3 rbd.c -- Export ceph rados objects as a Linux block device
6 based on drivers/block/osdblk.c:
8 Copyright 2009 Red Hat, Inc.
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program; see the file COPYING. If not, write to
21 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 For usage instructions, please refer to:
27 Documentation/ABI/testing/sysfs-bus-rbd
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/cls_lock_client.h>
35 #include <linux/ceph/striper.h>
36 #include <linux/ceph/decode.h>
37 #include <linux/parser.h>
38 #include <linux/bsearch.h>
40 #include <linux/kernel.h>
41 #include <linux/device.h>
42 #include <linux/module.h>
43 #include <linux/blk-mq.h>
45 #include <linux/blkdev.h>
46 #include <linux/slab.h>
47 #include <linux/idr.h>
48 #include <linux/workqueue.h>
50 #include "rbd_types.h"
52 #define RBD_DEBUG /* Activate rbd_assert() calls */
55 * Increment the given counter and return its updated value.
56 * If the counter is already 0 it will not be incremented.
57 * If the counter is already at its maximum value returns
58 * -EINVAL without updating it.
60 static int atomic_inc_return_safe(atomic_t *v)
64 counter = (unsigned int)__atomic_add_unless(v, 1, 0);
65 if (counter <= (unsigned int)INT_MAX)
73 /* Decrement the counter. Return the resulting value, or -EINVAL */
74 static int atomic_dec_return_safe(atomic_t *v)
78 counter = atomic_dec_return(v);
87 #define RBD_DRV_NAME "rbd"
89 #define RBD_MINORS_PER_MAJOR 256
90 #define RBD_SINGLE_MAJOR_PART_SHIFT 4
92 #define RBD_MAX_PARENT_CHAIN_LEN 16
94 #define RBD_SNAP_DEV_NAME_PREFIX "snap_"
95 #define RBD_MAX_SNAP_NAME_LEN \
96 (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
98 #define RBD_MAX_SNAP_COUNT 510 /* allows max snapc to fit in 4KB */
100 #define RBD_SNAP_HEAD_NAME "-"
102 #define BAD_SNAP_INDEX U32_MAX /* invalid index into snap array */
104 /* This allows a single page to hold an image name sent by OSD */
105 #define RBD_IMAGE_NAME_LEN_MAX (PAGE_SIZE - sizeof (__le32) - 1)
106 #define RBD_IMAGE_ID_LEN_MAX 64
108 #define RBD_OBJ_PREFIX_LEN_MAX 64
110 #define RBD_NOTIFY_TIMEOUT 5 /* seconds */
111 #define RBD_RETRY_DELAY msecs_to_jiffies(1000)
115 #define RBD_FEATURE_LAYERING (1ULL<<0)
116 #define RBD_FEATURE_STRIPINGV2 (1ULL<<1)
117 #define RBD_FEATURE_EXCLUSIVE_LOCK (1ULL<<2)
118 #define RBD_FEATURE_DATA_POOL (1ULL<<7)
119 #define RBD_FEATURE_OPERATIONS (1ULL<<8)
121 #define RBD_FEATURES_ALL (RBD_FEATURE_LAYERING | \
122 RBD_FEATURE_STRIPINGV2 | \
123 RBD_FEATURE_EXCLUSIVE_LOCK | \
124 RBD_FEATURE_DATA_POOL | \
125 RBD_FEATURE_OPERATIONS)
127 /* Features supported by this (client software) implementation. */
129 #define RBD_FEATURES_SUPPORTED (RBD_FEATURES_ALL)
132 * An RBD device name will be "rbd#", where the "rbd" comes from
133 * RBD_DRV_NAME above, and # is a unique integer identifier.
135 #define DEV_NAME_LEN 32
138 * block device image metadata (in-memory version)
140 struct rbd_image_header {
141 /* These six fields never change for a given rbd image */
147 u64 features; /* Might be changeable someday? */
149 /* The remaining fields need to be updated occasionally */
151 struct ceph_snap_context *snapc;
152 char *snap_names; /* format 1 only */
153 u64 *snap_sizes; /* format 1 only */
157 * An rbd image specification.
159 * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
160 * identify an image. Each rbd_dev structure includes a pointer to
161 * an rbd_spec structure that encapsulates this identity.
163 * Each of the id's in an rbd_spec has an associated name. For a
164 * user-mapped image, the names are supplied and the id's associated
165 * with them are looked up. For a layered image, a parent image is
166 * defined by the tuple, and the names are looked up.
168 * An rbd_dev structure contains a parent_spec pointer which is
169 * non-null if the image it represents is a child in a layered
170 * image. This pointer will refer to the rbd_spec structure used
171 * by the parent rbd_dev for its own identity (i.e., the structure
172 * is shared between the parent and child).
174 * Since these structures are populated once, during the discovery
175 * phase of image construction, they are effectively immutable so
176 * we make no effort to synchronize access to them.
178 * Note that code herein does not assume the image name is known (it
179 * could be a null pointer).
183 const char *pool_name;
185 const char *image_id;
186 const char *image_name;
189 const char *snap_name;
195 * an instance of the client. multiple devices may share an rbd client.
198 struct ceph_client *client;
200 struct list_head node;
203 struct rbd_img_request;
205 enum obj_request_type {
206 OBJ_REQUEST_NODATA = 1,
207 OBJ_REQUEST_BIO, /* pointer into provided bio (list) */
208 OBJ_REQUEST_BVECS, /* pointer into provided bio_vec array */
209 OBJ_REQUEST_OWN_BVECS, /* private bio_vec array, doesn't own pages */
212 enum obj_operation_type {
219 * Writes go through the following state machine to deal with
223 * RBD_OBJ_WRITE_GUARD ---------------> RBD_OBJ_WRITE_COPYUP
225 * v \------------------------------/
231 * Writes start in RBD_OBJ_WRITE_GUARD or _FLAT, depending on whether
232 * there is a parent or not.
234 enum rbd_obj_write_state {
235 RBD_OBJ_WRITE_FLAT = 1,
237 RBD_OBJ_WRITE_COPYUP,
240 struct rbd_obj_request {
241 struct ceph_object_extent ex;
243 bool tried_parent; /* for reads */
244 enum rbd_obj_write_state write_state; /* for writes */
247 struct rbd_img_request *img_request;
248 struct ceph_file_extent *img_extents;
252 struct ceph_bio_iter bio_pos;
254 struct ceph_bvec_iter bvec_pos;
259 struct bio_vec *copyup_bvecs;
260 u32 copyup_bvec_count;
262 struct ceph_osd_request *osd_req;
264 u64 xferred; /* bytes transferred */
271 IMG_REQ_CHILD, /* initiator: block = 0, child image = 1 */
272 IMG_REQ_LAYERED, /* ENOENT handling: normal = 0, layered = 1 */
275 struct rbd_img_request {
276 struct rbd_device *rbd_dev;
277 enum obj_operation_type op_type;
278 enum obj_request_type data_type;
281 u64 snap_id; /* for reads */
282 struct ceph_snap_context *snapc; /* for writes */
285 struct request *rq; /* block request */
286 struct rbd_obj_request *obj_request; /* obj req initiator */
288 spinlock_t completion_lock;
289 u64 xferred;/* aggregate bytes transferred */
290 int result; /* first nonzero obj_request result */
292 struct list_head object_extents; /* obj_req.ex structs */
293 u32 obj_request_count;
299 #define for_each_obj_request(ireq, oreq) \
300 list_for_each_entry(oreq, &(ireq)->object_extents, ex.oe_item)
301 #define for_each_obj_request_safe(ireq, oreq, n) \
302 list_for_each_entry_safe(oreq, n, &(ireq)->object_extents, ex.oe_item)
304 enum rbd_watch_state {
305 RBD_WATCH_STATE_UNREGISTERED,
306 RBD_WATCH_STATE_REGISTERED,
307 RBD_WATCH_STATE_ERROR,
310 enum rbd_lock_state {
311 RBD_LOCK_STATE_UNLOCKED,
312 RBD_LOCK_STATE_LOCKED,
313 RBD_LOCK_STATE_RELEASING,
316 /* WatchNotify::ClientId */
317 struct rbd_client_id {
331 int dev_id; /* blkdev unique id */
333 int major; /* blkdev assigned major */
335 struct gendisk *disk; /* blkdev's gendisk and rq */
337 u32 image_format; /* Either 1 or 2 */
338 struct rbd_client *rbd_client;
340 char name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
342 spinlock_t lock; /* queue, flags, open_count */
344 struct rbd_image_header header;
345 unsigned long flags; /* possibly lock protected */
346 struct rbd_spec *spec;
347 struct rbd_options *opts;
348 char *config_info; /* add{,_single_major} string */
350 struct ceph_object_id header_oid;
351 struct ceph_object_locator header_oloc;
353 struct ceph_file_layout layout; /* used for all rbd requests */
355 struct mutex watch_mutex;
356 enum rbd_watch_state watch_state;
357 struct ceph_osd_linger_request *watch_handle;
359 struct delayed_work watch_dwork;
361 struct rw_semaphore lock_rwsem;
362 enum rbd_lock_state lock_state;
363 char lock_cookie[32];
364 struct rbd_client_id owner_cid;
365 struct work_struct acquired_lock_work;
366 struct work_struct released_lock_work;
367 struct delayed_work lock_dwork;
368 struct work_struct unlock_work;
369 wait_queue_head_t lock_waitq;
371 struct workqueue_struct *task_wq;
373 struct rbd_spec *parent_spec;
376 struct rbd_device *parent;
378 /* Block layer tags. */
379 struct blk_mq_tag_set tag_set;
381 /* protects updating the header */
382 struct rw_semaphore header_rwsem;
384 struct rbd_mapping mapping;
386 struct list_head node;
390 unsigned long open_count; /* protected by lock */
394 * Flag bits for rbd_dev->flags:
395 * - REMOVING (which is coupled with rbd_dev->open_count) is protected
397 * - BLACKLISTED is protected by rbd_dev->lock_rwsem
400 RBD_DEV_FLAG_EXISTS, /* mapped snapshot has not been deleted */
401 RBD_DEV_FLAG_REMOVING, /* this mapping is being removed */
402 RBD_DEV_FLAG_BLACKLISTED, /* our ceph_client is blacklisted */
405 static DEFINE_MUTEX(client_mutex); /* Serialize client creation */
407 static LIST_HEAD(rbd_dev_list); /* devices */
408 static DEFINE_SPINLOCK(rbd_dev_list_lock);
410 static LIST_HEAD(rbd_client_list); /* clients */
411 static DEFINE_SPINLOCK(rbd_client_list_lock);
413 /* Slab caches for frequently-allocated structures */
415 static struct kmem_cache *rbd_img_request_cache;
416 static struct kmem_cache *rbd_obj_request_cache;
418 static int rbd_major;
419 static DEFINE_IDA(rbd_dev_id_ida);
421 static struct workqueue_struct *rbd_wq;
424 * single-major requires >= 0.75 version of userspace rbd utility.
426 static bool single_major = true;
427 module_param(single_major, bool, S_IRUGO);
428 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: true)");
430 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
432 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
434 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf,
436 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf,
438 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth);
440 static int rbd_dev_id_to_minor(int dev_id)
442 return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
445 static int minor_to_rbd_dev_id(int minor)
447 return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
450 static bool __rbd_is_lock_owner(struct rbd_device *rbd_dev)
452 return rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED ||
453 rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING;
456 static bool rbd_is_lock_owner(struct rbd_device *rbd_dev)
460 down_read(&rbd_dev->lock_rwsem);
461 is_lock_owner = __rbd_is_lock_owner(rbd_dev);
462 up_read(&rbd_dev->lock_rwsem);
463 return is_lock_owner;
466 static ssize_t rbd_supported_features_show(struct bus_type *bus, char *buf)
468 return sprintf(buf, "0x%llx\n", RBD_FEATURES_SUPPORTED);
471 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add);
472 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove);
473 static BUS_ATTR(add_single_major, S_IWUSR, NULL, rbd_add_single_major);
474 static BUS_ATTR(remove_single_major, S_IWUSR, NULL, rbd_remove_single_major);
475 static BUS_ATTR(supported_features, S_IRUGO, rbd_supported_features_show, NULL);
477 static struct attribute *rbd_bus_attrs[] = {
479 &bus_attr_remove.attr,
480 &bus_attr_add_single_major.attr,
481 &bus_attr_remove_single_major.attr,
482 &bus_attr_supported_features.attr,
486 static umode_t rbd_bus_is_visible(struct kobject *kobj,
487 struct attribute *attr, int index)
490 (attr == &bus_attr_add_single_major.attr ||
491 attr == &bus_attr_remove_single_major.attr))
497 static const struct attribute_group rbd_bus_group = {
498 .attrs = rbd_bus_attrs,
499 .is_visible = rbd_bus_is_visible,
501 __ATTRIBUTE_GROUPS(rbd_bus);
503 static struct bus_type rbd_bus_type = {
505 .bus_groups = rbd_bus_groups,
508 static void rbd_root_dev_release(struct device *dev)
512 static struct device rbd_root_dev = {
514 .release = rbd_root_dev_release,
517 static __printf(2, 3)
518 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
520 struct va_format vaf;
528 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
529 else if (rbd_dev->disk)
530 printk(KERN_WARNING "%s: %s: %pV\n",
531 RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
532 else if (rbd_dev->spec && rbd_dev->spec->image_name)
533 printk(KERN_WARNING "%s: image %s: %pV\n",
534 RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
535 else if (rbd_dev->spec && rbd_dev->spec->image_id)
536 printk(KERN_WARNING "%s: id %s: %pV\n",
537 RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
539 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
540 RBD_DRV_NAME, rbd_dev, &vaf);
545 #define rbd_assert(expr) \
546 if (unlikely(!(expr))) { \
547 printk(KERN_ERR "\nAssertion failure in %s() " \
549 "\trbd_assert(%s);\n\n", \
550 __func__, __LINE__, #expr); \
553 #else /* !RBD_DEBUG */
554 # define rbd_assert(expr) ((void) 0)
555 #endif /* !RBD_DEBUG */
557 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
559 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
560 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
561 static int rbd_dev_header_info(struct rbd_device *rbd_dev);
562 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev);
563 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
565 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
566 u8 *order, u64 *snap_size);
567 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
570 static int rbd_open(struct block_device *bdev, fmode_t mode)
572 struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
573 bool removing = false;
575 spin_lock_irq(&rbd_dev->lock);
576 if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
579 rbd_dev->open_count++;
580 spin_unlock_irq(&rbd_dev->lock);
584 (void) get_device(&rbd_dev->dev);
589 static void rbd_release(struct gendisk *disk, fmode_t mode)
591 struct rbd_device *rbd_dev = disk->private_data;
592 unsigned long open_count_before;
594 spin_lock_irq(&rbd_dev->lock);
595 open_count_before = rbd_dev->open_count--;
596 spin_unlock_irq(&rbd_dev->lock);
597 rbd_assert(open_count_before > 0);
599 put_device(&rbd_dev->dev);
602 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg)
606 if (get_user(ro, (int __user *)arg))
609 /* Snapshots can't be marked read-write */
610 if (rbd_dev->spec->snap_id != CEPH_NOSNAP && !ro)
613 /* Let blkdev_roset() handle it */
617 static int rbd_ioctl(struct block_device *bdev, fmode_t mode,
618 unsigned int cmd, unsigned long arg)
620 struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
625 ret = rbd_ioctl_set_ro(rbd_dev, arg);
635 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode,
636 unsigned int cmd, unsigned long arg)
638 return rbd_ioctl(bdev, mode, cmd, arg);
640 #endif /* CONFIG_COMPAT */
642 static const struct block_device_operations rbd_bd_ops = {
643 .owner = THIS_MODULE,
645 .release = rbd_release,
648 .compat_ioctl = rbd_compat_ioctl,
653 * Initialize an rbd client instance. Success or not, this function
654 * consumes ceph_opts. Caller holds client_mutex.
656 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
658 struct rbd_client *rbdc;
661 dout("%s:\n", __func__);
662 rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
666 kref_init(&rbdc->kref);
667 INIT_LIST_HEAD(&rbdc->node);
669 rbdc->client = ceph_create_client(ceph_opts, rbdc);
670 if (IS_ERR(rbdc->client))
672 ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
674 ret = ceph_open_session(rbdc->client);
678 spin_lock(&rbd_client_list_lock);
679 list_add_tail(&rbdc->node, &rbd_client_list);
680 spin_unlock(&rbd_client_list_lock);
682 dout("%s: rbdc %p\n", __func__, rbdc);
686 ceph_destroy_client(rbdc->client);
691 ceph_destroy_options(ceph_opts);
692 dout("%s: error %d\n", __func__, ret);
697 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
699 kref_get(&rbdc->kref);
705 * Find a ceph client with specific addr and configuration. If
706 * found, bump its reference count.
708 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
710 struct rbd_client *client_node;
713 if (ceph_opts->flags & CEPH_OPT_NOSHARE)
716 spin_lock(&rbd_client_list_lock);
717 list_for_each_entry(client_node, &rbd_client_list, node) {
718 if (!ceph_compare_options(ceph_opts, client_node->client)) {
719 __rbd_get_client(client_node);
725 spin_unlock(&rbd_client_list_lock);
727 return found ? client_node : NULL;
731 * (Per device) rbd map options
739 /* string args above */
748 static match_table_t rbd_opts_tokens = {
749 {Opt_queue_depth, "queue_depth=%d"},
750 {Opt_lock_timeout, "lock_timeout=%d"},
752 /* string args above */
753 {Opt_read_only, "read_only"},
754 {Opt_read_only, "ro"}, /* Alternate spelling */
755 {Opt_read_write, "read_write"},
756 {Opt_read_write, "rw"}, /* Alternate spelling */
757 {Opt_lock_on_read, "lock_on_read"},
758 {Opt_exclusive, "exclusive"},
759 {Opt_notrim, "notrim"},
765 unsigned long lock_timeout;
772 #define RBD_QUEUE_DEPTH_DEFAULT BLKDEV_MAX_RQ
773 #define RBD_LOCK_TIMEOUT_DEFAULT 0 /* no timeout */
774 #define RBD_READ_ONLY_DEFAULT false
775 #define RBD_LOCK_ON_READ_DEFAULT false
776 #define RBD_EXCLUSIVE_DEFAULT false
777 #define RBD_TRIM_DEFAULT true
779 static int parse_rbd_opts_token(char *c, void *private)
781 struct rbd_options *rbd_opts = private;
782 substring_t argstr[MAX_OPT_ARGS];
783 int token, intval, ret;
785 token = match_token(c, rbd_opts_tokens, argstr);
786 if (token < Opt_last_int) {
787 ret = match_int(&argstr[0], &intval);
789 pr_err("bad mount option arg (not int) at '%s'\n", c);
792 dout("got int token %d val %d\n", token, intval);
793 } else if (token > Opt_last_int && token < Opt_last_string) {
794 dout("got string token %d val %s\n", token, argstr[0].from);
796 dout("got token %d\n", token);
800 case Opt_queue_depth:
802 pr_err("queue_depth out of range\n");
805 rbd_opts->queue_depth = intval;
807 case Opt_lock_timeout:
808 /* 0 is "wait forever" (i.e. infinite timeout) */
809 if (intval < 0 || intval > INT_MAX / 1000) {
810 pr_err("lock_timeout out of range\n");
813 rbd_opts->lock_timeout = msecs_to_jiffies(intval * 1000);
816 rbd_opts->read_only = true;
819 rbd_opts->read_only = false;
821 case Opt_lock_on_read:
822 rbd_opts->lock_on_read = true;
825 rbd_opts->exclusive = true;
828 rbd_opts->trim = false;
831 /* libceph prints "bad option" msg */
838 static char* obj_op_name(enum obj_operation_type op_type)
853 * Destroy ceph client
855 * Caller must hold rbd_client_list_lock.
857 static void rbd_client_release(struct kref *kref)
859 struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
861 dout("%s: rbdc %p\n", __func__, rbdc);
862 spin_lock(&rbd_client_list_lock);
863 list_del(&rbdc->node);
864 spin_unlock(&rbd_client_list_lock);
866 ceph_destroy_client(rbdc->client);
871 * Drop reference to ceph client node. If it's not referenced anymore, release
874 static void rbd_put_client(struct rbd_client *rbdc)
877 kref_put(&rbdc->kref, rbd_client_release);
880 static int wait_for_latest_osdmap(struct ceph_client *client)
885 ret = ceph_monc_get_version(&client->monc, "osdmap", &newest_epoch);
889 if (client->osdc.osdmap->epoch >= newest_epoch)
892 ceph_osdc_maybe_request_map(&client->osdc);
893 return ceph_monc_wait_osdmap(&client->monc, newest_epoch,
894 client->options->mount_timeout);
898 * Get a ceph client with specific addr and configuration, if one does
899 * not exist create it. Either way, ceph_opts is consumed by this
902 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
904 struct rbd_client *rbdc;
907 mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING);
908 rbdc = rbd_client_find(ceph_opts);
910 ceph_destroy_options(ceph_opts);
913 * Using an existing client. Make sure ->pg_pools is up to
914 * date before we look up the pool id in do_rbd_add().
916 ret = wait_for_latest_osdmap(rbdc->client);
918 rbd_warn(NULL, "failed to get latest osdmap: %d", ret);
919 rbd_put_client(rbdc);
923 rbdc = rbd_client_create(ceph_opts);
925 mutex_unlock(&client_mutex);
930 static bool rbd_image_format_valid(u32 image_format)
932 return image_format == 1 || image_format == 2;
935 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
940 /* The header has to start with the magic rbd header text */
941 if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
944 /* The bio layer requires at least sector-sized I/O */
946 if (ondisk->options.order < SECTOR_SHIFT)
949 /* If we use u64 in a few spots we may be able to loosen this */
951 if (ondisk->options.order > 8 * sizeof (int) - 1)
955 * The size of a snapshot header has to fit in a size_t, and
956 * that limits the number of snapshots.
958 snap_count = le32_to_cpu(ondisk->snap_count);
959 size = SIZE_MAX - sizeof (struct ceph_snap_context);
960 if (snap_count > size / sizeof (__le64))
964 * Not only that, but the size of the entire the snapshot
965 * header must also be representable in a size_t.
967 size -= snap_count * sizeof (__le64);
968 if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
975 * returns the size of an object in the image
977 static u32 rbd_obj_bytes(struct rbd_image_header *header)
979 return 1U << header->obj_order;
982 static void rbd_init_layout(struct rbd_device *rbd_dev)
984 if (rbd_dev->header.stripe_unit == 0 ||
985 rbd_dev->header.stripe_count == 0) {
986 rbd_dev->header.stripe_unit = rbd_obj_bytes(&rbd_dev->header);
987 rbd_dev->header.stripe_count = 1;
990 rbd_dev->layout.stripe_unit = rbd_dev->header.stripe_unit;
991 rbd_dev->layout.stripe_count = rbd_dev->header.stripe_count;
992 rbd_dev->layout.object_size = rbd_obj_bytes(&rbd_dev->header);
993 rbd_dev->layout.pool_id = rbd_dev->header.data_pool_id == CEPH_NOPOOL ?
994 rbd_dev->spec->pool_id : rbd_dev->header.data_pool_id;
995 RCU_INIT_POINTER(rbd_dev->layout.pool_ns, NULL);
999 * Fill an rbd image header with information from the given format 1
1002 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
1003 struct rbd_image_header_ondisk *ondisk)
1005 struct rbd_image_header *header = &rbd_dev->header;
1006 bool first_time = header->object_prefix == NULL;
1007 struct ceph_snap_context *snapc;
1008 char *object_prefix = NULL;
1009 char *snap_names = NULL;
1010 u64 *snap_sizes = NULL;
1015 /* Allocate this now to avoid having to handle failure below */
1018 object_prefix = kstrndup(ondisk->object_prefix,
1019 sizeof(ondisk->object_prefix),
1025 /* Allocate the snapshot context and fill it in */
1027 snap_count = le32_to_cpu(ondisk->snap_count);
1028 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
1031 snapc->seq = le64_to_cpu(ondisk->snap_seq);
1033 struct rbd_image_snap_ondisk *snaps;
1034 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
1036 /* We'll keep a copy of the snapshot names... */
1038 if (snap_names_len > (u64)SIZE_MAX)
1040 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
1044 /* ...as well as the array of their sizes. */
1045 snap_sizes = kmalloc_array(snap_count,
1046 sizeof(*header->snap_sizes),
1052 * Copy the names, and fill in each snapshot's id
1055 * Note that rbd_dev_v1_header_info() guarantees the
1056 * ondisk buffer we're working with has
1057 * snap_names_len bytes beyond the end of the
1058 * snapshot id array, this memcpy() is safe.
1060 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
1061 snaps = ondisk->snaps;
1062 for (i = 0; i < snap_count; i++) {
1063 snapc->snaps[i] = le64_to_cpu(snaps[i].id);
1064 snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
1068 /* We won't fail any more, fill in the header */
1071 header->object_prefix = object_prefix;
1072 header->obj_order = ondisk->options.order;
1073 rbd_init_layout(rbd_dev);
1075 ceph_put_snap_context(header->snapc);
1076 kfree(header->snap_names);
1077 kfree(header->snap_sizes);
1080 /* The remaining fields always get updated (when we refresh) */
1082 header->image_size = le64_to_cpu(ondisk->image_size);
1083 header->snapc = snapc;
1084 header->snap_names = snap_names;
1085 header->snap_sizes = snap_sizes;
1093 ceph_put_snap_context(snapc);
1094 kfree(object_prefix);
1099 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1101 const char *snap_name;
1103 rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1105 /* Skip over names until we find the one we are looking for */
1107 snap_name = rbd_dev->header.snap_names;
1109 snap_name += strlen(snap_name) + 1;
1111 return kstrdup(snap_name, GFP_KERNEL);
1115 * Snapshot id comparison function for use with qsort()/bsearch().
1116 * Note that result is for snapshots in *descending* order.
1118 static int snapid_compare_reverse(const void *s1, const void *s2)
1120 u64 snap_id1 = *(u64 *)s1;
1121 u64 snap_id2 = *(u64 *)s2;
1123 if (snap_id1 < snap_id2)
1125 return snap_id1 == snap_id2 ? 0 : -1;
1129 * Search a snapshot context to see if the given snapshot id is
1132 * Returns the position of the snapshot id in the array if it's found,
1133 * or BAD_SNAP_INDEX otherwise.
1135 * Note: The snapshot array is in kept sorted (by the osd) in
1136 * reverse order, highest snapshot id first.
1138 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1140 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1143 found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1144 sizeof (snap_id), snapid_compare_reverse);
1146 return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1149 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1153 const char *snap_name;
1155 which = rbd_dev_snap_index(rbd_dev, snap_id);
1156 if (which == BAD_SNAP_INDEX)
1157 return ERR_PTR(-ENOENT);
1159 snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1160 return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1163 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1165 if (snap_id == CEPH_NOSNAP)
1166 return RBD_SNAP_HEAD_NAME;
1168 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1169 if (rbd_dev->image_format == 1)
1170 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1172 return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1175 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1178 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1179 if (snap_id == CEPH_NOSNAP) {
1180 *snap_size = rbd_dev->header.image_size;
1181 } else if (rbd_dev->image_format == 1) {
1184 which = rbd_dev_snap_index(rbd_dev, snap_id);
1185 if (which == BAD_SNAP_INDEX)
1188 *snap_size = rbd_dev->header.snap_sizes[which];
1193 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1202 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
1205 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1206 if (snap_id == CEPH_NOSNAP) {
1207 *snap_features = rbd_dev->header.features;
1208 } else if (rbd_dev->image_format == 1) {
1209 *snap_features = 0; /* No features for format 1 */
1214 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1218 *snap_features = features;
1223 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1225 u64 snap_id = rbd_dev->spec->snap_id;
1230 ret = rbd_snap_size(rbd_dev, snap_id, &size);
1233 ret = rbd_snap_features(rbd_dev, snap_id, &features);
1237 rbd_dev->mapping.size = size;
1238 rbd_dev->mapping.features = features;
1243 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1245 rbd_dev->mapping.size = 0;
1246 rbd_dev->mapping.features = 0;
1249 static void zero_bvec(struct bio_vec *bv)
1252 unsigned long flags;
1254 buf = bvec_kmap_irq(bv, &flags);
1255 memset(buf, 0, bv->bv_len);
1256 flush_dcache_page(bv->bv_page);
1257 bvec_kunmap_irq(buf, &flags);
1260 static void zero_bios(struct ceph_bio_iter *bio_pos, u32 off, u32 bytes)
1262 struct ceph_bio_iter it = *bio_pos;
1264 ceph_bio_iter_advance(&it, off);
1265 ceph_bio_iter_advance_step(&it, bytes, ({
1270 static void zero_bvecs(struct ceph_bvec_iter *bvec_pos, u32 off, u32 bytes)
1272 struct ceph_bvec_iter it = *bvec_pos;
1274 ceph_bvec_iter_advance(&it, off);
1275 ceph_bvec_iter_advance_step(&it, bytes, ({
1281 * Zero a range in @obj_req data buffer defined by a bio (list) or
1282 * (private) bio_vec array.
1284 * @off is relative to the start of the data buffer.
1286 static void rbd_obj_zero_range(struct rbd_obj_request *obj_req, u32 off,
1289 switch (obj_req->img_request->data_type) {
1290 case OBJ_REQUEST_BIO:
1291 zero_bios(&obj_req->bio_pos, off, bytes);
1293 case OBJ_REQUEST_BVECS:
1294 case OBJ_REQUEST_OWN_BVECS:
1295 zero_bvecs(&obj_req->bvec_pos, off, bytes);
1302 static void rbd_obj_request_destroy(struct kref *kref);
1303 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1305 rbd_assert(obj_request != NULL);
1306 dout("%s: obj %p (was %d)\n", __func__, obj_request,
1307 kref_read(&obj_request->kref));
1308 kref_put(&obj_request->kref, rbd_obj_request_destroy);
1311 static void rbd_img_request_get(struct rbd_img_request *img_request)
1313 dout("%s: img %p (was %d)\n", __func__, img_request,
1314 kref_read(&img_request->kref));
1315 kref_get(&img_request->kref);
1318 static void rbd_img_request_destroy(struct kref *kref);
1319 static void rbd_img_request_put(struct rbd_img_request *img_request)
1321 rbd_assert(img_request != NULL);
1322 dout("%s: img %p (was %d)\n", __func__, img_request,
1323 kref_read(&img_request->kref));
1324 kref_put(&img_request->kref, rbd_img_request_destroy);
1327 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1328 struct rbd_obj_request *obj_request)
1330 rbd_assert(obj_request->img_request == NULL);
1332 /* Image request now owns object's original reference */
1333 obj_request->img_request = img_request;
1334 img_request->obj_request_count++;
1335 img_request->pending_count++;
1336 dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1339 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1340 struct rbd_obj_request *obj_request)
1342 dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1343 list_del(&obj_request->ex.oe_item);
1344 rbd_assert(img_request->obj_request_count > 0);
1345 img_request->obj_request_count--;
1346 rbd_assert(obj_request->img_request == img_request);
1347 rbd_obj_request_put(obj_request);
1350 static void rbd_obj_request_submit(struct rbd_obj_request *obj_request)
1352 struct ceph_osd_request *osd_req = obj_request->osd_req;
1354 dout("%s %p object_no %016llx %llu~%llu osd_req %p\n", __func__,
1355 obj_request, obj_request->ex.oe_objno, obj_request->ex.oe_off,
1356 obj_request->ex.oe_len, osd_req);
1357 ceph_osdc_start_request(osd_req->r_osdc, osd_req, false);
1361 * The default/initial value for all image request flags is 0. Each
1362 * is conditionally set to 1 at image request initialization time
1363 * and currently never change thereafter.
1365 static void img_request_layered_set(struct rbd_img_request *img_request)
1367 set_bit(IMG_REQ_LAYERED, &img_request->flags);
1371 static void img_request_layered_clear(struct rbd_img_request *img_request)
1373 clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1377 static bool img_request_layered_test(struct rbd_img_request *img_request)
1380 return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1383 static bool rbd_obj_is_entire(struct rbd_obj_request *obj_req)
1385 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1387 return !obj_req->ex.oe_off &&
1388 obj_req->ex.oe_len == rbd_dev->layout.object_size;
1391 static bool rbd_obj_is_tail(struct rbd_obj_request *obj_req)
1393 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1395 return obj_req->ex.oe_off + obj_req->ex.oe_len ==
1396 rbd_dev->layout.object_size;
1399 static u64 rbd_obj_img_extents_bytes(struct rbd_obj_request *obj_req)
1401 return ceph_file_extents_bytes(obj_req->img_extents,
1402 obj_req->num_img_extents);
1405 static bool rbd_img_is_write(struct rbd_img_request *img_req)
1407 switch (img_req->op_type) {
1411 case OBJ_OP_DISCARD:
1418 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req);
1420 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req)
1422 struct rbd_obj_request *obj_req = osd_req->r_priv;
1424 dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req,
1425 osd_req->r_result, obj_req);
1426 rbd_assert(osd_req == obj_req->osd_req);
1428 obj_req->result = osd_req->r_result < 0 ? osd_req->r_result : 0;
1429 if (!obj_req->result && !rbd_img_is_write(obj_req->img_request))
1430 obj_req->xferred = osd_req->r_result;
1433 * Writes aren't allowed to return a data payload. In some
1434 * guarded write cases (e.g. stat + zero on an empty object)
1435 * a stat response makes it through, but we don't care.
1437 obj_req->xferred = 0;
1439 rbd_obj_handle_request(obj_req);
1442 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1444 struct ceph_osd_request *osd_req = obj_request->osd_req;
1446 osd_req->r_flags = CEPH_OSD_FLAG_READ;
1447 osd_req->r_snapid = obj_request->img_request->snap_id;
1450 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1452 struct ceph_osd_request *osd_req = obj_request->osd_req;
1454 osd_req->r_flags = CEPH_OSD_FLAG_WRITE;
1455 ktime_get_real_ts(&osd_req->r_mtime);
1456 osd_req->r_data_offset = obj_request->ex.oe_off;
1459 static struct ceph_osd_request *
1460 rbd_osd_req_create(struct rbd_obj_request *obj_req, unsigned int num_ops)
1462 struct rbd_img_request *img_req = obj_req->img_request;
1463 struct rbd_device *rbd_dev = img_req->rbd_dev;
1464 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1465 struct ceph_osd_request *req;
1466 const char *name_format = rbd_dev->image_format == 1 ?
1467 RBD_V1_DATA_FORMAT : RBD_V2_DATA_FORMAT;
1469 req = ceph_osdc_alloc_request(osdc,
1470 (rbd_img_is_write(img_req) ? img_req->snapc : NULL),
1471 num_ops, false, GFP_NOIO);
1475 req->r_callback = rbd_osd_req_callback;
1476 req->r_priv = obj_req;
1478 req->r_base_oloc.pool = rbd_dev->layout.pool_id;
1479 if (ceph_oid_aprintf(&req->r_base_oid, GFP_NOIO, name_format,
1480 rbd_dev->header.object_prefix, obj_req->ex.oe_objno))
1483 if (ceph_osdc_alloc_messages(req, GFP_NOIO))
1489 ceph_osdc_put_request(req);
1493 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1495 ceph_osdc_put_request(osd_req);
1498 static struct rbd_obj_request *rbd_obj_request_create(void)
1500 struct rbd_obj_request *obj_request;
1502 obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO);
1506 ceph_object_extent_init(&obj_request->ex);
1507 kref_init(&obj_request->kref);
1509 dout("%s %p\n", __func__, obj_request);
1513 static void rbd_obj_request_destroy(struct kref *kref)
1515 struct rbd_obj_request *obj_request;
1518 obj_request = container_of(kref, struct rbd_obj_request, kref);
1520 dout("%s: obj %p\n", __func__, obj_request);
1522 if (obj_request->osd_req)
1523 rbd_osd_req_destroy(obj_request->osd_req);
1525 switch (obj_request->img_request->data_type) {
1526 case OBJ_REQUEST_NODATA:
1527 case OBJ_REQUEST_BIO:
1528 case OBJ_REQUEST_BVECS:
1529 break; /* Nothing to do */
1530 case OBJ_REQUEST_OWN_BVECS:
1531 kfree(obj_request->bvec_pos.bvecs);
1537 kfree(obj_request->img_extents);
1538 if (obj_request->copyup_bvecs) {
1539 for (i = 0; i < obj_request->copyup_bvec_count; i++) {
1540 if (obj_request->copyup_bvecs[i].bv_page)
1541 __free_page(obj_request->copyup_bvecs[i].bv_page);
1543 kfree(obj_request->copyup_bvecs);
1546 kmem_cache_free(rbd_obj_request_cache, obj_request);
1549 /* It's OK to call this for a device with no parent */
1551 static void rbd_spec_put(struct rbd_spec *spec);
1552 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1554 rbd_dev_remove_parent(rbd_dev);
1555 rbd_spec_put(rbd_dev->parent_spec);
1556 rbd_dev->parent_spec = NULL;
1557 rbd_dev->parent_overlap = 0;
1561 * Parent image reference counting is used to determine when an
1562 * image's parent fields can be safely torn down--after there are no
1563 * more in-flight requests to the parent image. When the last
1564 * reference is dropped, cleaning them up is safe.
1566 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
1570 if (!rbd_dev->parent_spec)
1573 counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
1577 /* Last reference; clean up parent data structures */
1580 rbd_dev_unparent(rbd_dev);
1582 rbd_warn(rbd_dev, "parent reference underflow");
1586 * If an image has a non-zero parent overlap, get a reference to its
1589 * Returns true if the rbd device has a parent with a non-zero
1590 * overlap and a reference for it was successfully taken, or
1593 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
1597 if (!rbd_dev->parent_spec)
1600 down_read(&rbd_dev->header_rwsem);
1601 if (rbd_dev->parent_overlap)
1602 counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
1603 up_read(&rbd_dev->header_rwsem);
1606 rbd_warn(rbd_dev, "parent reference overflow");
1612 * Caller is responsible for filling in the list of object requests
1613 * that comprises the image request, and the Linux request pointer
1614 * (if there is one).
1616 static struct rbd_img_request *rbd_img_request_create(
1617 struct rbd_device *rbd_dev,
1618 enum obj_operation_type op_type,
1619 struct ceph_snap_context *snapc)
1621 struct rbd_img_request *img_request;
1623 img_request = kmem_cache_zalloc(rbd_img_request_cache, GFP_NOIO);
1627 img_request->rbd_dev = rbd_dev;
1628 img_request->op_type = op_type;
1629 if (!rbd_img_is_write(img_request))
1630 img_request->snap_id = rbd_dev->spec->snap_id;
1632 img_request->snapc = snapc;
1634 if (rbd_dev_parent_get(rbd_dev))
1635 img_request_layered_set(img_request);
1637 spin_lock_init(&img_request->completion_lock);
1638 INIT_LIST_HEAD(&img_request->object_extents);
1639 kref_init(&img_request->kref);
1641 dout("%s: rbd_dev %p %s -> img %p\n", __func__, rbd_dev,
1642 obj_op_name(op_type), img_request);
1646 static void rbd_img_request_destroy(struct kref *kref)
1648 struct rbd_img_request *img_request;
1649 struct rbd_obj_request *obj_request;
1650 struct rbd_obj_request *next_obj_request;
1652 img_request = container_of(kref, struct rbd_img_request, kref);
1654 dout("%s: img %p\n", __func__, img_request);
1656 for_each_obj_request_safe(img_request, obj_request, next_obj_request)
1657 rbd_img_obj_request_del(img_request, obj_request);
1658 rbd_assert(img_request->obj_request_count == 0);
1660 if (img_request_layered_test(img_request)) {
1661 img_request_layered_clear(img_request);
1662 rbd_dev_parent_put(img_request->rbd_dev);
1665 if (rbd_img_is_write(img_request))
1666 ceph_put_snap_context(img_request->snapc);
1668 kmem_cache_free(rbd_img_request_cache, img_request);
1671 static void prune_extents(struct ceph_file_extent *img_extents,
1672 u32 *num_img_extents, u64 overlap)
1674 u32 cnt = *num_img_extents;
1676 /* drop extents completely beyond the overlap */
1677 while (cnt && img_extents[cnt - 1].fe_off >= overlap)
1681 struct ceph_file_extent *ex = &img_extents[cnt - 1];
1683 /* trim final overlapping extent */
1684 if (ex->fe_off + ex->fe_len > overlap)
1685 ex->fe_len = overlap - ex->fe_off;
1688 *num_img_extents = cnt;
1692 * Determine the byte range(s) covered by either just the object extent
1693 * or the entire object in the parent image.
1695 static int rbd_obj_calc_img_extents(struct rbd_obj_request *obj_req,
1698 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1701 if (!rbd_dev->parent_overlap)
1704 ret = ceph_extent_to_file(&rbd_dev->layout, obj_req->ex.oe_objno,
1705 entire ? 0 : obj_req->ex.oe_off,
1706 entire ? rbd_dev->layout.object_size :
1708 &obj_req->img_extents,
1709 &obj_req->num_img_extents);
1713 prune_extents(obj_req->img_extents, &obj_req->num_img_extents,
1714 rbd_dev->parent_overlap);
1718 static void rbd_osd_req_setup_data(struct rbd_obj_request *obj_req, u32 which)
1720 switch (obj_req->img_request->data_type) {
1721 case OBJ_REQUEST_BIO:
1722 osd_req_op_extent_osd_data_bio(obj_req->osd_req, which,
1724 obj_req->ex.oe_len);
1726 case OBJ_REQUEST_BVECS:
1727 case OBJ_REQUEST_OWN_BVECS:
1728 rbd_assert(obj_req->bvec_pos.iter.bi_size ==
1729 obj_req->ex.oe_len);
1730 rbd_assert(obj_req->bvec_idx == obj_req->bvec_count);
1731 osd_req_op_extent_osd_data_bvec_pos(obj_req->osd_req, which,
1732 &obj_req->bvec_pos);
1739 static int rbd_obj_setup_read(struct rbd_obj_request *obj_req)
1741 obj_req->osd_req = rbd_osd_req_create(obj_req, 1);
1742 if (!obj_req->osd_req)
1745 osd_req_op_extent_init(obj_req->osd_req, 0, CEPH_OSD_OP_READ,
1746 obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0);
1747 rbd_osd_req_setup_data(obj_req, 0);
1749 rbd_osd_req_format_read(obj_req);
1753 static int __rbd_obj_setup_stat(struct rbd_obj_request *obj_req,
1756 struct page **pages;
1759 * The response data for a STAT call consists of:
1766 pages = ceph_alloc_page_vector(1, GFP_NOIO);
1768 return PTR_ERR(pages);
1770 osd_req_op_init(obj_req->osd_req, which, CEPH_OSD_OP_STAT, 0);
1771 osd_req_op_raw_data_in_pages(obj_req->osd_req, which, pages,
1772 8 + sizeof(struct ceph_timespec),
1777 static void __rbd_obj_setup_write(struct rbd_obj_request *obj_req,
1780 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1783 osd_req_op_alloc_hint_init(obj_req->osd_req, which++,
1784 rbd_dev->layout.object_size,
1785 rbd_dev->layout.object_size);
1787 if (rbd_obj_is_entire(obj_req))
1788 opcode = CEPH_OSD_OP_WRITEFULL;
1790 opcode = CEPH_OSD_OP_WRITE;
1792 osd_req_op_extent_init(obj_req->osd_req, which, opcode,
1793 obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0);
1794 rbd_osd_req_setup_data(obj_req, which++);
1796 rbd_assert(which == obj_req->osd_req->r_num_ops);
1797 rbd_osd_req_format_write(obj_req);
1800 static int rbd_obj_setup_write(struct rbd_obj_request *obj_req)
1802 unsigned int num_osd_ops, which = 0;
1805 /* reverse map the entire object onto the parent */
1806 ret = rbd_obj_calc_img_extents(obj_req, true);
1810 if (obj_req->num_img_extents) {
1811 obj_req->write_state = RBD_OBJ_WRITE_GUARD;
1812 num_osd_ops = 3; /* stat + setallochint + write/writefull */
1814 obj_req->write_state = RBD_OBJ_WRITE_FLAT;
1815 num_osd_ops = 2; /* setallochint + write/writefull */
1818 obj_req->osd_req = rbd_osd_req_create(obj_req, num_osd_ops);
1819 if (!obj_req->osd_req)
1822 if (obj_req->num_img_extents) {
1823 ret = __rbd_obj_setup_stat(obj_req, which++);
1828 __rbd_obj_setup_write(obj_req, which);
1832 static void __rbd_obj_setup_discard(struct rbd_obj_request *obj_req,
1837 if (rbd_obj_is_entire(obj_req)) {
1838 if (obj_req->num_img_extents) {
1839 osd_req_op_init(obj_req->osd_req, which++,
1840 CEPH_OSD_OP_CREATE, 0);
1841 opcode = CEPH_OSD_OP_TRUNCATE;
1843 osd_req_op_init(obj_req->osd_req, which++,
1844 CEPH_OSD_OP_DELETE, 0);
1847 } else if (rbd_obj_is_tail(obj_req)) {
1848 opcode = CEPH_OSD_OP_TRUNCATE;
1850 opcode = CEPH_OSD_OP_ZERO;
1854 osd_req_op_extent_init(obj_req->osd_req, which++, opcode,
1855 obj_req->ex.oe_off, obj_req->ex.oe_len,
1858 rbd_assert(which == obj_req->osd_req->r_num_ops);
1859 rbd_osd_req_format_write(obj_req);
1862 static int rbd_obj_setup_discard(struct rbd_obj_request *obj_req)
1864 unsigned int num_osd_ops, which = 0;
1867 /* reverse map the entire object onto the parent */
1868 ret = rbd_obj_calc_img_extents(obj_req, true);
1872 if (rbd_obj_is_entire(obj_req)) {
1873 obj_req->write_state = RBD_OBJ_WRITE_FLAT;
1874 if (obj_req->num_img_extents)
1875 num_osd_ops = 2; /* create + truncate */
1877 num_osd_ops = 1; /* delete */
1879 if (obj_req->num_img_extents) {
1880 obj_req->write_state = RBD_OBJ_WRITE_GUARD;
1881 num_osd_ops = 2; /* stat + truncate/zero */
1883 obj_req->write_state = RBD_OBJ_WRITE_FLAT;
1884 num_osd_ops = 1; /* truncate/zero */
1888 obj_req->osd_req = rbd_osd_req_create(obj_req, num_osd_ops);
1889 if (!obj_req->osd_req)
1892 if (!rbd_obj_is_entire(obj_req) && obj_req->num_img_extents) {
1893 ret = __rbd_obj_setup_stat(obj_req, which++);
1898 __rbd_obj_setup_discard(obj_req, which);
1903 * For each object request in @img_req, allocate an OSD request, add
1904 * individual OSD ops and prepare them for submission. The number of
1905 * OSD ops depends on op_type and the overlap point (if any).
1907 static int __rbd_img_fill_request(struct rbd_img_request *img_req)
1909 struct rbd_obj_request *obj_req;
1912 for_each_obj_request(img_req, obj_req) {
1913 switch (img_req->op_type) {
1915 ret = rbd_obj_setup_read(obj_req);
1918 ret = rbd_obj_setup_write(obj_req);
1920 case OBJ_OP_DISCARD:
1921 ret = rbd_obj_setup_discard(obj_req);
1933 union rbd_img_fill_iter {
1934 struct ceph_bio_iter bio_iter;
1935 struct ceph_bvec_iter bvec_iter;
1938 struct rbd_img_fill_ctx {
1939 enum obj_request_type pos_type;
1940 union rbd_img_fill_iter *pos;
1941 union rbd_img_fill_iter iter;
1942 ceph_object_extent_fn_t set_pos_fn;
1943 ceph_object_extent_fn_t count_fn;
1944 ceph_object_extent_fn_t copy_fn;
1947 static struct ceph_object_extent *alloc_object_extent(void *arg)
1949 struct rbd_img_request *img_req = arg;
1950 struct rbd_obj_request *obj_req;
1952 obj_req = rbd_obj_request_create();
1956 rbd_img_obj_request_add(img_req, obj_req);
1957 return &obj_req->ex;
1961 * While su != os && sc == 1 is technically not fancy (it's the same
1962 * layout as su == os && sc == 1), we can't use the nocopy path for it
1963 * because ->set_pos_fn() should be called only once per object.
1964 * ceph_file_to_extents() invokes action_fn once per stripe unit, so
1965 * treat su != os && sc == 1 as fancy.
1967 static bool rbd_layout_is_fancy(struct ceph_file_layout *l)
1969 return l->stripe_unit != l->object_size;
1972 static int rbd_img_fill_request_nocopy(struct rbd_img_request *img_req,
1973 struct ceph_file_extent *img_extents,
1974 u32 num_img_extents,
1975 struct rbd_img_fill_ctx *fctx)
1980 img_req->data_type = fctx->pos_type;
1983 * Create object requests and set each object request's starting
1984 * position in the provided bio (list) or bio_vec array.
1986 fctx->iter = *fctx->pos;
1987 for (i = 0; i < num_img_extents; i++) {
1988 ret = ceph_file_to_extents(&img_req->rbd_dev->layout,
1989 img_extents[i].fe_off,
1990 img_extents[i].fe_len,
1991 &img_req->object_extents,
1992 alloc_object_extent, img_req,
1993 fctx->set_pos_fn, &fctx->iter);
1998 return __rbd_img_fill_request(img_req);
2002 * Map a list of image extents to a list of object extents, create the
2003 * corresponding object requests (normally each to a different object,
2004 * but not always) and add them to @img_req. For each object request,
2005 * set up its data descriptor to point to the corresponding chunk(s) of
2006 * @fctx->pos data buffer.
2008 * Because ceph_file_to_extents() will merge adjacent object extents
2009 * together, each object request's data descriptor may point to multiple
2010 * different chunks of @fctx->pos data buffer.
2012 * @fctx->pos data buffer is assumed to be large enough.
2014 static int rbd_img_fill_request(struct rbd_img_request *img_req,
2015 struct ceph_file_extent *img_extents,
2016 u32 num_img_extents,
2017 struct rbd_img_fill_ctx *fctx)
2019 struct rbd_device *rbd_dev = img_req->rbd_dev;
2020 struct rbd_obj_request *obj_req;
2024 if (fctx->pos_type == OBJ_REQUEST_NODATA ||
2025 !rbd_layout_is_fancy(&rbd_dev->layout))
2026 return rbd_img_fill_request_nocopy(img_req, img_extents,
2027 num_img_extents, fctx);
2029 img_req->data_type = OBJ_REQUEST_OWN_BVECS;
2032 * Create object requests and determine ->bvec_count for each object
2033 * request. Note that ->bvec_count sum over all object requests may
2034 * be greater than the number of bio_vecs in the provided bio (list)
2035 * or bio_vec array because when mapped, those bio_vecs can straddle
2036 * stripe unit boundaries.
2038 fctx->iter = *fctx->pos;
2039 for (i = 0; i < num_img_extents; i++) {
2040 ret = ceph_file_to_extents(&rbd_dev->layout,
2041 img_extents[i].fe_off,
2042 img_extents[i].fe_len,
2043 &img_req->object_extents,
2044 alloc_object_extent, img_req,
2045 fctx->count_fn, &fctx->iter);
2050 for_each_obj_request(img_req, obj_req) {
2051 obj_req->bvec_pos.bvecs = kmalloc_array(obj_req->bvec_count,
2052 sizeof(*obj_req->bvec_pos.bvecs),
2054 if (!obj_req->bvec_pos.bvecs)
2059 * Fill in each object request's private bio_vec array, splitting and
2060 * rearranging the provided bio_vecs in stripe unit chunks as needed.
2062 fctx->iter = *fctx->pos;
2063 for (i = 0; i < num_img_extents; i++) {
2064 ret = ceph_iterate_extents(&rbd_dev->layout,
2065 img_extents[i].fe_off,
2066 img_extents[i].fe_len,
2067 &img_req->object_extents,
2068 fctx->copy_fn, &fctx->iter);
2073 return __rbd_img_fill_request(img_req);
2076 static int rbd_img_fill_nodata(struct rbd_img_request *img_req,
2079 struct ceph_file_extent ex = { off, len };
2080 union rbd_img_fill_iter dummy;
2081 struct rbd_img_fill_ctx fctx = {
2082 .pos_type = OBJ_REQUEST_NODATA,
2086 return rbd_img_fill_request(img_req, &ex, 1, &fctx);
2089 static void set_bio_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2091 struct rbd_obj_request *obj_req =
2092 container_of(ex, struct rbd_obj_request, ex);
2093 struct ceph_bio_iter *it = arg;
2095 dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2096 obj_req->bio_pos = *it;
2097 ceph_bio_iter_advance(it, bytes);
2100 static void count_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2102 struct rbd_obj_request *obj_req =
2103 container_of(ex, struct rbd_obj_request, ex);
2104 struct ceph_bio_iter *it = arg;
2106 dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2107 ceph_bio_iter_advance_step(it, bytes, ({
2108 obj_req->bvec_count++;
2113 static void copy_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2115 struct rbd_obj_request *obj_req =
2116 container_of(ex, struct rbd_obj_request, ex);
2117 struct ceph_bio_iter *it = arg;
2119 dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2120 ceph_bio_iter_advance_step(it, bytes, ({
2121 obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2122 obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2126 static int __rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2127 struct ceph_file_extent *img_extents,
2128 u32 num_img_extents,
2129 struct ceph_bio_iter *bio_pos)
2131 struct rbd_img_fill_ctx fctx = {
2132 .pos_type = OBJ_REQUEST_BIO,
2133 .pos = (union rbd_img_fill_iter *)bio_pos,
2134 .set_pos_fn = set_bio_pos,
2135 .count_fn = count_bio_bvecs,
2136 .copy_fn = copy_bio_bvecs,
2139 return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2143 static int rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2144 u64 off, u64 len, struct bio *bio)
2146 struct ceph_file_extent ex = { off, len };
2147 struct ceph_bio_iter it = { .bio = bio, .iter = bio->bi_iter };
2149 return __rbd_img_fill_from_bio(img_req, &ex, 1, &it);
2152 static void set_bvec_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2154 struct rbd_obj_request *obj_req =
2155 container_of(ex, struct rbd_obj_request, ex);
2156 struct ceph_bvec_iter *it = arg;
2158 obj_req->bvec_pos = *it;
2159 ceph_bvec_iter_shorten(&obj_req->bvec_pos, bytes);
2160 ceph_bvec_iter_advance(it, bytes);
2163 static void count_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2165 struct rbd_obj_request *obj_req =
2166 container_of(ex, struct rbd_obj_request, ex);
2167 struct ceph_bvec_iter *it = arg;
2169 ceph_bvec_iter_advance_step(it, bytes, ({
2170 obj_req->bvec_count++;
2174 static void copy_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2176 struct rbd_obj_request *obj_req =
2177 container_of(ex, struct rbd_obj_request, ex);
2178 struct ceph_bvec_iter *it = arg;
2180 ceph_bvec_iter_advance_step(it, bytes, ({
2181 obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2182 obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2186 static int __rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2187 struct ceph_file_extent *img_extents,
2188 u32 num_img_extents,
2189 struct ceph_bvec_iter *bvec_pos)
2191 struct rbd_img_fill_ctx fctx = {
2192 .pos_type = OBJ_REQUEST_BVECS,
2193 .pos = (union rbd_img_fill_iter *)bvec_pos,
2194 .set_pos_fn = set_bvec_pos,
2195 .count_fn = count_bvecs,
2196 .copy_fn = copy_bvecs,
2199 return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2203 static int rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2204 struct ceph_file_extent *img_extents,
2205 u32 num_img_extents,
2206 struct bio_vec *bvecs)
2208 struct ceph_bvec_iter it = {
2210 .iter = { .bi_size = ceph_file_extents_bytes(img_extents,
2214 return __rbd_img_fill_from_bvecs(img_req, img_extents, num_img_extents,
2218 static void rbd_img_request_submit(struct rbd_img_request *img_request)
2220 struct rbd_obj_request *obj_request;
2222 dout("%s: img %p\n", __func__, img_request);
2224 rbd_img_request_get(img_request);
2225 for_each_obj_request(img_request, obj_request)
2226 rbd_obj_request_submit(obj_request);
2228 rbd_img_request_put(img_request);
2231 static int rbd_obj_read_from_parent(struct rbd_obj_request *obj_req)
2233 struct rbd_img_request *img_req = obj_req->img_request;
2234 struct rbd_img_request *child_img_req;
2237 child_img_req = rbd_img_request_create(img_req->rbd_dev->parent,
2242 __set_bit(IMG_REQ_CHILD, &child_img_req->flags);
2243 child_img_req->obj_request = obj_req;
2245 if (!rbd_img_is_write(img_req)) {
2246 switch (img_req->data_type) {
2247 case OBJ_REQUEST_BIO:
2248 ret = __rbd_img_fill_from_bio(child_img_req,
2249 obj_req->img_extents,
2250 obj_req->num_img_extents,
2253 case OBJ_REQUEST_BVECS:
2254 case OBJ_REQUEST_OWN_BVECS:
2255 ret = __rbd_img_fill_from_bvecs(child_img_req,
2256 obj_req->img_extents,
2257 obj_req->num_img_extents,
2258 &obj_req->bvec_pos);
2264 ret = rbd_img_fill_from_bvecs(child_img_req,
2265 obj_req->img_extents,
2266 obj_req->num_img_extents,
2267 obj_req->copyup_bvecs);
2270 rbd_img_request_put(child_img_req);
2274 rbd_img_request_submit(child_img_req);
2278 static bool rbd_obj_handle_read(struct rbd_obj_request *obj_req)
2280 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2283 if (obj_req->result == -ENOENT &&
2284 rbd_dev->parent_overlap && !obj_req->tried_parent) {
2285 /* reverse map this object extent onto the parent */
2286 ret = rbd_obj_calc_img_extents(obj_req, false);
2288 obj_req->result = ret;
2292 if (obj_req->num_img_extents) {
2293 obj_req->tried_parent = true;
2294 ret = rbd_obj_read_from_parent(obj_req);
2296 obj_req->result = ret;
2304 * -ENOENT means a hole in the image -- zero-fill the entire
2305 * length of the request. A short read also implies zero-fill
2306 * to the end of the request. In both cases we update xferred
2307 * count to indicate the whole request was satisfied.
2309 if (obj_req->result == -ENOENT ||
2310 (!obj_req->result && obj_req->xferred < obj_req->ex.oe_len)) {
2311 rbd_assert(!obj_req->xferred || !obj_req->result);
2312 rbd_obj_zero_range(obj_req, obj_req->xferred,
2313 obj_req->ex.oe_len - obj_req->xferred);
2314 obj_req->result = 0;
2315 obj_req->xferred = obj_req->ex.oe_len;
2322 * copyup_bvecs pages are never highmem pages
2324 static bool is_zero_bvecs(struct bio_vec *bvecs, u32 bytes)
2326 struct ceph_bvec_iter it = {
2328 .iter = { .bi_size = bytes },
2331 ceph_bvec_iter_advance_step(&it, bytes, ({
2332 if (memchr_inv(page_address(bv.bv_page) + bv.bv_offset, 0,
2339 static int rbd_obj_issue_copyup(struct rbd_obj_request *obj_req, u32 bytes)
2341 unsigned int num_osd_ops = obj_req->osd_req->r_num_ops;
2343 dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes);
2344 rbd_assert(obj_req->osd_req->r_ops[0].op == CEPH_OSD_OP_STAT);
2345 rbd_osd_req_destroy(obj_req->osd_req);
2348 * Create a copyup request with the same number of OSD ops as
2349 * the original request. The original request was stat + op(s),
2350 * the new copyup request will be copyup + the same op(s).
2352 obj_req->osd_req = rbd_osd_req_create(obj_req, num_osd_ops);
2353 if (!obj_req->osd_req)
2357 * Only send non-zero copyup data to save some I/O and network
2358 * bandwidth -- zero copyup data is equivalent to the object not
2361 if (is_zero_bvecs(obj_req->copyup_bvecs, bytes)) {
2362 dout("%s obj_req %p detected zeroes\n", __func__, obj_req);
2366 osd_req_op_cls_init(obj_req->osd_req, 0, CEPH_OSD_OP_CALL, "rbd",
2368 osd_req_op_cls_request_data_bvecs(obj_req->osd_req, 0,
2369 obj_req->copyup_bvecs, bytes);
2371 switch (obj_req->img_request->op_type) {
2373 __rbd_obj_setup_write(obj_req, 1);
2375 case OBJ_OP_DISCARD:
2376 rbd_assert(!rbd_obj_is_entire(obj_req));
2377 __rbd_obj_setup_discard(obj_req, 1);
2383 rbd_obj_request_submit(obj_req);
2387 static int setup_copyup_bvecs(struct rbd_obj_request *obj_req, u64 obj_overlap)
2391 rbd_assert(!obj_req->copyup_bvecs);
2392 obj_req->copyup_bvec_count = calc_pages_for(0, obj_overlap);
2393 obj_req->copyup_bvecs = kcalloc(obj_req->copyup_bvec_count,
2394 sizeof(*obj_req->copyup_bvecs),
2396 if (!obj_req->copyup_bvecs)
2399 for (i = 0; i < obj_req->copyup_bvec_count; i++) {
2400 unsigned int len = min(obj_overlap, (u64)PAGE_SIZE);
2402 obj_req->copyup_bvecs[i].bv_page = alloc_page(GFP_NOIO);
2403 if (!obj_req->copyup_bvecs[i].bv_page)
2406 obj_req->copyup_bvecs[i].bv_offset = 0;
2407 obj_req->copyup_bvecs[i].bv_len = len;
2411 rbd_assert(!obj_overlap);
2415 static int rbd_obj_handle_write_guard(struct rbd_obj_request *obj_req)
2417 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2420 rbd_assert(obj_req->num_img_extents);
2421 prune_extents(obj_req->img_extents, &obj_req->num_img_extents,
2422 rbd_dev->parent_overlap);
2423 if (!obj_req->num_img_extents) {
2425 * The overlap has become 0 (most likely because the
2426 * image has been flattened). Use rbd_obj_issue_copyup()
2427 * to re-submit the original write request -- the copyup
2428 * operation itself will be a no-op, since someone must
2429 * have populated the child object while we weren't
2430 * looking. Move to WRITE_FLAT state as we'll be done
2431 * with the operation once the null copyup completes.
2433 obj_req->write_state = RBD_OBJ_WRITE_FLAT;
2434 return rbd_obj_issue_copyup(obj_req, 0);
2437 ret = setup_copyup_bvecs(obj_req, rbd_obj_img_extents_bytes(obj_req));
2441 obj_req->write_state = RBD_OBJ_WRITE_COPYUP;
2442 return rbd_obj_read_from_parent(obj_req);
2445 static bool rbd_obj_handle_write(struct rbd_obj_request *obj_req)
2450 switch (obj_req->write_state) {
2451 case RBD_OBJ_WRITE_GUARD:
2452 rbd_assert(!obj_req->xferred);
2453 if (obj_req->result == -ENOENT) {
2455 * The target object doesn't exist. Read the data for
2456 * the entire target object up to the overlap point (if
2457 * any) from the parent, so we can use it for a copyup.
2459 ret = rbd_obj_handle_write_guard(obj_req);
2461 obj_req->result = ret;
2467 case RBD_OBJ_WRITE_FLAT:
2468 if (!obj_req->result)
2470 * There is no such thing as a successful short
2471 * write -- indicate the whole request was satisfied.
2473 obj_req->xferred = obj_req->ex.oe_len;
2475 case RBD_OBJ_WRITE_COPYUP:
2476 obj_req->write_state = RBD_OBJ_WRITE_GUARD;
2477 if (obj_req->result)
2480 rbd_assert(obj_req->xferred);
2481 ret = rbd_obj_issue_copyup(obj_req, obj_req->xferred);
2483 obj_req->result = ret;
2493 * Returns true if @obj_req is completed, or false otherwise.
2495 static bool __rbd_obj_handle_request(struct rbd_obj_request *obj_req)
2497 switch (obj_req->img_request->op_type) {
2499 return rbd_obj_handle_read(obj_req);
2501 return rbd_obj_handle_write(obj_req);
2502 case OBJ_OP_DISCARD:
2503 if (rbd_obj_handle_write(obj_req)) {
2505 * Hide -ENOENT from delete/truncate/zero -- discarding
2506 * a non-existent object is not a problem.
2508 if (obj_req->result == -ENOENT) {
2509 obj_req->result = 0;
2510 obj_req->xferred = obj_req->ex.oe_len;
2520 static void rbd_obj_end_request(struct rbd_obj_request *obj_req)
2522 struct rbd_img_request *img_req = obj_req->img_request;
2524 rbd_assert((!obj_req->result &&
2525 obj_req->xferred == obj_req->ex.oe_len) ||
2526 (obj_req->result < 0 && !obj_req->xferred));
2527 if (!obj_req->result) {
2528 img_req->xferred += obj_req->xferred;
2532 rbd_warn(img_req->rbd_dev,
2533 "%s at objno %llu %llu~%llu result %d xferred %llu",
2534 obj_op_name(img_req->op_type), obj_req->ex.oe_objno,
2535 obj_req->ex.oe_off, obj_req->ex.oe_len, obj_req->result,
2537 if (!img_req->result) {
2538 img_req->result = obj_req->result;
2539 img_req->xferred = 0;
2543 static void rbd_img_end_child_request(struct rbd_img_request *img_req)
2545 struct rbd_obj_request *obj_req = img_req->obj_request;
2547 rbd_assert(test_bit(IMG_REQ_CHILD, &img_req->flags));
2548 rbd_assert((!img_req->result &&
2549 img_req->xferred == rbd_obj_img_extents_bytes(obj_req)) ||
2550 (img_req->result < 0 && !img_req->xferred));
2552 obj_req->result = img_req->result;
2553 obj_req->xferred = img_req->xferred;
2554 rbd_img_request_put(img_req);
2557 static void rbd_img_end_request(struct rbd_img_request *img_req)
2559 rbd_assert(!test_bit(IMG_REQ_CHILD, &img_req->flags));
2560 rbd_assert((!img_req->result &&
2561 img_req->xferred == blk_rq_bytes(img_req->rq)) ||
2562 (img_req->result < 0 && !img_req->xferred));
2564 blk_mq_end_request(img_req->rq,
2565 errno_to_blk_status(img_req->result));
2566 rbd_img_request_put(img_req);
2569 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req)
2571 struct rbd_img_request *img_req;
2574 if (!__rbd_obj_handle_request(obj_req))
2577 img_req = obj_req->img_request;
2578 spin_lock(&img_req->completion_lock);
2579 rbd_obj_end_request(obj_req);
2580 rbd_assert(img_req->pending_count);
2581 if (--img_req->pending_count) {
2582 spin_unlock(&img_req->completion_lock);
2586 spin_unlock(&img_req->completion_lock);
2587 if (test_bit(IMG_REQ_CHILD, &img_req->flags)) {
2588 obj_req = img_req->obj_request;
2589 rbd_img_end_child_request(img_req);
2592 rbd_img_end_request(img_req);
2595 static const struct rbd_client_id rbd_empty_cid;
2597 static bool rbd_cid_equal(const struct rbd_client_id *lhs,
2598 const struct rbd_client_id *rhs)
2600 return lhs->gid == rhs->gid && lhs->handle == rhs->handle;
2603 static struct rbd_client_id rbd_get_cid(struct rbd_device *rbd_dev)
2605 struct rbd_client_id cid;
2607 mutex_lock(&rbd_dev->watch_mutex);
2608 cid.gid = ceph_client_gid(rbd_dev->rbd_client->client);
2609 cid.handle = rbd_dev->watch_cookie;
2610 mutex_unlock(&rbd_dev->watch_mutex);
2615 * lock_rwsem must be held for write
2617 static void rbd_set_owner_cid(struct rbd_device *rbd_dev,
2618 const struct rbd_client_id *cid)
2620 dout("%s rbd_dev %p %llu-%llu -> %llu-%llu\n", __func__, rbd_dev,
2621 rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle,
2622 cid->gid, cid->handle);
2623 rbd_dev->owner_cid = *cid; /* struct */
2626 static void format_lock_cookie(struct rbd_device *rbd_dev, char *buf)
2628 mutex_lock(&rbd_dev->watch_mutex);
2629 sprintf(buf, "%s %llu", RBD_LOCK_COOKIE_PREFIX, rbd_dev->watch_cookie);
2630 mutex_unlock(&rbd_dev->watch_mutex);
2633 static void __rbd_lock(struct rbd_device *rbd_dev, const char *cookie)
2635 struct rbd_client_id cid = rbd_get_cid(rbd_dev);
2637 strcpy(rbd_dev->lock_cookie, cookie);
2638 rbd_set_owner_cid(rbd_dev, &cid);
2639 queue_work(rbd_dev->task_wq, &rbd_dev->acquired_lock_work);
2643 * lock_rwsem must be held for write
2645 static int rbd_lock(struct rbd_device *rbd_dev)
2647 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2651 WARN_ON(__rbd_is_lock_owner(rbd_dev) ||
2652 rbd_dev->lock_cookie[0] != '\0');
2654 format_lock_cookie(rbd_dev, cookie);
2655 ret = ceph_cls_lock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
2656 RBD_LOCK_NAME, CEPH_CLS_LOCK_EXCLUSIVE, cookie,
2657 RBD_LOCK_TAG, "", 0);
2661 rbd_dev->lock_state = RBD_LOCK_STATE_LOCKED;
2662 __rbd_lock(rbd_dev, cookie);
2667 * lock_rwsem must be held for write
2669 static void rbd_unlock(struct rbd_device *rbd_dev)
2671 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2674 WARN_ON(!__rbd_is_lock_owner(rbd_dev) ||
2675 rbd_dev->lock_cookie[0] == '\0');
2677 ret = ceph_cls_unlock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
2678 RBD_LOCK_NAME, rbd_dev->lock_cookie);
2679 if (ret && ret != -ENOENT)
2680 rbd_warn(rbd_dev, "failed to unlock: %d", ret);
2682 /* treat errors as the image is unlocked */
2683 rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
2684 rbd_dev->lock_cookie[0] = '\0';
2685 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
2686 queue_work(rbd_dev->task_wq, &rbd_dev->released_lock_work);
2689 static int __rbd_notify_op_lock(struct rbd_device *rbd_dev,
2690 enum rbd_notify_op notify_op,
2691 struct page ***preply_pages,
2694 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2695 struct rbd_client_id cid = rbd_get_cid(rbd_dev);
2696 char buf[4 + 8 + 8 + CEPH_ENCODING_START_BLK_LEN];
2697 int buf_size = sizeof(buf);
2700 dout("%s rbd_dev %p notify_op %d\n", __func__, rbd_dev, notify_op);
2702 /* encode *LockPayload NotifyMessage (op + ClientId) */
2703 ceph_start_encoding(&p, 2, 1, buf_size - CEPH_ENCODING_START_BLK_LEN);
2704 ceph_encode_32(&p, notify_op);
2705 ceph_encode_64(&p, cid.gid);
2706 ceph_encode_64(&p, cid.handle);
2708 return ceph_osdc_notify(osdc, &rbd_dev->header_oid,
2709 &rbd_dev->header_oloc, buf, buf_size,
2710 RBD_NOTIFY_TIMEOUT, preply_pages, preply_len);
2713 static void rbd_notify_op_lock(struct rbd_device *rbd_dev,
2714 enum rbd_notify_op notify_op)
2716 struct page **reply_pages;
2719 __rbd_notify_op_lock(rbd_dev, notify_op, &reply_pages, &reply_len);
2720 ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len));
2723 static void rbd_notify_acquired_lock(struct work_struct *work)
2725 struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
2726 acquired_lock_work);
2728 rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_ACQUIRED_LOCK);
2731 static void rbd_notify_released_lock(struct work_struct *work)
2733 struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
2734 released_lock_work);
2736 rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_RELEASED_LOCK);
2739 static int rbd_request_lock(struct rbd_device *rbd_dev)
2741 struct page **reply_pages;
2743 bool lock_owner_responded = false;
2746 dout("%s rbd_dev %p\n", __func__, rbd_dev);
2748 ret = __rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_REQUEST_LOCK,
2749 &reply_pages, &reply_len);
2750 if (ret && ret != -ETIMEDOUT) {
2751 rbd_warn(rbd_dev, "failed to request lock: %d", ret);
2755 if (reply_len > 0 && reply_len <= PAGE_SIZE) {
2756 void *p = page_address(reply_pages[0]);
2757 void *const end = p + reply_len;
2760 ceph_decode_32_safe(&p, end, n, e_inval); /* num_acks */
2765 ceph_decode_need(&p, end, 8 + 8, e_inval);
2766 p += 8 + 8; /* skip gid and cookie */
2768 ceph_decode_32_safe(&p, end, len, e_inval);
2772 if (lock_owner_responded) {
2774 "duplicate lock owners detected");
2779 lock_owner_responded = true;
2780 ret = ceph_start_decoding(&p, end, 1, "ResponseMessage",
2784 "failed to decode ResponseMessage: %d",
2789 ret = ceph_decode_32(&p);
2793 if (!lock_owner_responded) {
2794 rbd_warn(rbd_dev, "no lock owners detected");
2799 ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len));
2807 static void wake_requests(struct rbd_device *rbd_dev, bool wake_all)
2809 dout("%s rbd_dev %p wake_all %d\n", __func__, rbd_dev, wake_all);
2811 cancel_delayed_work(&rbd_dev->lock_dwork);
2813 wake_up_all(&rbd_dev->lock_waitq);
2815 wake_up(&rbd_dev->lock_waitq);
2818 static int get_lock_owner_info(struct rbd_device *rbd_dev,
2819 struct ceph_locker **lockers, u32 *num_lockers)
2821 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2826 dout("%s rbd_dev %p\n", __func__, rbd_dev);
2828 ret = ceph_cls_lock_info(osdc, &rbd_dev->header_oid,
2829 &rbd_dev->header_oloc, RBD_LOCK_NAME,
2830 &lock_type, &lock_tag, lockers, num_lockers);
2834 if (*num_lockers == 0) {
2835 dout("%s rbd_dev %p no lockers detected\n", __func__, rbd_dev);
2839 if (strcmp(lock_tag, RBD_LOCK_TAG)) {
2840 rbd_warn(rbd_dev, "locked by external mechanism, tag %s",
2846 if (lock_type == CEPH_CLS_LOCK_SHARED) {
2847 rbd_warn(rbd_dev, "shared lock type detected");
2852 if (strncmp((*lockers)[0].id.cookie, RBD_LOCK_COOKIE_PREFIX,
2853 strlen(RBD_LOCK_COOKIE_PREFIX))) {
2854 rbd_warn(rbd_dev, "locked by external mechanism, cookie %s",
2855 (*lockers)[0].id.cookie);
2865 static int find_watcher(struct rbd_device *rbd_dev,
2866 const struct ceph_locker *locker)
2868 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2869 struct ceph_watch_item *watchers;
2875 ret = ceph_osdc_list_watchers(osdc, &rbd_dev->header_oid,
2876 &rbd_dev->header_oloc, &watchers,
2881 sscanf(locker->id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu", &cookie);
2882 for (i = 0; i < num_watchers; i++) {
2883 if (!memcmp(&watchers[i].addr, &locker->info.addr,
2884 sizeof(locker->info.addr)) &&
2885 watchers[i].cookie == cookie) {
2886 struct rbd_client_id cid = {
2887 .gid = le64_to_cpu(watchers[i].name.num),
2891 dout("%s rbd_dev %p found cid %llu-%llu\n", __func__,
2892 rbd_dev, cid.gid, cid.handle);
2893 rbd_set_owner_cid(rbd_dev, &cid);
2899 dout("%s rbd_dev %p no watchers\n", __func__, rbd_dev);
2907 * lock_rwsem must be held for write
2909 static int rbd_try_lock(struct rbd_device *rbd_dev)
2911 struct ceph_client *client = rbd_dev->rbd_client->client;
2912 struct ceph_locker *lockers;
2917 ret = rbd_lock(rbd_dev);
2921 /* determine if the current lock holder is still alive */
2922 ret = get_lock_owner_info(rbd_dev, &lockers, &num_lockers);
2926 if (num_lockers == 0)
2929 ret = find_watcher(rbd_dev, lockers);
2932 ret = 0; /* have to request lock */
2936 rbd_warn(rbd_dev, "%s%llu seems dead, breaking lock",
2937 ENTITY_NAME(lockers[0].id.name));
2939 ret = ceph_monc_blacklist_add(&client->monc,
2940 &lockers[0].info.addr);
2942 rbd_warn(rbd_dev, "blacklist of %s%llu failed: %d",
2943 ENTITY_NAME(lockers[0].id.name), ret);
2947 ret = ceph_cls_break_lock(&client->osdc, &rbd_dev->header_oid,
2948 &rbd_dev->header_oloc, RBD_LOCK_NAME,
2949 lockers[0].id.cookie,
2950 &lockers[0].id.name);
2951 if (ret && ret != -ENOENT)
2955 ceph_free_lockers(lockers, num_lockers);
2959 ceph_free_lockers(lockers, num_lockers);
2964 * ret is set only if lock_state is RBD_LOCK_STATE_UNLOCKED
2966 static enum rbd_lock_state rbd_try_acquire_lock(struct rbd_device *rbd_dev,
2969 enum rbd_lock_state lock_state;
2971 down_read(&rbd_dev->lock_rwsem);
2972 dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev,
2973 rbd_dev->lock_state);
2974 if (__rbd_is_lock_owner(rbd_dev)) {
2975 lock_state = rbd_dev->lock_state;
2976 up_read(&rbd_dev->lock_rwsem);
2980 up_read(&rbd_dev->lock_rwsem);
2981 down_write(&rbd_dev->lock_rwsem);
2982 dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev,
2983 rbd_dev->lock_state);
2984 if (!__rbd_is_lock_owner(rbd_dev)) {
2985 *pret = rbd_try_lock(rbd_dev);
2987 rbd_warn(rbd_dev, "failed to acquire lock: %d", *pret);
2990 lock_state = rbd_dev->lock_state;
2991 up_write(&rbd_dev->lock_rwsem);
2995 static void rbd_acquire_lock(struct work_struct *work)
2997 struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
2998 struct rbd_device, lock_dwork);
2999 enum rbd_lock_state lock_state;
3002 dout("%s rbd_dev %p\n", __func__, rbd_dev);
3004 lock_state = rbd_try_acquire_lock(rbd_dev, &ret);
3005 if (lock_state != RBD_LOCK_STATE_UNLOCKED || ret == -EBLACKLISTED) {
3006 if (lock_state == RBD_LOCK_STATE_LOCKED)
3007 wake_requests(rbd_dev, true);
3008 dout("%s rbd_dev %p lock_state %d ret %d - done\n", __func__,
3009 rbd_dev, lock_state, ret);
3013 ret = rbd_request_lock(rbd_dev);
3014 if (ret == -ETIMEDOUT) {
3015 goto again; /* treat this as a dead client */
3016 } else if (ret == -EROFS) {
3017 rbd_warn(rbd_dev, "peer will not release lock");
3019 * If this is rbd_add_acquire_lock(), we want to fail
3020 * immediately -- reuse BLACKLISTED flag. Otherwise we
3023 if (!(rbd_dev->disk->flags & GENHD_FL_UP)) {
3024 set_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags);
3025 /* wake "rbd map --exclusive" process */
3026 wake_requests(rbd_dev, false);
3028 } else if (ret < 0) {
3029 rbd_warn(rbd_dev, "error requesting lock: %d", ret);
3030 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
3034 * lock owner acked, but resend if we don't see them
3037 dout("%s rbd_dev %p requeueing lock_dwork\n", __func__,
3039 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
3040 msecs_to_jiffies(2 * RBD_NOTIFY_TIMEOUT * MSEC_PER_SEC));
3045 * lock_rwsem must be held for write
3047 static bool rbd_release_lock(struct rbd_device *rbd_dev)
3049 dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev,
3050 rbd_dev->lock_state);
3051 if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED)
3054 rbd_dev->lock_state = RBD_LOCK_STATE_RELEASING;
3055 downgrade_write(&rbd_dev->lock_rwsem);
3057 * Ensure that all in-flight IO is flushed.
3059 * FIXME: ceph_osdc_sync() flushes the entire OSD client, which
3060 * may be shared with other devices.
3062 ceph_osdc_sync(&rbd_dev->rbd_client->client->osdc);
3063 up_read(&rbd_dev->lock_rwsem);
3065 down_write(&rbd_dev->lock_rwsem);
3066 dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev,
3067 rbd_dev->lock_state);
3068 if (rbd_dev->lock_state != RBD_LOCK_STATE_RELEASING)
3071 rbd_unlock(rbd_dev);
3073 * Give others a chance to grab the lock - we would re-acquire
3074 * almost immediately if we got new IO during ceph_osdc_sync()
3075 * otherwise. We need to ack our own notifications, so this
3076 * lock_dwork will be requeued from rbd_wait_state_locked()
3077 * after wake_requests() in rbd_handle_released_lock().
3079 cancel_delayed_work(&rbd_dev->lock_dwork);
3083 static void rbd_release_lock_work(struct work_struct *work)
3085 struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3088 down_write(&rbd_dev->lock_rwsem);
3089 rbd_release_lock(rbd_dev);
3090 up_write(&rbd_dev->lock_rwsem);
3093 static void rbd_handle_acquired_lock(struct rbd_device *rbd_dev, u8 struct_v,
3096 struct rbd_client_id cid = { 0 };
3098 if (struct_v >= 2) {
3099 cid.gid = ceph_decode_64(p);
3100 cid.handle = ceph_decode_64(p);
3103 dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
3105 if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
3106 down_write(&rbd_dev->lock_rwsem);
3107 if (rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
3109 * we already know that the remote client is
3112 up_write(&rbd_dev->lock_rwsem);
3116 rbd_set_owner_cid(rbd_dev, &cid);
3117 downgrade_write(&rbd_dev->lock_rwsem);
3119 down_read(&rbd_dev->lock_rwsem);
3122 if (!__rbd_is_lock_owner(rbd_dev))
3123 wake_requests(rbd_dev, false);
3124 up_read(&rbd_dev->lock_rwsem);
3127 static void rbd_handle_released_lock(struct rbd_device *rbd_dev, u8 struct_v,
3130 struct rbd_client_id cid = { 0 };
3132 if (struct_v >= 2) {
3133 cid.gid = ceph_decode_64(p);
3134 cid.handle = ceph_decode_64(p);
3137 dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
3139 if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
3140 down_write(&rbd_dev->lock_rwsem);
3141 if (!rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
3142 dout("%s rbd_dev %p unexpected owner, cid %llu-%llu != owner_cid %llu-%llu\n",
3143 __func__, rbd_dev, cid.gid, cid.handle,
3144 rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle);
3145 up_write(&rbd_dev->lock_rwsem);
3149 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3150 downgrade_write(&rbd_dev->lock_rwsem);
3152 down_read(&rbd_dev->lock_rwsem);
3155 if (!__rbd_is_lock_owner(rbd_dev))
3156 wake_requests(rbd_dev, false);
3157 up_read(&rbd_dev->lock_rwsem);
3161 * Returns result for ResponseMessage to be encoded (<= 0), or 1 if no
3162 * ResponseMessage is needed.
3164 static int rbd_handle_request_lock(struct rbd_device *rbd_dev, u8 struct_v,
3167 struct rbd_client_id my_cid = rbd_get_cid(rbd_dev);
3168 struct rbd_client_id cid = { 0 };
3171 if (struct_v >= 2) {
3172 cid.gid = ceph_decode_64(p);
3173 cid.handle = ceph_decode_64(p);
3176 dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
3178 if (rbd_cid_equal(&cid, &my_cid))
3181 down_read(&rbd_dev->lock_rwsem);
3182 if (__rbd_is_lock_owner(rbd_dev)) {
3183 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED &&
3184 rbd_cid_equal(&rbd_dev->owner_cid, &rbd_empty_cid))
3188 * encode ResponseMessage(0) so the peer can detect
3193 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) {
3194 if (!rbd_dev->opts->exclusive) {
3195 dout("%s rbd_dev %p queueing unlock_work\n",
3197 queue_work(rbd_dev->task_wq,
3198 &rbd_dev->unlock_work);
3200 /* refuse to release the lock */
3207 up_read(&rbd_dev->lock_rwsem);
3211 static void __rbd_acknowledge_notify(struct rbd_device *rbd_dev,
3212 u64 notify_id, u64 cookie, s32 *result)
3214 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3215 char buf[4 + CEPH_ENCODING_START_BLK_LEN];
3216 int buf_size = sizeof(buf);
3222 /* encode ResponseMessage */
3223 ceph_start_encoding(&p, 1, 1,
3224 buf_size - CEPH_ENCODING_START_BLK_LEN);
3225 ceph_encode_32(&p, *result);
3230 ret = ceph_osdc_notify_ack(osdc, &rbd_dev->header_oid,
3231 &rbd_dev->header_oloc, notify_id, cookie,
3234 rbd_warn(rbd_dev, "acknowledge_notify failed: %d", ret);
3237 static void rbd_acknowledge_notify(struct rbd_device *rbd_dev, u64 notify_id,
3240 dout("%s rbd_dev %p\n", __func__, rbd_dev);
3241 __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, NULL);
3244 static void rbd_acknowledge_notify_result(struct rbd_device *rbd_dev,
3245 u64 notify_id, u64 cookie, s32 result)
3247 dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
3248 __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, &result);
3251 static void rbd_watch_cb(void *arg, u64 notify_id, u64 cookie,
3252 u64 notifier_id, void *data, size_t data_len)
3254 struct rbd_device *rbd_dev = arg;
3256 void *const end = p + data_len;
3262 dout("%s rbd_dev %p cookie %llu notify_id %llu data_len %zu\n",
3263 __func__, rbd_dev, cookie, notify_id, data_len);
3265 ret = ceph_start_decoding(&p, end, 1, "NotifyMessage",
3268 rbd_warn(rbd_dev, "failed to decode NotifyMessage: %d",
3273 notify_op = ceph_decode_32(&p);
3275 /* legacy notification for header updates */
3276 notify_op = RBD_NOTIFY_OP_HEADER_UPDATE;
3280 dout("%s rbd_dev %p notify_op %u\n", __func__, rbd_dev, notify_op);
3281 switch (notify_op) {
3282 case RBD_NOTIFY_OP_ACQUIRED_LOCK:
3283 rbd_handle_acquired_lock(rbd_dev, struct_v, &p);
3284 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3286 case RBD_NOTIFY_OP_RELEASED_LOCK:
3287 rbd_handle_released_lock(rbd_dev, struct_v, &p);
3288 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3290 case RBD_NOTIFY_OP_REQUEST_LOCK:
3291 ret = rbd_handle_request_lock(rbd_dev, struct_v, &p);
3293 rbd_acknowledge_notify_result(rbd_dev, notify_id,
3296 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3298 case RBD_NOTIFY_OP_HEADER_UPDATE:
3299 ret = rbd_dev_refresh(rbd_dev);
3301 rbd_warn(rbd_dev, "refresh failed: %d", ret);
3303 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3306 if (rbd_is_lock_owner(rbd_dev))
3307 rbd_acknowledge_notify_result(rbd_dev, notify_id,
3308 cookie, -EOPNOTSUPP);
3310 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3315 static void __rbd_unregister_watch(struct rbd_device *rbd_dev);
3317 static void rbd_watch_errcb(void *arg, u64 cookie, int err)
3319 struct rbd_device *rbd_dev = arg;
3321 rbd_warn(rbd_dev, "encountered watch error: %d", err);
3323 down_write(&rbd_dev->lock_rwsem);
3324 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3325 up_write(&rbd_dev->lock_rwsem);
3327 mutex_lock(&rbd_dev->watch_mutex);
3328 if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED) {
3329 __rbd_unregister_watch(rbd_dev);
3330 rbd_dev->watch_state = RBD_WATCH_STATE_ERROR;
3332 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->watch_dwork, 0);
3334 mutex_unlock(&rbd_dev->watch_mutex);
3338 * watch_mutex must be locked
3340 static int __rbd_register_watch(struct rbd_device *rbd_dev)
3342 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3343 struct ceph_osd_linger_request *handle;
3345 rbd_assert(!rbd_dev->watch_handle);
3346 dout("%s rbd_dev %p\n", __func__, rbd_dev);
3348 handle = ceph_osdc_watch(osdc, &rbd_dev->header_oid,
3349 &rbd_dev->header_oloc, rbd_watch_cb,
3350 rbd_watch_errcb, rbd_dev);
3352 return PTR_ERR(handle);
3354 rbd_dev->watch_handle = handle;
3359 * watch_mutex must be locked
3361 static void __rbd_unregister_watch(struct rbd_device *rbd_dev)
3363 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3366 rbd_assert(rbd_dev->watch_handle);
3367 dout("%s rbd_dev %p\n", __func__, rbd_dev);
3369 ret = ceph_osdc_unwatch(osdc, rbd_dev->watch_handle);
3371 rbd_warn(rbd_dev, "failed to unwatch: %d", ret);
3373 rbd_dev->watch_handle = NULL;
3376 static int rbd_register_watch(struct rbd_device *rbd_dev)
3380 mutex_lock(&rbd_dev->watch_mutex);
3381 rbd_assert(rbd_dev->watch_state == RBD_WATCH_STATE_UNREGISTERED);
3382 ret = __rbd_register_watch(rbd_dev);
3386 rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
3387 rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
3390 mutex_unlock(&rbd_dev->watch_mutex);
3394 static void cancel_tasks_sync(struct rbd_device *rbd_dev)
3396 dout("%s rbd_dev %p\n", __func__, rbd_dev);
3398 cancel_delayed_work_sync(&rbd_dev->watch_dwork);
3399 cancel_work_sync(&rbd_dev->acquired_lock_work);
3400 cancel_work_sync(&rbd_dev->released_lock_work);
3401 cancel_delayed_work_sync(&rbd_dev->lock_dwork);
3402 cancel_work_sync(&rbd_dev->unlock_work);
3405 static void rbd_unregister_watch(struct rbd_device *rbd_dev)
3407 WARN_ON(waitqueue_active(&rbd_dev->lock_waitq));
3408 cancel_tasks_sync(rbd_dev);
3410 mutex_lock(&rbd_dev->watch_mutex);
3411 if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED)
3412 __rbd_unregister_watch(rbd_dev);
3413 rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
3414 mutex_unlock(&rbd_dev->watch_mutex);
3416 ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
3420 * lock_rwsem must be held for write
3422 static void rbd_reacquire_lock(struct rbd_device *rbd_dev)
3424 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3428 WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED);
3430 format_lock_cookie(rbd_dev, cookie);
3431 ret = ceph_cls_set_cookie(osdc, &rbd_dev->header_oid,
3432 &rbd_dev->header_oloc, RBD_LOCK_NAME,
3433 CEPH_CLS_LOCK_EXCLUSIVE, rbd_dev->lock_cookie,
3434 RBD_LOCK_TAG, cookie);
3436 if (ret != -EOPNOTSUPP)
3437 rbd_warn(rbd_dev, "failed to update lock cookie: %d",
3441 * Lock cookie cannot be updated on older OSDs, so do
3442 * a manual release and queue an acquire.
3444 if (rbd_release_lock(rbd_dev))
3445 queue_delayed_work(rbd_dev->task_wq,
3446 &rbd_dev->lock_dwork, 0);
3448 __rbd_lock(rbd_dev, cookie);
3452 static void rbd_reregister_watch(struct work_struct *work)
3454 struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
3455 struct rbd_device, watch_dwork);
3458 dout("%s rbd_dev %p\n", __func__, rbd_dev);
3460 mutex_lock(&rbd_dev->watch_mutex);
3461 if (rbd_dev->watch_state != RBD_WATCH_STATE_ERROR) {
3462 mutex_unlock(&rbd_dev->watch_mutex);
3466 ret = __rbd_register_watch(rbd_dev);
3468 rbd_warn(rbd_dev, "failed to reregister watch: %d", ret);
3469 if (ret == -EBLACKLISTED || ret == -ENOENT) {
3470 set_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags);
3471 wake_requests(rbd_dev, true);
3473 queue_delayed_work(rbd_dev->task_wq,
3474 &rbd_dev->watch_dwork,
3477 mutex_unlock(&rbd_dev->watch_mutex);
3481 rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
3482 rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
3483 mutex_unlock(&rbd_dev->watch_mutex);
3485 down_write(&rbd_dev->lock_rwsem);
3486 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED)
3487 rbd_reacquire_lock(rbd_dev);
3488 up_write(&rbd_dev->lock_rwsem);
3490 ret = rbd_dev_refresh(rbd_dev);
3492 rbd_warn(rbd_dev, "reregistration refresh failed: %d", ret);
3496 * Synchronous osd object method call. Returns the number of bytes
3497 * returned in the outbound buffer, or a negative error code.
3499 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
3500 struct ceph_object_id *oid,
3501 struct ceph_object_locator *oloc,
3502 const char *method_name,
3503 const void *outbound,
3504 size_t outbound_size,
3506 size_t inbound_size)
3508 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3509 struct page *req_page = NULL;
3510 struct page *reply_page;
3514 * Method calls are ultimately read operations. The result
3515 * should placed into the inbound buffer provided. They
3516 * also supply outbound data--parameters for the object
3517 * method. Currently if this is present it will be a
3521 if (outbound_size > PAGE_SIZE)
3524 req_page = alloc_page(GFP_KERNEL);
3528 memcpy(page_address(req_page), outbound, outbound_size);
3531 reply_page = alloc_page(GFP_KERNEL);
3534 __free_page(req_page);
3538 ret = ceph_osdc_call(osdc, oid, oloc, RBD_DRV_NAME, method_name,
3539 CEPH_OSD_FLAG_READ, req_page, outbound_size,
3540 reply_page, &inbound_size);
3542 memcpy(inbound, page_address(reply_page), inbound_size);
3547 __free_page(req_page);
3548 __free_page(reply_page);
3553 * lock_rwsem must be held for read
3555 static int rbd_wait_state_locked(struct rbd_device *rbd_dev, bool may_acquire)
3558 unsigned long timeout;
3561 if (test_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags))
3562 return -EBLACKLISTED;
3564 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED)
3568 rbd_warn(rbd_dev, "exclusive lock required");
3574 * Note the use of mod_delayed_work() in rbd_acquire_lock()
3575 * and cancel_delayed_work() in wake_requests().
3577 dout("%s rbd_dev %p queueing lock_dwork\n", __func__, rbd_dev);
3578 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
3579 prepare_to_wait_exclusive(&rbd_dev->lock_waitq, &wait,
3580 TASK_UNINTERRUPTIBLE);
3581 up_read(&rbd_dev->lock_rwsem);
3582 timeout = schedule_timeout(ceph_timeout_jiffies(
3583 rbd_dev->opts->lock_timeout));
3584 down_read(&rbd_dev->lock_rwsem);
3585 if (test_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags)) {
3586 ret = -EBLACKLISTED;
3590 rbd_warn(rbd_dev, "timed out waiting for lock");
3594 } while (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED);
3596 finish_wait(&rbd_dev->lock_waitq, &wait);
3600 static void rbd_queue_workfn(struct work_struct *work)
3602 struct request *rq = blk_mq_rq_from_pdu(work);
3603 struct rbd_device *rbd_dev = rq->q->queuedata;
3604 struct rbd_img_request *img_request;
3605 struct ceph_snap_context *snapc = NULL;
3606 u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
3607 u64 length = blk_rq_bytes(rq);
3608 enum obj_operation_type op_type;
3610 bool must_be_locked;
3613 switch (req_op(rq)) {
3614 case REQ_OP_DISCARD:
3615 case REQ_OP_WRITE_ZEROES:
3616 op_type = OBJ_OP_DISCARD;
3619 op_type = OBJ_OP_WRITE;
3622 op_type = OBJ_OP_READ;
3625 dout("%s: non-fs request type %d\n", __func__, req_op(rq));
3630 /* Ignore/skip any zero-length requests */
3633 dout("%s: zero-length request\n", __func__);
3638 rbd_assert(op_type == OBJ_OP_READ ||
3639 rbd_dev->spec->snap_id == CEPH_NOSNAP);
3642 * Quit early if the mapped snapshot no longer exists. It's
3643 * still possible the snapshot will have disappeared by the
3644 * time our request arrives at the osd, but there's no sense in
3645 * sending it if we already know.
3647 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3648 dout("request for non-existent snapshot");
3649 rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3654 if (offset && length > U64_MAX - offset + 1) {
3655 rbd_warn(rbd_dev, "bad request range (%llu~%llu)", offset,
3658 goto err_rq; /* Shouldn't happen */
3661 blk_mq_start_request(rq);
3663 down_read(&rbd_dev->header_rwsem);
3664 mapping_size = rbd_dev->mapping.size;
3665 if (op_type != OBJ_OP_READ) {
3666 snapc = rbd_dev->header.snapc;
3667 ceph_get_snap_context(snapc);
3669 up_read(&rbd_dev->header_rwsem);
3671 if (offset + length > mapping_size) {
3672 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
3673 length, mapping_size);
3679 (rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK) &&
3680 (op_type != OBJ_OP_READ || rbd_dev->opts->lock_on_read);
3681 if (must_be_locked) {
3682 down_read(&rbd_dev->lock_rwsem);
3683 result = rbd_wait_state_locked(rbd_dev,
3684 !rbd_dev->opts->exclusive);
3689 img_request = rbd_img_request_create(rbd_dev, op_type, snapc);
3694 img_request->rq = rq;
3695 snapc = NULL; /* img_request consumes a ref */
3697 if (op_type == OBJ_OP_DISCARD)
3698 result = rbd_img_fill_nodata(img_request, offset, length);
3700 result = rbd_img_fill_from_bio(img_request, offset, length,
3703 goto err_img_request;
3705 rbd_img_request_submit(img_request);
3707 up_read(&rbd_dev->lock_rwsem);
3711 rbd_img_request_put(img_request);
3714 up_read(&rbd_dev->lock_rwsem);
3717 rbd_warn(rbd_dev, "%s %llx at %llx result %d",
3718 obj_op_name(op_type), length, offset, result);
3719 ceph_put_snap_context(snapc);
3721 blk_mq_end_request(rq, errno_to_blk_status(result));
3724 static blk_status_t rbd_queue_rq(struct blk_mq_hw_ctx *hctx,
3725 const struct blk_mq_queue_data *bd)
3727 struct request *rq = bd->rq;
3728 struct work_struct *work = blk_mq_rq_to_pdu(rq);
3730 queue_work(rbd_wq, work);
3734 static void rbd_free_disk(struct rbd_device *rbd_dev)
3736 blk_cleanup_queue(rbd_dev->disk->queue);
3737 blk_mq_free_tag_set(&rbd_dev->tag_set);
3738 put_disk(rbd_dev->disk);
3739 rbd_dev->disk = NULL;
3742 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3743 struct ceph_object_id *oid,
3744 struct ceph_object_locator *oloc,
3745 void *buf, int buf_len)
3748 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3749 struct ceph_osd_request *req;
3750 struct page **pages;
3751 int num_pages = calc_pages_for(0, buf_len);
3754 req = ceph_osdc_alloc_request(osdc, NULL, 1, false, GFP_KERNEL);
3758 ceph_oid_copy(&req->r_base_oid, oid);
3759 ceph_oloc_copy(&req->r_base_oloc, oloc);
3760 req->r_flags = CEPH_OSD_FLAG_READ;
3762 ret = ceph_osdc_alloc_messages(req, GFP_KERNEL);
3766 pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
3767 if (IS_ERR(pages)) {
3768 ret = PTR_ERR(pages);
3772 osd_req_op_extent_init(req, 0, CEPH_OSD_OP_READ, 0, buf_len, 0, 0);
3773 osd_req_op_extent_osd_data_pages(req, 0, pages, buf_len, 0, false,
3776 ceph_osdc_start_request(osdc, req, false);
3777 ret = ceph_osdc_wait_request(osdc, req);
3779 ceph_copy_from_page_vector(pages, buf, 0, ret);
3782 ceph_osdc_put_request(req);
3787 * Read the complete header for the given rbd device. On successful
3788 * return, the rbd_dev->header field will contain up-to-date
3789 * information about the image.
3791 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3793 struct rbd_image_header_ondisk *ondisk = NULL;
3800 * The complete header will include an array of its 64-bit
3801 * snapshot ids, followed by the names of those snapshots as
3802 * a contiguous block of NUL-terminated strings. Note that
3803 * the number of snapshots could change by the time we read
3804 * it in, in which case we re-read it.
3811 size = sizeof (*ondisk);
3812 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3814 ondisk = kmalloc(size, GFP_KERNEL);
3818 ret = rbd_obj_read_sync(rbd_dev, &rbd_dev->header_oid,
3819 &rbd_dev->header_oloc, ondisk, size);
3822 if ((size_t)ret < size) {
3824 rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3828 if (!rbd_dev_ondisk_valid(ondisk)) {
3830 rbd_warn(rbd_dev, "invalid header");
3834 names_size = le64_to_cpu(ondisk->snap_names_len);
3835 want_count = snap_count;
3836 snap_count = le32_to_cpu(ondisk->snap_count);
3837 } while (snap_count != want_count);
3839 ret = rbd_header_from_disk(rbd_dev, ondisk);
3847 * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3848 * has disappeared from the (just updated) snapshot context.
3850 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3854 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3857 snap_id = rbd_dev->spec->snap_id;
3858 if (snap_id == CEPH_NOSNAP)
3861 if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3862 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3865 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
3870 * If EXISTS is not set, rbd_dev->disk may be NULL, so don't
3871 * try to update its size. If REMOVING is set, updating size
3872 * is just useless work since the device can't be opened.
3874 if (test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags) &&
3875 !test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) {
3876 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3877 dout("setting size to %llu sectors", (unsigned long long)size);
3878 set_capacity(rbd_dev->disk, size);
3879 revalidate_disk(rbd_dev->disk);
3883 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3888 down_write(&rbd_dev->header_rwsem);
3889 mapping_size = rbd_dev->mapping.size;
3891 ret = rbd_dev_header_info(rbd_dev);
3896 * If there is a parent, see if it has disappeared due to the
3897 * mapped image getting flattened.
3899 if (rbd_dev->parent) {
3900 ret = rbd_dev_v2_parent_info(rbd_dev);
3905 if (rbd_dev->spec->snap_id == CEPH_NOSNAP) {
3906 rbd_dev->mapping.size = rbd_dev->header.image_size;
3908 /* validate mapped snapshot's EXISTS flag */
3909 rbd_exists_validate(rbd_dev);
3913 up_write(&rbd_dev->header_rwsem);
3914 if (!ret && mapping_size != rbd_dev->mapping.size)
3915 rbd_dev_update_size(rbd_dev);
3920 static int rbd_init_request(struct blk_mq_tag_set *set, struct request *rq,
3921 unsigned int hctx_idx, unsigned int numa_node)
3923 struct work_struct *work = blk_mq_rq_to_pdu(rq);
3925 INIT_WORK(work, rbd_queue_workfn);
3929 static const struct blk_mq_ops rbd_mq_ops = {
3930 .queue_rq = rbd_queue_rq,
3931 .init_request = rbd_init_request,
3934 static int rbd_init_disk(struct rbd_device *rbd_dev)
3936 struct gendisk *disk;
3937 struct request_queue *q;
3938 unsigned int objset_bytes =
3939 rbd_dev->layout.object_size * rbd_dev->layout.stripe_count;
3942 /* create gendisk info */
3943 disk = alloc_disk(single_major ?
3944 (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
3945 RBD_MINORS_PER_MAJOR);
3949 snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3951 disk->major = rbd_dev->major;
3952 disk->first_minor = rbd_dev->minor;
3954 disk->flags |= GENHD_FL_EXT_DEVT;
3955 disk->fops = &rbd_bd_ops;
3956 disk->private_data = rbd_dev;
3958 memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set));
3959 rbd_dev->tag_set.ops = &rbd_mq_ops;
3960 rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth;
3961 rbd_dev->tag_set.numa_node = NUMA_NO_NODE;
3962 rbd_dev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
3963 rbd_dev->tag_set.nr_hw_queues = 1;
3964 rbd_dev->tag_set.cmd_size = sizeof(struct work_struct);
3966 err = blk_mq_alloc_tag_set(&rbd_dev->tag_set);
3970 q = blk_mq_init_queue(&rbd_dev->tag_set);
3976 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
3977 /* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */
3979 blk_queue_max_hw_sectors(q, objset_bytes >> SECTOR_SHIFT);
3980 q->limits.max_sectors = queue_max_hw_sectors(q);
3981 blk_queue_max_segments(q, USHRT_MAX);
3982 blk_queue_max_segment_size(q, UINT_MAX);
3983 blk_queue_io_min(q, objset_bytes);
3984 blk_queue_io_opt(q, objset_bytes);
3986 if (rbd_dev->opts->trim) {
3987 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
3988 q->limits.discard_granularity = objset_bytes;
3989 blk_queue_max_discard_sectors(q, objset_bytes >> SECTOR_SHIFT);
3990 blk_queue_max_write_zeroes_sectors(q, objset_bytes >> SECTOR_SHIFT);
3993 if (!ceph_test_opt(rbd_dev->rbd_client->client, NOCRC))
3994 q->backing_dev_info->capabilities |= BDI_CAP_STABLE_WRITES;
3997 * disk_release() expects a queue ref from add_disk() and will
3998 * put it. Hold an extra ref until add_disk() is called.
4000 WARN_ON(!blk_get_queue(q));
4002 q->queuedata = rbd_dev;
4004 rbd_dev->disk = disk;
4008 blk_mq_free_tag_set(&rbd_dev->tag_set);
4018 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
4020 return container_of(dev, struct rbd_device, dev);
4023 static ssize_t rbd_size_show(struct device *dev,
4024 struct device_attribute *attr, char *buf)
4026 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4028 return sprintf(buf, "%llu\n",
4029 (unsigned long long)rbd_dev->mapping.size);
4033 * Note this shows the features for whatever's mapped, which is not
4034 * necessarily the base image.
4036 static ssize_t rbd_features_show(struct device *dev,
4037 struct device_attribute *attr, char *buf)
4039 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4041 return sprintf(buf, "0x%016llx\n",
4042 (unsigned long long)rbd_dev->mapping.features);
4045 static ssize_t rbd_major_show(struct device *dev,
4046 struct device_attribute *attr, char *buf)
4048 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4051 return sprintf(buf, "%d\n", rbd_dev->major);
4053 return sprintf(buf, "(none)\n");
4056 static ssize_t rbd_minor_show(struct device *dev,
4057 struct device_attribute *attr, char *buf)
4059 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4061 return sprintf(buf, "%d\n", rbd_dev->minor);
4064 static ssize_t rbd_client_addr_show(struct device *dev,
4065 struct device_attribute *attr, char *buf)
4067 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4068 struct ceph_entity_addr *client_addr =
4069 ceph_client_addr(rbd_dev->rbd_client->client);
4071 return sprintf(buf, "%pISpc/%u\n", &client_addr->in_addr,
4072 le32_to_cpu(client_addr->nonce));
4075 static ssize_t rbd_client_id_show(struct device *dev,
4076 struct device_attribute *attr, char *buf)
4078 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4080 return sprintf(buf, "client%lld\n",
4081 ceph_client_gid(rbd_dev->rbd_client->client));
4084 static ssize_t rbd_cluster_fsid_show(struct device *dev,
4085 struct device_attribute *attr, char *buf)
4087 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4089 return sprintf(buf, "%pU\n", &rbd_dev->rbd_client->client->fsid);
4092 static ssize_t rbd_config_info_show(struct device *dev,
4093 struct device_attribute *attr, char *buf)
4095 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4097 return sprintf(buf, "%s\n", rbd_dev->config_info);
4100 static ssize_t rbd_pool_show(struct device *dev,
4101 struct device_attribute *attr, char *buf)
4103 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4105 return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
4108 static ssize_t rbd_pool_id_show(struct device *dev,
4109 struct device_attribute *attr, char *buf)
4111 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4113 return sprintf(buf, "%llu\n",
4114 (unsigned long long) rbd_dev->spec->pool_id);
4117 static ssize_t rbd_name_show(struct device *dev,
4118 struct device_attribute *attr, char *buf)
4120 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4122 if (rbd_dev->spec->image_name)
4123 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
4125 return sprintf(buf, "(unknown)\n");
4128 static ssize_t rbd_image_id_show(struct device *dev,
4129 struct device_attribute *attr, char *buf)
4131 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4133 return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
4137 * Shows the name of the currently-mapped snapshot (or
4138 * RBD_SNAP_HEAD_NAME for the base image).
4140 static ssize_t rbd_snap_show(struct device *dev,
4141 struct device_attribute *attr,
4144 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4146 return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
4149 static ssize_t rbd_snap_id_show(struct device *dev,
4150 struct device_attribute *attr, char *buf)
4152 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4154 return sprintf(buf, "%llu\n", rbd_dev->spec->snap_id);
4158 * For a v2 image, shows the chain of parent images, separated by empty
4159 * lines. For v1 images or if there is no parent, shows "(no parent
4162 static ssize_t rbd_parent_show(struct device *dev,
4163 struct device_attribute *attr,
4166 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4169 if (!rbd_dev->parent)
4170 return sprintf(buf, "(no parent image)\n");
4172 for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
4173 struct rbd_spec *spec = rbd_dev->parent_spec;
4175 count += sprintf(&buf[count], "%s"
4176 "pool_id %llu\npool_name %s\n"
4177 "image_id %s\nimage_name %s\n"
4178 "snap_id %llu\nsnap_name %s\n"
4180 !count ? "" : "\n", /* first? */
4181 spec->pool_id, spec->pool_name,
4182 spec->image_id, spec->image_name ?: "(unknown)",
4183 spec->snap_id, spec->snap_name,
4184 rbd_dev->parent_overlap);
4190 static ssize_t rbd_image_refresh(struct device *dev,
4191 struct device_attribute *attr,
4195 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4198 ret = rbd_dev_refresh(rbd_dev);
4205 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
4206 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
4207 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
4208 static DEVICE_ATTR(minor, S_IRUGO, rbd_minor_show, NULL);
4209 static DEVICE_ATTR(client_addr, S_IRUGO, rbd_client_addr_show, NULL);
4210 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
4211 static DEVICE_ATTR(cluster_fsid, S_IRUGO, rbd_cluster_fsid_show, NULL);
4212 static DEVICE_ATTR(config_info, S_IRUSR, rbd_config_info_show, NULL);
4213 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
4214 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
4215 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
4216 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
4217 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
4218 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
4219 static DEVICE_ATTR(snap_id, S_IRUGO, rbd_snap_id_show, NULL);
4220 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
4222 static struct attribute *rbd_attrs[] = {
4223 &dev_attr_size.attr,
4224 &dev_attr_features.attr,
4225 &dev_attr_major.attr,
4226 &dev_attr_minor.attr,
4227 &dev_attr_client_addr.attr,
4228 &dev_attr_client_id.attr,
4229 &dev_attr_cluster_fsid.attr,
4230 &dev_attr_config_info.attr,
4231 &dev_attr_pool.attr,
4232 &dev_attr_pool_id.attr,
4233 &dev_attr_name.attr,
4234 &dev_attr_image_id.attr,
4235 &dev_attr_current_snap.attr,
4236 &dev_attr_snap_id.attr,
4237 &dev_attr_parent.attr,
4238 &dev_attr_refresh.attr,
4242 static struct attribute_group rbd_attr_group = {
4246 static const struct attribute_group *rbd_attr_groups[] = {
4251 static void rbd_dev_release(struct device *dev);
4253 static const struct device_type rbd_device_type = {
4255 .groups = rbd_attr_groups,
4256 .release = rbd_dev_release,
4259 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
4261 kref_get(&spec->kref);
4266 static void rbd_spec_free(struct kref *kref);
4267 static void rbd_spec_put(struct rbd_spec *spec)
4270 kref_put(&spec->kref, rbd_spec_free);
4273 static struct rbd_spec *rbd_spec_alloc(void)
4275 struct rbd_spec *spec;
4277 spec = kzalloc(sizeof (*spec), GFP_KERNEL);
4281 spec->pool_id = CEPH_NOPOOL;
4282 spec->snap_id = CEPH_NOSNAP;
4283 kref_init(&spec->kref);
4288 static void rbd_spec_free(struct kref *kref)
4290 struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
4292 kfree(spec->pool_name);
4293 kfree(spec->image_id);
4294 kfree(spec->image_name);
4295 kfree(spec->snap_name);
4299 static void rbd_dev_free(struct rbd_device *rbd_dev)
4301 WARN_ON(rbd_dev->watch_state != RBD_WATCH_STATE_UNREGISTERED);
4302 WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_UNLOCKED);
4304 ceph_oid_destroy(&rbd_dev->header_oid);
4305 ceph_oloc_destroy(&rbd_dev->header_oloc);
4306 kfree(rbd_dev->config_info);
4308 rbd_put_client(rbd_dev->rbd_client);
4309 rbd_spec_put(rbd_dev->spec);
4310 kfree(rbd_dev->opts);
4314 static void rbd_dev_release(struct device *dev)
4316 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4317 bool need_put = !!rbd_dev->opts;
4320 destroy_workqueue(rbd_dev->task_wq);
4321 ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4324 rbd_dev_free(rbd_dev);
4327 * This is racy, but way better than putting module outside of
4328 * the release callback. The race window is pretty small, so
4329 * doing something similar to dm (dm-builtin.c) is overkill.
4332 module_put(THIS_MODULE);
4335 static struct rbd_device *__rbd_dev_create(struct rbd_client *rbdc,
4336 struct rbd_spec *spec)
4338 struct rbd_device *rbd_dev;
4340 rbd_dev = kzalloc(sizeof(*rbd_dev), GFP_KERNEL);
4344 spin_lock_init(&rbd_dev->lock);
4345 INIT_LIST_HEAD(&rbd_dev->node);
4346 init_rwsem(&rbd_dev->header_rwsem);
4348 rbd_dev->header.data_pool_id = CEPH_NOPOOL;
4349 ceph_oid_init(&rbd_dev->header_oid);
4350 rbd_dev->header_oloc.pool = spec->pool_id;
4352 mutex_init(&rbd_dev->watch_mutex);
4353 rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
4354 INIT_DELAYED_WORK(&rbd_dev->watch_dwork, rbd_reregister_watch);
4356 init_rwsem(&rbd_dev->lock_rwsem);
4357 rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
4358 INIT_WORK(&rbd_dev->acquired_lock_work, rbd_notify_acquired_lock);
4359 INIT_WORK(&rbd_dev->released_lock_work, rbd_notify_released_lock);
4360 INIT_DELAYED_WORK(&rbd_dev->lock_dwork, rbd_acquire_lock);
4361 INIT_WORK(&rbd_dev->unlock_work, rbd_release_lock_work);
4362 init_waitqueue_head(&rbd_dev->lock_waitq);
4364 rbd_dev->dev.bus = &rbd_bus_type;
4365 rbd_dev->dev.type = &rbd_device_type;
4366 rbd_dev->dev.parent = &rbd_root_dev;
4367 device_initialize(&rbd_dev->dev);
4369 rbd_dev->rbd_client = rbdc;
4370 rbd_dev->spec = spec;
4376 * Create a mapping rbd_dev.
4378 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
4379 struct rbd_spec *spec,
4380 struct rbd_options *opts)
4382 struct rbd_device *rbd_dev;
4384 rbd_dev = __rbd_dev_create(rbdc, spec);
4388 rbd_dev->opts = opts;
4390 /* get an id and fill in device name */
4391 rbd_dev->dev_id = ida_simple_get(&rbd_dev_id_ida, 0,
4392 minor_to_rbd_dev_id(1 << MINORBITS),
4394 if (rbd_dev->dev_id < 0)
4397 sprintf(rbd_dev->name, RBD_DRV_NAME "%d", rbd_dev->dev_id);
4398 rbd_dev->task_wq = alloc_ordered_workqueue("%s-tasks", WQ_MEM_RECLAIM,
4400 if (!rbd_dev->task_wq)
4403 /* we have a ref from do_rbd_add() */
4404 __module_get(THIS_MODULE);
4406 dout("%s rbd_dev %p dev_id %d\n", __func__, rbd_dev, rbd_dev->dev_id);
4410 ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4412 rbd_dev_free(rbd_dev);
4416 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
4419 put_device(&rbd_dev->dev);
4423 * Get the size and object order for an image snapshot, or if
4424 * snap_id is CEPH_NOSNAP, gets this information for the base
4427 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
4428 u8 *order, u64 *snap_size)
4430 __le64 snapid = cpu_to_le64(snap_id);
4435 } __attribute__ ((packed)) size_buf = { 0 };
4437 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
4438 &rbd_dev->header_oloc, "get_size",
4439 &snapid, sizeof(snapid),
4440 &size_buf, sizeof(size_buf));
4441 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4444 if (ret < sizeof (size_buf))
4448 *order = size_buf.order;
4449 dout(" order %u", (unsigned int)*order);
4451 *snap_size = le64_to_cpu(size_buf.size);
4453 dout(" snap_id 0x%016llx snap_size = %llu\n",
4454 (unsigned long long)snap_id,
4455 (unsigned long long)*snap_size);
4460 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
4462 return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
4463 &rbd_dev->header.obj_order,
4464 &rbd_dev->header.image_size);
4467 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
4473 reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
4477 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
4478 &rbd_dev->header_oloc, "get_object_prefix",
4479 NULL, 0, reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
4480 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4485 rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
4486 p + ret, NULL, GFP_NOIO);
4489 if (IS_ERR(rbd_dev->header.object_prefix)) {
4490 ret = PTR_ERR(rbd_dev->header.object_prefix);
4491 rbd_dev->header.object_prefix = NULL;
4493 dout(" object_prefix = %s\n", rbd_dev->header.object_prefix);
4501 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
4504 __le64 snapid = cpu_to_le64(snap_id);
4508 } __attribute__ ((packed)) features_buf = { 0 };
4512 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
4513 &rbd_dev->header_oloc, "get_features",
4514 &snapid, sizeof(snapid),
4515 &features_buf, sizeof(features_buf));
4516 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4519 if (ret < sizeof (features_buf))
4522 unsup = le64_to_cpu(features_buf.incompat) & ~RBD_FEATURES_SUPPORTED;
4524 rbd_warn(rbd_dev, "image uses unsupported features: 0x%llx",
4529 *snap_features = le64_to_cpu(features_buf.features);
4531 dout(" snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
4532 (unsigned long long)snap_id,
4533 (unsigned long long)*snap_features,
4534 (unsigned long long)le64_to_cpu(features_buf.incompat));
4539 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
4541 return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
4542 &rbd_dev->header.features);
4545 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
4547 struct rbd_spec *parent_spec;
4549 void *reply_buf = NULL;
4559 parent_spec = rbd_spec_alloc();
4563 size = sizeof (__le64) + /* pool_id */
4564 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX + /* image_id */
4565 sizeof (__le64) + /* snap_id */
4566 sizeof (__le64); /* overlap */
4567 reply_buf = kmalloc(size, GFP_KERNEL);
4573 snapid = cpu_to_le64(rbd_dev->spec->snap_id);
4574 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
4575 &rbd_dev->header_oloc, "get_parent",
4576 &snapid, sizeof(snapid), reply_buf, size);
4577 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4582 end = reply_buf + ret;
4584 ceph_decode_64_safe(&p, end, pool_id, out_err);
4585 if (pool_id == CEPH_NOPOOL) {
4587 * Either the parent never existed, or we have
4588 * record of it but the image got flattened so it no
4589 * longer has a parent. When the parent of a
4590 * layered image disappears we immediately set the
4591 * overlap to 0. The effect of this is that all new
4592 * requests will be treated as if the image had no
4595 if (rbd_dev->parent_overlap) {
4596 rbd_dev->parent_overlap = 0;
4597 rbd_dev_parent_put(rbd_dev);
4598 pr_info("%s: clone image has been flattened\n",
4599 rbd_dev->disk->disk_name);
4602 goto out; /* No parent? No problem. */
4605 /* The ceph file layout needs to fit pool id in 32 bits */
4608 if (pool_id > (u64)U32_MAX) {
4609 rbd_warn(NULL, "parent pool id too large (%llu > %u)",
4610 (unsigned long long)pool_id, U32_MAX);
4614 image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4615 if (IS_ERR(image_id)) {
4616 ret = PTR_ERR(image_id);
4619 ceph_decode_64_safe(&p, end, snap_id, out_err);
4620 ceph_decode_64_safe(&p, end, overlap, out_err);
4623 * The parent won't change (except when the clone is
4624 * flattened, already handled that). So we only need to
4625 * record the parent spec we have not already done so.
4627 if (!rbd_dev->parent_spec) {
4628 parent_spec->pool_id = pool_id;
4629 parent_spec->image_id = image_id;
4630 parent_spec->snap_id = snap_id;
4631 rbd_dev->parent_spec = parent_spec;
4632 parent_spec = NULL; /* rbd_dev now owns this */
4638 * We always update the parent overlap. If it's zero we issue
4639 * a warning, as we will proceed as if there was no parent.
4643 /* refresh, careful to warn just once */
4644 if (rbd_dev->parent_overlap)
4646 "clone now standalone (overlap became 0)");
4649 rbd_warn(rbd_dev, "clone is standalone (overlap 0)");
4652 rbd_dev->parent_overlap = overlap;
4658 rbd_spec_put(parent_spec);
4663 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
4667 __le64 stripe_count;
4668 } __attribute__ ((packed)) striping_info_buf = { 0 };
4669 size_t size = sizeof (striping_info_buf);
4673 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
4674 &rbd_dev->header_oloc, "get_stripe_unit_count",
4675 NULL, 0, &striping_info_buf, size);
4676 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4682 p = &striping_info_buf;
4683 rbd_dev->header.stripe_unit = ceph_decode_64(&p);
4684 rbd_dev->header.stripe_count = ceph_decode_64(&p);
4688 static int rbd_dev_v2_data_pool(struct rbd_device *rbd_dev)
4690 __le64 data_pool_id;
4693 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
4694 &rbd_dev->header_oloc, "get_data_pool",
4695 NULL, 0, &data_pool_id, sizeof(data_pool_id));
4698 if (ret < sizeof(data_pool_id))
4701 rbd_dev->header.data_pool_id = le64_to_cpu(data_pool_id);
4702 WARN_ON(rbd_dev->header.data_pool_id == CEPH_NOPOOL);
4706 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
4708 CEPH_DEFINE_OID_ONSTACK(oid);
4709 size_t image_id_size;
4714 void *reply_buf = NULL;
4716 char *image_name = NULL;
4719 rbd_assert(!rbd_dev->spec->image_name);
4721 len = strlen(rbd_dev->spec->image_id);
4722 image_id_size = sizeof (__le32) + len;
4723 image_id = kmalloc(image_id_size, GFP_KERNEL);
4728 end = image_id + image_id_size;
4729 ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
4731 size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
4732 reply_buf = kmalloc(size, GFP_KERNEL);
4736 ceph_oid_printf(&oid, "%s", RBD_DIRECTORY);
4737 ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
4738 "dir_get_name", image_id, image_id_size,
4743 end = reply_buf + ret;
4745 image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
4746 if (IS_ERR(image_name))
4749 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
4757 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4759 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4760 const char *snap_name;
4763 /* Skip over names until we find the one we are looking for */
4765 snap_name = rbd_dev->header.snap_names;
4766 while (which < snapc->num_snaps) {
4767 if (!strcmp(name, snap_name))
4768 return snapc->snaps[which];
4769 snap_name += strlen(snap_name) + 1;
4775 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4777 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4782 for (which = 0; !found && which < snapc->num_snaps; which++) {
4783 const char *snap_name;
4785 snap_id = snapc->snaps[which];
4786 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
4787 if (IS_ERR(snap_name)) {
4788 /* ignore no-longer existing snapshots */
4789 if (PTR_ERR(snap_name) == -ENOENT)
4794 found = !strcmp(name, snap_name);
4797 return found ? snap_id : CEPH_NOSNAP;
4801 * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4802 * no snapshot by that name is found, or if an error occurs.
4804 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4806 if (rbd_dev->image_format == 1)
4807 return rbd_v1_snap_id_by_name(rbd_dev, name);
4809 return rbd_v2_snap_id_by_name(rbd_dev, name);
4813 * An image being mapped will have everything but the snap id.
4815 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
4817 struct rbd_spec *spec = rbd_dev->spec;
4819 rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
4820 rbd_assert(spec->image_id && spec->image_name);
4821 rbd_assert(spec->snap_name);
4823 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
4826 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
4827 if (snap_id == CEPH_NOSNAP)
4830 spec->snap_id = snap_id;
4832 spec->snap_id = CEPH_NOSNAP;
4839 * A parent image will have all ids but none of the names.
4841 * All names in an rbd spec are dynamically allocated. It's OK if we
4842 * can't figure out the name for an image id.
4844 static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
4846 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4847 struct rbd_spec *spec = rbd_dev->spec;
4848 const char *pool_name;
4849 const char *image_name;
4850 const char *snap_name;
4853 rbd_assert(spec->pool_id != CEPH_NOPOOL);
4854 rbd_assert(spec->image_id);
4855 rbd_assert(spec->snap_id != CEPH_NOSNAP);
4857 /* Get the pool name; we have to make our own copy of this */
4859 pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
4861 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
4864 pool_name = kstrdup(pool_name, GFP_KERNEL);
4868 /* Fetch the image name; tolerate failure here */
4870 image_name = rbd_dev_image_name(rbd_dev);
4872 rbd_warn(rbd_dev, "unable to get image name");
4874 /* Fetch the snapshot name */
4876 snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
4877 if (IS_ERR(snap_name)) {
4878 ret = PTR_ERR(snap_name);
4882 spec->pool_name = pool_name;
4883 spec->image_name = image_name;
4884 spec->snap_name = snap_name;
4894 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
4903 struct ceph_snap_context *snapc;
4907 * We'll need room for the seq value (maximum snapshot id),
4908 * snapshot count, and array of that many snapshot ids.
4909 * For now we have a fixed upper limit on the number we're
4910 * prepared to receive.
4912 size = sizeof (__le64) + sizeof (__le32) +
4913 RBD_MAX_SNAP_COUNT * sizeof (__le64);
4914 reply_buf = kzalloc(size, GFP_KERNEL);
4918 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
4919 &rbd_dev->header_oloc, "get_snapcontext",
4920 NULL, 0, reply_buf, size);
4921 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4926 end = reply_buf + ret;
4928 ceph_decode_64_safe(&p, end, seq, out);
4929 ceph_decode_32_safe(&p, end, snap_count, out);
4932 * Make sure the reported number of snapshot ids wouldn't go
4933 * beyond the end of our buffer. But before checking that,
4934 * make sure the computed size of the snapshot context we
4935 * allocate is representable in a size_t.
4937 if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
4942 if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
4946 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
4952 for (i = 0; i < snap_count; i++)
4953 snapc->snaps[i] = ceph_decode_64(&p);
4955 ceph_put_snap_context(rbd_dev->header.snapc);
4956 rbd_dev->header.snapc = snapc;
4958 dout(" snap context seq = %llu, snap_count = %u\n",
4959 (unsigned long long)seq, (unsigned int)snap_count);
4966 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4977 size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4978 reply_buf = kmalloc(size, GFP_KERNEL);
4980 return ERR_PTR(-ENOMEM);
4982 snapid = cpu_to_le64(snap_id);
4983 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
4984 &rbd_dev->header_oloc, "get_snapshot_name",
4985 &snapid, sizeof(snapid), reply_buf, size);
4986 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4988 snap_name = ERR_PTR(ret);
4993 end = reply_buf + ret;
4994 snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4995 if (IS_ERR(snap_name))
4998 dout(" snap_id 0x%016llx snap_name = %s\n",
4999 (unsigned long long)snap_id, snap_name);
5006 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
5008 bool first_time = rbd_dev->header.object_prefix == NULL;
5011 ret = rbd_dev_v2_image_size(rbd_dev);
5016 ret = rbd_dev_v2_header_onetime(rbd_dev);
5021 ret = rbd_dev_v2_snap_context(rbd_dev);
5022 if (ret && first_time) {
5023 kfree(rbd_dev->header.object_prefix);
5024 rbd_dev->header.object_prefix = NULL;
5030 static int rbd_dev_header_info(struct rbd_device *rbd_dev)
5032 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5034 if (rbd_dev->image_format == 1)
5035 return rbd_dev_v1_header_info(rbd_dev);
5037 return rbd_dev_v2_header_info(rbd_dev);
5041 * Skips over white space at *buf, and updates *buf to point to the
5042 * first found non-space character (if any). Returns the length of
5043 * the token (string of non-white space characters) found. Note
5044 * that *buf must be terminated with '\0'.
5046 static inline size_t next_token(const char **buf)
5049 * These are the characters that produce nonzero for
5050 * isspace() in the "C" and "POSIX" locales.
5052 const char *spaces = " \f\n\r\t\v";
5054 *buf += strspn(*buf, spaces); /* Find start of token */
5056 return strcspn(*buf, spaces); /* Return token length */
5060 * Finds the next token in *buf, dynamically allocates a buffer big
5061 * enough to hold a copy of it, and copies the token into the new
5062 * buffer. The copy is guaranteed to be terminated with '\0'. Note
5063 * that a duplicate buffer is created even for a zero-length token.
5065 * Returns a pointer to the newly-allocated duplicate, or a null
5066 * pointer if memory for the duplicate was not available. If
5067 * the lenp argument is a non-null pointer, the length of the token
5068 * (not including the '\0') is returned in *lenp.
5070 * If successful, the *buf pointer will be updated to point beyond
5071 * the end of the found token.
5073 * Note: uses GFP_KERNEL for allocation.
5075 static inline char *dup_token(const char **buf, size_t *lenp)
5080 len = next_token(buf);
5081 dup = kmemdup(*buf, len + 1, GFP_KERNEL);
5084 *(dup + len) = '\0';
5094 * Parse the options provided for an "rbd add" (i.e., rbd image
5095 * mapping) request. These arrive via a write to /sys/bus/rbd/add,
5096 * and the data written is passed here via a NUL-terminated buffer.
5097 * Returns 0 if successful or an error code otherwise.
5099 * The information extracted from these options is recorded in
5100 * the other parameters which return dynamically-allocated
5103 * The address of a pointer that will refer to a ceph options
5104 * structure. Caller must release the returned pointer using
5105 * ceph_destroy_options() when it is no longer needed.
5107 * Address of an rbd options pointer. Fully initialized by
5108 * this function; caller must release with kfree().
5110 * Address of an rbd image specification pointer. Fully
5111 * initialized by this function based on parsed options.
5112 * Caller must release with rbd_spec_put().
5114 * The options passed take this form:
5115 * <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
5118 * A comma-separated list of one or more monitor addresses.
5119 * A monitor address is an ip address, optionally followed
5120 * by a port number (separated by a colon).
5121 * I.e.: ip1[:port1][,ip2[:port2]...]
5123 * A comma-separated list of ceph and/or rbd options.
5125 * The name of the rados pool containing the rbd image.
5127 * The name of the image in that pool to map.
5129 * An optional snapshot id. If provided, the mapping will
5130 * present data from the image at the time that snapshot was
5131 * created. The image head is used if no snapshot id is
5132 * provided. Snapshot mappings are always read-only.
5134 static int rbd_add_parse_args(const char *buf,
5135 struct ceph_options **ceph_opts,
5136 struct rbd_options **opts,
5137 struct rbd_spec **rbd_spec)
5141 const char *mon_addrs;
5143 size_t mon_addrs_size;
5144 struct rbd_spec *spec = NULL;
5145 struct rbd_options *rbd_opts = NULL;
5146 struct ceph_options *copts;
5149 /* The first four tokens are required */
5151 len = next_token(&buf);
5153 rbd_warn(NULL, "no monitor address(es) provided");
5157 mon_addrs_size = len + 1;
5161 options = dup_token(&buf, NULL);
5165 rbd_warn(NULL, "no options provided");
5169 spec = rbd_spec_alloc();
5173 spec->pool_name = dup_token(&buf, NULL);
5174 if (!spec->pool_name)
5176 if (!*spec->pool_name) {
5177 rbd_warn(NULL, "no pool name provided");
5181 spec->image_name = dup_token(&buf, NULL);
5182 if (!spec->image_name)
5184 if (!*spec->image_name) {
5185 rbd_warn(NULL, "no image name provided");
5190 * Snapshot name is optional; default is to use "-"
5191 * (indicating the head/no snapshot).
5193 len = next_token(&buf);
5195 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
5196 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
5197 } else if (len > RBD_MAX_SNAP_NAME_LEN) {
5198 ret = -ENAMETOOLONG;
5201 snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
5204 *(snap_name + len) = '\0';
5205 spec->snap_name = snap_name;
5207 /* Initialize all rbd options to the defaults */
5209 rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
5213 rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
5214 rbd_opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT;
5215 rbd_opts->lock_timeout = RBD_LOCK_TIMEOUT_DEFAULT;
5216 rbd_opts->lock_on_read = RBD_LOCK_ON_READ_DEFAULT;
5217 rbd_opts->exclusive = RBD_EXCLUSIVE_DEFAULT;
5218 rbd_opts->trim = RBD_TRIM_DEFAULT;
5220 copts = ceph_parse_options(options, mon_addrs,
5221 mon_addrs + mon_addrs_size - 1,
5222 parse_rbd_opts_token, rbd_opts);
5223 if (IS_ERR(copts)) {
5224 ret = PTR_ERR(copts);
5244 static void rbd_dev_image_unlock(struct rbd_device *rbd_dev)
5246 down_write(&rbd_dev->lock_rwsem);
5247 if (__rbd_is_lock_owner(rbd_dev))
5248 rbd_unlock(rbd_dev);
5249 up_write(&rbd_dev->lock_rwsem);
5252 static int rbd_add_acquire_lock(struct rbd_device *rbd_dev)
5256 if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK)) {
5257 rbd_warn(rbd_dev, "exclusive-lock feature is not enabled");
5261 /* FIXME: "rbd map --exclusive" should be in interruptible */
5262 down_read(&rbd_dev->lock_rwsem);
5263 ret = rbd_wait_state_locked(rbd_dev, true);
5264 up_read(&rbd_dev->lock_rwsem);
5266 rbd_warn(rbd_dev, "failed to acquire exclusive lock");
5274 * An rbd format 2 image has a unique identifier, distinct from the
5275 * name given to it by the user. Internally, that identifier is
5276 * what's used to specify the names of objects related to the image.
5278 * A special "rbd id" object is used to map an rbd image name to its
5279 * id. If that object doesn't exist, then there is no v2 rbd image
5280 * with the supplied name.
5282 * This function will record the given rbd_dev's image_id field if
5283 * it can be determined, and in that case will return 0. If any
5284 * errors occur a negative errno will be returned and the rbd_dev's
5285 * image_id field will be unchanged (and should be NULL).
5287 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
5291 CEPH_DEFINE_OID_ONSTACK(oid);
5296 * When probing a parent image, the image id is already
5297 * known (and the image name likely is not). There's no
5298 * need to fetch the image id again in this case. We
5299 * do still need to set the image format though.
5301 if (rbd_dev->spec->image_id) {
5302 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
5308 * First, see if the format 2 image id file exists, and if
5309 * so, get the image's persistent id from it.
5311 ret = ceph_oid_aprintf(&oid, GFP_KERNEL, "%s%s", RBD_ID_PREFIX,
5312 rbd_dev->spec->image_name);
5316 dout("rbd id object name is %s\n", oid.name);
5318 /* Response will be an encoded string, which includes a length */
5320 size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
5321 response = kzalloc(size, GFP_NOIO);
5327 /* If it doesn't exist we'll assume it's a format 1 image */
5329 ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
5331 response, RBD_IMAGE_ID_LEN_MAX);
5332 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5333 if (ret == -ENOENT) {
5334 image_id = kstrdup("", GFP_KERNEL);
5335 ret = image_id ? 0 : -ENOMEM;
5337 rbd_dev->image_format = 1;
5338 } else if (ret >= 0) {
5341 image_id = ceph_extract_encoded_string(&p, p + ret,
5343 ret = PTR_ERR_OR_ZERO(image_id);
5345 rbd_dev->image_format = 2;
5349 rbd_dev->spec->image_id = image_id;
5350 dout("image_id is %s\n", image_id);
5354 ceph_oid_destroy(&oid);
5359 * Undo whatever state changes are made by v1 or v2 header info
5362 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
5364 struct rbd_image_header *header;
5366 rbd_dev_parent_put(rbd_dev);
5368 /* Free dynamic fields from the header, then zero it out */
5370 header = &rbd_dev->header;
5371 ceph_put_snap_context(header->snapc);
5372 kfree(header->snap_sizes);
5373 kfree(header->snap_names);
5374 kfree(header->object_prefix);
5375 memset(header, 0, sizeof (*header));
5378 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
5382 ret = rbd_dev_v2_object_prefix(rbd_dev);
5387 * Get the and check features for the image. Currently the
5388 * features are assumed to never change.
5390 ret = rbd_dev_v2_features(rbd_dev);
5394 /* If the image supports fancy striping, get its parameters */
5396 if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
5397 ret = rbd_dev_v2_striping_info(rbd_dev);
5402 if (rbd_dev->header.features & RBD_FEATURE_DATA_POOL) {
5403 ret = rbd_dev_v2_data_pool(rbd_dev);
5408 rbd_init_layout(rbd_dev);
5412 rbd_dev->header.features = 0;
5413 kfree(rbd_dev->header.object_prefix);
5414 rbd_dev->header.object_prefix = NULL;
5419 * @depth is rbd_dev_image_probe() -> rbd_dev_probe_parent() ->
5420 * rbd_dev_image_probe() recursion depth, which means it's also the
5421 * length of the already discovered part of the parent chain.
5423 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev, int depth)
5425 struct rbd_device *parent = NULL;
5428 if (!rbd_dev->parent_spec)
5431 if (++depth > RBD_MAX_PARENT_CHAIN_LEN) {
5432 pr_info("parent chain is too long (%d)\n", depth);
5437 parent = __rbd_dev_create(rbd_dev->rbd_client, rbd_dev->parent_spec);
5444 * Images related by parent/child relationships always share
5445 * rbd_client and spec/parent_spec, so bump their refcounts.
5447 __rbd_get_client(rbd_dev->rbd_client);
5448 rbd_spec_get(rbd_dev->parent_spec);
5450 ret = rbd_dev_image_probe(parent, depth);
5454 rbd_dev->parent = parent;
5455 atomic_set(&rbd_dev->parent_ref, 1);
5459 rbd_dev_unparent(rbd_dev);
5460 rbd_dev_destroy(parent);
5464 static void rbd_dev_device_release(struct rbd_device *rbd_dev)
5466 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5467 rbd_dev_mapping_clear(rbd_dev);
5468 rbd_free_disk(rbd_dev);
5470 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5474 * rbd_dev->header_rwsem must be locked for write and will be unlocked
5477 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
5481 /* Record our major and minor device numbers. */
5483 if (!single_major) {
5484 ret = register_blkdev(0, rbd_dev->name);
5486 goto err_out_unlock;
5488 rbd_dev->major = ret;
5491 rbd_dev->major = rbd_major;
5492 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
5495 /* Set up the blkdev mapping. */
5497 ret = rbd_init_disk(rbd_dev);
5499 goto err_out_blkdev;
5501 ret = rbd_dev_mapping_set(rbd_dev);
5505 set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
5506 set_disk_ro(rbd_dev->disk, rbd_dev->opts->read_only);
5508 ret = dev_set_name(&rbd_dev->dev, "%d", rbd_dev->dev_id);
5510 goto err_out_mapping;
5512 set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5513 up_write(&rbd_dev->header_rwsem);
5517 rbd_dev_mapping_clear(rbd_dev);
5519 rbd_free_disk(rbd_dev);
5522 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5524 up_write(&rbd_dev->header_rwsem);
5528 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
5530 struct rbd_spec *spec = rbd_dev->spec;
5533 /* Record the header object name for this rbd image. */
5535 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5536 if (rbd_dev->image_format == 1)
5537 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
5538 spec->image_name, RBD_SUFFIX);
5540 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
5541 RBD_HEADER_PREFIX, spec->image_id);
5546 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
5548 rbd_dev_unprobe(rbd_dev);
5550 rbd_unregister_watch(rbd_dev);
5551 rbd_dev->image_format = 0;
5552 kfree(rbd_dev->spec->image_id);
5553 rbd_dev->spec->image_id = NULL;
5557 * Probe for the existence of the header object for the given rbd
5558 * device. If this image is the one being mapped (i.e., not a
5559 * parent), initiate a watch on its header object before using that
5560 * object to get detailed information about the rbd image.
5562 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth)
5567 * Get the id from the image id object. Unless there's an
5568 * error, rbd_dev->spec->image_id will be filled in with
5569 * a dynamically-allocated string, and rbd_dev->image_format
5570 * will be set to either 1 or 2.
5572 ret = rbd_dev_image_id(rbd_dev);
5576 ret = rbd_dev_header_name(rbd_dev);
5578 goto err_out_format;
5581 ret = rbd_register_watch(rbd_dev);
5584 pr_info("image %s/%s does not exist\n",
5585 rbd_dev->spec->pool_name,
5586 rbd_dev->spec->image_name);
5587 goto err_out_format;
5591 ret = rbd_dev_header_info(rbd_dev);
5596 * If this image is the one being mapped, we have pool name and
5597 * id, image name and id, and snap name - need to fill snap id.
5598 * Otherwise this is a parent image, identified by pool, image
5599 * and snap ids - need to fill in names for those ids.
5602 ret = rbd_spec_fill_snap_id(rbd_dev);
5604 ret = rbd_spec_fill_names(rbd_dev);
5607 pr_info("snap %s/%s@%s does not exist\n",
5608 rbd_dev->spec->pool_name,
5609 rbd_dev->spec->image_name,
5610 rbd_dev->spec->snap_name);
5614 if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
5615 ret = rbd_dev_v2_parent_info(rbd_dev);
5620 * Need to warn users if this image is the one being
5621 * mapped and has a parent.
5623 if (!depth && rbd_dev->parent_spec)
5625 "WARNING: kernel layering is EXPERIMENTAL!");
5628 ret = rbd_dev_probe_parent(rbd_dev, depth);
5632 dout("discovered format %u image, header name is %s\n",
5633 rbd_dev->image_format, rbd_dev->header_oid.name);
5637 rbd_dev_unprobe(rbd_dev);
5640 rbd_unregister_watch(rbd_dev);
5642 rbd_dev->image_format = 0;
5643 kfree(rbd_dev->spec->image_id);
5644 rbd_dev->spec->image_id = NULL;
5648 static ssize_t do_rbd_add(struct bus_type *bus,
5652 struct rbd_device *rbd_dev = NULL;
5653 struct ceph_options *ceph_opts = NULL;
5654 struct rbd_options *rbd_opts = NULL;
5655 struct rbd_spec *spec = NULL;
5656 struct rbd_client *rbdc;
5659 if (!try_module_get(THIS_MODULE))
5662 /* parse add command */
5663 rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
5667 rbdc = rbd_get_client(ceph_opts);
5674 rc = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, spec->pool_name);
5677 pr_info("pool %s does not exist\n", spec->pool_name);
5678 goto err_out_client;
5680 spec->pool_id = (u64)rc;
5682 rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts);
5685 goto err_out_client;
5687 rbdc = NULL; /* rbd_dev now owns this */
5688 spec = NULL; /* rbd_dev now owns this */
5689 rbd_opts = NULL; /* rbd_dev now owns this */
5691 rbd_dev->config_info = kstrdup(buf, GFP_KERNEL);
5692 if (!rbd_dev->config_info) {
5694 goto err_out_rbd_dev;
5697 down_write(&rbd_dev->header_rwsem);
5698 rc = rbd_dev_image_probe(rbd_dev, 0);
5700 up_write(&rbd_dev->header_rwsem);
5701 goto err_out_rbd_dev;
5704 /* If we are mapping a snapshot it must be marked read-only */
5705 if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
5706 rbd_dev->opts->read_only = true;
5708 rc = rbd_dev_device_setup(rbd_dev);
5710 goto err_out_image_probe;
5712 if (rbd_dev->opts->exclusive) {
5713 rc = rbd_add_acquire_lock(rbd_dev);
5715 goto err_out_device_setup;
5718 /* Everything's ready. Announce the disk to the world. */
5720 rc = device_add(&rbd_dev->dev);
5722 goto err_out_image_lock;
5724 add_disk(rbd_dev->disk);
5725 /* see rbd_init_disk() */
5726 blk_put_queue(rbd_dev->disk->queue);
5728 spin_lock(&rbd_dev_list_lock);
5729 list_add_tail(&rbd_dev->node, &rbd_dev_list);
5730 spin_unlock(&rbd_dev_list_lock);
5732 pr_info("%s: capacity %llu features 0x%llx\n", rbd_dev->disk->disk_name,
5733 (unsigned long long)get_capacity(rbd_dev->disk) << SECTOR_SHIFT,
5734 rbd_dev->header.features);
5737 module_put(THIS_MODULE);
5741 rbd_dev_image_unlock(rbd_dev);
5742 err_out_device_setup:
5743 rbd_dev_device_release(rbd_dev);
5744 err_out_image_probe:
5745 rbd_dev_image_release(rbd_dev);
5747 rbd_dev_destroy(rbd_dev);
5749 rbd_put_client(rbdc);
5756 static ssize_t rbd_add(struct bus_type *bus,
5763 return do_rbd_add(bus, buf, count);
5766 static ssize_t rbd_add_single_major(struct bus_type *bus,
5770 return do_rbd_add(bus, buf, count);
5773 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5775 while (rbd_dev->parent) {
5776 struct rbd_device *first = rbd_dev;
5777 struct rbd_device *second = first->parent;
5778 struct rbd_device *third;
5781 * Follow to the parent with no grandparent and
5784 while (second && (third = second->parent)) {
5789 rbd_dev_image_release(second);
5790 rbd_dev_destroy(second);
5791 first->parent = NULL;
5792 first->parent_overlap = 0;
5794 rbd_assert(first->parent_spec);
5795 rbd_spec_put(first->parent_spec);
5796 first->parent_spec = NULL;
5800 static ssize_t do_rbd_remove(struct bus_type *bus,
5804 struct rbd_device *rbd_dev = NULL;
5805 struct list_head *tmp;
5808 bool already = false;
5814 sscanf(buf, "%d %5s", &dev_id, opt_buf);
5816 pr_err("dev_id out of range\n");
5819 if (opt_buf[0] != '\0') {
5820 if (!strcmp(opt_buf, "force")) {
5823 pr_err("bad remove option at '%s'\n", opt_buf);
5829 spin_lock(&rbd_dev_list_lock);
5830 list_for_each(tmp, &rbd_dev_list) {
5831 rbd_dev = list_entry(tmp, struct rbd_device, node);
5832 if (rbd_dev->dev_id == dev_id) {
5838 spin_lock_irq(&rbd_dev->lock);
5839 if (rbd_dev->open_count && !force)
5842 already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
5844 spin_unlock_irq(&rbd_dev->lock);
5846 spin_unlock(&rbd_dev_list_lock);
5847 if (ret < 0 || already)
5852 * Prevent new IO from being queued and wait for existing
5853 * IO to complete/fail.
5855 blk_mq_freeze_queue(rbd_dev->disk->queue);
5856 blk_set_queue_dying(rbd_dev->disk->queue);
5859 del_gendisk(rbd_dev->disk);
5860 spin_lock(&rbd_dev_list_lock);
5861 list_del_init(&rbd_dev->node);
5862 spin_unlock(&rbd_dev_list_lock);
5863 device_del(&rbd_dev->dev);
5865 rbd_dev_image_unlock(rbd_dev);
5866 rbd_dev_device_release(rbd_dev);
5867 rbd_dev_image_release(rbd_dev);
5868 rbd_dev_destroy(rbd_dev);
5872 static ssize_t rbd_remove(struct bus_type *bus,
5879 return do_rbd_remove(bus, buf, count);
5882 static ssize_t rbd_remove_single_major(struct bus_type *bus,
5886 return do_rbd_remove(bus, buf, count);
5890 * create control files in sysfs
5893 static int rbd_sysfs_init(void)
5897 ret = device_register(&rbd_root_dev);
5901 ret = bus_register(&rbd_bus_type);
5903 device_unregister(&rbd_root_dev);
5908 static void rbd_sysfs_cleanup(void)
5910 bus_unregister(&rbd_bus_type);
5911 device_unregister(&rbd_root_dev);
5914 static int rbd_slab_init(void)
5916 rbd_assert(!rbd_img_request_cache);
5917 rbd_img_request_cache = KMEM_CACHE(rbd_img_request, 0);
5918 if (!rbd_img_request_cache)
5921 rbd_assert(!rbd_obj_request_cache);
5922 rbd_obj_request_cache = KMEM_CACHE(rbd_obj_request, 0);
5923 if (!rbd_obj_request_cache)
5929 kmem_cache_destroy(rbd_img_request_cache);
5930 rbd_img_request_cache = NULL;
5934 static void rbd_slab_exit(void)
5936 rbd_assert(rbd_obj_request_cache);
5937 kmem_cache_destroy(rbd_obj_request_cache);
5938 rbd_obj_request_cache = NULL;
5940 rbd_assert(rbd_img_request_cache);
5941 kmem_cache_destroy(rbd_img_request_cache);
5942 rbd_img_request_cache = NULL;
5945 static int __init rbd_init(void)
5949 if (!libceph_compatible(NULL)) {
5950 rbd_warn(NULL, "libceph incompatibility (quitting)");
5954 rc = rbd_slab_init();
5959 * The number of active work items is limited by the number of
5960 * rbd devices * queue depth, so leave @max_active at default.
5962 rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0);
5969 rbd_major = register_blkdev(0, RBD_DRV_NAME);
5970 if (rbd_major < 0) {
5976 rc = rbd_sysfs_init();
5978 goto err_out_blkdev;
5981 pr_info("loaded (major %d)\n", rbd_major);
5983 pr_info("loaded\n");
5989 unregister_blkdev(rbd_major, RBD_DRV_NAME);
5991 destroy_workqueue(rbd_wq);
5997 static void __exit rbd_exit(void)
5999 ida_destroy(&rbd_dev_id_ida);
6000 rbd_sysfs_cleanup();
6002 unregister_blkdev(rbd_major, RBD_DRV_NAME);
6003 destroy_workqueue(rbd_wq);
6007 module_init(rbd_init);
6008 module_exit(rbd_exit);
6013 /* following authorship retained from original osdblk.c */
6016 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
6017 MODULE_LICENSE("GPL");