1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
7 * Swap reorganised 29.12.95, Stephen Tweedie.
8 * kswapd added: 7.1.96 sct
9 * Removed kswapd_ctl limits, and swap out as many pages as needed
10 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
12 * Multiqueue VM started 5.8.00, Rik van Riel.
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 #include <linux/sched/mm.h>
19 #include <linux/module.h>
20 #include <linux/gfp.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/swap.h>
23 #include <linux/pagemap.h>
24 #include <linux/init.h>
25 #include <linux/highmem.h>
26 #include <linux/vmpressure.h>
27 #include <linux/vmstat.h>
28 #include <linux/file.h>
29 #include <linux/writeback.h>
30 #include <linux/blkdev.h>
31 #include <linux/buffer_head.h> /* for try_to_release_page(),
32 buffer_heads_over_limit */
33 #include <linux/mm_inline.h>
34 #include <linux/backing-dev.h>
35 #include <linux/rmap.h>
36 #include <linux/topology.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/compaction.h>
40 #include <linux/notifier.h>
41 #include <linux/rwsem.h>
42 #include <linux/delay.h>
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
45 #include <linux/memcontrol.h>
46 #include <linux/delayacct.h>
47 #include <linux/sysctl.h>
48 #include <linux/oom.h>
49 #include <linux/pagevec.h>
50 #include <linux/prefetch.h>
51 #include <linux/printk.h>
52 #include <linux/dax.h>
53 #include <linux/psi.h>
55 #include <asm/tlbflush.h>
56 #include <asm/div64.h>
58 #include <linux/swapops.h>
59 #include <linux/balloon_compaction.h>
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/vmscan.h>
67 /* How many pages shrink_list() should reclaim */
68 unsigned long nr_to_reclaim;
71 * Nodemask of nodes allowed by the caller. If NULL, all nodes
77 * The memory cgroup that hit its limit and as a result is the
78 * primary target of this reclaim invocation.
80 struct mem_cgroup *target_mem_cgroup;
82 /* Writepage batching in laptop mode; RECLAIM_WRITE */
83 unsigned int may_writepage:1;
85 /* Can mapped pages be reclaimed? */
86 unsigned int may_unmap:1;
88 /* Can pages be swapped as part of reclaim? */
89 unsigned int may_swap:1;
91 /* e.g. boosted watermark reclaim leaves slabs alone */
92 unsigned int may_shrinkslab:1;
95 * Cgroups are not reclaimed below their configured memory.low,
96 * unless we threaten to OOM. If any cgroups are skipped due to
97 * memory.low and nothing was reclaimed, go back for memory.low.
99 unsigned int memcg_low_reclaim:1;
100 unsigned int memcg_low_skipped:1;
102 unsigned int hibernation_mode:1;
104 /* One of the zones is ready for compaction */
105 unsigned int compaction_ready:1;
107 /* Allocation order */
110 /* Scan (total_size >> priority) pages at once */
113 /* The highest zone to isolate pages for reclaim from */
116 /* This context's GFP mask */
119 /* Incremented by the number of inactive pages that were scanned */
120 unsigned long nr_scanned;
122 /* Number of pages freed so far during a call to shrink_zones() */
123 unsigned long nr_reclaimed;
127 unsigned int unqueued_dirty;
128 unsigned int congested;
129 unsigned int writeback;
130 unsigned int immediate;
131 unsigned int file_taken;
136 #ifdef ARCH_HAS_PREFETCH
137 #define prefetch_prev_lru_page(_page, _base, _field) \
139 if ((_page)->lru.prev != _base) { \
142 prev = lru_to_page(&(_page->lru)); \
143 prefetch(&prev->_field); \
147 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
150 #ifdef ARCH_HAS_PREFETCHW
151 #define prefetchw_prev_lru_page(_page, _base, _field) \
153 if ((_page)->lru.prev != _base) { \
156 prev = lru_to_page(&(_page->lru)); \
157 prefetchw(&prev->_field); \
161 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
165 * From 0 .. 100. Higher means more swappy.
167 int vm_swappiness = 60;
169 * The total number of pages which are beyond the high watermark within all
172 unsigned long vm_total_pages;
174 static LIST_HEAD(shrinker_list);
175 static DECLARE_RWSEM(shrinker_rwsem);
177 #ifdef CONFIG_MEMCG_KMEM
180 * We allow subsystems to populate their shrinker-related
181 * LRU lists before register_shrinker_prepared() is called
182 * for the shrinker, since we don't want to impose
183 * restrictions on their internal registration order.
184 * In this case shrink_slab_memcg() may find corresponding
185 * bit is set in the shrinkers map.
187 * This value is used by the function to detect registering
188 * shrinkers and to skip do_shrink_slab() calls for them.
190 #define SHRINKER_REGISTERING ((struct shrinker *)~0UL)
192 static DEFINE_IDR(shrinker_idr);
193 static int shrinker_nr_max;
195 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
197 int id, ret = -ENOMEM;
199 down_write(&shrinker_rwsem);
200 /* This may call shrinker, so it must use down_read_trylock() */
201 id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL);
205 if (id >= shrinker_nr_max) {
206 if (memcg_expand_shrinker_maps(id)) {
207 idr_remove(&shrinker_idr, id);
211 shrinker_nr_max = id + 1;
216 up_write(&shrinker_rwsem);
220 static void unregister_memcg_shrinker(struct shrinker *shrinker)
222 int id = shrinker->id;
226 down_write(&shrinker_rwsem);
227 idr_remove(&shrinker_idr, id);
228 up_write(&shrinker_rwsem);
230 #else /* CONFIG_MEMCG_KMEM */
231 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
236 static void unregister_memcg_shrinker(struct shrinker *shrinker)
239 #endif /* CONFIG_MEMCG_KMEM */
242 static bool global_reclaim(struct scan_control *sc)
244 return !sc->target_mem_cgroup;
248 * sane_reclaim - is the usual dirty throttling mechanism operational?
249 * @sc: scan_control in question
251 * The normal page dirty throttling mechanism in balance_dirty_pages() is
252 * completely broken with the legacy memcg and direct stalling in
253 * shrink_page_list() is used for throttling instead, which lacks all the
254 * niceties such as fairness, adaptive pausing, bandwidth proportional
255 * allocation and configurability.
257 * This function tests whether the vmscan currently in progress can assume
258 * that the normal dirty throttling mechanism is operational.
260 static bool sane_reclaim(struct scan_control *sc)
262 struct mem_cgroup *memcg = sc->target_mem_cgroup;
266 #ifdef CONFIG_CGROUP_WRITEBACK
267 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
273 static void set_memcg_congestion(pg_data_t *pgdat,
274 struct mem_cgroup *memcg,
277 struct mem_cgroup_per_node *mn;
282 mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
283 WRITE_ONCE(mn->congested, congested);
286 static bool memcg_congested(pg_data_t *pgdat,
287 struct mem_cgroup *memcg)
289 struct mem_cgroup_per_node *mn;
291 mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
292 return READ_ONCE(mn->congested);
296 static bool global_reclaim(struct scan_control *sc)
301 static bool sane_reclaim(struct scan_control *sc)
306 static inline void set_memcg_congestion(struct pglist_data *pgdat,
307 struct mem_cgroup *memcg, bool congested)
311 static inline bool memcg_congested(struct pglist_data *pgdat,
312 struct mem_cgroup *memcg)
320 * This misses isolated pages which are not accounted for to save counters.
321 * As the data only determines if reclaim or compaction continues, it is
322 * not expected that isolated pages will be a dominating factor.
324 unsigned long zone_reclaimable_pages(struct zone *zone)
328 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
329 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
330 if (get_nr_swap_pages() > 0)
331 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
332 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
338 * lruvec_lru_size - Returns the number of pages on the given LRU list.
339 * @lruvec: lru vector
341 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
343 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
345 unsigned long lru_size;
348 if (!mem_cgroup_disabled())
349 lru_size = lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
351 lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
353 for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
354 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
357 if (!managed_zone(zone))
360 if (!mem_cgroup_disabled())
361 size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
363 size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
364 NR_ZONE_LRU_BASE + lru);
365 lru_size -= min(size, lru_size);
373 * Add a shrinker callback to be called from the vm.
375 int prealloc_shrinker(struct shrinker *shrinker)
377 unsigned int size = sizeof(*shrinker->nr_deferred);
379 if (shrinker->flags & SHRINKER_NUMA_AWARE)
382 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
383 if (!shrinker->nr_deferred)
386 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
387 if (prealloc_memcg_shrinker(shrinker))
394 kfree(shrinker->nr_deferred);
395 shrinker->nr_deferred = NULL;
399 void free_prealloced_shrinker(struct shrinker *shrinker)
401 if (!shrinker->nr_deferred)
404 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
405 unregister_memcg_shrinker(shrinker);
407 kfree(shrinker->nr_deferred);
408 shrinker->nr_deferred = NULL;
411 void register_shrinker_prepared(struct shrinker *shrinker)
413 down_write(&shrinker_rwsem);
414 list_add_tail(&shrinker->list, &shrinker_list);
415 #ifdef CONFIG_MEMCG_KMEM
416 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
417 idr_replace(&shrinker_idr, shrinker, shrinker->id);
419 up_write(&shrinker_rwsem);
422 int register_shrinker(struct shrinker *shrinker)
424 int err = prealloc_shrinker(shrinker);
428 register_shrinker_prepared(shrinker);
431 EXPORT_SYMBOL(register_shrinker);
436 void unregister_shrinker(struct shrinker *shrinker)
438 if (!shrinker->nr_deferred)
440 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
441 unregister_memcg_shrinker(shrinker);
442 down_write(&shrinker_rwsem);
443 list_del(&shrinker->list);
444 up_write(&shrinker_rwsem);
445 kfree(shrinker->nr_deferred);
446 shrinker->nr_deferred = NULL;
448 EXPORT_SYMBOL(unregister_shrinker);
450 #define SHRINK_BATCH 128
452 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
453 struct shrinker *shrinker, int priority)
455 unsigned long freed = 0;
456 unsigned long long delta;
461 int nid = shrinkctl->nid;
462 long batch_size = shrinker->batch ? shrinker->batch
464 long scanned = 0, next_deferred;
466 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
469 freeable = shrinker->count_objects(shrinker, shrinkctl);
470 if (freeable == 0 || freeable == SHRINK_EMPTY)
474 * copy the current shrinker scan count into a local variable
475 * and zero it so that other concurrent shrinker invocations
476 * don't also do this scanning work.
478 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
481 if (shrinker->seeks) {
482 delta = freeable >> priority;
484 do_div(delta, shrinker->seeks);
487 * These objects don't require any IO to create. Trim
488 * them aggressively under memory pressure to keep
489 * them from causing refetches in the IO caches.
491 delta = freeable / 2;
495 if (total_scan < 0) {
496 pr_err("shrink_slab: %pS negative objects to delete nr=%ld\n",
497 shrinker->scan_objects, total_scan);
498 total_scan = freeable;
501 next_deferred = total_scan;
504 * We need to avoid excessive windup on filesystem shrinkers
505 * due to large numbers of GFP_NOFS allocations causing the
506 * shrinkers to return -1 all the time. This results in a large
507 * nr being built up so when a shrink that can do some work
508 * comes along it empties the entire cache due to nr >>>
509 * freeable. This is bad for sustaining a working set in
512 * Hence only allow the shrinker to scan the entire cache when
513 * a large delta change is calculated directly.
515 if (delta < freeable / 4)
516 total_scan = min(total_scan, freeable / 2);
519 * Avoid risking looping forever due to too large nr value:
520 * never try to free more than twice the estimate number of
523 if (total_scan > freeable * 2)
524 total_scan = freeable * 2;
526 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
527 freeable, delta, total_scan, priority);
530 * Normally, we should not scan less than batch_size objects in one
531 * pass to avoid too frequent shrinker calls, but if the slab has less
532 * than batch_size objects in total and we are really tight on memory,
533 * we will try to reclaim all available objects, otherwise we can end
534 * up failing allocations although there are plenty of reclaimable
535 * objects spread over several slabs with usage less than the
538 * We detect the "tight on memory" situations by looking at the total
539 * number of objects we want to scan (total_scan). If it is greater
540 * than the total number of objects on slab (freeable), we must be
541 * scanning at high prio and therefore should try to reclaim as much as
544 while (total_scan >= batch_size ||
545 total_scan >= freeable) {
547 unsigned long nr_to_scan = min(batch_size, total_scan);
549 shrinkctl->nr_to_scan = nr_to_scan;
550 shrinkctl->nr_scanned = nr_to_scan;
551 ret = shrinker->scan_objects(shrinker, shrinkctl);
552 if (ret == SHRINK_STOP)
556 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
557 total_scan -= shrinkctl->nr_scanned;
558 scanned += shrinkctl->nr_scanned;
563 if (next_deferred >= scanned)
564 next_deferred -= scanned;
568 * move the unused scan count back into the shrinker in a
569 * manner that handles concurrent updates. If we exhausted the
570 * scan, there is no need to do an update.
572 if (next_deferred > 0)
573 new_nr = atomic_long_add_return(next_deferred,
574 &shrinker->nr_deferred[nid]);
576 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
578 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
582 #ifdef CONFIG_MEMCG_KMEM
583 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
584 struct mem_cgroup *memcg, int priority)
586 struct memcg_shrinker_map *map;
587 unsigned long ret, freed = 0;
590 if (!memcg_kmem_enabled() || !mem_cgroup_online(memcg))
593 if (!down_read_trylock(&shrinker_rwsem))
596 map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map,
601 for_each_set_bit(i, map->map, shrinker_nr_max) {
602 struct shrink_control sc = {
603 .gfp_mask = gfp_mask,
607 struct shrinker *shrinker;
609 shrinker = idr_find(&shrinker_idr, i);
610 if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) {
612 clear_bit(i, map->map);
616 ret = do_shrink_slab(&sc, shrinker, priority);
617 if (ret == SHRINK_EMPTY) {
618 clear_bit(i, map->map);
620 * After the shrinker reported that it had no objects to
621 * free, but before we cleared the corresponding bit in
622 * the memcg shrinker map, a new object might have been
623 * added. To make sure, we have the bit set in this
624 * case, we invoke the shrinker one more time and reset
625 * the bit if it reports that it is not empty anymore.
626 * The memory barrier here pairs with the barrier in
627 * memcg_set_shrinker_bit():
629 * list_lru_add() shrink_slab_memcg()
630 * list_add_tail() clear_bit()
632 * set_bit() do_shrink_slab()
634 smp_mb__after_atomic();
635 ret = do_shrink_slab(&sc, shrinker, priority);
636 if (ret == SHRINK_EMPTY)
639 memcg_set_shrinker_bit(memcg, nid, i);
643 if (rwsem_is_contended(&shrinker_rwsem)) {
649 up_read(&shrinker_rwsem);
652 #else /* CONFIG_MEMCG_KMEM */
653 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
654 struct mem_cgroup *memcg, int priority)
658 #endif /* CONFIG_MEMCG_KMEM */
661 * shrink_slab - shrink slab caches
662 * @gfp_mask: allocation context
663 * @nid: node whose slab caches to target
664 * @memcg: memory cgroup whose slab caches to target
665 * @priority: the reclaim priority
667 * Call the shrink functions to age shrinkable caches.
669 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
670 * unaware shrinkers will receive a node id of 0 instead.
672 * @memcg specifies the memory cgroup to target. Unaware shrinkers
673 * are called only if it is the root cgroup.
675 * @priority is sc->priority, we take the number of objects and >> by priority
676 * in order to get the scan target.
678 * Returns the number of reclaimed slab objects.
680 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
681 struct mem_cgroup *memcg,
684 unsigned long ret, freed = 0;
685 struct shrinker *shrinker;
687 if (!mem_cgroup_is_root(memcg))
688 return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
690 if (!down_read_trylock(&shrinker_rwsem))
693 list_for_each_entry(shrinker, &shrinker_list, list) {
694 struct shrink_control sc = {
695 .gfp_mask = gfp_mask,
700 ret = do_shrink_slab(&sc, shrinker, priority);
701 if (ret == SHRINK_EMPTY)
705 * Bail out if someone want to register a new shrinker to
706 * prevent the regsitration from being stalled for long periods
707 * by parallel ongoing shrinking.
709 if (rwsem_is_contended(&shrinker_rwsem)) {
715 up_read(&shrinker_rwsem);
721 void drop_slab_node(int nid)
726 struct mem_cgroup *memcg = NULL;
729 memcg = mem_cgroup_iter(NULL, NULL, NULL);
731 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
732 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
733 } while (freed > 10);
740 for_each_online_node(nid)
744 static inline int is_page_cache_freeable(struct page *page)
747 * A freeable page cache page is referenced only by the caller
748 * that isolated the page, the page cache and optional buffer
749 * heads at page->private.
751 int page_cache_pins = PageTransHuge(page) && PageSwapCache(page) ?
753 return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
756 static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
758 if (current->flags & PF_SWAPWRITE)
760 if (!inode_write_congested(inode))
762 if (inode_to_bdi(inode) == current->backing_dev_info)
768 * We detected a synchronous write error writing a page out. Probably
769 * -ENOSPC. We need to propagate that into the address_space for a subsequent
770 * fsync(), msync() or close().
772 * The tricky part is that after writepage we cannot touch the mapping: nothing
773 * prevents it from being freed up. But we have a ref on the page and once
774 * that page is locked, the mapping is pinned.
776 * We're allowed to run sleeping lock_page() here because we know the caller has
779 static void handle_write_error(struct address_space *mapping,
780 struct page *page, int error)
783 if (page_mapping(page) == mapping)
784 mapping_set_error(mapping, error);
788 /* possible outcome of pageout() */
790 /* failed to write page out, page is locked */
792 /* move page to the active list, page is locked */
794 /* page has been sent to the disk successfully, page is unlocked */
796 /* page is clean and locked */
801 * pageout is called by shrink_page_list() for each dirty page.
802 * Calls ->writepage().
804 static pageout_t pageout(struct page *page, struct address_space *mapping,
805 struct scan_control *sc)
808 * If the page is dirty, only perform writeback if that write
809 * will be non-blocking. To prevent this allocation from being
810 * stalled by pagecache activity. But note that there may be
811 * stalls if we need to run get_block(). We could test
812 * PagePrivate for that.
814 * If this process is currently in __generic_file_write_iter() against
815 * this page's queue, we can perform writeback even if that
818 * If the page is swapcache, write it back even if that would
819 * block, for some throttling. This happens by accident, because
820 * swap_backing_dev_info is bust: it doesn't reflect the
821 * congestion state of the swapdevs. Easy to fix, if needed.
823 if (!is_page_cache_freeable(page))
827 * Some data journaling orphaned pages can have
828 * page->mapping == NULL while being dirty with clean buffers.
830 if (page_has_private(page)) {
831 if (try_to_free_buffers(page)) {
832 ClearPageDirty(page);
833 pr_info("%s: orphaned page\n", __func__);
839 if (mapping->a_ops->writepage == NULL)
840 return PAGE_ACTIVATE;
841 if (!may_write_to_inode(mapping->host, sc))
844 if (clear_page_dirty_for_io(page)) {
846 struct writeback_control wbc = {
847 .sync_mode = WB_SYNC_NONE,
848 .nr_to_write = SWAP_CLUSTER_MAX,
850 .range_end = LLONG_MAX,
854 SetPageReclaim(page);
855 res = mapping->a_ops->writepage(page, &wbc);
857 handle_write_error(mapping, page, res);
858 if (res == AOP_WRITEPAGE_ACTIVATE) {
859 ClearPageReclaim(page);
860 return PAGE_ACTIVATE;
863 if (!PageWriteback(page)) {
864 /* synchronous write or broken a_ops? */
865 ClearPageReclaim(page);
867 trace_mm_vmscan_writepage(page);
868 inc_node_page_state(page, NR_VMSCAN_WRITE);
876 * Same as remove_mapping, but if the page is removed from the mapping, it
877 * gets returned with a refcount of 0.
879 static int __remove_mapping(struct address_space *mapping, struct page *page,
885 BUG_ON(!PageLocked(page));
886 BUG_ON(mapping != page_mapping(page));
888 xa_lock_irqsave(&mapping->i_pages, flags);
890 * The non racy check for a busy page.
892 * Must be careful with the order of the tests. When someone has
893 * a ref to the page, it may be possible that they dirty it then
894 * drop the reference. So if PageDirty is tested before page_count
895 * here, then the following race may occur:
897 * get_user_pages(&page);
898 * [user mapping goes away]
900 * !PageDirty(page) [good]
901 * SetPageDirty(page);
903 * !page_count(page) [good, discard it]
905 * [oops, our write_to data is lost]
907 * Reversing the order of the tests ensures such a situation cannot
908 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
909 * load is not satisfied before that of page->_refcount.
911 * Note that if SetPageDirty is always performed via set_page_dirty,
912 * and thus under the i_pages lock, then this ordering is not required.
914 if (unlikely(PageTransHuge(page)) && PageSwapCache(page))
915 refcount = 1 + HPAGE_PMD_NR;
918 if (!page_ref_freeze(page, refcount))
920 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
921 if (unlikely(PageDirty(page))) {
922 page_ref_unfreeze(page, refcount);
926 if (PageSwapCache(page)) {
927 swp_entry_t swap = { .val = page_private(page) };
928 mem_cgroup_swapout(page, swap);
929 __delete_from_swap_cache(page, swap);
930 xa_unlock_irqrestore(&mapping->i_pages, flags);
931 put_swap_page(page, swap);
933 void (*freepage)(struct page *);
936 freepage = mapping->a_ops->freepage;
938 * Remember a shadow entry for reclaimed file cache in
939 * order to detect refaults, thus thrashing, later on.
941 * But don't store shadows in an address space that is
942 * already exiting. This is not just an optizimation,
943 * inode reclaim needs to empty out the radix tree or
944 * the nodes are lost. Don't plant shadows behind its
947 * We also don't store shadows for DAX mappings because the
948 * only page cache pages found in these are zero pages
949 * covering holes, and because we don't want to mix DAX
950 * exceptional entries and shadow exceptional entries in the
951 * same address_space.
953 if (reclaimed && page_is_file_cache(page) &&
954 !mapping_exiting(mapping) && !dax_mapping(mapping))
955 shadow = workingset_eviction(page);
956 __delete_from_page_cache(page, shadow);
957 xa_unlock_irqrestore(&mapping->i_pages, flags);
959 if (freepage != NULL)
966 xa_unlock_irqrestore(&mapping->i_pages, flags);
971 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
972 * someone else has a ref on the page, abort and return 0. If it was
973 * successfully detached, return 1. Assumes the caller has a single ref on
976 int remove_mapping(struct address_space *mapping, struct page *page)
978 if (__remove_mapping(mapping, page, false)) {
980 * Unfreezing the refcount with 1 rather than 2 effectively
981 * drops the pagecache ref for us without requiring another
984 page_ref_unfreeze(page, 1);
991 * putback_lru_page - put previously isolated page onto appropriate LRU list
992 * @page: page to be put back to appropriate lru list
994 * Add previously isolated @page to appropriate LRU list.
995 * Page may still be unevictable for other reasons.
997 * lru_lock must not be held, interrupts must be enabled.
999 void putback_lru_page(struct page *page)
1001 lru_cache_add(page);
1002 put_page(page); /* drop ref from isolate */
1005 enum page_references {
1007 PAGEREF_RECLAIM_CLEAN,
1012 static enum page_references page_check_references(struct page *page,
1013 struct scan_control *sc)
1015 int referenced_ptes, referenced_page;
1016 unsigned long vm_flags;
1018 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
1020 referenced_page = TestClearPageReferenced(page);
1023 * Mlock lost the isolation race with us. Let try_to_unmap()
1024 * move the page to the unevictable list.
1026 if (vm_flags & VM_LOCKED)
1027 return PAGEREF_RECLAIM;
1029 if (referenced_ptes) {
1030 if (PageSwapBacked(page))
1031 return PAGEREF_ACTIVATE;
1033 * All mapped pages start out with page table
1034 * references from the instantiating fault, so we need
1035 * to look twice if a mapped file page is used more
1038 * Mark it and spare it for another trip around the
1039 * inactive list. Another page table reference will
1040 * lead to its activation.
1042 * Note: the mark is set for activated pages as well
1043 * so that recently deactivated but used pages are
1044 * quickly recovered.
1046 SetPageReferenced(page);
1048 if (referenced_page || referenced_ptes > 1)
1049 return PAGEREF_ACTIVATE;
1052 * Activate file-backed executable pages after first usage.
1054 if (vm_flags & VM_EXEC)
1055 return PAGEREF_ACTIVATE;
1057 return PAGEREF_KEEP;
1060 /* Reclaim if clean, defer dirty pages to writeback */
1061 if (referenced_page && !PageSwapBacked(page))
1062 return PAGEREF_RECLAIM_CLEAN;
1064 return PAGEREF_RECLAIM;
1067 /* Check if a page is dirty or under writeback */
1068 static void page_check_dirty_writeback(struct page *page,
1069 bool *dirty, bool *writeback)
1071 struct address_space *mapping;
1074 * Anonymous pages are not handled by flushers and must be written
1075 * from reclaim context. Do not stall reclaim based on them
1077 if (!page_is_file_cache(page) ||
1078 (PageAnon(page) && !PageSwapBacked(page))) {
1084 /* By default assume that the page flags are accurate */
1085 *dirty = PageDirty(page);
1086 *writeback = PageWriteback(page);
1088 /* Verify dirty/writeback state if the filesystem supports it */
1089 if (!page_has_private(page))
1092 mapping = page_mapping(page);
1093 if (mapping && mapping->a_ops->is_dirty_writeback)
1094 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1098 * shrink_page_list() returns the number of reclaimed pages
1100 static unsigned long shrink_page_list(struct list_head *page_list,
1101 struct pglist_data *pgdat,
1102 struct scan_control *sc,
1103 enum ttu_flags ttu_flags,
1104 struct reclaim_stat *stat,
1107 LIST_HEAD(ret_pages);
1108 LIST_HEAD(free_pages);
1109 unsigned nr_reclaimed = 0;
1110 unsigned pgactivate = 0;
1112 memset(stat, 0, sizeof(*stat));
1115 while (!list_empty(page_list)) {
1116 struct address_space *mapping;
1119 enum page_references references = PAGEREF_RECLAIM_CLEAN;
1120 bool dirty, writeback;
1121 unsigned int nr_pages;
1125 page = lru_to_page(page_list);
1126 list_del(&page->lru);
1128 if (!trylock_page(page))
1131 VM_BUG_ON_PAGE(PageActive(page), page);
1133 nr_pages = 1 << compound_order(page);
1135 /* Account the number of base pages even though THP */
1136 sc->nr_scanned += nr_pages;
1138 if (unlikely(!page_evictable(page)))
1139 goto activate_locked;
1141 if (!sc->may_unmap && page_mapped(page))
1144 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1145 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1148 * The number of dirty pages determines if a node is marked
1149 * reclaim_congested which affects wait_iff_congested. kswapd
1150 * will stall and start writing pages if the tail of the LRU
1151 * is all dirty unqueued pages.
1153 page_check_dirty_writeback(page, &dirty, &writeback);
1154 if (dirty || writeback)
1157 if (dirty && !writeback)
1158 stat->nr_unqueued_dirty++;
1161 * Treat this page as congested if the underlying BDI is or if
1162 * pages are cycling through the LRU so quickly that the
1163 * pages marked for immediate reclaim are making it to the
1164 * end of the LRU a second time.
1166 mapping = page_mapping(page);
1167 if (((dirty || writeback) && mapping &&
1168 inode_write_congested(mapping->host)) ||
1169 (writeback && PageReclaim(page)))
1170 stat->nr_congested++;
1173 * If a page at the tail of the LRU is under writeback, there
1174 * are three cases to consider.
1176 * 1) If reclaim is encountering an excessive number of pages
1177 * under writeback and this page is both under writeback and
1178 * PageReclaim then it indicates that pages are being queued
1179 * for IO but are being recycled through the LRU before the
1180 * IO can complete. Waiting on the page itself risks an
1181 * indefinite stall if it is impossible to writeback the
1182 * page due to IO error or disconnected storage so instead
1183 * note that the LRU is being scanned too quickly and the
1184 * caller can stall after page list has been processed.
1186 * 2) Global or new memcg reclaim encounters a page that is
1187 * not marked for immediate reclaim, or the caller does not
1188 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1189 * not to fs). In this case mark the page for immediate
1190 * reclaim and continue scanning.
1192 * Require may_enter_fs because we would wait on fs, which
1193 * may not have submitted IO yet. And the loop driver might
1194 * enter reclaim, and deadlock if it waits on a page for
1195 * which it is needed to do the write (loop masks off
1196 * __GFP_IO|__GFP_FS for this reason); but more thought
1197 * would probably show more reasons.
1199 * 3) Legacy memcg encounters a page that is already marked
1200 * PageReclaim. memcg does not have any dirty pages
1201 * throttling so we could easily OOM just because too many
1202 * pages are in writeback and there is nothing else to
1203 * reclaim. Wait for the writeback to complete.
1205 * In cases 1) and 2) we activate the pages to get them out of
1206 * the way while we continue scanning for clean pages on the
1207 * inactive list and refilling from the active list. The
1208 * observation here is that waiting for disk writes is more
1209 * expensive than potentially causing reloads down the line.
1210 * Since they're marked for immediate reclaim, they won't put
1211 * memory pressure on the cache working set any longer than it
1212 * takes to write them to disk.
1214 if (PageWriteback(page)) {
1216 if (current_is_kswapd() &&
1217 PageReclaim(page) &&
1218 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1219 stat->nr_immediate++;
1220 goto activate_locked;
1223 } else if (sane_reclaim(sc) ||
1224 !PageReclaim(page) || !may_enter_fs) {
1226 * This is slightly racy - end_page_writeback()
1227 * might have just cleared PageReclaim, then
1228 * setting PageReclaim here end up interpreted
1229 * as PageReadahead - but that does not matter
1230 * enough to care. What we do want is for this
1231 * page to have PageReclaim set next time memcg
1232 * reclaim reaches the tests above, so it will
1233 * then wait_on_page_writeback() to avoid OOM;
1234 * and it's also appropriate in global reclaim.
1236 SetPageReclaim(page);
1237 stat->nr_writeback++;
1238 goto activate_locked;
1243 wait_on_page_writeback(page);
1244 /* then go back and try same page again */
1245 list_add_tail(&page->lru, page_list);
1251 references = page_check_references(page, sc);
1253 switch (references) {
1254 case PAGEREF_ACTIVATE:
1255 goto activate_locked;
1257 stat->nr_ref_keep += nr_pages;
1259 case PAGEREF_RECLAIM:
1260 case PAGEREF_RECLAIM_CLEAN:
1261 ; /* try to reclaim the page below */
1265 * Anonymous process memory has backing store?
1266 * Try to allocate it some swap space here.
1267 * Lazyfree page could be freed directly
1269 if (PageAnon(page) && PageSwapBacked(page)) {
1270 if (!PageSwapCache(page)) {
1271 if (!(sc->gfp_mask & __GFP_IO))
1273 if (PageTransHuge(page)) {
1274 /* cannot split THP, skip it */
1275 if (!can_split_huge_page(page, NULL))
1276 goto activate_locked;
1278 * Split pages without a PMD map right
1279 * away. Chances are some or all of the
1280 * tail pages can be freed without IO.
1282 if (!compound_mapcount(page) &&
1283 split_huge_page_to_list(page,
1285 goto activate_locked;
1287 if (!add_to_swap(page)) {
1288 if (!PageTransHuge(page))
1289 goto activate_locked_split;
1290 /* Fallback to swap normal pages */
1291 if (split_huge_page_to_list(page,
1293 goto activate_locked;
1294 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1295 count_vm_event(THP_SWPOUT_FALLBACK);
1297 if (!add_to_swap(page))
1298 goto activate_locked_split;
1303 /* Adding to swap updated mapping */
1304 mapping = page_mapping(page);
1306 } else if (unlikely(PageTransHuge(page))) {
1307 /* Split file THP */
1308 if (split_huge_page_to_list(page, page_list))
1313 * THP may get split above, need minus tail pages and update
1314 * nr_pages to avoid accounting tail pages twice.
1316 * The tail pages that are added into swap cache successfully
1319 if ((nr_pages > 1) && !PageTransHuge(page)) {
1320 sc->nr_scanned -= (nr_pages - 1);
1325 * The page is mapped into the page tables of one or more
1326 * processes. Try to unmap it here.
1328 if (page_mapped(page)) {
1329 enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;
1331 if (unlikely(PageTransHuge(page)))
1332 flags |= TTU_SPLIT_HUGE_PMD;
1333 if (!try_to_unmap(page, flags)) {
1334 stat->nr_unmap_fail += nr_pages;
1335 goto activate_locked;
1339 if (PageDirty(page)) {
1341 * Only kswapd can writeback filesystem pages
1342 * to avoid risk of stack overflow. But avoid
1343 * injecting inefficient single-page IO into
1344 * flusher writeback as much as possible: only
1345 * write pages when we've encountered many
1346 * dirty pages, and when we've already scanned
1347 * the rest of the LRU for clean pages and see
1348 * the same dirty pages again (PageReclaim).
1350 if (page_is_file_cache(page) &&
1351 (!current_is_kswapd() || !PageReclaim(page) ||
1352 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1354 * Immediately reclaim when written back.
1355 * Similar in principal to deactivate_page()
1356 * except we already have the page isolated
1357 * and know it's dirty
1359 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1360 SetPageReclaim(page);
1362 goto activate_locked;
1365 if (references == PAGEREF_RECLAIM_CLEAN)
1369 if (!sc->may_writepage)
1373 * Page is dirty. Flush the TLB if a writable entry
1374 * potentially exists to avoid CPU writes after IO
1375 * starts and then write it out here.
1377 try_to_unmap_flush_dirty();
1378 switch (pageout(page, mapping, sc)) {
1382 goto activate_locked;
1384 if (PageWriteback(page))
1386 if (PageDirty(page))
1390 * A synchronous write - probably a ramdisk. Go
1391 * ahead and try to reclaim the page.
1393 if (!trylock_page(page))
1395 if (PageDirty(page) || PageWriteback(page))
1397 mapping = page_mapping(page);
1399 ; /* try to free the page below */
1404 * If the page has buffers, try to free the buffer mappings
1405 * associated with this page. If we succeed we try to free
1408 * We do this even if the page is PageDirty().
1409 * try_to_release_page() does not perform I/O, but it is
1410 * possible for a page to have PageDirty set, but it is actually
1411 * clean (all its buffers are clean). This happens if the
1412 * buffers were written out directly, with submit_bh(). ext3
1413 * will do this, as well as the blockdev mapping.
1414 * try_to_release_page() will discover that cleanness and will
1415 * drop the buffers and mark the page clean - it can be freed.
1417 * Rarely, pages can have buffers and no ->mapping. These are
1418 * the pages which were not successfully invalidated in
1419 * truncate_complete_page(). We try to drop those buffers here
1420 * and if that worked, and the page is no longer mapped into
1421 * process address space (page_count == 1) it can be freed.
1422 * Otherwise, leave the page on the LRU so it is swappable.
1424 if (page_has_private(page)) {
1425 if (!try_to_release_page(page, sc->gfp_mask))
1426 goto activate_locked;
1427 if (!mapping && page_count(page) == 1) {
1429 if (put_page_testzero(page))
1433 * rare race with speculative reference.
1434 * the speculative reference will free
1435 * this page shortly, so we may
1436 * increment nr_reclaimed here (and
1437 * leave it off the LRU).
1445 if (PageAnon(page) && !PageSwapBacked(page)) {
1446 /* follow __remove_mapping for reference */
1447 if (!page_ref_freeze(page, 1))
1449 if (PageDirty(page)) {
1450 page_ref_unfreeze(page, 1);
1454 count_vm_event(PGLAZYFREED);
1455 count_memcg_page_event(page, PGLAZYFREED);
1456 } else if (!mapping || !__remove_mapping(mapping, page, true))
1462 * THP may get swapped out in a whole, need account
1465 nr_reclaimed += nr_pages;
1468 * Is there need to periodically free_page_list? It would
1469 * appear not as the counts should be low
1471 if (unlikely(PageTransHuge(page))) {
1472 mem_cgroup_uncharge(page);
1473 (*get_compound_page_dtor(page))(page);
1475 list_add(&page->lru, &free_pages);
1478 activate_locked_split:
1480 * The tail pages that are failed to add into swap cache
1481 * reach here. Fixup nr_scanned and nr_pages.
1484 sc->nr_scanned -= (nr_pages - 1);
1488 /* Not a candidate for swapping, so reclaim swap space. */
1489 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1491 try_to_free_swap(page);
1492 VM_BUG_ON_PAGE(PageActive(page), page);
1493 if (!PageMlocked(page)) {
1494 int type = page_is_file_cache(page);
1495 SetPageActive(page);
1496 stat->nr_activate[type] += nr_pages;
1497 count_memcg_page_event(page, PGACTIVATE);
1502 list_add(&page->lru, &ret_pages);
1503 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1506 pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1508 mem_cgroup_uncharge_list(&free_pages);
1509 try_to_unmap_flush();
1510 free_unref_page_list(&free_pages);
1512 list_splice(&ret_pages, page_list);
1513 count_vm_events(PGACTIVATE, pgactivate);
1515 return nr_reclaimed;
1518 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1519 struct list_head *page_list)
1521 struct scan_control sc = {
1522 .gfp_mask = GFP_KERNEL,
1523 .priority = DEF_PRIORITY,
1526 struct reclaim_stat dummy_stat;
1528 struct page *page, *next;
1529 LIST_HEAD(clean_pages);
1531 list_for_each_entry_safe(page, next, page_list, lru) {
1532 if (page_is_file_cache(page) && !PageDirty(page) &&
1533 !__PageMovable(page) && !PageUnevictable(page)) {
1534 ClearPageActive(page);
1535 list_move(&page->lru, &clean_pages);
1539 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1540 TTU_IGNORE_ACCESS, &dummy_stat, true);
1541 list_splice(&clean_pages, page_list);
1542 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1547 * Attempt to remove the specified page from its LRU. Only take this page
1548 * if it is of the appropriate PageActive status. Pages which are being
1549 * freed elsewhere are also ignored.
1551 * page: page to consider
1552 * mode: one of the LRU isolation modes defined above
1554 * returns 0 on success, -ve errno on failure.
1556 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1560 /* Only take pages on the LRU. */
1564 /* Compaction should not handle unevictable pages but CMA can do so */
1565 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1571 * To minimise LRU disruption, the caller can indicate that it only
1572 * wants to isolate pages it will be able to operate on without
1573 * blocking - clean pages for the most part.
1575 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1576 * that it is possible to migrate without blocking
1578 if (mode & ISOLATE_ASYNC_MIGRATE) {
1579 /* All the caller can do on PageWriteback is block */
1580 if (PageWriteback(page))
1583 if (PageDirty(page)) {
1584 struct address_space *mapping;
1588 * Only pages without mappings or that have a
1589 * ->migratepage callback are possible to migrate
1590 * without blocking. However, we can be racing with
1591 * truncation so it's necessary to lock the page
1592 * to stabilise the mapping as truncation holds
1593 * the page lock until after the page is removed
1594 * from the page cache.
1596 if (!trylock_page(page))
1599 mapping = page_mapping(page);
1600 migrate_dirty = !mapping || mapping->a_ops->migratepage;
1607 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1610 if (likely(get_page_unless_zero(page))) {
1612 * Be careful not to clear PageLRU until after we're
1613 * sure the page is not being freed elsewhere -- the
1614 * page release code relies on it.
1625 * Update LRU sizes after isolating pages. The LRU size updates must
1626 * be complete before mem_cgroup_update_lru_size due to a santity check.
1628 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1629 enum lru_list lru, unsigned long *nr_zone_taken)
1633 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1634 if (!nr_zone_taken[zid])
1637 __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1639 mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1646 * pgdat->lru_lock is heavily contended. Some of the functions that
1647 * shrink the lists perform better by taking out a batch of pages
1648 * and working on them outside the LRU lock.
1650 * For pagecache intensive workloads, this function is the hottest
1651 * spot in the kernel (apart from copy_*_user functions).
1653 * Appropriate locks must be held before calling this function.
1655 * @nr_to_scan: The number of eligible pages to look through on the list.
1656 * @lruvec: The LRU vector to pull pages from.
1657 * @dst: The temp list to put pages on to.
1658 * @nr_scanned: The number of pages that were scanned.
1659 * @sc: The scan_control struct for this reclaim session
1660 * @mode: One of the LRU isolation modes
1661 * @lru: LRU list id for isolating
1663 * returns how many pages were moved onto *@dst.
1665 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1666 struct lruvec *lruvec, struct list_head *dst,
1667 unsigned long *nr_scanned, struct scan_control *sc,
1670 struct list_head *src = &lruvec->lists[lru];
1671 unsigned long nr_taken = 0;
1672 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1673 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1674 unsigned long skipped = 0;
1675 unsigned long scan, total_scan, nr_pages;
1676 LIST_HEAD(pages_skipped);
1677 isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED);
1681 while (scan < nr_to_scan && !list_empty(src)) {
1684 page = lru_to_page(src);
1685 prefetchw_prev_lru_page(page, src, flags);
1687 VM_BUG_ON_PAGE(!PageLRU(page), page);
1689 nr_pages = 1 << compound_order(page);
1690 total_scan += nr_pages;
1692 if (page_zonenum(page) > sc->reclaim_idx) {
1693 list_move(&page->lru, &pages_skipped);
1694 nr_skipped[page_zonenum(page)] += nr_pages;
1699 * Do not count skipped pages because that makes the function
1700 * return with no isolated pages if the LRU mostly contains
1701 * ineligible pages. This causes the VM to not reclaim any
1702 * pages, triggering a premature OOM.
1704 * Account all tail pages of THP. This would not cause
1705 * premature OOM since __isolate_lru_page() returns -EBUSY
1706 * only when the page is being freed somewhere else.
1709 switch (__isolate_lru_page(page, mode)) {
1711 nr_taken += nr_pages;
1712 nr_zone_taken[page_zonenum(page)] += nr_pages;
1713 list_move(&page->lru, dst);
1717 /* else it is being freed elsewhere */
1718 list_move(&page->lru, src);
1727 * Splice any skipped pages to the start of the LRU list. Note that
1728 * this disrupts the LRU order when reclaiming for lower zones but
1729 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1730 * scanning would soon rescan the same pages to skip and put the
1731 * system at risk of premature OOM.
1733 if (!list_empty(&pages_skipped)) {
1736 list_splice(&pages_skipped, src);
1737 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1738 if (!nr_skipped[zid])
1741 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1742 skipped += nr_skipped[zid];
1745 *nr_scanned = total_scan;
1746 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1747 total_scan, skipped, nr_taken, mode, lru);
1748 update_lru_sizes(lruvec, lru, nr_zone_taken);
1753 * isolate_lru_page - tries to isolate a page from its LRU list
1754 * @page: page to isolate from its LRU list
1756 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1757 * vmstat statistic corresponding to whatever LRU list the page was on.
1759 * Returns 0 if the page was removed from an LRU list.
1760 * Returns -EBUSY if the page was not on an LRU list.
1762 * The returned page will have PageLRU() cleared. If it was found on
1763 * the active list, it will have PageActive set. If it was found on
1764 * the unevictable list, it will have the PageUnevictable bit set. That flag
1765 * may need to be cleared by the caller before letting the page go.
1767 * The vmstat statistic corresponding to the list on which the page was
1768 * found will be decremented.
1772 * (1) Must be called with an elevated refcount on the page. This is a
1773 * fundamentnal difference from isolate_lru_pages (which is called
1774 * without a stable reference).
1775 * (2) the lru_lock must not be held.
1776 * (3) interrupts must be enabled.
1778 int isolate_lru_page(struct page *page)
1782 VM_BUG_ON_PAGE(!page_count(page), page);
1783 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1785 if (PageLRU(page)) {
1786 pg_data_t *pgdat = page_pgdat(page);
1787 struct lruvec *lruvec;
1789 spin_lock_irq(&pgdat->lru_lock);
1790 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1791 if (PageLRU(page)) {
1792 int lru = page_lru(page);
1795 del_page_from_lru_list(page, lruvec, lru);
1798 spin_unlock_irq(&pgdat->lru_lock);
1804 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1805 * then get resheduled. When there are massive number of tasks doing page
1806 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1807 * the LRU list will go small and be scanned faster than necessary, leading to
1808 * unnecessary swapping, thrashing and OOM.
1810 static int too_many_isolated(struct pglist_data *pgdat, int file,
1811 struct scan_control *sc)
1813 unsigned long inactive, isolated;
1815 if (current_is_kswapd())
1818 if (!sane_reclaim(sc))
1822 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1823 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1825 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1826 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1830 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1831 * won't get blocked by normal direct-reclaimers, forming a circular
1834 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1837 return isolated > inactive;
1841 * This moves pages from @list to corresponding LRU list.
1843 * We move them the other way if the page is referenced by one or more
1844 * processes, from rmap.
1846 * If the pages are mostly unmapped, the processing is fast and it is
1847 * appropriate to hold zone_lru_lock across the whole operation. But if
1848 * the pages are mapped, the processing is slow (page_referenced()) so we
1849 * should drop zone_lru_lock around each page. It's impossible to balance
1850 * this, so instead we remove the pages from the LRU while processing them.
1851 * It is safe to rely on PG_active against the non-LRU pages in here because
1852 * nobody will play with that bit on a non-LRU page.
1854 * The downside is that we have to touch page->_refcount against each page.
1855 * But we had to alter page->flags anyway.
1857 * Returns the number of pages moved to the given lruvec.
1860 static unsigned noinline_for_stack move_pages_to_lru(struct lruvec *lruvec,
1861 struct list_head *list)
1863 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1864 int nr_pages, nr_moved = 0;
1865 LIST_HEAD(pages_to_free);
1869 while (!list_empty(list)) {
1870 page = lru_to_page(list);
1871 VM_BUG_ON_PAGE(PageLRU(page), page);
1872 if (unlikely(!page_evictable(page))) {
1873 list_del(&page->lru);
1874 spin_unlock_irq(&pgdat->lru_lock);
1875 putback_lru_page(page);
1876 spin_lock_irq(&pgdat->lru_lock);
1879 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1882 lru = page_lru(page);
1884 nr_pages = hpage_nr_pages(page);
1885 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1886 list_move(&page->lru, &lruvec->lists[lru]);
1888 if (put_page_testzero(page)) {
1889 __ClearPageLRU(page);
1890 __ClearPageActive(page);
1891 del_page_from_lru_list(page, lruvec, lru);
1893 if (unlikely(PageCompound(page))) {
1894 spin_unlock_irq(&pgdat->lru_lock);
1895 mem_cgroup_uncharge(page);
1896 (*get_compound_page_dtor(page))(page);
1897 spin_lock_irq(&pgdat->lru_lock);
1899 list_add(&page->lru, &pages_to_free);
1901 nr_moved += nr_pages;
1906 * To save our caller's stack, now use input list for pages to free.
1908 list_splice(&pages_to_free, list);
1914 * If a kernel thread (such as nfsd for loop-back mounts) services
1915 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1916 * In that case we should only throttle if the backing device it is
1917 * writing to is congested. In other cases it is safe to throttle.
1919 static int current_may_throttle(void)
1921 return !(current->flags & PF_LESS_THROTTLE) ||
1922 current->backing_dev_info == NULL ||
1923 bdi_write_congested(current->backing_dev_info);
1927 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1928 * of reclaimed pages
1930 static noinline_for_stack unsigned long
1931 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1932 struct scan_control *sc, enum lru_list lru)
1934 LIST_HEAD(page_list);
1935 unsigned long nr_scanned;
1936 unsigned long nr_reclaimed = 0;
1937 unsigned long nr_taken;
1938 struct reclaim_stat stat;
1939 int file = is_file_lru(lru);
1940 enum vm_event_item item;
1941 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1942 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1943 bool stalled = false;
1945 while (unlikely(too_many_isolated(pgdat, file, sc))) {
1949 /* wait a bit for the reclaimer. */
1953 /* We are about to die and free our memory. Return now. */
1954 if (fatal_signal_pending(current))
1955 return SWAP_CLUSTER_MAX;
1960 spin_lock_irq(&pgdat->lru_lock);
1962 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1963 &nr_scanned, sc, lru);
1965 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1966 reclaim_stat->recent_scanned[file] += nr_taken;
1968 item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
1969 if (global_reclaim(sc))
1970 __count_vm_events(item, nr_scanned);
1971 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
1972 spin_unlock_irq(&pgdat->lru_lock);
1977 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1980 spin_lock_irq(&pgdat->lru_lock);
1982 item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
1983 if (global_reclaim(sc))
1984 __count_vm_events(item, nr_reclaimed);
1985 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
1986 reclaim_stat->recent_rotated[0] += stat.nr_activate[0];
1987 reclaim_stat->recent_rotated[1] += stat.nr_activate[1];
1989 move_pages_to_lru(lruvec, &page_list);
1991 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1993 spin_unlock_irq(&pgdat->lru_lock);
1995 mem_cgroup_uncharge_list(&page_list);
1996 free_unref_page_list(&page_list);
1999 * If dirty pages are scanned that are not queued for IO, it
2000 * implies that flushers are not doing their job. This can
2001 * happen when memory pressure pushes dirty pages to the end of
2002 * the LRU before the dirty limits are breached and the dirty
2003 * data has expired. It can also happen when the proportion of
2004 * dirty pages grows not through writes but through memory
2005 * pressure reclaiming all the clean cache. And in some cases,
2006 * the flushers simply cannot keep up with the allocation
2007 * rate. Nudge the flusher threads in case they are asleep.
2009 if (stat.nr_unqueued_dirty == nr_taken)
2010 wakeup_flusher_threads(WB_REASON_VMSCAN);
2012 sc->nr.dirty += stat.nr_dirty;
2013 sc->nr.congested += stat.nr_congested;
2014 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2015 sc->nr.writeback += stat.nr_writeback;
2016 sc->nr.immediate += stat.nr_immediate;
2017 sc->nr.taken += nr_taken;
2019 sc->nr.file_taken += nr_taken;
2021 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2022 nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2023 return nr_reclaimed;
2026 static void shrink_active_list(unsigned long nr_to_scan,
2027 struct lruvec *lruvec,
2028 struct scan_control *sc,
2031 unsigned long nr_taken;
2032 unsigned long nr_scanned;
2033 unsigned long vm_flags;
2034 LIST_HEAD(l_hold); /* The pages which were snipped off */
2035 LIST_HEAD(l_active);
2036 LIST_HEAD(l_inactive);
2038 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2039 unsigned nr_deactivate, nr_activate;
2040 unsigned nr_rotated = 0;
2041 int file = is_file_lru(lru);
2042 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2046 spin_lock_irq(&pgdat->lru_lock);
2048 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2049 &nr_scanned, sc, lru);
2051 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2052 reclaim_stat->recent_scanned[file] += nr_taken;
2054 __count_vm_events(PGREFILL, nr_scanned);
2055 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2057 spin_unlock_irq(&pgdat->lru_lock);
2059 while (!list_empty(&l_hold)) {
2061 page = lru_to_page(&l_hold);
2062 list_del(&page->lru);
2064 if (unlikely(!page_evictable(page))) {
2065 putback_lru_page(page);
2069 if (unlikely(buffer_heads_over_limit)) {
2070 if (page_has_private(page) && trylock_page(page)) {
2071 if (page_has_private(page))
2072 try_to_release_page(page, 0);
2077 if (page_referenced(page, 0, sc->target_mem_cgroup,
2079 nr_rotated += hpage_nr_pages(page);
2081 * Identify referenced, file-backed active pages and
2082 * give them one more trip around the active list. So
2083 * that executable code get better chances to stay in
2084 * memory under moderate memory pressure. Anon pages
2085 * are not likely to be evicted by use-once streaming
2086 * IO, plus JVM can create lots of anon VM_EXEC pages,
2087 * so we ignore them here.
2089 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
2090 list_add(&page->lru, &l_active);
2095 ClearPageActive(page); /* we are de-activating */
2096 SetPageWorkingset(page);
2097 list_add(&page->lru, &l_inactive);
2101 * Move pages back to the lru list.
2103 spin_lock_irq(&pgdat->lru_lock);
2105 * Count referenced pages from currently used mappings as rotated,
2106 * even though only some of them are actually re-activated. This
2107 * helps balance scan pressure between file and anonymous pages in
2110 reclaim_stat->recent_rotated[file] += nr_rotated;
2112 nr_activate = move_pages_to_lru(lruvec, &l_active);
2113 nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
2114 /* Keep all free pages in l_active list */
2115 list_splice(&l_inactive, &l_active);
2117 __count_vm_events(PGDEACTIVATE, nr_deactivate);
2118 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2120 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2121 spin_unlock_irq(&pgdat->lru_lock);
2123 mem_cgroup_uncharge_list(&l_active);
2124 free_unref_page_list(&l_active);
2125 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2126 nr_deactivate, nr_rotated, sc->priority, file);
2130 * The inactive anon list should be small enough that the VM never has
2131 * to do too much work.
2133 * The inactive file list should be small enough to leave most memory
2134 * to the established workingset on the scan-resistant active list,
2135 * but large enough to avoid thrashing the aggregate readahead window.
2137 * Both inactive lists should also be large enough that each inactive
2138 * page has a chance to be referenced again before it is reclaimed.
2140 * If that fails and refaulting is observed, the inactive list grows.
2142 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2143 * on this LRU, maintained by the pageout code. An inactive_ratio
2144 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2147 * memory ratio inactive
2148 * -------------------------------------
2157 static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2158 struct scan_control *sc, bool trace)
2160 enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2161 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2162 enum lru_list inactive_lru = file * LRU_FILE;
2163 unsigned long inactive, active;
2164 unsigned long inactive_ratio;
2165 unsigned long refaults;
2169 * If we don't have swap space, anonymous page deactivation
2172 if (!file && !total_swap_pages)
2175 inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2176 active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2179 * When refaults are being observed, it means a new workingset
2180 * is being established. Disable active list protection to get
2181 * rid of the stale workingset quickly.
2183 refaults = lruvec_page_state_local(lruvec, WORKINGSET_ACTIVATE);
2184 if (file && lruvec->refaults != refaults) {
2187 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2189 inactive_ratio = int_sqrt(10 * gb);
2195 trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
2196 lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
2197 lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
2198 inactive_ratio, file);
2200 return inactive * inactive_ratio < active;
2203 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2204 struct lruvec *lruvec, struct scan_control *sc)
2206 if (is_active_lru(lru)) {
2207 if (inactive_list_is_low(lruvec, is_file_lru(lru), sc, true))
2208 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2212 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2223 * Determine how aggressively the anon and file LRU lists should be
2224 * scanned. The relative value of each set of LRU lists is determined
2225 * by looking at the fraction of the pages scanned we did rotate back
2226 * onto the active list instead of evict.
2228 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2229 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2231 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2232 struct scan_control *sc, unsigned long *nr,
2233 unsigned long *lru_pages)
2235 int swappiness = mem_cgroup_swappiness(memcg);
2236 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2238 u64 denominator = 0; /* gcc */
2239 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2240 unsigned long anon_prio, file_prio;
2241 enum scan_balance scan_balance;
2242 unsigned long anon, file;
2243 unsigned long ap, fp;
2246 /* If we have no swap space, do not bother scanning anon pages. */
2247 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2248 scan_balance = SCAN_FILE;
2253 * Global reclaim will swap to prevent OOM even with no
2254 * swappiness, but memcg users want to use this knob to
2255 * disable swapping for individual groups completely when
2256 * using the memory controller's swap limit feature would be
2259 if (!global_reclaim(sc) && !swappiness) {
2260 scan_balance = SCAN_FILE;
2265 * Do not apply any pressure balancing cleverness when the
2266 * system is close to OOM, scan both anon and file equally
2267 * (unless the swappiness setting disagrees with swapping).
2269 if (!sc->priority && swappiness) {
2270 scan_balance = SCAN_EQUAL;
2275 * Prevent the reclaimer from falling into the cache trap: as
2276 * cache pages start out inactive, every cache fault will tip
2277 * the scan balance towards the file LRU. And as the file LRU
2278 * shrinks, so does the window for rotation from references.
2279 * This means we have a runaway feedback loop where a tiny
2280 * thrashing file LRU becomes infinitely more attractive than
2281 * anon pages. Try to detect this based on file LRU size.
2283 if (global_reclaim(sc)) {
2284 unsigned long pgdatfile;
2285 unsigned long pgdatfree;
2287 unsigned long total_high_wmark = 0;
2289 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2290 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2291 node_page_state(pgdat, NR_INACTIVE_FILE);
2293 for (z = 0; z < MAX_NR_ZONES; z++) {
2294 struct zone *zone = &pgdat->node_zones[z];
2295 if (!managed_zone(zone))
2298 total_high_wmark += high_wmark_pages(zone);
2301 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2303 * Force SCAN_ANON if there are enough inactive
2304 * anonymous pages on the LRU in eligible zones.
2305 * Otherwise, the small LRU gets thrashed.
2307 if (!inactive_list_is_low(lruvec, false, sc, false) &&
2308 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
2310 scan_balance = SCAN_ANON;
2317 * If there is enough inactive page cache, i.e. if the size of the
2318 * inactive list is greater than that of the active list *and* the
2319 * inactive list actually has some pages to scan on this priority, we
2320 * do not reclaim anything from the anonymous working set right now.
2321 * Without the second condition we could end up never scanning an
2322 * lruvec even if it has plenty of old anonymous pages unless the
2323 * system is under heavy pressure.
2325 if (!inactive_list_is_low(lruvec, true, sc, false) &&
2326 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2327 scan_balance = SCAN_FILE;
2331 scan_balance = SCAN_FRACT;
2334 * With swappiness at 100, anonymous and file have the same priority.
2335 * This scanning priority is essentially the inverse of IO cost.
2337 anon_prio = swappiness;
2338 file_prio = 200 - anon_prio;
2341 * OK, so we have swap space and a fair amount of page cache
2342 * pages. We use the recently rotated / recently scanned
2343 * ratios to determine how valuable each cache is.
2345 * Because workloads change over time (and to avoid overflow)
2346 * we keep these statistics as a floating average, which ends
2347 * up weighing recent references more than old ones.
2349 * anon in [0], file in [1]
2352 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2353 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2354 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2355 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2357 spin_lock_irq(&pgdat->lru_lock);
2358 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2359 reclaim_stat->recent_scanned[0] /= 2;
2360 reclaim_stat->recent_rotated[0] /= 2;
2363 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2364 reclaim_stat->recent_scanned[1] /= 2;
2365 reclaim_stat->recent_rotated[1] /= 2;
2369 * The amount of pressure on anon vs file pages is inversely
2370 * proportional to the fraction of recently scanned pages on
2371 * each list that were recently referenced and in active use.
2373 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2374 ap /= reclaim_stat->recent_rotated[0] + 1;
2376 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2377 fp /= reclaim_stat->recent_rotated[1] + 1;
2378 spin_unlock_irq(&pgdat->lru_lock);
2382 denominator = ap + fp + 1;
2385 for_each_evictable_lru(lru) {
2386 int file = is_file_lru(lru);
2390 size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2391 scan = size >> sc->priority;
2393 * If the cgroup's already been deleted, make sure to
2394 * scrape out the remaining cache.
2396 if (!scan && !mem_cgroup_online(memcg))
2397 scan = min(size, SWAP_CLUSTER_MAX);
2399 switch (scan_balance) {
2401 /* Scan lists relative to size */
2405 * Scan types proportional to swappiness and
2406 * their relative recent reclaim efficiency.
2407 * Make sure we don't miss the last page
2408 * because of a round-off error.
2410 scan = DIV64_U64_ROUND_UP(scan * fraction[file],
2415 /* Scan one type exclusively */
2416 if ((scan_balance == SCAN_FILE) != file) {
2422 /* Look ma, no brain */
2432 * This is a basic per-node page freer. Used by both kswapd and direct reclaim.
2434 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2435 struct scan_control *sc, unsigned long *lru_pages)
2437 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2438 unsigned long nr[NR_LRU_LISTS];
2439 unsigned long targets[NR_LRU_LISTS];
2440 unsigned long nr_to_scan;
2442 unsigned long nr_reclaimed = 0;
2443 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2444 struct blk_plug plug;
2447 get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2449 /* Record the original scan target for proportional adjustments later */
2450 memcpy(targets, nr, sizeof(nr));
2453 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2454 * event that can occur when there is little memory pressure e.g.
2455 * multiple streaming readers/writers. Hence, we do not abort scanning
2456 * when the requested number of pages are reclaimed when scanning at
2457 * DEF_PRIORITY on the assumption that the fact we are direct
2458 * reclaiming implies that kswapd is not keeping up and it is best to
2459 * do a batch of work at once. For memcg reclaim one check is made to
2460 * abort proportional reclaim if either the file or anon lru has already
2461 * dropped to zero at the first pass.
2463 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2464 sc->priority == DEF_PRIORITY);
2466 blk_start_plug(&plug);
2467 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2468 nr[LRU_INACTIVE_FILE]) {
2469 unsigned long nr_anon, nr_file, percentage;
2470 unsigned long nr_scanned;
2472 for_each_evictable_lru(lru) {
2474 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2475 nr[lru] -= nr_to_scan;
2477 nr_reclaimed += shrink_list(lru, nr_to_scan,
2484 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2488 * For kswapd and memcg, reclaim at least the number of pages
2489 * requested. Ensure that the anon and file LRUs are scanned
2490 * proportionally what was requested by get_scan_count(). We
2491 * stop reclaiming one LRU and reduce the amount scanning
2492 * proportional to the original scan target.
2494 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2495 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2498 * It's just vindictive to attack the larger once the smaller
2499 * has gone to zero. And given the way we stop scanning the
2500 * smaller below, this makes sure that we only make one nudge
2501 * towards proportionality once we've got nr_to_reclaim.
2503 if (!nr_file || !nr_anon)
2506 if (nr_file > nr_anon) {
2507 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2508 targets[LRU_ACTIVE_ANON] + 1;
2510 percentage = nr_anon * 100 / scan_target;
2512 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2513 targets[LRU_ACTIVE_FILE] + 1;
2515 percentage = nr_file * 100 / scan_target;
2518 /* Stop scanning the smaller of the LRU */
2520 nr[lru + LRU_ACTIVE] = 0;
2523 * Recalculate the other LRU scan count based on its original
2524 * scan target and the percentage scanning already complete
2526 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2527 nr_scanned = targets[lru] - nr[lru];
2528 nr[lru] = targets[lru] * (100 - percentage) / 100;
2529 nr[lru] -= min(nr[lru], nr_scanned);
2532 nr_scanned = targets[lru] - nr[lru];
2533 nr[lru] = targets[lru] * (100 - percentage) / 100;
2534 nr[lru] -= min(nr[lru], nr_scanned);
2536 scan_adjusted = true;
2538 blk_finish_plug(&plug);
2539 sc->nr_reclaimed += nr_reclaimed;
2542 * Even if we did not try to evict anon pages at all, we want to
2543 * rebalance the anon lru active/inactive ratio.
2545 if (inactive_list_is_low(lruvec, false, sc, true))
2546 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2547 sc, LRU_ACTIVE_ANON);
2550 /* Use reclaim/compaction for costly allocs or under memory pressure */
2551 static bool in_reclaim_compaction(struct scan_control *sc)
2553 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2554 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2555 sc->priority < DEF_PRIORITY - 2))
2562 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2563 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2564 * true if more pages should be reclaimed such that when the page allocator
2565 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2566 * It will give up earlier than that if there is difficulty reclaiming pages.
2568 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2569 unsigned long nr_reclaimed,
2570 unsigned long nr_scanned,
2571 struct scan_control *sc)
2573 unsigned long pages_for_compaction;
2574 unsigned long inactive_lru_pages;
2577 /* If not in reclaim/compaction mode, stop */
2578 if (!in_reclaim_compaction(sc))
2581 /* Consider stopping depending on scan and reclaim activity */
2582 if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) {
2584 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the
2585 * full LRU list has been scanned and we are still failing
2586 * to reclaim pages. This full LRU scan is potentially
2587 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed
2589 if (!nr_reclaimed && !nr_scanned)
2593 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably
2594 * fail without consequence, stop if we failed to reclaim
2595 * any pages from the last SWAP_CLUSTER_MAX number of
2596 * pages that were scanned. This will return to the
2597 * caller faster at the risk reclaim/compaction and
2598 * the resulting allocation attempt fails
2605 * If we have not reclaimed enough pages for compaction and the
2606 * inactive lists are large enough, continue reclaiming
2608 pages_for_compaction = compact_gap(sc->order);
2609 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2610 if (get_nr_swap_pages() > 0)
2611 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2612 if (sc->nr_reclaimed < pages_for_compaction &&
2613 inactive_lru_pages > pages_for_compaction)
2616 /* If compaction would go ahead or the allocation would succeed, stop */
2617 for (z = 0; z <= sc->reclaim_idx; z++) {
2618 struct zone *zone = &pgdat->node_zones[z];
2619 if (!managed_zone(zone))
2622 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2623 case COMPACT_SUCCESS:
2624 case COMPACT_CONTINUE:
2627 /* check next zone */
2634 static bool pgdat_memcg_congested(pg_data_t *pgdat, struct mem_cgroup *memcg)
2636 return test_bit(PGDAT_CONGESTED, &pgdat->flags) ||
2637 (memcg && memcg_congested(pgdat, memcg));
2640 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2642 struct reclaim_state *reclaim_state = current->reclaim_state;
2643 unsigned long nr_reclaimed, nr_scanned;
2644 bool reclaimable = false;
2647 struct mem_cgroup *root = sc->target_mem_cgroup;
2648 struct mem_cgroup_reclaim_cookie reclaim = {
2650 .priority = sc->priority,
2652 unsigned long node_lru_pages = 0;
2653 struct mem_cgroup *memcg;
2655 memset(&sc->nr, 0, sizeof(sc->nr));
2657 nr_reclaimed = sc->nr_reclaimed;
2658 nr_scanned = sc->nr_scanned;
2660 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2662 unsigned long lru_pages;
2663 unsigned long reclaimed;
2664 unsigned long scanned;
2666 switch (mem_cgroup_protected(root, memcg)) {
2667 case MEMCG_PROT_MIN:
2670 * If there is no reclaimable memory, OOM.
2673 case MEMCG_PROT_LOW:
2676 * Respect the protection only as long as
2677 * there is an unprotected supply
2678 * of reclaimable memory from other cgroups.
2680 if (!sc->memcg_low_reclaim) {
2681 sc->memcg_low_skipped = 1;
2684 memcg_memory_event(memcg, MEMCG_LOW);
2686 case MEMCG_PROT_NONE:
2690 reclaimed = sc->nr_reclaimed;
2691 scanned = sc->nr_scanned;
2692 shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2693 node_lru_pages += lru_pages;
2695 if (sc->may_shrinkslab) {
2696 shrink_slab(sc->gfp_mask, pgdat->node_id,
2697 memcg, sc->priority);
2700 /* Record the group's reclaim efficiency */
2701 vmpressure(sc->gfp_mask, memcg, false,
2702 sc->nr_scanned - scanned,
2703 sc->nr_reclaimed - reclaimed);
2706 * Kswapd have to scan all memory cgroups to fulfill
2707 * the overall scan target for the node.
2709 * Limit reclaim, on the other hand, only cares about
2710 * nr_to_reclaim pages to be reclaimed and it will
2711 * retry with decreasing priority if one round over the
2712 * whole hierarchy is not sufficient.
2714 if (!current_is_kswapd() &&
2715 sc->nr_reclaimed >= sc->nr_to_reclaim) {
2716 mem_cgroup_iter_break(root, memcg);
2719 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2721 if (reclaim_state) {
2722 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2723 reclaim_state->reclaimed_slab = 0;
2726 /* Record the subtree's reclaim efficiency */
2727 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2728 sc->nr_scanned - nr_scanned,
2729 sc->nr_reclaimed - nr_reclaimed);
2731 if (sc->nr_reclaimed - nr_reclaimed)
2734 if (current_is_kswapd()) {
2736 * If reclaim is isolating dirty pages under writeback,
2737 * it implies that the long-lived page allocation rate
2738 * is exceeding the page laundering rate. Either the
2739 * global limits are not being effective at throttling
2740 * processes due to the page distribution throughout
2741 * zones or there is heavy usage of a slow backing
2742 * device. The only option is to throttle from reclaim
2743 * context which is not ideal as there is no guarantee
2744 * the dirtying process is throttled in the same way
2745 * balance_dirty_pages() manages.
2747 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
2748 * count the number of pages under pages flagged for
2749 * immediate reclaim and stall if any are encountered
2750 * in the nr_immediate check below.
2752 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
2753 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
2756 * Tag a node as congested if all the dirty pages
2757 * scanned were backed by a congested BDI and
2758 * wait_iff_congested will stall.
2760 if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2761 set_bit(PGDAT_CONGESTED, &pgdat->flags);
2763 /* Allow kswapd to start writing pages during reclaim.*/
2764 if (sc->nr.unqueued_dirty == sc->nr.file_taken)
2765 set_bit(PGDAT_DIRTY, &pgdat->flags);
2768 * If kswapd scans pages marked marked for immediate
2769 * reclaim and under writeback (nr_immediate), it
2770 * implies that pages are cycling through the LRU
2771 * faster than they are written so also forcibly stall.
2773 if (sc->nr.immediate)
2774 congestion_wait(BLK_RW_ASYNC, HZ/10);
2778 * Legacy memcg will stall in page writeback so avoid forcibly
2779 * stalling in wait_iff_congested().
2781 if (!global_reclaim(sc) && sane_reclaim(sc) &&
2782 sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2783 set_memcg_congestion(pgdat, root, true);
2786 * Stall direct reclaim for IO completions if underlying BDIs
2787 * and node is congested. Allow kswapd to continue until it
2788 * starts encountering unqueued dirty pages or cycling through
2789 * the LRU too quickly.
2791 if (!sc->hibernation_mode && !current_is_kswapd() &&
2792 current_may_throttle() && pgdat_memcg_congested(pgdat, root))
2793 wait_iff_congested(BLK_RW_ASYNC, HZ/10);
2795 } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2796 sc->nr_scanned - nr_scanned, sc));
2799 * Kswapd gives up on balancing particular nodes after too
2800 * many failures to reclaim anything from them and goes to
2801 * sleep. On reclaim progress, reset the failure counter. A
2802 * successful direct reclaim run will revive a dormant kswapd.
2805 pgdat->kswapd_failures = 0;
2811 * Returns true if compaction should go ahead for a costly-order request, or
2812 * the allocation would already succeed without compaction. Return false if we
2813 * should reclaim first.
2815 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2817 unsigned long watermark;
2818 enum compact_result suitable;
2820 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2821 if (suitable == COMPACT_SUCCESS)
2822 /* Allocation should succeed already. Don't reclaim. */
2824 if (suitable == COMPACT_SKIPPED)
2825 /* Compaction cannot yet proceed. Do reclaim. */
2829 * Compaction is already possible, but it takes time to run and there
2830 * are potentially other callers using the pages just freed. So proceed
2831 * with reclaim to make a buffer of free pages available to give
2832 * compaction a reasonable chance of completing and allocating the page.
2833 * Note that we won't actually reclaim the whole buffer in one attempt
2834 * as the target watermark in should_continue_reclaim() is lower. But if
2835 * we are already above the high+gap watermark, don't reclaim at all.
2837 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2839 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2843 * This is the direct reclaim path, for page-allocating processes. We only
2844 * try to reclaim pages from zones which will satisfy the caller's allocation
2847 * If a zone is deemed to be full of pinned pages then just give it a light
2848 * scan then give up on it.
2850 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2854 unsigned long nr_soft_reclaimed;
2855 unsigned long nr_soft_scanned;
2857 pg_data_t *last_pgdat = NULL;
2860 * If the number of buffer_heads in the machine exceeds the maximum
2861 * allowed level, force direct reclaim to scan the highmem zone as
2862 * highmem pages could be pinning lowmem pages storing buffer_heads
2864 orig_mask = sc->gfp_mask;
2865 if (buffer_heads_over_limit) {
2866 sc->gfp_mask |= __GFP_HIGHMEM;
2867 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2870 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2871 sc->reclaim_idx, sc->nodemask) {
2873 * Take care memory controller reclaiming has small influence
2876 if (global_reclaim(sc)) {
2877 if (!cpuset_zone_allowed(zone,
2878 GFP_KERNEL | __GFP_HARDWALL))
2882 * If we already have plenty of memory free for
2883 * compaction in this zone, don't free any more.
2884 * Even though compaction is invoked for any
2885 * non-zero order, only frequent costly order
2886 * reclamation is disruptive enough to become a
2887 * noticeable problem, like transparent huge
2890 if (IS_ENABLED(CONFIG_COMPACTION) &&
2891 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2892 compaction_ready(zone, sc)) {
2893 sc->compaction_ready = true;
2898 * Shrink each node in the zonelist once. If the
2899 * zonelist is ordered by zone (not the default) then a
2900 * node may be shrunk multiple times but in that case
2901 * the user prefers lower zones being preserved.
2903 if (zone->zone_pgdat == last_pgdat)
2907 * This steals pages from memory cgroups over softlimit
2908 * and returns the number of reclaimed pages and
2909 * scanned pages. This works for global memory pressure
2910 * and balancing, not for a memcg's limit.
2912 nr_soft_scanned = 0;
2913 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2914 sc->order, sc->gfp_mask,
2916 sc->nr_reclaimed += nr_soft_reclaimed;
2917 sc->nr_scanned += nr_soft_scanned;
2918 /* need some check for avoid more shrink_zone() */
2921 /* See comment about same check for global reclaim above */
2922 if (zone->zone_pgdat == last_pgdat)
2924 last_pgdat = zone->zone_pgdat;
2925 shrink_node(zone->zone_pgdat, sc);
2929 * Restore to original mask to avoid the impact on the caller if we
2930 * promoted it to __GFP_HIGHMEM.
2932 sc->gfp_mask = orig_mask;
2935 static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
2937 struct mem_cgroup *memcg;
2939 memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
2941 unsigned long refaults;
2942 struct lruvec *lruvec;
2944 lruvec = mem_cgroup_lruvec(pgdat, memcg);
2945 refaults = lruvec_page_state_local(lruvec, WORKINGSET_ACTIVATE);
2946 lruvec->refaults = refaults;
2947 } while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
2951 * This is the main entry point to direct page reclaim.
2953 * If a full scan of the inactive list fails to free enough memory then we
2954 * are "out of memory" and something needs to be killed.
2956 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2957 * high - the zone may be full of dirty or under-writeback pages, which this
2958 * caller can't do much about. We kick the writeback threads and take explicit
2959 * naps in the hope that some of these pages can be written. But if the
2960 * allocating task holds filesystem locks which prevent writeout this might not
2961 * work, and the allocation attempt will fail.
2963 * returns: 0, if no pages reclaimed
2964 * else, the number of pages reclaimed
2966 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2967 struct scan_control *sc)
2969 int initial_priority = sc->priority;
2970 pg_data_t *last_pgdat;
2974 delayacct_freepages_start();
2976 if (global_reclaim(sc))
2977 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
2980 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2983 shrink_zones(zonelist, sc);
2985 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2988 if (sc->compaction_ready)
2992 * If we're getting trouble reclaiming, start doing
2993 * writepage even in laptop mode.
2995 if (sc->priority < DEF_PRIORITY - 2)
2996 sc->may_writepage = 1;
2997 } while (--sc->priority >= 0);
3000 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3002 if (zone->zone_pgdat == last_pgdat)
3004 last_pgdat = zone->zone_pgdat;
3005 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3006 set_memcg_congestion(last_pgdat, sc->target_mem_cgroup, false);
3009 delayacct_freepages_end();
3011 if (sc->nr_reclaimed)
3012 return sc->nr_reclaimed;
3014 /* Aborted reclaim to try compaction? don't OOM, then */
3015 if (sc->compaction_ready)
3018 /* Untapped cgroup reserves? Don't OOM, retry. */
3019 if (sc->memcg_low_skipped) {
3020 sc->priority = initial_priority;
3021 sc->memcg_low_reclaim = 1;
3022 sc->memcg_low_skipped = 0;
3029 static bool allow_direct_reclaim(pg_data_t *pgdat)
3032 unsigned long pfmemalloc_reserve = 0;
3033 unsigned long free_pages = 0;
3037 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3040 for (i = 0; i <= ZONE_NORMAL; i++) {
3041 zone = &pgdat->node_zones[i];
3042 if (!managed_zone(zone))
3045 if (!zone_reclaimable_pages(zone))
3048 pfmemalloc_reserve += min_wmark_pages(zone);
3049 free_pages += zone_page_state(zone, NR_FREE_PAGES);
3052 /* If there are no reserves (unexpected config) then do not throttle */
3053 if (!pfmemalloc_reserve)
3056 wmark_ok = free_pages > pfmemalloc_reserve / 2;
3058 /* kswapd must be awake if processes are being throttled */
3059 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3060 pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
3061 (enum zone_type)ZONE_NORMAL);
3062 wake_up_interruptible(&pgdat->kswapd_wait);
3069 * Throttle direct reclaimers if backing storage is backed by the network
3070 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3071 * depleted. kswapd will continue to make progress and wake the processes
3072 * when the low watermark is reached.
3074 * Returns true if a fatal signal was delivered during throttling. If this
3075 * happens, the page allocator should not consider triggering the OOM killer.
3077 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3078 nodemask_t *nodemask)
3082 pg_data_t *pgdat = NULL;
3085 * Kernel threads should not be throttled as they may be indirectly
3086 * responsible for cleaning pages necessary for reclaim to make forward
3087 * progress. kjournald for example may enter direct reclaim while
3088 * committing a transaction where throttling it could forcing other
3089 * processes to block on log_wait_commit().
3091 if (current->flags & PF_KTHREAD)
3095 * If a fatal signal is pending, this process should not throttle.
3096 * It should return quickly so it can exit and free its memory
3098 if (fatal_signal_pending(current))
3102 * Check if the pfmemalloc reserves are ok by finding the first node
3103 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3104 * GFP_KERNEL will be required for allocating network buffers when
3105 * swapping over the network so ZONE_HIGHMEM is unusable.
3107 * Throttling is based on the first usable node and throttled processes
3108 * wait on a queue until kswapd makes progress and wakes them. There
3109 * is an affinity then between processes waking up and where reclaim
3110 * progress has been made assuming the process wakes on the same node.
3111 * More importantly, processes running on remote nodes will not compete
3112 * for remote pfmemalloc reserves and processes on different nodes
3113 * should make reasonable progress.
3115 for_each_zone_zonelist_nodemask(zone, z, zonelist,
3116 gfp_zone(gfp_mask), nodemask) {
3117 if (zone_idx(zone) > ZONE_NORMAL)
3120 /* Throttle based on the first usable node */
3121 pgdat = zone->zone_pgdat;
3122 if (allow_direct_reclaim(pgdat))
3127 /* If no zone was usable by the allocation flags then do not throttle */
3131 /* Account for the throttling */
3132 count_vm_event(PGSCAN_DIRECT_THROTTLE);
3135 * If the caller cannot enter the filesystem, it's possible that it
3136 * is due to the caller holding an FS lock or performing a journal
3137 * transaction in the case of a filesystem like ext[3|4]. In this case,
3138 * it is not safe to block on pfmemalloc_wait as kswapd could be
3139 * blocked waiting on the same lock. Instead, throttle for up to a
3140 * second before continuing.
3142 if (!(gfp_mask & __GFP_FS)) {
3143 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3144 allow_direct_reclaim(pgdat), HZ);
3149 /* Throttle until kswapd wakes the process */
3150 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3151 allow_direct_reclaim(pgdat));
3154 if (fatal_signal_pending(current))
3161 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3162 gfp_t gfp_mask, nodemask_t *nodemask)
3164 unsigned long nr_reclaimed;
3165 struct scan_control sc = {
3166 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3167 .gfp_mask = current_gfp_context(gfp_mask),
3168 .reclaim_idx = gfp_zone(gfp_mask),
3170 .nodemask = nodemask,
3171 .priority = DEF_PRIORITY,
3172 .may_writepage = !laptop_mode,
3175 .may_shrinkslab = 1,
3179 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3180 * Confirm they are large enough for max values.
3182 BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3183 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3184 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3187 * Do not enter reclaim if fatal signal was delivered while throttled.
3188 * 1 is returned so that the page allocator does not OOM kill at this
3191 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3194 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
3196 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3198 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3200 return nr_reclaimed;
3205 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3206 gfp_t gfp_mask, bool noswap,
3208 unsigned long *nr_scanned)
3210 struct scan_control sc = {
3211 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3212 .target_mem_cgroup = memcg,
3213 .may_writepage = !laptop_mode,
3215 .reclaim_idx = MAX_NR_ZONES - 1,
3216 .may_swap = !noswap,
3217 .may_shrinkslab = 1,
3219 unsigned long lru_pages;
3221 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3222 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3224 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3228 * NOTE: Although we can get the priority field, using it
3229 * here is not a good idea, since it limits the pages we can scan.
3230 * if we don't reclaim here, the shrink_node from balance_pgdat
3231 * will pick up pages from other mem cgroup's as well. We hack
3232 * the priority and make it zero.
3234 shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3236 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3238 *nr_scanned = sc.nr_scanned;
3239 return sc.nr_reclaimed;
3242 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3243 unsigned long nr_pages,
3247 struct zonelist *zonelist;
3248 unsigned long nr_reclaimed;
3249 unsigned long pflags;
3251 unsigned int noreclaim_flag;
3252 struct scan_control sc = {
3253 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3254 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3255 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3256 .reclaim_idx = MAX_NR_ZONES - 1,
3257 .target_mem_cgroup = memcg,
3258 .priority = DEF_PRIORITY,
3259 .may_writepage = !laptop_mode,
3261 .may_swap = may_swap,
3262 .may_shrinkslab = 1,
3266 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3267 * take care of from where we get pages. So the node where we start the
3268 * scan does not need to be the current node.
3270 nid = mem_cgroup_select_victim_node(memcg);
3272 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3274 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
3276 psi_memstall_enter(&pflags);
3277 noreclaim_flag = memalloc_noreclaim_save();
3279 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3281 memalloc_noreclaim_restore(noreclaim_flag);
3282 psi_memstall_leave(&pflags);
3284 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3286 return nr_reclaimed;
3290 static void age_active_anon(struct pglist_data *pgdat,
3291 struct scan_control *sc)
3293 struct mem_cgroup *memcg;
3295 if (!total_swap_pages)
3298 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3300 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3302 if (inactive_list_is_low(lruvec, false, sc, true))
3303 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3304 sc, LRU_ACTIVE_ANON);
3306 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3310 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int classzone_idx)
3316 * Check for watermark boosts top-down as the higher zones
3317 * are more likely to be boosted. Both watermarks and boosts
3318 * should not be checked at the time time as reclaim would
3319 * start prematurely when there is no boosting and a lower
3322 for (i = classzone_idx; i >= 0; i--) {
3323 zone = pgdat->node_zones + i;
3324 if (!managed_zone(zone))
3327 if (zone->watermark_boost)
3335 * Returns true if there is an eligible zone balanced for the request order
3338 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3341 unsigned long mark = -1;
3345 * Check watermarks bottom-up as lower zones are more likely to
3348 for (i = 0; i <= classzone_idx; i++) {
3349 zone = pgdat->node_zones + i;
3351 if (!managed_zone(zone))
3354 mark = high_wmark_pages(zone);
3355 if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3360 * If a node has no populated zone within classzone_idx, it does not
3361 * need balancing by definition. This can happen if a zone-restricted
3362 * allocation tries to wake a remote kswapd.
3370 /* Clear pgdat state for congested, dirty or under writeback. */
3371 static void clear_pgdat_congested(pg_data_t *pgdat)
3373 clear_bit(PGDAT_CONGESTED, &pgdat->flags);
3374 clear_bit(PGDAT_DIRTY, &pgdat->flags);
3375 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3379 * Prepare kswapd for sleeping. This verifies that there are no processes
3380 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3382 * Returns true if kswapd is ready to sleep
3384 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3387 * The throttled processes are normally woken up in balance_pgdat() as
3388 * soon as allow_direct_reclaim() is true. But there is a potential
3389 * race between when kswapd checks the watermarks and a process gets
3390 * throttled. There is also a potential race if processes get
3391 * throttled, kswapd wakes, a large process exits thereby balancing the
3392 * zones, which causes kswapd to exit balance_pgdat() before reaching
3393 * the wake up checks. If kswapd is going to sleep, no process should
3394 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3395 * the wake up is premature, processes will wake kswapd and get
3396 * throttled again. The difference from wake ups in balance_pgdat() is
3397 * that here we are under prepare_to_wait().
3399 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3400 wake_up_all(&pgdat->pfmemalloc_wait);
3402 /* Hopeless node, leave it to direct reclaim */
3403 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3406 if (pgdat_balanced(pgdat, order, classzone_idx)) {
3407 clear_pgdat_congested(pgdat);
3415 * kswapd shrinks a node of pages that are at or below the highest usable
3416 * zone that is currently unbalanced.
3418 * Returns true if kswapd scanned at least the requested number of pages to
3419 * reclaim or if the lack of progress was due to pages under writeback.
3420 * This is used to determine if the scanning priority needs to be raised.
3422 static bool kswapd_shrink_node(pg_data_t *pgdat,
3423 struct scan_control *sc)
3428 /* Reclaim a number of pages proportional to the number of zones */
3429 sc->nr_to_reclaim = 0;
3430 for (z = 0; z <= sc->reclaim_idx; z++) {
3431 zone = pgdat->node_zones + z;
3432 if (!managed_zone(zone))
3435 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3439 * Historically care was taken to put equal pressure on all zones but
3440 * now pressure is applied based on node LRU order.
3442 shrink_node(pgdat, sc);
3445 * Fragmentation may mean that the system cannot be rebalanced for
3446 * high-order allocations. If twice the allocation size has been
3447 * reclaimed then recheck watermarks only at order-0 to prevent
3448 * excessive reclaim. Assume that a process requested a high-order
3449 * can direct reclaim/compact.
3451 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3454 return sc->nr_scanned >= sc->nr_to_reclaim;
3458 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3459 * that are eligible for use by the caller until at least one zone is
3462 * Returns the order kswapd finished reclaiming at.
3464 * kswapd scans the zones in the highmem->normal->dma direction. It skips
3465 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3466 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
3467 * or lower is eligible for reclaim until at least one usable zone is
3470 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
3473 unsigned long nr_soft_reclaimed;
3474 unsigned long nr_soft_scanned;
3475 unsigned long pflags;
3476 unsigned long nr_boost_reclaim;
3477 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
3480 struct scan_control sc = {
3481 .gfp_mask = GFP_KERNEL,
3486 psi_memstall_enter(&pflags);
3487 __fs_reclaim_acquire();
3489 count_vm_event(PAGEOUTRUN);
3492 * Account for the reclaim boost. Note that the zone boost is left in
3493 * place so that parallel allocations that are near the watermark will
3494 * stall or direct reclaim until kswapd is finished.
3496 nr_boost_reclaim = 0;
3497 for (i = 0; i <= classzone_idx; i++) {
3498 zone = pgdat->node_zones + i;
3499 if (!managed_zone(zone))
3502 nr_boost_reclaim += zone->watermark_boost;
3503 zone_boosts[i] = zone->watermark_boost;
3505 boosted = nr_boost_reclaim;
3508 sc.priority = DEF_PRIORITY;
3510 unsigned long nr_reclaimed = sc.nr_reclaimed;
3511 bool raise_priority = true;
3515 sc.reclaim_idx = classzone_idx;
3518 * If the number of buffer_heads exceeds the maximum allowed
3519 * then consider reclaiming from all zones. This has a dual
3520 * purpose -- on 64-bit systems it is expected that
3521 * buffer_heads are stripped during active rotation. On 32-bit
3522 * systems, highmem pages can pin lowmem memory and shrinking
3523 * buffers can relieve lowmem pressure. Reclaim may still not
3524 * go ahead if all eligible zones for the original allocation
3525 * request are balanced to avoid excessive reclaim from kswapd.
3527 if (buffer_heads_over_limit) {
3528 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3529 zone = pgdat->node_zones + i;
3530 if (!managed_zone(zone))
3539 * If the pgdat is imbalanced then ignore boosting and preserve
3540 * the watermarks for a later time and restart. Note that the
3541 * zone watermarks will be still reset at the end of balancing
3542 * on the grounds that the normal reclaim should be enough to
3543 * re-evaluate if boosting is required when kswapd next wakes.
3545 balanced = pgdat_balanced(pgdat, sc.order, classzone_idx);
3546 if (!balanced && nr_boost_reclaim) {
3547 nr_boost_reclaim = 0;
3552 * If boosting is not active then only reclaim if there are no
3553 * eligible zones. Note that sc.reclaim_idx is not used as
3554 * buffer_heads_over_limit may have adjusted it.
3556 if (!nr_boost_reclaim && balanced)
3559 /* Limit the priority of boosting to avoid reclaim writeback */
3560 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
3561 raise_priority = false;
3564 * Do not writeback or swap pages for boosted reclaim. The
3565 * intent is to relieve pressure not issue sub-optimal IO
3566 * from reclaim context. If no pages are reclaimed, the
3567 * reclaim will be aborted.
3569 sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
3570 sc.may_swap = !nr_boost_reclaim;
3571 sc.may_shrinkslab = !nr_boost_reclaim;
3574 * Do some background aging of the anon list, to give
3575 * pages a chance to be referenced before reclaiming. All
3576 * pages are rotated regardless of classzone as this is
3577 * about consistent aging.
3579 age_active_anon(pgdat, &sc);
3582 * If we're getting trouble reclaiming, start doing writepage
3583 * even in laptop mode.
3585 if (sc.priority < DEF_PRIORITY - 2)
3586 sc.may_writepage = 1;
3588 /* Call soft limit reclaim before calling shrink_node. */
3590 nr_soft_scanned = 0;
3591 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3592 sc.gfp_mask, &nr_soft_scanned);
3593 sc.nr_reclaimed += nr_soft_reclaimed;
3596 * There should be no need to raise the scanning priority if
3597 * enough pages are already being scanned that that high
3598 * watermark would be met at 100% efficiency.
3600 if (kswapd_shrink_node(pgdat, &sc))
3601 raise_priority = false;
3604 * If the low watermark is met there is no need for processes
3605 * to be throttled on pfmemalloc_wait as they should not be
3606 * able to safely make forward progress. Wake them
3608 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3609 allow_direct_reclaim(pgdat))
3610 wake_up_all(&pgdat->pfmemalloc_wait);
3612 /* Check if kswapd should be suspending */
3613 __fs_reclaim_release();
3614 ret = try_to_freeze();
3615 __fs_reclaim_acquire();
3616 if (ret || kthread_should_stop())
3620 * Raise priority if scanning rate is too low or there was no
3621 * progress in reclaiming pages
3623 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3624 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
3627 * If reclaim made no progress for a boost, stop reclaim as
3628 * IO cannot be queued and it could be an infinite loop in
3629 * extreme circumstances.
3631 if (nr_boost_reclaim && !nr_reclaimed)
3634 if (raise_priority || !nr_reclaimed)
3636 } while (sc.priority >= 1);
3638 if (!sc.nr_reclaimed)
3639 pgdat->kswapd_failures++;
3642 /* If reclaim was boosted, account for the reclaim done in this pass */
3644 unsigned long flags;
3646 for (i = 0; i <= classzone_idx; i++) {
3647 if (!zone_boosts[i])
3650 /* Increments are under the zone lock */
3651 zone = pgdat->node_zones + i;
3652 spin_lock_irqsave(&zone->lock, flags);
3653 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
3654 spin_unlock_irqrestore(&zone->lock, flags);
3658 * As there is now likely space, wakeup kcompact to defragment
3661 wakeup_kcompactd(pgdat, pageblock_order, classzone_idx);
3664 snapshot_refaults(NULL, pgdat);
3665 __fs_reclaim_release();
3666 psi_memstall_leave(&pflags);
3668 * Return the order kswapd stopped reclaiming at as
3669 * prepare_kswapd_sleep() takes it into account. If another caller
3670 * entered the allocator slow path while kswapd was awake, order will
3671 * remain at the higher level.
3677 * The pgdat->kswapd_classzone_idx is used to pass the highest zone index to be
3678 * reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is not
3679 * a valid index then either kswapd runs for first time or kswapd couldn't sleep
3680 * after previous reclaim attempt (node is still unbalanced). In that case
3681 * return the zone index of the previous kswapd reclaim cycle.
3683 static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
3684 enum zone_type prev_classzone_idx)
3686 if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3687 return prev_classzone_idx;
3688 return pgdat->kswapd_classzone_idx;
3691 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3692 unsigned int classzone_idx)
3697 if (freezing(current) || kthread_should_stop())
3700 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3703 * Try to sleep for a short interval. Note that kcompactd will only be
3704 * woken if it is possible to sleep for a short interval. This is
3705 * deliberate on the assumption that if reclaim cannot keep an
3706 * eligible zone balanced that it's also unlikely that compaction will
3709 if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3711 * Compaction records what page blocks it recently failed to
3712 * isolate pages from and skips them in the future scanning.
3713 * When kswapd is going to sleep, it is reasonable to assume
3714 * that pages and compaction may succeed so reset the cache.
3716 reset_isolation_suitable(pgdat);
3719 * We have freed the memory, now we should compact it to make
3720 * allocation of the requested order possible.
3722 wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3724 remaining = schedule_timeout(HZ/10);
3727 * If woken prematurely then reset kswapd_classzone_idx and
3728 * order. The values will either be from a wakeup request or
3729 * the previous request that slept prematurely.
3732 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3733 pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3736 finish_wait(&pgdat->kswapd_wait, &wait);
3737 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3741 * After a short sleep, check if it was a premature sleep. If not, then
3742 * go fully to sleep until explicitly woken up.
3745 prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3746 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3749 * vmstat counters are not perfectly accurate and the estimated
3750 * value for counters such as NR_FREE_PAGES can deviate from the
3751 * true value by nr_online_cpus * threshold. To avoid the zone
3752 * watermarks being breached while under pressure, we reduce the
3753 * per-cpu vmstat threshold while kswapd is awake and restore
3754 * them before going back to sleep.
3756 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3758 if (!kthread_should_stop())
3761 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3764 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3766 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3768 finish_wait(&pgdat->kswapd_wait, &wait);
3772 * The background pageout daemon, started as a kernel thread
3773 * from the init process.
3775 * This basically trickles out pages so that we have _some_
3776 * free memory available even if there is no other activity
3777 * that frees anything up. This is needed for things like routing
3778 * etc, where we otherwise might have all activity going on in
3779 * asynchronous contexts that cannot page things out.
3781 * If there are applications that are active memory-allocators
3782 * (most normal use), this basically shouldn't matter.
3784 static int kswapd(void *p)
3786 unsigned int alloc_order, reclaim_order;
3787 unsigned int classzone_idx = MAX_NR_ZONES - 1;
3788 pg_data_t *pgdat = (pg_data_t*)p;
3789 struct task_struct *tsk = current;
3791 struct reclaim_state reclaim_state = {
3792 .reclaimed_slab = 0,
3794 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3796 if (!cpumask_empty(cpumask))
3797 set_cpus_allowed_ptr(tsk, cpumask);
3798 current->reclaim_state = &reclaim_state;
3801 * Tell the memory management that we're a "memory allocator",
3802 * and that if we need more memory we should get access to it
3803 * regardless (see "__alloc_pages()"). "kswapd" should
3804 * never get caught in the normal page freeing logic.
3806 * (Kswapd normally doesn't need memory anyway, but sometimes
3807 * you need a small amount of memory in order to be able to
3808 * page out something else, and this flag essentially protects
3809 * us from recursively trying to free more memory as we're
3810 * trying to free the first piece of memory in the first place).
3812 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3815 pgdat->kswapd_order = 0;
3816 pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3820 alloc_order = reclaim_order = pgdat->kswapd_order;
3821 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3824 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3827 /* Read the new order and classzone_idx */
3828 alloc_order = reclaim_order = pgdat->kswapd_order;
3829 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3830 pgdat->kswapd_order = 0;
3831 pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3833 ret = try_to_freeze();
3834 if (kthread_should_stop())
3838 * We can speed up thawing tasks if we don't call balance_pgdat
3839 * after returning from the refrigerator
3845 * Reclaim begins at the requested order but if a high-order
3846 * reclaim fails then kswapd falls back to reclaiming for
3847 * order-0. If that happens, kswapd will consider sleeping
3848 * for the order it finished reclaiming at (reclaim_order)
3849 * but kcompactd is woken to compact for the original
3850 * request (alloc_order).
3852 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3854 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3855 if (reclaim_order < alloc_order)
3856 goto kswapd_try_sleep;
3859 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3860 current->reclaim_state = NULL;
3866 * A zone is low on free memory or too fragmented for high-order memory. If
3867 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
3868 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
3869 * has failed or is not needed, still wake up kcompactd if only compaction is
3872 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
3873 enum zone_type classzone_idx)
3877 if (!managed_zone(zone))
3880 if (!cpuset_zone_allowed(zone, gfp_flags))
3882 pgdat = zone->zone_pgdat;
3884 if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3885 pgdat->kswapd_classzone_idx = classzone_idx;
3887 pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx,
3889 pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3890 if (!waitqueue_active(&pgdat->kswapd_wait))
3893 /* Hopeless node, leave it to direct reclaim if possible */
3894 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
3895 (pgdat_balanced(pgdat, order, classzone_idx) &&
3896 !pgdat_watermark_boosted(pgdat, classzone_idx))) {
3898 * There may be plenty of free memory available, but it's too
3899 * fragmented for high-order allocations. Wake up kcompactd
3900 * and rely on compaction_suitable() to determine if it's
3901 * needed. If it fails, it will defer subsequent attempts to
3902 * ratelimit its work.
3904 if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
3905 wakeup_kcompactd(pgdat, order, classzone_idx);
3909 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order,
3911 wake_up_interruptible(&pgdat->kswapd_wait);
3914 #ifdef CONFIG_HIBERNATION
3916 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3919 * Rather than trying to age LRUs the aim is to preserve the overall
3920 * LRU order by reclaiming preferentially
3921 * inactive > active > active referenced > active mapped
3923 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3925 struct reclaim_state reclaim_state;
3926 struct scan_control sc = {
3927 .nr_to_reclaim = nr_to_reclaim,
3928 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3929 .reclaim_idx = MAX_NR_ZONES - 1,
3930 .priority = DEF_PRIORITY,
3934 .hibernation_mode = 1,
3936 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3937 struct task_struct *p = current;
3938 unsigned long nr_reclaimed;
3939 unsigned int noreclaim_flag;
3941 fs_reclaim_acquire(sc.gfp_mask);
3942 noreclaim_flag = memalloc_noreclaim_save();
3943 reclaim_state.reclaimed_slab = 0;
3944 p->reclaim_state = &reclaim_state;
3946 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3948 p->reclaim_state = NULL;
3949 memalloc_noreclaim_restore(noreclaim_flag);
3950 fs_reclaim_release(sc.gfp_mask);
3952 return nr_reclaimed;
3954 #endif /* CONFIG_HIBERNATION */
3956 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3957 not required for correctness. So if the last cpu in a node goes
3958 away, we get changed to run anywhere: as the first one comes back,
3959 restore their cpu bindings. */
3960 static int kswapd_cpu_online(unsigned int cpu)
3964 for_each_node_state(nid, N_MEMORY) {
3965 pg_data_t *pgdat = NODE_DATA(nid);
3966 const struct cpumask *mask;
3968 mask = cpumask_of_node(pgdat->node_id);
3970 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3971 /* One of our CPUs online: restore mask */
3972 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3978 * This kswapd start function will be called by init and node-hot-add.
3979 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3981 int kswapd_run(int nid)
3983 pg_data_t *pgdat = NODE_DATA(nid);
3989 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3990 if (IS_ERR(pgdat->kswapd)) {
3991 /* failure at boot is fatal */
3992 BUG_ON(system_state < SYSTEM_RUNNING);
3993 pr_err("Failed to start kswapd on node %d\n", nid);
3994 ret = PTR_ERR(pgdat->kswapd);
3995 pgdat->kswapd = NULL;
4001 * Called by memory hotplug when all memory in a node is offlined. Caller must
4002 * hold mem_hotplug_begin/end().
4004 void kswapd_stop(int nid)
4006 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
4009 kthread_stop(kswapd);
4010 NODE_DATA(nid)->kswapd = NULL;
4014 static int __init kswapd_init(void)
4019 for_each_node_state(nid, N_MEMORY)
4021 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
4022 "mm/vmscan:online", kswapd_cpu_online,
4028 module_init(kswapd_init)
4034 * If non-zero call node_reclaim when the number of free pages falls below
4037 int node_reclaim_mode __read_mostly;
4039 #define RECLAIM_OFF 0
4040 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
4041 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
4042 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
4045 * Priority for NODE_RECLAIM. This determines the fraction of pages
4046 * of a node considered for each zone_reclaim. 4 scans 1/16th of
4049 #define NODE_RECLAIM_PRIORITY 4
4052 * Percentage of pages in a zone that must be unmapped for node_reclaim to
4055 int sysctl_min_unmapped_ratio = 1;
4058 * If the number of slab pages in a zone grows beyond this percentage then
4059 * slab reclaim needs to occur.
4061 int sysctl_min_slab_ratio = 5;
4063 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4065 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4066 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4067 node_page_state(pgdat, NR_ACTIVE_FILE);
4070 * It's possible for there to be more file mapped pages than
4071 * accounted for by the pages on the file LRU lists because
4072 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4074 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4077 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
4078 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4080 unsigned long nr_pagecache_reclaimable;
4081 unsigned long delta = 0;
4084 * If RECLAIM_UNMAP is set, then all file pages are considered
4085 * potentially reclaimable. Otherwise, we have to worry about
4086 * pages like swapcache and node_unmapped_file_pages() provides
4089 if (node_reclaim_mode & RECLAIM_UNMAP)
4090 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4092 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4094 /* If we can't clean pages, remove dirty pages from consideration */
4095 if (!(node_reclaim_mode & RECLAIM_WRITE))
4096 delta += node_page_state(pgdat, NR_FILE_DIRTY);
4098 /* Watch for any possible underflows due to delta */
4099 if (unlikely(delta > nr_pagecache_reclaimable))
4100 delta = nr_pagecache_reclaimable;
4102 return nr_pagecache_reclaimable - delta;
4106 * Try to free up some pages from this node through reclaim.
4108 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4110 /* Minimum pages needed in order to stay on node */
4111 const unsigned long nr_pages = 1 << order;
4112 struct task_struct *p = current;
4113 struct reclaim_state reclaim_state;
4114 unsigned int noreclaim_flag;
4115 struct scan_control sc = {
4116 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4117 .gfp_mask = current_gfp_context(gfp_mask),
4119 .priority = NODE_RECLAIM_PRIORITY,
4120 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4121 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4123 .reclaim_idx = gfp_zone(gfp_mask),
4126 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
4130 fs_reclaim_acquire(sc.gfp_mask);
4132 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4133 * and we also need to be able to write out pages for RECLAIM_WRITE
4134 * and RECLAIM_UNMAP.
4136 noreclaim_flag = memalloc_noreclaim_save();
4137 p->flags |= PF_SWAPWRITE;
4138 reclaim_state.reclaimed_slab = 0;
4139 p->reclaim_state = &reclaim_state;
4141 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4143 * Free memory by calling shrink node with increasing
4144 * priorities until we have enough memory freed.
4147 shrink_node(pgdat, &sc);
4148 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4151 p->reclaim_state = NULL;
4152 current->flags &= ~PF_SWAPWRITE;
4153 memalloc_noreclaim_restore(noreclaim_flag);
4154 fs_reclaim_release(sc.gfp_mask);
4156 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
4158 return sc.nr_reclaimed >= nr_pages;
4161 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4166 * Node reclaim reclaims unmapped file backed pages and
4167 * slab pages if we are over the defined limits.
4169 * A small portion of unmapped file backed pages is needed for
4170 * file I/O otherwise pages read by file I/O will be immediately
4171 * thrown out if the node is overallocated. So we do not reclaim
4172 * if less than a specified percentage of the node is used by
4173 * unmapped file backed pages.
4175 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4176 node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
4177 return NODE_RECLAIM_FULL;
4180 * Do not scan if the allocation should not be delayed.
4182 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4183 return NODE_RECLAIM_NOSCAN;
4186 * Only run node reclaim on the local node or on nodes that do not
4187 * have associated processors. This will favor the local processor
4188 * over remote processors and spread off node memory allocations
4189 * as wide as possible.
4191 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4192 return NODE_RECLAIM_NOSCAN;
4194 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4195 return NODE_RECLAIM_NOSCAN;
4197 ret = __node_reclaim(pgdat, gfp_mask, order);
4198 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4201 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4208 * page_evictable - test whether a page is evictable
4209 * @page: the page to test
4211 * Test whether page is evictable--i.e., should be placed on active/inactive
4212 * lists vs unevictable list.
4214 * Reasons page might not be evictable:
4215 * (1) page's mapping marked unevictable
4216 * (2) page is part of an mlocked VMA
4219 int page_evictable(struct page *page)
4223 /* Prevent address_space of inode and swap cache from being freed */
4225 ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
4231 * check_move_unevictable_pages - check pages for evictability and move to
4232 * appropriate zone lru list
4233 * @pvec: pagevec with lru pages to check
4235 * Checks pages for evictability, if an evictable page is in the unevictable
4236 * lru list, moves it to the appropriate evictable lru list. This function
4237 * should be only used for lru pages.
4239 void check_move_unevictable_pages(struct pagevec *pvec)
4241 struct lruvec *lruvec;
4242 struct pglist_data *pgdat = NULL;
4247 for (i = 0; i < pvec->nr; i++) {
4248 struct page *page = pvec->pages[i];
4249 struct pglist_data *pagepgdat = page_pgdat(page);
4252 if (pagepgdat != pgdat) {
4254 spin_unlock_irq(&pgdat->lru_lock);
4256 spin_lock_irq(&pgdat->lru_lock);
4258 lruvec = mem_cgroup_page_lruvec(page, pgdat);
4260 if (!PageLRU(page) || !PageUnevictable(page))
4263 if (page_evictable(page)) {
4264 enum lru_list lru = page_lru_base_type(page);
4266 VM_BUG_ON_PAGE(PageActive(page), page);
4267 ClearPageUnevictable(page);
4268 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
4269 add_page_to_lru_list(page, lruvec, lru);
4275 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4276 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4277 spin_unlock_irq(&pgdat->lru_lock);
4280 EXPORT_SYMBOL_GPL(check_move_unevictable_pages);