1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 1991, 1992 Linus Torvalds
4 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
13 * This handles all read/write requests to block devices
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/backing-dev.h>
18 #include <linux/bio.h>
19 #include <linux/blkdev.h>
20 #include <linux/blk-mq.h>
21 #include <linux/highmem.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/string.h>
25 #include <linux/init.h>
26 #include <linux/completion.h>
27 #include <linux/slab.h>
28 #include <linux/swap.h>
29 #include <linux/writeback.h>
30 #include <linux/task_io_accounting_ops.h>
31 #include <linux/fault-inject.h>
32 #include <linux/list_sort.h>
33 #include <linux/delay.h>
34 #include <linux/ratelimit.h>
35 #include <linux/pm_runtime.h>
36 #include <linux/blk-cgroup.h>
37 #include <linux/debugfs.h>
38 #include <linux/bpf.h>
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/block.h>
45 #include "blk-mq-sched.h"
47 #include "blk-rq-qos.h"
49 #ifdef CONFIG_DEBUG_FS
50 struct dentry *blk_debugfs_root;
53 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
54 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
55 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
56 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
57 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
59 DEFINE_IDA(blk_queue_ida);
62 * For queue allocation
64 struct kmem_cache *blk_requestq_cachep;
67 * Controlling structure to kblockd
69 static struct workqueue_struct *kblockd_workqueue;
72 * blk_queue_flag_set - atomically set a queue flag
73 * @flag: flag to be set
76 void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
78 set_bit(flag, &q->queue_flags);
80 EXPORT_SYMBOL(blk_queue_flag_set);
83 * blk_queue_flag_clear - atomically clear a queue flag
84 * @flag: flag to be cleared
87 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
89 clear_bit(flag, &q->queue_flags);
91 EXPORT_SYMBOL(blk_queue_flag_clear);
94 * blk_queue_flag_test_and_set - atomically test and set a queue flag
95 * @flag: flag to be set
98 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
99 * the flag was already set.
101 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
103 return test_and_set_bit(flag, &q->queue_flags);
105 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
107 void blk_rq_init(struct request_queue *q, struct request *rq)
109 memset(rq, 0, sizeof(*rq));
111 INIT_LIST_HEAD(&rq->queuelist);
113 rq->__sector = (sector_t) -1;
114 INIT_HLIST_NODE(&rq->hash);
115 RB_CLEAR_NODE(&rq->rb_node);
117 rq->internal_tag = -1;
118 rq->start_time_ns = ktime_get_ns();
121 EXPORT_SYMBOL(blk_rq_init);
123 #define REQ_OP_NAME(name) [REQ_OP_##name] = #name
124 static const char *const blk_op_name[] = {
128 REQ_OP_NAME(DISCARD),
129 REQ_OP_NAME(SECURE_ERASE),
130 REQ_OP_NAME(ZONE_RESET),
131 REQ_OP_NAME(WRITE_SAME),
132 REQ_OP_NAME(WRITE_ZEROES),
133 REQ_OP_NAME(SCSI_IN),
134 REQ_OP_NAME(SCSI_OUT),
136 REQ_OP_NAME(DRV_OUT),
141 * blk_op_str - Return string XXX in the REQ_OP_XXX.
144 * Description: Centralize block layer function to convert REQ_OP_XXX into
145 * string format. Useful in the debugging and tracing bio or request. For
146 * invalid REQ_OP_XXX it returns string "UNKNOWN".
148 inline const char *blk_op_str(unsigned int op)
150 const char *op_str = "UNKNOWN";
152 if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op])
153 op_str = blk_op_name[op];
157 EXPORT_SYMBOL_GPL(blk_op_str);
159 static const struct {
163 [BLK_STS_OK] = { 0, "" },
164 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
165 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
166 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
167 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
168 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
169 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
170 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
171 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
172 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
173 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" },
174 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
176 /* device mapper special case, should not leak out: */
177 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
179 /* everything else not covered above: */
180 [BLK_STS_IOERR] = { -EIO, "I/O" },
183 blk_status_t errno_to_blk_status(int errno)
187 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
188 if (blk_errors[i].errno == errno)
189 return (__force blk_status_t)i;
192 return BLK_STS_IOERR;
194 EXPORT_SYMBOL_GPL(errno_to_blk_status);
196 int blk_status_to_errno(blk_status_t status)
198 int idx = (__force int)status;
200 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
202 return blk_errors[idx].errno;
204 EXPORT_SYMBOL_GPL(blk_status_to_errno);
206 static void print_req_error(struct request *req, blk_status_t status,
209 int idx = (__force int)status;
211 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
214 printk_ratelimited(KERN_ERR
215 "%s: %s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
216 "phys_seg %u prio class %u\n",
217 caller, blk_errors[idx].name,
218 req->rq_disk ? req->rq_disk->disk_name : "?",
219 blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)),
220 req->cmd_flags & ~REQ_OP_MASK,
221 req->nr_phys_segments,
222 IOPRIO_PRIO_CLASS(req->ioprio));
225 static void req_bio_endio(struct request *rq, struct bio *bio,
226 unsigned int nbytes, blk_status_t error)
229 bio->bi_status = error;
231 if (unlikely(rq->rq_flags & RQF_QUIET))
232 bio_set_flag(bio, BIO_QUIET);
234 bio_advance(bio, nbytes);
236 /* don't actually finish bio if it's part of flush sequence */
237 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
241 void blk_dump_rq_flags(struct request *rq, char *msg)
243 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
244 rq->rq_disk ? rq->rq_disk->disk_name : "?",
245 (unsigned long long) rq->cmd_flags);
247 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
248 (unsigned long long)blk_rq_pos(rq),
249 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
250 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
251 rq->bio, rq->biotail, blk_rq_bytes(rq));
253 EXPORT_SYMBOL(blk_dump_rq_flags);
256 * blk_sync_queue - cancel any pending callbacks on a queue
260 * The block layer may perform asynchronous callback activity
261 * on a queue, such as calling the unplug function after a timeout.
262 * A block device may call blk_sync_queue to ensure that any
263 * such activity is cancelled, thus allowing it to release resources
264 * that the callbacks might use. The caller must already have made sure
265 * that its ->make_request_fn will not re-add plugging prior to calling
268 * This function does not cancel any asynchronous activity arising
269 * out of elevator or throttling code. That would require elevator_exit()
270 * and blkcg_exit_queue() to be called with queue lock initialized.
273 void blk_sync_queue(struct request_queue *q)
275 del_timer_sync(&q->timeout);
276 cancel_work_sync(&q->timeout_work);
278 EXPORT_SYMBOL(blk_sync_queue);
281 * blk_set_pm_only - increment pm_only counter
282 * @q: request queue pointer
284 void blk_set_pm_only(struct request_queue *q)
286 atomic_inc(&q->pm_only);
288 EXPORT_SYMBOL_GPL(blk_set_pm_only);
290 void blk_clear_pm_only(struct request_queue *q)
294 pm_only = atomic_dec_return(&q->pm_only);
295 WARN_ON_ONCE(pm_only < 0);
297 wake_up_all(&q->mq_freeze_wq);
299 EXPORT_SYMBOL_GPL(blk_clear_pm_only);
301 void blk_put_queue(struct request_queue *q)
303 kobject_put(&q->kobj);
305 EXPORT_SYMBOL(blk_put_queue);
307 void blk_set_queue_dying(struct request_queue *q)
309 blk_queue_flag_set(QUEUE_FLAG_DYING, q);
312 * When queue DYING flag is set, we need to block new req
313 * entering queue, so we call blk_freeze_queue_start() to
314 * prevent I/O from crossing blk_queue_enter().
316 blk_freeze_queue_start(q);
319 blk_mq_wake_waiters(q);
321 /* Make blk_queue_enter() reexamine the DYING flag. */
322 wake_up_all(&q->mq_freeze_wq);
324 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
327 * blk_cleanup_queue - shutdown a request queue
328 * @q: request queue to shutdown
330 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
331 * put it. All future requests will be failed immediately with -ENODEV.
333 void blk_cleanup_queue(struct request_queue *q)
335 /* mark @q DYING, no new request or merges will be allowed afterwards */
336 mutex_lock(&q->sysfs_lock);
337 blk_set_queue_dying(q);
339 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q);
340 blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
341 blk_queue_flag_set(QUEUE_FLAG_DYING, q);
342 mutex_unlock(&q->sysfs_lock);
345 * Drain all requests queued before DYING marking. Set DEAD flag to
346 * prevent that q->request_fn() gets invoked after draining finished.
352 blk_queue_flag_set(QUEUE_FLAG_DEAD, q);
354 /* for synchronous bio-based driver finish in-flight integrity i/o */
355 blk_flush_integrity();
357 /* @q won't process any more request, flush async actions */
358 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
362 blk_mq_exit_queue(q);
365 * In theory, request pool of sched_tags belongs to request queue.
366 * However, the current implementation requires tag_set for freeing
367 * requests, so free the pool now.
369 * Queue has become frozen, there can't be any in-queue requests, so
370 * it is safe to free requests now.
372 mutex_lock(&q->sysfs_lock);
374 blk_mq_sched_free_requests(q);
375 mutex_unlock(&q->sysfs_lock);
377 percpu_ref_exit(&q->q_usage_counter);
379 /* @q is and will stay empty, shutdown and put */
382 EXPORT_SYMBOL(blk_cleanup_queue);
384 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
386 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
388 EXPORT_SYMBOL(blk_alloc_queue);
391 * blk_queue_enter() - try to increase q->q_usage_counter
392 * @q: request queue pointer
393 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT
395 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
397 const bool pm = flags & BLK_MQ_REQ_PREEMPT;
400 bool success = false;
403 if (percpu_ref_tryget_live(&q->q_usage_counter)) {
405 * The code that increments the pm_only counter is
406 * responsible for ensuring that that counter is
407 * globally visible before the queue is unfrozen.
409 if (pm || !blk_queue_pm_only(q)) {
412 percpu_ref_put(&q->q_usage_counter);
420 if (flags & BLK_MQ_REQ_NOWAIT)
424 * read pair of barrier in blk_freeze_queue_start(),
425 * we need to order reading __PERCPU_REF_DEAD flag of
426 * .q_usage_counter and reading .mq_freeze_depth or
427 * queue dying flag, otherwise the following wait may
428 * never return if the two reads are reordered.
432 wait_event(q->mq_freeze_wq,
433 (!q->mq_freeze_depth &&
434 (pm || (blk_pm_request_resume(q),
435 !blk_queue_pm_only(q)))) ||
437 if (blk_queue_dying(q))
442 void blk_queue_exit(struct request_queue *q)
444 percpu_ref_put(&q->q_usage_counter);
447 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
449 struct request_queue *q =
450 container_of(ref, struct request_queue, q_usage_counter);
452 wake_up_all(&q->mq_freeze_wq);
455 static void blk_rq_timed_out_timer(struct timer_list *t)
457 struct request_queue *q = from_timer(q, t, timeout);
459 kblockd_schedule_work(&q->timeout_work);
462 static void blk_timeout_work(struct work_struct *work)
467 * blk_alloc_queue_node - allocate a request queue
468 * @gfp_mask: memory allocation flags
469 * @node_id: NUMA node to allocate memory from
471 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
473 struct request_queue *q;
476 q = kmem_cache_alloc_node(blk_requestq_cachep,
477 gfp_mask | __GFP_ZERO, node_id);
481 INIT_LIST_HEAD(&q->queue_head);
482 q->last_merge = NULL;
484 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
488 ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
492 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
493 if (!q->backing_dev_info)
496 q->stats = blk_alloc_queue_stats();
500 q->backing_dev_info->ra_pages = VM_READAHEAD_PAGES;
501 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
502 q->backing_dev_info->name = "block";
505 timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
506 laptop_mode_timer_fn, 0);
507 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
508 INIT_WORK(&q->timeout_work, blk_timeout_work);
509 INIT_LIST_HEAD(&q->icq_list);
510 #ifdef CONFIG_BLK_CGROUP
511 INIT_LIST_HEAD(&q->blkg_list);
514 kobject_init(&q->kobj, &blk_queue_ktype);
516 #ifdef CONFIG_BLK_DEV_IO_TRACE
517 mutex_init(&q->blk_trace_mutex);
519 mutex_init(&q->sysfs_lock);
520 spin_lock_init(&q->queue_lock);
522 init_waitqueue_head(&q->mq_freeze_wq);
523 mutex_init(&q->mq_freeze_lock);
526 * Init percpu_ref in atomic mode so that it's faster to shutdown.
527 * See blk_register_queue() for details.
529 if (percpu_ref_init(&q->q_usage_counter,
530 blk_queue_usage_counter_release,
531 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
534 if (blkcg_init_queue(q))
540 percpu_ref_exit(&q->q_usage_counter);
542 blk_free_queue_stats(q->stats);
544 bdi_put(q->backing_dev_info);
546 bioset_exit(&q->bio_split);
548 ida_simple_remove(&blk_queue_ida, q->id);
550 kmem_cache_free(blk_requestq_cachep, q);
553 EXPORT_SYMBOL(blk_alloc_queue_node);
555 bool blk_get_queue(struct request_queue *q)
557 if (likely(!blk_queue_dying(q))) {
564 EXPORT_SYMBOL(blk_get_queue);
567 * blk_get_request - allocate a request
568 * @q: request queue to allocate a request for
569 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
570 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
572 struct request *blk_get_request(struct request_queue *q, unsigned int op,
573 blk_mq_req_flags_t flags)
577 WARN_ON_ONCE(op & REQ_NOWAIT);
578 WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT));
580 req = blk_mq_alloc_request(q, op, flags);
581 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
582 q->mq_ops->initialize_rq_fn(req);
586 EXPORT_SYMBOL(blk_get_request);
588 void blk_put_request(struct request *req)
590 blk_mq_free_request(req);
592 EXPORT_SYMBOL(blk_put_request);
594 bool bio_attempt_back_merge(struct request *req, struct bio *bio,
595 unsigned int nr_segs)
597 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
599 if (!ll_back_merge_fn(req, bio, nr_segs))
602 trace_block_bio_backmerge(req->q, req, bio);
604 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
605 blk_rq_set_mixed_merge(req);
607 req->biotail->bi_next = bio;
609 req->__data_len += bio->bi_iter.bi_size;
611 blk_account_io_start(req, false);
615 bool bio_attempt_front_merge(struct request *req, struct bio *bio,
616 unsigned int nr_segs)
618 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
620 if (!ll_front_merge_fn(req, bio, nr_segs))
623 trace_block_bio_frontmerge(req->q, req, bio);
625 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
626 blk_rq_set_mixed_merge(req);
628 bio->bi_next = req->bio;
631 req->__sector = bio->bi_iter.bi_sector;
632 req->__data_len += bio->bi_iter.bi_size;
634 blk_account_io_start(req, false);
638 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
641 unsigned short segments = blk_rq_nr_discard_segments(req);
643 if (segments >= queue_max_discard_segments(q))
645 if (blk_rq_sectors(req) + bio_sectors(bio) >
646 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
649 req->biotail->bi_next = bio;
651 req->__data_len += bio->bi_iter.bi_size;
652 req->nr_phys_segments = segments + 1;
654 blk_account_io_start(req, false);
657 req_set_nomerge(q, req);
662 * blk_attempt_plug_merge - try to merge with %current's plugged list
663 * @q: request_queue new bio is being queued at
664 * @bio: new bio being queued
665 * @nr_segs: number of segments in @bio
666 * @same_queue_rq: pointer to &struct request that gets filled in when
667 * another request associated with @q is found on the plug list
668 * (optional, may be %NULL)
670 * Determine whether @bio being queued on @q can be merged with a request
671 * on %current's plugged list. Returns %true if merge was successful,
674 * Plugging coalesces IOs from the same issuer for the same purpose without
675 * going through @q->queue_lock. As such it's more of an issuing mechanism
676 * than scheduling, and the request, while may have elvpriv data, is not
677 * added on the elevator at this point. In addition, we don't have
678 * reliable access to the elevator outside queue lock. Only check basic
679 * merging parameters without querying the elevator.
681 * Caller must ensure !blk_queue_nomerges(q) beforehand.
683 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
684 unsigned int nr_segs, struct request **same_queue_rq)
686 struct blk_plug *plug;
688 struct list_head *plug_list;
690 plug = current->plug;
694 plug_list = &plug->mq_list;
696 list_for_each_entry_reverse(rq, plug_list, queuelist) {
699 if (rq->q == q && same_queue_rq) {
701 * Only blk-mq multiple hardware queues case checks the
702 * rq in the same queue, there should be only one such
708 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
711 switch (blk_try_merge(rq, bio)) {
712 case ELEVATOR_BACK_MERGE:
713 merged = bio_attempt_back_merge(rq, bio, nr_segs);
715 case ELEVATOR_FRONT_MERGE:
716 merged = bio_attempt_front_merge(rq, bio, nr_segs);
718 case ELEVATOR_DISCARD_MERGE:
719 merged = bio_attempt_discard_merge(q, rq, bio);
732 static void handle_bad_sector(struct bio *bio, sector_t maxsector)
734 char b[BDEVNAME_SIZE];
736 printk(KERN_INFO "attempt to access beyond end of device\n");
737 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
738 bio_devname(bio, b), bio->bi_opf,
739 (unsigned long long)bio_end_sector(bio),
740 (long long)maxsector);
743 #ifdef CONFIG_FAIL_MAKE_REQUEST
745 static DECLARE_FAULT_ATTR(fail_make_request);
747 static int __init setup_fail_make_request(char *str)
749 return setup_fault_attr(&fail_make_request, str);
751 __setup("fail_make_request=", setup_fail_make_request);
753 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
755 return part->make_it_fail && should_fail(&fail_make_request, bytes);
758 static int __init fail_make_request_debugfs(void)
760 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
761 NULL, &fail_make_request);
763 return PTR_ERR_OR_ZERO(dir);
766 late_initcall(fail_make_request_debugfs);
768 #else /* CONFIG_FAIL_MAKE_REQUEST */
770 static inline bool should_fail_request(struct hd_struct *part,
776 #endif /* CONFIG_FAIL_MAKE_REQUEST */
778 static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part)
780 const int op = bio_op(bio);
782 if (part->policy && op_is_write(op)) {
783 char b[BDEVNAME_SIZE];
785 if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
789 "generic_make_request: Trying to write "
790 "to read-only block-device %s (partno %d)\n",
791 bio_devname(bio, b), part->partno);
792 /* Older lvm-tools actually trigger this */
799 static noinline int should_fail_bio(struct bio *bio)
801 if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
805 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
808 * Check whether this bio extends beyond the end of the device or partition.
809 * This may well happen - the kernel calls bread() without checking the size of
810 * the device, e.g., when mounting a file system.
812 static inline int bio_check_eod(struct bio *bio, sector_t maxsector)
814 unsigned int nr_sectors = bio_sectors(bio);
816 if (nr_sectors && maxsector &&
817 (nr_sectors > maxsector ||
818 bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
819 handle_bad_sector(bio, maxsector);
826 * Remap block n of partition p to block n+start(p) of the disk.
828 static inline int blk_partition_remap(struct bio *bio)
834 p = __disk_get_part(bio->bi_disk, bio->bi_partno);
837 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
839 if (unlikely(bio_check_ro(bio, p)))
843 * Zone reset does not include bi_size so bio_sectors() is always 0.
844 * Include a test for the reset op code and perform the remap if needed.
846 if (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET) {
847 if (bio_check_eod(bio, part_nr_sects_read(p)))
849 bio->bi_iter.bi_sector += p->start_sect;
850 trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
851 bio->bi_iter.bi_sector - p->start_sect);
860 static noinline_for_stack bool
861 generic_make_request_checks(struct bio *bio)
863 struct request_queue *q;
864 int nr_sectors = bio_sectors(bio);
865 blk_status_t status = BLK_STS_IOERR;
866 char b[BDEVNAME_SIZE];
870 q = bio->bi_disk->queue;
873 "generic_make_request: Trying to access "
874 "nonexistent block-device %s (%Lu)\n",
875 bio_devname(bio, b), (long long)bio->bi_iter.bi_sector);
880 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
881 * if queue is not a request based queue.
883 if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_mq(q))
886 if (should_fail_bio(bio))
889 if (bio->bi_partno) {
890 if (unlikely(blk_partition_remap(bio)))
893 if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0)))
895 if (unlikely(bio_check_eod(bio, get_capacity(bio->bi_disk))))
900 * Filter flush bio's early so that make_request based
901 * drivers without flush support don't have to worry
904 if (op_is_flush(bio->bi_opf) &&
905 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
906 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
913 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
914 bio->bi_opf &= ~REQ_HIPRI;
916 switch (bio_op(bio)) {
918 if (!blk_queue_discard(q))
921 case REQ_OP_SECURE_ERASE:
922 if (!blk_queue_secure_erase(q))
925 case REQ_OP_WRITE_SAME:
926 if (!q->limits.max_write_same_sectors)
929 case REQ_OP_ZONE_RESET:
930 if (!blk_queue_is_zoned(q))
933 case REQ_OP_WRITE_ZEROES:
934 if (!q->limits.max_write_zeroes_sectors)
942 * Various block parts want %current->io_context and lazy ioc
943 * allocation ends up trading a lot of pain for a small amount of
944 * memory. Just allocate it upfront. This may fail and block
945 * layer knows how to live with it.
947 create_io_context(GFP_ATOMIC, q->node);
949 if (!blkcg_bio_issue_check(q, bio))
952 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
953 trace_block_bio_queue(q, bio);
954 /* Now that enqueuing has been traced, we need to trace
955 * completion as well.
957 bio_set_flag(bio, BIO_TRACE_COMPLETION);
962 status = BLK_STS_NOTSUPP;
964 bio->bi_status = status;
970 * generic_make_request - hand a buffer to its device driver for I/O
971 * @bio: The bio describing the location in memory and on the device.
973 * generic_make_request() is used to make I/O requests of block
974 * devices. It is passed a &struct bio, which describes the I/O that needs
977 * generic_make_request() does not return any status. The
978 * success/failure status of the request, along with notification of
979 * completion, is delivered asynchronously through the bio->bi_end_io
980 * function described (one day) else where.
982 * The caller of generic_make_request must make sure that bi_io_vec
983 * are set to describe the memory buffer, and that bi_dev and bi_sector are
984 * set to describe the device address, and the
985 * bi_end_io and optionally bi_private are set to describe how
986 * completion notification should be signaled.
988 * generic_make_request and the drivers it calls may use bi_next if this
989 * bio happens to be merged with someone else, and may resubmit the bio to
990 * a lower device by calling into generic_make_request recursively, which
991 * means the bio should NOT be touched after the call to ->make_request_fn.
993 blk_qc_t generic_make_request(struct bio *bio)
996 * bio_list_on_stack[0] contains bios submitted by the current
998 * bio_list_on_stack[1] contains bios that were submitted before
999 * the current make_request_fn, but that haven't been processed
1002 struct bio_list bio_list_on_stack[2];
1003 blk_qc_t ret = BLK_QC_T_NONE;
1005 if (!generic_make_request_checks(bio))
1009 * We only want one ->make_request_fn to be active at a time, else
1010 * stack usage with stacked devices could be a problem. So use
1011 * current->bio_list to keep a list of requests submited by a
1012 * make_request_fn function. current->bio_list is also used as a
1013 * flag to say if generic_make_request is currently active in this
1014 * task or not. If it is NULL, then no make_request is active. If
1015 * it is non-NULL, then a make_request is active, and new requests
1016 * should be added at the tail
1018 if (current->bio_list) {
1019 bio_list_add(¤t->bio_list[0], bio);
1023 /* following loop may be a bit non-obvious, and so deserves some
1025 * Before entering the loop, bio->bi_next is NULL (as all callers
1026 * ensure that) so we have a list with a single bio.
1027 * We pretend that we have just taken it off a longer list, so
1028 * we assign bio_list to a pointer to the bio_list_on_stack,
1029 * thus initialising the bio_list of new bios to be
1030 * added. ->make_request() may indeed add some more bios
1031 * through a recursive call to generic_make_request. If it
1032 * did, we find a non-NULL value in bio_list and re-enter the loop
1033 * from the top. In this case we really did just take the bio
1034 * of the top of the list (no pretending) and so remove it from
1035 * bio_list, and call into ->make_request() again.
1037 BUG_ON(bio->bi_next);
1038 bio_list_init(&bio_list_on_stack[0]);
1039 current->bio_list = bio_list_on_stack;
1041 struct request_queue *q = bio->bi_disk->queue;
1042 blk_mq_req_flags_t flags = bio->bi_opf & REQ_NOWAIT ?
1043 BLK_MQ_REQ_NOWAIT : 0;
1045 if (likely(blk_queue_enter(q, flags) == 0)) {
1046 struct bio_list lower, same;
1048 /* Create a fresh bio_list for all subordinate requests */
1049 bio_list_on_stack[1] = bio_list_on_stack[0];
1050 bio_list_init(&bio_list_on_stack[0]);
1051 ret = q->make_request_fn(q, bio);
1055 /* sort new bios into those for a lower level
1056 * and those for the same level
1058 bio_list_init(&lower);
1059 bio_list_init(&same);
1060 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
1061 if (q == bio->bi_disk->queue)
1062 bio_list_add(&same, bio);
1064 bio_list_add(&lower, bio);
1065 /* now assemble so we handle the lowest level first */
1066 bio_list_merge(&bio_list_on_stack[0], &lower);
1067 bio_list_merge(&bio_list_on_stack[0], &same);
1068 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
1070 if (unlikely(!blk_queue_dying(q) &&
1071 (bio->bi_opf & REQ_NOWAIT)))
1072 bio_wouldblock_error(bio);
1076 bio = bio_list_pop(&bio_list_on_stack[0]);
1078 current->bio_list = NULL; /* deactivate */
1083 EXPORT_SYMBOL(generic_make_request);
1086 * direct_make_request - hand a buffer directly to its device driver for I/O
1087 * @bio: The bio describing the location in memory and on the device.
1089 * This function behaves like generic_make_request(), but does not protect
1090 * against recursion. Must only be used if the called driver is known
1091 * to not call generic_make_request (or direct_make_request) again from
1092 * its make_request function. (Calling direct_make_request again from
1093 * a workqueue is perfectly fine as that doesn't recurse).
1095 blk_qc_t direct_make_request(struct bio *bio)
1097 struct request_queue *q = bio->bi_disk->queue;
1098 bool nowait = bio->bi_opf & REQ_NOWAIT;
1101 if (!generic_make_request_checks(bio))
1102 return BLK_QC_T_NONE;
1104 if (unlikely(blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0))) {
1105 if (nowait && !blk_queue_dying(q))
1106 bio->bi_status = BLK_STS_AGAIN;
1108 bio->bi_status = BLK_STS_IOERR;
1110 return BLK_QC_T_NONE;
1113 ret = q->make_request_fn(q, bio);
1117 EXPORT_SYMBOL_GPL(direct_make_request);
1120 * submit_bio - submit a bio to the block device layer for I/O
1121 * @bio: The &struct bio which describes the I/O
1123 * submit_bio() is very similar in purpose to generic_make_request(), and
1124 * uses that function to do most of the work. Both are fairly rough
1125 * interfaces; @bio must be presetup and ready for I/O.
1128 blk_qc_t submit_bio(struct bio *bio)
1131 * If it's a regular read/write or a barrier with data attached,
1132 * go through the normal accounting stuff before submission.
1134 if (bio_has_data(bio)) {
1137 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
1138 count = queue_logical_block_size(bio->bi_disk->queue) >> 9;
1140 count = bio_sectors(bio);
1142 if (op_is_write(bio_op(bio))) {
1143 count_vm_events(PGPGOUT, count);
1145 task_io_account_read(bio->bi_iter.bi_size);
1146 count_vm_events(PGPGIN, count);
1149 if (unlikely(block_dump)) {
1150 char b[BDEVNAME_SIZE];
1151 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1152 current->comm, task_pid_nr(current),
1153 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
1154 (unsigned long long)bio->bi_iter.bi_sector,
1155 bio_devname(bio, b), count);
1159 return generic_make_request(bio);
1161 EXPORT_SYMBOL(submit_bio);
1164 * blk_cloned_rq_check_limits - Helper function to check a cloned request
1165 * for new the queue limits
1167 * @rq: the request being checked
1170 * @rq may have been made based on weaker limitations of upper-level queues
1171 * in request stacking drivers, and it may violate the limitation of @q.
1172 * Since the block layer and the underlying device driver trust @rq
1173 * after it is inserted to @q, it should be checked against @q before
1174 * the insertion using this generic function.
1176 * Request stacking drivers like request-based dm may change the queue
1177 * limits when retrying requests on other queues. Those requests need
1178 * to be checked against the new queue limits again during dispatch.
1180 static int blk_cloned_rq_check_limits(struct request_queue *q,
1183 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
1184 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
1185 __func__, blk_rq_sectors(rq),
1186 blk_queue_get_max_sectors(q, req_op(rq)));
1191 * queue's settings related to segment counting like q->bounce_pfn
1192 * may differ from that of other stacking queues.
1193 * Recalculate it to check the request correctly on this queue's
1196 rq->nr_phys_segments = blk_recalc_rq_segments(rq);
1197 if (rq->nr_phys_segments > queue_max_segments(q)) {
1198 printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
1199 __func__, rq->nr_phys_segments, queue_max_segments(q));
1207 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1208 * @q: the queue to submit the request
1209 * @rq: the request being queued
1211 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1213 if (blk_cloned_rq_check_limits(q, rq))
1214 return BLK_STS_IOERR;
1217 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
1218 return BLK_STS_IOERR;
1220 if (blk_queue_io_stat(q))
1221 blk_account_io_start(rq, true);
1224 * Since we have a scheduler attached on the top device,
1225 * bypass a potential scheduler on the bottom device for
1228 return blk_mq_request_issue_directly(rq, true);
1230 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1233 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1234 * @rq: request to examine
1237 * A request could be merge of IOs which require different failure
1238 * handling. This function determines the number of bytes which
1239 * can be failed from the beginning of the request without
1240 * crossing into area which need to be retried further.
1243 * The number of bytes to fail.
1245 unsigned int blk_rq_err_bytes(const struct request *rq)
1247 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1248 unsigned int bytes = 0;
1251 if (!(rq->rq_flags & RQF_MIXED_MERGE))
1252 return blk_rq_bytes(rq);
1255 * Currently the only 'mixing' which can happen is between
1256 * different fastfail types. We can safely fail portions
1257 * which have all the failfast bits that the first one has -
1258 * the ones which are at least as eager to fail as the first
1261 for (bio = rq->bio; bio; bio = bio->bi_next) {
1262 if ((bio->bi_opf & ff) != ff)
1264 bytes += bio->bi_iter.bi_size;
1267 /* this could lead to infinite loop */
1268 BUG_ON(blk_rq_bytes(rq) && !bytes);
1271 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1273 void blk_account_io_completion(struct request *req, unsigned int bytes)
1275 if (blk_do_io_stat(req)) {
1276 const int sgrp = op_stat_group(req_op(req));
1277 struct hd_struct *part;
1281 part_stat_add(part, sectors[sgrp], bytes >> 9);
1286 void blk_account_io_done(struct request *req, u64 now)
1289 * Account IO completion. flush_rq isn't accounted as a
1290 * normal IO on queueing nor completion. Accounting the
1291 * containing request is enough.
1293 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
1294 const int sgrp = op_stat_group(req_op(req));
1295 struct hd_struct *part;
1300 update_io_ticks(part, jiffies);
1301 part_stat_inc(part, ios[sgrp]);
1302 part_stat_add(part, nsecs[sgrp], now - req->start_time_ns);
1303 part_stat_add(part, time_in_queue, nsecs_to_jiffies64(now - req->start_time_ns));
1304 part_dec_in_flight(req->q, part, rq_data_dir(req));
1306 hd_struct_put(part);
1311 void blk_account_io_start(struct request *rq, bool new_io)
1313 struct hd_struct *part;
1314 int rw = rq_data_dir(rq);
1316 if (!blk_do_io_stat(rq))
1323 part_stat_inc(part, merges[rw]);
1325 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
1326 if (!hd_struct_try_get(part)) {
1328 * The partition is already being removed,
1329 * the request will be accounted on the disk only
1331 * We take a reference on disk->part0 although that
1332 * partition will never be deleted, so we can treat
1333 * it as any other partition.
1335 part = &rq->rq_disk->part0;
1336 hd_struct_get(part);
1338 part_inc_in_flight(rq->q, part, rw);
1342 update_io_ticks(part, jiffies);
1348 * Steal bios from a request and add them to a bio list.
1349 * The request must not have been partially completed before.
1351 void blk_steal_bios(struct bio_list *list, struct request *rq)
1355 list->tail->bi_next = rq->bio;
1357 list->head = rq->bio;
1358 list->tail = rq->biotail;
1366 EXPORT_SYMBOL_GPL(blk_steal_bios);
1369 * blk_update_request - Special helper function for request stacking drivers
1370 * @req: the request being processed
1371 * @error: block status code
1372 * @nr_bytes: number of bytes to complete @req
1375 * Ends I/O on a number of bytes attached to @req, but doesn't complete
1376 * the request structure even if @req doesn't have leftover.
1377 * If @req has leftover, sets it up for the next range of segments.
1379 * This special helper function is only for request stacking drivers
1380 * (e.g. request-based dm) so that they can handle partial completion.
1381 * Actual device drivers should use blk_mq_end_request instead.
1383 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1384 * %false return from this function.
1387 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in both
1388 * blk_rq_bytes() and in blk_update_request().
1391 * %false - this request doesn't have any more data
1392 * %true - this request has more data
1394 bool blk_update_request(struct request *req, blk_status_t error,
1395 unsigned int nr_bytes)
1399 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
1404 if (unlikely(error && !blk_rq_is_passthrough(req) &&
1405 !(req->rq_flags & RQF_QUIET)))
1406 print_req_error(req, error, __func__);
1408 blk_account_io_completion(req, nr_bytes);
1412 struct bio *bio = req->bio;
1413 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1415 if (bio_bytes == bio->bi_iter.bi_size)
1416 req->bio = bio->bi_next;
1418 /* Completion has already been traced */
1419 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1420 req_bio_endio(req, bio, bio_bytes, error);
1422 total_bytes += bio_bytes;
1423 nr_bytes -= bio_bytes;
1434 * Reset counters so that the request stacking driver
1435 * can find how many bytes remain in the request
1438 req->__data_len = 0;
1442 req->__data_len -= total_bytes;
1444 /* update sector only for requests with clear definition of sector */
1445 if (!blk_rq_is_passthrough(req))
1446 req->__sector += total_bytes >> 9;
1448 /* mixed attributes always follow the first bio */
1449 if (req->rq_flags & RQF_MIXED_MERGE) {
1450 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1451 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
1454 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
1456 * If total number of sectors is less than the first segment
1457 * size, something has gone terribly wrong.
1459 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
1460 blk_dump_rq_flags(req, "request botched");
1461 req->__data_len = blk_rq_cur_bytes(req);
1464 /* recalculate the number of segments */
1465 req->nr_phys_segments = blk_recalc_rq_segments(req);
1470 EXPORT_SYMBOL_GPL(blk_update_request);
1472 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1474 * rq_flush_dcache_pages - Helper function to flush all pages in a request
1475 * @rq: the request to be flushed
1478 * Flush all pages in @rq.
1480 void rq_flush_dcache_pages(struct request *rq)
1482 struct req_iterator iter;
1483 struct bio_vec bvec;
1485 rq_for_each_segment(bvec, rq, iter)
1486 flush_dcache_page(bvec.bv_page);
1488 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
1492 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1493 * @q : the queue of the device being checked
1496 * Check if underlying low-level drivers of a device are busy.
1497 * If the drivers want to export their busy state, they must set own
1498 * exporting function using blk_queue_lld_busy() first.
1500 * Basically, this function is used only by request stacking drivers
1501 * to stop dispatching requests to underlying devices when underlying
1502 * devices are busy. This behavior helps more I/O merging on the queue
1503 * of the request stacking driver and prevents I/O throughput regression
1504 * on burst I/O load.
1507 * 0 - Not busy (The request stacking driver should dispatch request)
1508 * 1 - Busy (The request stacking driver should stop dispatching request)
1510 int blk_lld_busy(struct request_queue *q)
1512 if (queue_is_mq(q) && q->mq_ops->busy)
1513 return q->mq_ops->busy(q);
1517 EXPORT_SYMBOL_GPL(blk_lld_busy);
1520 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
1521 * @rq: the clone request to be cleaned up
1524 * Free all bios in @rq for a cloned request.
1526 void blk_rq_unprep_clone(struct request *rq)
1530 while ((bio = rq->bio) != NULL) {
1531 rq->bio = bio->bi_next;
1536 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
1539 * Copy attributes of the original request to the clone request.
1540 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
1542 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
1544 dst->__sector = blk_rq_pos(src);
1545 dst->__data_len = blk_rq_bytes(src);
1546 if (src->rq_flags & RQF_SPECIAL_PAYLOAD) {
1547 dst->rq_flags |= RQF_SPECIAL_PAYLOAD;
1548 dst->special_vec = src->special_vec;
1550 dst->nr_phys_segments = src->nr_phys_segments;
1551 dst->ioprio = src->ioprio;
1552 dst->extra_len = src->extra_len;
1556 * blk_rq_prep_clone - Helper function to setup clone request
1557 * @rq: the request to be setup
1558 * @rq_src: original request to be cloned
1559 * @bs: bio_set that bios for clone are allocated from
1560 * @gfp_mask: memory allocation mask for bio
1561 * @bio_ctr: setup function to be called for each clone bio.
1562 * Returns %0 for success, non %0 for failure.
1563 * @data: private data to be passed to @bio_ctr
1566 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
1567 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
1568 * are not copied, and copying such parts is the caller's responsibility.
1569 * Also, pages which the original bios are pointing to are not copied
1570 * and the cloned bios just point same pages.
1571 * So cloned bios must be completed before original bios, which means
1572 * the caller must complete @rq before @rq_src.
1574 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
1575 struct bio_set *bs, gfp_t gfp_mask,
1576 int (*bio_ctr)(struct bio *, struct bio *, void *),
1579 struct bio *bio, *bio_src;
1584 __rq_for_each_bio(bio_src, rq_src) {
1585 bio = bio_clone_fast(bio_src, gfp_mask, bs);
1589 if (bio_ctr && bio_ctr(bio, bio_src, data))
1593 rq->biotail->bi_next = bio;
1596 rq->bio = rq->biotail = bio;
1599 __blk_rq_prep_clone(rq, rq_src);
1606 blk_rq_unprep_clone(rq);
1610 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
1612 int kblockd_schedule_work(struct work_struct *work)
1614 return queue_work(kblockd_workqueue, work);
1616 EXPORT_SYMBOL(kblockd_schedule_work);
1618 int kblockd_schedule_work_on(int cpu, struct work_struct *work)
1620 return queue_work_on(cpu, kblockd_workqueue, work);
1622 EXPORT_SYMBOL(kblockd_schedule_work_on);
1624 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1625 unsigned long delay)
1627 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1629 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1632 * blk_start_plug - initialize blk_plug and track it inside the task_struct
1633 * @plug: The &struct blk_plug that needs to be initialized
1636 * blk_start_plug() indicates to the block layer an intent by the caller
1637 * to submit multiple I/O requests in a batch. The block layer may use
1638 * this hint to defer submitting I/Os from the caller until blk_finish_plug()
1639 * is called. However, the block layer may choose to submit requests
1640 * before a call to blk_finish_plug() if the number of queued I/Os
1641 * exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1642 * %BLK_PLUG_FLUSH_SIZE. The queued I/Os may also be submitted early if
1643 * the task schedules (see below).
1645 * Tracking blk_plug inside the task_struct will help with auto-flushing the
1646 * pending I/O should the task end up blocking between blk_start_plug() and
1647 * blk_finish_plug(). This is important from a performance perspective, but
1648 * also ensures that we don't deadlock. For instance, if the task is blocking
1649 * for a memory allocation, memory reclaim could end up wanting to free a
1650 * page belonging to that request that is currently residing in our private
1651 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
1652 * this kind of deadlock.
1654 void blk_start_plug(struct blk_plug *plug)
1656 struct task_struct *tsk = current;
1659 * If this is a nested plug, don't actually assign it.
1664 INIT_LIST_HEAD(&plug->mq_list);
1665 INIT_LIST_HEAD(&plug->cb_list);
1667 plug->multiple_queues = false;
1670 * Store ordering should not be needed here, since a potential
1671 * preempt will imply a full memory barrier
1675 EXPORT_SYMBOL(blk_start_plug);
1677 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
1679 LIST_HEAD(callbacks);
1681 while (!list_empty(&plug->cb_list)) {
1682 list_splice_init(&plug->cb_list, &callbacks);
1684 while (!list_empty(&callbacks)) {
1685 struct blk_plug_cb *cb = list_first_entry(&callbacks,
1688 list_del(&cb->list);
1689 cb->callback(cb, from_schedule);
1694 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1697 struct blk_plug *plug = current->plug;
1698 struct blk_plug_cb *cb;
1703 list_for_each_entry(cb, &plug->cb_list, list)
1704 if (cb->callback == unplug && cb->data == data)
1707 /* Not currently on the callback list */
1708 BUG_ON(size < sizeof(*cb));
1709 cb = kzalloc(size, GFP_ATOMIC);
1712 cb->callback = unplug;
1713 list_add(&cb->list, &plug->cb_list);
1717 EXPORT_SYMBOL(blk_check_plugged);
1719 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1721 flush_plug_callbacks(plug, from_schedule);
1723 if (!list_empty(&plug->mq_list))
1724 blk_mq_flush_plug_list(plug, from_schedule);
1728 * blk_finish_plug - mark the end of a batch of submitted I/O
1729 * @plug: The &struct blk_plug passed to blk_start_plug()
1732 * Indicate that a batch of I/O submissions is complete. This function
1733 * must be paired with an initial call to blk_start_plug(). The intent
1734 * is to allow the block layer to optimize I/O submission. See the
1735 * documentation for blk_start_plug() for more information.
1737 void blk_finish_plug(struct blk_plug *plug)
1739 if (plug != current->plug)
1741 blk_flush_plug_list(plug, false);
1743 current->plug = NULL;
1745 EXPORT_SYMBOL(blk_finish_plug);
1747 int __init blk_dev_init(void)
1749 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
1750 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1751 FIELD_SIZEOF(struct request, cmd_flags));
1752 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1753 FIELD_SIZEOF(struct bio, bi_opf));
1755 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
1756 kblockd_workqueue = alloc_workqueue("kblockd",
1757 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1758 if (!kblockd_workqueue)
1759 panic("Failed to create kblockd\n");
1761 blk_requestq_cachep = kmem_cache_create("request_queue",
1762 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1764 #ifdef CONFIG_DEBUG_FS
1765 blk_debugfs_root = debugfs_create_dir("block", NULL);