1 // SPDX-License-Identifier: GPL-2.0
3 * PCI Bus Services, see include/linux/pci.h for further explanation.
5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
11 #include <linux/acpi.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
17 #include <linux/of_pci.h>
18 #include <linux/pci.h>
20 #include <linux/slab.h>
21 #include <linux/module.h>
22 #include <linux/spinlock.h>
23 #include <linux/string.h>
24 #include <linux/log2.h>
25 #include <linux/logic_pio.h>
26 #include <linux/pci-aspm.h>
27 #include <linux/pm_wakeup.h>
28 #include <linux/interrupt.h>
29 #include <linux/device.h>
30 #include <linux/pm_runtime.h>
31 #include <linux/pci_hotplug.h>
32 #include <linux/vmalloc.h>
33 #include <linux/pci-ats.h>
34 #include <asm/setup.h>
36 #include <linux/aer.h>
39 const char *pci_power_names[] = {
40 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
42 EXPORT_SYMBOL_GPL(pci_power_names);
44 int isa_dma_bridge_buggy;
45 EXPORT_SYMBOL(isa_dma_bridge_buggy);
48 EXPORT_SYMBOL(pci_pci_problems);
50 unsigned int pci_pm_d3_delay;
52 static void pci_pme_list_scan(struct work_struct *work);
54 static LIST_HEAD(pci_pme_list);
55 static DEFINE_MUTEX(pci_pme_list_mutex);
56 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
58 struct pci_pme_device {
59 struct list_head list;
63 #define PME_TIMEOUT 1000 /* How long between PME checks */
65 static void pci_dev_d3_sleep(struct pci_dev *dev)
67 unsigned int delay = dev->d3_delay;
69 if (delay < pci_pm_d3_delay)
70 delay = pci_pm_d3_delay;
76 #ifdef CONFIG_PCI_DOMAINS
77 int pci_domains_supported = 1;
80 #define DEFAULT_CARDBUS_IO_SIZE (256)
81 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
82 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
83 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
84 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
86 #define DEFAULT_HOTPLUG_IO_SIZE (256)
87 #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024)
88 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
89 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
90 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
92 #define DEFAULT_HOTPLUG_BUS_SIZE 1
93 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
95 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
98 * The default CLS is used if arch didn't set CLS explicitly and not
99 * all pci devices agree on the same value. Arch can override either
100 * the dfl or actual value as it sees fit. Don't forget this is
101 * measured in 32-bit words, not bytes.
103 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
104 u8 pci_cache_line_size;
107 * If we set up a device for bus mastering, we need to check the latency
108 * timer as certain BIOSes forget to set it properly.
110 unsigned int pcibios_max_latency = 255;
112 /* If set, the PCIe ARI capability will not be used. */
113 static bool pcie_ari_disabled;
115 /* Disable bridge_d3 for all PCIe ports */
116 static bool pci_bridge_d3_disable;
117 /* Force bridge_d3 for all PCIe ports */
118 static bool pci_bridge_d3_force;
120 static int __init pcie_port_pm_setup(char *str)
122 if (!strcmp(str, "off"))
123 pci_bridge_d3_disable = true;
124 else if (!strcmp(str, "force"))
125 pci_bridge_d3_force = true;
128 __setup("pcie_port_pm=", pcie_port_pm_setup);
130 /* Time to wait after a reset for device to become responsive */
131 #define PCIE_RESET_READY_POLL_MS 60000
134 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
135 * @bus: pointer to PCI bus structure to search
137 * Given a PCI bus, returns the highest PCI bus number present in the set
138 * including the given PCI bus and its list of child PCI buses.
140 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
143 unsigned char max, n;
145 max = bus->busn_res.end;
146 list_for_each_entry(tmp, &bus->children, node) {
147 n = pci_bus_max_busnr(tmp);
153 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
155 #ifdef CONFIG_HAS_IOMEM
156 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
158 struct resource *res = &pdev->resource[bar];
161 * Make sure the BAR is actually a memory resource, not an IO resource
163 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
164 pci_warn(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
167 return ioremap_nocache(res->start, resource_size(res));
169 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
171 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
174 * Make sure the BAR is actually a memory resource, not an IO resource
176 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
180 return ioremap_wc(pci_resource_start(pdev, bar),
181 pci_resource_len(pdev, bar));
183 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
187 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
188 u8 pos, int cap, int *ttl)
193 pci_bus_read_config_byte(bus, devfn, pos, &pos);
199 pci_bus_read_config_word(bus, devfn, pos, &ent);
211 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
214 int ttl = PCI_FIND_CAP_TTL;
216 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
219 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
221 return __pci_find_next_cap(dev->bus, dev->devfn,
222 pos + PCI_CAP_LIST_NEXT, cap);
224 EXPORT_SYMBOL_GPL(pci_find_next_capability);
226 static int __pci_bus_find_cap_start(struct pci_bus *bus,
227 unsigned int devfn, u8 hdr_type)
231 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
232 if (!(status & PCI_STATUS_CAP_LIST))
236 case PCI_HEADER_TYPE_NORMAL:
237 case PCI_HEADER_TYPE_BRIDGE:
238 return PCI_CAPABILITY_LIST;
239 case PCI_HEADER_TYPE_CARDBUS:
240 return PCI_CB_CAPABILITY_LIST;
247 * pci_find_capability - query for devices' capabilities
248 * @dev: PCI device to query
249 * @cap: capability code
251 * Tell if a device supports a given PCI capability.
252 * Returns the address of the requested capability structure within the
253 * device's PCI configuration space or 0 in case the device does not
254 * support it. Possible values for @cap:
256 * %PCI_CAP_ID_PM Power Management
257 * %PCI_CAP_ID_AGP Accelerated Graphics Port
258 * %PCI_CAP_ID_VPD Vital Product Data
259 * %PCI_CAP_ID_SLOTID Slot Identification
260 * %PCI_CAP_ID_MSI Message Signalled Interrupts
261 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
262 * %PCI_CAP_ID_PCIX PCI-X
263 * %PCI_CAP_ID_EXP PCI Express
265 int pci_find_capability(struct pci_dev *dev, int cap)
269 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
271 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
275 EXPORT_SYMBOL(pci_find_capability);
278 * pci_bus_find_capability - query for devices' capabilities
279 * @bus: the PCI bus to query
280 * @devfn: PCI device to query
281 * @cap: capability code
283 * Like pci_find_capability() but works for pci devices that do not have a
284 * pci_dev structure set up yet.
286 * Returns the address of the requested capability structure within the
287 * device's PCI configuration space or 0 in case the device does not
290 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
295 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
297 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
299 pos = __pci_find_next_cap(bus, devfn, pos, cap);
303 EXPORT_SYMBOL(pci_bus_find_capability);
306 * pci_find_next_ext_capability - Find an extended capability
307 * @dev: PCI device to query
308 * @start: address at which to start looking (0 to start at beginning of list)
309 * @cap: capability code
311 * Returns the address of the next matching extended capability structure
312 * within the device's PCI configuration space or 0 if the device does
313 * not support it. Some capabilities can occur several times, e.g., the
314 * vendor-specific capability, and this provides a way to find them all.
316 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
320 int pos = PCI_CFG_SPACE_SIZE;
322 /* minimum 8 bytes per capability */
323 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
325 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
331 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
335 * If we have no capabilities, this is indicated by cap ID,
336 * cap version and next pointer all being 0.
342 if (PCI_EXT_CAP_ID(header) == cap && pos != start)
345 pos = PCI_EXT_CAP_NEXT(header);
346 if (pos < PCI_CFG_SPACE_SIZE)
349 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
355 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
358 * pci_find_ext_capability - Find an extended capability
359 * @dev: PCI device to query
360 * @cap: capability code
362 * Returns the address of the requested extended capability structure
363 * within the device's PCI configuration space or 0 if the device does
364 * not support it. Possible values for @cap:
366 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
367 * %PCI_EXT_CAP_ID_VC Virtual Channel
368 * %PCI_EXT_CAP_ID_DSN Device Serial Number
369 * %PCI_EXT_CAP_ID_PWR Power Budgeting
371 int pci_find_ext_capability(struct pci_dev *dev, int cap)
373 return pci_find_next_ext_capability(dev, 0, cap);
375 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
377 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
379 int rc, ttl = PCI_FIND_CAP_TTL;
382 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
383 mask = HT_3BIT_CAP_MASK;
385 mask = HT_5BIT_CAP_MASK;
387 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
388 PCI_CAP_ID_HT, &ttl);
390 rc = pci_read_config_byte(dev, pos + 3, &cap);
391 if (rc != PCIBIOS_SUCCESSFUL)
394 if ((cap & mask) == ht_cap)
397 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
398 pos + PCI_CAP_LIST_NEXT,
399 PCI_CAP_ID_HT, &ttl);
405 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
406 * @dev: PCI device to query
407 * @pos: Position from which to continue searching
408 * @ht_cap: Hypertransport capability code
410 * To be used in conjunction with pci_find_ht_capability() to search for
411 * all capabilities matching @ht_cap. @pos should always be a value returned
412 * from pci_find_ht_capability().
414 * NB. To be 100% safe against broken PCI devices, the caller should take
415 * steps to avoid an infinite loop.
417 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
419 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
421 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
424 * pci_find_ht_capability - query a device's Hypertransport capabilities
425 * @dev: PCI device to query
426 * @ht_cap: Hypertransport capability code
428 * Tell if a device supports a given Hypertransport capability.
429 * Returns an address within the device's PCI configuration space
430 * or 0 in case the device does not support the request capability.
431 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
432 * which has a Hypertransport capability matching @ht_cap.
434 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
438 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
440 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
444 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
447 * pci_find_parent_resource - return resource region of parent bus of given region
448 * @dev: PCI device structure contains resources to be searched
449 * @res: child resource record for which parent is sought
451 * For given resource region of given device, return the resource
452 * region of parent bus the given region is contained in.
454 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
455 struct resource *res)
457 const struct pci_bus *bus = dev->bus;
461 pci_bus_for_each_resource(bus, r, i) {
464 if (resource_contains(r, res)) {
467 * If the window is prefetchable but the BAR is
468 * not, the allocator made a mistake.
470 if (r->flags & IORESOURCE_PREFETCH &&
471 !(res->flags & IORESOURCE_PREFETCH))
475 * If we're below a transparent bridge, there may
476 * be both a positively-decoded aperture and a
477 * subtractively-decoded region that contain the BAR.
478 * We want the positively-decoded one, so this depends
479 * on pci_bus_for_each_resource() giving us those
487 EXPORT_SYMBOL(pci_find_parent_resource);
490 * pci_find_resource - Return matching PCI device resource
491 * @dev: PCI device to query
492 * @res: Resource to look for
494 * Goes over standard PCI resources (BARs) and checks if the given resource
495 * is partially or fully contained in any of them. In that case the
496 * matching resource is returned, %NULL otherwise.
498 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
502 for (i = 0; i < PCI_ROM_RESOURCE; i++) {
503 struct resource *r = &dev->resource[i];
505 if (r->start && resource_contains(r, res))
511 EXPORT_SYMBOL(pci_find_resource);
514 * pci_find_pcie_root_port - return PCIe Root Port
515 * @dev: PCI device to query
517 * Traverse up the parent chain and return the PCIe Root Port PCI Device
518 * for a given PCI Device.
520 struct pci_dev *pci_find_pcie_root_port(struct pci_dev *dev)
522 struct pci_dev *bridge, *highest_pcie_bridge = dev;
524 bridge = pci_upstream_bridge(dev);
525 while (bridge && pci_is_pcie(bridge)) {
526 highest_pcie_bridge = bridge;
527 bridge = pci_upstream_bridge(bridge);
530 if (pci_pcie_type(highest_pcie_bridge) != PCI_EXP_TYPE_ROOT_PORT)
533 return highest_pcie_bridge;
535 EXPORT_SYMBOL(pci_find_pcie_root_port);
538 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
539 * @dev: the PCI device to operate on
540 * @pos: config space offset of status word
541 * @mask: mask of bit(s) to care about in status word
543 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
545 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
549 /* Wait for Transaction Pending bit clean */
550 for (i = 0; i < 4; i++) {
553 msleep((1 << (i - 1)) * 100);
555 pci_read_config_word(dev, pos, &status);
556 if (!(status & mask))
564 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
565 * @dev: PCI device to have its BARs restored
567 * Restore the BAR values for a given device, so as to make it
568 * accessible by its driver.
570 static void pci_restore_bars(struct pci_dev *dev)
574 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
575 pci_update_resource(dev, i);
578 static const struct pci_platform_pm_ops *pci_platform_pm;
580 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
582 if (!ops->is_manageable || !ops->set_state || !ops->get_state ||
583 !ops->choose_state || !ops->set_wakeup || !ops->need_resume)
585 pci_platform_pm = ops;
589 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
591 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
594 static inline int platform_pci_set_power_state(struct pci_dev *dev,
597 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
600 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
602 return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
605 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
607 return pci_platform_pm ?
608 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
611 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
613 return pci_platform_pm ?
614 pci_platform_pm->set_wakeup(dev, enable) : -ENODEV;
617 static inline bool platform_pci_need_resume(struct pci_dev *dev)
619 return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
623 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
625 * @dev: PCI device to handle.
626 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
629 * -EINVAL if the requested state is invalid.
630 * -EIO if device does not support PCI PM or its PM capabilities register has a
631 * wrong version, or device doesn't support the requested state.
632 * 0 if device already is in the requested state.
633 * 0 if device's power state has been successfully changed.
635 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
638 bool need_restore = false;
640 /* Check if we're already there */
641 if (dev->current_state == state)
647 if (state < PCI_D0 || state > PCI_D3hot)
650 /* Validate current state:
651 * Can enter D0 from any state, but if we can only go deeper
652 * to sleep if we're already in a low power state
654 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
655 && dev->current_state > state) {
656 pci_err(dev, "invalid power transition (from state %d to %d)\n",
657 dev->current_state, state);
661 /* check if this device supports the desired state */
662 if ((state == PCI_D1 && !dev->d1_support)
663 || (state == PCI_D2 && !dev->d2_support))
666 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
668 /* If we're (effectively) in D3, force entire word to 0.
669 * This doesn't affect PME_Status, disables PME_En, and
670 * sets PowerState to 0.
672 switch (dev->current_state) {
676 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
681 case PCI_UNKNOWN: /* Boot-up */
682 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
683 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
685 /* Fall-through: force to D0 */
691 /* enter specified state */
692 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
694 /* Mandatory power management transition delays */
695 /* see PCI PM 1.1 5.6.1 table 18 */
696 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
697 pci_dev_d3_sleep(dev);
698 else if (state == PCI_D2 || dev->current_state == PCI_D2)
699 udelay(PCI_PM_D2_DELAY);
701 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
702 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
703 if (dev->current_state != state && printk_ratelimit())
704 pci_info(dev, "Refused to change power state, currently in D%d\n",
708 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
709 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
710 * from D3hot to D0 _may_ perform an internal reset, thereby
711 * going to "D0 Uninitialized" rather than "D0 Initialized".
712 * For example, at least some versions of the 3c905B and the
713 * 3c556B exhibit this behaviour.
715 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
716 * devices in a D3hot state at boot. Consequently, we need to
717 * restore at least the BARs so that the device will be
718 * accessible to its driver.
721 pci_restore_bars(dev);
724 pcie_aspm_pm_state_change(dev->bus->self);
730 * pci_update_current_state - Read power state of given device and cache it
731 * @dev: PCI device to handle.
732 * @state: State to cache in case the device doesn't have the PM capability
734 * The power state is read from the PMCSR register, which however is
735 * inaccessible in D3cold. The platform firmware is therefore queried first
736 * to detect accessibility of the register. In case the platform firmware
737 * reports an incorrect state or the device isn't power manageable by the
738 * platform at all, we try to detect D3cold by testing accessibility of the
739 * vendor ID in config space.
741 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
743 if (platform_pci_get_power_state(dev) == PCI_D3cold ||
744 !pci_device_is_present(dev)) {
745 dev->current_state = PCI_D3cold;
746 } else if (dev->pm_cap) {
749 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
750 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
752 dev->current_state = state;
757 * pci_power_up - Put the given device into D0 forcibly
758 * @dev: PCI device to power up
760 void pci_power_up(struct pci_dev *dev)
762 if (platform_pci_power_manageable(dev))
763 platform_pci_set_power_state(dev, PCI_D0);
765 pci_raw_set_power_state(dev, PCI_D0);
766 pci_update_current_state(dev, PCI_D0);
770 * pci_platform_power_transition - Use platform to change device power state
771 * @dev: PCI device to handle.
772 * @state: State to put the device into.
774 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
778 if (platform_pci_power_manageable(dev)) {
779 error = platform_pci_set_power_state(dev, state);
781 pci_update_current_state(dev, state);
785 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
786 dev->current_state = PCI_D0;
792 * pci_wakeup - Wake up a PCI device
793 * @pci_dev: Device to handle.
794 * @ign: ignored parameter
796 static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
798 pci_wakeup_event(pci_dev);
799 pm_request_resume(&pci_dev->dev);
804 * pci_wakeup_bus - Walk given bus and wake up devices on it
805 * @bus: Top bus of the subtree to walk.
807 void pci_wakeup_bus(struct pci_bus *bus)
810 pci_walk_bus(bus, pci_wakeup, NULL);
814 * __pci_start_power_transition - Start power transition of a PCI device
815 * @dev: PCI device to handle.
816 * @state: State to put the device into.
818 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
820 if (state == PCI_D0) {
821 pci_platform_power_transition(dev, PCI_D0);
823 * Mandatory power management transition delays, see
824 * PCI Express Base Specification Revision 2.0 Section
825 * 6.6.1: Conventional Reset. Do not delay for
826 * devices powered on/off by corresponding bridge,
827 * because have already delayed for the bridge.
829 if (dev->runtime_d3cold) {
830 if (dev->d3cold_delay)
831 msleep(dev->d3cold_delay);
833 * When powering on a bridge from D3cold, the
834 * whole hierarchy may be powered on into
835 * D0uninitialized state, resume them to give
836 * them a chance to suspend again
838 pci_wakeup_bus(dev->subordinate);
844 * __pci_dev_set_current_state - Set current state of a PCI device
845 * @dev: Device to handle
846 * @data: pointer to state to be set
848 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
850 pci_power_t state = *(pci_power_t *)data;
852 dev->current_state = state;
857 * pci_bus_set_current_state - Walk given bus and set current state of devices
858 * @bus: Top bus of the subtree to walk.
859 * @state: state to be set
861 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
864 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
868 * __pci_complete_power_transition - Complete power transition of a PCI device
869 * @dev: PCI device to handle.
870 * @state: State to put the device into.
872 * This function should not be called directly by device drivers.
874 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
880 ret = pci_platform_power_transition(dev, state);
881 /* Power off the bridge may power off the whole hierarchy */
882 if (!ret && state == PCI_D3cold)
883 pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
886 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
889 * pci_set_power_state - Set the power state of a PCI device
890 * @dev: PCI device to handle.
891 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
893 * Transition a device to a new power state, using the platform firmware and/or
894 * the device's PCI PM registers.
897 * -EINVAL if the requested state is invalid.
898 * -EIO if device does not support PCI PM or its PM capabilities register has a
899 * wrong version, or device doesn't support the requested state.
900 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
901 * 0 if device already is in the requested state.
902 * 0 if the transition is to D3 but D3 is not supported.
903 * 0 if device's power state has been successfully changed.
905 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
909 /* bound the state we're entering */
910 if (state > PCI_D3cold)
912 else if (state < PCI_D0)
914 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
916 * If the device or the parent bridge do not support PCI PM,
917 * ignore the request if we're doing anything other than putting
918 * it into D0 (which would only happen on boot).
922 /* Check if we're already there */
923 if (dev->current_state == state)
926 __pci_start_power_transition(dev, state);
928 /* This device is quirked not to be put into D3, so
929 don't put it in D3 */
930 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
934 * To put device in D3cold, we put device into D3hot in native
935 * way, then put device into D3cold with platform ops
937 error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
940 if (!__pci_complete_power_transition(dev, state))
945 EXPORT_SYMBOL(pci_set_power_state);
948 * pci_choose_state - Choose the power state of a PCI device
949 * @dev: PCI device to be suspended
950 * @state: target sleep state for the whole system. This is the value
951 * that is passed to suspend() function.
953 * Returns PCI power state suitable for given device and given system
957 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
964 ret = platform_pci_choose_state(dev);
965 if (ret != PCI_POWER_ERROR)
968 switch (state.event) {
971 case PM_EVENT_FREEZE:
972 case PM_EVENT_PRETHAW:
973 /* REVISIT both freeze and pre-thaw "should" use D0 */
974 case PM_EVENT_SUSPEND:
975 case PM_EVENT_HIBERNATE:
978 pci_info(dev, "unrecognized suspend event %d\n",
984 EXPORT_SYMBOL(pci_choose_state);
986 #define PCI_EXP_SAVE_REGS 7
988 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
989 u16 cap, bool extended)
991 struct pci_cap_saved_state *tmp;
993 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
994 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1000 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1002 return _pci_find_saved_cap(dev, cap, false);
1005 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1007 return _pci_find_saved_cap(dev, cap, true);
1010 static int pci_save_pcie_state(struct pci_dev *dev)
1013 struct pci_cap_saved_state *save_state;
1016 if (!pci_is_pcie(dev))
1019 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1021 pci_err(dev, "buffer not found in %s\n", __func__);
1025 cap = (u16 *)&save_state->cap.data[0];
1026 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1027 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1028 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1029 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]);
1030 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1031 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1032 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1037 static void pci_restore_pcie_state(struct pci_dev *dev)
1040 struct pci_cap_saved_state *save_state;
1043 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1047 cap = (u16 *)&save_state->cap.data[0];
1048 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1049 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1050 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1051 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1052 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1053 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1054 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1058 static int pci_save_pcix_state(struct pci_dev *dev)
1061 struct pci_cap_saved_state *save_state;
1063 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1067 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1069 pci_err(dev, "buffer not found in %s\n", __func__);
1073 pci_read_config_word(dev, pos + PCI_X_CMD,
1074 (u16 *)save_state->cap.data);
1079 static void pci_restore_pcix_state(struct pci_dev *dev)
1082 struct pci_cap_saved_state *save_state;
1085 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1086 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1087 if (!save_state || !pos)
1089 cap = (u16 *)&save_state->cap.data[0];
1091 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1096 * pci_save_state - save the PCI configuration space of a device before suspending
1097 * @dev: - PCI device that we're dealing with
1099 int pci_save_state(struct pci_dev *dev)
1102 /* XXX: 100% dword access ok here? */
1103 for (i = 0; i < 16; i++)
1104 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1105 dev->state_saved = true;
1107 i = pci_save_pcie_state(dev);
1111 i = pci_save_pcix_state(dev);
1115 return pci_save_vc_state(dev);
1117 EXPORT_SYMBOL(pci_save_state);
1119 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1120 u32 saved_val, int retry)
1124 pci_read_config_dword(pdev, offset, &val);
1125 if (val == saved_val)
1129 pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1130 offset, val, saved_val);
1131 pci_write_config_dword(pdev, offset, saved_val);
1135 pci_read_config_dword(pdev, offset, &val);
1136 if (val == saved_val)
1143 static void pci_restore_config_space_range(struct pci_dev *pdev,
1144 int start, int end, int retry)
1148 for (index = end; index >= start; index--)
1149 pci_restore_config_dword(pdev, 4 * index,
1150 pdev->saved_config_space[index],
1154 static void pci_restore_config_space(struct pci_dev *pdev)
1156 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1157 pci_restore_config_space_range(pdev, 10, 15, 0);
1158 /* Restore BARs before the command register. */
1159 pci_restore_config_space_range(pdev, 4, 9, 10);
1160 pci_restore_config_space_range(pdev, 0, 3, 0);
1162 pci_restore_config_space_range(pdev, 0, 15, 0);
1167 * pci_restore_state - Restore the saved state of a PCI device
1168 * @dev: - PCI device that we're dealing with
1170 void pci_restore_state(struct pci_dev *dev)
1172 if (!dev->state_saved)
1175 /* PCI Express register must be restored first */
1176 pci_restore_pcie_state(dev);
1177 pci_restore_pasid_state(dev);
1178 pci_restore_pri_state(dev);
1179 pci_restore_ats_state(dev);
1180 pci_restore_vc_state(dev);
1182 pci_cleanup_aer_error_status_regs(dev);
1184 pci_restore_config_space(dev);
1186 pci_restore_pcix_state(dev);
1187 pci_restore_msi_state(dev);
1189 /* Restore ACS and IOV configuration state */
1190 pci_enable_acs(dev);
1191 pci_restore_iov_state(dev);
1193 dev->state_saved = false;
1195 EXPORT_SYMBOL(pci_restore_state);
1197 struct pci_saved_state {
1198 u32 config_space[16];
1199 struct pci_cap_saved_data cap[0];
1203 * pci_store_saved_state - Allocate and return an opaque struct containing
1204 * the device saved state.
1205 * @dev: PCI device that we're dealing with
1207 * Return NULL if no state or error.
1209 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1211 struct pci_saved_state *state;
1212 struct pci_cap_saved_state *tmp;
1213 struct pci_cap_saved_data *cap;
1216 if (!dev->state_saved)
1219 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1221 hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1222 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1224 state = kzalloc(size, GFP_KERNEL);
1228 memcpy(state->config_space, dev->saved_config_space,
1229 sizeof(state->config_space));
1232 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1233 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1234 memcpy(cap, &tmp->cap, len);
1235 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1237 /* Empty cap_save terminates list */
1241 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1244 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1245 * @dev: PCI device that we're dealing with
1246 * @state: Saved state returned from pci_store_saved_state()
1248 int pci_load_saved_state(struct pci_dev *dev,
1249 struct pci_saved_state *state)
1251 struct pci_cap_saved_data *cap;
1253 dev->state_saved = false;
1258 memcpy(dev->saved_config_space, state->config_space,
1259 sizeof(state->config_space));
1263 struct pci_cap_saved_state *tmp;
1265 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1266 if (!tmp || tmp->cap.size != cap->size)
1269 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1270 cap = (struct pci_cap_saved_data *)((u8 *)cap +
1271 sizeof(struct pci_cap_saved_data) + cap->size);
1274 dev->state_saved = true;
1277 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1280 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1281 * and free the memory allocated for it.
1282 * @dev: PCI device that we're dealing with
1283 * @state: Pointer to saved state returned from pci_store_saved_state()
1285 int pci_load_and_free_saved_state(struct pci_dev *dev,
1286 struct pci_saved_state **state)
1288 int ret = pci_load_saved_state(dev, *state);
1293 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1295 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1297 return pci_enable_resources(dev, bars);
1300 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1303 struct pci_dev *bridge;
1307 err = pci_set_power_state(dev, PCI_D0);
1308 if (err < 0 && err != -EIO)
1311 bridge = pci_upstream_bridge(dev);
1313 pcie_aspm_powersave_config_link(bridge);
1315 err = pcibios_enable_device(dev, bars);
1318 pci_fixup_device(pci_fixup_enable, dev);
1320 if (dev->msi_enabled || dev->msix_enabled)
1323 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1325 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1326 if (cmd & PCI_COMMAND_INTX_DISABLE)
1327 pci_write_config_word(dev, PCI_COMMAND,
1328 cmd & ~PCI_COMMAND_INTX_DISABLE);
1335 * pci_reenable_device - Resume abandoned device
1336 * @dev: PCI device to be resumed
1338 * Note this function is a backend of pci_default_resume and is not supposed
1339 * to be called by normal code, write proper resume handler and use it instead.
1341 int pci_reenable_device(struct pci_dev *dev)
1343 if (pci_is_enabled(dev))
1344 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1347 EXPORT_SYMBOL(pci_reenable_device);
1349 static void pci_enable_bridge(struct pci_dev *dev)
1351 struct pci_dev *bridge;
1354 bridge = pci_upstream_bridge(dev);
1356 pci_enable_bridge(bridge);
1358 if (pci_is_enabled(dev)) {
1359 if (!dev->is_busmaster)
1360 pci_set_master(dev);
1364 retval = pci_enable_device(dev);
1366 pci_err(dev, "Error enabling bridge (%d), continuing\n",
1368 pci_set_master(dev);
1371 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1373 struct pci_dev *bridge;
1378 * Power state could be unknown at this point, either due to a fresh
1379 * boot or a device removal call. So get the current power state
1380 * so that things like MSI message writing will behave as expected
1381 * (e.g. if the device really is in D0 at enable time).
1385 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1386 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1389 if (atomic_inc_return(&dev->enable_cnt) > 1)
1390 return 0; /* already enabled */
1392 bridge = pci_upstream_bridge(dev);
1394 pci_enable_bridge(bridge);
1396 /* only skip sriov related */
1397 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1398 if (dev->resource[i].flags & flags)
1400 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1401 if (dev->resource[i].flags & flags)
1404 err = do_pci_enable_device(dev, bars);
1406 atomic_dec(&dev->enable_cnt);
1411 * pci_enable_device_io - Initialize a device for use with IO space
1412 * @dev: PCI device to be initialized
1414 * Initialize device before it's used by a driver. Ask low-level code
1415 * to enable I/O resources. Wake up the device if it was suspended.
1416 * Beware, this function can fail.
1418 int pci_enable_device_io(struct pci_dev *dev)
1420 return pci_enable_device_flags(dev, IORESOURCE_IO);
1422 EXPORT_SYMBOL(pci_enable_device_io);
1425 * pci_enable_device_mem - Initialize a device for use with Memory space
1426 * @dev: PCI device to be initialized
1428 * Initialize device before it's used by a driver. Ask low-level code
1429 * to enable Memory resources. Wake up the device if it was suspended.
1430 * Beware, this function can fail.
1432 int pci_enable_device_mem(struct pci_dev *dev)
1434 return pci_enable_device_flags(dev, IORESOURCE_MEM);
1436 EXPORT_SYMBOL(pci_enable_device_mem);
1439 * pci_enable_device - Initialize device before it's used by a driver.
1440 * @dev: PCI device to be initialized
1442 * Initialize device before it's used by a driver. Ask low-level code
1443 * to enable I/O and memory. Wake up the device if it was suspended.
1444 * Beware, this function can fail.
1446 * Note we don't actually enable the device many times if we call
1447 * this function repeatedly (we just increment the count).
1449 int pci_enable_device(struct pci_dev *dev)
1451 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1453 EXPORT_SYMBOL(pci_enable_device);
1456 * Managed PCI resources. This manages device on/off, intx/msi/msix
1457 * on/off and BAR regions. pci_dev itself records msi/msix status, so
1458 * there's no need to track it separately. pci_devres is initialized
1459 * when a device is enabled using managed PCI device enable interface.
1462 unsigned int enabled:1;
1463 unsigned int pinned:1;
1464 unsigned int orig_intx:1;
1465 unsigned int restore_intx:1;
1470 static void pcim_release(struct device *gendev, void *res)
1472 struct pci_dev *dev = to_pci_dev(gendev);
1473 struct pci_devres *this = res;
1476 if (dev->msi_enabled)
1477 pci_disable_msi(dev);
1478 if (dev->msix_enabled)
1479 pci_disable_msix(dev);
1481 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1482 if (this->region_mask & (1 << i))
1483 pci_release_region(dev, i);
1488 if (this->restore_intx)
1489 pci_intx(dev, this->orig_intx);
1491 if (this->enabled && !this->pinned)
1492 pci_disable_device(dev);
1495 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1497 struct pci_devres *dr, *new_dr;
1499 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1503 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1506 return devres_get(&pdev->dev, new_dr, NULL, NULL);
1509 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
1511 if (pci_is_managed(pdev))
1512 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1517 * pcim_enable_device - Managed pci_enable_device()
1518 * @pdev: PCI device to be initialized
1520 * Managed pci_enable_device().
1522 int pcim_enable_device(struct pci_dev *pdev)
1524 struct pci_devres *dr;
1527 dr = get_pci_dr(pdev);
1533 rc = pci_enable_device(pdev);
1535 pdev->is_managed = 1;
1540 EXPORT_SYMBOL(pcim_enable_device);
1543 * pcim_pin_device - Pin managed PCI device
1544 * @pdev: PCI device to pin
1546 * Pin managed PCI device @pdev. Pinned device won't be disabled on
1547 * driver detach. @pdev must have been enabled with
1548 * pcim_enable_device().
1550 void pcim_pin_device(struct pci_dev *pdev)
1552 struct pci_devres *dr;
1554 dr = find_pci_dr(pdev);
1555 WARN_ON(!dr || !dr->enabled);
1559 EXPORT_SYMBOL(pcim_pin_device);
1562 * pcibios_add_device - provide arch specific hooks when adding device dev
1563 * @dev: the PCI device being added
1565 * Permits the platform to provide architecture specific functionality when
1566 * devices are added. This is the default implementation. Architecture
1567 * implementations can override this.
1569 int __weak pcibios_add_device(struct pci_dev *dev)
1575 * pcibios_release_device - provide arch specific hooks when releasing device dev
1576 * @dev: the PCI device being released
1578 * Permits the platform to provide architecture specific functionality when
1579 * devices are released. This is the default implementation. Architecture
1580 * implementations can override this.
1582 void __weak pcibios_release_device(struct pci_dev *dev) {}
1585 * pcibios_disable_device - disable arch specific PCI resources for device dev
1586 * @dev: the PCI device to disable
1588 * Disables architecture specific PCI resources for the device. This
1589 * is the default implementation. Architecture implementations can
1592 void __weak pcibios_disable_device(struct pci_dev *dev) {}
1595 * pcibios_penalize_isa_irq - penalize an ISA IRQ
1596 * @irq: ISA IRQ to penalize
1597 * @active: IRQ active or not
1599 * Permits the platform to provide architecture-specific functionality when
1600 * penalizing ISA IRQs. This is the default implementation. Architecture
1601 * implementations can override this.
1603 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
1605 static void do_pci_disable_device(struct pci_dev *dev)
1609 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1610 if (pci_command & PCI_COMMAND_MASTER) {
1611 pci_command &= ~PCI_COMMAND_MASTER;
1612 pci_write_config_word(dev, PCI_COMMAND, pci_command);
1615 pcibios_disable_device(dev);
1619 * pci_disable_enabled_device - Disable device without updating enable_cnt
1620 * @dev: PCI device to disable
1622 * NOTE: This function is a backend of PCI power management routines and is
1623 * not supposed to be called drivers.
1625 void pci_disable_enabled_device(struct pci_dev *dev)
1627 if (pci_is_enabled(dev))
1628 do_pci_disable_device(dev);
1632 * pci_disable_device - Disable PCI device after use
1633 * @dev: PCI device to be disabled
1635 * Signal to the system that the PCI device is not in use by the system
1636 * anymore. This only involves disabling PCI bus-mastering, if active.
1638 * Note we don't actually disable the device until all callers of
1639 * pci_enable_device() have called pci_disable_device().
1641 void pci_disable_device(struct pci_dev *dev)
1643 struct pci_devres *dr;
1645 dr = find_pci_dr(dev);
1649 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1650 "disabling already-disabled device");
1652 if (atomic_dec_return(&dev->enable_cnt) != 0)
1655 do_pci_disable_device(dev);
1657 dev->is_busmaster = 0;
1659 EXPORT_SYMBOL(pci_disable_device);
1662 * pcibios_set_pcie_reset_state - set reset state for device dev
1663 * @dev: the PCIe device reset
1664 * @state: Reset state to enter into
1667 * Sets the PCIe reset state for the device. This is the default
1668 * implementation. Architecture implementations can override this.
1670 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1671 enum pcie_reset_state state)
1677 * pci_set_pcie_reset_state - set reset state for device dev
1678 * @dev: the PCIe device reset
1679 * @state: Reset state to enter into
1682 * Sets the PCI reset state for the device.
1684 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1686 return pcibios_set_pcie_reset_state(dev, state);
1688 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
1691 * pcie_clear_root_pme_status - Clear root port PME interrupt status.
1692 * @dev: PCIe root port or event collector.
1694 void pcie_clear_root_pme_status(struct pci_dev *dev)
1696 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
1700 * pci_check_pme_status - Check if given device has generated PME.
1701 * @dev: Device to check.
1703 * Check the PME status of the device and if set, clear it and clear PME enable
1704 * (if set). Return 'true' if PME status and PME enable were both set or
1705 * 'false' otherwise.
1707 bool pci_check_pme_status(struct pci_dev *dev)
1716 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1717 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1718 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1721 /* Clear PME status. */
1722 pmcsr |= PCI_PM_CTRL_PME_STATUS;
1723 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1724 /* Disable PME to avoid interrupt flood. */
1725 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1729 pci_write_config_word(dev, pmcsr_pos, pmcsr);
1735 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1736 * @dev: Device to handle.
1737 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1739 * Check if @dev has generated PME and queue a resume request for it in that
1742 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
1744 if (pme_poll_reset && dev->pme_poll)
1745 dev->pme_poll = false;
1747 if (pci_check_pme_status(dev)) {
1748 pci_wakeup_event(dev);
1749 pm_request_resume(&dev->dev);
1755 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1756 * @bus: Top bus of the subtree to walk.
1758 void pci_pme_wakeup_bus(struct pci_bus *bus)
1761 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
1766 * pci_pme_capable - check the capability of PCI device to generate PME#
1767 * @dev: PCI device to handle.
1768 * @state: PCI state from which device will issue PME#.
1770 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1775 return !!(dev->pme_support & (1 << state));
1777 EXPORT_SYMBOL(pci_pme_capable);
1779 static void pci_pme_list_scan(struct work_struct *work)
1781 struct pci_pme_device *pme_dev, *n;
1783 mutex_lock(&pci_pme_list_mutex);
1784 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
1785 if (pme_dev->dev->pme_poll) {
1786 struct pci_dev *bridge;
1788 bridge = pme_dev->dev->bus->self;
1790 * If bridge is in low power state, the
1791 * configuration space of subordinate devices
1792 * may be not accessible
1794 if (bridge && bridge->current_state != PCI_D0)
1796 pci_pme_wakeup(pme_dev->dev, NULL);
1798 list_del(&pme_dev->list);
1802 if (!list_empty(&pci_pme_list))
1803 queue_delayed_work(system_freezable_wq, &pci_pme_work,
1804 msecs_to_jiffies(PME_TIMEOUT));
1805 mutex_unlock(&pci_pme_list_mutex);
1808 static void __pci_pme_active(struct pci_dev *dev, bool enable)
1812 if (!dev->pme_support)
1815 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1816 /* Clear PME_Status by writing 1 to it and enable PME# */
1817 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1819 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1821 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1825 * pci_pme_restore - Restore PME configuration after config space restore.
1826 * @dev: PCI device to update.
1828 void pci_pme_restore(struct pci_dev *dev)
1832 if (!dev->pme_support)
1835 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1836 if (dev->wakeup_prepared) {
1837 pmcsr |= PCI_PM_CTRL_PME_ENABLE;
1838 pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
1840 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1841 pmcsr |= PCI_PM_CTRL_PME_STATUS;
1843 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1847 * pci_pme_active - enable or disable PCI device's PME# function
1848 * @dev: PCI device to handle.
1849 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1851 * The caller must verify that the device is capable of generating PME# before
1852 * calling this function with @enable equal to 'true'.
1854 void pci_pme_active(struct pci_dev *dev, bool enable)
1856 __pci_pme_active(dev, enable);
1859 * PCI (as opposed to PCIe) PME requires that the device have
1860 * its PME# line hooked up correctly. Not all hardware vendors
1861 * do this, so the PME never gets delivered and the device
1862 * remains asleep. The easiest way around this is to
1863 * periodically walk the list of suspended devices and check
1864 * whether any have their PME flag set. The assumption is that
1865 * we'll wake up often enough anyway that this won't be a huge
1866 * hit, and the power savings from the devices will still be a
1869 * Although PCIe uses in-band PME message instead of PME# line
1870 * to report PME, PME does not work for some PCIe devices in
1871 * reality. For example, there are devices that set their PME
1872 * status bits, but don't really bother to send a PME message;
1873 * there are PCI Express Root Ports that don't bother to
1874 * trigger interrupts when they receive PME messages from the
1875 * devices below. So PME poll is used for PCIe devices too.
1878 if (dev->pme_poll) {
1879 struct pci_pme_device *pme_dev;
1881 pme_dev = kmalloc(sizeof(struct pci_pme_device),
1884 pci_warn(dev, "can't enable PME#\n");
1888 mutex_lock(&pci_pme_list_mutex);
1889 list_add(&pme_dev->list, &pci_pme_list);
1890 if (list_is_singular(&pci_pme_list))
1891 queue_delayed_work(system_freezable_wq,
1893 msecs_to_jiffies(PME_TIMEOUT));
1894 mutex_unlock(&pci_pme_list_mutex);
1896 mutex_lock(&pci_pme_list_mutex);
1897 list_for_each_entry(pme_dev, &pci_pme_list, list) {
1898 if (pme_dev->dev == dev) {
1899 list_del(&pme_dev->list);
1904 mutex_unlock(&pci_pme_list_mutex);
1908 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
1910 EXPORT_SYMBOL(pci_pme_active);
1913 * pci_enable_wake - enable PCI device as wakeup event source
1914 * @dev: PCI device affected
1915 * @state: PCI state from which device will issue wakeup events
1916 * @enable: True to enable event generation; false to disable
1918 * This enables the device as a wakeup event source, or disables it.
1919 * When such events involves platform-specific hooks, those hooks are
1920 * called automatically by this routine.
1922 * Devices with legacy power management (no standard PCI PM capabilities)
1923 * always require such platform hooks.
1926 * 0 is returned on success
1927 * -EINVAL is returned if device is not supposed to wake up the system
1928 * Error code depending on the platform is returned if both the platform and
1929 * the native mechanism fail to enable the generation of wake-up events
1931 int pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
1936 * Bridges can only signal wakeup on behalf of subordinate devices,
1937 * but that is set up elsewhere, so skip them.
1939 if (pci_has_subordinate(dev))
1942 /* Don't do the same thing twice in a row for one device. */
1943 if (!!enable == !!dev->wakeup_prepared)
1947 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1948 * Anderson we should be doing PME# wake enable followed by ACPI wake
1949 * enable. To disable wake-up we call the platform first, for symmetry.
1955 if (pci_pme_capable(dev, state))
1956 pci_pme_active(dev, true);
1959 error = platform_pci_set_wakeup(dev, true);
1963 dev->wakeup_prepared = true;
1965 platform_pci_set_wakeup(dev, false);
1966 pci_pme_active(dev, false);
1967 dev->wakeup_prepared = false;
1972 EXPORT_SYMBOL(pci_enable_wake);
1975 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1976 * @dev: PCI device to prepare
1977 * @enable: True to enable wake-up event generation; false to disable
1979 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1980 * and this function allows them to set that up cleanly - pci_enable_wake()
1981 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1982 * ordering constraints.
1984 * This function only returns error code if the device is not capable of
1985 * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1986 * enable wake-up power for it.
1988 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1990 return pci_pme_capable(dev, PCI_D3cold) ?
1991 pci_enable_wake(dev, PCI_D3cold, enable) :
1992 pci_enable_wake(dev, PCI_D3hot, enable);
1994 EXPORT_SYMBOL(pci_wake_from_d3);
1997 * pci_target_state - find an appropriate low power state for a given PCI dev
1999 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2001 * Use underlying platform code to find a supported low power state for @dev.
2002 * If the platform can't manage @dev, return the deepest state from which it
2003 * can generate wake events, based on any available PME info.
2005 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2007 pci_power_t target_state = PCI_D3hot;
2009 if (platform_pci_power_manageable(dev)) {
2011 * Call the platform to choose the target state of the device
2012 * and enable wake-up from this state if supported.
2014 pci_power_t state = platform_pci_choose_state(dev);
2017 case PCI_POWER_ERROR:
2022 if (pci_no_d1d2(dev))
2025 target_state = state;
2028 return target_state;
2032 target_state = PCI_D0;
2035 * If the device is in D3cold even though it's not power-manageable by
2036 * the platform, it may have been powered down by non-standard means.
2037 * Best to let it slumber.
2039 if (dev->current_state == PCI_D3cold)
2040 target_state = PCI_D3cold;
2044 * Find the deepest state from which the device can generate
2045 * wake-up events, make it the target state and enable device
2048 if (dev->pme_support) {
2050 && !(dev->pme_support & (1 << target_state)))
2055 return target_state;
2059 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
2060 * @dev: Device to handle.
2062 * Choose the power state appropriate for the device depending on whether
2063 * it can wake up the system and/or is power manageable by the platform
2064 * (PCI_D3hot is the default) and put the device into that state.
2066 int pci_prepare_to_sleep(struct pci_dev *dev)
2068 bool wakeup = device_may_wakeup(&dev->dev);
2069 pci_power_t target_state = pci_target_state(dev, wakeup);
2072 if (target_state == PCI_POWER_ERROR)
2075 pci_enable_wake(dev, target_state, wakeup);
2077 error = pci_set_power_state(dev, target_state);
2080 pci_enable_wake(dev, target_state, false);
2084 EXPORT_SYMBOL(pci_prepare_to_sleep);
2087 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
2088 * @dev: Device to handle.
2090 * Disable device's system wake-up capability and put it into D0.
2092 int pci_back_from_sleep(struct pci_dev *dev)
2094 pci_enable_wake(dev, PCI_D0, false);
2095 return pci_set_power_state(dev, PCI_D0);
2097 EXPORT_SYMBOL(pci_back_from_sleep);
2100 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2101 * @dev: PCI device being suspended.
2103 * Prepare @dev to generate wake-up events at run time and put it into a low
2106 int pci_finish_runtime_suspend(struct pci_dev *dev)
2108 pci_power_t target_state;
2111 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2112 if (target_state == PCI_POWER_ERROR)
2115 dev->runtime_d3cold = target_state == PCI_D3cold;
2117 pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2119 error = pci_set_power_state(dev, target_state);
2122 pci_enable_wake(dev, target_state, false);
2123 dev->runtime_d3cold = false;
2130 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2131 * @dev: Device to check.
2133 * Return true if the device itself is capable of generating wake-up events
2134 * (through the platform or using the native PCIe PME) or if the device supports
2135 * PME and one of its upstream bridges can generate wake-up events.
2137 bool pci_dev_run_wake(struct pci_dev *dev)
2139 struct pci_bus *bus = dev->bus;
2141 if (device_can_wakeup(&dev->dev))
2144 if (!dev->pme_support)
2147 /* PME-capable in principle, but not from the target power state */
2148 if (!pci_pme_capable(dev, pci_target_state(dev, false)))
2151 while (bus->parent) {
2152 struct pci_dev *bridge = bus->self;
2154 if (device_can_wakeup(&bridge->dev))
2160 /* We have reached the root bus. */
2162 return device_can_wakeup(bus->bridge);
2166 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2169 * pci_dev_keep_suspended - Check if the device can stay in the suspended state.
2170 * @pci_dev: Device to check.
2172 * Return 'true' if the device is runtime-suspended, it doesn't have to be
2173 * reconfigured due to wakeup settings difference between system and runtime
2174 * suspend and the current power state of it is suitable for the upcoming
2175 * (system) transition.
2177 * If the device is not configured for system wakeup, disable PME for it before
2178 * returning 'true' to prevent it from waking up the system unnecessarily.
2180 bool pci_dev_keep_suspended(struct pci_dev *pci_dev)
2182 struct device *dev = &pci_dev->dev;
2183 bool wakeup = device_may_wakeup(dev);
2185 if (!pm_runtime_suspended(dev)
2186 || pci_target_state(pci_dev, wakeup) != pci_dev->current_state
2187 || platform_pci_need_resume(pci_dev))
2191 * At this point the device is good to go unless it's been configured
2192 * to generate PME at the runtime suspend time, but it is not supposed
2193 * to wake up the system. In that case, simply disable PME for it
2194 * (it will have to be re-enabled on exit from system resume).
2196 * If the device's power state is D3cold and the platform check above
2197 * hasn't triggered, the device's configuration is suitable and we don't
2198 * need to manipulate it at all.
2200 spin_lock_irq(&dev->power.lock);
2202 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold &&
2204 __pci_pme_active(pci_dev, false);
2206 spin_unlock_irq(&dev->power.lock);
2211 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2212 * @pci_dev: Device to handle.
2214 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2215 * it might have been disabled during the prepare phase of system suspend if
2216 * the device was not configured for system wakeup.
2218 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2220 struct device *dev = &pci_dev->dev;
2222 if (!pci_dev_run_wake(pci_dev))
2225 spin_lock_irq(&dev->power.lock);
2227 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2228 __pci_pme_active(pci_dev, true);
2230 spin_unlock_irq(&dev->power.lock);
2233 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2235 struct device *dev = &pdev->dev;
2236 struct device *parent = dev->parent;
2239 pm_runtime_get_sync(parent);
2240 pm_runtime_get_noresume(dev);
2242 * pdev->current_state is set to PCI_D3cold during suspending,
2243 * so wait until suspending completes
2245 pm_runtime_barrier(dev);
2247 * Only need to resume devices in D3cold, because config
2248 * registers are still accessible for devices suspended but
2251 if (pdev->current_state == PCI_D3cold)
2252 pm_runtime_resume(dev);
2255 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2257 struct device *dev = &pdev->dev;
2258 struct device *parent = dev->parent;
2260 pm_runtime_put(dev);
2262 pm_runtime_put_sync(parent);
2266 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2267 * @bridge: Bridge to check
2269 * This function checks if it is possible to move the bridge to D3.
2270 * Currently we only allow D3 for recent enough PCIe ports.
2272 bool pci_bridge_d3_possible(struct pci_dev *bridge)
2274 if (!pci_is_pcie(bridge))
2277 switch (pci_pcie_type(bridge)) {
2278 case PCI_EXP_TYPE_ROOT_PORT:
2279 case PCI_EXP_TYPE_UPSTREAM:
2280 case PCI_EXP_TYPE_DOWNSTREAM:
2281 if (pci_bridge_d3_disable)
2285 * Hotplug interrupts cannot be delivered if the link is down,
2286 * so parents of a hotplug port must stay awake. In addition,
2287 * hotplug ports handled by firmware in System Management Mode
2288 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2289 * For simplicity, disallow in general for now.
2291 if (bridge->is_hotplug_bridge)
2294 if (pci_bridge_d3_force)
2298 * It should be safe to put PCIe ports from 2015 or newer
2301 if (dmi_get_bios_year() >= 2015)
2309 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2311 bool *d3cold_ok = data;
2313 if (/* The device needs to be allowed to go D3cold ... */
2314 dev->no_d3cold || !dev->d3cold_allowed ||
2316 /* ... and if it is wakeup capable to do so from D3cold. */
2317 (device_may_wakeup(&dev->dev) &&
2318 !pci_pme_capable(dev, PCI_D3cold)) ||
2320 /* If it is a bridge it must be allowed to go to D3. */
2321 !pci_power_manageable(dev))
2329 * pci_bridge_d3_update - Update bridge D3 capabilities
2330 * @dev: PCI device which is changed
2332 * Update upstream bridge PM capabilities accordingly depending on if the
2333 * device PM configuration was changed or the device is being removed. The
2334 * change is also propagated upstream.
2336 void pci_bridge_d3_update(struct pci_dev *dev)
2338 bool remove = !device_is_registered(&dev->dev);
2339 struct pci_dev *bridge;
2340 bool d3cold_ok = true;
2342 bridge = pci_upstream_bridge(dev);
2343 if (!bridge || !pci_bridge_d3_possible(bridge))
2347 * If D3 is currently allowed for the bridge, removing one of its
2348 * children won't change that.
2350 if (remove && bridge->bridge_d3)
2354 * If D3 is currently allowed for the bridge and a child is added or
2355 * changed, disallowance of D3 can only be caused by that child, so
2356 * we only need to check that single device, not any of its siblings.
2358 * If D3 is currently not allowed for the bridge, checking the device
2359 * first may allow us to skip checking its siblings.
2362 pci_dev_check_d3cold(dev, &d3cold_ok);
2365 * If D3 is currently not allowed for the bridge, this may be caused
2366 * either by the device being changed/removed or any of its siblings,
2367 * so we need to go through all children to find out if one of them
2368 * continues to block D3.
2370 if (d3cold_ok && !bridge->bridge_d3)
2371 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
2374 if (bridge->bridge_d3 != d3cold_ok) {
2375 bridge->bridge_d3 = d3cold_ok;
2376 /* Propagate change to upstream bridges */
2377 pci_bridge_d3_update(bridge);
2382 * pci_d3cold_enable - Enable D3cold for device
2383 * @dev: PCI device to handle
2385 * This function can be used in drivers to enable D3cold from the device
2386 * they handle. It also updates upstream PCI bridge PM capabilities
2389 void pci_d3cold_enable(struct pci_dev *dev)
2391 if (dev->no_d3cold) {
2392 dev->no_d3cold = false;
2393 pci_bridge_d3_update(dev);
2396 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
2399 * pci_d3cold_disable - Disable D3cold for device
2400 * @dev: PCI device to handle
2402 * This function can be used in drivers to disable D3cold from the device
2403 * they handle. It also updates upstream PCI bridge PM capabilities
2406 void pci_d3cold_disable(struct pci_dev *dev)
2408 if (!dev->no_d3cold) {
2409 dev->no_d3cold = true;
2410 pci_bridge_d3_update(dev);
2413 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
2416 * pci_pm_init - Initialize PM functions of given PCI device
2417 * @dev: PCI device to handle.
2419 void pci_pm_init(struct pci_dev *dev)
2424 pm_runtime_forbid(&dev->dev);
2425 pm_runtime_set_active(&dev->dev);
2426 pm_runtime_enable(&dev->dev);
2427 device_enable_async_suspend(&dev->dev);
2428 dev->wakeup_prepared = false;
2431 dev->pme_support = 0;
2433 /* find PCI PM capability in list */
2434 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2437 /* Check device's ability to generate PME# */
2438 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
2440 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
2441 pci_err(dev, "unsupported PM cap regs version (%u)\n",
2442 pmc & PCI_PM_CAP_VER_MASK);
2447 dev->d3_delay = PCI_PM_D3_WAIT;
2448 dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
2449 dev->bridge_d3 = pci_bridge_d3_possible(dev);
2450 dev->d3cold_allowed = true;
2452 dev->d1_support = false;
2453 dev->d2_support = false;
2454 if (!pci_no_d1d2(dev)) {
2455 if (pmc & PCI_PM_CAP_D1)
2456 dev->d1_support = true;
2457 if (pmc & PCI_PM_CAP_D2)
2458 dev->d2_support = true;
2460 if (dev->d1_support || dev->d2_support)
2461 pci_printk(KERN_DEBUG, dev, "supports%s%s\n",
2462 dev->d1_support ? " D1" : "",
2463 dev->d2_support ? " D2" : "");
2466 pmc &= PCI_PM_CAP_PME_MASK;
2468 pci_printk(KERN_DEBUG, dev, "PME# supported from%s%s%s%s%s\n",
2469 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2470 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2471 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2472 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2473 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
2474 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
2475 dev->pme_poll = true;
2477 * Make device's PM flags reflect the wake-up capability, but
2478 * let the user space enable it to wake up the system as needed.
2480 device_set_wakeup_capable(&dev->dev, true);
2481 /* Disable the PME# generation functionality */
2482 pci_pme_active(dev, false);
2486 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
2488 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
2492 case PCI_EA_P_VF_MEM:
2493 flags |= IORESOURCE_MEM;
2495 case PCI_EA_P_MEM_PREFETCH:
2496 case PCI_EA_P_VF_MEM_PREFETCH:
2497 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
2500 flags |= IORESOURCE_IO;
2509 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
2512 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
2513 return &dev->resource[bei];
2514 #ifdef CONFIG_PCI_IOV
2515 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
2516 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
2517 return &dev->resource[PCI_IOV_RESOURCES +
2518 bei - PCI_EA_BEI_VF_BAR0];
2520 else if (bei == PCI_EA_BEI_ROM)
2521 return &dev->resource[PCI_ROM_RESOURCE];
2526 /* Read an Enhanced Allocation (EA) entry */
2527 static int pci_ea_read(struct pci_dev *dev, int offset)
2529 struct resource *res;
2530 int ent_size, ent_offset = offset;
2531 resource_size_t start, end;
2532 unsigned long flags;
2533 u32 dw0, bei, base, max_offset;
2535 bool support_64 = (sizeof(resource_size_t) >= 8);
2537 pci_read_config_dword(dev, ent_offset, &dw0);
2540 /* Entry size field indicates DWORDs after 1st */
2541 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
2543 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
2546 bei = (dw0 & PCI_EA_BEI) >> 4;
2547 prop = (dw0 & PCI_EA_PP) >> 8;
2550 * If the Property is in the reserved range, try the Secondary
2553 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
2554 prop = (dw0 & PCI_EA_SP) >> 16;
2555 if (prop > PCI_EA_P_BRIDGE_IO)
2558 res = pci_ea_get_resource(dev, bei, prop);
2560 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
2564 flags = pci_ea_flags(dev, prop);
2566 pci_err(dev, "Unsupported EA properties: %#x\n", prop);
2571 pci_read_config_dword(dev, ent_offset, &base);
2572 start = (base & PCI_EA_FIELD_MASK);
2575 /* Read MaxOffset */
2576 pci_read_config_dword(dev, ent_offset, &max_offset);
2579 /* Read Base MSBs (if 64-bit entry) */
2580 if (base & PCI_EA_IS_64) {
2583 pci_read_config_dword(dev, ent_offset, &base_upper);
2586 flags |= IORESOURCE_MEM_64;
2588 /* entry starts above 32-bit boundary, can't use */
2589 if (!support_64 && base_upper)
2593 start |= ((u64)base_upper << 32);
2596 end = start + (max_offset | 0x03);
2598 /* Read MaxOffset MSBs (if 64-bit entry) */
2599 if (max_offset & PCI_EA_IS_64) {
2600 u32 max_offset_upper;
2602 pci_read_config_dword(dev, ent_offset, &max_offset_upper);
2605 flags |= IORESOURCE_MEM_64;
2607 /* entry too big, can't use */
2608 if (!support_64 && max_offset_upper)
2612 end += ((u64)max_offset_upper << 32);
2616 pci_err(dev, "EA Entry crosses address boundary\n");
2620 if (ent_size != ent_offset - offset) {
2621 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
2622 ent_size, ent_offset - offset);
2626 res->name = pci_name(dev);
2631 if (bei <= PCI_EA_BEI_BAR5)
2632 pci_printk(KERN_DEBUG, dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2634 else if (bei == PCI_EA_BEI_ROM)
2635 pci_printk(KERN_DEBUG, dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
2637 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
2638 pci_printk(KERN_DEBUG, dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2639 bei - PCI_EA_BEI_VF_BAR0, res, prop);
2641 pci_printk(KERN_DEBUG, dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
2645 return offset + ent_size;
2648 /* Enhanced Allocation Initialization */
2649 void pci_ea_init(struct pci_dev *dev)
2656 /* find PCI EA capability in list */
2657 ea = pci_find_capability(dev, PCI_CAP_ID_EA);
2661 /* determine the number of entries */
2662 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
2664 num_ent &= PCI_EA_NUM_ENT_MASK;
2666 offset = ea + PCI_EA_FIRST_ENT;
2668 /* Skip DWORD 2 for type 1 functions */
2669 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
2672 /* parse each EA entry */
2673 for (i = 0; i < num_ent; ++i)
2674 offset = pci_ea_read(dev, offset);
2677 static void pci_add_saved_cap(struct pci_dev *pci_dev,
2678 struct pci_cap_saved_state *new_cap)
2680 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
2684 * _pci_add_cap_save_buffer - allocate buffer for saving given
2685 * capability registers
2686 * @dev: the PCI device
2687 * @cap: the capability to allocate the buffer for
2688 * @extended: Standard or Extended capability ID
2689 * @size: requested size of the buffer
2691 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
2692 bool extended, unsigned int size)
2695 struct pci_cap_saved_state *save_state;
2698 pos = pci_find_ext_capability(dev, cap);
2700 pos = pci_find_capability(dev, cap);
2705 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
2709 save_state->cap.cap_nr = cap;
2710 save_state->cap.cap_extended = extended;
2711 save_state->cap.size = size;
2712 pci_add_saved_cap(dev, save_state);
2717 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
2719 return _pci_add_cap_save_buffer(dev, cap, false, size);
2722 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
2724 return _pci_add_cap_save_buffer(dev, cap, true, size);
2728 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2729 * @dev: the PCI device
2731 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
2735 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
2736 PCI_EXP_SAVE_REGS * sizeof(u16));
2738 pci_err(dev, "unable to preallocate PCI Express save buffer\n");
2740 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
2742 pci_err(dev, "unable to preallocate PCI-X save buffer\n");
2744 pci_allocate_vc_save_buffers(dev);
2747 void pci_free_cap_save_buffers(struct pci_dev *dev)
2749 struct pci_cap_saved_state *tmp;
2750 struct hlist_node *n;
2752 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
2757 * pci_configure_ari - enable or disable ARI forwarding
2758 * @dev: the PCI device
2760 * If @dev and its upstream bridge both support ARI, enable ARI in the
2761 * bridge. Otherwise, disable ARI in the bridge.
2763 void pci_configure_ari(struct pci_dev *dev)
2766 struct pci_dev *bridge;
2768 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
2771 bridge = dev->bus->self;
2775 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
2776 if (!(cap & PCI_EXP_DEVCAP2_ARI))
2779 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
2780 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
2781 PCI_EXP_DEVCTL2_ARI);
2782 bridge->ari_enabled = 1;
2784 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
2785 PCI_EXP_DEVCTL2_ARI);
2786 bridge->ari_enabled = 0;
2790 static int pci_acs_enable;
2793 * pci_request_acs - ask for ACS to be enabled if supported
2795 void pci_request_acs(void)
2801 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites
2802 * @dev: the PCI device
2804 static void pci_std_enable_acs(struct pci_dev *dev)
2810 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
2814 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2815 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
2817 /* Source Validation */
2818 ctrl |= (cap & PCI_ACS_SV);
2820 /* P2P Request Redirect */
2821 ctrl |= (cap & PCI_ACS_RR);
2823 /* P2P Completion Redirect */
2824 ctrl |= (cap & PCI_ACS_CR);
2826 /* Upstream Forwarding */
2827 ctrl |= (cap & PCI_ACS_UF);
2829 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
2833 * pci_enable_acs - enable ACS if hardware support it
2834 * @dev: the PCI device
2836 void pci_enable_acs(struct pci_dev *dev)
2838 if (!pci_acs_enable)
2841 if (!pci_dev_specific_enable_acs(dev))
2844 pci_std_enable_acs(dev);
2847 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
2852 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
2857 * Except for egress control, capabilities are either required
2858 * or only required if controllable. Features missing from the
2859 * capability field can therefore be assumed as hard-wired enabled.
2861 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
2862 acs_flags &= (cap | PCI_ACS_EC);
2864 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
2865 return (ctrl & acs_flags) == acs_flags;
2869 * pci_acs_enabled - test ACS against required flags for a given device
2870 * @pdev: device to test
2871 * @acs_flags: required PCI ACS flags
2873 * Return true if the device supports the provided flags. Automatically
2874 * filters out flags that are not implemented on multifunction devices.
2876 * Note that this interface checks the effective ACS capabilities of the
2877 * device rather than the actual capabilities. For instance, most single
2878 * function endpoints are not required to support ACS because they have no
2879 * opportunity for peer-to-peer access. We therefore return 'true'
2880 * regardless of whether the device exposes an ACS capability. This makes
2881 * it much easier for callers of this function to ignore the actual type
2882 * or topology of the device when testing ACS support.
2884 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
2888 ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
2893 * Conventional PCI and PCI-X devices never support ACS, either
2894 * effectively or actually. The shared bus topology implies that
2895 * any device on the bus can receive or snoop DMA.
2897 if (!pci_is_pcie(pdev))
2900 switch (pci_pcie_type(pdev)) {
2902 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
2903 * but since their primary interface is PCI/X, we conservatively
2904 * handle them as we would a non-PCIe device.
2906 case PCI_EXP_TYPE_PCIE_BRIDGE:
2908 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
2909 * applicable... must never implement an ACS Extended Capability...".
2910 * This seems arbitrary, but we take a conservative interpretation
2911 * of this statement.
2913 case PCI_EXP_TYPE_PCI_BRIDGE:
2914 case PCI_EXP_TYPE_RC_EC:
2917 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
2918 * implement ACS in order to indicate their peer-to-peer capabilities,
2919 * regardless of whether they are single- or multi-function devices.
2921 case PCI_EXP_TYPE_DOWNSTREAM:
2922 case PCI_EXP_TYPE_ROOT_PORT:
2923 return pci_acs_flags_enabled(pdev, acs_flags);
2925 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
2926 * implemented by the remaining PCIe types to indicate peer-to-peer
2927 * capabilities, but only when they are part of a multifunction
2928 * device. The footnote for section 6.12 indicates the specific
2929 * PCIe types included here.
2931 case PCI_EXP_TYPE_ENDPOINT:
2932 case PCI_EXP_TYPE_UPSTREAM:
2933 case PCI_EXP_TYPE_LEG_END:
2934 case PCI_EXP_TYPE_RC_END:
2935 if (!pdev->multifunction)
2938 return pci_acs_flags_enabled(pdev, acs_flags);
2942 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
2943 * to single function devices with the exception of downstream ports.
2949 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
2950 * @start: starting downstream device
2951 * @end: ending upstream device or NULL to search to the root bus
2952 * @acs_flags: required flags
2954 * Walk up a device tree from start to end testing PCI ACS support. If
2955 * any step along the way does not support the required flags, return false.
2957 bool pci_acs_path_enabled(struct pci_dev *start,
2958 struct pci_dev *end, u16 acs_flags)
2960 struct pci_dev *pdev, *parent = start;
2965 if (!pci_acs_enabled(pdev, acs_flags))
2968 if (pci_is_root_bus(pdev->bus))
2969 return (end == NULL);
2971 parent = pdev->bus->self;
2972 } while (pdev != end);
2978 * pci_rebar_find_pos - find position of resize ctrl reg for BAR
2982 * Helper to find the position of the ctrl register for a BAR.
2983 * Returns -ENOTSUPP if resizable BARs are not supported at all.
2984 * Returns -ENOENT if no ctrl register for the BAR could be found.
2986 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
2988 unsigned int pos, nbars, i;
2991 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
2995 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
2996 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
2997 PCI_REBAR_CTRL_NBAR_SHIFT;
2999 for (i = 0; i < nbars; i++, pos += 8) {
3002 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3003 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3012 * pci_rebar_get_possible_sizes - get possible sizes for BAR
3014 * @bar: BAR to query
3016 * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3017 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3019 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3024 pos = pci_rebar_find_pos(pdev, bar);
3028 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3029 return (cap & PCI_REBAR_CAP_SIZES) >> 4;
3033 * pci_rebar_get_current_size - get the current size of a BAR
3035 * @bar: BAR to set size to
3037 * Read the size of a BAR from the resizable BAR config.
3038 * Returns size if found or negative error code.
3040 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3045 pos = pci_rebar_find_pos(pdev, bar);
3049 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3050 return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> 8;
3054 * pci_rebar_set_size - set a new size for a BAR
3056 * @bar: BAR to set size to
3057 * @size: new size as defined in the spec (0=1MB, 19=512GB)
3059 * Set the new size of a BAR as defined in the spec.
3060 * Returns zero if resizing was successful, error code otherwise.
3062 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3067 pos = pci_rebar_find_pos(pdev, bar);
3071 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3072 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3074 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3079 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3080 * @dev: the PCI device
3081 * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3082 * PCI_EXP_DEVCAP2_ATOMIC_COMP32
3083 * PCI_EXP_DEVCAP2_ATOMIC_COMP64
3084 * PCI_EXP_DEVCAP2_ATOMIC_COMP128
3086 * Return 0 if all upstream bridges support AtomicOp routing, egress
3087 * blocking is disabled on all upstream ports, and the root port supports
3088 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3089 * AtomicOp completion), or negative otherwise.
3091 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3093 struct pci_bus *bus = dev->bus;
3094 struct pci_dev *bridge;
3097 if (!pci_is_pcie(dev))
3101 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3102 * AtomicOp requesters. For now, we only support endpoints as
3103 * requesters and root ports as completers. No endpoints as
3104 * completers, and no peer-to-peer.
3107 switch (pci_pcie_type(dev)) {
3108 case PCI_EXP_TYPE_ENDPOINT:
3109 case PCI_EXP_TYPE_LEG_END:
3110 case PCI_EXP_TYPE_RC_END:
3116 while (bus->parent) {
3119 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3121 switch (pci_pcie_type(bridge)) {
3122 /* Ensure switch ports support AtomicOp routing */
3123 case PCI_EXP_TYPE_UPSTREAM:
3124 case PCI_EXP_TYPE_DOWNSTREAM:
3125 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3129 /* Ensure root port supports all the sizes we care about */
3130 case PCI_EXP_TYPE_ROOT_PORT:
3131 if ((cap & cap_mask) != cap_mask)
3136 /* Ensure upstream ports don't block AtomicOps on egress */
3137 if (!bridge->has_secondary_link) {
3138 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3140 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3147 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3148 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3151 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3154 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3155 * @dev: the PCI device
3156 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3158 * Perform INTx swizzling for a device behind one level of bridge. This is
3159 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3160 * behind bridges on add-in cards. For devices with ARI enabled, the slot
3161 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3162 * the PCI Express Base Specification, Revision 2.1)
3164 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3168 if (pci_ari_enabled(dev->bus))
3171 slot = PCI_SLOT(dev->devfn);
3173 return (((pin - 1) + slot) % 4) + 1;
3176 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3184 while (!pci_is_root_bus(dev->bus)) {
3185 pin = pci_swizzle_interrupt_pin(dev, pin);
3186 dev = dev->bus->self;
3193 * pci_common_swizzle - swizzle INTx all the way to root bridge
3194 * @dev: the PCI device
3195 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3197 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
3198 * bridges all the way up to a PCI root bus.
3200 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3204 while (!pci_is_root_bus(dev->bus)) {
3205 pin = pci_swizzle_interrupt_pin(dev, pin);
3206 dev = dev->bus->self;
3209 return PCI_SLOT(dev->devfn);
3211 EXPORT_SYMBOL_GPL(pci_common_swizzle);
3214 * pci_release_region - Release a PCI bar
3215 * @pdev: PCI device whose resources were previously reserved by pci_request_region
3216 * @bar: BAR to release
3218 * Releases the PCI I/O and memory resources previously reserved by a
3219 * successful call to pci_request_region. Call this function only
3220 * after all use of the PCI regions has ceased.
3222 void pci_release_region(struct pci_dev *pdev, int bar)
3224 struct pci_devres *dr;
3226 if (pci_resource_len(pdev, bar) == 0)
3228 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3229 release_region(pci_resource_start(pdev, bar),
3230 pci_resource_len(pdev, bar));
3231 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3232 release_mem_region(pci_resource_start(pdev, bar),
3233 pci_resource_len(pdev, bar));
3235 dr = find_pci_dr(pdev);
3237 dr->region_mask &= ~(1 << bar);
3239 EXPORT_SYMBOL(pci_release_region);
3242 * __pci_request_region - Reserved PCI I/O and memory resource
3243 * @pdev: PCI device whose resources are to be reserved
3244 * @bar: BAR to be reserved
3245 * @res_name: Name to be associated with resource.
3246 * @exclusive: whether the region access is exclusive or not
3248 * Mark the PCI region associated with PCI device @pdev BR @bar as
3249 * being reserved by owner @res_name. Do not access any
3250 * address inside the PCI regions unless this call returns
3253 * If @exclusive is set, then the region is marked so that userspace
3254 * is explicitly not allowed to map the resource via /dev/mem or
3255 * sysfs MMIO access.
3257 * Returns 0 on success, or %EBUSY on error. A warning
3258 * message is also printed on failure.
3260 static int __pci_request_region(struct pci_dev *pdev, int bar,
3261 const char *res_name, int exclusive)
3263 struct pci_devres *dr;
3265 if (pci_resource_len(pdev, bar) == 0)
3268 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3269 if (!request_region(pci_resource_start(pdev, bar),
3270 pci_resource_len(pdev, bar), res_name))
3272 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3273 if (!__request_mem_region(pci_resource_start(pdev, bar),
3274 pci_resource_len(pdev, bar), res_name,
3279 dr = find_pci_dr(pdev);
3281 dr->region_mask |= 1 << bar;
3286 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3287 &pdev->resource[bar]);
3292 * pci_request_region - Reserve PCI I/O and memory resource
3293 * @pdev: PCI device whose resources are to be reserved
3294 * @bar: BAR to be reserved
3295 * @res_name: Name to be associated with resource
3297 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3298 * being reserved by owner @res_name. Do not access any
3299 * address inside the PCI regions unless this call returns
3302 * Returns 0 on success, or %EBUSY on error. A warning
3303 * message is also printed on failure.
3305 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3307 return __pci_request_region(pdev, bar, res_name, 0);
3309 EXPORT_SYMBOL(pci_request_region);
3312 * pci_request_region_exclusive - Reserved PCI I/O and memory resource
3313 * @pdev: PCI device whose resources are to be reserved
3314 * @bar: BAR to be reserved
3315 * @res_name: Name to be associated with resource.
3317 * Mark the PCI region associated with PCI device @pdev BR @bar as
3318 * being reserved by owner @res_name. Do not access any
3319 * address inside the PCI regions unless this call returns
3322 * Returns 0 on success, or %EBUSY on error. A warning
3323 * message is also printed on failure.
3325 * The key difference that _exclusive makes it that userspace is
3326 * explicitly not allowed to map the resource via /dev/mem or
3329 int pci_request_region_exclusive(struct pci_dev *pdev, int bar,
3330 const char *res_name)
3332 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
3334 EXPORT_SYMBOL(pci_request_region_exclusive);
3337 * pci_release_selected_regions - Release selected PCI I/O and memory resources
3338 * @pdev: PCI device whose resources were previously reserved
3339 * @bars: Bitmask of BARs to be released
3341 * Release selected PCI I/O and memory resources previously reserved.
3342 * Call this function only after all use of the PCI regions has ceased.
3344 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3348 for (i = 0; i < 6; i++)
3349 if (bars & (1 << i))
3350 pci_release_region(pdev, i);
3352 EXPORT_SYMBOL(pci_release_selected_regions);
3354 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3355 const char *res_name, int excl)
3359 for (i = 0; i < 6; i++)
3360 if (bars & (1 << i))
3361 if (__pci_request_region(pdev, i, res_name, excl))
3367 if (bars & (1 << i))
3368 pci_release_region(pdev, i);
3375 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3376 * @pdev: PCI device whose resources are to be reserved
3377 * @bars: Bitmask of BARs to be requested
3378 * @res_name: Name to be associated with resource
3380 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
3381 const char *res_name)
3383 return __pci_request_selected_regions(pdev, bars, res_name, 0);
3385 EXPORT_SYMBOL(pci_request_selected_regions);
3387 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
3388 const char *res_name)
3390 return __pci_request_selected_regions(pdev, bars, res_name,
3391 IORESOURCE_EXCLUSIVE);
3393 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3396 * pci_release_regions - Release reserved PCI I/O and memory resources
3397 * @pdev: PCI device whose resources were previously reserved by pci_request_regions
3399 * Releases all PCI I/O and memory resources previously reserved by a
3400 * successful call to pci_request_regions. Call this function only
3401 * after all use of the PCI regions has ceased.
3404 void pci_release_regions(struct pci_dev *pdev)
3406 pci_release_selected_regions(pdev, (1 << 6) - 1);
3408 EXPORT_SYMBOL(pci_release_regions);
3411 * pci_request_regions - Reserved PCI I/O and memory resources
3412 * @pdev: PCI device whose resources are to be reserved
3413 * @res_name: Name to be associated with resource.
3415 * Mark all PCI regions associated with PCI device @pdev as
3416 * being reserved by owner @res_name. Do not access any
3417 * address inside the PCI regions unless this call returns
3420 * Returns 0 on success, or %EBUSY on error. A warning
3421 * message is also printed on failure.
3423 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
3425 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
3427 EXPORT_SYMBOL(pci_request_regions);
3430 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources
3431 * @pdev: PCI device whose resources are to be reserved
3432 * @res_name: Name to be associated with resource.
3434 * Mark all PCI regions associated with PCI device @pdev as
3435 * being reserved by owner @res_name. Do not access any
3436 * address inside the PCI regions unless this call returns
3439 * pci_request_regions_exclusive() will mark the region so that
3440 * /dev/mem and the sysfs MMIO access will not be allowed.
3442 * Returns 0 on success, or %EBUSY on error. A warning
3443 * message is also printed on failure.
3445 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
3447 return pci_request_selected_regions_exclusive(pdev,
3448 ((1 << 6) - 1), res_name);
3450 EXPORT_SYMBOL(pci_request_regions_exclusive);
3453 * Record the PCI IO range (expressed as CPU physical address + size).
3454 * Return a negative value if an error has occured, zero otherwise
3456 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
3457 resource_size_t size)
3461 struct logic_pio_hwaddr *range;
3463 if (!size || addr + size < addr)
3466 range = kzalloc(sizeof(*range), GFP_ATOMIC);
3470 range->fwnode = fwnode;
3472 range->hw_start = addr;
3473 range->flags = LOGIC_PIO_CPU_MMIO;
3475 ret = logic_pio_register_range(range);
3483 phys_addr_t pci_pio_to_address(unsigned long pio)
3485 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
3488 if (pio >= MMIO_UPPER_LIMIT)
3491 address = logic_pio_to_hwaddr(pio);
3497 unsigned long __weak pci_address_to_pio(phys_addr_t address)
3500 return logic_pio_trans_cpuaddr(address);
3502 if (address > IO_SPACE_LIMIT)
3503 return (unsigned long)-1;
3505 return (unsigned long) address;
3510 * pci_remap_iospace - Remap the memory mapped I/O space
3511 * @res: Resource describing the I/O space
3512 * @phys_addr: physical address of range to be mapped
3514 * Remap the memory mapped I/O space described by the @res
3515 * and the CPU physical address @phys_addr into virtual address space.
3516 * Only architectures that have memory mapped IO functions defined
3517 * (and the PCI_IOBASE value defined) should call this function.
3519 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
3521 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3522 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3524 if (!(res->flags & IORESOURCE_IO))
3527 if (res->end > IO_SPACE_LIMIT)
3530 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
3531 pgprot_device(PAGE_KERNEL));
3533 /* this architecture does not have memory mapped I/O space,
3534 so this function should never be called */
3535 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
3539 EXPORT_SYMBOL(pci_remap_iospace);
3542 * pci_unmap_iospace - Unmap the memory mapped I/O space
3543 * @res: resource to be unmapped
3545 * Unmap the CPU virtual address @res from virtual address space.
3546 * Only architectures that have memory mapped IO functions defined
3547 * (and the PCI_IOBASE value defined) should call this function.
3549 void pci_unmap_iospace(struct resource *res)
3551 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3552 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3554 unmap_kernel_range(vaddr, resource_size(res));
3557 EXPORT_SYMBOL(pci_unmap_iospace);
3560 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
3561 * @dev: Generic device to remap IO address for
3562 * @offset: Resource address to map
3563 * @size: Size of map
3565 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver
3568 void __iomem *devm_pci_remap_cfgspace(struct device *dev,
3569 resource_size_t offset,
3570 resource_size_t size)
3572 void __iomem **ptr, *addr;
3574 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
3578 addr = pci_remap_cfgspace(offset, size);
3581 devres_add(dev, ptr);
3587 EXPORT_SYMBOL(devm_pci_remap_cfgspace);
3590 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
3591 * @dev: generic device to handle the resource for
3592 * @res: configuration space resource to be handled
3594 * Checks that a resource is a valid memory region, requests the memory
3595 * region and ioremaps with pci_remap_cfgspace() API that ensures the
3596 * proper PCI configuration space memory attributes are guaranteed.
3598 * All operations are managed and will be undone on driver detach.
3600 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
3601 * on failure. Usage example::
3603 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3604 * base = devm_pci_remap_cfg_resource(&pdev->dev, res);
3606 * return PTR_ERR(base);
3608 void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
3609 struct resource *res)
3611 resource_size_t size;
3613 void __iomem *dest_ptr;
3617 if (!res || resource_type(res) != IORESOURCE_MEM) {
3618 dev_err(dev, "invalid resource\n");
3619 return IOMEM_ERR_PTR(-EINVAL);
3622 size = resource_size(res);
3623 name = res->name ?: dev_name(dev);
3625 if (!devm_request_mem_region(dev, res->start, size, name)) {
3626 dev_err(dev, "can't request region for resource %pR\n", res);
3627 return IOMEM_ERR_PTR(-EBUSY);
3630 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
3632 dev_err(dev, "ioremap failed for resource %pR\n", res);
3633 devm_release_mem_region(dev, res->start, size);
3634 dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
3639 EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
3641 static void __pci_set_master(struct pci_dev *dev, bool enable)
3645 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
3647 cmd = old_cmd | PCI_COMMAND_MASTER;
3649 cmd = old_cmd & ~PCI_COMMAND_MASTER;
3650 if (cmd != old_cmd) {
3651 pci_dbg(dev, "%s bus mastering\n",
3652 enable ? "enabling" : "disabling");
3653 pci_write_config_word(dev, PCI_COMMAND, cmd);
3655 dev->is_busmaster = enable;
3659 * pcibios_setup - process "pci=" kernel boot arguments
3660 * @str: string used to pass in "pci=" kernel boot arguments
3662 * Process kernel boot arguments. This is the default implementation.
3663 * Architecture specific implementations can override this as necessary.
3665 char * __weak __init pcibios_setup(char *str)
3671 * pcibios_set_master - enable PCI bus-mastering for device dev
3672 * @dev: the PCI device to enable
3674 * Enables PCI bus-mastering for the device. This is the default
3675 * implementation. Architecture specific implementations can override
3676 * this if necessary.
3678 void __weak pcibios_set_master(struct pci_dev *dev)
3682 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
3683 if (pci_is_pcie(dev))
3686 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
3688 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
3689 else if (lat > pcibios_max_latency)
3690 lat = pcibios_max_latency;
3694 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
3698 * pci_set_master - enables bus-mastering for device dev
3699 * @dev: the PCI device to enable
3701 * Enables bus-mastering on the device and calls pcibios_set_master()
3702 * to do the needed arch specific settings.
3704 void pci_set_master(struct pci_dev *dev)
3706 __pci_set_master(dev, true);
3707 pcibios_set_master(dev);
3709 EXPORT_SYMBOL(pci_set_master);
3712 * pci_clear_master - disables bus-mastering for device dev
3713 * @dev: the PCI device to disable
3715 void pci_clear_master(struct pci_dev *dev)
3717 __pci_set_master(dev, false);
3719 EXPORT_SYMBOL(pci_clear_master);
3722 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
3723 * @dev: the PCI device for which MWI is to be enabled
3725 * Helper function for pci_set_mwi.
3726 * Originally copied from drivers/net/acenic.c.
3729 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3731 int pci_set_cacheline_size(struct pci_dev *dev)
3735 if (!pci_cache_line_size)
3738 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
3739 equal to or multiple of the right value. */
3740 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
3741 if (cacheline_size >= pci_cache_line_size &&
3742 (cacheline_size % pci_cache_line_size) == 0)
3745 /* Write the correct value. */
3746 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
3748 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
3749 if (cacheline_size == pci_cache_line_size)
3752 pci_printk(KERN_DEBUG, dev, "cache line size of %d is not supported\n",
3753 pci_cache_line_size << 2);
3757 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
3760 * pci_set_mwi - enables memory-write-invalidate PCI transaction
3761 * @dev: the PCI device for which MWI is enabled
3763 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
3765 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3767 int pci_set_mwi(struct pci_dev *dev)
3769 #ifdef PCI_DISABLE_MWI
3775 rc = pci_set_cacheline_size(dev);
3779 pci_read_config_word(dev, PCI_COMMAND, &cmd);
3780 if (!(cmd & PCI_COMMAND_INVALIDATE)) {
3781 pci_dbg(dev, "enabling Mem-Wr-Inval\n");
3782 cmd |= PCI_COMMAND_INVALIDATE;
3783 pci_write_config_word(dev, PCI_COMMAND, cmd);
3788 EXPORT_SYMBOL(pci_set_mwi);
3791 * pcim_set_mwi - a device-managed pci_set_mwi()
3792 * @dev: the PCI device for which MWI is enabled
3794 * Managed pci_set_mwi().
3796 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3798 int pcim_set_mwi(struct pci_dev *dev)
3800 struct pci_devres *dr;
3802 dr = find_pci_dr(dev);
3807 return pci_set_mwi(dev);
3809 EXPORT_SYMBOL(pcim_set_mwi);
3812 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
3813 * @dev: the PCI device for which MWI is enabled
3815 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
3816 * Callers are not required to check the return value.
3818 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3820 int pci_try_set_mwi(struct pci_dev *dev)
3822 #ifdef PCI_DISABLE_MWI
3825 return pci_set_mwi(dev);
3828 EXPORT_SYMBOL(pci_try_set_mwi);
3831 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
3832 * @dev: the PCI device to disable
3834 * Disables PCI Memory-Write-Invalidate transaction on the device
3836 void pci_clear_mwi(struct pci_dev *dev)
3838 #ifndef PCI_DISABLE_MWI
3841 pci_read_config_word(dev, PCI_COMMAND, &cmd);
3842 if (cmd & PCI_COMMAND_INVALIDATE) {
3843 cmd &= ~PCI_COMMAND_INVALIDATE;
3844 pci_write_config_word(dev, PCI_COMMAND, cmd);
3848 EXPORT_SYMBOL(pci_clear_mwi);
3851 * pci_intx - enables/disables PCI INTx for device dev
3852 * @pdev: the PCI device to operate on
3853 * @enable: boolean: whether to enable or disable PCI INTx
3855 * Enables/disables PCI INTx for device dev
3857 void pci_intx(struct pci_dev *pdev, int enable)
3859 u16 pci_command, new;
3861 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
3864 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
3866 new = pci_command | PCI_COMMAND_INTX_DISABLE;
3868 if (new != pci_command) {
3869 struct pci_devres *dr;
3871 pci_write_config_word(pdev, PCI_COMMAND, new);
3873 dr = find_pci_dr(pdev);
3874 if (dr && !dr->restore_intx) {
3875 dr->restore_intx = 1;
3876 dr->orig_intx = !enable;
3880 EXPORT_SYMBOL_GPL(pci_intx);
3882 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
3884 struct pci_bus *bus = dev->bus;
3885 bool mask_updated = true;
3886 u32 cmd_status_dword;
3887 u16 origcmd, newcmd;
3888 unsigned long flags;
3892 * We do a single dword read to retrieve both command and status.
3893 * Document assumptions that make this possible.
3895 BUILD_BUG_ON(PCI_COMMAND % 4);
3896 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
3898 raw_spin_lock_irqsave(&pci_lock, flags);
3900 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
3902 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
3905 * Check interrupt status register to see whether our device
3906 * triggered the interrupt (when masking) or the next IRQ is
3907 * already pending (when unmasking).
3909 if (mask != irq_pending) {
3910 mask_updated = false;
3914 origcmd = cmd_status_dword;
3915 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
3917 newcmd |= PCI_COMMAND_INTX_DISABLE;
3918 if (newcmd != origcmd)
3919 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
3922 raw_spin_unlock_irqrestore(&pci_lock, flags);
3924 return mask_updated;
3928 * pci_check_and_mask_intx - mask INTx on pending interrupt
3929 * @dev: the PCI device to operate on
3931 * Check if the device dev has its INTx line asserted, mask it and
3932 * return true in that case. False is returned if no interrupt was
3935 bool pci_check_and_mask_intx(struct pci_dev *dev)
3937 return pci_check_and_set_intx_mask(dev, true);
3939 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
3942 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
3943 * @dev: the PCI device to operate on
3945 * Check if the device dev has its INTx line asserted, unmask it if not
3946 * and return true. False is returned and the mask remains active if
3947 * there was still an interrupt pending.
3949 bool pci_check_and_unmask_intx(struct pci_dev *dev)
3951 return pci_check_and_set_intx_mask(dev, false);
3953 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
3956 * pci_wait_for_pending_transaction - waits for pending transaction
3957 * @dev: the PCI device to operate on
3959 * Return 0 if transaction is pending 1 otherwise.
3961 int pci_wait_for_pending_transaction(struct pci_dev *dev)
3963 if (!pci_is_pcie(dev))
3966 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
3967 PCI_EXP_DEVSTA_TRPND);
3969 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
3971 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
3977 * After reset, the device should not silently discard config
3978 * requests, but it may still indicate that it needs more time by
3979 * responding to them with CRS completions. The Root Port will
3980 * generally synthesize ~0 data to complete the read (except when
3981 * CRS SV is enabled and the read was for the Vendor ID; in that
3982 * case it synthesizes 0x0001 data).
3984 * Wait for the device to return a non-CRS completion. Read the
3985 * Command register instead of Vendor ID so we don't have to
3986 * contend with the CRS SV value.
3988 pci_read_config_dword(dev, PCI_COMMAND, &id);
3990 if (delay > timeout) {
3991 pci_warn(dev, "not ready %dms after %s; giving up\n",
3992 delay - 1, reset_type);
3997 pci_info(dev, "not ready %dms after %s; waiting\n",
3998 delay - 1, reset_type);
4002 pci_read_config_dword(dev, PCI_COMMAND, &id);
4006 pci_info(dev, "ready %dms after %s\n", delay - 1,
4013 * pcie_has_flr - check if a device supports function level resets
4014 * @dev: device to check
4016 * Returns true if the device advertises support for PCIe function level
4019 static bool pcie_has_flr(struct pci_dev *dev)
4023 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4026 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
4027 return cap & PCI_EXP_DEVCAP_FLR;
4031 * pcie_flr - initiate a PCIe function level reset
4032 * @dev: device to reset
4034 * Initiate a function level reset on @dev. The caller should ensure the
4035 * device supports FLR before calling this function, e.g. by using the
4036 * pcie_has_flr() helper.
4038 int pcie_flr(struct pci_dev *dev)
4040 if (!pci_wait_for_pending_transaction(dev))
4041 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4043 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4046 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4047 * 100ms, but may silently discard requests while the FLR is in
4048 * progress. Wait 100ms before trying to access the device.
4052 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4054 EXPORT_SYMBOL_GPL(pcie_flr);
4056 static int pci_af_flr(struct pci_dev *dev, int probe)
4061 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4065 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4068 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4069 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4076 * Wait for Transaction Pending bit to clear. A word-aligned test
4077 * is used, so we use the conrol offset rather than status and shift
4078 * the test bit to match.
4080 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4081 PCI_AF_STATUS_TP << 8))
4082 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4084 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4087 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4088 * updated 27 July 2006; a device must complete an FLR within
4089 * 100ms, but may silently discard requests while the FLR is in
4090 * progress. Wait 100ms before trying to access the device.
4094 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4098 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4099 * @dev: Device to reset.
4100 * @probe: If set, only check if the device can be reset this way.
4102 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4103 * unset, it will be reinitialized internally when going from PCI_D3hot to
4104 * PCI_D0. If that's the case and the device is not in a low-power state
4105 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4107 * NOTE: This causes the caller to sleep for twice the device power transition
4108 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4109 * by default (i.e. unless the @dev's d3_delay field has a different value).
4110 * Moreover, only devices in D0 can be reset by this function.
4112 static int pci_pm_reset(struct pci_dev *dev, int probe)
4116 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4119 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4120 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4126 if (dev->current_state != PCI_D0)
4129 csr &= ~PCI_PM_CTRL_STATE_MASK;
4131 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4132 pci_dev_d3_sleep(dev);
4134 csr &= ~PCI_PM_CTRL_STATE_MASK;
4136 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4137 pci_dev_d3_sleep(dev);
4139 return pci_dev_wait(dev, "PM D3->D0", PCIE_RESET_READY_POLL_MS);
4142 void pci_reset_secondary_bus(struct pci_dev *dev)
4146 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
4147 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
4148 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4151 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
4152 * this to 2ms to ensure that we meet the minimum requirement.
4156 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
4157 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4160 * Trhfa for conventional PCI is 2^25 clock cycles.
4161 * Assuming a minimum 33MHz clock this results in a 1s
4162 * delay before we can consider subordinate devices to
4163 * be re-initialized. PCIe has some ways to shorten this,
4164 * but we don't make use of them yet.
4169 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4171 pci_reset_secondary_bus(dev);
4175 * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge.
4176 * @dev: Bridge device
4178 * Use the bridge control register to assert reset on the secondary bus.
4179 * Devices on the secondary bus are left in power-on state.
4181 int pci_reset_bridge_secondary_bus(struct pci_dev *dev)
4183 pcibios_reset_secondary_bus(dev);
4185 return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS);
4187 EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus);
4189 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
4191 struct pci_dev *pdev;
4193 if (pci_is_root_bus(dev->bus) || dev->subordinate ||
4194 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4197 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4204 pci_reset_bridge_secondary_bus(dev->bus->self);
4209 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
4213 if (!hotplug || !try_module_get(hotplug->ops->owner))
4216 if (hotplug->ops->reset_slot)
4217 rc = hotplug->ops->reset_slot(hotplug, probe);
4219 module_put(hotplug->ops->owner);
4224 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
4226 struct pci_dev *pdev;
4228 if (dev->subordinate || !dev->slot ||
4229 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4232 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4233 if (pdev != dev && pdev->slot == dev->slot)
4236 return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
4239 static void pci_dev_lock(struct pci_dev *dev)
4241 pci_cfg_access_lock(dev);
4242 /* block PM suspend, driver probe, etc. */
4243 device_lock(&dev->dev);
4246 /* Return 1 on successful lock, 0 on contention */
4247 static int pci_dev_trylock(struct pci_dev *dev)
4249 if (pci_cfg_access_trylock(dev)) {
4250 if (device_trylock(&dev->dev))
4252 pci_cfg_access_unlock(dev);
4258 static void pci_dev_unlock(struct pci_dev *dev)
4260 device_unlock(&dev->dev);
4261 pci_cfg_access_unlock(dev);
4264 static void pci_dev_save_and_disable(struct pci_dev *dev)
4266 const struct pci_error_handlers *err_handler =
4267 dev->driver ? dev->driver->err_handler : NULL;
4270 * dev->driver->err_handler->reset_prepare() is protected against
4271 * races with ->remove() by the device lock, which must be held by
4274 if (err_handler && err_handler->reset_prepare)
4275 err_handler->reset_prepare(dev);
4278 * Wake-up device prior to save. PM registers default to D0 after
4279 * reset and a simple register restore doesn't reliably return
4280 * to a non-D0 state anyway.
4282 pci_set_power_state(dev, PCI_D0);
4284 pci_save_state(dev);
4286 * Disable the device by clearing the Command register, except for
4287 * INTx-disable which is set. This not only disables MMIO and I/O port
4288 * BARs, but also prevents the device from being Bus Master, preventing
4289 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
4290 * compliant devices, INTx-disable prevents legacy interrupts.
4292 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
4295 static void pci_dev_restore(struct pci_dev *dev)
4297 const struct pci_error_handlers *err_handler =
4298 dev->driver ? dev->driver->err_handler : NULL;
4300 pci_restore_state(dev);
4303 * dev->driver->err_handler->reset_done() is protected against
4304 * races with ->remove() by the device lock, which must be held by
4307 if (err_handler && err_handler->reset_done)
4308 err_handler->reset_done(dev);
4312 * __pci_reset_function_locked - reset a PCI device function while holding
4313 * the @dev mutex lock.
4314 * @dev: PCI device to reset
4316 * Some devices allow an individual function to be reset without affecting
4317 * other functions in the same device. The PCI device must be responsive
4318 * to PCI config space in order to use this function.
4320 * The device function is presumed to be unused and the caller is holding
4321 * the device mutex lock when this function is called.
4322 * Resetting the device will make the contents of PCI configuration space
4323 * random, so any caller of this must be prepared to reinitialise the
4324 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
4327 * Returns 0 if the device function was successfully reset or negative if the
4328 * device doesn't support resetting a single function.
4330 int __pci_reset_function_locked(struct pci_dev *dev)
4337 * A reset method returns -ENOTTY if it doesn't support this device
4338 * and we should try the next method.
4340 * If it returns 0 (success), we're finished. If it returns any
4341 * other error, we're also finished: this indicates that further
4342 * reset mechanisms might be broken on the device.
4344 rc = pci_dev_specific_reset(dev, 0);
4347 if (pcie_has_flr(dev)) {
4352 rc = pci_af_flr(dev, 0);
4355 rc = pci_pm_reset(dev, 0);
4358 rc = pci_dev_reset_slot_function(dev, 0);
4361 return pci_parent_bus_reset(dev, 0);
4363 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
4366 * pci_probe_reset_function - check whether the device can be safely reset
4367 * @dev: PCI device to reset
4369 * Some devices allow an individual function to be reset without affecting
4370 * other functions in the same device. The PCI device must be responsive
4371 * to PCI config space in order to use this function.
4373 * Returns 0 if the device function can be reset or negative if the
4374 * device doesn't support resetting a single function.
4376 int pci_probe_reset_function(struct pci_dev *dev)
4382 rc = pci_dev_specific_reset(dev, 1);
4385 if (pcie_has_flr(dev))
4387 rc = pci_af_flr(dev, 1);
4390 rc = pci_pm_reset(dev, 1);
4393 rc = pci_dev_reset_slot_function(dev, 1);
4397 return pci_parent_bus_reset(dev, 1);
4401 * pci_reset_function - quiesce and reset a PCI device function
4402 * @dev: PCI device to reset
4404 * Some devices allow an individual function to be reset without affecting
4405 * other functions in the same device. The PCI device must be responsive
4406 * to PCI config space in order to use this function.
4408 * This function does not just reset the PCI portion of a device, but
4409 * clears all the state associated with the device. This function differs
4410 * from __pci_reset_function_locked() in that it saves and restores device state
4411 * over the reset and takes the PCI device lock.
4413 * Returns 0 if the device function was successfully reset or negative if the
4414 * device doesn't support resetting a single function.
4416 int pci_reset_function(struct pci_dev *dev)
4424 pci_dev_save_and_disable(dev);
4426 rc = __pci_reset_function_locked(dev);
4428 pci_dev_restore(dev);
4429 pci_dev_unlock(dev);
4433 EXPORT_SYMBOL_GPL(pci_reset_function);
4436 * pci_reset_function_locked - quiesce and reset a PCI device function
4437 * @dev: PCI device to reset
4439 * Some devices allow an individual function to be reset without affecting
4440 * other functions in the same device. The PCI device must be responsive
4441 * to PCI config space in order to use this function.
4443 * This function does not just reset the PCI portion of a device, but
4444 * clears all the state associated with the device. This function differs
4445 * from __pci_reset_function_locked() in that it saves and restores device state
4446 * over the reset. It also differs from pci_reset_function() in that it
4447 * requires the PCI device lock to be held.
4449 * Returns 0 if the device function was successfully reset or negative if the
4450 * device doesn't support resetting a single function.
4452 int pci_reset_function_locked(struct pci_dev *dev)
4459 pci_dev_save_and_disable(dev);
4461 rc = __pci_reset_function_locked(dev);
4463 pci_dev_restore(dev);
4467 EXPORT_SYMBOL_GPL(pci_reset_function_locked);
4470 * pci_try_reset_function - quiesce and reset a PCI device function
4471 * @dev: PCI device to reset
4473 * Same as above, except return -EAGAIN if unable to lock device.
4475 int pci_try_reset_function(struct pci_dev *dev)
4482 if (!pci_dev_trylock(dev))
4485 pci_dev_save_and_disable(dev);
4486 rc = __pci_reset_function_locked(dev);
4487 pci_dev_restore(dev);
4488 pci_dev_unlock(dev);
4492 EXPORT_SYMBOL_GPL(pci_try_reset_function);
4494 /* Do any devices on or below this bus prevent a bus reset? */
4495 static bool pci_bus_resetable(struct pci_bus *bus)
4497 struct pci_dev *dev;
4500 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
4503 list_for_each_entry(dev, &bus->devices, bus_list) {
4504 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
4505 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
4512 /* Lock devices from the top of the tree down */
4513 static void pci_bus_lock(struct pci_bus *bus)
4515 struct pci_dev *dev;
4517 list_for_each_entry(dev, &bus->devices, bus_list) {
4519 if (dev->subordinate)
4520 pci_bus_lock(dev->subordinate);
4524 /* Unlock devices from the bottom of the tree up */
4525 static void pci_bus_unlock(struct pci_bus *bus)
4527 struct pci_dev *dev;
4529 list_for_each_entry(dev, &bus->devices, bus_list) {
4530 if (dev->subordinate)
4531 pci_bus_unlock(dev->subordinate);
4532 pci_dev_unlock(dev);
4536 /* Return 1 on successful lock, 0 on contention */
4537 static int pci_bus_trylock(struct pci_bus *bus)
4539 struct pci_dev *dev;
4541 list_for_each_entry(dev, &bus->devices, bus_list) {
4542 if (!pci_dev_trylock(dev))
4544 if (dev->subordinate) {
4545 if (!pci_bus_trylock(dev->subordinate)) {
4546 pci_dev_unlock(dev);
4554 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
4555 if (dev->subordinate)
4556 pci_bus_unlock(dev->subordinate);
4557 pci_dev_unlock(dev);
4562 /* Do any devices on or below this slot prevent a bus reset? */
4563 static bool pci_slot_resetable(struct pci_slot *slot)
4565 struct pci_dev *dev;
4567 if (slot->bus->self &&
4568 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
4571 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4572 if (!dev->slot || dev->slot != slot)
4574 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
4575 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
4582 /* Lock devices from the top of the tree down */
4583 static void pci_slot_lock(struct pci_slot *slot)
4585 struct pci_dev *dev;
4587 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4588 if (!dev->slot || dev->slot != slot)
4591 if (dev->subordinate)
4592 pci_bus_lock(dev->subordinate);
4596 /* Unlock devices from the bottom of the tree up */
4597 static void pci_slot_unlock(struct pci_slot *slot)
4599 struct pci_dev *dev;
4601 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4602 if (!dev->slot || dev->slot != slot)
4604 if (dev->subordinate)
4605 pci_bus_unlock(dev->subordinate);
4606 pci_dev_unlock(dev);
4610 /* Return 1 on successful lock, 0 on contention */
4611 static int pci_slot_trylock(struct pci_slot *slot)
4613 struct pci_dev *dev;
4615 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4616 if (!dev->slot || dev->slot != slot)
4618 if (!pci_dev_trylock(dev))
4620 if (dev->subordinate) {
4621 if (!pci_bus_trylock(dev->subordinate)) {
4622 pci_dev_unlock(dev);
4630 list_for_each_entry_continue_reverse(dev,
4631 &slot->bus->devices, bus_list) {
4632 if (!dev->slot || dev->slot != slot)
4634 if (dev->subordinate)
4635 pci_bus_unlock(dev->subordinate);
4636 pci_dev_unlock(dev);
4641 /* Save and disable devices from the top of the tree down */
4642 static void pci_bus_save_and_disable(struct pci_bus *bus)
4644 struct pci_dev *dev;
4646 list_for_each_entry(dev, &bus->devices, bus_list) {
4648 pci_dev_save_and_disable(dev);
4649 pci_dev_unlock(dev);
4650 if (dev->subordinate)
4651 pci_bus_save_and_disable(dev->subordinate);
4656 * Restore devices from top of the tree down - parent bridges need to be
4657 * restored before we can get to subordinate devices.
4659 static void pci_bus_restore(struct pci_bus *bus)
4661 struct pci_dev *dev;
4663 list_for_each_entry(dev, &bus->devices, bus_list) {
4665 pci_dev_restore(dev);
4666 pci_dev_unlock(dev);
4667 if (dev->subordinate)
4668 pci_bus_restore(dev->subordinate);
4672 /* Save and disable devices from the top of the tree down */
4673 static void pci_slot_save_and_disable(struct pci_slot *slot)
4675 struct pci_dev *dev;
4677 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4678 if (!dev->slot || dev->slot != slot)
4680 pci_dev_save_and_disable(dev);
4681 if (dev->subordinate)
4682 pci_bus_save_and_disable(dev->subordinate);
4687 * Restore devices from top of the tree down - parent bridges need to be
4688 * restored before we can get to subordinate devices.
4690 static void pci_slot_restore(struct pci_slot *slot)
4692 struct pci_dev *dev;
4694 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4695 if (!dev->slot || dev->slot != slot)
4698 pci_dev_restore(dev);
4699 pci_dev_unlock(dev);
4700 if (dev->subordinate)
4701 pci_bus_restore(dev->subordinate);
4705 static int pci_slot_reset(struct pci_slot *slot, int probe)
4709 if (!slot || !pci_slot_resetable(slot))
4713 pci_slot_lock(slot);
4717 rc = pci_reset_hotplug_slot(slot->hotplug, probe);
4720 pci_slot_unlock(slot);
4726 * pci_probe_reset_slot - probe whether a PCI slot can be reset
4727 * @slot: PCI slot to probe
4729 * Return 0 if slot can be reset, negative if a slot reset is not supported.
4731 int pci_probe_reset_slot(struct pci_slot *slot)
4733 return pci_slot_reset(slot, 1);
4735 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
4738 * pci_reset_slot - reset a PCI slot
4739 * @slot: PCI slot to reset
4741 * A PCI bus may host multiple slots, each slot may support a reset mechanism
4742 * independent of other slots. For instance, some slots may support slot power
4743 * control. In the case of a 1:1 bus to slot architecture, this function may
4744 * wrap the bus reset to avoid spurious slot related events such as hotplug.
4745 * Generally a slot reset should be attempted before a bus reset. All of the
4746 * function of the slot and any subordinate buses behind the slot are reset
4747 * through this function. PCI config space of all devices in the slot and
4748 * behind the slot is saved before and restored after reset.
4750 * Return 0 on success, non-zero on error.
4752 int pci_reset_slot(struct pci_slot *slot)
4756 rc = pci_slot_reset(slot, 1);
4760 pci_slot_save_and_disable(slot);
4762 rc = pci_slot_reset(slot, 0);
4764 pci_slot_restore(slot);
4768 EXPORT_SYMBOL_GPL(pci_reset_slot);
4771 * pci_try_reset_slot - Try to reset a PCI slot
4772 * @slot: PCI slot to reset
4774 * Same as above except return -EAGAIN if the slot cannot be locked
4776 int pci_try_reset_slot(struct pci_slot *slot)
4780 rc = pci_slot_reset(slot, 1);
4784 pci_slot_save_and_disable(slot);
4786 if (pci_slot_trylock(slot)) {
4788 rc = pci_reset_hotplug_slot(slot->hotplug, 0);
4789 pci_slot_unlock(slot);
4793 pci_slot_restore(slot);
4797 EXPORT_SYMBOL_GPL(pci_try_reset_slot);
4799 static int pci_bus_reset(struct pci_bus *bus, int probe)
4801 if (!bus->self || !pci_bus_resetable(bus))
4811 pci_reset_bridge_secondary_bus(bus->self);
4813 pci_bus_unlock(bus);
4819 * pci_probe_reset_bus - probe whether a PCI bus can be reset
4820 * @bus: PCI bus to probe
4822 * Return 0 if bus can be reset, negative if a bus reset is not supported.
4824 int pci_probe_reset_bus(struct pci_bus *bus)
4826 return pci_bus_reset(bus, 1);
4828 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
4831 * pci_reset_bus - reset a PCI bus
4832 * @bus: top level PCI bus to reset
4834 * Do a bus reset on the given bus and any subordinate buses, saving
4835 * and restoring state of all devices.
4837 * Return 0 on success, non-zero on error.
4839 int pci_reset_bus(struct pci_bus *bus)
4843 rc = pci_bus_reset(bus, 1);
4847 pci_bus_save_and_disable(bus);
4849 rc = pci_bus_reset(bus, 0);
4851 pci_bus_restore(bus);
4855 EXPORT_SYMBOL_GPL(pci_reset_bus);
4858 * pci_try_reset_bus - Try to reset a PCI bus
4859 * @bus: top level PCI bus to reset
4861 * Same as above except return -EAGAIN if the bus cannot be locked
4863 int pci_try_reset_bus(struct pci_bus *bus)
4867 rc = pci_bus_reset(bus, 1);
4871 pci_bus_save_and_disable(bus);
4873 if (pci_bus_trylock(bus)) {
4875 pci_reset_bridge_secondary_bus(bus->self);
4876 pci_bus_unlock(bus);
4880 pci_bus_restore(bus);
4884 EXPORT_SYMBOL_GPL(pci_try_reset_bus);
4887 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
4888 * @dev: PCI device to query
4890 * Returns mmrbc: maximum designed memory read count in bytes
4891 * or appropriate error value.
4893 int pcix_get_max_mmrbc(struct pci_dev *dev)
4898 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4902 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
4905 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
4907 EXPORT_SYMBOL(pcix_get_max_mmrbc);
4910 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
4911 * @dev: PCI device to query
4913 * Returns mmrbc: maximum memory read count in bytes
4914 * or appropriate error value.
4916 int pcix_get_mmrbc(struct pci_dev *dev)
4921 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4925 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4928 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
4930 EXPORT_SYMBOL(pcix_get_mmrbc);
4933 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
4934 * @dev: PCI device to query
4935 * @mmrbc: maximum memory read count in bytes
4936 * valid values are 512, 1024, 2048, 4096
4938 * If possible sets maximum memory read byte count, some bridges have erratas
4939 * that prevent this.
4941 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
4947 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
4950 v = ffs(mmrbc) - 10;
4952 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4956 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
4959 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
4962 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4965 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
4967 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
4970 cmd &= ~PCI_X_CMD_MAX_READ;
4972 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
4977 EXPORT_SYMBOL(pcix_set_mmrbc);
4980 * pcie_get_readrq - get PCI Express read request size
4981 * @dev: PCI device to query
4983 * Returns maximum memory read request in bytes
4984 * or appropriate error value.
4986 int pcie_get_readrq(struct pci_dev *dev)
4990 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
4992 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
4994 EXPORT_SYMBOL(pcie_get_readrq);
4997 * pcie_set_readrq - set PCI Express maximum memory read request
4998 * @dev: PCI device to query
4999 * @rq: maximum memory read count in bytes
5000 * valid values are 128, 256, 512, 1024, 2048, 4096
5002 * If possible sets maximum memory read request in bytes
5004 int pcie_set_readrq(struct pci_dev *dev, int rq)
5008 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
5012 * If using the "performance" PCIe config, we clamp the
5013 * read rq size to the max packet size to prevent the
5014 * host bridge generating requests larger than we can
5017 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
5018 int mps = pcie_get_mps(dev);
5024 v = (ffs(rq) - 8) << 12;
5026 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5027 PCI_EXP_DEVCTL_READRQ, v);
5029 EXPORT_SYMBOL(pcie_set_readrq);
5032 * pcie_get_mps - get PCI Express maximum payload size
5033 * @dev: PCI device to query
5035 * Returns maximum payload size in bytes
5037 int pcie_get_mps(struct pci_dev *dev)
5041 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5043 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
5045 EXPORT_SYMBOL(pcie_get_mps);
5048 * pcie_set_mps - set PCI Express maximum payload size
5049 * @dev: PCI device to query
5050 * @mps: maximum payload size in bytes
5051 * valid values are 128, 256, 512, 1024, 2048, 4096
5053 * If possible sets maximum payload size
5055 int pcie_set_mps(struct pci_dev *dev, int mps)
5059 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
5063 if (v > dev->pcie_mpss)
5067 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5068 PCI_EXP_DEVCTL_PAYLOAD, v);
5070 EXPORT_SYMBOL(pcie_set_mps);
5073 * pcie_get_minimum_link - determine minimum link settings of a PCI device
5074 * @dev: PCI device to query
5075 * @speed: storage for minimum speed
5076 * @width: storage for minimum width
5078 * This function will walk up the PCI device chain and determine the minimum
5079 * link width and speed of the device.
5081 int pcie_get_minimum_link(struct pci_dev *dev, enum pci_bus_speed *speed,
5082 enum pcie_link_width *width)
5086 *speed = PCI_SPEED_UNKNOWN;
5087 *width = PCIE_LNK_WIDTH_UNKNOWN;
5091 enum pci_bus_speed next_speed;
5092 enum pcie_link_width next_width;
5094 ret = pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
5098 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
5099 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
5100 PCI_EXP_LNKSTA_NLW_SHIFT;
5102 if (next_speed < *speed)
5103 *speed = next_speed;
5105 if (next_width < *width)
5106 *width = next_width;
5108 dev = dev->bus->self;
5113 EXPORT_SYMBOL(pcie_get_minimum_link);
5116 * pcie_bandwidth_available - determine minimum link settings of a PCIe
5117 * device and its bandwidth limitation
5118 * @dev: PCI device to query
5119 * @limiting_dev: storage for device causing the bandwidth limitation
5120 * @speed: storage for speed of limiting device
5121 * @width: storage for width of limiting device
5123 * Walk up the PCI device chain and find the point where the minimum
5124 * bandwidth is available. Return the bandwidth available there and (if
5125 * limiting_dev, speed, and width pointers are supplied) information about
5126 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of
5129 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
5130 enum pci_bus_speed *speed,
5131 enum pcie_link_width *width)
5134 enum pci_bus_speed next_speed;
5135 enum pcie_link_width next_width;
5139 *speed = PCI_SPEED_UNKNOWN;
5141 *width = PCIE_LNK_WIDTH_UNKNOWN;
5146 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
5148 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
5149 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
5150 PCI_EXP_LNKSTA_NLW_SHIFT;
5152 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
5154 /* Check if current device limits the total bandwidth */
5155 if (!bw || next_bw <= bw) {
5159 *limiting_dev = dev;
5161 *speed = next_speed;
5163 *width = next_width;
5166 dev = pci_upstream_bridge(dev);
5171 EXPORT_SYMBOL(pcie_bandwidth_available);
5174 * pcie_get_speed_cap - query for the PCI device's link speed capability
5175 * @dev: PCI device to query
5177 * Query the PCI device speed capability. Return the maximum link speed
5178 * supported by the device.
5180 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
5182 u32 lnkcap2, lnkcap;
5185 * PCIe r4.0 sec 7.5.3.18 recommends using the Supported Link
5186 * Speeds Vector in Link Capabilities 2 when supported, falling
5187 * back to Max Link Speed in Link Capabilities otherwise.
5189 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
5190 if (lnkcap2) { /* PCIe r3.0-compliant */
5191 if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_16_0GB)
5192 return PCIE_SPEED_16_0GT;
5193 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_8_0GB)
5194 return PCIE_SPEED_8_0GT;
5195 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_5_0GB)
5196 return PCIE_SPEED_5_0GT;
5197 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_2_5GB)
5198 return PCIE_SPEED_2_5GT;
5199 return PCI_SPEED_UNKNOWN;
5202 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5204 if (lnkcap & PCI_EXP_LNKCAP_SLS_16_0GB)
5205 return PCIE_SPEED_16_0GT;
5206 else if (lnkcap & PCI_EXP_LNKCAP_SLS_8_0GB)
5207 return PCIE_SPEED_8_0GT;
5208 else if (lnkcap & PCI_EXP_LNKCAP_SLS_5_0GB)
5209 return PCIE_SPEED_5_0GT;
5210 else if (lnkcap & PCI_EXP_LNKCAP_SLS_2_5GB)
5211 return PCIE_SPEED_2_5GT;
5214 return PCI_SPEED_UNKNOWN;
5218 * pcie_get_width_cap - query for the PCI device's link width capability
5219 * @dev: PCI device to query
5221 * Query the PCI device width capability. Return the maximum link width
5222 * supported by the device.
5224 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
5228 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5230 return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4;
5232 return PCIE_LNK_WIDTH_UNKNOWN;
5236 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
5238 * @speed: storage for link speed
5239 * @width: storage for link width
5241 * Calculate a PCI device's link bandwidth by querying for its link speed
5242 * and width, multiplying them, and applying encoding overhead. The result
5243 * is in Mb/s, i.e., megabits/second of raw bandwidth.
5245 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
5246 enum pcie_link_width *width)
5248 *speed = pcie_get_speed_cap(dev);
5249 *width = pcie_get_width_cap(dev);
5251 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
5254 return *width * PCIE_SPEED2MBS_ENC(*speed);
5258 * pcie_print_link_status - Report the PCI device's link speed and width
5259 * @dev: PCI device to query
5261 * Report the available bandwidth at the device. If this is less than the
5262 * device is capable of, report the device's maximum possible bandwidth and
5263 * the upstream link that limits its performance to less than that.
5265 void pcie_print_link_status(struct pci_dev *dev)
5267 enum pcie_link_width width, width_cap;
5268 enum pci_bus_speed speed, speed_cap;
5269 struct pci_dev *limiting_dev = NULL;
5270 u32 bw_avail, bw_cap;
5272 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
5273 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
5275 if (bw_avail >= bw_cap)
5276 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
5277 bw_cap / 1000, bw_cap % 1000,
5278 PCIE_SPEED2STR(speed_cap), width_cap);
5280 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
5281 bw_avail / 1000, bw_avail % 1000,
5282 PCIE_SPEED2STR(speed), width,
5283 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
5284 bw_cap / 1000, bw_cap % 1000,
5285 PCIE_SPEED2STR(speed_cap), width_cap);
5287 EXPORT_SYMBOL(pcie_print_link_status);
5290 * pci_select_bars - Make BAR mask from the type of resource
5291 * @dev: the PCI device for which BAR mask is made
5292 * @flags: resource type mask to be selected
5294 * This helper routine makes bar mask from the type of resource.
5296 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
5299 for (i = 0; i < PCI_NUM_RESOURCES; i++)
5300 if (pci_resource_flags(dev, i) & flags)
5304 EXPORT_SYMBOL(pci_select_bars);
5306 /* Some architectures require additional programming to enable VGA */
5307 static arch_set_vga_state_t arch_set_vga_state;
5309 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
5311 arch_set_vga_state = func; /* NULL disables */
5314 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
5315 unsigned int command_bits, u32 flags)
5317 if (arch_set_vga_state)
5318 return arch_set_vga_state(dev, decode, command_bits,
5324 * pci_set_vga_state - set VGA decode state on device and parents if requested
5325 * @dev: the PCI device
5326 * @decode: true = enable decoding, false = disable decoding
5327 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
5328 * @flags: traverse ancestors and change bridges
5329 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
5331 int pci_set_vga_state(struct pci_dev *dev, bool decode,
5332 unsigned int command_bits, u32 flags)
5334 struct pci_bus *bus;
5335 struct pci_dev *bridge;
5339 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
5341 /* ARCH specific VGA enables */
5342 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
5346 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
5347 pci_read_config_word(dev, PCI_COMMAND, &cmd);
5349 cmd |= command_bits;
5351 cmd &= ~command_bits;
5352 pci_write_config_word(dev, PCI_COMMAND, cmd);
5355 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
5362 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
5365 cmd |= PCI_BRIDGE_CTL_VGA;
5367 cmd &= ~PCI_BRIDGE_CTL_VGA;
5368 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
5377 * pci_add_dma_alias - Add a DMA devfn alias for a device
5378 * @dev: the PCI device for which alias is added
5379 * @devfn: alias slot and function
5381 * This helper encodes 8-bit devfn as bit number in dma_alias_mask.
5382 * It should be called early, preferably as PCI fixup header quirk.
5384 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn)
5386 if (!dev->dma_alias_mask)
5387 dev->dma_alias_mask = kcalloc(BITS_TO_LONGS(U8_MAX),
5388 sizeof(long), GFP_KERNEL);
5389 if (!dev->dma_alias_mask) {
5390 pci_warn(dev, "Unable to allocate DMA alias mask\n");
5394 set_bit(devfn, dev->dma_alias_mask);
5395 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
5396 PCI_SLOT(devfn), PCI_FUNC(devfn));
5399 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
5401 return (dev1->dma_alias_mask &&
5402 test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
5403 (dev2->dma_alias_mask &&
5404 test_bit(dev1->devfn, dev2->dma_alias_mask));
5407 bool pci_device_is_present(struct pci_dev *pdev)
5411 if (pci_dev_is_disconnected(pdev))
5413 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
5415 EXPORT_SYMBOL_GPL(pci_device_is_present);
5417 void pci_ignore_hotplug(struct pci_dev *dev)
5419 struct pci_dev *bridge = dev->bus->self;
5421 dev->ignore_hotplug = 1;
5422 /* Propagate the "ignore hotplug" setting to the parent bridge. */
5424 bridge->ignore_hotplug = 1;
5426 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
5428 resource_size_t __weak pcibios_default_alignment(void)
5433 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
5434 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
5435 static DEFINE_SPINLOCK(resource_alignment_lock);
5438 * pci_specified_resource_alignment - get resource alignment specified by user.
5439 * @dev: the PCI device to get
5440 * @resize: whether or not to change resources' size when reassigning alignment
5442 * RETURNS: Resource alignment if it is specified.
5443 * Zero if it is not specified.
5445 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
5448 int seg, bus, slot, func, align_order, count;
5449 unsigned short vendor, device, subsystem_vendor, subsystem_device;
5450 resource_size_t align = pcibios_default_alignment();
5453 spin_lock(&resource_alignment_lock);
5454 p = resource_alignment_param;
5457 if (pci_has_flag(PCI_PROBE_ONLY)) {
5459 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
5465 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
5471 if (strncmp(p, "pci:", 4) == 0) {
5472 /* PCI vendor/device (subvendor/subdevice) ids are specified */
5474 if (sscanf(p, "%hx:%hx:%hx:%hx%n",
5475 &vendor, &device, &subsystem_vendor, &subsystem_device, &count) != 4) {
5476 if (sscanf(p, "%hx:%hx%n", &vendor, &device, &count) != 2) {
5477 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: pci:%s\n",
5481 subsystem_vendor = subsystem_device = 0;
5484 if ((!vendor || (vendor == dev->vendor)) &&
5485 (!device || (device == dev->device)) &&
5486 (!subsystem_vendor || (subsystem_vendor == dev->subsystem_vendor)) &&
5487 (!subsystem_device || (subsystem_device == dev->subsystem_device))) {
5489 if (align_order == -1)
5492 align = 1 << align_order;
5498 if (sscanf(p, "%x:%x:%x.%x%n",
5499 &seg, &bus, &slot, &func, &count) != 4) {
5501 if (sscanf(p, "%x:%x.%x%n",
5502 &bus, &slot, &func, &count) != 3) {
5503 /* Invalid format */
5504 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
5510 if (seg == pci_domain_nr(dev->bus) &&
5511 bus == dev->bus->number &&
5512 slot == PCI_SLOT(dev->devfn) &&
5513 func == PCI_FUNC(dev->devfn)) {
5515 if (align_order == -1)
5518 align = 1 << align_order;
5523 if (*p != ';' && *p != ',') {
5524 /* End of param or invalid format */
5530 spin_unlock(&resource_alignment_lock);
5534 static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
5535 resource_size_t align, bool resize)
5537 struct resource *r = &dev->resource[bar];
5538 resource_size_t size;
5540 if (!(r->flags & IORESOURCE_MEM))
5543 if (r->flags & IORESOURCE_PCI_FIXED) {
5544 pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
5545 bar, r, (unsigned long long)align);
5549 size = resource_size(r);
5554 * Increase the alignment of the resource. There are two ways we
5557 * 1) Increase the size of the resource. BARs are aligned on their
5558 * size, so when we reallocate space for this resource, we'll
5559 * allocate it with the larger alignment. This also prevents
5560 * assignment of any other BARs inside the alignment region, so
5561 * if we're requesting page alignment, this means no other BARs
5562 * will share the page.
5564 * The disadvantage is that this makes the resource larger than
5565 * the hardware BAR, which may break drivers that compute things
5566 * based on the resource size, e.g., to find registers at a
5567 * fixed offset before the end of the BAR.
5569 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
5570 * set r->start to the desired alignment. By itself this
5571 * doesn't prevent other BARs being put inside the alignment
5572 * region, but if we realign *every* resource of every device in
5573 * the system, none of them will share an alignment region.
5575 * When the user has requested alignment for only some devices via
5576 * the "pci=resource_alignment" argument, "resize" is true and we
5577 * use the first method. Otherwise we assume we're aligning all
5578 * devices and we use the second.
5581 pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
5582 bar, r, (unsigned long long)align);
5588 r->flags &= ~IORESOURCE_SIZEALIGN;
5589 r->flags |= IORESOURCE_STARTALIGN;
5591 r->end = r->start + size - 1;
5593 r->flags |= IORESOURCE_UNSET;
5597 * This function disables memory decoding and releases memory resources
5598 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
5599 * It also rounds up size to specified alignment.
5600 * Later on, the kernel will assign page-aligned memory resource back
5603 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
5607 resource_size_t align;
5609 bool resize = false;
5612 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
5613 * 3.4.1.11. Their resources are allocated from the space
5614 * described by the VF BARx register in the PF's SR-IOV capability.
5615 * We can't influence their alignment here.
5620 /* check if specified PCI is target device to reassign */
5621 align = pci_specified_resource_alignment(dev, &resize);
5625 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
5626 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
5627 pci_warn(dev, "Can't reassign resources to host bridge\n");
5631 pci_read_config_word(dev, PCI_COMMAND, &command);
5632 command &= ~PCI_COMMAND_MEMORY;
5633 pci_write_config_word(dev, PCI_COMMAND, command);
5635 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
5636 pci_request_resource_alignment(dev, i, align, resize);
5639 * Need to disable bridge's resource window,
5640 * to enable the kernel to reassign new resource
5643 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE &&
5644 (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
5645 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
5646 r = &dev->resource[i];
5647 if (!(r->flags & IORESOURCE_MEM))
5649 r->flags |= IORESOURCE_UNSET;
5650 r->end = resource_size(r) - 1;
5653 pci_disable_bridge_window(dev);
5657 static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
5659 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
5660 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
5661 spin_lock(&resource_alignment_lock);
5662 strncpy(resource_alignment_param, buf, count);
5663 resource_alignment_param[count] = '\0';
5664 spin_unlock(&resource_alignment_lock);
5668 static ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
5671 spin_lock(&resource_alignment_lock);
5672 count = snprintf(buf, size, "%s", resource_alignment_param);
5673 spin_unlock(&resource_alignment_lock);
5677 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
5679 return pci_get_resource_alignment_param(buf, PAGE_SIZE);
5682 static ssize_t pci_resource_alignment_store(struct bus_type *bus,
5683 const char *buf, size_t count)
5685 return pci_set_resource_alignment_param(buf, count);
5688 static BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
5689 pci_resource_alignment_store);
5691 static int __init pci_resource_alignment_sysfs_init(void)
5693 return bus_create_file(&pci_bus_type,
5694 &bus_attr_resource_alignment);
5696 late_initcall(pci_resource_alignment_sysfs_init);
5698 static void pci_no_domains(void)
5700 #ifdef CONFIG_PCI_DOMAINS
5701 pci_domains_supported = 0;
5705 #ifdef CONFIG_PCI_DOMAINS
5706 static atomic_t __domain_nr = ATOMIC_INIT(-1);
5708 int pci_get_new_domain_nr(void)
5710 return atomic_inc_return(&__domain_nr);
5713 #ifdef CONFIG_PCI_DOMAINS_GENERIC
5714 static int of_pci_bus_find_domain_nr(struct device *parent)
5716 static int use_dt_domains = -1;
5720 domain = of_get_pci_domain_nr(parent->of_node);
5722 * Check DT domain and use_dt_domains values.
5724 * If DT domain property is valid (domain >= 0) and
5725 * use_dt_domains != 0, the DT assignment is valid since this means
5726 * we have not previously allocated a domain number by using
5727 * pci_get_new_domain_nr(); we should also update use_dt_domains to
5728 * 1, to indicate that we have just assigned a domain number from
5731 * If DT domain property value is not valid (ie domain < 0), and we
5732 * have not previously assigned a domain number from DT
5733 * (use_dt_domains != 1) we should assign a domain number by
5736 * pci_get_new_domain_nr()
5738 * API and update the use_dt_domains value to keep track of method we
5739 * are using to assign domain numbers (use_dt_domains = 0).
5741 * All other combinations imply we have a platform that is trying
5742 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
5743 * which is a recipe for domain mishandling and it is prevented by
5744 * invalidating the domain value (domain = -1) and printing a
5745 * corresponding error.
5747 if (domain >= 0 && use_dt_domains) {
5749 } else if (domain < 0 && use_dt_domains != 1) {
5751 domain = pci_get_new_domain_nr();
5754 pr_err("Node %pOF has ", parent->of_node);
5755 pr_err("Inconsistent \"linux,pci-domain\" property in DT\n");
5762 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
5764 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
5765 acpi_pci_bus_find_domain_nr(bus);
5771 * pci_ext_cfg_avail - can we access extended PCI config space?
5773 * Returns 1 if we can access PCI extended config space (offsets
5774 * greater than 0xff). This is the default implementation. Architecture
5775 * implementations can override this.
5777 int __weak pci_ext_cfg_avail(void)
5782 void __weak pci_fixup_cardbus(struct pci_bus *bus)
5785 EXPORT_SYMBOL(pci_fixup_cardbus);
5787 static int __init pci_setup(char *str)
5790 char *k = strchr(str, ',');
5793 if (*str && (str = pcibios_setup(str)) && *str) {
5794 if (!strcmp(str, "nomsi")) {
5796 } else if (!strcmp(str, "noaer")) {
5798 } else if (!strncmp(str, "realloc=", 8)) {
5799 pci_realloc_get_opt(str + 8);
5800 } else if (!strncmp(str, "realloc", 7)) {
5801 pci_realloc_get_opt("on");
5802 } else if (!strcmp(str, "nodomains")) {
5804 } else if (!strncmp(str, "noari", 5)) {
5805 pcie_ari_disabled = true;
5806 } else if (!strncmp(str, "cbiosize=", 9)) {
5807 pci_cardbus_io_size = memparse(str + 9, &str);
5808 } else if (!strncmp(str, "cbmemsize=", 10)) {
5809 pci_cardbus_mem_size = memparse(str + 10, &str);
5810 } else if (!strncmp(str, "resource_alignment=", 19)) {
5811 pci_set_resource_alignment_param(str + 19,
5813 } else if (!strncmp(str, "ecrc=", 5)) {
5814 pcie_ecrc_get_policy(str + 5);
5815 } else if (!strncmp(str, "hpiosize=", 9)) {
5816 pci_hotplug_io_size = memparse(str + 9, &str);
5817 } else if (!strncmp(str, "hpmemsize=", 10)) {
5818 pci_hotplug_mem_size = memparse(str + 10, &str);
5819 } else if (!strncmp(str, "hpbussize=", 10)) {
5820 pci_hotplug_bus_size =
5821 simple_strtoul(str + 10, &str, 0);
5822 if (pci_hotplug_bus_size > 0xff)
5823 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
5824 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
5825 pcie_bus_config = PCIE_BUS_TUNE_OFF;
5826 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
5827 pcie_bus_config = PCIE_BUS_SAFE;
5828 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
5829 pcie_bus_config = PCIE_BUS_PERFORMANCE;
5830 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
5831 pcie_bus_config = PCIE_BUS_PEER2PEER;
5832 } else if (!strncmp(str, "pcie_scan_all", 13)) {
5833 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
5835 printk(KERN_ERR "PCI: Unknown option `%s'\n",
5843 early_param("pci", pci_setup);