interested in preemption notifications
2039 * @notifier: notifier struct to unregister
2041 * This is safe to call from within a preemption notifier.
2043 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2045 hlist_del(¬ifier->link);
2047 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2049 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2051 struct preempt_notifier *notifier;
2053 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2054 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2058 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2059 struct task_struct *next)
2061 struct preempt_notifier *notifier;
2063 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2064 notifier->ops->sched_out(notifier, next);
2067 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2069 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2074 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2075 struct task_struct *next)
2079 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2082 * prepare_task_switch - prepare to switch tasks
2083 * @rq: the runqueue preparing to switch
2084 * @prev: the current task that is being switched out
2085 * @next: the task we are going to switch to.
2087 * This is called with the rq lock held and interrupts off. It must
2088 * be paired with a subsequent finish_task_switch after the context
2091 * prepare_task_switch sets up locking and calls architecture specific
2095 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2096 struct task_struct *next)
2098 trace_sched_switch(prev, next);
2099 sched_info_switch(rq, prev, next);
2100 perf_event_task_sched_out(prev, next);
2101 fire_sched_out_preempt_notifiers(prev, next);
2102 prepare_lock_switch(rq, next);
2103 prepare_arch_switch(next);
2107 * finish_task_switch - clean up after a task-switch
2108 * @rq: runqueue associated with task-switch
2109 * @prev: the thread we just switched away from.
2111 * finish_task_switch must be called after the context switch, paired
2112 * with a prepare_task_switch call before the context switch.
2113 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2114 * and do any other architecture-specific cleanup actions.
2116 * Note that we may have delayed dropping an mm in context_switch(). If
2117 * so, we finish that here outside of the runqueue lock. (Doing it
2118 * with the lock held can cause deadlocks; see schedule() for
2121 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2122 __releases(rq->lock)
2124 struct mm_struct *mm = rq->prev_mm;
2130 * A task struct has one reference for the use as "current".
2131 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2132 * schedule one last time. The schedule call will never return, and
2133 * the scheduled task must drop that reference.
2134 * The test for TASK_DEAD must occur while the runqueue locks are
2135 * still held, otherwise prev could be scheduled on another cpu, die
2136 * there before we look at prev->state, and then the reference would
2140 prev_state = prev->state;
2141 vtime_task_switch(prev);
2142 finish_arch_switch(prev);
2143 perf_event_task_sched_in(prev, current);
2144 finish_lock_switch(rq, prev);
2145 finish_arch_post_lock_switch();
2147 fire_sched_in_preempt_notifiers(current);
2150 if (unlikely(prev_state == TASK_DEAD)) {
2151 if (prev->sched_class->task_dead)
2152 prev->sched_class->task_dead(prev);
2155 * Remove function-return probe instances associated with this
2156 * task and put them back on the free list.
2158 kprobe_flush_task(prev);
2159 put_task_struct(prev);
2162 tick_nohz_task_switch(current);
2167 /* rq->lock is NOT held, but preemption is disabled */
2168 static inline void post_schedule(struct rq *rq)
2170 if (rq->post_schedule) {
2171 unsigned long flags;
2173 raw_spin_lock_irqsave(&rq->lock, flags);
2174 if (rq->curr->sched_class->post_schedule)
2175 rq->curr->sched_class->post_schedule(rq);
2176 raw_spin_unlock_irqrestore(&rq->lock, flags);
2178 rq->post_schedule = 0;
2184 static inline void post_schedule(struct rq *rq)
2191 * schedule_tail - first thing a freshly forked thread must call.
2192 * @prev: the thread we just switched away from.
2194 asmlinkage void schedule_tail(struct task_struct *prev)
2195 __releases(rq->lock)
2197 struct rq *rq = this_rq();
2199 finish_task_switch(rq, prev);
2202 * FIXME: do we need to worry about rq being invalidated by the
2207 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2208 /* In this case, finish_task_switch does not reenable preemption */
2211 if (current->set_child_tid)
2212 put_user(task_pid_vnr(current), current->set_child_tid);
2216 * context_switch - switch to the new MM and the new
2217 * thread's register state.
2220 context_switch(struct rq *rq, struct task_struct *prev,
2221 struct task_struct *next)
2223 struct mm_struct *mm, *oldmm;
2225 prepare_task_switch(rq, prev, next);
2228 oldmm = prev->active_mm;
2230 * For paravirt, this is coupled with an exit in switch_to to
2231 * combine the page table reload and the switch backend into
2234 arch_start_context_switch(prev);
2237 next->active_mm = oldmm;
2238 atomic_inc(&oldmm->mm_count);
2239 enter_lazy_tlb(oldmm, next);
2241 switch_mm(oldmm, mm, next);
2244 prev->active_mm = NULL;
2245 rq->prev_mm = oldmm;
2248 * Since the runqueue lock will be released by the next
2249 * task (which is an invalid locking op but in the case
2250 * of the scheduler it's an obvious special-case), so we
2251 * do an early lockdep release here:
2253 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2254 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2257 context_tracking_task_switch(prev, next);
2258 /* Here we just switch the register state and the stack. */
2259 switch_to(prev, next, prev);
2263 * this_rq must be evaluated again because prev may have moved
2264 * CPUs since it called schedule(), thus the 'rq' on its stack
2265 * frame will be invalid.
2267 finish_task_switch(this_rq(), prev);
2271 * nr_running and nr_context_switches:
2273 * externally visible scheduler statistics: current number of runnable
2274 * threads, total number of context switches performed since bootup.
2276 unsigned long nr_running(void)
2278 unsigned long i, sum = 0;
2280 for_each_online_cpu(i)
2281 sum += cpu_rq(i)->nr_running;
2286 unsigned long long nr_context_switches(void)
2289 unsigned long long sum = 0;
2291 for_each_possible_cpu(i)
2292 sum += cpu_rq(i)->nr_switches;
2297 unsigned long nr_iowait(void)
2299 unsigned long i, sum = 0;
2301 for_each_possible_cpu(i)
2302 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2307 unsigned long nr_iowait_cpu(int cpu)
2309 struct rq *this = cpu_rq(cpu);
2310 return atomic_read(&this->nr_iowait);
2316 * sched_exec - execve() is a valuable balancing opportunity, because at
2317 * this point the task has the smallest effective memory and cache footprint.
2319 void sched_exec(void)
2321 struct task_struct *p = current;
2322 unsigned long flags;
2325 raw_spin_lock_irqsave(&p->pi_lock, flags);
2326 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2327 if (dest_cpu == smp_processor_id())
2330 if (likely(cpu_active(dest_cpu))) {
2331 struct migration_arg arg = { p, dest_cpu };
2333 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2334 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2338 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2343 DEFINE_PER_CPU(struct kernel_stat, kstat);
2344 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2346 EXPORT_PER_CPU_SYMBOL(kstat);
2347 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2350 * Return any ns on the sched_clock that have not yet been accounted in
2351 * @p in case that task is currently running.
2353 * Called with task_rq_lock() held on @rq.
2355 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2359 if (task_current(rq, p)) {
2360 update_rq_clock(rq);
2361 ns = rq_clock_task(rq) - p->se.exec_start;
2369 unsigned long long task_delta_exec(struct task_struct *p)
2371 unsigned long flags;
2375 rq = task_rq_lock(p, &flags);
2376 ns = do_task_delta_exec(p, rq);
2377 task_rq_unlock(rq, p, &flags);
2383 * Return accounted runtime for the task.
2384 * In case the task is currently running, return the runtime plus current's
2385 * pending runtime that have not been accounted yet.
2387 unsigned long long task_sched_runtime(struct task_struct *p)
2389 unsigned long flags;
2393 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2395 * 64-bit doesn't need locks to atomically read a 64bit value.
2396 * So we have a optimization chance when the task's delta_exec is 0.
2397 * Reading ->on_cpu is racy, but this is ok.
2399 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2400 * If we race with it entering cpu, unaccounted time is 0. This is
2401 * indistinguishable from the read occurring a few cycles earlier.
2404 return p->se.sum_exec_runtime;
2407 rq = task_rq_lock(p, &flags);
2408 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2409 task_rq_unlock(rq, p, &flags);
2415 * This function gets called by the timer code, with HZ frequency.
2416 * We call it with interrupts disabled.
2418 void scheduler_tick(void)
2420 int cpu = smp_processor_id();
2421 struct rq *rq = cpu_rq(cpu);
2422 struct task_struct *curr = rq->curr;
2426 raw_spin_lock(&rq->lock);
2427 update_rq_clock(rq);
2428 curr->sched_class->task_tick(rq, curr, 0);
2429 update_cpu_load_active(rq);
2430 raw_spin_unlock(&rq->lock);
2432 perf_event_task_tick();
2435 rq->idle_balance = idle_cpu(cpu);
2436 trigger_load_balance(rq);
2438 rq_last_tick_reset(rq);
2441 #ifdef CONFIG_NO_HZ_FULL
2443 * scheduler_tick_max_deferment
2445 * Keep at least one tick per second when a single
2446 * active task is running because the scheduler doesn't
2447 * yet completely support full dynticks environment.
2449 * This makes sure that uptime, CFS vruntime, load
2450 * balancing, etc... continue to move forward, even
2451 * with a very low granularity.
2453 * Return: Maximum deferment in nanoseconds.
2455 u64 scheduler_tick_max_deferment(void)
2457 struct rq *rq = this_rq();
2458 unsigned long next, now = ACCESS_ONCE(jiffies);
2460 next = rq->last_sched_tick + HZ;
2462 if (time_before_eq(next, now))
2465 return jiffies_to_nsecs(next - now);
2469 notrace unsigned long get_parent_ip(unsigned long addr)
2471 if (in_lock_functions(addr)) {
2472 addr = CALLER_ADDR2;
2473 if (in_lock_functions(addr))
2474 addr = CALLER_ADDR3;
2479 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2480 defined(CONFIG_PREEMPT_TRACER))
2482 void __kprobes preempt_count_add(int val)
2484 #ifdef CONFIG_DEBUG_PREEMPT
2488 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2491 __preempt_count_add(val);
2492 #ifdef CONFIG_DEBUG_PREEMPT
2494 * Spinlock count overflowing soon?
2496 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2499 if (preempt_count() == val) {
2500 unsigned long ip = get_parent_ip(CALLER_ADDR1);
2501 #ifdef CONFIG_DEBUG_PREEMPT
2502 current->preempt_disable_ip = ip;
2504 trace_preempt_off(CALLER_ADDR0, ip);
2507 EXPORT_SYMBOL(preempt_count_add);
2509 void __kprobes preempt_count_sub(int val)
2511 #ifdef CONFIG_DEBUG_PREEMPT
2515 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2518 * Is the spinlock portion underflowing?
2520 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2521 !(preempt_count() & PREEMPT_MASK)))
2525 if (preempt_count() == val)
2526 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2527 __preempt_count_sub(val);
2529 EXPORT_SYMBOL(preempt_count_sub);
2534 * Print scheduling while atomic bug:
2536 static noinline void __schedule_bug(struct task_struct *prev)
2538 if (oops_in_progress)
2541 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2542 prev->comm, prev->pid, preempt_count());
2544 debug_show_held_locks(prev);
2546 if (irqs_disabled())
2547 print_irqtrace_events(prev);
2548 #ifdef CONFIG_DEBUG_PREEMPT
2549 if (in_atomic_preempt_off()) {
2550 pr_err("Preemption disabled at:");
2551 print_ip_sym(current->preempt_disable_ip);
2556 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2560 * Various schedule()-time debugging checks and statistics:
2562 static inline void schedule_debug(struct task_struct *prev)
2565 * Test if we are atomic. Since do_exit() needs to call into
2566 * schedule() atomically, we ignore that path. Otherwise whine
2567 * if we are scheduling when we should not.
2569 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
2570 __schedule_bug(prev);
2573 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2575 schedstat_inc(this_rq(), sched_count);
2579 * Pick up the highest-prio task:
2581 static inline struct task_struct *
2582 pick_next_task(struct rq *rq, struct task_struct *prev)
2584 const struct sched_class *class = &fair_sched_class;
2585 struct task_struct *p;
2588 * Optimization: we know that if all tasks are in
2589 * the fair class we can call that function directly:
2591 if (likely(prev->sched_class == class &&
2592 rq->nr_running == rq->cfs.h_nr_running)) {
2593 p = fair_sched_class.pick_next_task(rq, prev);
2594 if (likely(p && p != RETRY_TASK))
2599 for_each_class(class) {
2600 p = class->pick_next_task(rq, prev);
2602 if (unlikely(p == RETRY_TASK))
2608 BUG(); /* the idle class will always have a runnable task */
2612 * __schedule() is the main scheduler function.
2614 * The main means of driving the scheduler and thus entering this function are:
2616 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2618 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2619 * paths. For example, see arch/x86/entry_64.S.
2621 * To drive preemption between tasks, the scheduler sets the flag in timer
2622 * interrupt handler scheduler_tick().
2624 * 3. Wakeups don't really cause entry into schedule(). They add a
2625 * task to the run-queue and that's it.
2627 * Now, if the new task added to the run-queue preempts the current
2628 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2629 * called on the nearest possible occasion:
2631 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2633 * - in syscall or exception context, at the next outmost
2634 * preempt_enable(). (this might be as soon as the wake_up()'s
2637 * - in IRQ context, return from interrupt-handler to
2638 * preemptible context
2640 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2643 * - cond_resched() call
2644 * - explicit schedule() call
2645 * - return from syscall or exception to user-space
2646 * - return from interrupt-handler to user-space
2648 static void __sched __schedule(void)
2650 struct task_struct *prev, *next;
2651 unsigned long *switch_count;
2657 cpu = smp_processor_id();
2659 rcu_note_context_switch(cpu);
2662 schedule_debug(prev);
2664 if (sched_feat(HRTICK))
2668 * Make sure that signal_pending_state()->signal_pending() below
2669 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2670 * done by the caller to avoid the race with signal_wake_up().
2672 smp_mb__before_spinlock();
2673 raw_spin_lock_irq(&rq->lock);
2675 switch_count = &prev->nivcsw;
2676 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2677 if (unlikely(signal_pending_state(prev->state, prev))) {
2678 prev->state = TASK_RUNNING;
2680 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2684 * If a worker went to sleep, notify and ask workqueue
2685 * whether it wants to wake up a task to maintain
2688 if (prev->flags & PF_WQ_WORKER) {
2689 struct task_struct *to_wakeup;
2691 to_wakeup = wq_worker_sleeping(prev, cpu);
2693 try_to_wake_up_local(to_wakeup);
2696 switch_count = &prev->nvcsw;
2699 if (prev->on_rq || rq->skip_clock_update < 0)
2700 update_rq_clock(rq);
2702 next = pick_next_task(rq, prev);
2703 clear_tsk_need_resched(prev);
2704 clear_preempt_need_resched();
2705 rq->skip_clock_update = 0;
2707 if (likely(prev != next)) {
2712 context_switch(rq, prev, next); /* unlocks the rq */
2714 * The context switch have flipped the stack from under us
2715 * and restored the local variables which were saved when
2716 * this task called schedule() in the past. prev == current
2717 * is still correct, but it can be moved to another cpu/rq.
2719 cpu = smp_processor_id();
2722 raw_spin_unlock_irq(&rq->lock);
2726 sched_preempt_enable_no_resched();
2731 static inline void sched_submit_work(struct task_struct *tsk)
2733 if (!tsk->state || tsk_is_pi_blocked(tsk))
2736 * If we are going to sleep and we have plugged IO queued,
2737 * make sure to submit it to avoid deadlocks.
2739 if (blk_needs_flush_plug(tsk))
2740 blk_schedule_flush_plug(tsk);
2743 asmlinkage void __sched schedule(void)
2745 struct task_struct *tsk = current;
2747 sched_submit_work(tsk);
2750 EXPORT_SYMBOL(schedule);
2752 #ifdef CONFIG_CONTEXT_TRACKING
2753 asmlinkage void __sched schedule_user(void)
2756 * If we come here after a random call to set_need_resched(),
2757 * or we have been woken up remotely but the IPI has not yet arrived,
2758 * we haven't yet exited the RCU idle mode. Do it here manually until
2759 * we find a better solution.
2768 * schedule_preempt_disabled - called with preemption disabled
2770 * Returns with preemption disabled. Note: preempt_count must be 1
2772 void __sched schedule_preempt_disabled(void)
2774 sched_preempt_enable_no_resched();
2779 #ifdef CONFIG_PREEMPT
2781 * this is the entry point to schedule() from in-kernel preemption
2782 * off of preempt_enable. Kernel preemptions off return from interrupt
2783 * occur there and call schedule directly.
2785 asmlinkage void __sched notrace preempt_schedule(void)
2788 * If there is a non-zero preempt_count or interrupts are disabled,
2789 * we do not want to preempt the current task. Just return..
2791 if (likely(!preemptible()))
2795 __preempt_count_add(PREEMPT_ACTIVE);
2797 __preempt_count_sub(PREEMPT_ACTIVE);
2800 * Check again in case we missed a preemption opportunity
2801 * between schedule and now.
2804 } while (need_resched());
2806 EXPORT_SYMBOL(preempt_schedule);
2807 #endif /* CONFIG_PREEMPT */
2810 * this is the entry point to schedule() from kernel preemption
2811 * off of irq context.
2812 * Note, that this is called and return with irqs disabled. This will
2813 * protect us against recursive calling from irq.
2815 asmlinkage void __sched preempt_schedule_irq(void)
2817 enum ctx_state prev_state;
2819 /* Catch callers which need to be fixed */
2820 BUG_ON(preempt_count() || !irqs_disabled());
2822 prev_state = exception_enter();
2825 __preempt_count_add(PREEMPT_ACTIVE);
2828 local_irq_disable();
2829 __preempt_count_sub(PREEMPT_ACTIVE);
2832 * Check again in case we missed a preemption opportunity
2833 * between schedule and now.
2836 } while (need_resched());
2838 exception_exit(prev_state);
2841 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
2844 return try_to_wake_up(curr->private, mode, wake_flags);
2846 EXPORT_SYMBOL(default_wake_function);
2849 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
2851 unsigned long flags;
2854 init_waitqueue_entry(&wait, current);
2856 __set_current_state(state);
2858 spin_lock_irqsave(&q->lock, flags);
2859 __add_wait_queue(q, &wait);
2860 spin_unlock(&q->lock);
2861 timeout = schedule_timeout(timeout);
2862 spin_lock_irq(&q->lock);
2863 __remove_wait_queue(q, &wait);
2864 spin_unlock_irqrestore(&q->lock, flags);
2869 void __sched interruptible_sleep_on(wait_queue_head_t *q)
2871 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
2873 EXPORT_SYMBOL(interruptible_sleep_on);
2876 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
2878 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
2880 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
2882 void __sched sleep_on(wait_queue_head_t *q)
2884 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
2886 EXPORT_SYMBOL(sleep_on);
2888 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
2890 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
2892 EXPORT_SYMBOL(sleep_on_timeout);
2894 #ifdef CONFIG_RT_MUTEXES
2897 * rt_mutex_setprio - set the current priority of a task
2899 * @prio: prio value (kernel-internal form)
2901 * This function changes the 'effective' priority of a task. It does
2902 * not touch ->normal_prio like __setscheduler().
2904 * Used by the rt_mutex code to implement priority inheritance
2905 * logic. Call site only calls if the priority of the task changed.
2907 void rt_mutex_setprio(struct task_struct *p, int prio)
2909 int oldprio, on_rq, running, enqueue_flag = 0;
2911 const struct sched_class *prev_class;
2913 BUG_ON(prio > MAX_PRIO);
2915 rq = __task_rq_lock(p);
2918 * Idle task boosting is a nono in general. There is one
2919 * exception, when PREEMPT_RT and NOHZ is active:
2921 * The idle task calls get_next_timer_interrupt() and holds
2922 * the timer wheel base->lock on the CPU and another CPU wants
2923 * to access the timer (probably to cancel it). We can safely
2924 * ignore the boosting request, as the idle CPU runs this code
2925 * with interrupts disabled and will complete the lock
2926 * protected section without being interrupted. So there is no
2927 * real need to boost.
2929 if (unlikely(p == rq->idle)) {
2930 WARN_ON(p != rq->curr);
2931 WARN_ON(p->pi_blocked_on);
2935 trace_sched_pi_setprio(p, prio);
2936 p->pi_top_task = rt_mutex_get_top_task(p);
2938 prev_class = p->sched_class;
2940 running = task_current(rq, p);
2942 dequeue_task(rq, p, 0);
2944 p->sched_class->put_prev_task(rq, p);
2947 * Boosting condition are:
2948 * 1. -rt task is running and holds mutex A
2949 * --> -dl task blocks on mutex A
2951 * 2. -dl task is running and holds mutex A
2952 * --> -dl task blocks on mutex A and could preempt the
2955 if (dl_prio(prio)) {
2956 if (!dl_prio(p->normal_prio) || (p->pi_top_task &&
2957 dl_entity_preempt(&p->pi_top_task->dl, &p->dl))) {
2958 p->dl.dl_boosted = 1;
2959 p->dl.dl_throttled = 0;
2960 enqueue_flag = ENQUEUE_REPLENISH;
2962 p->dl.dl_boosted = 0;
2963 p->sched_class = &dl_sched_class;
2964 } else if (rt_prio(prio)) {
2965 if (dl_prio(oldprio))
2966 p->dl.dl_boosted = 0;
2968 enqueue_flag = ENQUEUE_HEAD;
2969 p->sched_class = &rt_sched_class;
2971 if (dl_prio(oldprio))
2972 p->dl.dl_boosted = 0;
2973 p->sched_class = &fair_sched_class;
2979 p->sched_class->set_curr_task(rq);
2981 enqueue_task(rq, p, enqueue_flag);
2983 check_class_changed(rq, p, prev_class, oldprio);
2985 __task_rq_unlock(rq);
2989 void set_user_nice(struct task_struct *p, long nice)
2991 int old_prio, delta, on_rq;
2992 unsigned long flags;
2995 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
2998 * We have to be careful, if called from sys_setpriority(),
2999 * the task might be in the middle of scheduling on another CPU.
3001 rq = task_rq_lock(p, &flags);
3003 * The RT priorities are set via sched_setscheduler(), but we still
3004 * allow the 'normal' nice value to be set - but as expected
3005 * it wont have any effect on scheduling until the task is
3006 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3008 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3009 p->static_prio = NICE_TO_PRIO(nice);
3014 dequeue_task(rq, p, 0);
3016 p->static_prio = NICE_TO_PRIO(nice);
3019 p->prio = effective_prio(p);
3020 delta = p->prio - old_prio;
3023 enqueue_task(rq, p, 0);
3025 * If the task increased its priority or is running and
3026 * lowered its priority, then reschedule its CPU:
3028 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3029 resched_task(rq->curr);
3032 task_rq_unlock(rq, p, &flags);
3034 EXPORT_SYMBOL(set_user_nice);
3037 * can_nice - check if a task can reduce its nice value
3041 int can_nice(const struct task_struct *p, const int nice)
3043 /* convert nice value [19,-20] to rlimit style value [1,40] */
3044 int nice_rlim = 20 - nice;
3046 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3047 capable(CAP_SYS_NICE));
3050 #ifdef __ARCH_WANT_SYS_NICE
3053 * sys_nice - change the priority of the current process.
3054 * @increment: priority increment
3056 * sys_setpriority is a more generic, but much slower function that
3057 * does similar things.
3059 SYSCALL_DEFINE1(nice, int, increment)
3064 * Setpriority might change our priority at the same moment.
3065 * We don't have to worry. Conceptually one call occurs first
3066 * and we have a single winner.
3068 if (increment < -40)
3073 nice = task_nice(current) + increment;
3074 if (nice < MIN_NICE)
3076 if (nice > MAX_NICE)
3079 if (increment < 0 && !can_nice(current, nice))
3082 retval = security_task_setnice(current, nice);
3086 set_user_nice(current, nice);
3093 * task_prio - return the priority value of a given task.
3094 * @p: the task in question.
3096 * Return: The priority value as seen by users in /proc.
3097 * RT tasks are offset by -200. Normal tasks are centered
3098 * around 0, value goes from -16 to +15.
3100 int task_prio(const struct task_struct *p)
3102 return p->prio - MAX_RT_PRIO;
3106 * idle_cpu - is a given cpu idle currently?
3107 * @cpu: the processor in question.
3109 * Return: 1 if the CPU is currently idle. 0 otherwise.
3111 int idle_cpu(int cpu)
3113 struct rq *rq = cpu_rq(cpu);
3115 if (rq->curr != rq->idle)
3122 if (!llist_empty(&rq->wake_list))
3130 * idle_task - return the idle task for a given cpu.
3131 * @cpu: the processor in question.
3133 * Return: The idle task for the cpu @cpu.
3135 struct task_struct *idle_task(int cpu)
3137 return cpu_rq(cpu)->idle;
3141 * find_process_by_pid - find a process with a matching PID value.
3142 * @pid: the pid in question.
3144 * The task of @pid, if found. %NULL otherwise.
3146 static struct task_struct *find_process_by_pid(pid_t pid)
3148 return pid ? find_task_by_vpid(pid) : current;
3152 * This function initializes the sched_dl_entity of a newly becoming
3153 * SCHED_DEADLINE task.
3155 * Only the static values are considered here, the actual runtime and the
3156 * absolute deadline will be properly calculated when the task is enqueued
3157 * for the first time with its new policy.
3160 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3162 struct sched_dl_entity *dl_se = &p->dl;
3164 init_dl_task_timer(dl_se);
3165 dl_se->dl_runtime = attr->sched_runtime;
3166 dl_se->dl_deadline = attr->sched_deadline;
3167 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3168 dl_se->flags = attr->sched_flags;
3169 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3170 dl_se->dl_throttled = 0;
3174 static void __setscheduler_params(struct task_struct *p,
3175 const struct sched_attr *attr)
3177 int policy = attr->sched_policy;
3179 if (policy == -1) /* setparam */
3184 if (dl_policy(policy))
3185 __setparam_dl(p, attr);
3186 else if (fair_policy(policy))
3187 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3190 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3191 * !rt_policy. Always setting this ensures that things like
3192 * getparam()/getattr() don't report silly values for !rt tasks.
3194 p->rt_priority = attr->sched_priority;
3195 p->normal_prio = normal_prio(p);
3199 /* Actually do priority change: must hold pi & rq lock. */
3200 static void __setscheduler(struct rq *rq, struct task_struct *p,
3201 const struct sched_attr *attr)
3203 __setscheduler_params(p, attr);
3206 * If we get here, there was no pi waiters boosting the
3207 * task. It is safe to use the normal prio.
3209 p->prio = normal_prio(p);
3211 if (dl_prio(p->prio))
3212 p->sched_class = &dl_sched_class;
3213 else if (rt_prio(p->prio))
3214 p->sched_class = &rt_sched_class;
3216 p->sched_class = &fair_sched_class;
3220 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3222 struct sched_dl_entity *dl_se = &p->dl;
3224 attr->sched_priority = p->rt_priority;
3225 attr->sched_runtime = dl_se->dl_runtime;
3226 attr->sched_deadline = dl_se->dl_deadline;
3227 attr->sched_period = dl_se->dl_period;
3228 attr->sched_flags = dl_se->flags;
3232 * This function validates the new parameters of a -deadline task.
3233 * We ask for the deadline not being zero, and greater or equal
3234 * than the runtime, as well as the period of being zero or
3235 * greater than deadline. Furthermore, we have to be sure that
3236 * user parameters are above the internal resolution (1us); we
3237 * check sched_runtime only since it is always the smaller one.
3240 __checkparam_dl(const struct sched_attr *attr)
3242 return attr && attr->sched_deadline != 0 &&
3243 (attr->sched_period == 0 ||
3244 (s64)(attr->sched_period - attr->sched_deadline) >= 0) &&
3245 (s64)(attr->sched_deadline - attr->sched_runtime ) >= 0 &&
3246 attr->sched_runtime >= (2 << (DL_SCALE - 1));
3250 * check the target process has a UID that matches the current process's
3252 static bool check_same_owner(struct task_struct *p)
3254 const struct cred *cred = current_cred(), *pcred;
3258 pcred = __task_cred(p);
3259 match = (uid_eq(cred->euid, pcred->euid) ||
3260 uid_eq(cred->euid, pcred->uid));
3265 static int __sched_setscheduler(struct task_struct *p,
3266 const struct sched_attr *attr,
3269 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3270 MAX_RT_PRIO - 1 - attr->sched_priority;
3271 int retval, oldprio, oldpolicy = -1, on_rq, running;
3272 int policy = attr->sched_policy;
3273 unsigned long flags;
3274 const struct sched_class *prev_class;
3278 /* may grab non-irq protected spin_locks */
3279 BUG_ON(in_interrupt());
3281 /* double check policy once rq lock held */
3283 reset_on_fork = p->sched_reset_on_fork;
3284 policy = oldpolicy = p->policy;
3286 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3288 if (policy != SCHED_DEADLINE &&
3289 policy != SCHED_FIFO && policy != SCHED_RR &&
3290 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3291 policy != SCHED_IDLE)
3295 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3299 * Valid priorities for SCHED_FIFO and SCHED_RR are
3300 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3301 * SCHED_BATCH and SCHED_IDLE is 0.
3303 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3304 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3306 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3307 (rt_policy(policy) != (attr->sched_priority != 0)))
3311 * Allow unprivileged RT tasks to decrease priority:
3313 if (user && !capable(CAP_SYS_NICE)) {
3314 if (fair_policy(policy)) {
3315 if (attr->sched_nice < task_nice(p) &&
3316 !can_nice(p, attr->sched_nice))
3320 if (rt_policy(policy)) {
3321 unsigned long rlim_rtprio =
3322 task_rlimit(p, RLIMIT_RTPRIO);
3324 /* can't set/change the rt policy */
3325 if (policy != p->policy && !rlim_rtprio)
3328 /* can't increase priority */
3329 if (attr->sched_priority > p->rt_priority &&
3330 attr->sched_priority > rlim_rtprio)
3335 * Can't set/change SCHED_DEADLINE policy at all for now
3336 * (safest behavior); in the future we would like to allow
3337 * unprivileged DL tasks to increase their relative deadline
3338 * or reduce their runtime (both ways reducing utilization)
3340 if (dl_policy(policy))
3344 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3345 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3347 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3348 if (!can_nice(p, task_nice(p)))
3352 /* can't change other user's priorities */
3353 if (!check_same_owner(p))
3356 /* Normal users shall not reset the sched_reset_on_fork flag */
3357 if (p->sched_reset_on_fork && !reset_on_fork)
3362 retval = security_task_setscheduler(p);
3368 * make sure no PI-waiters arrive (or leave) while we are
3369 * changing the priority of the task:
3371 * To be able to change p->policy safely, the appropriate
3372 * runqueue lock must be held.
3374 rq = task_rq_lock(p, &flags);
3377 * Changing the policy of the stop threads its a very bad idea
3379 if (p == rq->stop) {
3380 task_rq_unlock(rq, p, &flags);
3385 * If not changing anything there's no need to proceed further,
3386 * but store a possible modification of reset_on_fork.
3388 if (unlikely(policy == p->policy)) {
3389 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3391 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3393 if (dl_policy(policy))
3396 p->sched_reset_on_fork = reset_on_fork;
3397 task_rq_unlock(rq, p, &flags);
3403 #ifdef CONFIG_RT_GROUP_SCHED
3405 * Do not allow realtime tasks into groups that have no runtime
3408 if (rt_bandwidth_enabled() && rt_policy(policy) &&
3409 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3410 !task_group_is_autogroup(task_group(p))) {
3411 task_rq_unlock(rq, p, &flags);
3416 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3417 cpumask_t *span = rq->rd->span;
3420 * Don't allow tasks with an affinity mask smaller than
3421 * the entire root_domain to become SCHED_DEADLINE. We
3422 * will also fail if there's no bandwidth available.
3424 if (!cpumask_subset(span, &p->cpus_allowed) ||
3425 rq->rd->dl_bw.bw == 0) {
3426 task_rq_unlock(rq, p, &flags);
3433 /* recheck policy now with rq lock held */
3434 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3435 policy = oldpolicy = -1;
3436 task_rq_unlock(rq, p, &flags);
3441 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3442 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3445 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3446 task_rq_unlock(rq, p, &flags);
3450 p->sched_reset_on_fork = reset_on_fork;
3454 * Special case for priority boosted tasks.
3456 * If the new priority is lower or equal (user space view)
3457 * than the current (boosted) priority, we just store the new
3458 * normal parameters and do not touch the scheduler class and
3459 * the runqueue. This will be done when the task deboost
3462 if (rt_mutex_check_prio(p, newprio)) {
3463 __setscheduler_params(p, attr);
3464 task_rq_unlock(rq, p, &flags);
3469 running = task_current(rq, p);
3471 dequeue_task(rq, p, 0);
3473 p->sched_class->put_prev_task(rq, p);
3475 prev_class = p->sched_class;
3476 __setscheduler(rq, p, attr);
3479 p->sched_class->set_curr_task(rq);
3482 * We enqueue to tail when the priority of a task is
3483 * increased (user space view).
3485 enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3488 check_class_changed(rq, p, prev_class, oldprio);
3489 task_rq_unlock(rq, p, &flags);
3491 rt_mutex_adjust_pi(p);
3496 static int _sched_setscheduler(struct task_struct *p, int policy,
3497 const struct sched_param *param, bool check)
3499 struct sched_attr attr = {
3500 .sched_policy = policy,
3501 .sched_priority = param->sched_priority,
3502 .sched_nice = PRIO_TO_NICE(p->static_prio),
3506 * Fixup the legacy SCHED_RESET_ON_FORK hack
3508 if (policy & SCHED_RESET_ON_FORK) {
3509 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3510 policy &= ~SCHED_RESET_ON_FORK;
3511 attr.sched_policy = policy;
3514 return __sched_setscheduler(p, &attr, check);
3517 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3518 * @p: the task in question.
3519 * @policy: new policy.
3520 * @param: structure containing the new RT priority.
3522 * Return: 0 on success. An error code otherwise.
3524 * NOTE that the task may be already dead.
3526 int sched_setscheduler(struct task_struct *p, int policy,
3527 const struct sched_param *param)
3529 return _sched_setscheduler(p, policy, param, true);
3531 EXPORT_SYMBOL_GPL(sched_setscheduler);
3533 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3535 return __sched_setscheduler(p, attr, true);
3537 EXPORT_SYMBOL_GPL(sched_setattr);
3540 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3541 * @p: the task in question.
3542 * @policy: new policy.
3543 * @param: structure containing the new RT priority.
3545 * Just like sched_setscheduler, only don't bother checking if the
3546 * current context has permission. For example, this is needed in
3547 * stop_machine(): we create temporary high priority worker threads,
3548 * but our caller might not have that capability.
3550 * Return: 0 on success. An error code otherwise.
3552 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3553 const struct sched_param *param)
3555 return _sched_setscheduler(p, policy, param, false);
3559 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3561 struct sched_param lparam;
3562 struct task_struct *p;
3565 if (!param || pid < 0)
3567 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3572 p = find_process_by_pid(pid);
3574 retval = sched_setscheduler(p, policy, &lparam);
3581 * Mimics kernel/events/core.c perf_copy_attr().
3583 static int sched_copy_attr(struct sched_attr __user *uattr,
3584 struct sched_attr *attr)
3589 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3593 * zero the full structure, so that a short copy will be nice.
3595 memset(attr, 0, sizeof(*attr));
3597 ret = get_user(size, &uattr->size);
3601 if (size > PAGE_SIZE) /* silly large */
3604 if (!size) /* abi compat */
3605 size = SCHED_ATTR_SIZE_VER0;
3607 if (size < SCHED_ATTR_SIZE_VER0)
3611 * If we're handed a bigger struct than we know of,
3612 * ensure all the unknown bits are 0 - i.e. new
3613 * user-space does not rely on any kernel feature
3614 * extensions we dont know about yet.
3616 if (size > sizeof(*attr)) {
3617 unsigned char __user *addr;
3618 unsigned char __user *end;
3621 addr = (void __user *)uattr + sizeof(*attr);
3622 end = (void __user *)uattr + size;
3624 for (; addr < end; addr++) {
3625 ret = get_user(val, addr);
3631 size = sizeof(*attr);
3634 ret = copy_from_user(attr, uattr, size);
3639 * XXX: do we want to be lenient like existing syscalls; or do we want
3640 * to be strict and return an error on out-of-bounds values?
3642 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
3648 put_user(sizeof(*attr), &uattr->size);
3654 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3655 * @pid: the pid in question.
3656 * @policy: new policy.
3657 * @param: structure containing the new RT priority.
3659 * Return: 0 on success. An error code otherwise.
3661 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3662 struct sched_param __user *, param)
3664 /* negative values for policy are not valid */
3668 return do_sched_setscheduler(pid, policy, param);
3672 * sys_sched_setparam - set/change the RT priority of a thread
3673 * @pid: the pid in question.
3674 * @param: structure containing the new RT priority.
3676 * Return: 0 on success. An error code otherwise.
3678 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3680 return do_sched_setscheduler(pid, -1, param);
3684 * sys_sched_setattr - same as above, but with extended sched_attr
3685 * @pid: the pid in question.
3686 * @uattr: structure containing the extended parameters.
3688 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
3689 unsigned int, flags)
3691 struct sched_attr attr;
3692 struct task_struct *p;
3695 if (!uattr || pid < 0 || flags)
3698 if (sched_copy_attr(uattr, &attr))
3703 p = find_process_by_pid(pid);
3705 retval = sched_setattr(p, &attr);
3712 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3713 * @pid: the pid in question.
3715 * Return: On success, the policy of the thread. Otherwise, a negative error
3718 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3720 struct task_struct *p;
3728 p = find_process_by_pid(pid);
3730 retval = security_task_getscheduler(p);
3733 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3740 * sys_sched_getparam - get the RT priority of a thread
3741 * @pid: the pid in question.
3742 * @param: structure containing the RT priority.
3744 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3747 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3749 struct sched_param lp;
3750 struct task_struct *p;
3753 if (!param || pid < 0)
3757 p = find_process_by_pid(pid);
3762 retval = security_task_getscheduler(p);
3766 if (task_has_dl_policy(p)) {
3770 lp.sched_priority = p->rt_priority;
3774 * This one might sleep, we cannot do it with a spinlock held ...
3776 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3785 static int sched_read_attr(struct sched_attr __user *uattr,
3786 struct sched_attr *attr,
3791 if (!access_ok(VERIFY_WRITE, uattr, usize))
3795 * If we're handed a smaller struct than we know of,
3796 * ensure all the unknown bits are 0 - i.e. old
3797 * user-space does not get uncomplete information.
3799 if (usize < sizeof(*attr)) {
3800 unsigned char *addr;
3803 addr = (void *)attr + usize;
3804 end = (void *)attr + sizeof(*attr);
3806 for (; addr < end; addr++) {
3814 ret = copy_to_user(uattr, attr, attr->size);
3827 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
3828 * @pid: the pid in question.
3829 * @uattr: structure containing the extended parameters.
3830 * @size: sizeof(attr) for fwd/bwd comp.
3832 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3833 unsigned int, size, unsigned int, flags)
3835 struct sched_attr attr = {
3836 .size = sizeof(struct sched_attr),
3838 struct task_struct *p;
3841 if (!uattr || pid < 0 || size > PAGE_SIZE ||
3842 size < SCHED_ATTR_SIZE_VER0 || flags)
3846 p = find_process_by_pid(pid);
3851 retval = security_task_getscheduler(p);
3855 attr.sched_policy = p->policy;
3856 if (p->sched_reset_on_fork)
3857 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3858 if (task_has_dl_policy(p))
3859 __getparam_dl(p, &attr);
3860 else if (task_has_rt_policy(p))
3861 attr.sched_priority = p->rt_priority;
3863 attr.sched_nice = task_nice(p);
3867 retval = sched_read_attr(uattr, &attr, size);
3875 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
3877 cpumask_var_t cpus_allowed, new_mask;
3878 struct task_struct *p;
3883 p = find_process_by_pid(pid);
3889 /* Prevent p going away */
3893 if (p->flags & PF_NO_SETAFFINITY) {
3897 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3901 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3903 goto out_free_cpus_allowed;
3906 if (!check_same_owner(p)) {
3908 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3915 retval = security_task_setscheduler(p);
3920 cpuset_cpus_allowed(p, cpus_allowed);
3921 cpumask_and(new_mask, in_mask, cpus_allowed);
3924 * Since bandwidth control happens on root_domain basis,
3925 * if admission test is enabled, we only admit -deadline
3926 * tasks allowed to run on all the CPUs in the task's
3930 if (task_has_dl_policy(p)) {
3931 const struct cpumask *span = task_rq(p)->rd->span;
3933 if (dl_bandwidth_enabled() && !cpumask_subset(span, new_mask)) {
3940 retval = set_cpus_allowed_ptr(p, new_mask);
3943 cpuset_cpus_allowed(p, cpus_allowed);
3944 if (!cpumask_subset(new_mask, cpus_allowed)) {
3946 * We must have raced with a concurrent cpuset
3947 * update. Just reset the cpus_allowed to the
3948 * cpuset's cpus_allowed
3950 cpumask_copy(new_mask, cpus_allowed);
3955 free_cpumask_var(new_mask);
3956 out_free_cpus_allowed:
3957 free_cpumask_var(cpus_allowed);
3963 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3964 struct cpumask *new_mask)
3966 if (len < cpumask_size())
3967 cpumask_clear(new_mask);
3968 else if (len > cpumask_size())
3969 len = cpumask_size();
3971 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3975 * sys_sched_setaffinity - set the cpu affinity of a process
3976 * @pid: pid of the process
3977 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3978 * @user_mask_ptr: user-space pointer to the new cpu mask
3980 * Return: 0 on success. An error code otherwise.
3982 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
3983 unsigned long __user *, user_mask_ptr)
3985 cpumask_var_t new_mask;
3988 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
3991 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
3993 retval = sched_setaffinity(pid, new_mask);
3994 free_cpumask_var(new_mask);
3998 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4000 struct task_struct *p;
4001 unsigned long flags;
4007 p = find_process_by_pid(pid);
4011 retval = security_task_getscheduler(p);
4015 raw_spin_lock_irqsave(&p->pi_lock, flags);
4016 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4017 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4026 * sys_sched_getaffinity - get the cpu affinity of a process
4027 * @pid: pid of the process
4028 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4029 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4031 * Return: 0 on success. An error code otherwise.
4033 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4034 unsigned long __user *, user_mask_ptr)
4039 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4041 if (len & (sizeof(unsigned long)-1))
4044 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4047 ret = sched_getaffinity(pid, mask);
4049 size_t retlen = min_t(size_t, len, cpumask_size());
4051 if (copy_to_user(user_mask_ptr, mask, retlen))
4056 free_cpumask_var(mask);
4062 * sys_sched_yield - yield the current processor to other threads.
4064 * This function yields the current CPU to other tasks. If there are no
4065 * other threads running on this CPU then this function will return.
4069 SYSCALL_DEFINE0(sched_yield)
4071 struct rq *rq = this_rq_lock();
4073 schedstat_inc(rq, yld_count);
4074 current->sched_class->yield_task(rq);
4077 * Since we are going to call schedule() anyway, there's
4078 * no need to preempt or enable interrupts:
4080 __release(rq->lock);
4081 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4082 do_raw_spin_unlock(&rq->lock);
4083 sched_preempt_enable_no_resched();
4090 static void __cond_resched(void)
4092 __preempt_count_add(PREEMPT_ACTIVE);
4094 __preempt_count_sub(PREEMPT_ACTIVE);
4097 int __sched _cond_resched(void)
4099 if (should_resched()) {
4105 EXPORT_SYMBOL(_cond_resched);
4108 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4109 * call schedule, and on return reacquire the lock.
4111 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4112 * operations here to prevent schedule() from being called twice (once via
4113 * spin_unlock(), once by hand).
4115 int __cond_resched_lock(spinlock_t *lock)
4117 int resched = should_resched();
4120 lockdep_assert_held(lock);
4122 if (spin_needbreak(lock) || resched) {
4133 EXPORT_SYMBOL(__cond_resched_lock);
4135 int __sched __cond_resched_softirq(void)
4137 BUG_ON(!in_softirq());
4139 if (should_resched()) {
4147 EXPORT_SYMBOL(__cond_resched_softirq);
4150 * yield - yield the current processor to other threads.
4152 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4154 * The scheduler is at all times free to pick the calling task as the most
4155 * eligible task to run, if removing the yield() call from your code breaks
4156 * it, its already broken.
4158 * Typical broken usage is:
4163 * where one assumes that yield() will let 'the other' process run that will
4164 * make event true. If the current task is a SCHED_FIFO task that will never
4165 * happen. Never use yield() as a progress guarantee!!
4167 * If you want to use yield() to wait for something, use wait_event().
4168 * If you want to use yield() to be 'nice' for others, use cond_resched().
4169 * If you still want to use yield(), do not!
4171 void __sched yield(void)
4173 set_current_state(TASK_RUNNING);
4176 EXPORT_SYMBOL(yield);
4179 * yield_to - yield the current processor to another thread in
4180 * your thread group, or accelerate that thread toward the
4181 * processor it's on.
4183 * @preempt: whether task preemption is allowed or not
4185 * It's the caller's job to ensure that the target task struct
4186 * can't go away on us before we can do any checks.
4189 * true (>0) if we indeed boosted the target task.
4190 * false (0) if we failed to boost the target.
4191 * -ESRCH if there's no task to yield to.
4193 bool __sched yield_to(struct task_struct *p, bool preempt)
4195 struct task_struct *curr = current;
4196 struct rq *rq, *p_rq;
4197 unsigned long flags;
4200 local_irq_save(flags);
4206 * If we're the only runnable task on the rq and target rq also
4207 * has only one task, there's absolutely no point in yielding.
4209 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4214 double_rq_lock(rq, p_rq);
4215 if (task_rq(p) != p_rq) {
4216 double_rq_unlock(rq, p_rq);
4220 if (!curr->sched_class->yield_to_task)
4223 if (curr->sched_class != p->sched_class)
4226 if (task_running(p_rq, p) || p->state)
4229 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4231 schedstat_inc(rq, yld_count);
4233 * Make p's CPU reschedule; pick_next_entity takes care of
4236 if (preempt && rq != p_rq)
4237 resched_task(p_rq->curr);
4241 double_rq_unlock(rq, p_rq);
4243 local_irq_restore(flags);
4250 EXPORT_SYMBOL_GPL(yield_to);
4253 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4254 * that process accounting knows that this is a task in IO wait state.
4256 void __sched io_schedule(void)
4258 struct rq *rq = raw_rq();
4260 delayacct_blkio_start();
4261 atomic_inc(&rq->nr_iowait);
4262 blk_flush_plug(current);
4263 current->in_iowait = 1;
4265 current->in_iowait = 0;
4266 atomic_dec(&rq->nr_iowait);
4267 delayacct_blkio_end();
4269 EXPORT_SYMBOL(io_schedule);
4271 long __sched io_schedule_timeout(long timeout)
4273 struct rq *rq = raw_rq();
4276 delayacct_blkio_start();
4277 atomic_inc(&rq->nr_iowait);
4278 blk_flush_plug(current);
4279 current->in_iowait = 1;
4280 ret = schedule_timeout(timeout);
4281 current->in_iowait = 0;
4282 atomic_dec(&rq->nr_iowait);
4283 delayacct_blkio_end();
4288 * sys_sched_get_priority_max - return maximum RT priority.
4289 * @policy: scheduling class.
4291 * Return: On success, this syscall returns the maximum
4292 * rt_priority that can be used by a given scheduling class.
4293 * On failure, a negative error code is returned.
4295 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4302 ret = MAX_USER_RT_PRIO-1;
4304 case SCHED_DEADLINE:
4315 * sys_sched_get_priority_min - return minimum RT priority.
4316 * @policy: scheduling class.
4318 * Return: On success, this syscall returns the minimum
4319 * rt_priority that can be used by a given scheduling class.
4320 * On failure, a negative error code is returned.
4322 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4331 case SCHED_DEADLINE:
4341 * sys_sched_rr_get_interval - return the default timeslice of a process.
4342 * @pid: pid of the process.
4343 * @interval: userspace pointer to the timeslice value.
4345 * this syscall writes the default timeslice value of a given process
4346 * into the user-space timespec buffer. A value of '0' means infinity.
4348 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4351 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4352 struct timespec __user *, interval)
4354 struct task_struct *p;
4355 unsigned int time_slice;
4356 unsigned long flags;
4366 p = find_process_by_pid(pid);
4370 retval = security_task_getscheduler(p);
4374 rq = task_rq_lock(p, &flags);
4376 if (p->sched_class->get_rr_interval)
4377 time_slice = p->sched_class->get_rr_interval(rq, p);
4378 task_rq_unlock(rq, p, &flags);
4381 jiffies_to_timespec(time_slice, &t);
4382 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4390 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4392 void sched_show_task(struct task_struct *p)
4394 unsigned long free = 0;
4398 state = p->state ? __ffs(p->state) + 1 : 0;
4399 printk(KERN_INFO "%-15.15s %c", p->comm,
4400 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4401 #if BITS_PER_LONG == 32
4402 if (state == TASK_RUNNING)
4403 printk(KERN_CONT " running ");
4405 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4407 if (state == TASK_RUNNING)
4408 printk(KERN_CONT " running task ");
4410 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4412 #ifdef CONFIG_DEBUG_STACK_USAGE
4413 free = stack_not_used(p);
4416 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4418 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4419 task_pid_nr(p), ppid,
4420 (unsigned long)task_thread_info(p)->flags);
4422 print_worker_info(KERN_INFO, p);
4423 show_stack(p, NULL);
4426 void show_state_filter(unsigned long state_filter)
4428 struct task_struct *g, *p;
4430 #if BITS_PER_LONG == 32
4432 " task PC stack pid father\n");
4435 " task PC stack pid father\n");
4438 do_each_thread(g, p) {
4440 * reset the NMI-timeout, listing all files on a slow
4441 * console might take a lot of time:
4443 touch_nmi_watchdog();
4444 if (!state_filter || (p->state & state_filter))
4446 } while_each_thread(g, p);
4448 touch_all_softlockup_watchdogs();
4450 #ifdef CONFIG_SCHED_DEBUG
4451 sysrq_sched_debug_show();
4455 * Only show locks if all tasks are dumped:
4458 debug_show_all_locks();
4461 void init_idle_bootup_task(struct task_struct *idle)
4463 idle->sched_class = &idle_sched_class;
4467 * init_idle - set up an idle thread for a given CPU
4468 * @idle: task in question
4469 * @cpu: cpu the idle task belongs to
4471 * NOTE: this function does not set the idle thread's NEED_RESCHED
4472 * flag, to make booting more robust.
4474 void init_idle(struct task_struct *idle, int cpu)
4476 struct rq *rq = cpu_rq(cpu);
4477 unsigned long flags;
4479 raw_spin_lock_irqsave(&rq->lock, flags);
4481 __sched_fork(0, idle);
4482 idle->state = TASK_RUNNING;
4483 idle->se.exec_start = sched_clock();
4485 do_set_cpus_allowed(idle, cpumask_of(cpu));
4487 * We're having a chicken and egg problem, even though we are
4488 * holding rq->lock, the cpu isn't yet set to this cpu so the
4489 * lockdep check in task_group() will fail.
4491 * Similar case to sched_fork(). / Alternatively we could
4492 * use task_rq_lock() here and obtain the other rq->lock.
4497 __set_task_cpu(idle, cpu);
4500 rq->curr = rq->idle = idle;
4502 #if defined(CONFIG_SMP)
4505 raw_spin_unlock_irqrestore(&rq->lock, flags);
4507 /* Set the preempt count _outside_ the spinlocks! */
4508 init_idle_preempt_count(idle, cpu);
4511 * The idle tasks have their own, simple scheduling class:
4513 idle->sched_class = &idle_sched_class;
4514 ftrace_graph_init_idle_task(idle, cpu);
4515 vtime_init_idle(idle, cpu);
4516 #if defined(CONFIG_SMP)
4517 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4522 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4524 if (p->sched_class && p->sched_class->set_cpus_allowed)
4525 p->sched_class->set_cpus_allowed(p, new_mask);
4527 cpumask_copy(&p->cpus_allowed, new_mask);
4528 p->nr_cpus_allowed = cpumask_weight(new_mask);
4532 * This is how migration works:
4534 * 1) we invoke migration_cpu_stop() on the target CPU using
4536 * 2) stopper starts to run (implicitly forcing the migrated thread
4538 * 3) it checks whether the migrated task is still in the wrong runqueue.
4539 * 4) if it's in the wrong runqueue then the migration thread removes
4540 * it and puts it into the right queue.
4541 * 5) stopper completes and stop_one_cpu() returns and the migration
4546 * Change a given task's CPU affinity. Migrate the thread to a
4547 * proper CPU and schedule it away if the CPU it's executing on
4548 * is removed from the allowed bitmask.
4550 * NOTE: the caller must have a valid reference to the task, the
4551 * task must not exit() & deallocate itself prematurely. The
4552 * call is not atomic; no spinlocks may be held.
4554 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4556 unsigned long flags;
4558 unsigned int dest_cpu;
4561 rq = task_rq_lock(p, &flags);
4563 if (cpumask_equal(&p->cpus_allowed, new_mask))
4566 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4571 do_set_cpus_allowed(p, new_mask);
4573 /* Can the task run on the task's current CPU? If so, we're done */
4574 if (cpumask_test_cpu(task_cpu(p), new_mask))
4577 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4579 struct migration_arg arg = { p, dest_cpu };
4580 /* Need help from migration thread: drop lock and wait. */
4581 task_rq_unlock(rq, p, &flags);
4582 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4583 tlb_migrate_finish(p->mm);
4587 task_rq_unlock(rq, p, &flags);
4591 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4594 * Move (not current) task off this cpu, onto dest cpu. We're doing
4595 * this because either it can't run here any more (set_cpus_allowed()
4596 * away from this CPU, or CPU going down), or because we're
4597 * attempting to rebalance this task on exec (sched_exec).
4599 * So we race with normal scheduler movements, but that's OK, as long
4600 * as the task is no longer on this CPU.
4602 * Returns non-zero if task was successfully migrated.
4604 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4606 struct rq *rq_dest, *rq_src;
4609 if (unlikely(!cpu_active(dest_cpu)))
4612 rq_src = cpu_rq(src_cpu);
4613 rq_dest = cpu_rq(dest_cpu);
4615 raw_spin_lock(&p->pi_lock);
4616 double_rq_lock(rq_src, rq_dest);
4617 /* Already moved. */
4618 if (task_cpu(p) != src_cpu)
4620 /* Affinity changed (again). */
4621 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4625 * If we're not on a rq, the next wake-up will ensure we're
4629 dequeue_task(rq_src, p, 0);
4630 set_task_cpu(p, dest_cpu);
4631 enqueue_task(rq_dest, p, 0);
4632 check_preempt_curr(rq_dest, p, 0);
4637 double_rq_unlock(rq_src, rq_dest);
4638 raw_spin_unlock(&p->pi_lock);
4642 #ifdef CONFIG_NUMA_BALANCING
4643 /* Migrate current task p to target_cpu */
4644 int migrate_task_to(struct task_struct *p, int target_cpu)
4646 struct migration_arg arg = { p, target_cpu };
4647 int curr_cpu = task_cpu(p);
4649 if (curr_cpu == target_cpu)
4652 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4655 /* TODO: This is not properly updating schedstats */
4657 trace_sched_move_numa(p, curr_cpu, target_cpu);
4658 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4662 * Requeue a task on a given node and accurately track the number of NUMA
4663 * tasks on the runqueues
4665 void sched_setnuma(struct task_struct *p, int nid)
4668 unsigned long flags;
4669 bool on_rq, running;
4671 rq = task_rq_lock(p, &flags);
4673 running = task_current(rq, p);
4676 dequeue_task(rq, p, 0);
4678 p->sched_class->put_prev_task(rq, p);
4680 p->numa_preferred_nid = nid;
4683 p->sched_class->set_curr_task(rq);
4685 enqueue_task(rq, p, 0);
4686 task_rq_unlock(rq, p, &flags);
4691 * migration_cpu_stop - this will be executed by a highprio stopper thread
4692 * and performs thread migration by bumping thread off CPU then
4693 * 'pushing' onto another runqueue.
4695 static int migration_cpu_stop(void *data)
4697 struct migration_arg *arg = data;
4700 * The original target cpu might have gone down and we might
4701 * be on another cpu but it doesn't matter.
4703 local_irq_disable();
4704 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4709 #ifdef CONFIG_HOTPLUG_CPU
4712 * Ensures that the idle task is using init_mm right before its cpu goes
4715 void idle_task_exit(void)
4717 struct mm_struct *mm = current->active_mm;
4719 BUG_ON(cpu_online(smp_processor_id()));
4721 if (mm != &init_mm) {
4722 switch_mm(mm, &init_mm, current);
4723 finish_arch_post_lock_switch();
4729 * Since this CPU is going 'away' for a while, fold any nr_active delta
4730 * we might have. Assumes we're called after migrate_tasks() so that the
4731 * nr_active count is stable.
4733 * Also see the comment "Global load-average calculations".
4735 static void calc_load_migrate(struct rq *rq)
4737 long delta = calc_load_fold_active(rq);
4739 atomic_long_add(delta, &calc_load_tasks);
4742 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
4746 static const struct sched_class fake_sched_class = {
4747 .put_prev_task = put_prev_task_fake,
4750 static struct task_struct fake_task = {
4752 * Avoid pull_{rt,dl}_task()
4754 .prio = MAX_PRIO + 1,
4755 .sched_class = &fake_sched_class,
4759 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4760 * try_to_wake_up()->select_task_rq().
4762 * Called with rq->lock held even though we'er in stop_machine() and
4763 * there's no concurrency possible, we hold the required locks anyway
4764 * because of lock validation efforts.
4766 static void migrate_tasks(unsigned int dead_cpu)
4768 struct rq *rq = cpu_rq(dead_cpu);
4769 struct task_struct *next, *stop = rq->stop;
4773 * Fudge the rq selection such that the below task selection loop
4774 * doesn't get stuck on the currently eligible stop task.
4776 * We're currently inside stop_machine() and the rq is either stuck
4777 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4778 * either way we should never end up calling schedule() until we're
4784 * put_prev_task() and pick_next_task() sched
4785 * class method both need to have an up-to-date
4786 * value of rq->clock[_task]
4788 update_rq_clock(rq);
4792 * There's this thread running, bail when that's the only
4795 if (rq->nr_running == 1)
4798 next = pick_next_task(rq, &fake_task);
4800 next->sched_class->put_prev_task(rq, next);
4802 /* Find suitable destination for @next, with force if needed. */
4803 dest_cpu = select_fallback_rq(dead_cpu, next);
4804 raw_spin_unlock(&rq->lock);
4806 __migrate_task(next, dead_cpu, dest_cpu);
4808 raw_spin_lock(&rq->lock);
4814 #endif /* CONFIG_HOTPLUG_CPU */
4816 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4818 static struct ctl_table sd_ctl_dir[] = {
4820 .procname = "sched_domain",
4826 static struct ctl_table sd_ctl_root[] = {
4828 .procname = "kernel",
4830 .child = sd_ctl_dir,
4835 static struct ctl_table *sd_alloc_ctl_entry(int n)
4837 struct ctl_table *entry =
4838 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4843 static void sd_free_ctl_entry(struct ctl_table **tablep)
4845 struct ctl_table *entry;
4848 * In the intermediate directories, both the child directory and
4849 * procname are dynamically allocated and could fail but the mode
4850 * will always be set. In the lowest directory the names are
4851 * static strings and all have proc handlers.
4853 for (entry = *tablep; entry->mode; entry++) {
4855 sd_free_ctl_entry(&entry->child);
4856 if (entry->proc_handler == NULL)
4857 kfree(entry->procname);
4864 static int min_load_idx = 0;
4865 static int max_load_idx = CPU_LOAD_IDX_MAX-1;
4868 set_table_entry(struct ctl_table *entry,
4869 const char *procname, void *data, int maxlen,
4870 umode_t mode, proc_handler *proc_handler,
4873 entry->procname = procname;
4875 entry->maxlen = maxlen;
4877 entry->proc_handler = proc_handler;
4880 entry->extra1 = &min_load_idx;
4881 entry->extra2 = &max_load_idx;
4885 static struct ctl_table *
4886 sd_alloc_ctl_domain_table(struct sched_domain *sd)
4888 struct ctl_table *table = sd_alloc_ctl_entry(14);
4893 set_table_entry(&table[0], "min_interval", &sd->min_interval,
4894 sizeof(long), 0644, proc_doulongvec_minmax, false);
4895 set_table_entry(&table[1], "max_interval", &sd->max_interval,
4896 sizeof(long), 0644, proc_doulongvec_minmax, false);
4897 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4898 sizeof(int), 0644, proc_dointvec_minmax, true);
4899 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4900 sizeof(int), 0644, proc_dointvec_minmax, true);
4901 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4902 sizeof(int), 0644, proc_dointvec_minmax, true);
4903 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4904 sizeof(int), 0644, proc_dointvec_minmax, true);
4905 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4906 sizeof(int), 0644, proc_dointvec_minmax, true);
4907 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4908 sizeof(int), 0644, proc_dointvec_minmax, false);
4909 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4910 sizeof(int), 0644, proc_dointvec_minmax, false);
4911 set_table_entry(&table[9], "cache_nice_tries",
4912 &sd->cache_nice_tries,
4913 sizeof(int), 0644, proc_dointvec_minmax, false);
4914 set_table_entry(&table[10], "flags", &sd->flags,
4915 sizeof(int), 0644, proc_dointvec_minmax, false);
4916 set_table_entry(&table[11], "max_newidle_lb_cost",
4917 &sd->max_newidle_lb_cost,
4918 sizeof(long), 0644, proc_doulongvec_minmax, false);
4919 set_table_entry(&table[12], "name", sd->name,
4920 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4921 /* &table[13] is terminator */
4926 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
4928 struct ctl_table *entry, *table;
4929 struct sched_domain *sd;
4930 int domain_num = 0, i;
4933 for_each_domain(cpu, sd)
4935 entry = table = sd_alloc_ctl_entry(domain_num + 1);
4940 for_each_domain(cpu, sd) {
4941 snprintf(buf, 32, "domain%d", i);
4942 entry->procname = kstrdup(buf, GFP_KERNEL);
4944 entry->child = sd_alloc_ctl_domain_table(sd);
4951 static struct ctl_table_header *sd_sysctl_header;
4952 static void register_sched_domain_sysctl(void)
4954 int i, cpu_num = num_possible_cpus();
4955 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4958 WARN_ON(sd_ctl_dir[0].child);
4959 sd_ctl_dir[0].child = entry;
4964 for_each_possible_cpu(i) {
4965 snprintf(buf, 32, "cpu%d", i);
4966 entry->procname = kstrdup(buf, GFP_KERNEL);
4968 entry->child = sd_alloc_ctl_cpu_table(i);
4972 WARN_ON(sd_sysctl_header);
4973 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
4976 /* may be called multiple times per register */
4977 static void unregister_sched_domain_sysctl(void)
4979 if (sd_sysctl_header)
4980 unregister_sysctl_table(sd_sysctl_header);
4981 sd_sysctl_header = NULL;
4982 if (sd_ctl_dir[0].child)
4983 sd_free_ctl_entry(&sd_ctl_dir[0].child);
4986 static void register_sched_domain_sysctl(void)
4989 static void unregister_sched_domain_sysctl(void)
4994 static void set_rq_online(struct rq *rq)
4997 const struct sched_class *class;
4999 cpumask_set_cpu(rq->cpu, rq->rd->online);
5002 for_each_class(class) {
5003 if (class->rq_online)
5004 class->rq_online(rq);
5009 static void set_rq_offline(struct rq *rq)
5012 const struct sched_class *class;
5014 for_each_class(class) {
5015 if (class->rq_offline)
5016 class->rq_offline(rq);
5019 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5025 * migration_call - callback that gets triggered when a CPU is added.
5026 * Here we can start up the necessary migration thread for the new CPU.
5029 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5031 int cpu = (long)hcpu;
5032 unsigned long flags;
5033 struct rq *rq = cpu_rq(cpu);
5035 switch (action & ~CPU_TASKS_FROZEN) {
5037 case CPU_UP_PREPARE:
5038 rq->calc_load_update = calc_load_update;
5042 /* Update our root-domain */
5043 raw_spin_lock_irqsave(&rq->lock, flags);
5045 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5049 raw_spin_unlock_irqrestore(&rq->lock, flags);
5052 #ifdef CONFIG_HOTPLUG_CPU
5054 sched_ttwu_pending();
5055 /* Update our root-domain */
5056 raw_spin_lock_irqsave(&rq->lock, flags);
5058 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5062 BUG_ON(rq->nr_running != 1); /* the migration thread */
5063 raw_spin_unlock_irqrestore(&rq->lock, flags);
5067 calc_load_migrate(rq);
5072 update_max_interval();
5078 * Register at high priority so that task migration (migrate_all_tasks)
5079 * happens before everything else. This has to be lower priority than
5080 * the notifier in the perf_event subsystem, though.
5082 static struct notifier_block migration_notifier = {
5083 .notifier_call = migration_call,
5084 .priority = CPU_PRI_MIGRATION,
5087 static int sched_cpu_active(struct notifier_block *nfb,
5088 unsigned long action, void *hcpu)
5090 switch (action & ~CPU_TASKS_FROZEN) {
5092 case CPU_DOWN_FAILED:
5093 set_cpu_active((long)hcpu, true);
5100 static int sched_cpu_inactive(struct notifier_block *nfb,
5101 unsigned long action, void *hcpu)
5103 unsigned long flags;
5104 long cpu = (long)hcpu;
5106 switch (action & ~CPU_TASKS_FROZEN) {
5107 case CPU_DOWN_PREPARE:
5108 set_cpu_active(cpu, false);
5110 /* explicitly allow suspend */
5111 if (!(action & CPU_TASKS_FROZEN)) {
5112 struct dl_bw *dl_b = dl_bw_of(cpu);
5116 raw_spin_lock_irqsave(&dl_b->lock, flags);
5117 cpus = dl_bw_cpus(cpu);
5118 overflow = __dl_overflow(dl_b, cpus, 0, 0);
5119 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5122 return notifier_from_errno(-EBUSY);
5130 static int __init migration_init(void)
5132 void *cpu = (void *)(long)smp_processor_id();
5135 /* Initialize migration for the boot CPU */
5136 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5137 BUG_ON(err == NOTIFY_BAD);
5138 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5139 register_cpu_notifier(&migration_notifier);
5141 /* Register cpu active notifiers */
5142 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5143 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5147 early_initcall(migration_init);
5152 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5154 #ifdef CONFIG_SCHED_DEBUG
5156 static __read_mostly int sched_debug_enabled;
5158 static int __init sched_debug_setup(char *str)
5160 sched_debug_enabled = 1;
5164 early_param("sched_debug", sched_debug_setup);
5166 static inline bool sched_debug(void)
5168 return sched_debug_enabled;
5171 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5172 struct cpumask *groupmask)
5174 struct sched_group *group = sd->groups;
5177 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5178 cpumask_clear(groupmask);
5180 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5182 if (!(sd->flags & SD_LOAD_BALANCE)) {
5183 printk("does not load-balance\n");
5185 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5190 printk(KERN_CONT "span %s level %s\n", str, sd->name);
5192 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5193 printk(KERN_ERR "ERROR: domain->span does not contain "
5196 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5197 printk(KERN_ERR "ERROR: domain->groups does not contain"
5201 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5205 printk(KERN_ERR "ERROR: group is NULL\n");
5210 * Even though we initialize ->power to something semi-sane,
5211 * we leave power_orig unset. This allows us to detect if
5212 * domain iteration is still funny without causing /0 traps.
5214 if (!group->sgp->power_orig) {
5215 printk(KERN_CONT "\n");
5216 printk(KERN_ERR "ERROR: domain->cpu_power not "
5221 if (!cpumask_weight(sched_group_cpus(group))) {
5222 printk(KERN_CONT "\n");
5223 printk(KERN_ERR "ERROR: empty group\n");
5227 if (!(sd->flags & SD_OVERLAP) &&
5228 cpumask_intersects(groupmask, sched_group_cpus(group))) {
5229 printk(KERN_CONT "\n");
5230 printk(KERN_ERR "ERROR: repeated CPUs\n");
5234 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5236 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5238 printk(KERN_CONT " %s", str);
5239 if (group->sgp->power != SCHED_POWER_SCALE) {
5240 printk(KERN_CONT " (cpu_power = %d)",
5244 group = group->next;
5245 } while (group != sd->groups);
5246 printk(KERN_CONT "\n");
5248 if (!cpumask_equal(sched_domain_span(sd), groupmask))
5249 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5252 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5253 printk(KERN_ERR "ERROR: parent span is not a superset "
5254 "of domain->span\n");
5258 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5262 if (!sched_debug_enabled)
5266 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5270 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5273 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5281 #else /* !CONFIG_SCHED_DEBUG */
5282 # define sched_domain_debug(sd, cpu) do { } while (0)
5283 static inline bool sched_debug(void)
5287 #endif /* CONFIG_SCHED_DEBUG */
5289 static int sd_degenerate(struct sched_domain *sd)
5291 if (cpumask_weight(sched_domain_span(sd)) == 1)
5294 /* Following flags need at least 2 groups */
5295 if (sd->flags & (SD_LOAD_BALANCE |
5296 SD_BALANCE_NEWIDLE |
5300 SD_SHARE_PKG_RESOURCES)) {
5301 if (sd->groups != sd->groups->next)
5305 /* Following flags don't use groups */
5306 if (sd->flags & (SD_WAKE_AFFINE))
5313 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5315 unsigned long cflags = sd->flags, pflags = parent->flags;
5317 if (sd_degenerate(parent))
5320 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5323 /* Flags needing groups don't count if only 1 group in parent */
5324 if (parent->groups == parent->groups->next) {
5325 pflags &= ~(SD_LOAD_BALANCE |
5326 SD_BALANCE_NEWIDLE |
5330 SD_SHARE_PKG_RESOURCES |
5332 if (nr_node_ids == 1)
5333 pflags &= ~SD_SERIALIZE;
5335 if (~cflags & pflags)
5341 static void free_rootdomain(struct rcu_head *rcu)
5343 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5345 cpupri_cleanup(&rd->cpupri);
5346 cpudl_cleanup(&rd->cpudl);
5347 free_cpumask_var(rd->dlo_mask);
5348 free_cpumask_var(rd->rto_mask);
5349 free_cpumask_var(rd->online);
5350 free_cpumask_var(rd->span);
5354 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5356 struct root_domain *old_rd = NULL;
5357 unsigned long flags;
5359 raw_spin_lock_irqsave(&rq->lock, flags);
5364 if (cpumask_test_cpu(rq->cpu, old_rd->online))
5367 cpumask_clear_cpu(rq->cpu, old_rd->span);
5370 * If we dont want to free the old_rd yet then
5371 * set old_rd to NULL to skip the freeing later
5374 if (!atomic_dec_and_test(&old_rd->refcount))
5378 atomic_inc(&rd->refcount);
5381 cpumask_set_cpu(rq->cpu, rd->span);
5382 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5385 raw_spin_unlock_irqrestore(&rq->lock, flags);
5388 call_rcu_sched(&old_rd->rcu, free_rootdomain);
5391 static int init_rootdomain(struct root_domain *rd)
5393 memset(rd, 0, sizeof(*rd));
5395 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5397 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5399 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5401 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5404 init_dl_bw(&rd->dl_bw);
5405 if (cpudl_init(&rd->cpudl) != 0)
5408 if (cpupri_init(&rd->cpupri) != 0)
5413 free_cpumask_var(rd->rto_mask);
5415 free_cpumask_var(rd->dlo_mask);
5417 free_cpumask_var(rd->online);
5419 free_cpumask_var(rd->span);
5425 * By default the system creates a single root-domain with all cpus as
5426 * members (mimicking the global state we have today).
5428 struct root_domain def_root_domain;
5430 static void init_defrootdomain(void)
5432 init_rootdomain(&def_root_domain);
5434 atomic_set(&def_root_domain.refcount, 1);
5437 static struct root_domain *alloc_rootdomain(void)
5439 struct root_domain *rd;
5441 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5445 if (init_rootdomain(rd) != 0) {
5453 static void free_sched_groups(struct sched_group *sg, int free_sgp)
5455 struct sched_group *tmp, *first;
5464 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5469 } while (sg != first);
5472 static void free_sched_domain(struct rcu_head *rcu)
5474 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5477 * If its an overlapping domain it has private groups, iterate and
5480 if (sd->flags & SD_OVERLAP) {
5481 free_sched_groups(sd->groups, 1);
5482 } else if (atomic_dec_and_test(&sd->groups->ref)) {
5483 kfree(sd->groups->sgp);
5489 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5491 call_rcu(&sd->rcu, free_sched_domain);
5494 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5496 for (; sd; sd = sd->parent)
5497 destroy_sched_domain(sd, cpu);
5501 * Keep a special pointer to the highest sched_domain that has
5502 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5503 * allows us to avoid some pointer chasing select_idle_sibling().
5505 * Also keep a unique ID per domain (we use the first cpu number in
5506 * the cpumask of the domain), this allows us to quickly tell if
5507 * two cpus are in the same cache domain, see cpus_share_cache().
5509 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5510 DEFINE_PER_CPU(int, sd_llc_size);
5511 DEFINE_PER_CPU(int, sd_llc_id);
5512 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5513 DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5514 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5516 static void update_top_cache_domain(int cpu)
5518 struct sched_domain *sd;
5519 struct sched_domain *busy_sd = NULL;
5523 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5525 id = cpumask_first(sched_domain_span(sd));
5526 size = cpumask_weight(sched_domain_span(sd));
5527 busy_sd = sd->parent; /* sd_busy */
5529 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5531 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5532 per_cpu(sd_llc_size, cpu) = size;
5533 per_cpu(sd_llc_id, cpu) = id;
5535 sd = lowest_flag_domain(cpu, SD_NUMA);
5536 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5538 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5539 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5543 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5544 * hold the hotplug lock.
5547 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5549 struct rq *rq = cpu_rq(cpu);
5550 struct sched_domain *tmp;
5552 /* Remove the sched domains which do not contribute to scheduling. */
5553 for (tmp = sd; tmp; ) {
5554 struct sched_domain *parent = tmp->parent;
5558 if (sd_parent_degenerate(tmp, parent)) {
5559 tmp->parent = parent->parent;
5561 parent->parent->child = tmp;
5563 * Transfer SD_PREFER_SIBLING down in case of a
5564 * degenerate parent; the spans match for this
5565 * so the property transfers.
5567 if (parent->flags & SD_PREFER_SIBLING)
5568 tmp->flags |= SD_PREFER_SIBLING;
5569 destroy_sched_domain(parent, cpu);
5574 if (sd && sd_degenerate(sd)) {
5577 destroy_sched_domain(tmp, cpu);
5582 sched_domain_debug(sd, cpu);
5584 rq_attach_root(rq, rd);
5586 rcu_assign_pointer(rq->sd, sd);
5587 destroy_sched_domains(tmp, cpu);
5589 update_top_cache_domain(cpu);
5592 /* cpus with isolated domains */
5593 static cpumask_var_t cpu_isolated_map;
5595 /* Setup the mask of cpus configured for isolated domains */
5596 static int __init isolated_cpu_setup(char *str)
5598 alloc_bootmem_cpumask_var(&cpu_isolated_map);
5599 cpulist_parse(str, cpu_isolated_map);
5603 __setup("isolcpus=", isolated_cpu_setup);
5605 static const struct cpumask *cpu_cpu_mask(int cpu)
5607 return cpumask_of_node(cpu_to_node(cpu));
5611 struct sched_domain **__percpu sd;
5612 struct sched_group **__percpu sg;
5613 struct sched_group_power **__percpu sgp;
5617 struct sched_domain ** __percpu sd;
5618 struct root_domain *rd;
5628 struct sched_domain_topology_level;
5630 typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5631 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5633 #define SDTL_OVERLAP 0x01
5635 struct sched_domain_topology_level {
5636 sched_domain_init_f init;
5637 sched_domain_mask_f mask;
5640 struct sd_data data;
5644 * Build an iteration mask that can exclude certain CPUs from the upwards
5647 * Asymmetric node setups can result in situations where the domain tree is of
5648 * unequal depth, make sure to skip domains that already cover the entire
5651 * In that case build_sched_domains() will have terminated the iteration early
5652 * and our sibling sd spans will be empty. Domains should always include the
5653 * cpu they're built on, so check that.
5656 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5658 const struct cpumask *span = sched_domain_span(sd);
5659 struct sd_data *sdd = sd->private;
5660 struct sched_domain *sibling;
5663 for_each_cpu(i, span) {
5664 sibling = *per_cpu_ptr(sdd->sd, i);
5665 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5668 cpumask_set_cpu(i, sched_group_mask(sg));
5673 * Return the canonical balance cpu for this group, this is the first cpu
5674 * of this group that's also in the iteration mask.
5676 int group_balance_cpu(struct sched_group *sg)
5678 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5682 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5684 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5685 const struct cpumask *span = sched_domain_span(sd);
5686 struct cpumask *covered = sched_domains_tmpmask;
5687 struct sd_data *sdd = sd->private;
5688 struct sched_domain *child;
5691 cpumask_clear(covered);
5693 for_each_cpu(i, span) {
5694 struct cpumask *sg_span;
5696 if (cpumask_test_cpu(i, covered))
5699 child = *per_cpu_ptr(sdd->sd, i);
5701 /* See the comment near build_group_mask(). */
5702 if (!cpumask_test_cpu(i, sched_domain_span(child)))
5705 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5706 GFP_KERNEL, cpu_to_node(cpu));
5711 sg_span = sched_group_cpus(sg);
5713 child = child->child;
5714 cpumask_copy(sg_span, sched_domain_span(child));
5716 cpumask_set_cpu(i, sg_span);
5718 cpumask_or(covered, covered, sg_span);
5720 sg->sgp = *per_cpu_ptr(sdd->sgp, i);
5721 if (atomic_inc_return(&sg->sgp->ref) == 1)
5722 build_group_mask(sd, sg);
5725 * Initialize sgp->power such that even if we mess up the
5726 * domains and no possible iteration will get us here, we won't
5729 sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5730 sg->sgp->power_orig = sg->sgp->power;
5733 * Make sure the first group of this domain contains the
5734 * canonical balance cpu. Otherwise the sched_domain iteration
5735 * breaks. See update_sg_lb_stats().
5737 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5738 group_balance_cpu(sg) == cpu)
5748 sd->groups = groups;
5753 free_sched_groups(first, 0);
5758 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5760 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5761 struct sched_domain *child = sd->child;
5764 cpu = cpumask_first(sched_domain_span(child));
5767 *sg = *per_cpu_ptr(sdd->sg, cpu);
5768 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5769 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5776 * build_sched_groups will build a circular linked list of the groups
5777 * covered by the given span, and will set each group's ->cpumask correctly,
5778 * and ->cpu_power to 0.
5780 * Assumes the sched_domain tree is fully constructed
5783 build_sched_groups(struct sched_domain *sd, int cpu)
5785 struct sched_group *first = NULL, *last = NULL;
5786 struct sd_data *sdd = sd->private;
5787 const struct cpumask *span = sched_domain_span(sd);
5788 struct cpumask *covered;
5791 get_group(cpu, sdd, &sd->groups);
5792 atomic_inc(&sd->groups->ref);
5794 if (cpu != cpumask_first(span))
5797 lockdep_assert_held(&sched_domains_mutex);
5798 covered = sched_domains_tmpmask;
5800 cpumask_clear(covered);
5802 for_each_cpu(i, span) {
5803 struct sched_group *sg;
5806 if (cpumask_test_cpu(i, covered))
5809 group = get_group(i, sdd, &sg);
5810 cpumask_clear(sched_group_cpus(sg));
5812 cpumask_setall(sched_group_mask(sg));
5814 for_each_cpu(j, span) {
5815 if (get_group(j, sdd, NULL) != group)
5818 cpumask_set_cpu(j, covered);
5819 cpumask_set_cpu(j, sched_group_cpus(sg));
5834 * Initialize sched groups cpu_power.
5836 * cpu_power indicates the capacity of sched group, which is used while
5837 * distributing the load between different sched groups in a sched domain.
5838 * Typically cpu_power for all the groups in a sched domain will be same unless
5839 * there are asymmetries in the topology. If there are asymmetries, group
5840 * having more cpu_power will pickup more load compared to the group having
5843 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5845 struct sched_group *sg = sd->groups;
5850 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5852 } while (sg != sd->groups);
5854 if (cpu != group_balance_cpu(sg))
5857 update_group_power(sd, cpu);
5858 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5861 int __weak arch_sd_sibling_asym_packing(void)
5863 return 0*SD_ASYM_PACKING;
5867 * Initializers for schedule domains
5868 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5871 #ifdef CONFIG_SCHED_DEBUG
5872 # define SD_INIT_NAME(sd, type) sd->name = #type
5874 # define SD_INIT_NAME(sd, type) do { } while (0)
5877 #define SD_INIT_FUNC(type) \
5878 static noinline struct sched_domain * \
5879 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
5881 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
5882 *sd = SD_##type##_INIT; \
5883 SD_INIT_NAME(sd, type); \
5884 sd->private = &tl->data; \
5889 #ifdef CONFIG_SCHED_SMT
5890 SD_INIT_FUNC(SIBLING)
5892 #ifdef CONFIG_SCHED_MC
5895 #ifdef CONFIG_SCHED_BOOK
5899 static int default_relax_domain_level = -1;
5900 int sched_domain_level_max;
5902 static int __init setup_relax_domain_level(char *str)
5904 if (kstrtoint(str, 0, &default_relax_domain_level))
5905 pr_warn("Unable to set relax_domain_level\n");
5909 __setup("relax_domain_level=", setup_relax_domain_level);
5911 static void set_domain_attribute(struct sched_domain *sd,
5912 struct sched_domain_attr *attr)
5916 if (!attr || attr->relax_domain_level < 0) {
5917 if (default_relax_domain_level < 0)
5920 request = default_relax_domain_level;
5922 request = attr->relax_domain_level;
5923 if (request < sd->level) {
5924 /* turn off idle balance on this domain */
5925 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5927 /* turn on idle balance on this domain */
5928 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5932 static void __sdt_free(const struct cpumask *cpu_map);
5933 static int __sdt_alloc(const struct cpumask *cpu_map);
5935 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5936 const struct cpumask *cpu_map)
5940 if (!atomic_read(&d->rd->refcount))
5941 free_rootdomain(&d->rd->rcu); /* fall through */
5943 free_percpu(d->sd); /* fall through */
5945 __sdt_free(cpu_map); /* fall through */
5951 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5952 const struct cpumask *cpu_map)
5954 memset(d, 0, sizeof(*d));
5956 if (__sdt_alloc(cpu_map))
5957 return sa_sd_storage;
5958 d->sd = alloc_percpu(struct sched_domain *);
5960 return sa_sd_storage;
5961 d->rd = alloc_rootdomain();
5964 return sa_rootdomain;
5968 * NULL the sd_data elements we've used to build the sched_domain and
5969 * sched_group structure so that the subsequent __free_domain_allocs()
5970 * will not free the data we're using.
5972 static void claim_allocations(int cpu, struct sched_domain *sd)
5974 struct sd_data *sdd = sd->private;
5976 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5977 *per_cpu_ptr(sdd->sd, cpu) = NULL;
5979 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
5980 *per_cpu_ptr(sdd->sg, cpu) = NULL;
5982 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
5983 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
5986 #ifdef CONFIG_SCHED_SMT
5987 static const struct cpumask *cpu_smt_mask(int cpu)
5989 return topology_thread_cpumask(cpu);
5994 * Topology list, bottom-up.
5996 static struct sched_domain_topology_level default_topology[] = {
5997 #ifdef CONFIG_SCHED_SMT
5998 { sd_init_SIBLING, cpu_smt_mask, },
6000 #ifdef CONFIG_SCHED_MC
6001 { sd_init_MC, cpu_coregroup_mask, },
6003 #ifdef CONFIG_SCHED_BOOK
6004 { sd_init_BOOK, cpu_book_mask, },
6006 { sd_init_CPU, cpu_cpu_mask, },
6010 static struct sched_domain_topology_level *sched_domain_topology = default_topology;
6012 #define for_each_sd_topology(tl) \
6013 for (tl = sched_domain_topology; tl->init; tl++)
6017 static int sched_domains_numa_levels;
6018 static int *sched_domains_numa_distance;
6019 static struct cpumask ***sched_domains_numa_masks;
6020 static int sched_domains_curr_level;
6022 static inline int sd_local_flags(int level)
6024 if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
6027 return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
6030 static struct sched_domain *
6031 sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
6033 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6034 int level = tl->numa_level;
6035 int sd_weight = cpumask_weight(
6036 sched_domains_numa_masks[level][cpu_to_node(cpu)]);
6038 *sd = (struct sched_domain){
6039 .min_interval = sd_weight,
6040 .max_interval = 2*sd_weight,
6042 .imbalance_pct = 125,
6043 .cache_nice_tries = 2,
6050 .flags = 1*SD_LOAD_BALANCE
6051 | 1*SD_BALANCE_NEWIDLE
6056 | 0*SD_SHARE_CPUPOWER
6057 | 0*SD_SHARE_PKG_RESOURCES
6059 | 0*SD_PREFER_SIBLING
6061 | sd_local_flags(level)
6063 .last_balance = jiffies,
6064 .balance_interval = sd_weight,
6066 SD_INIT_NAME(sd, NUMA);
6067 sd->private = &tl->data;
6070 * Ugly hack to pass state to sd_numa_mask()...
6072 sched_domains_curr_level = tl->numa_level;
6077 static const struct cpumask *sd_numa_mask(int cpu)
6079 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6082 static void sched_numa_warn(const char *str)
6084 static int done = false;
6092 printk(KERN_WARNING "ERROR: %s\n\n", str);
6094 for (i = 0; i < nr_node_ids; i++) {
6095 printk(KERN_WARNING " ");
6096 for (j = 0; j < nr_node_ids; j++)
6097 printk(KERN_CONT "%02d ", node_distance(i,j));
6098 printk(KERN_CONT "\n");
6100 printk(KERN_WARNING "\n");
6103 static bool find_numa_distance(int distance)
6107 if (distance == node_distance(0, 0))
6110 for (i = 0; i < sched_domains_numa_levels; i++) {
6111 if (sched_domains_numa_distance[i] == distance)
6118 static void sched_init_numa(void)
6120 int next_distance, curr_distance = node_distance(0, 0);
6121 struct sched_domain_topology_level *tl;
6125 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6126 if (!sched_domains_numa_distance)
6130 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6131 * unique distances in the node_distance() table.
6133 * Assumes node_distance(0,j) includes all distances in
6134 * node_distance(i,j) in order to avoid cubic time.
6136 next_distance = curr_distance;
6137 for (i = 0; i < nr_node_ids; i++) {
6138 for (j = 0; j < nr_node_ids; j++) {
6139 for (k = 0; k < nr_node_ids; k++) {
6140 int distance = node_distance(i, k);
6142 if (distance > curr_distance &&
6143 (distance < next_distance ||
6144 next_distance == curr_distance))
6145 next_distance = distance;
6148 * While not a strong assumption it would be nice to know
6149 * about cases where if node A is connected to B, B is not
6150 * equally connected to A.
6152 if (sched_debug() && node_distance(k, i) != distance)
6153 sched_numa_warn("Node-distance not symmetric");
6155 if (sched_debug() && i && !find_numa_distance(distance))
6156 sched_numa_warn("Node-0 not representative");
6158 if (next_distance != curr_distance) {
6159 sched_domains_numa_distance[level++] = next_distance;
6160 sched_domains_numa_levels = level;
6161 curr_distance = next_distance;
6166 * In case of sched_debug() we verify the above assumption.
6172 * 'level' contains the number of unique distances, excluding the
6173 * identity distance node_distance(i,i).
6175 * The sched_domains_numa_distance[] array includes the actual distance
6180 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6181 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6182 * the array will contain less then 'level' members. This could be
6183 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6184 * in other functions.
6186 * We reset it to 'level' at the end of this function.
6188 sched_domains_numa_levels = 0;
6190 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6191 if (!sched_domains_numa_masks)
6195 * Now for each level, construct a mask per node which contains all
6196 * cpus of nodes that are that many hops away from us.
6198 for (i = 0; i < level; i++) {
6199 sched_domains_numa_masks[i] =
6200 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6201 if (!sched_domains_numa_masks[i])
6204 for (j = 0; j < nr_node_ids; j++) {
6205 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6209 sched_domains_numa_masks[i][j] = mask;
6211 for (k = 0; k < nr_node_ids; k++) {
6212 if (node_distance(j, k) > sched_domains_numa_distance[i])
6215 cpumask_or(mask, mask, cpumask_of_node(k));
6220 tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6221 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6226 * Copy the default topology bits..
6228 for (i = 0; default_topology[i].init; i++)
6229 tl[i] = default_topology[i];
6232 * .. and append 'j' levels of NUMA goodness.
6234 for (j = 0; j < level; i++, j++) {
6235 tl[i] = (struct sched_domain_topology_level){
6236 .init = sd_numa_init,
6237 .mask = sd_numa_mask,
6238 .flags = SDTL_OVERLAP,
6243 sched_domain_topology = tl;
6245 sched_domains_numa_levels = level;
6248 static void sched_domains_numa_masks_set(int cpu)
6251 int node = cpu_to_node(cpu);
6253 for (i = 0; i < sched_domains_numa_levels; i++) {
6254 for (j = 0; j < nr_node_ids; j++) {
6255 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6256 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6261 static void sched_domains_numa_masks_clear(int cpu)
6264 for (i = 0; i < sched_domains_numa_levels; i++) {
6265 for (j = 0; j < nr_node_ids; j++)
6266 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6271 * Update sched_domains_numa_masks[level][node] array when new cpus
6274 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6275 unsigned long action,
6278 int cpu = (long)hcpu;
6280 switch (action & ~CPU_TASKS_FROZEN) {
6282 sched_domains_numa_masks_set(cpu);
6286 sched_domains_numa_masks_clear(cpu);
6296 static inline void sched_init_numa(void)
6300 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6301 unsigned long action,
6306 #endif /* CONFIG_NUMA */
6308 static int __sdt_alloc(const struct cpumask *cpu_map)
6310 struct sched_domain_topology_level *tl;
6313 for_each_sd_topology(tl) {
6314 struct sd_data *sdd = &tl->data;
6316 sdd->sd = alloc_percpu(struct sched_domain *);
6320 sdd->sg = alloc_percpu(struct sched_group *);
6324 sdd->sgp = alloc_percpu(struct sched_group_power *);
6328 for_each_cpu(j, cpu_map) {
6329 struct sched_domain *sd;
6330 struct sched_group *sg;
6331 struct sched_group_power *sgp;
6333 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6334 GFP_KERNEL, cpu_to_node(j));
6338 *per_cpu_ptr(sdd->sd, j) = sd;
6340 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6341 GFP_KERNEL, cpu_to_node(j));
6347 *per_cpu_ptr(sdd->sg, j) = sg;
6349 sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
6350 GFP_KERNEL, cpu_to_node(j));
6354 *per_cpu_ptr(sdd->sgp, j) = sgp;
6361 static void __sdt_free(const struct cpumask *cpu_map)
6363 struct sched_domain_topology_level *tl;
6366 for_each_sd_topology(tl) {
6367 struct sd_data *sdd = &tl->data;
6369 for_each_cpu(j, cpu_map) {
6370 struct sched_domain *sd;
6373 sd = *per_cpu_ptr(sdd->sd, j);
6374 if (sd && (sd->flags & SD_OVERLAP))
6375 free_sched_groups(sd->groups, 0);
6376 kfree(*per_cpu_ptr(sdd->sd, j));
6380 kfree(*per_cpu_ptr(sdd->sg, j));
6382 kfree(*per_cpu_ptr(sdd->sgp, j));
6384 free_percpu(sdd->sd);
6386 free_percpu(sdd->sg);
6388 free_percpu(sdd->sgp);
6393 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6394 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6395 struct sched_domain *child, int cpu)
6397 struct sched_domain *sd = tl->init(tl, cpu);
6401 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6403 sd->level = child->level + 1;
6404 sched_domain_level_max = max(sched_domain_level_max, sd->level);
6408 set_domain_attribute(sd, attr);
6414 * Build sched domains for a given set of cpus and attach the sched domains
6415 * to the individual cpus
6417 static int build_sched_domains(const struct cpumask *cpu_map,
6418 struct sched_domain_attr *attr)
6420 enum s_alloc alloc_state;
6421 struct sched_domain *sd;
6423 int i, ret = -ENOMEM;
6425 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6426 if (alloc_state != sa_rootdomain)
6429 /* Set up domains for cpus specified by the cpu_map. */
6430 for_each_cpu(i, cpu_map) {
6431 struct sched_domain_topology_level *tl;
6434 for_each_sd_topology(tl) {
6435 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6436 if (tl == sched_domain_topology)
6437 *per_cpu_ptr(d.sd, i) = sd;
6438 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6439 sd->flags |= SD_OVERLAP;
6440 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6445 /* Build the groups for the domains */
6446 for_each_cpu(i, cpu_map) {
6447 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6448 sd->span_weight = cpumask_weight(sched_domain_span(sd));
6449 if (sd->flags & SD_OVERLAP) {
6450 if (build_overlap_sched_groups(sd, i))
6453 if (build_sched_groups(sd, i))
6459 /* Calculate CPU power for physical packages and nodes */
6460 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6461 if (!cpumask_test_cpu(i, cpu_map))
6464 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6465 claim_allocations(i, sd);
6466 init_sched_groups_power(i, sd);
6470 /* Attach the domains */
6472 for_each_cpu(i, cpu_map) {
6473 sd = *per_cpu_ptr(d.sd, i);
6474 cpu_attach_domain(sd, d.rd, i);
6480 __free_domain_allocs(&d, alloc_state, cpu_map);
6484 static cpumask_var_t *doms_cur; /* current sched domains */
6485 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6486 static struct sched_domain_attr *dattr_cur;
6487 /* attribues of custom domains in 'doms_cur' */
6490 * Special case: If a kmalloc of a doms_cur partition (array of
6491 * cpumask) fails, then fallback to a single sched domain,
6492 * as determined by the single cpumask fallback_doms.
6494 static cpumask_var_t fallback_doms;
6497 * arch_update_cpu_topology lets virtualized architectures update the
6498 * cpu core maps. It is supposed to return 1 if the topology changed
6499 * or 0 if it stayed the same.
6501 int __attribute__((weak)) arch_update_cpu_topology(void)
6506 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6509 cpumask_var_t *doms;
6511 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6514 for (i = 0; i < ndoms; i++) {
6515 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6516 free_sched_domains(doms, i);
6523 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6526 for (i = 0; i < ndoms; i++)
6527 free_cpumask_var(doms[i]);
6532 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6533 * For now this just excludes isolated cpus, but could be used to
6534 * exclude other special cases in the future.
6536 static int init_sched_domains(const struct cpumask *cpu_map)
6540 arch_update_cpu_topology();
6542 doms_cur = alloc_sched_domains(ndoms_cur);
6544 doms_cur = &fallback_doms;
6545 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6546 err = build_sched_domains(doms_cur[0], NULL);
6547 register_sched_domain_sysctl();
6553 * Detach sched domains from a group of cpus specified in cpu_map
6554 * These cpus will now be attached to the NULL domain
6556 static void detach_destroy_domains(const struct cpumask *cpu_map)
6561 for_each_cpu(i, cpu_map)
6562 cpu_attach_domain(NULL, &def_root_domain, i);
6566 /* handle null as "default" */
6567 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6568 struct sched_domain_attr *new, int idx_new)
6570 struct sched_domain_attr tmp;
6577 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6578 new ? (new + idx_new) : &tmp,
6579 sizeof(struct sched_domain_attr));
6583 * Partition sched domains as specified by the 'ndoms_new'
6584 * cpumasks in the array doms_new[] of cpumasks. This compares
6585 * doms_new[] to the current sched domain partitioning, doms_cur[].
6586 * It destroys each deleted domain and builds each new domain.
6588 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6589 * The masks don't intersect (don't overlap.) We should setup one
6590 * sched domain for each mask. CPUs not in any of the cpumasks will
6591 * not be load balanced. If the same cpumask appears both in the
6592 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6595 * The passed in 'doms_new' should be allocated using
6596 * alloc_sched_domains. This routine takes ownership of it and will
6597 * free_sched_domains it when done with it. If the caller failed the
6598 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6599 * and partition_sched_domains() will fallback to the single partition
6600 * 'fallback_doms', it also forces the domains to be rebuilt.
6602 * If doms_new == NULL it will be replaced with cpu_online_mask.
6603 * ndoms_new == 0 is a special case for destroying existing domains,
6604 * and it will not create the default domain.
6606 * Call with hotplug lock held
6608 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6609 struct sched_domain_attr *dattr_new)
6614 mutex_lock(&sched_domains_mutex);
6616 /* always unregister in case we don't destroy any domains */
6617 unregister_sched_domain_sysctl();
6619 /* Let architecture update cpu core mappings. */
6620 new_topology = arch_update_cpu_topology();
6622 n = doms_new ? ndoms_new : 0;
6624 /* Destroy deleted domains */
6625 for (i = 0; i < ndoms_cur; i++) {
6626 for (j = 0; j < n && !new_topology; j++) {
6627 if (cpumask_equal(doms_cur[i], doms_new[j])
6628 && dattrs_equal(dattr_cur, i, dattr_new, j))
6631 /* no match - a current sched domain not in new doms_new[] */
6632 detach_destroy_domains(doms_cur[i]);
6638 if (doms_new == NULL) {
6640 doms_new = &fallback_doms;
6641 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6642 WARN_ON_ONCE(dattr_new);
6645 /* Build new domains */
6646 for (i = 0; i < ndoms_new; i++) {
6647 for (j = 0; j < n && !new_topology; j++) {
6648 if (cpumask_equal(doms_new[i], doms_cur[j])
6649 && dattrs_equal(dattr_new, i, dattr_cur, j))
6652 /* no match - add a new doms_new */
6653 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6658 /* Remember the new sched domains */
6659 if (doms_cur != &fallback_doms)
6660 free_sched_domains(doms_cur, ndoms_cur);
6661 kfree(dattr_cur); /* kfree(NULL) is safe */
6662 doms_cur = doms_new;
6663 dattr_cur = dattr_new;
6664 ndoms_cur = ndoms_new;
6666 register_sched_domain_sysctl();
6668 mutex_unlock(&sched_domains_mutex);
6671 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6674 * Update cpusets according to cpu_active mask. If cpusets are
6675 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6676 * around partition_sched_domains().
6678 * If we come here as part of a suspend/resume, don't touch cpusets because we
6679 * want to restore it back to its original state upon resume anyway.
6681 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6685 case CPU_ONLINE_FROZEN:
6686 case CPU_DOWN_FAILED_FROZEN:
6689 * num_cpus_frozen tracks how many CPUs are involved in suspend
6690 * resume sequence. As long as this is not the last online
6691 * operation in the resume sequence, just build a single sched
6692 * domain, ignoring cpusets.
6695 if (likely(num_cpus_frozen)) {
6696 partition_sched_domains(1, NULL, NULL);
6701 * This is the last CPU online operation. So fall through and
6702 * restore the original sched domains by considering the
6703 * cpuset configurations.
6707 case CPU_DOWN_FAILED:
6708 cpuset_update_active_cpus(true);
6716 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6720 case CPU_DOWN_PREPARE:
6721 cpuset_update_active_cpus(false);
6723 case CPU_DOWN_PREPARE_FROZEN:
6725 partition_sched_domains(1, NULL, NULL);
6733 void __init sched_init_smp(void)
6735 cpumask_var_t non_isolated_cpus;
6737 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6738 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6743 * There's no userspace yet to cause hotplug operations; hence all the
6744 * cpu masks are stable and all blatant races in the below code cannot
6747 mutex_lock(&sched_domains_mutex);
6748 init_sched_domains(cpu_active_mask);
6749 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6750 if (cpumask_empty(non_isolated_cpus))
6751 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6752 mutex_unlock(&sched_domains_mutex);
6754 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6755 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6756 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6760 /* Move init over to a non-isolated CPU */
6761 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6763 sched_init_granularity();
6764 free_cpumask_var(non_isolated_cpus);
6766 init_sched_rt_class();
6767 init_sched_dl_class();
6770 void __init sched_init_smp(void)
6772 sched_init_granularity();
6774 #endif /* CONFIG_SMP */
6776 const_debug unsigned int sysctl_timer_migration = 1;
6778 int in_sched_functions(unsigned long addr)
6780 return in_lock_functions(addr) ||
6781 (addr >= (unsigned long)__sched_text_start
6782 && addr < (unsigned long)__sched_text_end);
6785 #ifdef CONFIG_CGROUP_SCHED
6787 * Default task group.
6788 * Every task in system belongs to this group at bootup.
6790 struct task_group root_task_group;
6791 LIST_HEAD(task_groups);
6794 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6796 void __init sched_init(void)
6799 unsigned long alloc_size = 0, ptr;
6801 #ifdef CONFIG_FAIR_GROUP_SCHED
6802 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6804 #ifdef CONFIG_RT_GROUP_SCHED
6805 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6807 #ifdef CONFIG_CPUMASK_OFFSTACK
6808 alloc_size += num_possible_cpus() * cpumask_size();
6811 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6813 #ifdef CONFIG_FAIR_GROUP_SCHED
6814 root_task_group.se = (struct sched_entity **)ptr;
6815 ptr += nr_cpu_ids * sizeof(void **);
6817 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6818 ptr += nr_cpu_ids * sizeof(void **);
6820 #endif /* CONFIG_FAIR_GROUP_SCHED */
6821 #ifdef CONFIG_RT_GROUP_SCHED
6822 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6823 ptr += nr_cpu_ids * sizeof(void **);
6825 root_task_group.rt_rq = (struct rt_rq **)ptr;
6826 ptr += nr_cpu_ids * sizeof(void **);
6828 #endif /* CONFIG_RT_GROUP_SCHED */
6829 #ifdef CONFIG_CPUMASK_OFFSTACK
6830 for_each_possible_cpu(i) {
6831 per_cpu(load_balance_mask, i) = (void *)ptr;
6832 ptr += cpumask_size();
6834 #endif /* CONFIG_CPUMASK_OFFSTACK */
6837 init_rt_bandwidth(&def_rt_bandwidth,
6838 global_rt_period(), global_rt_runtime());
6839 init_dl_bandwidth(&def_dl_bandwidth,
6840 global_rt_period(), global_rt_runtime());
6843 init_defrootdomain();
6846 #ifdef CONFIG_RT_GROUP_SCHED
6847 init_rt_bandwidth(&root_task_group.rt_bandwidth,
6848 global_rt_period(), global_rt_runtime());
6849 #endif /* CONFIG_RT_GROUP_SCHED */
6851 #ifdef CONFIG_CGROUP_SCHED
6852 list_add(&root_task_group.list, &task_groups);
6853 INIT_LIST_HEAD(&root_task_group.children);
6854 INIT_LIST_HEAD(&root_task_group.siblings);
6855 autogroup_init(&init_task);
6857 #endif /* CONFIG_CGROUP_SCHED */
6859 for_each_possible_cpu(i) {
6863 raw_spin_lock_init(&rq->lock);
6865 rq->calc_load_active = 0;
6866 rq->calc_load_update = jiffies + LOAD_FREQ;
6867 init_cfs_rq(&rq->cfs);
6868 init_rt_rq(&rq->rt, rq);
6869 init_dl_rq(&rq->dl, rq);
6870 #ifdef CONFIG_FAIR_GROUP_SCHED
6871 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6872 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6874 * How much cpu bandwidth does root_task_group get?
6876 * In case of task-groups formed thr' the cgroup filesystem, it
6877 * gets 100% of the cpu resources in the system. This overall
6878 * system cpu resource is divided among the tasks of
6879 * root_task_group and its child task-groups in a fair manner,
6880 * based on each entity's (task or task-group's) weight
6881 * (se->load.weight).
6883 * In other words, if root_task_group has 10 tasks of weight
6884 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6885 * then A0's share of the cpu resource is:
6887 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6889 * We achieve this by letting root_task_group's tasks sit
6890 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6892 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6893 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6894 #endif /* CONFIG_FAIR_GROUP_SCHED */
6896 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6897 #ifdef CONFIG_RT_GROUP_SCHED
6898 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6901 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6902 rq->cpu_load[j] = 0;
6904 rq->last_load_update_tick = jiffies;
6909 rq->cpu_power = SCHED_POWER_SCALE;
6910 rq->post_schedule = 0;
6911 rq->active_balance = 0;
6912 rq->next_balance = jiffies;
6917 rq->avg_idle = 2*sysctl_sched_migration_cost;
6918 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6920 INIT_LIST_HEAD(&rq->cfs_tasks);
6922 rq_attach_root(rq, &def_root_domain);
6923 #ifdef CONFIG_NO_HZ_COMMON
6926 #ifdef CONFIG_NO_HZ_FULL
6927 rq->last_sched_tick = 0;
6931 atomic_set(&rq->nr_iowait, 0);
6934 set_load_weight(&init_task);
6936 #ifdef CONFIG_PREEMPT_NOTIFIERS
6937 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6941 * The boot idle thread does lazy MMU switching as well:
6943 atomic_inc(&init_mm.mm_count);
6944 enter_lazy_tlb(&init_mm, current);
6947 * Make us the idle thread. Technically, schedule() should not be
6948 * called from this thread, however somewhere below it might be,
6949 * but because we are the idle thread, we just pick up running again
6950 * when this runqueue becomes "idle".
6952 init_idle(current, smp_processor_id());
6954 calc_load_update = jiffies + LOAD_FREQ;
6957 * During early bootup we pretend to be a normal task:
6959 current->sched_class = &fair_sched_class;
6962 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
6963 /* May be allocated at isolcpus cmdline parse time */
6964 if (cpu_isolated_map == NULL)
6965 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6966 idle_thread_set_boot_cpu();
6968 init_sched_fair_class();
6970 scheduler_running = 1;
6973 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6974 static inline int preempt_count_equals(int preempt_offset)
6976 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
6978 return (nested == preempt_offset);
6981 void __might_sleep(const char *file, int line, int preempt_offset)
6983 static unsigned long prev_jiffy; /* ratelimiting */
6985 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
6986 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6987 !is_idle_task(current)) ||
6988 system_state != SYSTEM_RUNNING || oops_in_progress)
6990 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6992 prev_jiffy = jiffies;
6995 "BUG: sleeping function called from invalid context at %s:%d\n",
6998 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6999 in_atomic(), irqs_disabled(),
7000 current->pid, current->comm);
7002 debug_show_held_locks(current);
7003 if (irqs_disabled())
7004 print_irqtrace_events(current);
7005 #ifdef CONFIG_DEBUG_PREEMPT
7006 if (!preempt_count_equals(preempt_offset)) {
7007 pr_err("Preemption disabled at:");
7008 print_ip_sym(current->preempt_disable_ip);
7014 EXPORT_SYMBOL(__might_sleep);
7017 #ifdef CONFIG_MAGIC_SYSRQ
7018 static void normalize_task(struct rq *rq, struct task_struct *p)
7020 const struct sched_class *prev_class = p->sched_class;
7021 struct sched_attr attr = {
7022 .sched_policy = SCHED_NORMAL,
7024 int old_prio = p->prio;
7029 dequeue_task(rq, p, 0);
7030 __setscheduler(rq, p, &attr);
7032 enqueue_task(rq, p, 0);
7033 resched_task(rq->curr);
7036 check_class_changed(rq, p, prev_class, old_prio);
7039 void normalize_rt_tasks(void)
7041 struct task_struct *g, *p;
7042 unsigned long flags;
7045 read_lock_irqsave(&tasklist_lock, flags);
7046 do_each_thread(g, p) {
7048 * Only normalize user tasks:
7053 p->se.exec_start = 0;
7054 #ifdef CONFIG_SCHEDSTATS
7055 p->se.statistics.wait_start = 0;
7056 p->se.statistics.sleep_start = 0;
7057 p->se.statistics.block_start = 0;
7060 if (!dl_task(p) && !rt_task(p)) {
7062 * Renice negative nice level userspace
7065 if (task_nice(p) < 0 && p->mm)
7066 set_user_nice(p, 0);
7070 raw_spin_lock(&p->pi_lock);
7071 rq = __task_rq_lock(p);
7073 normalize_task(rq, p);
7075 __task_rq_unlock(rq);
7076 raw_spin_unlock(&p->pi_lock);
7077 } while_each_thread(g, p);
7079 read_unlock_irqrestore(&tasklist_lock, flags);
7082 #endif /* CONFIG_MAGIC_SYSRQ */
7084 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7086 * These functions are only useful for the IA64 MCA handling, or kdb.
7088 * They can only be called when the whole system has been
7089 * stopped - every CPU needs to be quiescent, and no scheduling
7090 * activity can take place. Using them for anything else would
7091 * be a serious bug, and as a result, they aren't even visible
7092 * under any other configuration.
7096 * curr_task - return the current task for a given cpu.
7097 * @cpu: the processor in question.
7099 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7101 * Return: The current task for @cpu.
7103 struct task_struct *curr_task(int cpu)
7105 return cpu_curr(cpu);
7108 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7112 * set_curr_task - set the current task for a given cpu.
7113 * @cpu: the processor in question.
7114 * @p: the task pointer to set.
7116 * Description: This function must only be used when non-maskable interrupts
7117 * are serviced on a separate stack. It allows the architecture to switch the
7118 * notion of the current task on a cpu in a non-blocking manner. This function
7119 * must be called with all CPU's synchronized, and interrupts disabled, the
7120 * and caller must save the original value of the current task (see
7121 * curr_task() above) and restore that value before reenabling interrupts and
7122 * re-starting the system.
7124 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7126 void set_curr_task(int cpu, struct task_struct *p)
7133 #ifdef CONFIG_CGROUP_SCHED
7134 /* task_group_lock serializes the addition/removal of task groups */
7135 static DEFINE_SPINLOCK(task_group_lock);
7137 static void free_sched_group(struct task_group *tg)
7139 free_fair_sched_group(tg);
7140 free_rt_sched_group(tg);
7145 /* allocate runqueue etc for a new task group */
7146 struct task_group *sched_create_group(struct task_group *parent)
7148 struct task_group *tg;
7150 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7152 return ERR_PTR(-ENOMEM);
7154 if (!alloc_fair_sched_group(tg, parent))
7157 if (!alloc_rt_sched_group(tg, parent))
7163 free_sched_group(tg);
7164 return ERR_PTR(-ENOMEM);
7167 void sched_online_group(struct task_group *tg, struct task_group *parent)
7169 unsigned long flags;
7171 spin_lock_irqsave(&task_group_lock, flags);
7172 list_add_rcu(&tg->list, &task_groups);
7174 WARN_ON(!parent); /* root should already exist */
7176 tg->parent = parent;
7177 INIT_LIST_HEAD(&tg->children);
7178 list_add_rcu(&tg->siblings, &parent->children);
7179 spin_unlock_irqrestore(&task_group_lock, flags);
7182 /* rcu callback to free various structures associated with a task group */
7183 static void free_sched_group_rcu(struct rcu_head *rhp)
7185 /* now it should be safe to free those cfs_rqs */
7186 free_sched_group(container_of(rhp, struct task_group, rcu));
7189 /* Destroy runqueue etc associated with a task group */
7190 void sched_destroy_group(struct task_group *tg)
7192 /* wait for possible concurrent references to cfs_rqs complete */
7193 call_rcu(&tg->rcu, free_sched_group_rcu);
7196 void sched_offline_group(struct task_group *tg)
7198 unsigned long flags;
7201 /* end participation in shares distribution */
7202 for_each_possible_cpu(i)
7203 unregister_fair_sched_group(tg, i);
7205 spin_lock_irqsave(&task_group_lock, flags);
7206 list_del_rcu(&tg->list);
7207 list_del_rcu(&tg->siblings);
7208 spin_unlock_irqrestore(&task_group_lock, flags);
7211 /* change task's runqueue when it moves between groups.
7212 * The caller of this function should have put the task in its new group
7213 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7214 * reflect its new group.
7216 void sched_move_task(struct task_struct *tsk)
7218 struct task_group *tg;
7220 unsigned long flags;
7223 rq = task_rq_lock(tsk, &flags);
7225 running = task_current(rq, tsk);
7229 dequeue_task(rq, tsk, 0);
7230 if (unlikely(running))
7231 tsk->sched_class->put_prev_task(rq, tsk);
7233 tg = container_of(task_css_check(tsk, cpu_cgroup_subsys_id,
7234 lockdep_is_held(&tsk->sighand->siglock)),
7235 struct task_group, css);
7236 tg = autogroup_task_group(tsk, tg);
7237 tsk->sched_task_group = tg;
7239 #ifdef CONFIG_FAIR_GROUP_SCHED
7240 if (tsk->sched_class->task_move_group)
7241 tsk->sched_class->task_move_group(tsk, on_rq);
7244 set_task_rq(tsk, task_cpu(tsk));
7246 if (unlikely(running))
7247 tsk->sched_class->set_curr_task(rq);
7249 enqueue_task(rq, tsk, 0);
7251 task_rq_unlock(rq, tsk, &flags);
7253 #endif /* CONFIG_CGROUP_SCHED */
7255 #ifdef CONFIG_RT_GROUP_SCHED
7257 * Ensure that the real time constraints are schedulable.
7259 static DEFINE_MUTEX(rt_constraints_mutex);
7261 /* Must be called with tasklist_lock held */
7262 static inline int tg_has_rt_tasks(struct task_group *tg)
7264 struct task_struct *g, *p;
7266 do_each_thread(g, p) {
7267 if (rt_task(p) && task_rq(p)->rt.tg == tg)
7269 } while_each_thread(g, p);
7274 struct rt_schedulable_data {
7275 struct task_group *tg;
7280 static int tg_rt_schedulable(struct task_group *tg, void *data)
7282 struct rt_schedulable_data *d = data;
7283 struct task_group *child;
7284 unsigned long total, sum = 0;
7285 u64 period, runtime;
7287 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7288 runtime = tg->rt_bandwidth.rt_runtime;
7291 period = d->rt_period;
7292 runtime = d->rt_runtime;
7296 * Cannot have more runtime than the period.
7298 if (runtime > period && runtime != RUNTIME_INF)
7302 * Ensure we don't starve existing RT tasks.
7304 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7307 total = to_ratio(period, runtime);
7310 * Nobody can have more than the global setting allows.
7312 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7316 * The sum of our children's runtime should not exceed our own.
7318 list_for_each_entry_rcu(child, &tg->children, siblings) {
7319 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7320 runtime = child->rt_bandwidth.rt_runtime;
7322 if (child == d->tg) {
7323 period = d->rt_period;
7324 runtime = d->rt_runtime;
7327 sum += to_ratio(period, runtime);
7336 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7340 struct rt_schedulable_data data = {
7342 .rt_period = period,
7343 .rt_runtime = runtime,
7347 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7353 static int tg_set_rt_bandwidth(struct task_group *tg,
7354 u64 rt_period, u64 rt_runtime)
7358 mutex_lock(&rt_constraints_mutex);
7359 read_lock(&tasklist_lock);
7360 err = __rt_schedulable(tg, rt_period, rt_runtime);
7364 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7365 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7366 tg->rt_bandwidth.rt_runtime = rt_runtime;
7368 for_each_possible_cpu(i) {
7369 struct rt_rq *rt_rq = tg->rt_rq[i];
7371 raw_spin_lock(&rt_rq->rt_runtime_lock);
7372 rt_rq->rt_runtime = rt_runtime;
7373 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7375 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7377 read_unlock(&tasklist_lock);
7378 mutex_unlock(&rt_constraints_mutex);
7383 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7385 u64 rt_runtime, rt_period;
7387 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7388 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7389 if (rt_runtime_us < 0)
7390 rt_runtime = RUNTIME_INF;
7392 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7395 static long sched_group_rt_runtime(struct task_group *tg)
7399 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7402 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7403 do_div(rt_runtime_us, NSEC_PER_USEC);
7404 return rt_runtime_us;
7407 static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7409 u64 rt_runtime, rt_period;
7411 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7412 rt_runtime = tg->rt_bandwidth.rt_runtime;
7417 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7420 static long sched_group_rt_period(struct task_group *tg)
7424 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7425 do_div(rt_period_us, NSEC_PER_USEC);
7426 return rt_period_us;
7428 #endif /* CONFIG_RT_GROUP_SCHED */
7430 #ifdef CONFIG_RT_GROUP_SCHED
7431 static int sched_rt_global_constraints(void)
7435 mutex_lock(&rt_constraints_mutex);
7436 read_lock(&tasklist_lock);
7437 ret = __rt_schedulable(NULL, 0, 0);
7438 read_unlock(&tasklist_lock);
7439 mutex_unlock(&rt_constraints_mutex);
7444 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7446 /* Don't accept realtime tasks when there is no way for them to run */
7447 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7453 #else /* !CONFIG_RT_GROUP_SCHED */
7454 static int sched_rt_global_constraints(void)
7456 unsigned long flags;
7459 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7460 for_each_possible_cpu(i) {
7461 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7463 raw_spin_lock(&rt_rq->rt_runtime_lock);
7464 rt_rq->rt_runtime = global_rt_runtime();
7465 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7467 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7471 #endif /* CONFIG_RT_GROUP_SCHED */
7473 static int sched_dl_global_constraints(void)
7475 u64 runtime = global_rt_runtime();
7476 u64 period = global_rt_period();
7477 u64 new_bw = to_ratio(period, runtime);
7479 unsigned long flags;
7482 * Here we want to check the bandwidth not being set to some
7483 * value smaller than the currently allocated bandwidth in
7484 * any of the root_domains.
7486 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7487 * cycling on root_domains... Discussion on different/better
7488 * solutions is welcome!
7490 for_each_possible_cpu(cpu) {
7491 struct dl_bw *dl_b = dl_bw_of(cpu);
7493 raw_spin_lock_irqsave(&dl_b->lock, flags);
7494 if (new_bw < dl_b->total_bw)
7496 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7505 static void sched_dl_do_global(void)
7509 unsigned long flags;
7511 def_dl_bandwidth.dl_period = global_rt_period();
7512 def_dl_bandwidth.dl_runtime = global_rt_runtime();
7514 if (global_rt_runtime() != RUNTIME_INF)
7515 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7518 * FIXME: As above...
7520 for_each_possible_cpu(cpu) {
7521 struct dl_bw *dl_b = dl_bw_of(cpu);
7523 raw_spin_lock_irqsave(&dl_b->lock, flags);
7525 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7529 static int sched_rt_global_validate(void)
7531 if (sysctl_sched_rt_period <= 0)
7534 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7535 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
7541 static void sched_rt_do_global(void)
7543 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7544 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7547 int sched_rt_handler(struct ctl_table *table, int write,
7548 void __user *buffer, size_t *lenp,
7551 int old_period, old_runtime;
7552 static DEFINE_MUTEX(mutex);
7556 old_period = sysctl_sched_rt_period;
7557 old_runtime = sysctl_sched_rt_runtime;
7559 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7561 if (!ret && write) {
7562 ret = sched_rt_global_validate();
7566 ret = sched_rt_global_constraints();
7570 ret = sched_dl_global_constraints();
7574 sched_rt_do_global();
7575 sched_dl_do_global();
7579 sysctl_sched_rt_period = old_period;
7580 sysctl_sched_rt_runtime = old_runtime;
7582 mutex_unlock(&mutex);
7587 int sched_rr_handler(struct ctl_table *table, int write,
7588 void __user *buffer, size_t *lenp,
7592 static DEFINE_MUTEX(mutex);
7595 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7596 /* make sure that internally we keep jiffies */
7597 /* also, writing zero resets timeslice to default */
7598 if (!ret && write) {
7599 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7600 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7602 mutex_unlock(&mutex);
7606 #ifdef CONFIG_CGROUP_SCHED
7608 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7610 return css ? container_of(css, struct task_group, css) : NULL;
7613 static struct cgroup_subsys_state *
7614 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7616 struct task_group *parent = css_tg(parent_css);
7617 struct task_group *tg;
7620 /* This is early initialization for the top cgroup */
7621 return &root_task_group.css;
7624 tg = sched_create_group(parent);
7626 return ERR_PTR(-ENOMEM);
7631 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7633 struct task_group *tg = css_tg(css);
7634 struct task_group *parent = css_tg(css_parent(css));
7637 sched_online_group(tg, parent);
7641 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7643 struct task_group *tg = css_tg(css);
7645 sched_destroy_group(tg);
7648 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
7650 struct task_group *tg = css_tg(css);
7652 sched_offline_group(tg);
7655 static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
7656 struct cgroup_taskset *tset)
7658 struct task_struct *task;
7660 cgroup_taskset_for_each(task, css, tset) {
7661 #ifdef CONFIG_RT_GROUP_SCHED
7662 if (!sched_rt_can_attach(css_tg(css), task))
7665 /* We don't support RT-tasks being in separate groups */
7666 if (task->sched_class != &fair_sched_class)
7673 static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
7674 struct cgroup_taskset *tset)
7676 struct task_struct *task;
7678 cgroup_taskset_for_each(task, css, tset)
7679 sched_move_task(task);
7682 static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7683 struct cgroup_subsys_state *old_css,
7684 struct task_struct *task)
7687 * cgroup_exit() is called in the copy_process() failure path.
7688 * Ignore this case since the task hasn't ran yet, this avoids
7689 * trying to poke a half freed task state from generic code.
7691 if (!(task->flags & PF_EXITING))
7694 sched_move_task(task);
7697 #ifdef CONFIG_FAIR_GROUP_SCHED
7698 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7699 struct cftype *cftype, u64 shareval)
7701 return sched_group_set_shares(css_tg(css), scale_load(shareval));
7704 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7707 struct task_group *tg = css_tg(css);
7709 return (u64) scale_load_down(tg->shares);
7712 #ifdef CONFIG_CFS_BANDWIDTH
7713 static DEFINE_MUTEX(cfs_constraints_mutex);
7715 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7716 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7718 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7720 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7722 int i, ret = 0, runtime_enabled, runtime_was_enabled;
7723 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7725 if (tg == &root_task_group)
7729 * Ensure we have at some amount of bandwidth every period. This is
7730 * to prevent reaching a state of large arrears when throttled via
7731 * entity_tick() resulting in prolonged exit starvation.
7733 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7737 * Likewise, bound things on the otherside by preventing insane quota
7738 * periods. This also allows us to normalize in computing quota
7741 if (period > max_cfs_quota_period)
7744 mutex_lock(&cfs_constraints_mutex);
7745 ret = __cfs_schedulable(tg, period, quota);
7749 runtime_enabled = quota != RUNTIME_INF;
7750 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7752 * If we need to toggle cfs_bandwidth_used, off->on must occur
7753 * before making related changes, and on->off must occur afterwards
7755 if (runtime_enabled && !runtime_was_enabled)
7756 cfs_bandwidth_usage_inc();
7757 raw_spin_lock_irq(&cfs_b->lock);
7758 cfs_b->period = ns_to_ktime(period);
7759 cfs_b->quota = quota;
7761 __refill_cfs_bandwidth_runtime(cfs_b);
7762 /* restart the period timer (if active) to handle new period expiry */
7763 if (runtime_enabled && cfs_b->timer_active) {
7764 /* force a reprogram */
7765 cfs_b->timer_active = 0;
7766 __start_cfs_bandwidth(cfs_b);
7768 raw_spin_unlock_irq(&cfs_b->lock);
7770 for_each_possible_cpu(i) {
7771 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7772 struct rq *rq = cfs_rq->rq;
7774 raw_spin_lock_irq(&rq->lock);
7775 cfs_rq->runtime_enabled = runtime_enabled;
7776 cfs_rq->runtime_remaining = 0;
7778 if (cfs_rq->throttled)
7779 unthrottle_cfs_rq(cfs_rq);
7780 raw_spin_unlock_irq(&rq->lock);
7782 if (runtime_was_enabled && !runtime_enabled)
7783 cfs_bandwidth_usage_dec();
7785 mutex_unlock(&cfs_constraints_mutex);
7790 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7794 period = ktime_to_ns(tg->cfs_bandwidth.period);
7795 if (cfs_quota_us < 0)
7796 quota = RUNTIME_INF;
7798 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7800 return tg_set_cfs_bandwidth(tg, period, quota);
7803 long tg_get_cfs_quota(struct task_group *tg)
7807 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7810 quota_us = tg->cfs_bandwidth.quota;
7811 do_div(quota_us, NSEC_PER_USEC);
7816 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7820 period = (u64)cfs_period_us * NSEC_PER_USEC;
7821 quota = tg->cfs_bandwidth.quota;
7823 return tg_set_cfs_bandwidth(tg, period, quota);
7826 long tg_get_cfs_period(struct task_group *tg)
7830 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7831 do_div(cfs_period_us, NSEC_PER_USEC);
7833 return cfs_period_us;
7836 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7839 return tg_get_cfs_quota(css_tg(css));
7842 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7843 struct cftype *cftype, s64 cfs_quota_us)
7845 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7848 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7851 return tg_get_cfs_period(css_tg(css));
7854 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7855 struct cftype *cftype, u64 cfs_period_us)
7857 return tg_set_cfs_period(css_tg(css), cfs_period_us);
7860 struct cfs_schedulable_data {
7861 struct task_group *tg;
7866 * normalize group quota/period to be quota/max_period
7867 * note: units are usecs
7869 static u64 normalize_cfs_quota(struct task_group *tg,
7870 struct cfs_schedulable_data *d)
7878 period = tg_get_cfs_period(tg);
7879 quota = tg_get_cfs_quota(tg);
7882 /* note: these should typically be equivalent */
7883 if (quota == RUNTIME_INF || quota == -1)
7886 return to_ratio(period, quota);
7889 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7891 struct cfs_schedulable_data *d = data;
7892 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7893 s64 quota = 0, parent_quota = -1;
7896 quota = RUNTIME_INF;
7898 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7900 quota = normalize_cfs_quota(tg, d);
7901 parent_quota = parent_b->hierarchal_quota;
7904 * ensure max(child_quota) <= parent_quota, inherit when no
7907 if (quota == RUNTIME_INF)
7908 quota = parent_quota;
7909 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7912 cfs_b->hierarchal_quota = quota;
7917 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7920 struct cfs_schedulable_data data = {
7926 if (quota != RUNTIME_INF) {
7927 do_div(data.period, NSEC_PER_USEC);
7928 do_div(data.quota, NSEC_PER_USEC);
7932 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7938 static int cpu_stats_show(struct seq_file *sf, void *v)
7940 struct task_group *tg = css_tg(seq_css(sf));
7941 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7943 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
7944 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
7945 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
7949 #endif /* CONFIG_CFS_BANDWIDTH */
7950 #endif /* CONFIG_FAIR_GROUP_SCHED */
7952 #ifdef CONFIG_RT_GROUP_SCHED
7953 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7954 struct cftype *cft, s64 val)
7956 return sched_group_set_rt_runtime(css_tg(css), val);
7959 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7962 return sched_group_rt_runtime(css_tg(css));
7965 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7966 struct cftype *cftype, u64 rt_period_us)
7968 return sched_group_set_rt_period(css_tg(css), rt_period_us);
7971 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7974 return sched_group_rt_period(css_tg(css));
7976 #endif /* CONFIG_RT_GROUP_SCHED */
7978 static struct cftype cpu_files[] = {
7979 #ifdef CONFIG_FAIR_GROUP_SCHED
7982 .read_u64 = cpu_shares_read_u64,
7983 .write_u64 = cpu_shares_write_u64,
7986 #ifdef CONFIG_CFS_BANDWIDTH
7988 .name = "cfs_quota_us",
7989 .read_s64 = cpu_cfs_quota_read_s64,
7990 .write_s64 = cpu_cfs_quota_write_s64,
7993 .name = "cfs_period_us",
7994 .read_u64 = cpu_cfs_period_read_u64,
7995 .write_u64 = cpu_cfs_period_write_u64,
7999 .seq_show = cpu_stats_show,
8002 #ifdef CONFIG_RT_GROUP_SCHED
8004 .name = "rt_runtime_us",
8005 .read_s64 = cpu_rt_runtime_read,
8006 .write_s64 = cpu_rt_runtime_write,
8009 .name = "rt_period_us",
8010 .read_u64 = cpu_rt_period_read_uint,
8011 .write_u64 = cpu_rt_period_write_uint,
8017 struct cgroup_subsys cpu_cgroup_subsys = {
8019 .css_alloc = cpu_cgroup_css_alloc,
8020 .css_free = cpu_cgroup_css_free,
8021 .css_online = cpu_cgroup_css_online,
8022 .css_offline = cpu_cgroup_css_offline,
8023 .can_attach = cpu_cgroup_can_attach,
8024 .attach = cpu_cgroup_attach,
8025 .exit = cpu_cgroup_exit,
8026 .subsys_id = cpu_cgroup_subsys_id,
8027 .base_cftypes = cpu_files,
8031 #endif /* CONFIG_CGROUP_SCHED */
8033 void dump_cpu_task(int cpu)
8035 pr_info("Task dump for CPU %d:\n", cpu);
8036 sched_show_task(cpu_curr(cpu));