1 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
2 * Copyright (c) 2016 Facebook
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 #include <linux/kernel.h>
14 #include <linux/types.h>
15 #include <linux/slab.h>
16 #include <linux/bpf.h>
17 #include <linux/bpf_verifier.h>
18 #include <linux/filter.h>
19 #include <net/netlink.h>
20 #include <linux/file.h>
21 #include <linux/vmalloc.h>
22 #include <linux/stringify.h>
26 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
27 #define BPF_PROG_TYPE(_id, _name) \
28 [_id] = & _name ## _verifier_ops,
29 #define BPF_MAP_TYPE(_id, _ops)
30 #include <linux/bpf_types.h>
35 /* bpf_check() is a static code analyzer that walks eBPF program
36 * instruction by instruction and updates register/stack state.
37 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
39 * The first pass is depth-first-search to check that the program is a DAG.
40 * It rejects the following programs:
41 * - larger than BPF_MAXINSNS insns
42 * - if loop is present (detected via back-edge)
43 * - unreachable insns exist (shouldn't be a forest. program = one function)
44 * - out of bounds or malformed jumps
45 * The second pass is all possible path descent from the 1st insn.
46 * Since it's analyzing all pathes through the program, the length of the
47 * analysis is limited to 64k insn, which may be hit even if total number of
48 * insn is less then 4K, but there are too many branches that change stack/regs.
49 * Number of 'branches to be analyzed' is limited to 1k
51 * On entry to each instruction, each register has a type, and the instruction
52 * changes the types of the registers depending on instruction semantics.
53 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
56 * All registers are 64-bit.
57 * R0 - return register
58 * R1-R5 argument passing registers
59 * R6-R9 callee saved registers
60 * R10 - frame pointer read-only
62 * At the start of BPF program the register R1 contains a pointer to bpf_context
63 * and has type PTR_TO_CTX.
65 * Verifier tracks arithmetic operations on pointers in case:
66 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
67 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
68 * 1st insn copies R10 (which has FRAME_PTR) type into R1
69 * and 2nd arithmetic instruction is pattern matched to recognize
70 * that it wants to construct a pointer to some element within stack.
71 * So after 2nd insn, the register R1 has type PTR_TO_STACK
72 * (and -20 constant is saved for further stack bounds checking).
73 * Meaning that this reg is a pointer to stack plus known immediate constant.
75 * Most of the time the registers have SCALAR_VALUE type, which
76 * means the register has some value, but it's not a valid pointer.
77 * (like pointer plus pointer becomes SCALAR_VALUE type)
79 * When verifier sees load or store instructions the type of base register
80 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK. These are three pointer
81 * types recognized by check_mem_access() function.
83 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
84 * and the range of [ptr, ptr + map's value_size) is accessible.
86 * registers used to pass values to function calls are checked against
87 * function argument constraints.
89 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
90 * It means that the register type passed to this function must be
91 * PTR_TO_STACK and it will be used inside the function as
92 * 'pointer to map element key'
94 * For example the argument constraints for bpf_map_lookup_elem():
95 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
96 * .arg1_type = ARG_CONST_MAP_PTR,
97 * .arg2_type = ARG_PTR_TO_MAP_KEY,
99 * ret_type says that this function returns 'pointer to map elem value or null'
100 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
101 * 2nd argument should be a pointer to stack, which will be used inside
102 * the helper function as a pointer to map element key.
104 * On the kernel side the helper function looks like:
105 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
107 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
108 * void *key = (void *) (unsigned long) r2;
111 * here kernel can access 'key' and 'map' pointers safely, knowing that
112 * [key, key + map->key_size) bytes are valid and were initialized on
113 * the stack of eBPF program.
116 * Corresponding eBPF program may look like:
117 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
118 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
119 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
120 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
121 * here verifier looks at prototype of map_lookup_elem() and sees:
122 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
123 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
125 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
126 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
127 * and were initialized prior to this call.
128 * If it's ok, then verifier allows this BPF_CALL insn and looks at
129 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
130 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
131 * returns ether pointer to map value or NULL.
133 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
134 * insn, the register holding that pointer in the true branch changes state to
135 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
136 * branch. See check_cond_jmp_op().
138 * After the call R0 is set to return type of the function and registers R1-R5
139 * are set to NOT_INIT to indicate that they are no longer readable.
142 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
143 struct bpf_verifier_stack_elem {
144 /* verifer state is 'st'
145 * before processing instruction 'insn_idx'
146 * and after processing instruction 'prev_insn_idx'
148 struct bpf_verifier_state st;
151 struct bpf_verifier_stack_elem *next;
154 #define BPF_COMPLEXITY_LIMIT_INSNS 131072
155 #define BPF_COMPLEXITY_LIMIT_STACK 1024
157 #define BPF_MAP_PTR_POISON ((void *)0xeB9F + POISON_POINTER_DELTA)
159 struct bpf_call_arg_meta {
160 struct bpf_map *map_ptr;
167 static DEFINE_MUTEX(bpf_verifier_lock);
169 /* log_level controls verbosity level of eBPF verifier.
170 * verbose() is used to dump the verification trace to the log, so the user
171 * can figure out what's wrong with the program
173 static __printf(2, 3) void verbose(struct bpf_verifier_env *env,
174 const char *fmt, ...)
176 struct bpf_verifer_log *log = &env->log;
180 if (!log->level || !log->ubuf || bpf_verifier_log_full(log))
184 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
187 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
188 "verifier log line truncated - local buffer too short\n");
190 n = min(log->len_total - log->len_used - 1, n);
193 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
199 static bool type_is_pkt_pointer(enum bpf_reg_type type)
201 return type == PTR_TO_PACKET ||
202 type == PTR_TO_PACKET_META;
205 /* string representation of 'enum bpf_reg_type' */
206 static const char * const reg_type_str[] = {
208 [SCALAR_VALUE] = "inv",
209 [PTR_TO_CTX] = "ctx",
210 [CONST_PTR_TO_MAP] = "map_ptr",
211 [PTR_TO_MAP_VALUE] = "map_value",
212 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
213 [PTR_TO_STACK] = "fp",
214 [PTR_TO_PACKET] = "pkt",
215 [PTR_TO_PACKET_META] = "pkt_meta",
216 [PTR_TO_PACKET_END] = "pkt_end",
219 static void print_verifier_state(struct bpf_verifier_env *env,
220 struct bpf_verifier_state *state)
222 struct bpf_reg_state *reg;
226 for (i = 0; i < MAX_BPF_REG; i++) {
227 reg = &state->regs[i];
231 verbose(env, " R%d=%s", i, reg_type_str[t]);
232 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
233 tnum_is_const(reg->var_off)) {
234 /* reg->off should be 0 for SCALAR_VALUE */
235 verbose(env, "%lld", reg->var_off.value + reg->off);
237 verbose(env, "(id=%d", reg->id);
238 if (t != SCALAR_VALUE)
239 verbose(env, ",off=%d", reg->off);
240 if (type_is_pkt_pointer(t))
241 verbose(env, ",r=%d", reg->range);
242 else if (t == CONST_PTR_TO_MAP ||
243 t == PTR_TO_MAP_VALUE ||
244 t == PTR_TO_MAP_VALUE_OR_NULL)
245 verbose(env, ",ks=%d,vs=%d",
246 reg->map_ptr->key_size,
247 reg->map_ptr->value_size);
248 if (tnum_is_const(reg->var_off)) {
249 /* Typically an immediate SCALAR_VALUE, but
250 * could be a pointer whose offset is too big
253 verbose(env, ",imm=%llx", reg->var_off.value);
255 if (reg->smin_value != reg->umin_value &&
256 reg->smin_value != S64_MIN)
257 verbose(env, ",smin_value=%lld",
258 (long long)reg->smin_value);
259 if (reg->smax_value != reg->umax_value &&
260 reg->smax_value != S64_MAX)
261 verbose(env, ",smax_value=%lld",
262 (long long)reg->smax_value);
263 if (reg->umin_value != 0)
264 verbose(env, ",umin_value=%llu",
265 (unsigned long long)reg->umin_value);
266 if (reg->umax_value != U64_MAX)
267 verbose(env, ",umax_value=%llu",
268 (unsigned long long)reg->umax_value);
269 if (!tnum_is_unknown(reg->var_off)) {
272 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
273 verbose(env, ",var_off=%s", tn_buf);
279 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
280 if (state->stack[i].slot_type[0] == STACK_SPILL)
281 verbose(env, " fp%d=%s",
282 -MAX_BPF_STACK + i * BPF_REG_SIZE,
283 reg_type_str[state->stack[i].spilled_ptr.type]);
288 static int copy_stack_state(struct bpf_verifier_state *dst,
289 const struct bpf_verifier_state *src)
293 if (WARN_ON_ONCE(dst->allocated_stack < src->allocated_stack)) {
294 /* internal bug, make state invalid to reject the program */
295 memset(dst, 0, sizeof(*dst));
298 memcpy(dst->stack, src->stack,
299 sizeof(*src->stack) * (src->allocated_stack / BPF_REG_SIZE));
303 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to
304 * make it consume minimal amount of memory. check_stack_write() access from
305 * the program calls into realloc_verifier_state() to grow the stack size.
306 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
307 * which this function copies over. It points to previous bpf_verifier_state
308 * which is never reallocated
310 static int realloc_verifier_state(struct bpf_verifier_state *state, int size,
313 u32 old_size = state->allocated_stack;
314 struct bpf_stack_state *new_stack;
315 int slot = size / BPF_REG_SIZE;
317 if (size <= old_size || !size) {
320 state->allocated_stack = slot * BPF_REG_SIZE;
321 if (!size && old_size) {
327 new_stack = kmalloc_array(slot, sizeof(struct bpf_stack_state),
333 memcpy(new_stack, state->stack,
334 sizeof(*new_stack) * (old_size / BPF_REG_SIZE));
335 memset(new_stack + old_size / BPF_REG_SIZE, 0,
336 sizeof(*new_stack) * (size - old_size) / BPF_REG_SIZE);
338 state->allocated_stack = slot * BPF_REG_SIZE;
340 state->stack = new_stack;
344 static void free_verifier_state(struct bpf_verifier_state *state,
352 /* copy verifier state from src to dst growing dst stack space
353 * when necessary to accommodate larger src stack
355 static int copy_verifier_state(struct bpf_verifier_state *dst,
356 const struct bpf_verifier_state *src)
360 err = realloc_verifier_state(dst, src->allocated_stack, false);
363 memcpy(dst, src, offsetof(struct bpf_verifier_state, allocated_stack));
364 return copy_stack_state(dst, src);
367 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
370 struct bpf_verifier_state *cur = env->cur_state;
371 struct bpf_verifier_stack_elem *elem, *head = env->head;
374 if (env->head == NULL)
378 err = copy_verifier_state(cur, &head->st);
383 *insn_idx = head->insn_idx;
385 *prev_insn_idx = head->prev_insn_idx;
387 free_verifier_state(&head->st, false);
394 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
395 int insn_idx, int prev_insn_idx)
397 struct bpf_verifier_state *cur = env->cur_state;
398 struct bpf_verifier_stack_elem *elem;
401 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
405 elem->insn_idx = insn_idx;
406 elem->prev_insn_idx = prev_insn_idx;
407 elem->next = env->head;
410 err = copy_verifier_state(&elem->st, cur);
413 if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
414 verbose(env, "BPF program is too complex\n");
419 /* pop all elements and return */
420 while (!pop_stack(env, NULL, NULL));
424 #define CALLER_SAVED_REGS 6
425 static const int caller_saved[CALLER_SAVED_REGS] = {
426 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
429 static void __mark_reg_not_init(struct bpf_reg_state *reg);
431 /* Mark the unknown part of a register (variable offset or scalar value) as
432 * known to have the value @imm.
434 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
437 reg->var_off = tnum_const(imm);
438 reg->smin_value = (s64)imm;
439 reg->smax_value = (s64)imm;
440 reg->umin_value = imm;
441 reg->umax_value = imm;
444 /* Mark the 'variable offset' part of a register as zero. This should be
445 * used only on registers holding a pointer type.
447 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
449 __mark_reg_known(reg, 0);
452 static void mark_reg_known_zero(struct bpf_verifier_env *env,
453 struct bpf_reg_state *regs, u32 regno)
455 if (WARN_ON(regno >= MAX_BPF_REG)) {
456 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
457 /* Something bad happened, let's kill all regs */
458 for (regno = 0; regno < MAX_BPF_REG; regno++)
459 __mark_reg_not_init(regs + regno);
462 __mark_reg_known_zero(regs + regno);
465 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
467 return type_is_pkt_pointer(reg->type);
470 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
472 return reg_is_pkt_pointer(reg) ||
473 reg->type == PTR_TO_PACKET_END;
476 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
477 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
478 enum bpf_reg_type which)
480 /* The register can already have a range from prior markings.
481 * This is fine as long as it hasn't been advanced from its
484 return reg->type == which &&
487 tnum_equals_const(reg->var_off, 0);
490 /* Attempts to improve min/max values based on var_off information */
491 static void __update_reg_bounds(struct bpf_reg_state *reg)
493 /* min signed is max(sign bit) | min(other bits) */
494 reg->smin_value = max_t(s64, reg->smin_value,
495 reg->var_off.value | (reg->var_off.mask & S64_MIN));
496 /* max signed is min(sign bit) | max(other bits) */
497 reg->smax_value = min_t(s64, reg->smax_value,
498 reg->var_off.value | (reg->var_off.mask & S64_MAX));
499 reg->umin_value = max(reg->umin_value, reg->var_off.value);
500 reg->umax_value = min(reg->umax_value,
501 reg->var_off.value | reg->var_off.mask);
504 /* Uses signed min/max values to inform unsigned, and vice-versa */
505 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
507 /* Learn sign from signed bounds.
508 * If we cannot cross the sign boundary, then signed and unsigned bounds
509 * are the same, so combine. This works even in the negative case, e.g.
510 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
512 if (reg->smin_value >= 0 || reg->smax_value < 0) {
513 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
515 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
519 /* Learn sign from unsigned bounds. Signed bounds cross the sign
520 * boundary, so we must be careful.
522 if ((s64)reg->umax_value >= 0) {
523 /* Positive. We can't learn anything from the smin, but smax
524 * is positive, hence safe.
526 reg->smin_value = reg->umin_value;
527 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
529 } else if ((s64)reg->umin_value < 0) {
530 /* Negative. We can't learn anything from the smax, but smin
531 * is negative, hence safe.
533 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
535 reg->smax_value = reg->umax_value;
539 /* Attempts to improve var_off based on unsigned min/max information */
540 static void __reg_bound_offset(struct bpf_reg_state *reg)
542 reg->var_off = tnum_intersect(reg->var_off,
543 tnum_range(reg->umin_value,
547 /* Reset the min/max bounds of a register */
548 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
550 reg->smin_value = S64_MIN;
551 reg->smax_value = S64_MAX;
553 reg->umax_value = U64_MAX;
556 /* Mark a register as having a completely unknown (scalar) value. */
557 static void __mark_reg_unknown(struct bpf_reg_state *reg)
559 reg->type = SCALAR_VALUE;
562 reg->var_off = tnum_unknown;
563 __mark_reg_unbounded(reg);
566 static void mark_reg_unknown(struct bpf_verifier_env *env,
567 struct bpf_reg_state *regs, u32 regno)
569 if (WARN_ON(regno >= MAX_BPF_REG)) {
570 verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
571 /* Something bad happened, let's kill all regs */
572 for (regno = 0; regno < MAX_BPF_REG; regno++)
573 __mark_reg_not_init(regs + regno);
576 __mark_reg_unknown(regs + regno);
579 static void __mark_reg_not_init(struct bpf_reg_state *reg)
581 __mark_reg_unknown(reg);
582 reg->type = NOT_INIT;
585 static void mark_reg_not_init(struct bpf_verifier_env *env,
586 struct bpf_reg_state *regs, u32 regno)
588 if (WARN_ON(regno >= MAX_BPF_REG)) {
589 verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
590 /* Something bad happened, let's kill all regs */
591 for (regno = 0; regno < MAX_BPF_REG; regno++)
592 __mark_reg_not_init(regs + regno);
595 __mark_reg_not_init(regs + regno);
598 static void init_reg_state(struct bpf_verifier_env *env,
599 struct bpf_reg_state *regs)
603 for (i = 0; i < MAX_BPF_REG; i++) {
604 mark_reg_not_init(env, regs, i);
605 regs[i].live = REG_LIVE_NONE;
609 regs[BPF_REG_FP].type = PTR_TO_STACK;
610 mark_reg_known_zero(env, regs, BPF_REG_FP);
612 /* 1st arg to a function */
613 regs[BPF_REG_1].type = PTR_TO_CTX;
614 mark_reg_known_zero(env, regs, BPF_REG_1);
618 SRC_OP, /* register is used as source operand */
619 DST_OP, /* register is used as destination operand */
620 DST_OP_NO_MARK /* same as above, check only, don't mark */
623 static void mark_reg_read(const struct bpf_verifier_state *state, u32 regno)
625 struct bpf_verifier_state *parent = state->parent;
627 if (regno == BPF_REG_FP)
628 /* We don't need to worry about FP liveness because it's read-only */
632 /* if read wasn't screened by an earlier write ... */
633 if (state->regs[regno].live & REG_LIVE_WRITTEN)
635 /* ... then we depend on parent's value */
636 parent->regs[regno].live |= REG_LIVE_READ;
638 parent = state->parent;
642 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
645 struct bpf_reg_state *regs = env->cur_state->regs;
647 if (regno >= MAX_BPF_REG) {
648 verbose(env, "R%d is invalid\n", regno);
653 /* check whether register used as source operand can be read */
654 if (regs[regno].type == NOT_INIT) {
655 verbose(env, "R%d !read_ok\n", regno);
658 mark_reg_read(env->cur_state, regno);
660 /* check whether register used as dest operand can be written to */
661 if (regno == BPF_REG_FP) {
662 verbose(env, "frame pointer is read only\n");
665 regs[regno].live |= REG_LIVE_WRITTEN;
667 mark_reg_unknown(env, regs, regno);
672 static bool is_spillable_regtype(enum bpf_reg_type type)
675 case PTR_TO_MAP_VALUE:
676 case PTR_TO_MAP_VALUE_OR_NULL:
680 case PTR_TO_PACKET_META:
681 case PTR_TO_PACKET_END:
682 case CONST_PTR_TO_MAP:
689 /* check_stack_read/write functions track spill/fill of registers,
690 * stack boundary and alignment are checked in check_mem_access()
692 static int check_stack_write(struct bpf_verifier_env *env,
693 struct bpf_verifier_state *state, int off,
694 int size, int value_regno)
696 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
698 err = realloc_verifier_state(state, round_up(slot + 1, BPF_REG_SIZE),
702 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
703 * so it's aligned access and [off, off + size) are within stack limits
705 if (!env->allow_ptr_leaks &&
706 state->stack[spi].slot_type[0] == STACK_SPILL &&
707 size != BPF_REG_SIZE) {
708 verbose(env, "attempt to corrupt spilled pointer on stack\n");
712 if (value_regno >= 0 &&
713 is_spillable_regtype(state->regs[value_regno].type)) {
715 /* register containing pointer is being spilled into stack */
716 if (size != BPF_REG_SIZE) {
717 verbose(env, "invalid size of register spill\n");
721 /* save register state */
722 state->stack[spi].spilled_ptr = state->regs[value_regno];
723 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
725 for (i = 0; i < BPF_REG_SIZE; i++)
726 state->stack[spi].slot_type[i] = STACK_SPILL;
728 /* regular write of data into stack */
729 state->stack[spi].spilled_ptr = (struct bpf_reg_state) {};
731 for (i = 0; i < size; i++)
732 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
738 static void mark_stack_slot_read(const struct bpf_verifier_state *state, int slot)
740 struct bpf_verifier_state *parent = state->parent;
743 /* if read wasn't screened by an earlier write ... */
744 if (state->stack[slot].spilled_ptr.live & REG_LIVE_WRITTEN)
746 /* ... then we depend on parent's value */
747 parent->stack[slot].spilled_ptr.live |= REG_LIVE_READ;
749 parent = state->parent;
753 static int check_stack_read(struct bpf_verifier_env *env,
754 struct bpf_verifier_state *state, int off, int size,
757 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
760 if (state->allocated_stack <= slot) {
761 verbose(env, "invalid read from stack off %d+0 size %d\n",
765 stype = state->stack[spi].slot_type;
767 if (stype[0] == STACK_SPILL) {
768 if (size != BPF_REG_SIZE) {
769 verbose(env, "invalid size of register spill\n");
772 for (i = 1; i < BPF_REG_SIZE; i++) {
773 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
774 verbose(env, "corrupted spill memory\n");
779 if (value_regno >= 0) {
780 /* restore register state from stack */
781 state->regs[value_regno] = state->stack[spi].spilled_ptr;
782 mark_stack_slot_read(state, spi);
786 for (i = 0; i < size; i++) {
787 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_MISC) {
788 verbose(env, "invalid read from stack off %d+%d size %d\n",
793 if (value_regno >= 0)
794 /* have read misc data from the stack */
795 mark_reg_unknown(env, state->regs, value_regno);
800 /* check read/write into map element returned by bpf_map_lookup_elem() */
801 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
802 int size, bool zero_size_allowed)
804 struct bpf_reg_state *regs = cur_regs(env);
805 struct bpf_map *map = regs[regno].map_ptr;
807 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
808 off + size > map->value_size) {
809 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
810 map->value_size, off, size);
816 /* check read/write into a map element with possible variable offset */
817 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
818 int off, int size, bool zero_size_allowed)
820 struct bpf_verifier_state *state = env->cur_state;
821 struct bpf_reg_state *reg = &state->regs[regno];
824 /* We may have adjusted the register to this map value, so we
825 * need to try adding each of min_value and max_value to off
826 * to make sure our theoretical access will be safe.
829 print_verifier_state(env, state);
830 /* The minimum value is only important with signed
831 * comparisons where we can't assume the floor of a
832 * value is 0. If we are using signed variables for our
833 * index'es we need to make sure that whatever we use
834 * will have a set floor within our range.
836 if (reg->smin_value < 0) {
837 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
841 err = __check_map_access(env, regno, reg->smin_value + off, size,
844 verbose(env, "R%d min value is outside of the array range\n",
849 /* If we haven't set a max value then we need to bail since we can't be
850 * sure we won't do bad things.
851 * If reg->umax_value + off could overflow, treat that as unbounded too.
853 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
854 verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
858 err = __check_map_access(env, regno, reg->umax_value + off, size,
861 verbose(env, "R%d max value is outside of the array range\n",
866 #define MAX_PACKET_OFF 0xffff
868 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
869 const struct bpf_call_arg_meta *meta,
870 enum bpf_access_type t)
872 switch (env->prog->type) {
873 case BPF_PROG_TYPE_LWT_IN:
874 case BPF_PROG_TYPE_LWT_OUT:
875 /* dst_input() and dst_output() can't write for now */
879 case BPF_PROG_TYPE_SCHED_CLS:
880 case BPF_PROG_TYPE_SCHED_ACT:
881 case BPF_PROG_TYPE_XDP:
882 case BPF_PROG_TYPE_LWT_XMIT:
883 case BPF_PROG_TYPE_SK_SKB:
885 return meta->pkt_access;
887 env->seen_direct_write = true;
894 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
895 int off, int size, bool zero_size_allowed)
897 struct bpf_reg_state *regs = cur_regs(env);
898 struct bpf_reg_state *reg = ®s[regno];
900 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
901 (u64)off + size > reg->range) {
902 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
903 off, size, regno, reg->id, reg->off, reg->range);
909 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
910 int size, bool zero_size_allowed)
912 struct bpf_reg_state *regs = cur_regs(env);
913 struct bpf_reg_state *reg = ®s[regno];
916 /* We may have added a variable offset to the packet pointer; but any
917 * reg->range we have comes after that. We are only checking the fixed
921 /* We don't allow negative numbers, because we aren't tracking enough
922 * detail to prove they're safe.
924 if (reg->smin_value < 0) {
925 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
929 err = __check_packet_access(env, regno, off, size, zero_size_allowed);
931 verbose(env, "R%d offset is outside of the packet\n", regno);
937 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */
938 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
939 enum bpf_access_type t, enum bpf_reg_type *reg_type)
941 struct bpf_insn_access_aux info = {
942 .reg_type = *reg_type,
945 if (env->ops->is_valid_access &&
946 env->ops->is_valid_access(off, size, t, &info)) {
947 /* A non zero info.ctx_field_size indicates that this field is a
948 * candidate for later verifier transformation to load the whole
949 * field and then apply a mask when accessed with a narrower
950 * access than actual ctx access size. A zero info.ctx_field_size
951 * will only allow for whole field access and rejects any other
952 * type of narrower access.
954 *reg_type = info.reg_type;
956 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
957 /* remember the offset of last byte accessed in ctx */
958 if (env->prog->aux->max_ctx_offset < off + size)
959 env->prog->aux->max_ctx_offset = off + size;
963 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
967 static bool __is_pointer_value(bool allow_ptr_leaks,
968 const struct bpf_reg_state *reg)
973 return reg->type != SCALAR_VALUE;
976 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
978 return __is_pointer_value(env->allow_ptr_leaks, cur_regs(env) + regno);
981 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
982 const struct bpf_reg_state *reg,
983 int off, int size, bool strict)
988 /* Byte size accesses are always allowed. */
989 if (!strict || size == 1)
992 /* For platforms that do not have a Kconfig enabling
993 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
994 * NET_IP_ALIGN is universally set to '2'. And on platforms
995 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
996 * to this code only in strict mode where we want to emulate
997 * the NET_IP_ALIGN==2 checking. Therefore use an
998 * unconditional IP align value of '2'.
1002 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
1003 if (!tnum_is_aligned(reg_off, size)) {
1006 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1008 "misaligned packet access off %d+%s+%d+%d size %d\n",
1009 ip_align, tn_buf, reg->off, off, size);
1016 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
1017 const struct bpf_reg_state *reg,
1018 const char *pointer_desc,
1019 int off, int size, bool strict)
1021 struct tnum reg_off;
1023 /* Byte size accesses are always allowed. */
1024 if (!strict || size == 1)
1027 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
1028 if (!tnum_is_aligned(reg_off, size)) {
1031 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1032 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
1033 pointer_desc, tn_buf, reg->off, off, size);
1040 static int check_ptr_alignment(struct bpf_verifier_env *env,
1041 const struct bpf_reg_state *reg,
1044 bool strict = env->strict_alignment;
1045 const char *pointer_desc = "";
1047 switch (reg->type) {
1049 case PTR_TO_PACKET_META:
1050 /* Special case, because of NET_IP_ALIGN. Given metadata sits
1051 * right in front, treat it the very same way.
1053 return check_pkt_ptr_alignment(env, reg, off, size, strict);
1054 case PTR_TO_MAP_VALUE:
1055 pointer_desc = "value ";
1058 pointer_desc = "context ";
1061 pointer_desc = "stack ";
1066 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
1070 /* truncate register to smaller size (in bytes)
1071 * must be called with size < BPF_REG_SIZE
1073 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
1077 /* clear high bits in bit representation */
1078 reg->var_off = tnum_cast(reg->var_off, size);
1080 /* fix arithmetic bounds */
1081 mask = ((u64)1 << (size * 8)) - 1;
1082 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
1083 reg->umin_value &= mask;
1084 reg->umax_value &= mask;
1086 reg->umin_value = 0;
1087 reg->umax_value = mask;
1089 reg->smin_value = reg->umin_value;
1090 reg->smax_value = reg->umax_value;
1093 /* check whether memory at (regno + off) is accessible for t = (read | write)
1094 * if t==write, value_regno is a register which value is stored into memory
1095 * if t==read, value_regno is a register which will receive the value from memory
1096 * if t==write && value_regno==-1, some unknown value is stored into memory
1097 * if t==read && value_regno==-1, don't care what we read from memory
1099 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, int off,
1100 int bpf_size, enum bpf_access_type t,
1103 struct bpf_verifier_state *state = env->cur_state;
1104 struct bpf_reg_state *regs = cur_regs(env);
1105 struct bpf_reg_state *reg = regs + regno;
1108 size = bpf_size_to_bytes(bpf_size);
1112 /* alignment checks will add in reg->off themselves */
1113 err = check_ptr_alignment(env, reg, off, size);
1117 /* for access checks, reg->off is just part of off */
1120 if (reg->type == PTR_TO_MAP_VALUE) {
1121 if (t == BPF_WRITE && value_regno >= 0 &&
1122 is_pointer_value(env, value_regno)) {
1123 verbose(env, "R%d leaks addr into map\n", value_regno);
1127 err = check_map_access(env, regno, off, size, false);
1128 if (!err && t == BPF_READ && value_regno >= 0)
1129 mark_reg_unknown(env, regs, value_regno);
1131 } else if (reg->type == PTR_TO_CTX) {
1132 enum bpf_reg_type reg_type = SCALAR_VALUE;
1134 if (t == BPF_WRITE && value_regno >= 0 &&
1135 is_pointer_value(env, value_regno)) {
1136 verbose(env, "R%d leaks addr into ctx\n", value_regno);
1139 /* ctx accesses must be at a fixed offset, so that we can
1140 * determine what type of data were returned.
1144 "dereference of modified ctx ptr R%d off=%d+%d, ctx+const is allowed, ctx+const+const is not\n",
1145 regno, reg->off, off - reg->off);
1148 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
1151 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1153 "variable ctx access var_off=%s off=%d size=%d",
1157 err = check_ctx_access(env, insn_idx, off, size, t, ®_type);
1158 if (!err && t == BPF_READ && value_regno >= 0) {
1159 /* ctx access returns either a scalar, or a
1160 * PTR_TO_PACKET[_META,_END]. In the latter
1161 * case, we know the offset is zero.
1163 if (reg_type == SCALAR_VALUE)
1164 mark_reg_unknown(env, regs, value_regno);
1166 mark_reg_known_zero(env, regs,
1168 regs[value_regno].id = 0;
1169 regs[value_regno].off = 0;
1170 regs[value_regno].range = 0;
1171 regs[value_regno].type = reg_type;
1174 } else if (reg->type == PTR_TO_STACK) {
1175 /* stack accesses must be at a fixed offset, so that we can
1176 * determine what type of data were returned.
1177 * See check_stack_read().
1179 if (!tnum_is_const(reg->var_off)) {
1182 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1183 verbose(env, "variable stack access var_off=%s off=%d size=%d",
1187 off += reg->var_off.value;
1188 if (off >= 0 || off < -MAX_BPF_STACK) {
1189 verbose(env, "invalid stack off=%d size=%d\n", off,
1194 if (env->prog->aux->stack_depth < -off)
1195 env->prog->aux->stack_depth = -off;
1198 err = check_stack_write(env, state, off, size,
1201 err = check_stack_read(env, state, off, size,
1203 } else if (reg_is_pkt_pointer(reg)) {
1204 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
1205 verbose(env, "cannot write into packet\n");
1208 if (t == BPF_WRITE && value_regno >= 0 &&
1209 is_pointer_value(env, value_regno)) {
1210 verbose(env, "R%d leaks addr into packet\n",
1214 err = check_packet_access(env, regno, off, size, false);
1215 if (!err && t == BPF_READ && value_regno >= 0)
1216 mark_reg_unknown(env, regs, value_regno);
1218 verbose(env, "R%d invalid mem access '%s'\n", regno,
1219 reg_type_str[reg->type]);
1223 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
1224 regs[value_regno].type == SCALAR_VALUE) {
1225 /* b/h/w load zero-extends, mark upper bits as known 0 */
1226 coerce_reg_to_size(®s[value_regno], size);
1231 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
1235 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
1237 verbose(env, "BPF_XADD uses reserved fields\n");
1241 /* check src1 operand */
1242 err = check_reg_arg(env, insn->src_reg, SRC_OP);
1246 /* check src2 operand */
1247 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
1251 if (is_pointer_value(env, insn->src_reg)) {
1252 verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
1256 /* check whether atomic_add can read the memory */
1257 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1258 BPF_SIZE(insn->code), BPF_READ, -1);
1262 /* check whether atomic_add can write into the same memory */
1263 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1264 BPF_SIZE(insn->code), BPF_WRITE, -1);
1267 /* Does this register contain a constant zero? */
1268 static bool register_is_null(struct bpf_reg_state reg)
1270 return reg.type == SCALAR_VALUE && tnum_equals_const(reg.var_off, 0);
1273 /* when register 'regno' is passed into function that will read 'access_size'
1274 * bytes from that pointer, make sure that it's within stack boundary
1275 * and all elements of stack are initialized.
1276 * Unlike most pointer bounds-checking functions, this one doesn't take an
1277 * 'off' argument, so it has to add in reg->off itself.
1279 static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
1280 int access_size, bool zero_size_allowed,
1281 struct bpf_call_arg_meta *meta)
1283 struct bpf_verifier_state *state = env->cur_state;
1284 struct bpf_reg_state *regs = state->regs;
1285 int off, i, slot, spi;
1287 if (regs[regno].type != PTR_TO_STACK) {
1288 /* Allow zero-byte read from NULL, regardless of pointer type */
1289 if (zero_size_allowed && access_size == 0 &&
1290 register_is_null(regs[regno]))
1293 verbose(env, "R%d type=%s expected=%s\n", regno,
1294 reg_type_str[regs[regno].type],
1295 reg_type_str[PTR_TO_STACK]);
1299 /* Only allow fixed-offset stack reads */
1300 if (!tnum_is_const(regs[regno].var_off)) {
1303 tnum_strn(tn_buf, sizeof(tn_buf), regs[regno].var_off);
1304 verbose(env, "invalid variable stack read R%d var_off=%s\n",
1307 off = regs[regno].off + regs[regno].var_off.value;
1308 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
1309 access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
1310 verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
1311 regno, off, access_size);
1315 if (env->prog->aux->stack_depth < -off)
1316 env->prog->aux->stack_depth = -off;
1318 if (meta && meta->raw_mode) {
1319 meta->access_size = access_size;
1320 meta->regno = regno;
1324 for (i = 0; i < access_size; i++) {
1325 slot = -(off + i) - 1;
1326 spi = slot / BPF_REG_SIZE;
1327 if (state->allocated_stack <= slot ||
1328 state->stack[spi].slot_type[slot % BPF_REG_SIZE] !=
1330 verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
1331 off, i, access_size);
1338 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
1339 int access_size, bool zero_size_allowed,
1340 struct bpf_call_arg_meta *meta)
1342 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
1344 switch (reg->type) {
1346 case PTR_TO_PACKET_META:
1347 return check_packet_access(env, regno, reg->off, access_size,
1349 case PTR_TO_MAP_VALUE:
1350 return check_map_access(env, regno, reg->off, access_size,
1352 default: /* scalar_value|ptr_to_stack or invalid ptr */
1353 return check_stack_boundary(env, regno, access_size,
1354 zero_size_allowed, meta);
1358 static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
1359 enum bpf_arg_type arg_type,
1360 struct bpf_call_arg_meta *meta)
1362 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
1363 enum bpf_reg_type expected_type, type = reg->type;
1366 if (arg_type == ARG_DONTCARE)
1369 err = check_reg_arg(env, regno, SRC_OP);
1373 if (arg_type == ARG_ANYTHING) {
1374 if (is_pointer_value(env, regno)) {
1375 verbose(env, "R%d leaks addr into helper function\n",
1382 if (type_is_pkt_pointer(type) &&
1383 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
1384 verbose(env, "helper access to the packet is not allowed\n");
1388 if (arg_type == ARG_PTR_TO_MAP_KEY ||
1389 arg_type == ARG_PTR_TO_MAP_VALUE) {
1390 expected_type = PTR_TO_STACK;
1391 if (!type_is_pkt_pointer(type) &&
1392 type != expected_type)
1394 } else if (arg_type == ARG_CONST_SIZE ||
1395 arg_type == ARG_CONST_SIZE_OR_ZERO) {
1396 expected_type = SCALAR_VALUE;
1397 if (type != expected_type)
1399 } else if (arg_type == ARG_CONST_MAP_PTR) {
1400 expected_type = CONST_PTR_TO_MAP;
1401 if (type != expected_type)
1403 } else if (arg_type == ARG_PTR_TO_CTX) {
1404 expected_type = PTR_TO_CTX;
1405 if (type != expected_type)
1407 } else if (arg_type == ARG_PTR_TO_MEM ||
1408 arg_type == ARG_PTR_TO_MEM_OR_NULL ||
1409 arg_type == ARG_PTR_TO_UNINIT_MEM) {
1410 expected_type = PTR_TO_STACK;
1411 /* One exception here. In case function allows for NULL to be
1412 * passed in as argument, it's a SCALAR_VALUE type. Final test
1413 * happens during stack boundary checking.
1415 if (register_is_null(*reg) &&
1416 arg_type == ARG_PTR_TO_MEM_OR_NULL)
1417 /* final test in check_stack_boundary() */;
1418 else if (!type_is_pkt_pointer(type) &&
1419 type != PTR_TO_MAP_VALUE &&
1420 type != expected_type)
1422 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
1424 verbose(env, "unsupported arg_type %d\n", arg_type);
1428 if (arg_type == ARG_CONST_MAP_PTR) {
1429 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
1430 meta->map_ptr = reg->map_ptr;
1431 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
1432 /* bpf_map_xxx(..., map_ptr, ..., key) call:
1433 * check that [key, key + map->key_size) are within
1434 * stack limits and initialized
1436 if (!meta->map_ptr) {
1437 /* in function declaration map_ptr must come before
1438 * map_key, so that it's verified and known before
1439 * we have to check map_key here. Otherwise it means
1440 * that kernel subsystem misconfigured verifier
1442 verbose(env, "invalid map_ptr to access map->key\n");
1445 if (type_is_pkt_pointer(type))
1446 err = check_packet_access(env, regno, reg->off,
1447 meta->map_ptr->key_size,
1450 err = check_stack_boundary(env, regno,
1451 meta->map_ptr->key_size,
1453 } else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
1454 /* bpf_map_xxx(..., map_ptr, ..., value) call:
1455 * check [value, value + map->value_size) validity
1457 if (!meta->map_ptr) {
1458 /* kernel subsystem misconfigured verifier */
1459 verbose(env, "invalid map_ptr to access map->value\n");
1462 if (type_is_pkt_pointer(type))
1463 err = check_packet_access(env, regno, reg->off,
1464 meta->map_ptr->value_size,
1467 err = check_stack_boundary(env, regno,
1468 meta->map_ptr->value_size,
1470 } else if (arg_type == ARG_CONST_SIZE ||
1471 arg_type == ARG_CONST_SIZE_OR_ZERO) {
1472 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
1474 /* bpf_xxx(..., buf, len) call will access 'len' bytes
1475 * from stack pointer 'buf'. Check it
1476 * note: regno == len, regno - 1 == buf
1479 /* kernel subsystem misconfigured verifier */
1481 "ARG_CONST_SIZE cannot be first argument\n");
1485 /* The register is SCALAR_VALUE; the access check
1486 * happens using its boundaries.
1489 if (!tnum_is_const(reg->var_off))
1490 /* For unprivileged variable accesses, disable raw
1491 * mode so that the program is required to
1492 * initialize all the memory that the helper could
1493 * just partially fill up.
1497 if (reg->smin_value < 0) {
1498 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
1503 if (reg->umin_value == 0) {
1504 err = check_helper_mem_access(env, regno - 1, 0,
1511 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
1512 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
1516 err = check_helper_mem_access(env, regno - 1,
1518 zero_size_allowed, meta);
1523 verbose(env, "R%d type=%s expected=%s\n", regno,
1524 reg_type_str[type], reg_type_str[expected_type]);
1528 static int check_map_func_compatibility(struct bpf_verifier_env *env,
1529 struct bpf_map *map, int func_id)
1534 /* We need a two way check, first is from map perspective ... */
1535 switch (map->map_type) {
1536 case BPF_MAP_TYPE_PROG_ARRAY:
1537 if (func_id != BPF_FUNC_tail_call)
1540 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
1541 if (func_id != BPF_FUNC_perf_event_read &&
1542 func_id != BPF_FUNC_perf_event_output &&
1543 func_id != BPF_FUNC_perf_event_read_value)
1546 case BPF_MAP_TYPE_STACK_TRACE:
1547 if (func_id != BPF_FUNC_get_stackid)
1550 case BPF_MAP_TYPE_CGROUP_ARRAY:
1551 if (func_id != BPF_FUNC_skb_under_cgroup &&
1552 func_id != BPF_FUNC_current_task_under_cgroup)
1555 /* devmap returns a pointer to a live net_device ifindex that we cannot
1556 * allow to be modified from bpf side. So do not allow lookup elements
1559 case BPF_MAP_TYPE_DEVMAP:
1560 if (func_id != BPF_FUNC_redirect_map)
1563 /* Restrict bpf side of cpumap, open when use-cases appear */
1564 case BPF_MAP_TYPE_CPUMAP:
1565 if (func_id != BPF_FUNC_redirect_map)
1568 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
1569 case BPF_MAP_TYPE_HASH_OF_MAPS:
1570 if (func_id != BPF_FUNC_map_lookup_elem)
1573 case BPF_MAP_TYPE_SOCKMAP:
1574 if (func_id != BPF_FUNC_sk_redirect_map &&
1575 func_id != BPF_FUNC_sock_map_update &&
1576 func_id != BPF_FUNC_map_delete_elem)
1583 /* ... and second from the function itself. */
1585 case BPF_FUNC_tail_call:
1586 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1589 case BPF_FUNC_perf_event_read:
1590 case BPF_FUNC_perf_event_output:
1591 case BPF_FUNC_perf_event_read_value:
1592 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
1595 case BPF_FUNC_get_stackid:
1596 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
1599 case BPF_FUNC_current_task_under_cgroup:
1600 case BPF_FUNC_skb_under_cgroup:
1601 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
1604 case BPF_FUNC_redirect_map:
1605 if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
1606 map->map_type != BPF_MAP_TYPE_CPUMAP)
1609 case BPF_FUNC_sk_redirect_map:
1610 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
1613 case BPF_FUNC_sock_map_update:
1614 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
1623 verbose(env, "cannot pass map_type %d into func %s#%d\n",
1624 map->map_type, func_id_name(func_id), func_id);
1628 static int check_raw_mode(const struct bpf_func_proto *fn)
1632 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
1634 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
1636 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
1638 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
1640 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
1643 return count > 1 ? -EINVAL : 0;
1646 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
1647 * are now invalid, so turn them into unknown SCALAR_VALUE.
1649 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
1651 struct bpf_verifier_state *state = env->cur_state;
1652 struct bpf_reg_state *regs = state->regs, *reg;
1655 for (i = 0; i < MAX_BPF_REG; i++)
1656 if (reg_is_pkt_pointer_any(®s[i]))
1657 mark_reg_unknown(env, regs, i);
1659 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
1660 if (state->stack[i].slot_type[0] != STACK_SPILL)
1662 reg = &state->stack[i].spilled_ptr;
1663 if (reg_is_pkt_pointer_any(reg))
1664 __mark_reg_unknown(reg);
1668 static int check_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
1670 const struct bpf_func_proto *fn = NULL;
1671 struct bpf_reg_state *regs;
1672 struct bpf_call_arg_meta meta;
1676 /* find function prototype */
1677 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
1678 verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
1683 if (env->ops->get_func_proto)
1684 fn = env->ops->get_func_proto(func_id);
1687 verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
1692 /* eBPF programs must be GPL compatible to use GPL-ed functions */
1693 if (!env->prog->gpl_compatible && fn->gpl_only) {
1694 verbose(env, "cannot call GPL only function from proprietary program\n");
1698 /* With LD_ABS/IND some JITs save/restore skb from r1. */
1699 changes_data = bpf_helper_changes_pkt_data(fn->func);
1700 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
1701 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
1702 func_id_name(func_id), func_id);
1706 memset(&meta, 0, sizeof(meta));
1707 meta.pkt_access = fn->pkt_access;
1709 /* We only support one arg being in raw mode at the moment, which
1710 * is sufficient for the helper functions we have right now.
1712 err = check_raw_mode(fn);
1714 verbose(env, "kernel subsystem misconfigured func %s#%d\n",
1715 func_id_name(func_id), func_id);
1720 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
1723 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
1726 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
1729 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
1732 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
1736 /* Mark slots with STACK_MISC in case of raw mode, stack offset
1737 * is inferred from register state.
1739 for (i = 0; i < meta.access_size; i++) {
1740 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, BPF_WRITE, -1);
1745 regs = cur_regs(env);
1746 /* reset caller saved regs */
1747 for (i = 0; i < CALLER_SAVED_REGS; i++) {
1748 mark_reg_not_init(env, regs, caller_saved[i]);
1749 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
1752 /* update return register (already marked as written above) */
1753 if (fn->ret_type == RET_INTEGER) {
1754 /* sets type to SCALAR_VALUE */
1755 mark_reg_unknown(env, regs, BPF_REG_0);
1756 } else if (fn->ret_type == RET_VOID) {
1757 regs[BPF_REG_0].type = NOT_INIT;
1758 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
1759 struct bpf_insn_aux_data *insn_aux;
1761 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
1762 /* There is no offset yet applied, variable or fixed */
1763 mark_reg_known_zero(env, regs, BPF_REG_0);
1764 regs[BPF_REG_0].off = 0;
1765 /* remember map_ptr, so that check_map_access()
1766 * can check 'value_size' boundary of memory access
1767 * to map element returned from bpf_map_lookup_elem()
1769 if (meta.map_ptr == NULL) {
1771 "kernel subsystem misconfigured verifier\n");
1774 regs[BPF_REG_0].map_ptr = meta.map_ptr;
1775 regs[BPF_REG_0].id = ++env->id_gen;
1776 insn_aux = &env->insn_aux_data[insn_idx];
1777 if (!insn_aux->map_ptr)
1778 insn_aux->map_ptr = meta.map_ptr;
1779 else if (insn_aux->map_ptr != meta.map_ptr)
1780 insn_aux->map_ptr = BPF_MAP_PTR_POISON;
1782 verbose(env, "unknown return type %d of func %s#%d\n",
1783 fn->ret_type, func_id_name(func_id), func_id);
1787 err = check_map_func_compatibility(env, meta.map_ptr, func_id);
1792 clear_all_pkt_pointers(env);
1796 static bool signed_add_overflows(s64 a, s64 b)
1798 /* Do the add in u64, where overflow is well-defined */
1799 s64 res = (s64)((u64)a + (u64)b);
1806 static bool signed_sub_overflows(s64 a, s64 b)
1808 /* Do the sub in u64, where overflow is well-defined */
1809 s64 res = (s64)((u64)a - (u64)b);
1816 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
1817 * Caller should also handle BPF_MOV case separately.
1818 * If we return -EACCES, caller may want to try again treating pointer as a
1819 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
1821 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
1822 struct bpf_insn *insn,
1823 const struct bpf_reg_state *ptr_reg,
1824 const struct bpf_reg_state *off_reg)
1826 struct bpf_reg_state *regs = cur_regs(env), *dst_reg;
1827 bool known = tnum_is_const(off_reg->var_off);
1828 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
1829 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
1830 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
1831 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
1832 u8 opcode = BPF_OP(insn->code);
1833 u32 dst = insn->dst_reg;
1835 dst_reg = ®s[dst];
1837 if (WARN_ON_ONCE(known && (smin_val != smax_val))) {
1838 print_verifier_state(env, env->cur_state);
1840 "verifier internal error: known but bad sbounds\n");
1843 if (WARN_ON_ONCE(known && (umin_val != umax_val))) {
1844 print_verifier_state(env, env->cur_state);
1846 "verifier internal error: known but bad ubounds\n");
1850 if (BPF_CLASS(insn->code) != BPF_ALU64) {
1851 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
1852 if (!env->allow_ptr_leaks)
1854 "R%d 32-bit pointer arithmetic prohibited\n",
1859 if (ptr_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
1860 if (!env->allow_ptr_leaks)
1861 verbose(env, "R%d pointer arithmetic on PTR_TO_MAP_VALUE_OR_NULL prohibited, null-check it first\n",
1865 if (ptr_reg->type == CONST_PTR_TO_MAP) {
1866 if (!env->allow_ptr_leaks)
1867 verbose(env, "R%d pointer arithmetic on CONST_PTR_TO_MAP prohibited\n",
1871 if (ptr_reg->type == PTR_TO_PACKET_END) {
1872 if (!env->allow_ptr_leaks)
1873 verbose(env, "R%d pointer arithmetic on PTR_TO_PACKET_END prohibited\n",
1878 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
1879 * The id may be overwritten later if we create a new variable offset.
1881 dst_reg->type = ptr_reg->type;
1882 dst_reg->id = ptr_reg->id;
1886 /* We can take a fixed offset as long as it doesn't overflow
1887 * the s32 'off' field
1889 if (known && (ptr_reg->off + smin_val ==
1890 (s64)(s32)(ptr_reg->off + smin_val))) {
1891 /* pointer += K. Accumulate it into fixed offset */
1892 dst_reg->smin_value = smin_ptr;
1893 dst_reg->smax_value = smax_ptr;
1894 dst_reg->umin_value = umin_ptr;
1895 dst_reg->umax_value = umax_ptr;
1896 dst_reg->var_off = ptr_reg->var_off;
1897 dst_reg->off = ptr_reg->off + smin_val;
1898 dst_reg->range = ptr_reg->range;
1901 /* A new variable offset is created. Note that off_reg->off
1902 * == 0, since it's a scalar.
1903 * dst_reg gets the pointer type and since some positive
1904 * integer value was added to the pointer, give it a new 'id'
1905 * if it's a PTR_TO_PACKET.
1906 * this creates a new 'base' pointer, off_reg (variable) gets
1907 * added into the variable offset, and we copy the fixed offset
1910 if (signed_add_overflows(smin_ptr, smin_val) ||
1911 signed_add_overflows(smax_ptr, smax_val)) {
1912 dst_reg->smin_value = S64_MIN;
1913 dst_reg->smax_value = S64_MAX;
1915 dst_reg->smin_value = smin_ptr + smin_val;
1916 dst_reg->smax_value = smax_ptr + smax_val;
1918 if (umin_ptr + umin_val < umin_ptr ||
1919 umax_ptr + umax_val < umax_ptr) {
1920 dst_reg->umin_value = 0;
1921 dst_reg->umax_value = U64_MAX;
1923 dst_reg->umin_value = umin_ptr + umin_val;
1924 dst_reg->umax_value = umax_ptr + umax_val;
1926 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
1927 dst_reg->off = ptr_reg->off;
1928 if (reg_is_pkt_pointer(ptr_reg)) {
1929 dst_reg->id = ++env->id_gen;
1930 /* something was added to pkt_ptr, set range to zero */
1935 if (dst_reg == off_reg) {
1936 /* scalar -= pointer. Creates an unknown scalar */
1937 if (!env->allow_ptr_leaks)
1938 verbose(env, "R%d tried to subtract pointer from scalar\n",
1942 /* We don't allow subtraction from FP, because (according to
1943 * test_verifier.c test "invalid fp arithmetic", JITs might not
1944 * be able to deal with it.
1946 if (ptr_reg->type == PTR_TO_STACK) {
1947 if (!env->allow_ptr_leaks)
1948 verbose(env, "R%d subtraction from stack pointer prohibited\n",
1952 if (known && (ptr_reg->off - smin_val ==
1953 (s64)(s32)(ptr_reg->off - smin_val))) {
1954 /* pointer -= K. Subtract it from fixed offset */
1955 dst_reg->smin_value = smin_ptr;
1956 dst_reg->smax_value = smax_ptr;
1957 dst_reg->umin_value = umin_ptr;
1958 dst_reg->umax_value = umax_ptr;
1959 dst_reg->var_off = ptr_reg->var_off;
1960 dst_reg->id = ptr_reg->id;
1961 dst_reg->off = ptr_reg->off - smin_val;
1962 dst_reg->range = ptr_reg->range;
1965 /* A new variable offset is created. If the subtrahend is known
1966 * nonnegative, then any reg->range we had before is still good.
1968 if (signed_sub_overflows(smin_ptr, smax_val) ||
1969 signed_sub_overflows(smax_ptr, smin_val)) {
1970 /* Overflow possible, we know nothing */
1971 dst_reg->smin_value = S64_MIN;
1972 dst_reg->smax_value = S64_MAX;
1974 dst_reg->smin_value = smin_ptr - smax_val;
1975 dst_reg->smax_value = smax_ptr - smin_val;
1977 if (umin_ptr < umax_val) {
1978 /* Overflow possible, we know nothing */
1979 dst_reg->umin_value = 0;
1980 dst_reg->umax_value = U64_MAX;
1982 /* Cannot overflow (as long as bounds are consistent) */
1983 dst_reg->umin_value = umin_ptr - umax_val;
1984 dst_reg->umax_value = umax_ptr - umin_val;
1986 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
1987 dst_reg->off = ptr_reg->off;
1988 if (reg_is_pkt_pointer(ptr_reg)) {
1989 dst_reg->id = ++env->id_gen;
1990 /* something was added to pkt_ptr, set range to zero */
1998 /* bitwise ops on pointers are troublesome, prohibit for now.
1999 * (However, in principle we could allow some cases, e.g.
2000 * ptr &= ~3 which would reduce min_value by 3.)
2002 if (!env->allow_ptr_leaks)
2003 verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
2004 dst, bpf_alu_string[opcode >> 4]);
2007 /* other operators (e.g. MUL,LSH) produce non-pointer results */
2008 if (!env->allow_ptr_leaks)
2009 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
2010 dst, bpf_alu_string[opcode >> 4]);
2014 __update_reg_bounds(dst_reg);
2015 __reg_deduce_bounds(dst_reg);
2016 __reg_bound_offset(dst_reg);
2020 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
2021 struct bpf_insn *insn,
2022 struct bpf_reg_state *dst_reg,
2023 struct bpf_reg_state src_reg)
2025 struct bpf_reg_state *regs = cur_regs(env);
2026 u8 opcode = BPF_OP(insn->code);
2027 bool src_known, dst_known;
2028 s64 smin_val, smax_val;
2029 u64 umin_val, umax_val;
2031 if (BPF_CLASS(insn->code) != BPF_ALU64) {
2032 /* 32-bit ALU ops are (32,32)->64 */
2033 coerce_reg_to_size(dst_reg, 4);
2034 coerce_reg_to_size(&src_reg, 4);
2036 smin_val = src_reg.smin_value;
2037 smax_val = src_reg.smax_value;
2038 umin_val = src_reg.umin_value;
2039 umax_val = src_reg.umax_value;
2040 src_known = tnum_is_const(src_reg.var_off);
2041 dst_known = tnum_is_const(dst_reg->var_off);
2045 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
2046 signed_add_overflows(dst_reg->smax_value, smax_val)) {
2047 dst_reg->smin_value = S64_MIN;
2048 dst_reg->smax_value = S64_MAX;
2050 dst_reg->smin_value += smin_val;
2051 dst_reg->smax_value += smax_val;
2053 if (dst_reg->umin_value + umin_val < umin_val ||
2054 dst_reg->umax_value + umax_val < umax_val) {
2055 dst_reg->umin_value = 0;
2056 dst_reg->umax_value = U64_MAX;
2058 dst_reg->umin_value += umin_val;
2059 dst_reg->umax_value += umax_val;
2061 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
2064 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
2065 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
2066 /* Overflow possible, we know nothing */
2067 dst_reg->smin_value = S64_MIN;
2068 dst_reg->smax_value = S64_MAX;
2070 dst_reg->smin_value -= smax_val;
2071 dst_reg->smax_value -= smin_val;
2073 if (dst_reg->umin_value < umax_val) {
2074 /* Overflow possible, we know nothing */
2075 dst_reg->umin_value = 0;
2076 dst_reg->umax_value = U64_MAX;
2078 /* Cannot overflow (as long as bounds are consistent) */
2079 dst_reg->umin_value -= umax_val;
2080 dst_reg->umax_value -= umin_val;
2082 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
2085 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
2086 if (smin_val < 0 || dst_reg->smin_value < 0) {
2087 /* Ain't nobody got time to multiply that sign */
2088 __mark_reg_unbounded(dst_reg);
2089 __update_reg_bounds(dst_reg);
2092 /* Both values are positive, so we can work with unsigned and
2093 * copy the result to signed (unless it exceeds S64_MAX).
2095 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
2096 /* Potential overflow, we know nothing */
2097 __mark_reg_unbounded(dst_reg);
2098 /* (except what we can learn from the var_off) */
2099 __update_reg_bounds(dst_reg);
2102 dst_reg->umin_value *= umin_val;
2103 dst_reg->umax_value *= umax_val;
2104 if (dst_reg->umax_value > S64_MAX) {
2105 /* Overflow possible, we know nothing */
2106 dst_reg->smin_value = S64_MIN;
2107 dst_reg->smax_value = S64_MAX;
2109 dst_reg->smin_value = dst_reg->umin_value;
2110 dst_reg->smax_value = dst_reg->umax_value;
2114 if (src_known && dst_known) {
2115 __mark_reg_known(dst_reg, dst_reg->var_off.value &
2116 src_reg.var_off.value);
2119 /* We get our minimum from the var_off, since that's inherently
2120 * bitwise. Our maximum is the minimum of the operands' maxima.
2122 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
2123 dst_reg->umin_value = dst_reg->var_off.value;
2124 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
2125 if (dst_reg->smin_value < 0 || smin_val < 0) {
2126 /* Lose signed bounds when ANDing negative numbers,
2127 * ain't nobody got time for that.
2129 dst_reg->smin_value = S64_MIN;
2130 dst_reg->smax_value = S64_MAX;
2132 /* ANDing two positives gives a positive, so safe to
2133 * cast result into s64.
2135 dst_reg->smin_value = dst_reg->umin_value;
2136 dst_reg->smax_value = dst_reg->umax_value;
2138 /* We may learn something more from the var_off */
2139 __update_reg_bounds(dst_reg);
2142 if (src_known && dst_known) {
2143 __mark_reg_known(dst_reg, dst_reg->var_off.value |
2144 src_reg.var_off.value);
2147 /* We get our maximum from the var_off, and our minimum is the
2148 * maximum of the operands' minima
2150 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
2151 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
2152 dst_reg->umax_value = dst_reg->var_off.value |
2153 dst_reg->var_off.mask;
2154 if (dst_reg->smin_value < 0 || smin_val < 0) {
2155 /* Lose signed bounds when ORing negative numbers,
2156 * ain't nobody got time for that.
2158 dst_reg->smin_value = S64_MIN;
2159 dst_reg->smax_value = S64_MAX;
2161 /* ORing two positives gives a positive, so safe to
2162 * cast result into s64.
2164 dst_reg->smin_value = dst_reg->umin_value;
2165 dst_reg->smax_value = dst_reg->umax_value;
2167 /* We may learn something more from the var_off */
2168 __update_reg_bounds(dst_reg);
2171 if (umax_val > 63) {
2172 /* Shifts greater than 63 are undefined. This includes
2173 * shifts by a negative number.
2175 mark_reg_unknown(env, regs, insn->dst_reg);
2178 /* We lose all sign bit information (except what we can pick
2181 dst_reg->smin_value = S64_MIN;
2182 dst_reg->smax_value = S64_MAX;
2183 /* If we might shift our top bit out, then we know nothing */
2184 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
2185 dst_reg->umin_value = 0;
2186 dst_reg->umax_value = U64_MAX;
2188 dst_reg->umin_value <<= umin_val;
2189 dst_reg->umax_value <<= umax_val;
2192 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
2194 dst_reg->var_off = tnum_lshift(tnum_unknown, umin_val);
2195 /* We may learn something more from the var_off */
2196 __update_reg_bounds(dst_reg);
2199 if (umax_val > 63) {
2200 /* Shifts greater than 63 are undefined. This includes
2201 * shifts by a negative number.
2203 mark_reg_unknown(env, regs, insn->dst_reg);
2206 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
2207 * be negative, then either:
2208 * 1) src_reg might be zero, so the sign bit of the result is
2209 * unknown, so we lose our signed bounds
2210 * 2) it's known negative, thus the unsigned bounds capture the
2212 * 3) the signed bounds cross zero, so they tell us nothing
2214 * If the value in dst_reg is known nonnegative, then again the
2215 * unsigned bounts capture the signed bounds.
2216 * Thus, in all cases it suffices to blow away our signed bounds
2217 * and rely on inferring new ones from the unsigned bounds and
2218 * var_off of the result.
2220 dst_reg->smin_value = S64_MIN;
2221 dst_reg->smax_value = S64_MAX;
2223 dst_reg->var_off = tnum_rshift(dst_reg->var_off,
2226 dst_reg->var_off = tnum_rshift(tnum_unknown, umin_val);
2227 dst_reg->umin_value >>= umax_val;
2228 dst_reg->umax_value >>= umin_val;
2229 /* We may learn something more from the var_off */
2230 __update_reg_bounds(dst_reg);
2233 mark_reg_unknown(env, regs, insn->dst_reg);
2237 __reg_deduce_bounds(dst_reg);
2238 __reg_bound_offset(dst_reg);
2242 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
2245 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
2246 struct bpf_insn *insn)
2248 struct bpf_reg_state *regs = cur_regs(env), *dst_reg, *src_reg;
2249 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
2250 u8 opcode = BPF_OP(insn->code);
2253 dst_reg = ®s[insn->dst_reg];
2255 if (dst_reg->type != SCALAR_VALUE)
2257 if (BPF_SRC(insn->code) == BPF_X) {
2258 src_reg = ®s[insn->src_reg];
2259 if (src_reg->type != SCALAR_VALUE) {
2260 if (dst_reg->type != SCALAR_VALUE) {
2261 /* Combining two pointers by any ALU op yields
2262 * an arbitrary scalar.
2264 if (!env->allow_ptr_leaks) {
2265 verbose(env, "R%d pointer %s pointer prohibited\n",
2267 bpf_alu_string[opcode >> 4]);
2270 mark_reg_unknown(env, regs, insn->dst_reg);
2273 /* scalar += pointer
2274 * This is legal, but we have to reverse our
2275 * src/dest handling in computing the range
2277 rc = adjust_ptr_min_max_vals(env, insn,
2279 if (rc == -EACCES && env->allow_ptr_leaks) {
2280 /* scalar += unknown scalar */
2281 __mark_reg_unknown(&off_reg);
2282 return adjust_scalar_min_max_vals(
2288 } else if (ptr_reg) {
2289 /* pointer += scalar */
2290 rc = adjust_ptr_min_max_vals(env, insn,
2292 if (rc == -EACCES && env->allow_ptr_leaks) {
2293 /* unknown scalar += scalar */
2294 __mark_reg_unknown(dst_reg);
2295 return adjust_scalar_min_max_vals(
2296 env, insn, dst_reg, *src_reg);
2301 /* Pretend the src is a reg with a known value, since we only
2302 * need to be able to read from this state.
2304 off_reg.type = SCALAR_VALUE;
2305 __mark_reg_known(&off_reg, insn->imm);
2307 if (ptr_reg) { /* pointer += K */
2308 rc = adjust_ptr_min_max_vals(env, insn,
2310 if (rc == -EACCES && env->allow_ptr_leaks) {
2311 /* unknown scalar += K */
2312 __mark_reg_unknown(dst_reg);
2313 return adjust_scalar_min_max_vals(
2314 env, insn, dst_reg, off_reg);
2320 /* Got here implies adding two SCALAR_VALUEs */
2321 if (WARN_ON_ONCE(ptr_reg)) {
2322 print_verifier_state(env, env->cur_state);
2323 verbose(env, "verifier internal error: unexpected ptr_reg\n");
2326 if (WARN_ON(!src_reg)) {
2327 print_verifier_state(env, env->cur_state);
2328 verbose(env, "verifier internal error: no src_reg\n");
2331 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
2334 /* check validity of 32-bit and 64-bit arithmetic operations */
2335 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
2337 struct bpf_reg_state *regs = cur_regs(env);
2338 u8 opcode = BPF_OP(insn->code);
2341 if (opcode == BPF_END || opcode == BPF_NEG) {
2342 if (opcode == BPF_NEG) {
2343 if (BPF_SRC(insn->code) != 0 ||
2344 insn->src_reg != BPF_REG_0 ||
2345 insn->off != 0 || insn->imm != 0) {
2346 verbose(env, "BPF_NEG uses reserved fields\n");
2350 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
2351 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
2352 BPF_CLASS(insn->code) == BPF_ALU64) {
2353 verbose(env, "BPF_END uses reserved fields\n");
2358 /* check src operand */
2359 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
2363 if (is_pointer_value(env, insn->dst_reg)) {
2364 verbose(env, "R%d pointer arithmetic prohibited\n",
2369 /* check dest operand */
2370 err = check_reg_arg(env, insn->dst_reg, DST_OP);
2374 } else if (opcode == BPF_MOV) {
2376 if (BPF_SRC(insn->code) == BPF_X) {
2377 if (insn->imm != 0 || insn->off != 0) {
2378 verbose(env, "BPF_MOV uses reserved fields\n");
2382 /* check src operand */
2383 err = check_reg_arg(env, insn->src_reg, SRC_OP);
2387 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
2388 verbose(env, "BPF_MOV uses reserved fields\n");
2393 /* check dest operand */
2394 err = check_reg_arg(env, insn->dst_reg, DST_OP);
2398 if (BPF_SRC(insn->code) == BPF_X) {
2399 if (BPF_CLASS(insn->code) == BPF_ALU64) {
2401 * copy register state to dest reg
2403 regs[insn->dst_reg] = regs[insn->src_reg];
2404 regs[insn->dst_reg].live |= REG_LIVE_WRITTEN;
2407 if (is_pointer_value(env, insn->src_reg)) {
2409 "R%d partial copy of pointer\n",
2413 mark_reg_unknown(env, regs, insn->dst_reg);
2414 coerce_reg_to_size(®s[insn->dst_reg], 4);
2418 * remember the value we stored into this reg
2420 regs[insn->dst_reg].type = SCALAR_VALUE;
2421 if (BPF_CLASS(insn->code) == BPF_ALU64) {
2422 __mark_reg_known(regs + insn->dst_reg,
2425 __mark_reg_known(regs + insn->dst_reg,
2430 } else if (opcode > BPF_END) {
2431 verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
2434 } else { /* all other ALU ops: and, sub, xor, add, ... */
2436 if (BPF_SRC(insn->code) == BPF_X) {
2437 if (insn->imm != 0 || insn->off != 0) {
2438 verbose(env, "BPF_ALU uses reserved fields\n");
2441 /* check src1 operand */
2442 err = check_reg_arg(env, insn->src_reg, SRC_OP);
2446 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
2447 verbose(env, "BPF_ALU uses reserved fields\n");
2452 /* check src2 operand */
2453 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
2457 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
2458 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
2459 verbose(env, "div by zero\n");
2463 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
2464 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
2465 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
2467 if (insn->imm < 0 || insn->imm >= size) {
2468 verbose(env, "invalid shift %d\n", insn->imm);
2473 /* check dest operand */
2474 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
2478 return adjust_reg_min_max_vals(env, insn);
2484 static void find_good_pkt_pointers(struct bpf_verifier_state *state,
2485 struct bpf_reg_state *dst_reg,
2486 enum bpf_reg_type type,
2487 bool range_right_open)
2489 struct bpf_reg_state *regs = state->regs, *reg;
2493 if (dst_reg->off < 0 ||
2494 (dst_reg->off == 0 && range_right_open))
2495 /* This doesn't give us any range */
2498 if (dst_reg->umax_value > MAX_PACKET_OFF ||
2499 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
2500 /* Risk of overflow. For instance, ptr + (1<<63) may be less
2501 * than pkt_end, but that's because it's also less than pkt.
2505 new_range = dst_reg->off;
2506 if (range_right_open)
2509 /* Examples for register markings:
2511 * pkt_data in dst register:
2515 * if (r2 > pkt_end) goto <handle exception>
2520 * if (r2 < pkt_end) goto <access okay>
2521 * <handle exception>
2524 * r2 == dst_reg, pkt_end == src_reg
2525 * r2=pkt(id=n,off=8,r=0)
2526 * r3=pkt(id=n,off=0,r=0)
2528 * pkt_data in src register:
2532 * if (pkt_end >= r2) goto <access okay>
2533 * <handle exception>
2537 * if (pkt_end <= r2) goto <handle exception>
2541 * pkt_end == dst_reg, r2 == src_reg
2542 * r2=pkt(id=n,off=8,r=0)
2543 * r3=pkt(id=n,off=0,r=0)
2545 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
2546 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
2547 * and [r3, r3 + 8-1) respectively is safe to access depending on
2551 /* If our ids match, then we must have the same max_value. And we
2552 * don't care about the other reg's fixed offset, since if it's too big
2553 * the range won't allow anything.
2554 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
2556 for (i = 0; i < MAX_BPF_REG; i++)
2557 if (regs[i].type == type && regs[i].id == dst_reg->id)
2558 /* keep the maximum range already checked */
2559 regs[i].range = max(regs[i].range, new_range);
2561 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
2562 if (state->stack[i].slot_type[0] != STACK_SPILL)
2564 reg = &state->stack[i].spilled_ptr;
2565 if (reg->type == type && reg->id == dst_reg->id)
2566 reg->range = max(reg->range, new_range);
2570 /* Adjusts the register min/max values in the case that the dst_reg is the
2571 * variable register that we are working on, and src_reg is a constant or we're
2572 * simply doing a BPF_K check.
2573 * In JEQ/JNE cases we also adjust the var_off values.
2575 static void reg_set_min_max(struct bpf_reg_state *true_reg,
2576 struct bpf_reg_state *false_reg, u64 val,
2579 /* If the dst_reg is a pointer, we can't learn anything about its
2580 * variable offset from the compare (unless src_reg were a pointer into
2581 * the same object, but we don't bother with that.
2582 * Since false_reg and true_reg have the same type by construction, we
2583 * only need to check one of them for pointerness.
2585 if (__is_pointer_value(false, false_reg))
2590 /* If this is false then we know nothing Jon Snow, but if it is
2591 * true then we know for sure.
2593 __mark_reg_known(true_reg, val);
2596 /* If this is true we know nothing Jon Snow, but if it is false
2597 * we know the value for sure;
2599 __mark_reg_known(false_reg, val);
2602 false_reg->umax_value = min(false_reg->umax_value, val);
2603 true_reg->umin_value = max(true_reg->umin_value, val + 1);
2606 false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
2607 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
2610 false_reg->umin_value = max(false_reg->umin_value, val);
2611 true_reg->umax_value = min(true_reg->umax_value, val - 1);
2614 false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
2615 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
2618 false_reg->umax_value = min(false_reg->umax_value, val - 1);
2619 true_reg->umin_value = max(true_reg->umin_value, val);
2622 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
2623 true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
2626 false_reg->umin_value = max(false_reg->umin_value, val + 1);
2627 true_reg->umax_value = min(true_reg->umax_value, val);
2630 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
2631 true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
2637 __reg_deduce_bounds(false_reg);
2638 __reg_deduce_bounds(true_reg);
2639 /* We might have learned some bits from the bounds. */
2640 __reg_bound_offset(false_reg);
2641 __reg_bound_offset(true_reg);
2642 /* Intersecting with the old var_off might have improved our bounds
2643 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2644 * then new var_off is (0; 0x7f...fc) which improves our umax.
2646 __update_reg_bounds(false_reg);
2647 __update_reg_bounds(true_reg);
2650 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
2653 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
2654 struct bpf_reg_state *false_reg, u64 val,
2657 if (__is_pointer_value(false, false_reg))
2662 /* If this is false then we know nothing Jon Snow, but if it is
2663 * true then we know for sure.
2665 __mark_reg_known(true_reg, val);
2668 /* If this is true we know nothing Jon Snow, but if it is false
2669 * we know the value for sure;
2671 __mark_reg_known(false_reg, val);
2674 true_reg->umax_value = min(true_reg->umax_value, val - 1);
2675 false_reg->umin_value = max(false_reg->umin_value, val);
2678 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
2679 false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
2682 true_reg->umin_value = max(true_reg->umin_value, val + 1);
2683 false_reg->umax_value = min(false_reg->umax_value, val);
2686 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
2687 false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
2690 true_reg->umax_value = min(true_reg->umax_value, val);
2691 false_reg->umin_value = max(false_reg->umin_value, val + 1);
2694 true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
2695 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
2698 true_reg->umin_value = max(true_reg->umin_value, val);
2699 false_reg->umax_value = min(false_reg->umax_value, val - 1);
2702 true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
2703 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
2709 __reg_deduce_bounds(false_reg);
2710 __reg_deduce_bounds(true_reg);
2711 /* We might have learned some bits from the bounds. */
2712 __reg_bound_offset(false_reg);
2713 __reg_bound_offset(true_reg);
2714 /* Intersecting with the old var_off might have improved our bounds
2715 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2716 * then new var_off is (0; 0x7f...fc) which improves our umax.
2718 __update_reg_bounds(false_reg);
2719 __update_reg_bounds(true_reg);
2722 /* Regs are known to be equal, so intersect their min/max/var_off */
2723 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
2724 struct bpf_reg_state *dst_reg)
2726 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
2727 dst_reg->umin_value);
2728 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
2729 dst_reg->umax_value);
2730 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
2731 dst_reg->smin_value);
2732 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
2733 dst_reg->smax_value);
2734 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
2736 /* We might have learned new bounds from the var_off. */
2737 __update_reg_bounds(src_reg);
2738 __update_reg_bounds(dst_reg);
2739 /* We might have learned something about the sign bit. */
2740 __reg_deduce_bounds(src_reg);
2741 __reg_deduce_bounds(dst_reg);
2742 /* We might have learned some bits from the bounds. */
2743 __reg_bound_offset(src_reg);
2744 __reg_bound_offset(dst_reg);
2745 /* Intersecting with the old var_off might have improved our bounds
2746 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2747 * then new var_off is (0; 0x7f...fc) which improves our umax.
2749 __update_reg_bounds(src_reg);
2750 __update_reg_bounds(dst_reg);
2753 static void reg_combine_min_max(struct bpf_reg_state *true_src,
2754 struct bpf_reg_state *true_dst,
2755 struct bpf_reg_state *false_src,
2756 struct bpf_reg_state *false_dst,
2761 __reg_combine_min_max(true_src, true_dst);
2764 __reg_combine_min_max(false_src, false_dst);
2769 static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id,
2772 struct bpf_reg_state *reg = ®s[regno];
2774 if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) {
2775 /* Old offset (both fixed and variable parts) should
2776 * have been known-zero, because we don't allow pointer
2777 * arithmetic on pointers that might be NULL.
2779 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
2780 !tnum_equals_const(reg->var_off, 0) ||
2782 __mark_reg_known_zero(reg);
2786 reg->type = SCALAR_VALUE;
2787 } else if (reg->map_ptr->inner_map_meta) {
2788 reg->type = CONST_PTR_TO_MAP;
2789 reg->map_ptr = reg->map_ptr->inner_map_meta;
2791 reg->type = PTR_TO_MAP_VALUE;
2793 /* We don't need id from this point onwards anymore, thus we
2794 * should better reset it, so that state pruning has chances
2801 /* The logic is similar to find_good_pkt_pointers(), both could eventually
2802 * be folded together at some point.
2804 static void mark_map_regs(struct bpf_verifier_state *state, u32 regno,
2807 struct bpf_reg_state *regs = state->regs;
2808 u32 id = regs[regno].id;
2811 for (i = 0; i < MAX_BPF_REG; i++)
2812 mark_map_reg(regs, i, id, is_null);
2814 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
2815 if (state->stack[i].slot_type[0] != STACK_SPILL)
2817 mark_map_reg(&state->stack[i].spilled_ptr, 0, id, is_null);
2821 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
2822 struct bpf_reg_state *dst_reg,
2823 struct bpf_reg_state *src_reg,
2824 struct bpf_verifier_state *this_branch,
2825 struct bpf_verifier_state *other_branch)
2827 if (BPF_SRC(insn->code) != BPF_X)
2830 switch (BPF_OP(insn->code)) {
2832 if ((dst_reg->type == PTR_TO_PACKET &&
2833 src_reg->type == PTR_TO_PACKET_END) ||
2834 (dst_reg->type == PTR_TO_PACKET_META &&
2835 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
2836 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
2837 find_good_pkt_pointers(this_branch, dst_reg,
2838 dst_reg->type, false);
2839 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
2840 src_reg->type == PTR_TO_PACKET) ||
2841 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
2842 src_reg->type == PTR_TO_PACKET_META)) {
2843 /* pkt_end > pkt_data', pkt_data > pkt_meta' */
2844 find_good_pkt_pointers(other_branch, src_reg,
2845 src_reg->type, true);
2851 if ((dst_reg->type == PTR_TO_PACKET &&
2852 src_reg->type == PTR_TO_PACKET_END) ||
2853 (dst_reg->type == PTR_TO_PACKET_META &&
2854 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
2855 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
2856 find_good_pkt_pointers(other_branch, dst_reg,
2857 dst_reg->type, true);
2858 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
2859 src_reg->type == PTR_TO_PACKET) ||
2860 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
2861 src_reg->type == PTR_TO_PACKET_META)) {
2862 /* pkt_end < pkt_data', pkt_data > pkt_meta' */
2863 find_good_pkt_pointers(this_branch, src_reg,
2864 src_reg->type, false);
2870 if ((dst_reg->type == PTR_TO_PACKET &&
2871 src_reg->type == PTR_TO_PACKET_END) ||
2872 (dst_reg->type == PTR_TO_PACKET_META &&
2873 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
2874 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
2875 find_good_pkt_pointers(this_branch, dst_reg,
2876 dst_reg->type, true);
2877 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
2878 src_reg->type == PTR_TO_PACKET) ||
2879 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
2880 src_reg->type == PTR_TO_PACKET_META)) {
2881 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
2882 find_good_pkt_pointers(other_branch, src_reg,
2883 src_reg->type, false);
2889 if ((dst_reg->type == PTR_TO_PACKET &&
2890 src_reg->type == PTR_TO_PACKET_END) ||
2891 (dst_reg->type == PTR_TO_PACKET_META &&
2892 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
2893 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
2894 find_good_pkt_pointers(other_branch, dst_reg,
2895 dst_reg->type, false);
2896 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
2897 src_reg->type == PTR_TO_PACKET) ||
2898 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
2899 src_reg->type == PTR_TO_PACKET_META)) {
2900 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
2901 find_good_pkt_pointers(this_branch, src_reg,
2902 src_reg->type, true);
2914 static int check_cond_jmp_op(struct bpf_verifier_env *env,
2915 struct bpf_insn *insn, int *insn_idx)
2917 struct bpf_verifier_state *other_branch, *this_branch = env->cur_state;
2918 struct bpf_reg_state *regs = this_branch->regs, *dst_reg;
2919 u8 opcode = BPF_OP(insn->code);
2922 if (opcode > BPF_JSLE) {
2923 verbose(env, "invalid BPF_JMP opcode %x\n", opcode);
2927 if (BPF_SRC(insn->code) == BPF_X) {
2928 if (insn->imm != 0) {
2929 verbose(env, "BPF_JMP uses reserved fields\n");
2933 /* check src1 operand */
2934 err = check_reg_arg(env, insn->src_reg, SRC_OP);
2938 if (is_pointer_value(env, insn->src_reg)) {
2939 verbose(env, "R%d pointer comparison prohibited\n",
2944 if (insn->src_reg != BPF_REG_0) {
2945 verbose(env, "BPF_JMP uses reserved fields\n");
2950 /* check src2 operand */
2951 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
2955 dst_reg = ®s[insn->dst_reg];
2957 /* detect if R == 0 where R was initialized to zero earlier */
2958 if (BPF_SRC(insn->code) == BPF_K &&
2959 (opcode == BPF_JEQ || opcode == BPF_JNE) &&
2960 dst_reg->type == SCALAR_VALUE &&
2961 tnum_equals_const(dst_reg->var_off, insn->imm)) {
2962 if (opcode == BPF_JEQ) {
2963 /* if (imm == imm) goto pc+off;
2964 * only follow the goto, ignore fall-through
2966 *insn_idx += insn->off;
2969 /* if (imm != imm) goto pc+off;
2970 * only follow fall-through branch, since
2971 * that's where the program will go
2977 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
2981 /* detect if we are comparing against a constant value so we can adjust
2982 * our min/max values for our dst register.
2983 * this is only legit if both are scalars (or pointers to the same
2984 * object, I suppose, but we don't support that right now), because
2985 * otherwise the different base pointers mean the offsets aren't
2988 if (BPF_SRC(insn->code) == BPF_X) {
2989 if (dst_reg->type == SCALAR_VALUE &&
2990 regs[insn->src_reg].type == SCALAR_VALUE) {
2991 if (tnum_is_const(regs[insn->src_reg].var_off))
2992 reg_set_min_max(&other_branch->regs[insn->dst_reg],
2993 dst_reg, regs[insn->src_reg].var_off.value,
2995 else if (tnum_is_const(dst_reg->var_off))
2996 reg_set_min_max_inv(&other_branch->regs[insn->src_reg],
2997 ®s[insn->src_reg],
2998 dst_reg->var_off.value, opcode);
2999 else if (opcode == BPF_JEQ || opcode == BPF_JNE)
3000 /* Comparing for equality, we can combine knowledge */
3001 reg_combine_min_max(&other_branch->regs[insn->src_reg],
3002 &other_branch->regs[insn->dst_reg],
3003 ®s[insn->src_reg],
3004 ®s[insn->dst_reg], opcode);
3006 } else if (dst_reg->type == SCALAR_VALUE) {
3007 reg_set_min_max(&other_branch->regs[insn->dst_reg],
3008 dst_reg, insn->imm, opcode);
3011 /* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
3012 if (BPF_SRC(insn->code) == BPF_K &&
3013 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
3014 dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
3015 /* Mark all identical map registers in each branch as either
3016 * safe or unknown depending R == 0 or R != 0 conditional.
3018 mark_map_regs(this_branch, insn->dst_reg, opcode == BPF_JNE);
3019 mark_map_regs(other_branch, insn->dst_reg, opcode == BPF_JEQ);
3020 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg],
3021 this_branch, other_branch) &&
3022 is_pointer_value(env, insn->dst_reg)) {
3023 verbose(env, "R%d pointer comparison prohibited\n",
3028 print_verifier_state(env, this_branch);
3032 /* return the map pointer stored inside BPF_LD_IMM64 instruction */
3033 static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
3035 u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
3037 return (struct bpf_map *) (unsigned long) imm64;
3040 /* verify BPF_LD_IMM64 instruction */
3041 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
3043 struct bpf_reg_state *regs = cur_regs(env);
3046 if (BPF_SIZE(insn->code) != BPF_DW) {
3047 verbose(env, "invalid BPF_LD_IMM insn\n");
3050 if (insn->off != 0) {
3051 verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
3055 err = check_reg_arg(env, insn->dst_reg, DST_OP);
3059 if (insn->src_reg == 0) {
3060 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
3062 regs[insn->dst_reg].type = SCALAR_VALUE;
3063 __mark_reg_known(®s[insn->dst_reg], imm);
3067 /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
3068 BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
3070 regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
3071 regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
3075 static bool may_access_skb(enum bpf_prog_type type)
3078 case BPF_PROG_TYPE_SOCKET_FILTER:
3079 case BPF_PROG_TYPE_SCHED_CLS:
3080 case BPF_PROG_TYPE_SCHED_ACT:
3087 /* verify safety of LD_ABS|LD_IND instructions:
3088 * - they can only appear in the programs where ctx == skb
3089 * - since they are wrappers of function calls, they scratch R1-R5 registers,
3090 * preserve R6-R9, and store return value into R0
3093 * ctx == skb == R6 == CTX
3096 * SRC == any register
3097 * IMM == 32-bit immediate
3100 * R0 - 8/16/32-bit skb data converted to cpu endianness
3102 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
3104 struct bpf_reg_state *regs = cur_regs(env);
3105 u8 mode = BPF_MODE(insn->code);
3108 if (!may_access_skb(env->prog->type)) {
3109 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
3113 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
3114 BPF_SIZE(insn->code) == BPF_DW ||
3115 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
3116 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
3120 /* check whether implicit source operand (register R6) is readable */
3121 err = check_reg_arg(env, BPF_REG_6, SRC_OP);
3125 if (regs[BPF_REG_6].type != PTR_TO_CTX) {
3127 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
3131 if (mode == BPF_IND) {
3132 /* check explicit source operand */
3133 err = check_reg_arg(env, insn->src_reg, SRC_OP);
3138 /* reset caller saved regs to unreadable */
3139 for (i = 0; i < CALLER_SAVED_REGS; i++) {
3140 mark_reg_not_init(env, regs, caller_saved[i]);
3141 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
3144 /* mark destination R0 register as readable, since it contains
3145 * the value fetched from the packet.
3146 * Already marked as written above.
3148 mark_reg_unknown(env, regs, BPF_REG_0);
3152 static int check_return_code(struct bpf_verifier_env *env)
3154 struct bpf_reg_state *reg;
3155 struct tnum range = tnum_range(0, 1);
3157 switch (env->prog->type) {
3158 case BPF_PROG_TYPE_CGROUP_SKB:
3159 case BPF_PROG_TYPE_CGROUP_SOCK:
3160 case BPF_PROG_TYPE_SOCK_OPS:
3161 case BPF_PROG_TYPE_CGROUP_DEVICE:
3167 reg = cur_regs(env) + BPF_REG_0;
3168 if (reg->type != SCALAR_VALUE) {
3169 verbose(env, "At program exit the register R0 is not a known value (%s)\n",
3170 reg_type_str[reg->type]);
3174 if (!tnum_in(range, reg->var_off)) {
3175 verbose(env, "At program exit the register R0 ");
3176 if (!tnum_is_unknown(reg->var_off)) {
3179 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3180 verbose(env, "has value %s", tn_buf);
3182 verbose(env, "has unknown scalar value");
3184 verbose(env, " should have been 0 or 1\n");
3190 /* non-recursive DFS pseudo code
3191 * 1 procedure DFS-iterative(G,v):
3192 * 2 label v as discovered
3193 * 3 let S be a stack
3195 * 5 while S is not empty
3197 * 7 if t is what we're looking for:
3199 * 9 for all edges e in G.adjacentEdges(t) do
3200 * 10 if edge e is already labelled
3201 * 11 continue with the next edge
3202 * 12 w <- G.adjacentVertex(t,e)
3203 * 13 if vertex w is not discovered and not explored
3204 * 14 label e as tree-edge
3205 * 15 label w as discovered
3208 * 18 else if vertex w is discovered
3209 * 19 label e as back-edge
3211 * 21 // vertex w is explored
3212 * 22 label e as forward- or cross-edge
3213 * 23 label t as explored
3218 * 0x11 - discovered and fall-through edge labelled
3219 * 0x12 - discovered and fall-through and branch edges labelled
3230 #define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
3232 static int *insn_stack; /* stack of insns to process */
3233 static int cur_stack; /* current stack index */
3234 static int *insn_state;
3236 /* t, w, e - match pseudo-code above:
3237 * t - index of current instruction
3238 * w - next instruction
3241 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
3243 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
3246 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
3249 if (w < 0 || w >= env->prog->len) {
3250 verbose(env, "jump out of range from insn %d to %d\n", t, w);
3255 /* mark branch target for state pruning */
3256 env->explored_states[w] = STATE_LIST_MARK;
3258 if (insn_state[w] == 0) {
3260 insn_state[t] = DISCOVERED | e;
3261 insn_state[w] = DISCOVERED;
3262 if (cur_stack >= env->prog->len)
3264 insn_stack[cur_stack++] = w;
3266 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
3267 verbose(env, "back-edge from insn %d to %d\n", t, w);
3269 } else if (insn_state[w] == EXPLORED) {
3270 /* forward- or cross-edge */
3271 insn_state[t] = DISCOVERED | e;
3273 verbose(env, "insn state internal bug\n");
3279 /* non-recursive depth-first-search to detect loops in BPF program
3280 * loop == back-edge in directed graph
3282 static int check_cfg(struct bpf_verifier_env *env)
3284 struct bpf_insn *insns = env->prog->insnsi;
3285 int insn_cnt = env->prog->len;
3289 insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
3293 insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
3299 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
3300 insn_stack[0] = 0; /* 0 is the first instruction */
3306 t = insn_stack[cur_stack - 1];
3308 if (BPF_CLASS(insns[t].code) == BPF_JMP) {
3309 u8 opcode = BPF_OP(insns[t].code);
3311 if (opcode == BPF_EXIT) {
3313 } else if (opcode == BPF_CALL) {
3314 ret = push_insn(t, t + 1, FALLTHROUGH, env);
3319 if (t + 1 < insn_cnt)
3320 env->explored_states[t + 1] = STATE_LIST_MARK;
3321 } else if (opcode == BPF_JA) {
3322 if (BPF_SRC(insns[t].code) != BPF_K) {
3326 /* unconditional jump with single edge */
3327 ret = push_insn(t, t + insns[t].off + 1,
3333 /* tell verifier to check for equivalent states
3334 * after every call and jump
3336 if (t + 1 < insn_cnt)
3337 env->explored_states[t + 1] = STATE_LIST_MARK;
3339 /* conditional jump with two edges */
3340 env->explored_states[t] = STATE_LIST_MARK;
3341 ret = push_insn(t, t + 1, FALLTHROUGH, env);
3347 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
3354 /* all other non-branch instructions with single
3357 ret = push_insn(t, t + 1, FALLTHROUGH, env);
3365 insn_state[t] = EXPLORED;
3366 if (cur_stack-- <= 0) {
3367 verbose(env, "pop stack internal bug\n");
3374 for (i = 0; i < insn_cnt; i++) {
3375 if (insn_state[i] != EXPLORED) {
3376 verbose(env, "unreachable insn %d\n", i);
3381 ret = 0; /* cfg looks good */
3389 /* check %cur's range satisfies %old's */
3390 static bool range_within(struct bpf_reg_state *old,
3391 struct bpf_reg_state *cur)
3393 return old->umin_value <= cur->umin_value &&
3394 old->umax_value >= cur->umax_value &&
3395 old->smin_value <= cur->smin_value &&
3396 old->smax_value >= cur->smax_value;
3399 /* Maximum number of register states that can exist at once */
3400 #define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
3406 /* If in the old state two registers had the same id, then they need to have
3407 * the same id in the new state as well. But that id could be different from
3408 * the old state, so we need to track the mapping from old to new ids.
3409 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
3410 * regs with old id 5 must also have new id 9 for the new state to be safe. But
3411 * regs with a different old id could still have new id 9, we don't care about
3413 * So we look through our idmap to see if this old id has been seen before. If
3414 * so, we require the new id to match; otherwise, we add the id pair to the map.
3416 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
3420 for (i = 0; i < ID_MAP_SIZE; i++) {
3421 if (!idmap[i].old) {
3422 /* Reached an empty slot; haven't seen this id before */
3423 idmap[i].old = old_id;
3424 idmap[i].cur = cur_id;
3427 if (idmap[i].old == old_id)
3428 return idmap[i].cur == cur_id;
3430 /* We ran out of idmap slots, which should be impossible */
3435 /* Returns true if (rold safe implies rcur safe) */
3436 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
3437 struct idpair *idmap)
3439 if (!(rold->live & REG_LIVE_READ))
3440 /* explored state didn't use this */
3443 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, live)) == 0)
3446 if (rold->type == NOT_INIT)
3447 /* explored state can't have used this */
3449 if (rcur->type == NOT_INIT)
3451 switch (rold->type) {
3453 if (rcur->type == SCALAR_VALUE) {
3454 /* new val must satisfy old val knowledge */
3455 return range_within(rold, rcur) &&
3456 tnum_in(rold->var_off, rcur->var_off);
3458 /* if we knew anything about the old value, we're not
3459 * equal, because we can't know anything about the
3460 * scalar value of the pointer in the new value.
3462 return rold->umin_value == 0 &&
3463 rold->umax_value == U64_MAX &&
3464 rold->smin_value == S64_MIN &&
3465 rold->smax_value == S64_MAX &&
3466 tnum_is_unknown(rold->var_off);
3468 case PTR_TO_MAP_VALUE:
3469 /* If the new min/max/var_off satisfy the old ones and
3470 * everything else matches, we are OK.
3471 * We don't care about the 'id' value, because nothing
3472 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL)
3474 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
3475 range_within(rold, rcur) &&
3476 tnum_in(rold->var_off, rcur->var_off);
3477 case PTR_TO_MAP_VALUE_OR_NULL:
3478 /* a PTR_TO_MAP_VALUE could be safe to use as a
3479 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
3480 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
3481 * checked, doing so could have affected others with the same
3482 * id, and we can't check for that because we lost the id when
3483 * we converted to a PTR_TO_MAP_VALUE.
3485 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
3487 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
3489 /* Check our ids match any regs they're supposed to */
3490 return check_ids(rold->id, rcur->id, idmap);
3491 case PTR_TO_PACKET_META:
3493 if (rcur->type != rold->type)
3495 /* We must have at least as much range as the old ptr
3496 * did, so that any accesses which were safe before are
3497 * still safe. This is true even if old range < old off,
3498 * since someone could have accessed through (ptr - k), or
3499 * even done ptr -= k in a register, to get a safe access.
3501 if (rold->range > rcur->range)
3503 /* If the offsets don't match, we can't trust our alignment;
3504 * nor can we be sure that we won't fall out of range.
3506 if (rold->off != rcur->off)
3508 /* id relations must be preserved */
3509 if (rold->id && !check_ids(rold->id, rcur->id, idmap))
3511 /* new val must satisfy old val knowledge */
3512 return range_within(rold, rcur) &&
3513 tnum_in(rold->var_off, rcur->var_off);
3515 case CONST_PTR_TO_MAP:
3517 case PTR_TO_PACKET_END:
3518 /* Only valid matches are exact, which memcmp() above
3519 * would have accepted
3522 /* Don't know what's going on, just say it's not safe */
3526 /* Shouldn't get here; if we do, say it's not safe */
3531 static bool stacksafe(struct bpf_verifier_state *old,
3532 struct bpf_verifier_state *cur,
3533 struct idpair *idmap)
3537 /* if explored stack has more populated slots than current stack
3538 * such stacks are not equivalent
3540 if (old->allocated_stack > cur->allocated_stack)
3543 /* walk slots of the explored stack and ignore any additional
3544 * slots in the current stack, since explored(safe) state
3547 for (i = 0; i < old->allocated_stack; i++) {
3548 spi = i / BPF_REG_SIZE;
3550 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
3552 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
3553 cur->stack[spi].slot_type[i % BPF_REG_SIZE])
3554 /* Ex: old explored (safe) state has STACK_SPILL in
3555 * this stack slot, but current has has STACK_MISC ->
3556 * this verifier states are not equivalent,
3557 * return false to continue verification of this path
3560 if (i % BPF_REG_SIZE)
3562 if (old->stack[spi].slot_type[0] != STACK_SPILL)
3564 if (!regsafe(&old->stack[spi].spilled_ptr,
3565 &cur->stack[spi].spilled_ptr,
3567 /* when explored and current stack slot are both storing
3568 * spilled registers, check that stored pointers types
3569 * are the same as well.
3570 * Ex: explored safe path could have stored
3571 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
3572 * but current path has stored:
3573 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
3574 * such verifier states are not equivalent.
3575 * return false to continue verification of this path
3582 /* compare two verifier states
3584 * all states stored in state_list are known to be valid, since
3585 * verifier reached 'bpf_exit' instruction through them
3587 * this function is called when verifier exploring different branches of
3588 * execution popped from the state stack. If it sees an old state that has
3589 * more strict register state and more strict stack state then this execution
3590 * branch doesn't need to be explored further, since verifier already
3591 * concluded that more strict state leads to valid finish.
3593 * Therefore two states are equivalent if register state is more conservative
3594 * and explored stack state is more conservative than the current one.
3597 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
3598 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
3600 * In other words if current stack state (one being explored) has more
3601 * valid slots than old one that already passed validation, it means
3602 * the verifier can stop exploring and conclude that current state is valid too
3604 * Similarly with registers. If explored state has register type as invalid
3605 * whereas register type in current state is meaningful, it means that
3606 * the current state will reach 'bpf_exit' instruction safely
3608 static bool states_equal(struct bpf_verifier_env *env,
3609 struct bpf_verifier_state *old,
3610 struct bpf_verifier_state *cur)
3612 struct idpair *idmap;
3616 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
3617 /* If we failed to allocate the idmap, just say it's not safe */
3621 for (i = 0; i < MAX_BPF_REG; i++) {
3622 if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
3626 if (!stacksafe(old, cur, idmap))
3634 /* A write screens off any subsequent reads; but write marks come from the
3635 * straight-line code between a state and its parent. When we arrive at a
3636 * jump target (in the first iteration of the propagate_liveness() loop),
3637 * we didn't arrive by the straight-line code, so read marks in state must
3638 * propagate to parent regardless of state's write marks.
3640 static bool do_propagate_liveness(const struct bpf_verifier_state *state,
3641 struct bpf_verifier_state *parent)
3643 bool writes = parent == state->parent; /* Observe write marks */
3644 bool touched = false; /* any changes made? */
3649 /* Propagate read liveness of registers... */
3650 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
3651 /* We don't need to worry about FP liveness because it's read-only */
3652 for (i = 0; i < BPF_REG_FP; i++) {
3653 if (parent->regs[i].live & REG_LIVE_READ)
3655 if (writes && (state->regs[i].live & REG_LIVE_WRITTEN))
3657 if (state->regs[i].live & REG_LIVE_READ) {
3658 parent->regs[i].live |= REG_LIVE_READ;
3662 /* ... and stack slots */
3663 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
3664 i < parent->allocated_stack / BPF_REG_SIZE; i++) {
3665 if (parent->stack[i].slot_type[0] != STACK_SPILL)
3667 if (state->stack[i].slot_type[0] != STACK_SPILL)
3669 if (parent->stack[i].spilled_ptr.live & REG_LIVE_READ)
3672 (state->stack[i].spilled_ptr.live & REG_LIVE_WRITTEN))
3674 if (state->stack[i].spilled_ptr.live & REG_LIVE_READ) {
3675 parent->stack[i].spilled_ptr.live |= REG_LIVE_READ;
3682 /* "parent" is "a state from which we reach the current state", but initially
3683 * it is not the state->parent (i.e. "the state whose straight-line code leads
3684 * to the current state"), instead it is the state that happened to arrive at
3685 * a (prunable) equivalent of the current state. See comment above
3686 * do_propagate_liveness() for consequences of this.
3687 * This function is just a more efficient way of calling mark_reg_read() or
3688 * mark_stack_slot_read() on each reg in "parent" that is read in "state",
3689 * though it requires that parent != state->parent in the call arguments.
3691 static void propagate_liveness(const struct bpf_verifier_state *state,
3692 struct bpf_verifier_state *parent)
3694 while (do_propagate_liveness(state, parent)) {
3695 /* Something changed, so we need to feed those changes onward */
3697 parent = state->parent;
3701 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
3703 struct bpf_verifier_state_list *new_sl;
3704 struct bpf_verifier_state_list *sl;
3705 struct bpf_verifier_state *cur = env->cur_state;
3708 sl = env->explored_states[insn_idx];
3710 /* this 'insn_idx' instruction wasn't marked, so we will not
3711 * be doing state search here
3715 while (sl != STATE_LIST_MARK) {
3716 if (states_equal(env, &sl->state, cur)) {
3717 /* reached equivalent register/stack state,
3719 * Registers read by the continuation are read by us.
3720 * If we have any write marks in env->cur_state, they
3721 * will prevent corresponding reads in the continuation
3722 * from reaching our parent (an explored_state). Our
3723 * own state will get the read marks recorded, but
3724 * they'll be immediately forgotten as we're pruning
3725 * this state and will pop a new one.
3727 propagate_liveness(&sl->state, cur);
3733 /* there were no equivalent states, remember current one.
3734 * technically the current state is not proven to be safe yet,
3735 * but it will either reach bpf_exit (which means it's safe) or
3736 * it will be rejected. Since there are no loops, we won't be
3737 * seeing this 'insn_idx' instruction again on the way to bpf_exit
3739 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
3743 /* add new state to the head of linked list */
3744 err = copy_verifier_state(&new_sl->state, cur);
3746 free_verifier_state(&new_sl->state, false);
3750 new_sl->next = env->explored_states[insn_idx];
3751 env->explored_states[insn_idx] = new_sl;
3752 /* connect new state to parentage chain */
3753 cur->parent = &new_sl->state;
3754 /* clear write marks in current state: the writes we did are not writes
3755 * our child did, so they don't screen off its reads from us.
3756 * (There are no read marks in current state, because reads always mark
3757 * their parent and current state never has children yet. Only
3758 * explored_states can get read marks.)
3760 for (i = 0; i < BPF_REG_FP; i++)
3761 cur->regs[i].live = REG_LIVE_NONE;
3762 for (i = 0; i < cur->allocated_stack / BPF_REG_SIZE; i++)
3763 if (cur->stack[i].slot_type[0] == STACK_SPILL)
3764 cur->stack[i].spilled_ptr.live = REG_LIVE_NONE;
3768 static int ext_analyzer_insn_hook(struct bpf_verifier_env *env,
3769 int insn_idx, int prev_insn_idx)
3771 if (env->dev_ops && env->dev_ops->insn_hook)
3772 return env->dev_ops->insn_hook(env, insn_idx, prev_insn_idx);
3777 static int do_check(struct bpf_verifier_env *env)
3779 struct bpf_verifier_state *state;
3780 struct bpf_insn *insns = env->prog->insnsi;
3781 struct bpf_reg_state *regs;
3782 int insn_cnt = env->prog->len;
3783 int insn_idx, prev_insn_idx = 0;
3784 int insn_processed = 0;
3785 bool do_print_state = false;
3787 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
3790 env->cur_state = state;
3791 init_reg_state(env, state->regs);
3792 state->parent = NULL;
3795 struct bpf_insn *insn;
3799 if (insn_idx >= insn_cnt) {
3800 verbose(env, "invalid insn idx %d insn_cnt %d\n",
3801 insn_idx, insn_cnt);
3805 insn = &insns[insn_idx];
3806 class = BPF_CLASS(insn->code);
3808 if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
3810 "BPF program is too large. Processed %d insn\n",
3815 err = is_state_visited(env, insn_idx);
3819 /* found equivalent state, can prune the search */
3820 if (env->log.level) {
3822 verbose(env, "\nfrom %d to %d: safe\n",
3823 prev_insn_idx, insn_idx);
3825 verbose(env, "%d: safe\n", insn_idx);
3827 goto process_bpf_exit;
3833 if (env->log.level > 1 || (env->log.level && do_print_state)) {
3834 if (env->log.level > 1)
3835 verbose(env, "%d:", insn_idx);
3837 verbose(env, "\nfrom %d to %d:",
3838 prev_insn_idx, insn_idx);
3839 print_verifier_state(env, state);
3840 do_print_state = false;
3843 if (env->log.level) {
3844 verbose(env, "%d: ", insn_idx);
3845 print_bpf_insn(verbose, env, insn,
3846 env->allow_ptr_leaks);
3849 err = ext_analyzer_insn_hook(env, insn_idx, prev_insn_idx);
3853 regs = cur_regs(env);
3854 env->insn_aux_data[insn_idx].seen = true;
3855 if (class == BPF_ALU || class == BPF_ALU64) {
3856 err = check_alu_op(env, insn);
3860 } else if (class == BPF_LDX) {
3861 enum bpf_reg_type *prev_src_type, src_reg_type;
3863 /* check for reserved fields is already done */
3865 /* check src operand */
3866 err = check_reg_arg(env, insn->src_reg, SRC_OP);
3870 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
3874 src_reg_type = regs[insn->src_reg].type;
3876 /* check that memory (src_reg + off) is readable,
3877 * the state of dst_reg will be updated by this func
3879 err = check_mem_access(env, insn_idx, insn->src_reg, insn->off,
3880 BPF_SIZE(insn->code), BPF_READ,
3885 prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;
3887 if (*prev_src_type == NOT_INIT) {
3889 * dst_reg = *(u32 *)(src_reg + off)
3890 * save type to validate intersecting paths
3892 *prev_src_type = src_reg_type;
3894 } else if (src_reg_type != *prev_src_type &&
3895 (src_reg_type == PTR_TO_CTX ||
3896 *prev_src_type == PTR_TO_CTX)) {
3897 /* ABuser program is trying to use the same insn
3898 * dst_reg = *(u32*) (src_reg + off)
3899 * with different pointer types:
3900 * src_reg == ctx in one branch and
3901 * src_reg == stack|map in some other branch.
3904 verbose(env, "same insn cannot be used with different pointers\n");
3908 } else if (class == BPF_STX) {
3909 enum bpf_reg_type *prev_dst_type, dst_reg_type;
3911 if (BPF_MODE(insn->code) == BPF_XADD) {
3912 err = check_xadd(env, insn_idx, insn);
3919 /* check src1 operand */
3920 err = check_reg_arg(env, insn->src_reg, SRC_OP);
3923 /* check src2 operand */
3924 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3928 dst_reg_type = regs[insn->dst_reg].type;
3930 /* check that memory (dst_reg + off) is writeable */
3931 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
3932 BPF_SIZE(insn->code), BPF_WRITE,
3937 prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;
3939 if (*prev_dst_type == NOT_INIT) {
3940 *prev_dst_type = dst_reg_type;
3941 } else if (dst_reg_type != *prev_dst_type &&
3942 (dst_reg_type == PTR_TO_CTX ||
3943 *prev_dst_type == PTR_TO_CTX)) {
3944 verbose(env, "same insn cannot be used with different pointers\n");
3948 } else if (class == BPF_ST) {
3949 if (BPF_MODE(insn->code) != BPF_MEM ||
3950 insn->src_reg != BPF_REG_0) {
3951 verbose(env, "BPF_ST uses reserved fields\n");
3954 /* check src operand */
3955 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3959 /* check that memory (dst_reg + off) is writeable */
3960 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
3961 BPF_SIZE(insn->code), BPF_WRITE,
3966 } else if (class == BPF_JMP) {
3967 u8 opcode = BPF_OP(insn->code);
3969 if (opcode == BPF_CALL) {
3970 if (BPF_SRC(insn->code) != BPF_K ||
3972 insn->src_reg != BPF_REG_0 ||
3973 insn->dst_reg != BPF_REG_0) {
3974 verbose(env, "BPF_CALL uses reserved fields\n");
3978 err = check_call(env, insn->imm, insn_idx);
3982 } else if (opcode == BPF_JA) {
3983 if (BPF_SRC(insn->code) != BPF_K ||
3985 insn->src_reg != BPF_REG_0 ||
3986 insn->dst_reg != BPF_REG_0) {
3987 verbose(env, "BPF_JA uses reserved fields\n");
3991 insn_idx += insn->off + 1;
3994 } else if (opcode == BPF_EXIT) {
3995 if (BPF_SRC(insn->code) != BPF_K ||
3997 insn->src_reg != BPF_REG_0 ||
3998 insn->dst_reg != BPF_REG_0) {
3999 verbose(env, "BPF_EXIT uses reserved fields\n");
4003 /* eBPF calling convetion is such that R0 is used
4004 * to return the value from eBPF program.
4005 * Make sure that it's readable at this time
4006 * of bpf_exit, which means that program wrote
4007 * something into it earlier
4009 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
4013 if (is_pointer_value(env, BPF_REG_0)) {
4014 verbose(env, "R0 leaks addr as return value\n");
4018 err = check_return_code(env);
4022 err = pop_stack(env, &prev_insn_idx, &insn_idx);
4028 do_print_state = true;
4032 err = check_cond_jmp_op(env, insn, &insn_idx);
4036 } else if (class == BPF_LD) {
4037 u8 mode = BPF_MODE(insn->code);
4039 if (mode == BPF_ABS || mode == BPF_IND) {
4040 err = check_ld_abs(env, insn);
4044 } else if (mode == BPF_IMM) {
4045 err = check_ld_imm(env, insn);
4050 env->insn_aux_data[insn_idx].seen = true;
4052 verbose(env, "invalid BPF_LD mode\n");
4056 verbose(env, "unknown insn class %d\n", class);
4063 verbose(env, "processed %d insns, stack depth %d\n", insn_processed,
4064 env->prog->aux->stack_depth);
4068 static int check_map_prealloc(struct bpf_map *map)
4070 return (map->map_type != BPF_MAP_TYPE_HASH &&
4071 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
4072 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
4073 !(map->map_flags & BPF_F_NO_PREALLOC);
4076 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
4077 struct bpf_map *map,
4078 struct bpf_prog *prog)
4081 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
4082 * preallocated hash maps, since doing memory allocation
4083 * in overflow_handler can crash depending on where nmi got
4086 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
4087 if (!check_map_prealloc(map)) {
4088 verbose(env, "perf_event programs can only use preallocated hash map\n");
4091 if (map->inner_map_meta &&
4092 !check_map_prealloc(map->inner_map_meta)) {
4093 verbose(env, "perf_event programs can only use preallocated inner hash map\n");
4100 /* look for pseudo eBPF instructions that access map FDs and
4101 * replace them with actual map pointers
4103 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
4105 struct bpf_insn *insn = env->prog->insnsi;
4106 int insn_cnt = env->prog->len;
4109 err = bpf_prog_calc_tag(env->prog);
4113 for (i = 0; i < insn_cnt; i++, insn++) {
4114 if (BPF_CLASS(insn->code) == BPF_LDX &&
4115 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
4116 verbose(env, "BPF_LDX uses reserved fields\n");
4120 if (BPF_CLASS(insn->code) == BPF_STX &&
4121 ((BPF_MODE(insn->code) != BPF_MEM &&
4122 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
4123 verbose(env, "BPF_STX uses reserved fields\n");
4127 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
4128 struct bpf_map *map;
4131 if (i == insn_cnt - 1 || insn[1].code != 0 ||
4132 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
4134 verbose(env, "invalid bpf_ld_imm64 insn\n");
4138 if (insn->src_reg == 0)
4139 /* valid generic load 64-bit imm */
4142 if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
4144 "unrecognized bpf_ld_imm64 insn\n");
4148 f = fdget(insn->imm);
4149 map = __bpf_map_get(f);
4151 verbose(env, "fd %d is not pointing to valid bpf_map\n",
4153 return PTR_ERR(map);
4156 err = check_map_prog_compatibility(env, map, env->prog);
4162 /* store map pointer inside BPF_LD_IMM64 instruction */
4163 insn[0].imm = (u32) (unsigned long) map;
4164 insn[1].imm = ((u64) (unsigned long) map) >> 32;
4166 /* check whether we recorded this map already */
4167 for (j = 0; j < env->used_map_cnt; j++)
4168 if (env->used_maps[j] == map) {
4173 if (env->used_map_cnt >= MAX_USED_MAPS) {
4178 /* hold the map. If the program is rejected by verifier,
4179 * the map will be released by release_maps() or it
4180 * will be used by the valid program until it's unloaded
4181 * and all maps are released in free_bpf_prog_info()
4183 map = bpf_map_inc(map, false);
4186 return PTR_ERR(map);
4188 env->used_maps[env->used_map_cnt++] = map;
4197 /* now all pseudo BPF_LD_IMM64 instructions load valid
4198 * 'struct bpf_map *' into a register instead of user map_fd.
4199 * These pointers will be used later by verifier to validate map access.
4204 /* drop refcnt of maps used by the rejected program */
4205 static void release_maps(struct bpf_verifier_env *env)
4209 for (i = 0; i < env->used_map_cnt; i++)
4210 bpf_map_put(env->used_maps[i]);
4213 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
4214 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
4216 struct bpf_insn *insn = env->prog->insnsi;
4217 int insn_cnt = env->prog->len;
4220 for (i = 0; i < insn_cnt; i++, insn++)
4221 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
4225 /* single env->prog->insni[off] instruction was replaced with the range
4226 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
4227 * [0, off) and [off, end) to new locations, so the patched range stays zero
4229 static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
4232 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
4237 new_data = vzalloc(sizeof(struct bpf_insn_aux_data) * prog_len);
4240 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
4241 memcpy(new_data + off + cnt - 1, old_data + off,
4242 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
4243 for (i = off; i < off + cnt - 1; i++)
4244 new_data[i].seen = true;
4245 env->insn_aux_data = new_data;
4250 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
4251 const struct bpf_insn *patch, u32 len)
4253 struct bpf_prog *new_prog;
4255 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
4258 if (adjust_insn_aux_data(env, new_prog->len, off, len))
4263 /* The verifier does more data flow analysis than llvm and will not explore
4264 * branches that are dead at run time. Malicious programs can have dead code
4265 * too. Therefore replace all dead at-run-time code with nops.
4267 static void sanitize_dead_code(struct bpf_verifier_env *env)
4269 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
4270 struct bpf_insn nop = BPF_MOV64_REG(BPF_REG_0, BPF_REG_0);
4271 struct bpf_insn *insn = env->prog->insnsi;
4272 const int insn_cnt = env->prog->len;
4275 for (i = 0; i < insn_cnt; i++) {
4276 if (aux_data[i].seen)
4278 memcpy(insn + i, &nop, sizeof(nop));
4282 /* convert load instructions that access fields of 'struct __sk_buff'
4283 * into sequence of instructions that access fields of 'struct sk_buff'
4285 static int convert_ctx_accesses(struct bpf_verifier_env *env)
4287 const struct bpf_verifier_ops *ops = env->ops;
4288 int i, cnt, size, ctx_field_size, delta = 0;
4289 const int insn_cnt = env->prog->len;
4290 struct bpf_insn insn_buf[16], *insn;
4291 struct bpf_prog *new_prog;
4292 enum bpf_access_type type;
4293 bool is_narrower_load;
4296 if (ops->gen_prologue) {
4297 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
4299 if (cnt >= ARRAY_SIZE(insn_buf)) {
4300 verbose(env, "bpf verifier is misconfigured\n");
4303 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
4307 env->prog = new_prog;
4312 if (!ops->convert_ctx_access)
4315 insn = env->prog->insnsi + delta;
4317 for (i = 0; i < insn_cnt; i++, insn++) {
4318 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
4319 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
4320 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
4321 insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
4323 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
4324 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
4325 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
4326 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
4331 if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX)
4334 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
4335 size = BPF_LDST_BYTES(insn);
4337 /* If the read access is a narrower load of the field,
4338 * convert to a 4/8-byte load, to minimum program type specific
4339 * convert_ctx_access changes. If conversion is successful,
4340 * we will apply proper mask to the result.
4342 is_narrower_load = size < ctx_field_size;
4343 if (is_narrower_load) {
4344 u32 off = insn->off;
4347 if (type == BPF_WRITE) {
4348 verbose(env, "bpf verifier narrow ctx access misconfigured\n");
4353 if (ctx_field_size == 4)
4355 else if (ctx_field_size == 8)
4358 insn->off = off & ~(ctx_field_size - 1);
4359 insn->code = BPF_LDX | BPF_MEM | size_code;
4363 cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog,
4365 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
4366 (ctx_field_size && !target_size)) {
4367 verbose(env, "bpf verifier is misconfigured\n");
4371 if (is_narrower_load && size < target_size) {
4372 if (ctx_field_size <= 4)
4373 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
4374 (1 << size * 8) - 1);
4376 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
4377 (1 << size * 8) - 1);
4380 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
4386 /* keep walking new program and skip insns we just inserted */
4387 env->prog = new_prog;
4388 insn = new_prog->insnsi + i + delta;
4394 /* fixup insn->imm field of bpf_call instructions
4395 * and inline eligible helpers as explicit sequence of BPF instructions
4397 * this function is called after eBPF program passed verification
4399 static int fixup_bpf_calls(struct bpf_verifier_env *env)
4401 struct bpf_prog *prog = env->prog;
4402 struct bpf_insn *insn = prog->insnsi;
4403 const struct bpf_func_proto *fn;
4404 const int insn_cnt = prog->len;
4405 struct bpf_insn insn_buf[16];
4406 struct bpf_prog *new_prog;
4407 struct bpf_map *map_ptr;
4408 int i, cnt, delta = 0;
4410 for (i = 0; i < insn_cnt; i++, insn++) {
4411 if (insn->code != (BPF_JMP | BPF_CALL))
4414 if (insn->imm == BPF_FUNC_get_route_realm)
4415 prog->dst_needed = 1;
4416 if (insn->imm == BPF_FUNC_get_prandom_u32)
4417 bpf_user_rnd_init_once();
4418 if (insn->imm == BPF_FUNC_tail_call) {
4419 /* If we tail call into other programs, we
4420 * cannot make any assumptions since they can
4421 * be replaced dynamically during runtime in
4422 * the program array.
4424 prog->cb_access = 1;
4425 env->prog->aux->stack_depth = MAX_BPF_STACK;
4427 /* mark bpf_tail_call as different opcode to avoid
4428 * conditional branch in the interpeter for every normal
4429 * call and to prevent accidental JITing by JIT compiler
4430 * that doesn't support bpf_tail_call yet
4433 insn->code = BPF_JMP | BPF_TAIL_CALL;
4437 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
4438 * handlers are currently limited to 64 bit only.
4440 if (ebpf_jit_enabled() && BITS_PER_LONG == 64 &&
4441 insn->imm == BPF_FUNC_map_lookup_elem) {
4442 map_ptr = env->insn_aux_data[i + delta].map_ptr;
4443 if (map_ptr == BPF_MAP_PTR_POISON ||
4444 !map_ptr->ops->map_gen_lookup)
4445 goto patch_call_imm;
4447 cnt = map_ptr->ops->map_gen_lookup(map_ptr, insn_buf);
4448 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
4449 verbose(env, "bpf verifier is misconfigured\n");
4453 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
4460 /* keep walking new program and skip insns we just inserted */
4461 env->prog = prog = new_prog;
4462 insn = new_prog->insnsi + i + delta;
4466 if (insn->imm == BPF_FUNC_redirect_map) {
4467 /* Note, we cannot use prog directly as imm as subsequent
4468 * rewrites would still change the prog pointer. The only
4469 * stable address we can use is aux, which also works with
4470 * prog clones during blinding.
4472 u64 addr = (unsigned long)prog->aux;
4473 struct bpf_insn r4_ld[] = {
4474 BPF_LD_IMM64(BPF_REG_4, addr),
4477 cnt = ARRAY_SIZE(r4_ld);
4479 new_prog = bpf_patch_insn_data(env, i + delta, r4_ld, cnt);
4484 env->prog = prog = new_prog;
4485 insn = new_prog->insnsi + i + delta;
4488 fn = env->ops->get_func_proto(insn->imm);
4489 /* all functions that have prototype and verifier allowed
4490 * programs to call them, must be real in-kernel functions
4494 "kernel subsystem misconfigured func %s#%d\n",
4495 func_id_name(insn->imm), insn->imm);
4498 insn->imm = fn->func - __bpf_call_base;
4504 static void free_states(struct bpf_verifier_env *env)
4506 struct bpf_verifier_state_list *sl, *sln;
4509 if (!env->explored_states)
4512 for (i = 0; i < env->prog->len; i++) {
4513 sl = env->explored_states[i];
4516 while (sl != STATE_LIST_MARK) {
4518 free_verifier_state(&sl->state, false);
4524 kfree(env->explored_states);
4527 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
4529 struct bpf_verifier_env *env;
4530 struct bpf_verifer_log *log;
4533 /* no program is valid */
4534 if (ARRAY_SIZE(bpf_verifier_ops) == 0)
4537 /* 'struct bpf_verifier_env' can be global, but since it's not small,
4538 * allocate/free it every time bpf_check() is called
4540 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
4545 env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
4548 if (!env->insn_aux_data)
4551 env->ops = bpf_verifier_ops[env->prog->type];
4553 /* grab the mutex to protect few globals used by verifier */
4554 mutex_lock(&bpf_verifier_lock);
4556 if (attr->log_level || attr->log_buf || attr->log_size) {
4557 /* user requested verbose verifier output
4558 * and supplied buffer to store the verification trace
4560 log->level = attr->log_level;
4561 log->ubuf = (char __user *) (unsigned long) attr->log_buf;
4562 log->len_total = attr->log_size;
4565 /* log attributes have to be sane */
4566 if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
4567 !log->level || !log->ubuf)
4571 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
4572 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
4573 env->strict_alignment = true;
4575 if (env->prog->aux->offload) {
4576 ret = bpf_prog_offload_verifier_prep(env);
4581 ret = replace_map_fd_with_map_ptr(env);
4583 goto skip_full_check;
4585 env->explored_states = kcalloc(env->prog->len,
4586 sizeof(struct bpf_verifier_state_list *),
4589 if (!env->explored_states)
4590 goto skip_full_check;
4592 ret = check_cfg(env);
4594 goto skip_full_check;
4596 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
4598 ret = do_check(env);
4599 if (env->cur_state) {
4600 free_verifier_state(env->cur_state, true);
4601 env->cur_state = NULL;
4605 while (!pop_stack(env, NULL, NULL));
4609 sanitize_dead_code(env);
4612 /* program is valid, convert *(u32*)(ctx + off) accesses */
4613 ret = convert_ctx_accesses(env);
4616 ret = fixup_bpf_calls(env);
4618 if (log->level && bpf_verifier_log_full(log))
4620 if (log->level && !log->ubuf) {
4622 goto err_release_maps;
4625 if (ret == 0 && env->used_map_cnt) {
4626 /* if program passed verifier, update used_maps in bpf_prog_info */
4627 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
4628 sizeof(env->used_maps[0]),
4631 if (!env->prog->aux->used_maps) {
4633 goto err_release_maps;
4636 memcpy(env->prog->aux->used_maps, env->used_maps,
4637 sizeof(env->used_maps[0]) * env->used_map_cnt);
4638 env->prog->aux->used_map_cnt = env->used_map_cnt;
4640 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
4641 * bpf_ld_imm64 instructions
4643 convert_pseudo_ld_imm64(env);
4647 if (!env->prog->aux->used_maps)
4648 /* if we didn't copy map pointers into bpf_prog_info, release
4649 * them now. Otherwise free_bpf_prog_info() will release them.
4654 mutex_unlock(&bpf_verifier_lock);
4655 vfree(env->insn_aux_data);