]> Git Repo - linux.git/blob - fs/namei.c
vfs: Don't modify inodes with a uid or gid unknown to the vfs
[linux.git] / fs / namei.c
1 /*
2  *  linux/fs/namei.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  * Some corrections by tytso.
9  */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12  * lookup logic.
13  */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15  */
16
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <linux/hash.h>
38 #include <linux/bitops.h>
39 #include <asm/uaccess.h>
40
41 #include "internal.h"
42 #include "mount.h"
43
44 /* [Feb-1997 T. Schoebel-Theuer]
45  * Fundamental changes in the pathname lookup mechanisms (namei)
46  * were necessary because of omirr.  The reason is that omirr needs
47  * to know the _real_ pathname, not the user-supplied one, in case
48  * of symlinks (and also when transname replacements occur).
49  *
50  * The new code replaces the old recursive symlink resolution with
51  * an iterative one (in case of non-nested symlink chains).  It does
52  * this with calls to <fs>_follow_link().
53  * As a side effect, dir_namei(), _namei() and follow_link() are now 
54  * replaced with a single function lookup_dentry() that can handle all 
55  * the special cases of the former code.
56  *
57  * With the new dcache, the pathname is stored at each inode, at least as
58  * long as the refcount of the inode is positive.  As a side effect, the
59  * size of the dcache depends on the inode cache and thus is dynamic.
60  *
61  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
62  * resolution to correspond with current state of the code.
63  *
64  * Note that the symlink resolution is not *completely* iterative.
65  * There is still a significant amount of tail- and mid- recursion in
66  * the algorithm.  Also, note that <fs>_readlink() is not used in
67  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
68  * may return different results than <fs>_follow_link().  Many virtual
69  * filesystems (including /proc) exhibit this behavior.
70  */
71
72 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
73  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
74  * and the name already exists in form of a symlink, try to create the new
75  * name indicated by the symlink. The old code always complained that the
76  * name already exists, due to not following the symlink even if its target
77  * is nonexistent.  The new semantics affects also mknod() and link() when
78  * the name is a symlink pointing to a non-existent name.
79  *
80  * I don't know which semantics is the right one, since I have no access
81  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
82  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
83  * "old" one. Personally, I think the new semantics is much more logical.
84  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
85  * file does succeed in both HP-UX and SunOs, but not in Solaris
86  * and in the old Linux semantics.
87  */
88
89 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
90  * semantics.  See the comments in "open_namei" and "do_link" below.
91  *
92  * [10-Sep-98 Alan Modra] Another symlink change.
93  */
94
95 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
96  *      inside the path - always follow.
97  *      in the last component in creation/removal/renaming - never follow.
98  *      if LOOKUP_FOLLOW passed - follow.
99  *      if the pathname has trailing slashes - follow.
100  *      otherwise - don't follow.
101  * (applied in that order).
102  *
103  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
104  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
105  * During the 2.4 we need to fix the userland stuff depending on it -
106  * hopefully we will be able to get rid of that wart in 2.5. So far only
107  * XEmacs seems to be relying on it...
108  */
109 /*
110  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
111  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
112  * any extra contention...
113  */
114
115 /* In order to reduce some races, while at the same time doing additional
116  * checking and hopefully speeding things up, we copy filenames to the
117  * kernel data space before using them..
118  *
119  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
120  * PATH_MAX includes the nul terminator --RR.
121  */
122
123 #define EMBEDDED_NAME_MAX       (PATH_MAX - offsetof(struct filename, iname))
124
125 struct filename *
126 getname_flags(const char __user *filename, int flags, int *empty)
127 {
128         struct filename *result;
129         char *kname;
130         int len;
131
132         result = audit_reusename(filename);
133         if (result)
134                 return result;
135
136         result = __getname();
137         if (unlikely(!result))
138                 return ERR_PTR(-ENOMEM);
139
140         /*
141          * First, try to embed the struct filename inside the names_cache
142          * allocation
143          */
144         kname = (char *)result->iname;
145         result->name = kname;
146
147         len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
148         if (unlikely(len < 0)) {
149                 __putname(result);
150                 return ERR_PTR(len);
151         }
152
153         /*
154          * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
155          * separate struct filename so we can dedicate the entire
156          * names_cache allocation for the pathname, and re-do the copy from
157          * userland.
158          */
159         if (unlikely(len == EMBEDDED_NAME_MAX)) {
160                 const size_t size = offsetof(struct filename, iname[1]);
161                 kname = (char *)result;
162
163                 /*
164                  * size is chosen that way we to guarantee that
165                  * result->iname[0] is within the same object and that
166                  * kname can't be equal to result->iname, no matter what.
167                  */
168                 result = kzalloc(size, GFP_KERNEL);
169                 if (unlikely(!result)) {
170                         __putname(kname);
171                         return ERR_PTR(-ENOMEM);
172                 }
173                 result->name = kname;
174                 len = strncpy_from_user(kname, filename, PATH_MAX);
175                 if (unlikely(len < 0)) {
176                         __putname(kname);
177                         kfree(result);
178                         return ERR_PTR(len);
179                 }
180                 if (unlikely(len == PATH_MAX)) {
181                         __putname(kname);
182                         kfree(result);
183                         return ERR_PTR(-ENAMETOOLONG);
184                 }
185         }
186
187         result->refcnt = 1;
188         /* The empty path is special. */
189         if (unlikely(!len)) {
190                 if (empty)
191                         *empty = 1;
192                 if (!(flags & LOOKUP_EMPTY)) {
193                         putname(result);
194                         return ERR_PTR(-ENOENT);
195                 }
196         }
197
198         result->uptr = filename;
199         result->aname = NULL;
200         audit_getname(result);
201         return result;
202 }
203
204 struct filename *
205 getname(const char __user * filename)
206 {
207         return getname_flags(filename, 0, NULL);
208 }
209
210 struct filename *
211 getname_kernel(const char * filename)
212 {
213         struct filename *result;
214         int len = strlen(filename) + 1;
215
216         result = __getname();
217         if (unlikely(!result))
218                 return ERR_PTR(-ENOMEM);
219
220         if (len <= EMBEDDED_NAME_MAX) {
221                 result->name = (char *)result->iname;
222         } else if (len <= PATH_MAX) {
223                 struct filename *tmp;
224
225                 tmp = kmalloc(sizeof(*tmp), GFP_KERNEL);
226                 if (unlikely(!tmp)) {
227                         __putname(result);
228                         return ERR_PTR(-ENOMEM);
229                 }
230                 tmp->name = (char *)result;
231                 result = tmp;
232         } else {
233                 __putname(result);
234                 return ERR_PTR(-ENAMETOOLONG);
235         }
236         memcpy((char *)result->name, filename, len);
237         result->uptr = NULL;
238         result->aname = NULL;
239         result->refcnt = 1;
240         audit_getname(result);
241
242         return result;
243 }
244
245 void putname(struct filename *name)
246 {
247         BUG_ON(name->refcnt <= 0);
248
249         if (--name->refcnt > 0)
250                 return;
251
252         if (name->name != name->iname) {
253                 __putname(name->name);
254                 kfree(name);
255         } else
256                 __putname(name);
257 }
258
259 static int check_acl(struct inode *inode, int mask)
260 {
261 #ifdef CONFIG_FS_POSIX_ACL
262         struct posix_acl *acl;
263
264         if (mask & MAY_NOT_BLOCK) {
265                 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
266                 if (!acl)
267                         return -EAGAIN;
268                 /* no ->get_acl() calls in RCU mode... */
269                 if (is_uncached_acl(acl))
270                         return -ECHILD;
271                 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
272         }
273
274         acl = get_acl(inode, ACL_TYPE_ACCESS);
275         if (IS_ERR(acl))
276                 return PTR_ERR(acl);
277         if (acl) {
278                 int error = posix_acl_permission(inode, acl, mask);
279                 posix_acl_release(acl);
280                 return error;
281         }
282 #endif
283
284         return -EAGAIN;
285 }
286
287 /*
288  * This does the basic permission checking
289  */
290 static int acl_permission_check(struct inode *inode, int mask)
291 {
292         unsigned int mode = inode->i_mode;
293
294         if (likely(uid_eq(current_fsuid(), inode->i_uid)))
295                 mode >>= 6;
296         else {
297                 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
298                         int error = check_acl(inode, mask);
299                         if (error != -EAGAIN)
300                                 return error;
301                 }
302
303                 if (in_group_p(inode->i_gid))
304                         mode >>= 3;
305         }
306
307         /*
308          * If the DACs are ok we don't need any capability check.
309          */
310         if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
311                 return 0;
312         return -EACCES;
313 }
314
315 /**
316  * generic_permission -  check for access rights on a Posix-like filesystem
317  * @inode:      inode to check access rights for
318  * @mask:       right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
319  *
320  * Used to check for read/write/execute permissions on a file.
321  * We use "fsuid" for this, letting us set arbitrary permissions
322  * for filesystem access without changing the "normal" uids which
323  * are used for other things.
324  *
325  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
326  * request cannot be satisfied (eg. requires blocking or too much complexity).
327  * It would then be called again in ref-walk mode.
328  */
329 int generic_permission(struct inode *inode, int mask)
330 {
331         int ret;
332
333         /*
334          * Do the basic permission checks.
335          */
336         ret = acl_permission_check(inode, mask);
337         if (ret != -EACCES)
338                 return ret;
339
340         if (S_ISDIR(inode->i_mode)) {
341                 /* DACs are overridable for directories */
342                 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
343                         return 0;
344                 if (!(mask & MAY_WRITE))
345                         if (capable_wrt_inode_uidgid(inode,
346                                                      CAP_DAC_READ_SEARCH))
347                                 return 0;
348                 return -EACCES;
349         }
350         /*
351          * Read/write DACs are always overridable.
352          * Executable DACs are overridable when there is
353          * at least one exec bit set.
354          */
355         if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
356                 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
357                         return 0;
358
359         /*
360          * Searching includes executable on directories, else just read.
361          */
362         mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
363         if (mask == MAY_READ)
364                 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
365                         return 0;
366
367         return -EACCES;
368 }
369 EXPORT_SYMBOL(generic_permission);
370
371 /*
372  * We _really_ want to just do "generic_permission()" without
373  * even looking at the inode->i_op values. So we keep a cache
374  * flag in inode->i_opflags, that says "this has not special
375  * permission function, use the fast case".
376  */
377 static inline int do_inode_permission(struct inode *inode, int mask)
378 {
379         if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
380                 if (likely(inode->i_op->permission))
381                         return inode->i_op->permission(inode, mask);
382
383                 /* This gets set once for the inode lifetime */
384                 spin_lock(&inode->i_lock);
385                 inode->i_opflags |= IOP_FASTPERM;
386                 spin_unlock(&inode->i_lock);
387         }
388         return generic_permission(inode, mask);
389 }
390
391 /**
392  * __inode_permission - Check for access rights to a given inode
393  * @inode: Inode to check permission on
394  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
395  *
396  * Check for read/write/execute permissions on an inode.
397  *
398  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
399  *
400  * This does not check for a read-only file system.  You probably want
401  * inode_permission().
402  */
403 int __inode_permission(struct inode *inode, int mask)
404 {
405         int retval;
406
407         if (unlikely(mask & MAY_WRITE)) {
408                 /*
409                  * Nobody gets write access to an immutable file.
410                  */
411                 if (IS_IMMUTABLE(inode))
412                         return -EACCES;
413
414                 /*
415                  * Updating mtime will likely cause i_uid and i_gid to be
416                  * written back improperly if their true value is unknown
417                  * to the vfs.
418                  */
419                 if (HAS_UNMAPPED_ID(inode))
420                         return -EACCES;
421         }
422
423         retval = do_inode_permission(inode, mask);
424         if (retval)
425                 return retval;
426
427         retval = devcgroup_inode_permission(inode, mask);
428         if (retval)
429                 return retval;
430
431         return security_inode_permission(inode, mask);
432 }
433 EXPORT_SYMBOL(__inode_permission);
434
435 /**
436  * sb_permission - Check superblock-level permissions
437  * @sb: Superblock of inode to check permission on
438  * @inode: Inode to check permission on
439  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
440  *
441  * Separate out file-system wide checks from inode-specific permission checks.
442  */
443 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
444 {
445         if (unlikely(mask & MAY_WRITE)) {
446                 umode_t mode = inode->i_mode;
447
448                 /* Nobody gets write access to a read-only fs. */
449                 if ((sb->s_flags & MS_RDONLY) &&
450                     (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
451                         return -EROFS;
452         }
453         return 0;
454 }
455
456 /**
457  * inode_permission - Check for access rights to a given inode
458  * @inode: Inode to check permission on
459  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
460  *
461  * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
462  * this, letting us set arbitrary permissions for filesystem access without
463  * changing the "normal" UIDs which are used for other things.
464  *
465  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
466  */
467 int inode_permission(struct inode *inode, int mask)
468 {
469         int retval;
470
471         retval = sb_permission(inode->i_sb, inode, mask);
472         if (retval)
473                 return retval;
474         return __inode_permission(inode, mask);
475 }
476 EXPORT_SYMBOL(inode_permission);
477
478 /**
479  * path_get - get a reference to a path
480  * @path: path to get the reference to
481  *
482  * Given a path increment the reference count to the dentry and the vfsmount.
483  */
484 void path_get(const struct path *path)
485 {
486         mntget(path->mnt);
487         dget(path->dentry);
488 }
489 EXPORT_SYMBOL(path_get);
490
491 /**
492  * path_put - put a reference to a path
493  * @path: path to put the reference to
494  *
495  * Given a path decrement the reference count to the dentry and the vfsmount.
496  */
497 void path_put(const struct path *path)
498 {
499         dput(path->dentry);
500         mntput(path->mnt);
501 }
502 EXPORT_SYMBOL(path_put);
503
504 #define EMBEDDED_LEVELS 2
505 struct nameidata {
506         struct path     path;
507         struct qstr     last;
508         struct path     root;
509         struct inode    *inode; /* path.dentry.d_inode */
510         unsigned int    flags;
511         unsigned        seq, m_seq;
512         int             last_type;
513         unsigned        depth;
514         int             total_link_count;
515         struct saved {
516                 struct path link;
517                 struct delayed_call done;
518                 const char *name;
519                 unsigned seq;
520         } *stack, internal[EMBEDDED_LEVELS];
521         struct filename *name;
522         struct nameidata *saved;
523         struct inode    *link_inode;
524         unsigned        root_seq;
525         int             dfd;
526 };
527
528 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
529 {
530         struct nameidata *old = current->nameidata;
531         p->stack = p->internal;
532         p->dfd = dfd;
533         p->name = name;
534         p->total_link_count = old ? old->total_link_count : 0;
535         p->saved = old;
536         current->nameidata = p;
537 }
538
539 static void restore_nameidata(void)
540 {
541         struct nameidata *now = current->nameidata, *old = now->saved;
542
543         current->nameidata = old;
544         if (old)
545                 old->total_link_count = now->total_link_count;
546         if (now->stack != now->internal)
547                 kfree(now->stack);
548 }
549
550 static int __nd_alloc_stack(struct nameidata *nd)
551 {
552         struct saved *p;
553
554         if (nd->flags & LOOKUP_RCU) {
555                 p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
556                                   GFP_ATOMIC);
557                 if (unlikely(!p))
558                         return -ECHILD;
559         } else {
560                 p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
561                                   GFP_KERNEL);
562                 if (unlikely(!p))
563                         return -ENOMEM;
564         }
565         memcpy(p, nd->internal, sizeof(nd->internal));
566         nd->stack = p;
567         return 0;
568 }
569
570 /**
571  * path_connected - Verify that a path->dentry is below path->mnt.mnt_root
572  * @path: nameidate to verify
573  *
574  * Rename can sometimes move a file or directory outside of a bind
575  * mount, path_connected allows those cases to be detected.
576  */
577 static bool path_connected(const struct path *path)
578 {
579         struct vfsmount *mnt = path->mnt;
580
581         /* Only bind mounts can have disconnected paths */
582         if (mnt->mnt_root == mnt->mnt_sb->s_root)
583                 return true;
584
585         return is_subdir(path->dentry, mnt->mnt_root);
586 }
587
588 static inline int nd_alloc_stack(struct nameidata *nd)
589 {
590         if (likely(nd->depth != EMBEDDED_LEVELS))
591                 return 0;
592         if (likely(nd->stack != nd->internal))
593                 return 0;
594         return __nd_alloc_stack(nd);
595 }
596
597 static void drop_links(struct nameidata *nd)
598 {
599         int i = nd->depth;
600         while (i--) {
601                 struct saved *last = nd->stack + i;
602                 do_delayed_call(&last->done);
603                 clear_delayed_call(&last->done);
604         }
605 }
606
607 static void terminate_walk(struct nameidata *nd)
608 {
609         drop_links(nd);
610         if (!(nd->flags & LOOKUP_RCU)) {
611                 int i;
612                 path_put(&nd->path);
613                 for (i = 0; i < nd->depth; i++)
614                         path_put(&nd->stack[i].link);
615                 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
616                         path_put(&nd->root);
617                         nd->root.mnt = NULL;
618                 }
619         } else {
620                 nd->flags &= ~LOOKUP_RCU;
621                 if (!(nd->flags & LOOKUP_ROOT))
622                         nd->root.mnt = NULL;
623                 rcu_read_unlock();
624         }
625         nd->depth = 0;
626 }
627
628 /* path_put is needed afterwards regardless of success or failure */
629 static bool legitimize_path(struct nameidata *nd,
630                             struct path *path, unsigned seq)
631 {
632         int res = __legitimize_mnt(path->mnt, nd->m_seq);
633         if (unlikely(res)) {
634                 if (res > 0)
635                         path->mnt = NULL;
636                 path->dentry = NULL;
637                 return false;
638         }
639         if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
640                 path->dentry = NULL;
641                 return false;
642         }
643         return !read_seqcount_retry(&path->dentry->d_seq, seq);
644 }
645
646 static bool legitimize_links(struct nameidata *nd)
647 {
648         int i;
649         for (i = 0; i < nd->depth; i++) {
650                 struct saved *last = nd->stack + i;
651                 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
652                         drop_links(nd);
653                         nd->depth = i + 1;
654                         return false;
655                 }
656         }
657         return true;
658 }
659
660 /*
661  * Path walking has 2 modes, rcu-walk and ref-walk (see
662  * Documentation/filesystems/path-lookup.txt).  In situations when we can't
663  * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
664  * normal reference counts on dentries and vfsmounts to transition to ref-walk
665  * mode.  Refcounts are grabbed at the last known good point before rcu-walk
666  * got stuck, so ref-walk may continue from there. If this is not successful
667  * (eg. a seqcount has changed), then failure is returned and it's up to caller
668  * to restart the path walk from the beginning in ref-walk mode.
669  */
670
671 /**
672  * unlazy_walk - try to switch to ref-walk mode.
673  * @nd: nameidata pathwalk data
674  * @dentry: child of nd->path.dentry or NULL
675  * @seq: seq number to check dentry against
676  * Returns: 0 on success, -ECHILD on failure
677  *
678  * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
679  * for ref-walk mode.  @dentry must be a path found by a do_lookup call on
680  * @nd or NULL.  Must be called from rcu-walk context.
681  * Nothing should touch nameidata between unlazy_walk() failure and
682  * terminate_walk().
683  */
684 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry, unsigned seq)
685 {
686         struct dentry *parent = nd->path.dentry;
687
688         BUG_ON(!(nd->flags & LOOKUP_RCU));
689
690         nd->flags &= ~LOOKUP_RCU;
691         if (unlikely(!legitimize_links(nd)))
692                 goto out2;
693         if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
694                 goto out2;
695         if (unlikely(!lockref_get_not_dead(&parent->d_lockref)))
696                 goto out1;
697
698         /*
699          * For a negative lookup, the lookup sequence point is the parents
700          * sequence point, and it only needs to revalidate the parent dentry.
701          *
702          * For a positive lookup, we need to move both the parent and the
703          * dentry from the RCU domain to be properly refcounted. And the
704          * sequence number in the dentry validates *both* dentry counters,
705          * since we checked the sequence number of the parent after we got
706          * the child sequence number. So we know the parent must still
707          * be valid if the child sequence number is still valid.
708          */
709         if (!dentry) {
710                 if (read_seqcount_retry(&parent->d_seq, nd->seq))
711                         goto out;
712                 BUG_ON(nd->inode != parent->d_inode);
713         } else {
714                 if (!lockref_get_not_dead(&dentry->d_lockref))
715                         goto out;
716                 if (read_seqcount_retry(&dentry->d_seq, seq))
717                         goto drop_dentry;
718         }
719
720         /*
721          * Sequence counts matched. Now make sure that the root is
722          * still valid and get it if required.
723          */
724         if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
725                 if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) {
726                         rcu_read_unlock();
727                         dput(dentry);
728                         return -ECHILD;
729                 }
730         }
731
732         rcu_read_unlock();
733         return 0;
734
735 drop_dentry:
736         rcu_read_unlock();
737         dput(dentry);
738         goto drop_root_mnt;
739 out2:
740         nd->path.mnt = NULL;
741 out1:
742         nd->path.dentry = NULL;
743 out:
744         rcu_read_unlock();
745 drop_root_mnt:
746         if (!(nd->flags & LOOKUP_ROOT))
747                 nd->root.mnt = NULL;
748         return -ECHILD;
749 }
750
751 static int unlazy_link(struct nameidata *nd, struct path *link, unsigned seq)
752 {
753         if (unlikely(!legitimize_path(nd, link, seq))) {
754                 drop_links(nd);
755                 nd->depth = 0;
756                 nd->flags &= ~LOOKUP_RCU;
757                 nd->path.mnt = NULL;
758                 nd->path.dentry = NULL;
759                 if (!(nd->flags & LOOKUP_ROOT))
760                         nd->root.mnt = NULL;
761                 rcu_read_unlock();
762         } else if (likely(unlazy_walk(nd, NULL, 0)) == 0) {
763                 return 0;
764         }
765         path_put(link);
766         return -ECHILD;
767 }
768
769 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
770 {
771         return dentry->d_op->d_revalidate(dentry, flags);
772 }
773
774 /**
775  * complete_walk - successful completion of path walk
776  * @nd:  pointer nameidata
777  *
778  * If we had been in RCU mode, drop out of it and legitimize nd->path.
779  * Revalidate the final result, unless we'd already done that during
780  * the path walk or the filesystem doesn't ask for it.  Return 0 on
781  * success, -error on failure.  In case of failure caller does not
782  * need to drop nd->path.
783  */
784 static int complete_walk(struct nameidata *nd)
785 {
786         struct dentry *dentry = nd->path.dentry;
787         int status;
788
789         if (nd->flags & LOOKUP_RCU) {
790                 if (!(nd->flags & LOOKUP_ROOT))
791                         nd->root.mnt = NULL;
792                 if (unlikely(unlazy_walk(nd, NULL, 0)))
793                         return -ECHILD;
794         }
795
796         if (likely(!(nd->flags & LOOKUP_JUMPED)))
797                 return 0;
798
799         if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
800                 return 0;
801
802         status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
803         if (status > 0)
804                 return 0;
805
806         if (!status)
807                 status = -ESTALE;
808
809         return status;
810 }
811
812 static void set_root(struct nameidata *nd)
813 {
814         struct fs_struct *fs = current->fs;
815
816         if (nd->flags & LOOKUP_RCU) {
817                 unsigned seq;
818
819                 do {
820                         seq = read_seqcount_begin(&fs->seq);
821                         nd->root = fs->root;
822                         nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
823                 } while (read_seqcount_retry(&fs->seq, seq));
824         } else {
825                 get_fs_root(fs, &nd->root);
826         }
827 }
828
829 static void path_put_conditional(struct path *path, struct nameidata *nd)
830 {
831         dput(path->dentry);
832         if (path->mnt != nd->path.mnt)
833                 mntput(path->mnt);
834 }
835
836 static inline void path_to_nameidata(const struct path *path,
837                                         struct nameidata *nd)
838 {
839         if (!(nd->flags & LOOKUP_RCU)) {
840                 dput(nd->path.dentry);
841                 if (nd->path.mnt != path->mnt)
842                         mntput(nd->path.mnt);
843         }
844         nd->path.mnt = path->mnt;
845         nd->path.dentry = path->dentry;
846 }
847
848 static int nd_jump_root(struct nameidata *nd)
849 {
850         if (nd->flags & LOOKUP_RCU) {
851                 struct dentry *d;
852                 nd->path = nd->root;
853                 d = nd->path.dentry;
854                 nd->inode = d->d_inode;
855                 nd->seq = nd->root_seq;
856                 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
857                         return -ECHILD;
858         } else {
859                 path_put(&nd->path);
860                 nd->path = nd->root;
861                 path_get(&nd->path);
862                 nd->inode = nd->path.dentry->d_inode;
863         }
864         nd->flags |= LOOKUP_JUMPED;
865         return 0;
866 }
867
868 /*
869  * Helper to directly jump to a known parsed path from ->get_link,
870  * caller must have taken a reference to path beforehand.
871  */
872 void nd_jump_link(struct path *path)
873 {
874         struct nameidata *nd = current->nameidata;
875         path_put(&nd->path);
876
877         nd->path = *path;
878         nd->inode = nd->path.dentry->d_inode;
879         nd->flags |= LOOKUP_JUMPED;
880 }
881
882 static inline void put_link(struct nameidata *nd)
883 {
884         struct saved *last = nd->stack + --nd->depth;
885         do_delayed_call(&last->done);
886         if (!(nd->flags & LOOKUP_RCU))
887                 path_put(&last->link);
888 }
889
890 int sysctl_protected_symlinks __read_mostly = 0;
891 int sysctl_protected_hardlinks __read_mostly = 0;
892
893 /**
894  * may_follow_link - Check symlink following for unsafe situations
895  * @nd: nameidata pathwalk data
896  *
897  * In the case of the sysctl_protected_symlinks sysctl being enabled,
898  * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
899  * in a sticky world-writable directory. This is to protect privileged
900  * processes from failing races against path names that may change out
901  * from under them by way of other users creating malicious symlinks.
902  * It will permit symlinks to be followed only when outside a sticky
903  * world-writable directory, or when the uid of the symlink and follower
904  * match, or when the directory owner matches the symlink's owner.
905  *
906  * Returns 0 if following the symlink is allowed, -ve on error.
907  */
908 static inline int may_follow_link(struct nameidata *nd)
909 {
910         const struct inode *inode;
911         const struct inode *parent;
912         kuid_t puid;
913
914         if (!sysctl_protected_symlinks)
915                 return 0;
916
917         /* Allowed if owner and follower match. */
918         inode = nd->link_inode;
919         if (uid_eq(current_cred()->fsuid, inode->i_uid))
920                 return 0;
921
922         /* Allowed if parent directory not sticky and world-writable. */
923         parent = nd->inode;
924         if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
925                 return 0;
926
927         /* Allowed if parent directory and link owner match. */
928         puid = parent->i_uid;
929         if (uid_valid(puid) && uid_eq(puid, inode->i_uid))
930                 return 0;
931
932         if (nd->flags & LOOKUP_RCU)
933                 return -ECHILD;
934
935         audit_log_link_denied("follow_link", &nd->stack[0].link);
936         return -EACCES;
937 }
938
939 /**
940  * safe_hardlink_source - Check for safe hardlink conditions
941  * @inode: the source inode to hardlink from
942  *
943  * Return false if at least one of the following conditions:
944  *    - inode is not a regular file
945  *    - inode is setuid
946  *    - inode is setgid and group-exec
947  *    - access failure for read and write
948  *
949  * Otherwise returns true.
950  */
951 static bool safe_hardlink_source(struct inode *inode)
952 {
953         umode_t mode = inode->i_mode;
954
955         /* Special files should not get pinned to the filesystem. */
956         if (!S_ISREG(mode))
957                 return false;
958
959         /* Setuid files should not get pinned to the filesystem. */
960         if (mode & S_ISUID)
961                 return false;
962
963         /* Executable setgid files should not get pinned to the filesystem. */
964         if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
965                 return false;
966
967         /* Hardlinking to unreadable or unwritable sources is dangerous. */
968         if (inode_permission(inode, MAY_READ | MAY_WRITE))
969                 return false;
970
971         return true;
972 }
973
974 /**
975  * may_linkat - Check permissions for creating a hardlink
976  * @link: the source to hardlink from
977  *
978  * Block hardlink when all of:
979  *  - sysctl_protected_hardlinks enabled
980  *  - fsuid does not match inode
981  *  - hardlink source is unsafe (see safe_hardlink_source() above)
982  *  - not CAP_FOWNER in a namespace with the inode owner uid mapped
983  *
984  * Returns 0 if successful, -ve on error.
985  */
986 static int may_linkat(struct path *link)
987 {
988         struct inode *inode;
989
990         if (!sysctl_protected_hardlinks)
991                 return 0;
992
993         inode = link->dentry->d_inode;
994
995         /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
996          * otherwise, it must be a safe source.
997          */
998         if (inode_owner_or_capable(inode) || safe_hardlink_source(inode))
999                 return 0;
1000
1001         audit_log_link_denied("linkat", link);
1002         return -EPERM;
1003 }
1004
1005 static __always_inline
1006 const char *get_link(struct nameidata *nd)
1007 {
1008         struct saved *last = nd->stack + nd->depth - 1;
1009         struct dentry *dentry = last->link.dentry;
1010         struct inode *inode = nd->link_inode;
1011         int error;
1012         const char *res;
1013
1014         if (!(nd->flags & LOOKUP_RCU)) {
1015                 touch_atime(&last->link);
1016                 cond_resched();
1017         } else if (atime_needs_update(&last->link, inode)) {
1018                 if (unlikely(unlazy_walk(nd, NULL, 0)))
1019                         return ERR_PTR(-ECHILD);
1020                 touch_atime(&last->link);
1021         }
1022
1023         error = security_inode_follow_link(dentry, inode,
1024                                            nd->flags & LOOKUP_RCU);
1025         if (unlikely(error))
1026                 return ERR_PTR(error);
1027
1028         nd->last_type = LAST_BIND;
1029         res = inode->i_link;
1030         if (!res) {
1031                 const char * (*get)(struct dentry *, struct inode *,
1032                                 struct delayed_call *);
1033                 get = inode->i_op->get_link;
1034                 if (nd->flags & LOOKUP_RCU) {
1035                         res = get(NULL, inode, &last->done);
1036                         if (res == ERR_PTR(-ECHILD)) {
1037                                 if (unlikely(unlazy_walk(nd, NULL, 0)))
1038                                         return ERR_PTR(-ECHILD);
1039                                 res = get(dentry, inode, &last->done);
1040                         }
1041                 } else {
1042                         res = get(dentry, inode, &last->done);
1043                 }
1044                 if (IS_ERR_OR_NULL(res))
1045                         return res;
1046         }
1047         if (*res == '/') {
1048                 if (!nd->root.mnt)
1049                         set_root(nd);
1050                 if (unlikely(nd_jump_root(nd)))
1051                         return ERR_PTR(-ECHILD);
1052                 while (unlikely(*++res == '/'))
1053                         ;
1054         }
1055         if (!*res)
1056                 res = NULL;
1057         return res;
1058 }
1059
1060 /*
1061  * follow_up - Find the mountpoint of path's vfsmount
1062  *
1063  * Given a path, find the mountpoint of its source file system.
1064  * Replace @path with the path of the mountpoint in the parent mount.
1065  * Up is towards /.
1066  *
1067  * Return 1 if we went up a level and 0 if we were already at the
1068  * root.
1069  */
1070 int follow_up(struct path *path)
1071 {
1072         struct mount *mnt = real_mount(path->mnt);
1073         struct mount *parent;
1074         struct dentry *mountpoint;
1075
1076         read_seqlock_excl(&mount_lock);
1077         parent = mnt->mnt_parent;
1078         if (parent == mnt) {
1079                 read_sequnlock_excl(&mount_lock);
1080                 return 0;
1081         }
1082         mntget(&parent->mnt);
1083         mountpoint = dget(mnt->mnt_mountpoint);
1084         read_sequnlock_excl(&mount_lock);
1085         dput(path->dentry);
1086         path->dentry = mountpoint;
1087         mntput(path->mnt);
1088         path->mnt = &parent->mnt;
1089         return 1;
1090 }
1091 EXPORT_SYMBOL(follow_up);
1092
1093 /*
1094  * Perform an automount
1095  * - return -EISDIR to tell follow_managed() to stop and return the path we
1096  *   were called with.
1097  */
1098 static int follow_automount(struct path *path, struct nameidata *nd,
1099                             bool *need_mntput)
1100 {
1101         struct vfsmount *mnt;
1102         int err;
1103
1104         if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
1105                 return -EREMOTE;
1106
1107         /* We don't want to mount if someone's just doing a stat -
1108          * unless they're stat'ing a directory and appended a '/' to
1109          * the name.
1110          *
1111          * We do, however, want to mount if someone wants to open or
1112          * create a file of any type under the mountpoint, wants to
1113          * traverse through the mountpoint or wants to open the
1114          * mounted directory.  Also, autofs may mark negative dentries
1115          * as being automount points.  These will need the attentions
1116          * of the daemon to instantiate them before they can be used.
1117          */
1118         if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1119                            LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1120             path->dentry->d_inode)
1121                 return -EISDIR;
1122
1123         nd->total_link_count++;
1124         if (nd->total_link_count >= 40)
1125                 return -ELOOP;
1126
1127         mnt = path->dentry->d_op->d_automount(path);
1128         if (IS_ERR(mnt)) {
1129                 /*
1130                  * The filesystem is allowed to return -EISDIR here to indicate
1131                  * it doesn't want to automount.  For instance, autofs would do
1132                  * this so that its userspace daemon can mount on this dentry.
1133                  *
1134                  * However, we can only permit this if it's a terminal point in
1135                  * the path being looked up; if it wasn't then the remainder of
1136                  * the path is inaccessible and we should say so.
1137                  */
1138                 if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT))
1139                         return -EREMOTE;
1140                 return PTR_ERR(mnt);
1141         }
1142
1143         if (!mnt) /* mount collision */
1144                 return 0;
1145
1146         if (!*need_mntput) {
1147                 /* lock_mount() may release path->mnt on error */
1148                 mntget(path->mnt);
1149                 *need_mntput = true;
1150         }
1151         err = finish_automount(mnt, path);
1152
1153         switch (err) {
1154         case -EBUSY:
1155                 /* Someone else made a mount here whilst we were busy */
1156                 return 0;
1157         case 0:
1158                 path_put(path);
1159                 path->mnt = mnt;
1160                 path->dentry = dget(mnt->mnt_root);
1161                 return 0;
1162         default:
1163                 return err;
1164         }
1165
1166 }
1167
1168 /*
1169  * Handle a dentry that is managed in some way.
1170  * - Flagged for transit management (autofs)
1171  * - Flagged as mountpoint
1172  * - Flagged as automount point
1173  *
1174  * This may only be called in refwalk mode.
1175  *
1176  * Serialization is taken care of in namespace.c
1177  */
1178 static int follow_managed(struct path *path, struct nameidata *nd)
1179 {
1180         struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1181         unsigned managed;
1182         bool need_mntput = false;
1183         int ret = 0;
1184
1185         /* Given that we're not holding a lock here, we retain the value in a
1186          * local variable for each dentry as we look at it so that we don't see
1187          * the components of that value change under us */
1188         while (managed = ACCESS_ONCE(path->dentry->d_flags),
1189                managed &= DCACHE_MANAGED_DENTRY,
1190                unlikely(managed != 0)) {
1191                 /* Allow the filesystem to manage the transit without i_mutex
1192                  * being held. */
1193                 if (managed & DCACHE_MANAGE_TRANSIT) {
1194                         BUG_ON(!path->dentry->d_op);
1195                         BUG_ON(!path->dentry->d_op->d_manage);
1196                         ret = path->dentry->d_op->d_manage(path->dentry, false);
1197                         if (ret < 0)
1198                                 break;
1199                 }
1200
1201                 /* Transit to a mounted filesystem. */
1202                 if (managed & DCACHE_MOUNTED) {
1203                         struct vfsmount *mounted = lookup_mnt(path);
1204                         if (mounted) {
1205                                 dput(path->dentry);
1206                                 if (need_mntput)
1207                                         mntput(path->mnt);
1208                                 path->mnt = mounted;
1209                                 path->dentry = dget(mounted->mnt_root);
1210                                 need_mntput = true;
1211                                 continue;
1212                         }
1213
1214                         /* Something is mounted on this dentry in another
1215                          * namespace and/or whatever was mounted there in this
1216                          * namespace got unmounted before lookup_mnt() could
1217                          * get it */
1218                 }
1219
1220                 /* Handle an automount point */
1221                 if (managed & DCACHE_NEED_AUTOMOUNT) {
1222                         ret = follow_automount(path, nd, &need_mntput);
1223                         if (ret < 0)
1224                                 break;
1225                         continue;
1226                 }
1227
1228                 /* We didn't change the current path point */
1229                 break;
1230         }
1231
1232         if (need_mntput && path->mnt == mnt)
1233                 mntput(path->mnt);
1234         if (ret == -EISDIR || !ret)
1235                 ret = 1;
1236         if (need_mntput)
1237                 nd->flags |= LOOKUP_JUMPED;
1238         if (unlikely(ret < 0))
1239                 path_put_conditional(path, nd);
1240         return ret;
1241 }
1242
1243 int follow_down_one(struct path *path)
1244 {
1245         struct vfsmount *mounted;
1246
1247         mounted = lookup_mnt(path);
1248         if (mounted) {
1249                 dput(path->dentry);
1250                 mntput(path->mnt);
1251                 path->mnt = mounted;
1252                 path->dentry = dget(mounted->mnt_root);
1253                 return 1;
1254         }
1255         return 0;
1256 }
1257 EXPORT_SYMBOL(follow_down_one);
1258
1259 static inline int managed_dentry_rcu(struct dentry *dentry)
1260 {
1261         return (dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1262                 dentry->d_op->d_manage(dentry, true) : 0;
1263 }
1264
1265 /*
1266  * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1267  * we meet a managed dentry that would need blocking.
1268  */
1269 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1270                                struct inode **inode, unsigned *seqp)
1271 {
1272         for (;;) {
1273                 struct mount *mounted;
1274                 /*
1275                  * Don't forget we might have a non-mountpoint managed dentry
1276                  * that wants to block transit.
1277                  */
1278                 switch (managed_dentry_rcu(path->dentry)) {
1279                 case -ECHILD:
1280                 default:
1281                         return false;
1282                 case -EISDIR:
1283                         return true;
1284                 case 0:
1285                         break;
1286                 }
1287
1288                 if (!d_mountpoint(path->dentry))
1289                         return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1290
1291                 mounted = __lookup_mnt(path->mnt, path->dentry);
1292                 if (!mounted)
1293                         break;
1294                 path->mnt = &mounted->mnt;
1295                 path->dentry = mounted->mnt.mnt_root;
1296                 nd->flags |= LOOKUP_JUMPED;
1297                 *seqp = read_seqcount_begin(&path->dentry->d_seq);
1298                 /*
1299                  * Update the inode too. We don't need to re-check the
1300                  * dentry sequence number here after this d_inode read,
1301                  * because a mount-point is always pinned.
1302                  */
1303                 *inode = path->dentry->d_inode;
1304         }
1305         return !read_seqretry(&mount_lock, nd->m_seq) &&
1306                 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1307 }
1308
1309 static int follow_dotdot_rcu(struct nameidata *nd)
1310 {
1311         struct inode *inode = nd->inode;
1312
1313         while (1) {
1314                 if (path_equal(&nd->path, &nd->root))
1315                         break;
1316                 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1317                         struct dentry *old = nd->path.dentry;
1318                         struct dentry *parent = old->d_parent;
1319                         unsigned seq;
1320
1321                         inode = parent->d_inode;
1322                         seq = read_seqcount_begin(&parent->d_seq);
1323                         if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1324                                 return -ECHILD;
1325                         nd->path.dentry = parent;
1326                         nd->seq = seq;
1327                         if (unlikely(!path_connected(&nd->path)))
1328                                 return -ENOENT;
1329                         break;
1330                 } else {
1331                         struct mount *mnt = real_mount(nd->path.mnt);
1332                         struct mount *mparent = mnt->mnt_parent;
1333                         struct dentry *mountpoint = mnt->mnt_mountpoint;
1334                         struct inode *inode2 = mountpoint->d_inode;
1335                         unsigned seq = read_seqcount_begin(&mountpoint->d_seq);
1336                         if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1337                                 return -ECHILD;
1338                         if (&mparent->mnt == nd->path.mnt)
1339                                 break;
1340                         /* we know that mountpoint was pinned */
1341                         nd->path.dentry = mountpoint;
1342                         nd->path.mnt = &mparent->mnt;
1343                         inode = inode2;
1344                         nd->seq = seq;
1345                 }
1346         }
1347         while (unlikely(d_mountpoint(nd->path.dentry))) {
1348                 struct mount *mounted;
1349                 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1350                 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1351                         return -ECHILD;
1352                 if (!mounted)
1353                         break;
1354                 nd->path.mnt = &mounted->mnt;
1355                 nd->path.dentry = mounted->mnt.mnt_root;
1356                 inode = nd->path.dentry->d_inode;
1357                 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1358         }
1359         nd->inode = inode;
1360         return 0;
1361 }
1362
1363 /*
1364  * Follow down to the covering mount currently visible to userspace.  At each
1365  * point, the filesystem owning that dentry may be queried as to whether the
1366  * caller is permitted to proceed or not.
1367  */
1368 int follow_down(struct path *path)
1369 {
1370         unsigned managed;
1371         int ret;
1372
1373         while (managed = ACCESS_ONCE(path->dentry->d_flags),
1374                unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1375                 /* Allow the filesystem to manage the transit without i_mutex
1376                  * being held.
1377                  *
1378                  * We indicate to the filesystem if someone is trying to mount
1379                  * something here.  This gives autofs the chance to deny anyone
1380                  * other than its daemon the right to mount on its
1381                  * superstructure.
1382                  *
1383                  * The filesystem may sleep at this point.
1384                  */
1385                 if (managed & DCACHE_MANAGE_TRANSIT) {
1386                         BUG_ON(!path->dentry->d_op);
1387                         BUG_ON(!path->dentry->d_op->d_manage);
1388                         ret = path->dentry->d_op->d_manage(
1389                                 path->dentry, false);
1390                         if (ret < 0)
1391                                 return ret == -EISDIR ? 0 : ret;
1392                 }
1393
1394                 /* Transit to a mounted filesystem. */
1395                 if (managed & DCACHE_MOUNTED) {
1396                         struct vfsmount *mounted = lookup_mnt(path);
1397                         if (!mounted)
1398                                 break;
1399                         dput(path->dentry);
1400                         mntput(path->mnt);
1401                         path->mnt = mounted;
1402                         path->dentry = dget(mounted->mnt_root);
1403                         continue;
1404                 }
1405
1406                 /* Don't handle automount points here */
1407                 break;
1408         }
1409         return 0;
1410 }
1411 EXPORT_SYMBOL(follow_down);
1412
1413 /*
1414  * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1415  */
1416 static void follow_mount(struct path *path)
1417 {
1418         while (d_mountpoint(path->dentry)) {
1419                 struct vfsmount *mounted = lookup_mnt(path);
1420                 if (!mounted)
1421                         break;
1422                 dput(path->dentry);
1423                 mntput(path->mnt);
1424                 path->mnt = mounted;
1425                 path->dentry = dget(mounted->mnt_root);
1426         }
1427 }
1428
1429 static int path_parent_directory(struct path *path)
1430 {
1431         struct dentry *old = path->dentry;
1432         /* rare case of legitimate dget_parent()... */
1433         path->dentry = dget_parent(path->dentry);
1434         dput(old);
1435         if (unlikely(!path_connected(path)))
1436                 return -ENOENT;
1437         return 0;
1438 }
1439
1440 static int follow_dotdot(struct nameidata *nd)
1441 {
1442         while(1) {
1443                 if (nd->path.dentry == nd->root.dentry &&
1444                     nd->path.mnt == nd->root.mnt) {
1445                         break;
1446                 }
1447                 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1448                         int ret = path_parent_directory(&nd->path);
1449                         if (ret)
1450                                 return ret;
1451                         break;
1452                 }
1453                 if (!follow_up(&nd->path))
1454                         break;
1455         }
1456         follow_mount(&nd->path);
1457         nd->inode = nd->path.dentry->d_inode;
1458         return 0;
1459 }
1460
1461 /*
1462  * This looks up the name in dcache, possibly revalidates the old dentry and
1463  * allocates a new one if not found or not valid.  In the need_lookup argument
1464  * returns whether i_op->lookup is necessary.
1465  */
1466 static struct dentry *lookup_dcache(const struct qstr *name,
1467                                     struct dentry *dir,
1468                                     unsigned int flags)
1469 {
1470         struct dentry *dentry;
1471         int error;
1472
1473         dentry = d_lookup(dir, name);
1474         if (dentry) {
1475                 if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1476                         error = d_revalidate(dentry, flags);
1477                         if (unlikely(error <= 0)) {
1478                                 if (!error)
1479                                         d_invalidate(dentry);
1480                                 dput(dentry);
1481                                 return ERR_PTR(error);
1482                         }
1483                 }
1484         }
1485         return dentry;
1486 }
1487
1488 /*
1489  * Call i_op->lookup on the dentry.  The dentry must be negative and
1490  * unhashed.
1491  *
1492  * dir->d_inode->i_mutex must be held
1493  */
1494 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1495                                   unsigned int flags)
1496 {
1497         struct dentry *old;
1498
1499         /* Don't create child dentry for a dead directory. */
1500         if (unlikely(IS_DEADDIR(dir))) {
1501                 dput(dentry);
1502                 return ERR_PTR(-ENOENT);
1503         }
1504
1505         old = dir->i_op->lookup(dir, dentry, flags);
1506         if (unlikely(old)) {
1507                 dput(dentry);
1508                 dentry = old;
1509         }
1510         return dentry;
1511 }
1512
1513 static struct dentry *__lookup_hash(const struct qstr *name,
1514                 struct dentry *base, unsigned int flags)
1515 {
1516         struct dentry *dentry = lookup_dcache(name, base, flags);
1517
1518         if (dentry)
1519                 return dentry;
1520
1521         dentry = d_alloc(base, name);
1522         if (unlikely(!dentry))
1523                 return ERR_PTR(-ENOMEM);
1524
1525         return lookup_real(base->d_inode, dentry, flags);
1526 }
1527
1528 static int lookup_fast(struct nameidata *nd,
1529                        struct path *path, struct inode **inode,
1530                        unsigned *seqp)
1531 {
1532         struct vfsmount *mnt = nd->path.mnt;
1533         struct dentry *dentry, *parent = nd->path.dentry;
1534         int status = 1;
1535         int err;
1536
1537         /*
1538          * Rename seqlock is not required here because in the off chance
1539          * of a false negative due to a concurrent rename, the caller is
1540          * going to fall back to non-racy lookup.
1541          */
1542         if (nd->flags & LOOKUP_RCU) {
1543                 unsigned seq;
1544                 bool negative;
1545                 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1546                 if (unlikely(!dentry)) {
1547                         if (unlazy_walk(nd, NULL, 0))
1548                                 return -ECHILD;
1549                         return 0;
1550                 }
1551
1552                 /*
1553                  * This sequence count validates that the inode matches
1554                  * the dentry name information from lookup.
1555                  */
1556                 *inode = d_backing_inode(dentry);
1557                 negative = d_is_negative(dentry);
1558                 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
1559                         return -ECHILD;
1560
1561                 /*
1562                  * This sequence count validates that the parent had no
1563                  * changes while we did the lookup of the dentry above.
1564                  *
1565                  * The memory barrier in read_seqcount_begin of child is
1566                  *  enough, we can use __read_seqcount_retry here.
1567                  */
1568                 if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq)))
1569                         return -ECHILD;
1570
1571                 *seqp = seq;
1572                 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
1573                         status = d_revalidate(dentry, nd->flags);
1574                 if (unlikely(status <= 0)) {
1575                         if (unlazy_walk(nd, dentry, seq))
1576                                 return -ECHILD;
1577                         if (status == -ECHILD)
1578                                 status = d_revalidate(dentry, nd->flags);
1579                 } else {
1580                         /*
1581                          * Note: do negative dentry check after revalidation in
1582                          * case that drops it.
1583                          */
1584                         if (unlikely(negative))
1585                                 return -ENOENT;
1586                         path->mnt = mnt;
1587                         path->dentry = dentry;
1588                         if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1589                                 return 1;
1590                         if (unlazy_walk(nd, dentry, seq))
1591                                 return -ECHILD;
1592                 }
1593         } else {
1594                 dentry = __d_lookup(parent, &nd->last);
1595                 if (unlikely(!dentry))
1596                         return 0;
1597                 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
1598                         status = d_revalidate(dentry, nd->flags);
1599         }
1600         if (unlikely(status <= 0)) {
1601                 if (!status)
1602                         d_invalidate(dentry);
1603                 dput(dentry);
1604                 return status;
1605         }
1606         if (unlikely(d_is_negative(dentry))) {
1607                 dput(dentry);
1608                 return -ENOENT;
1609         }
1610
1611         path->mnt = mnt;
1612         path->dentry = dentry;
1613         err = follow_managed(path, nd);
1614         if (likely(err > 0))
1615                 *inode = d_backing_inode(path->dentry);
1616         return err;
1617 }
1618
1619 /* Fast lookup failed, do it the slow way */
1620 static struct dentry *lookup_slow(const struct qstr *name,
1621                                   struct dentry *dir,
1622                                   unsigned int flags)
1623 {
1624         struct dentry *dentry = ERR_PTR(-ENOENT), *old;
1625         struct inode *inode = dir->d_inode;
1626         DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1627
1628         inode_lock_shared(inode);
1629         /* Don't go there if it's already dead */
1630         if (unlikely(IS_DEADDIR(inode)))
1631                 goto out;
1632 again:
1633         dentry = d_alloc_parallel(dir, name, &wq);
1634         if (IS_ERR(dentry))
1635                 goto out;
1636         if (unlikely(!d_in_lookup(dentry))) {
1637                 if ((dentry->d_flags & DCACHE_OP_REVALIDATE) &&
1638                     !(flags & LOOKUP_NO_REVAL)) {
1639                         int error = d_revalidate(dentry, flags);
1640                         if (unlikely(error <= 0)) {
1641                                 if (!error) {
1642                                         d_invalidate(dentry);
1643                                         dput(dentry);
1644                                         goto again;
1645                                 }
1646                                 dput(dentry);
1647                                 dentry = ERR_PTR(error);
1648                         }
1649                 }
1650         } else {
1651                 old = inode->i_op->lookup(inode, dentry, flags);
1652                 d_lookup_done(dentry);
1653                 if (unlikely(old)) {
1654                         dput(dentry);
1655                         dentry = old;
1656                 }
1657         }
1658 out:
1659         inode_unlock_shared(inode);
1660         return dentry;
1661 }
1662
1663 static inline int may_lookup(struct nameidata *nd)
1664 {
1665         if (nd->flags & LOOKUP_RCU) {
1666                 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1667                 if (err != -ECHILD)
1668                         return err;
1669                 if (unlazy_walk(nd, NULL, 0))
1670                         return -ECHILD;
1671         }
1672         return inode_permission(nd->inode, MAY_EXEC);
1673 }
1674
1675 static inline int handle_dots(struct nameidata *nd, int type)
1676 {
1677         if (type == LAST_DOTDOT) {
1678                 if (!nd->root.mnt)
1679                         set_root(nd);
1680                 if (nd->flags & LOOKUP_RCU) {
1681                         return follow_dotdot_rcu(nd);
1682                 } else
1683                         return follow_dotdot(nd);
1684         }
1685         return 0;
1686 }
1687
1688 static int pick_link(struct nameidata *nd, struct path *link,
1689                      struct inode *inode, unsigned seq)
1690 {
1691         int error;
1692         struct saved *last;
1693         if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) {
1694                 path_to_nameidata(link, nd);
1695                 return -ELOOP;
1696         }
1697         if (!(nd->flags & LOOKUP_RCU)) {
1698                 if (link->mnt == nd->path.mnt)
1699                         mntget(link->mnt);
1700         }
1701         error = nd_alloc_stack(nd);
1702         if (unlikely(error)) {
1703                 if (error == -ECHILD) {
1704                         if (unlikely(unlazy_link(nd, link, seq)))
1705                                 return -ECHILD;
1706                         error = nd_alloc_stack(nd);
1707                 }
1708                 if (error) {
1709                         path_put(link);
1710                         return error;
1711                 }
1712         }
1713
1714         last = nd->stack + nd->depth++;
1715         last->link = *link;
1716         clear_delayed_call(&last->done);
1717         nd->link_inode = inode;
1718         last->seq = seq;
1719         return 1;
1720 }
1721
1722 /*
1723  * Do we need to follow links? We _really_ want to be able
1724  * to do this check without having to look at inode->i_op,
1725  * so we keep a cache of "no, this doesn't need follow_link"
1726  * for the common case.
1727  */
1728 static inline int should_follow_link(struct nameidata *nd, struct path *link,
1729                                      int follow,
1730                                      struct inode *inode, unsigned seq)
1731 {
1732         if (likely(!d_is_symlink(link->dentry)))
1733                 return 0;
1734         if (!follow)
1735                 return 0;
1736         /* make sure that d_is_symlink above matches inode */
1737         if (nd->flags & LOOKUP_RCU) {
1738                 if (read_seqcount_retry(&link->dentry->d_seq, seq))
1739                         return -ECHILD;
1740         }
1741         return pick_link(nd, link, inode, seq);
1742 }
1743
1744 enum {WALK_GET = 1, WALK_PUT = 2};
1745
1746 static int walk_component(struct nameidata *nd, int flags)
1747 {
1748         struct path path;
1749         struct inode *inode;
1750         unsigned seq;
1751         int err;
1752         /*
1753          * "." and ".." are special - ".." especially so because it has
1754          * to be able to know about the current root directory and
1755          * parent relationships.
1756          */
1757         if (unlikely(nd->last_type != LAST_NORM)) {
1758                 err = handle_dots(nd, nd->last_type);
1759                 if (flags & WALK_PUT)
1760                         put_link(nd);
1761                 return err;
1762         }
1763         err = lookup_fast(nd, &path, &inode, &seq);
1764         if (unlikely(err <= 0)) {
1765                 if (err < 0)
1766                         return err;
1767                 path.dentry = lookup_slow(&nd->last, nd->path.dentry,
1768                                           nd->flags);
1769                 if (IS_ERR(path.dentry))
1770                         return PTR_ERR(path.dentry);
1771
1772                 path.mnt = nd->path.mnt;
1773                 err = follow_managed(&path, nd);
1774                 if (unlikely(err < 0))
1775                         return err;
1776
1777                 if (unlikely(d_is_negative(path.dentry))) {
1778                         path_to_nameidata(&path, nd);
1779                         return -ENOENT;
1780                 }
1781
1782                 seq = 0;        /* we are already out of RCU mode */
1783                 inode = d_backing_inode(path.dentry);
1784         }
1785
1786         if (flags & WALK_PUT)
1787                 put_link(nd);
1788         err = should_follow_link(nd, &path, flags & WALK_GET, inode, seq);
1789         if (unlikely(err))
1790                 return err;
1791         path_to_nameidata(&path, nd);
1792         nd->inode = inode;
1793         nd->seq = seq;
1794         return 0;
1795 }
1796
1797 /*
1798  * We can do the critical dentry name comparison and hashing
1799  * operations one word at a time, but we are limited to:
1800  *
1801  * - Architectures with fast unaligned word accesses. We could
1802  *   do a "get_unaligned()" if this helps and is sufficiently
1803  *   fast.
1804  *
1805  * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1806  *   do not trap on the (extremely unlikely) case of a page
1807  *   crossing operation.
1808  *
1809  * - Furthermore, we need an efficient 64-bit compile for the
1810  *   64-bit case in order to generate the "number of bytes in
1811  *   the final mask". Again, that could be replaced with a
1812  *   efficient population count instruction or similar.
1813  */
1814 #ifdef CONFIG_DCACHE_WORD_ACCESS
1815
1816 #include <asm/word-at-a-time.h>
1817
1818 #ifdef HASH_MIX
1819
1820 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
1821
1822 #elif defined(CONFIG_64BIT)
1823 /*
1824  * Register pressure in the mixing function is an issue, particularly
1825  * on 32-bit x86, but almost any function requires one state value and
1826  * one temporary.  Instead, use a function designed for two state values
1827  * and no temporaries.
1828  *
1829  * This function cannot create a collision in only two iterations, so
1830  * we have two iterations to achieve avalanche.  In those two iterations,
1831  * we have six layers of mixing, which is enough to spread one bit's
1832  * influence out to 2^6 = 64 state bits.
1833  *
1834  * Rotate constants are scored by considering either 64 one-bit input
1835  * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
1836  * probability of that delta causing a change to each of the 128 output
1837  * bits, using a sample of random initial states.
1838  *
1839  * The Shannon entropy of the computed probabilities is then summed
1840  * to produce a score.  Ideally, any input change has a 50% chance of
1841  * toggling any given output bit.
1842  *
1843  * Mixing scores (in bits) for (12,45):
1844  * Input delta: 1-bit      2-bit
1845  * 1 round:     713.3    42542.6
1846  * 2 rounds:   2753.7   140389.8
1847  * 3 rounds:   5954.1   233458.2
1848  * 4 rounds:   7862.6   256672.2
1849  * Perfect:    8192     258048
1850  *            (64*128) (64*63/2 * 128)
1851  */
1852 #define HASH_MIX(x, y, a)       \
1853         (       x ^= (a),       \
1854         y ^= x, x = rol64(x,12),\
1855         x += y, y = rol64(y,45),\
1856         y *= 9                  )
1857
1858 /*
1859  * Fold two longs into one 32-bit hash value.  This must be fast, but
1860  * latency isn't quite as critical, as there is a fair bit of additional
1861  * work done before the hash value is used.
1862  */
1863 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1864 {
1865         y ^= x * GOLDEN_RATIO_64;
1866         y *= GOLDEN_RATIO_64;
1867         return y >> 32;
1868 }
1869
1870 #else   /* 32-bit case */
1871
1872 /*
1873  * Mixing scores (in bits) for (7,20):
1874  * Input delta: 1-bit      2-bit
1875  * 1 round:     330.3     9201.6
1876  * 2 rounds:   1246.4    25475.4
1877  * 3 rounds:   1907.1    31295.1
1878  * 4 rounds:   2042.3    31718.6
1879  * Perfect:    2048      31744
1880  *            (32*64)   (32*31/2 * 64)
1881  */
1882 #define HASH_MIX(x, y, a)       \
1883         (       x ^= (a),       \
1884         y ^= x, x = rol32(x, 7),\
1885         x += y, y = rol32(y,20),\
1886         y *= 9                  )
1887
1888 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1889 {
1890         /* Use arch-optimized multiply if one exists */
1891         return __hash_32(y ^ __hash_32(x));
1892 }
1893
1894 #endif
1895
1896 /*
1897  * Return the hash of a string of known length.  This is carfully
1898  * designed to match hash_name(), which is the more critical function.
1899  * In particular, we must end by hashing a final word containing 0..7
1900  * payload bytes, to match the way that hash_name() iterates until it
1901  * finds the delimiter after the name.
1902  */
1903 unsigned int full_name_hash(const char *name, unsigned int len)
1904 {
1905         unsigned long a, x = 0, y = 0;
1906
1907         for (;;) {
1908                 if (!len)
1909                         goto done;
1910                 a = load_unaligned_zeropad(name);
1911                 if (len < sizeof(unsigned long))
1912                         break;
1913                 HASH_MIX(x, y, a);
1914                 name += sizeof(unsigned long);
1915                 len -= sizeof(unsigned long);
1916         }
1917         x ^= a & bytemask_from_count(len);
1918 done:
1919         return fold_hash(x, y);
1920 }
1921 EXPORT_SYMBOL(full_name_hash);
1922
1923 /* Return the "hash_len" (hash and length) of a null-terminated string */
1924 u64 hashlen_string(const char *name)
1925 {
1926         unsigned long a = 0, x = 0, y = 0, adata, mask, len;
1927         const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1928
1929         len = -sizeof(unsigned long);
1930         do {
1931                 HASH_MIX(x, y, a);
1932                 len += sizeof(unsigned long);
1933                 a = load_unaligned_zeropad(name+len);
1934         } while (!has_zero(a, &adata, &constants));
1935
1936         adata = prep_zero_mask(a, adata, &constants);
1937         mask = create_zero_mask(adata);
1938         x ^= a & zero_bytemask(mask);
1939
1940         return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1941 }
1942 EXPORT_SYMBOL(hashlen_string);
1943
1944 /*
1945  * Calculate the length and hash of the path component, and
1946  * return the "hash_len" as the result.
1947  */
1948 static inline u64 hash_name(const char *name)
1949 {
1950         unsigned long a = 0, b, x = 0, y = 0, adata, bdata, mask, len;
1951         const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1952
1953         len = -sizeof(unsigned long);
1954         do {
1955                 HASH_MIX(x, y, a);
1956                 len += sizeof(unsigned long);
1957                 a = load_unaligned_zeropad(name+len);
1958                 b = a ^ REPEAT_BYTE('/');
1959         } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1960
1961         adata = prep_zero_mask(a, adata, &constants);
1962         bdata = prep_zero_mask(b, bdata, &constants);
1963         mask = create_zero_mask(adata | bdata);
1964         x ^= a & zero_bytemask(mask);
1965
1966         return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1967 }
1968
1969 #else   /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
1970
1971 /* Return the hash of a string of known length */
1972 unsigned int full_name_hash(const char *name, unsigned int len)
1973 {
1974         unsigned long hash = init_name_hash();
1975         while (len--)
1976                 hash = partial_name_hash((unsigned char)*name++, hash);
1977         return end_name_hash(hash);
1978 }
1979 EXPORT_SYMBOL(full_name_hash);
1980
1981 /* Return the "hash_len" (hash and length) of a null-terminated string */
1982 u64 hashlen_string(const char *name)
1983 {
1984         unsigned long hash = init_name_hash();
1985         unsigned long len = 0, c;
1986
1987         c = (unsigned char)*name;
1988         while (c) {
1989                 len++;
1990                 hash = partial_name_hash(c, hash);
1991                 c = (unsigned char)name[len];
1992         }
1993         return hashlen_create(end_name_hash(hash), len);
1994 }
1995 EXPORT_SYMBOL(hashlen_string);
1996
1997 /*
1998  * We know there's a real path component here of at least
1999  * one character.
2000  */
2001 static inline u64 hash_name(const char *name)
2002 {
2003         unsigned long hash = init_name_hash();
2004         unsigned long len = 0, c;
2005
2006         c = (unsigned char)*name;
2007         do {
2008                 len++;
2009                 hash = partial_name_hash(c, hash);
2010                 c = (unsigned char)name[len];
2011         } while (c && c != '/');
2012         return hashlen_create(end_name_hash(hash), len);
2013 }
2014
2015 #endif
2016
2017 /*
2018  * Name resolution.
2019  * This is the basic name resolution function, turning a pathname into
2020  * the final dentry. We expect 'base' to be positive and a directory.
2021  *
2022  * Returns 0 and nd will have valid dentry and mnt on success.
2023  * Returns error and drops reference to input namei data on failure.
2024  */
2025 static int link_path_walk(const char *name, struct nameidata *nd)
2026 {
2027         int err;
2028
2029         while (*name=='/')
2030                 name++;
2031         if (!*name)
2032                 return 0;
2033
2034         /* At this point we know we have a real path component. */
2035         for(;;) {
2036                 u64 hash_len;
2037                 int type;
2038
2039                 err = may_lookup(nd);
2040                 if (err)
2041                         return err;
2042
2043                 hash_len = hash_name(name);
2044
2045                 type = LAST_NORM;
2046                 if (name[0] == '.') switch (hashlen_len(hash_len)) {
2047                         case 2:
2048                                 if (name[1] == '.') {
2049                                         type = LAST_DOTDOT;
2050                                         nd->flags |= LOOKUP_JUMPED;
2051                                 }
2052                                 break;
2053                         case 1:
2054                                 type = LAST_DOT;
2055                 }
2056                 if (likely(type == LAST_NORM)) {
2057                         struct dentry *parent = nd->path.dentry;
2058                         nd->flags &= ~LOOKUP_JUMPED;
2059                         if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2060                                 struct qstr this = { { .hash_len = hash_len }, .name = name };
2061                                 err = parent->d_op->d_hash(parent, &this);
2062                                 if (err < 0)
2063                                         return err;
2064                                 hash_len = this.hash_len;
2065                                 name = this.name;
2066                         }
2067                 }
2068
2069                 nd->last.hash_len = hash_len;
2070                 nd->last.name = name;
2071                 nd->last_type = type;
2072
2073                 name += hashlen_len(hash_len);
2074                 if (!*name)
2075                         goto OK;
2076                 /*
2077                  * If it wasn't NUL, we know it was '/'. Skip that
2078                  * slash, and continue until no more slashes.
2079                  */
2080                 do {
2081                         name++;
2082                 } while (unlikely(*name == '/'));
2083                 if (unlikely(!*name)) {
2084 OK:
2085                         /* pathname body, done */
2086                         if (!nd->depth)
2087                                 return 0;
2088                         name = nd->stack[nd->depth - 1].name;
2089                         /* trailing symlink, done */
2090                         if (!name)
2091                                 return 0;
2092                         /* last component of nested symlink */
2093                         err = walk_component(nd, WALK_GET | WALK_PUT);
2094                 } else {
2095                         err = walk_component(nd, WALK_GET);
2096                 }
2097                 if (err < 0)
2098                         return err;
2099
2100                 if (err) {
2101                         const char *s = get_link(nd);
2102
2103                         if (IS_ERR(s))
2104                                 return PTR_ERR(s);
2105                         err = 0;
2106                         if (unlikely(!s)) {
2107                                 /* jumped */
2108                                 put_link(nd);
2109                         } else {
2110                                 nd->stack[nd->depth - 1].name = name;
2111                                 name = s;
2112                                 continue;
2113                         }
2114                 }
2115                 if (unlikely(!d_can_lookup(nd->path.dentry))) {
2116                         if (nd->flags & LOOKUP_RCU) {
2117                                 if (unlazy_walk(nd, NULL, 0))
2118                                         return -ECHILD;
2119                         }
2120                         return -ENOTDIR;
2121                 }
2122         }
2123 }
2124
2125 static const char *path_init(struct nameidata *nd, unsigned flags)
2126 {
2127         int retval = 0;
2128         const char *s = nd->name->name;
2129
2130         nd->last_type = LAST_ROOT; /* if there are only slashes... */
2131         nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
2132         nd->depth = 0;
2133         if (flags & LOOKUP_ROOT) {
2134                 struct dentry *root = nd->root.dentry;
2135                 struct inode *inode = root->d_inode;
2136                 if (*s) {
2137                         if (!d_can_lookup(root))
2138                                 return ERR_PTR(-ENOTDIR);
2139                         retval = inode_permission(inode, MAY_EXEC);
2140                         if (retval)
2141                                 return ERR_PTR(retval);
2142                 }
2143                 nd->path = nd->root;
2144                 nd->inode = inode;
2145                 if (flags & LOOKUP_RCU) {
2146                         rcu_read_lock();
2147                         nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2148                         nd->root_seq = nd->seq;
2149                         nd->m_seq = read_seqbegin(&mount_lock);
2150                 } else {
2151                         path_get(&nd->path);
2152                 }
2153                 return s;
2154         }
2155
2156         nd->root.mnt = NULL;
2157         nd->path.mnt = NULL;
2158         nd->path.dentry = NULL;
2159
2160         nd->m_seq = read_seqbegin(&mount_lock);
2161         if (*s == '/') {
2162                 if (flags & LOOKUP_RCU)
2163                         rcu_read_lock();
2164                 set_root(nd);
2165                 if (likely(!nd_jump_root(nd)))
2166                         return s;
2167                 nd->root.mnt = NULL;
2168                 rcu_read_unlock();
2169                 return ERR_PTR(-ECHILD);
2170         } else if (nd->dfd == AT_FDCWD) {
2171                 if (flags & LOOKUP_RCU) {
2172                         struct fs_struct *fs = current->fs;
2173                         unsigned seq;
2174
2175                         rcu_read_lock();
2176
2177                         do {
2178                                 seq = read_seqcount_begin(&fs->seq);
2179                                 nd->path = fs->pwd;
2180                                 nd->inode = nd->path.dentry->d_inode;
2181                                 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2182                         } while (read_seqcount_retry(&fs->seq, seq));
2183                 } else {
2184                         get_fs_pwd(current->fs, &nd->path);
2185                         nd->inode = nd->path.dentry->d_inode;
2186                 }
2187                 return s;
2188         } else {
2189                 /* Caller must check execute permissions on the starting path component */
2190                 struct fd f = fdget_raw(nd->dfd);
2191                 struct dentry *dentry;
2192
2193                 if (!f.file)
2194                         return ERR_PTR(-EBADF);
2195
2196                 dentry = f.file->f_path.dentry;
2197
2198                 if (*s) {
2199                         if (!d_can_lookup(dentry)) {
2200                                 fdput(f);
2201                                 return ERR_PTR(-ENOTDIR);
2202                         }
2203                 }
2204
2205                 nd->path = f.file->f_path;
2206                 if (flags & LOOKUP_RCU) {
2207                         rcu_read_lock();
2208                         nd->inode = nd->path.dentry->d_inode;
2209                         nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2210                 } else {
2211                         path_get(&nd->path);
2212                         nd->inode = nd->path.dentry->d_inode;
2213                 }
2214                 fdput(f);
2215                 return s;
2216         }
2217 }
2218
2219 static const char *trailing_symlink(struct nameidata *nd)
2220 {
2221         const char *s;
2222         int error = may_follow_link(nd);
2223         if (unlikely(error))
2224                 return ERR_PTR(error);
2225         nd->flags |= LOOKUP_PARENT;
2226         nd->stack[0].name = NULL;
2227         s = get_link(nd);
2228         return s ? s : "";
2229 }
2230
2231 static inline int lookup_last(struct nameidata *nd)
2232 {
2233         if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2234                 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2235
2236         nd->flags &= ~LOOKUP_PARENT;
2237         return walk_component(nd,
2238                         nd->flags & LOOKUP_FOLLOW
2239                                 ? nd->depth
2240                                         ? WALK_PUT | WALK_GET
2241                                         : WALK_GET
2242                                 : 0);
2243 }
2244
2245 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2246 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2247 {
2248         const char *s = path_init(nd, flags);
2249         int err;
2250
2251         if (IS_ERR(s))
2252                 return PTR_ERR(s);
2253         while (!(err = link_path_walk(s, nd))
2254                 && ((err = lookup_last(nd)) > 0)) {
2255                 s = trailing_symlink(nd);
2256                 if (IS_ERR(s)) {
2257                         err = PTR_ERR(s);
2258                         break;
2259                 }
2260         }
2261         if (!err)
2262                 err = complete_walk(nd);
2263
2264         if (!err && nd->flags & LOOKUP_DIRECTORY)
2265                 if (!d_can_lookup(nd->path.dentry))
2266                         err = -ENOTDIR;
2267         if (!err) {
2268                 *path = nd->path;
2269                 nd->path.mnt = NULL;
2270                 nd->path.dentry = NULL;
2271         }
2272         terminate_walk(nd);
2273         return err;
2274 }
2275
2276 static int filename_lookup(int dfd, struct filename *name, unsigned flags,
2277                            struct path *path, struct path *root)
2278 {
2279         int retval;
2280         struct nameidata nd;
2281         if (IS_ERR(name))
2282                 return PTR_ERR(name);
2283         if (unlikely(root)) {
2284                 nd.root = *root;
2285                 flags |= LOOKUP_ROOT;
2286         }
2287         set_nameidata(&nd, dfd, name);
2288         retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2289         if (unlikely(retval == -ECHILD))
2290                 retval = path_lookupat(&nd, flags, path);
2291         if (unlikely(retval == -ESTALE))
2292                 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2293
2294         if (likely(!retval))
2295                 audit_inode(name, path->dentry, flags & LOOKUP_PARENT);
2296         restore_nameidata();
2297         putname(name);
2298         return retval;
2299 }
2300
2301 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2302 static int path_parentat(struct nameidata *nd, unsigned flags,
2303                                 struct path *parent)
2304 {
2305         const char *s = path_init(nd, flags);
2306         int err;
2307         if (IS_ERR(s))
2308                 return PTR_ERR(s);
2309         err = link_path_walk(s, nd);
2310         if (!err)
2311                 err = complete_walk(nd);
2312         if (!err) {
2313                 *parent = nd->path;
2314                 nd->path.mnt = NULL;
2315                 nd->path.dentry = NULL;
2316         }
2317         terminate_walk(nd);
2318         return err;
2319 }
2320
2321 static struct filename *filename_parentat(int dfd, struct filename *name,
2322                                 unsigned int flags, struct path *parent,
2323                                 struct qstr *last, int *type)
2324 {
2325         int retval;
2326         struct nameidata nd;
2327
2328         if (IS_ERR(name))
2329                 return name;
2330         set_nameidata(&nd, dfd, name);
2331         retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2332         if (unlikely(retval == -ECHILD))
2333                 retval = path_parentat(&nd, flags, parent);
2334         if (unlikely(retval == -ESTALE))
2335                 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2336         if (likely(!retval)) {
2337                 *last = nd.last;
2338                 *type = nd.last_type;
2339                 audit_inode(name, parent->dentry, LOOKUP_PARENT);
2340         } else {
2341                 putname(name);
2342                 name = ERR_PTR(retval);
2343         }
2344         restore_nameidata();
2345         return name;
2346 }
2347
2348 /* does lookup, returns the object with parent locked */
2349 struct dentry *kern_path_locked(const char *name, struct path *path)
2350 {
2351         struct filename *filename;
2352         struct dentry *d;
2353         struct qstr last;
2354         int type;
2355
2356         filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2357                                     &last, &type);
2358         if (IS_ERR(filename))
2359                 return ERR_CAST(filename);
2360         if (unlikely(type != LAST_NORM)) {
2361                 path_put(path);
2362                 putname(filename);
2363                 return ERR_PTR(-EINVAL);
2364         }
2365         inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2366         d = __lookup_hash(&last, path->dentry, 0);
2367         if (IS_ERR(d)) {
2368                 inode_unlock(path->dentry->d_inode);
2369                 path_put(path);
2370         }
2371         putname(filename);
2372         return d;
2373 }
2374
2375 int kern_path(const char *name, unsigned int flags, struct path *path)
2376 {
2377         return filename_lookup(AT_FDCWD, getname_kernel(name),
2378                                flags, path, NULL);
2379 }
2380 EXPORT_SYMBOL(kern_path);
2381
2382 /**
2383  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2384  * @dentry:  pointer to dentry of the base directory
2385  * @mnt: pointer to vfs mount of the base directory
2386  * @name: pointer to file name
2387  * @flags: lookup flags
2388  * @path: pointer to struct path to fill
2389  */
2390 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2391                     const char *name, unsigned int flags,
2392                     struct path *path)
2393 {
2394         struct path root = {.mnt = mnt, .dentry = dentry};
2395         /* the first argument of filename_lookup() is ignored with root */
2396         return filename_lookup(AT_FDCWD, getname_kernel(name),
2397                                flags , path, &root);
2398 }
2399 EXPORT_SYMBOL(vfs_path_lookup);
2400
2401 /**
2402  * lookup_hash - lookup single pathname component on already hashed name
2403  * @name:       name and hash to lookup
2404  * @base:       base directory to lookup from
2405  *
2406  * The name must have been verified and hashed (see lookup_one_len()).  Using
2407  * this after just full_name_hash() is unsafe.
2408  *
2409  * This function also doesn't check for search permission on base directory.
2410  *
2411  * Use lookup_one_len_unlocked() instead, unless you really know what you are
2412  * doing.
2413  *
2414  * Do not hold i_mutex; this helper takes i_mutex if necessary.
2415  */
2416 struct dentry *lookup_hash(const struct qstr *name, struct dentry *base)
2417 {
2418         struct dentry *ret;
2419
2420         ret = lookup_dcache(name, base, 0);
2421         if (!ret)
2422                 ret = lookup_slow(name, base, 0);
2423
2424         return ret;
2425 }
2426 EXPORT_SYMBOL(lookup_hash);
2427
2428 /**
2429  * lookup_one_len - filesystem helper to lookup single pathname component
2430  * @name:       pathname component to lookup
2431  * @base:       base directory to lookup from
2432  * @len:        maximum length @len should be interpreted to
2433  *
2434  * Note that this routine is purely a helper for filesystem usage and should
2435  * not be called by generic code.
2436  *
2437  * The caller must hold base->i_mutex.
2438  */
2439 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2440 {
2441         struct qstr this;
2442         unsigned int c;
2443         int err;
2444
2445         WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2446
2447         this.name = name;
2448         this.len = len;
2449         this.hash = full_name_hash(name, len);
2450         if (!len)
2451                 return ERR_PTR(-EACCES);
2452
2453         if (unlikely(name[0] == '.')) {
2454                 if (len < 2 || (len == 2 && name[1] == '.'))
2455                         return ERR_PTR(-EACCES);
2456         }
2457
2458         while (len--) {
2459                 c = *(const unsigned char *)name++;
2460                 if (c == '/' || c == '\0')
2461                         return ERR_PTR(-EACCES);
2462         }
2463         /*
2464          * See if the low-level filesystem might want
2465          * to use its own hash..
2466          */
2467         if (base->d_flags & DCACHE_OP_HASH) {
2468                 int err = base->d_op->d_hash(base, &this);
2469                 if (err < 0)
2470                         return ERR_PTR(err);
2471         }
2472
2473         err = inode_permission(base->d_inode, MAY_EXEC);
2474         if (err)
2475                 return ERR_PTR(err);
2476
2477         return __lookup_hash(&this, base, 0);
2478 }
2479 EXPORT_SYMBOL(lookup_one_len);
2480
2481 /**
2482  * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2483  * @name:       pathname component to lookup
2484  * @base:       base directory to lookup from
2485  * @len:        maximum length @len should be interpreted to
2486  *
2487  * Note that this routine is purely a helper for filesystem usage and should
2488  * not be called by generic code.
2489  *
2490  * Unlike lookup_one_len, it should be called without the parent
2491  * i_mutex held, and will take the i_mutex itself if necessary.
2492  */
2493 struct dentry *lookup_one_len_unlocked(const char *name,
2494                                        struct dentry *base, int len)
2495 {
2496         struct qstr this;
2497         unsigned int c;
2498         int err;
2499
2500         this.name = name;
2501         this.len = len;
2502         this.hash = full_name_hash(name, len);
2503         if (!len)
2504                 return ERR_PTR(-EACCES);
2505
2506         if (unlikely(name[0] == '.')) {
2507                 if (len < 2 || (len == 2 && name[1] == '.'))
2508                         return ERR_PTR(-EACCES);
2509         }
2510
2511         while (len--) {
2512                 c = *(const unsigned char *)name++;
2513                 if (c == '/' || c == '\0')
2514                         return ERR_PTR(-EACCES);
2515         }
2516         /*
2517          * See if the low-level filesystem might want
2518          * to use its own hash..
2519          */
2520         if (base->d_flags & DCACHE_OP_HASH) {
2521                 int err = base->d_op->d_hash(base, &this);
2522                 if (err < 0)
2523                         return ERR_PTR(err);
2524         }
2525
2526         err = inode_permission(base->d_inode, MAY_EXEC);
2527         if (err)
2528                 return ERR_PTR(err);
2529
2530         return lookup_hash(&this, base);
2531 }
2532 EXPORT_SYMBOL(lookup_one_len_unlocked);
2533
2534 #ifdef CONFIG_UNIX98_PTYS
2535 int path_pts(struct path *path)
2536 {
2537         /* Find something mounted on "pts" in the same directory as
2538          * the input path.
2539          */
2540         struct dentry *child, *parent;
2541         struct qstr this;
2542         int ret;
2543
2544         ret = path_parent_directory(path);
2545         if (ret)
2546                 return ret;
2547
2548         parent = path->dentry;
2549         this.name = "pts";
2550         this.len = 3;
2551         child = d_hash_and_lookup(parent, &this);
2552         if (!child)
2553                 return -ENOENT;
2554
2555         path->dentry = child;
2556         dput(parent);
2557         follow_mount(path);
2558         return 0;
2559 }
2560 #endif
2561
2562 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2563                  struct path *path, int *empty)
2564 {
2565         return filename_lookup(dfd, getname_flags(name, flags, empty),
2566                                flags, path, NULL);
2567 }
2568 EXPORT_SYMBOL(user_path_at_empty);
2569
2570 /*
2571  * NB: most callers don't do anything directly with the reference to the
2572  *     to struct filename, but the nd->last pointer points into the name string
2573  *     allocated by getname. So we must hold the reference to it until all
2574  *     path-walking is complete.
2575  */
2576 static inline struct filename *
2577 user_path_parent(int dfd, const char __user *path,
2578                  struct path *parent,
2579                  struct qstr *last,
2580                  int *type,
2581                  unsigned int flags)
2582 {
2583         /* only LOOKUP_REVAL is allowed in extra flags */
2584         return filename_parentat(dfd, getname(path), flags & LOOKUP_REVAL,
2585                                  parent, last, type);
2586 }
2587
2588 /**
2589  * mountpoint_last - look up last component for umount
2590  * @nd:   pathwalk nameidata - currently pointing at parent directory of "last"
2591  * @path: pointer to container for result
2592  *
2593  * This is a special lookup_last function just for umount. In this case, we
2594  * need to resolve the path without doing any revalidation.
2595  *
2596  * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2597  * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2598  * in almost all cases, this lookup will be served out of the dcache. The only
2599  * cases where it won't are if nd->last refers to a symlink or the path is
2600  * bogus and it doesn't exist.
2601  *
2602  * Returns:
2603  * -error: if there was an error during lookup. This includes -ENOENT if the
2604  *         lookup found a negative dentry. The nd->path reference will also be
2605  *         put in this case.
2606  *
2607  * 0:      if we successfully resolved nd->path and found it to not to be a
2608  *         symlink that needs to be followed. "path" will also be populated.
2609  *         The nd->path reference will also be put.
2610  *
2611  * 1:      if we successfully resolved nd->last and found it to be a symlink
2612  *         that needs to be followed. "path" will be populated with the path
2613  *         to the link, and nd->path will *not* be put.
2614  */
2615 static int
2616 mountpoint_last(struct nameidata *nd, struct path *path)
2617 {
2618         int error = 0;
2619         struct dentry *dentry;
2620         struct dentry *dir = nd->path.dentry;
2621
2622         /* If we're in rcuwalk, drop out of it to handle last component */
2623         if (nd->flags & LOOKUP_RCU) {
2624                 if (unlazy_walk(nd, NULL, 0))
2625                         return -ECHILD;
2626         }
2627
2628         nd->flags &= ~LOOKUP_PARENT;
2629
2630         if (unlikely(nd->last_type != LAST_NORM)) {
2631                 error = handle_dots(nd, nd->last_type);
2632                 if (error)
2633                         return error;
2634                 dentry = dget(nd->path.dentry);
2635         } else {
2636                 dentry = d_lookup(dir, &nd->last);
2637                 if (!dentry) {
2638                         /*
2639                          * No cached dentry. Mounted dentries are pinned in the
2640                          * cache, so that means that this dentry is probably
2641                          * a symlink or the path doesn't actually point
2642                          * to a mounted dentry.
2643                          */
2644                         dentry = lookup_slow(&nd->last, dir,
2645                                              nd->flags | LOOKUP_NO_REVAL);
2646                         if (IS_ERR(dentry))
2647                                 return PTR_ERR(dentry);
2648                 }
2649         }
2650         if (d_is_negative(dentry)) {
2651                 dput(dentry);
2652                 return -ENOENT;
2653         }
2654         if (nd->depth)
2655                 put_link(nd);
2656         path->dentry = dentry;
2657         path->mnt = nd->path.mnt;
2658         error = should_follow_link(nd, path, nd->flags & LOOKUP_FOLLOW,
2659                                    d_backing_inode(dentry), 0);
2660         if (unlikely(error))
2661                 return error;
2662         mntget(path->mnt);
2663         follow_mount(path);
2664         return 0;
2665 }
2666
2667 /**
2668  * path_mountpoint - look up a path to be umounted
2669  * @nd:         lookup context
2670  * @flags:      lookup flags
2671  * @path:       pointer to container for result
2672  *
2673  * Look up the given name, but don't attempt to revalidate the last component.
2674  * Returns 0 and "path" will be valid on success; Returns error otherwise.
2675  */
2676 static int
2677 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path)
2678 {
2679         const char *s = path_init(nd, flags);
2680         int err;
2681         if (IS_ERR(s))
2682                 return PTR_ERR(s);
2683         while (!(err = link_path_walk(s, nd)) &&
2684                 (err = mountpoint_last(nd, path)) > 0) {
2685                 s = trailing_symlink(nd);
2686                 if (IS_ERR(s)) {
2687                         err = PTR_ERR(s);
2688                         break;
2689                 }
2690         }
2691         terminate_walk(nd);
2692         return err;
2693 }
2694
2695 static int
2696 filename_mountpoint(int dfd, struct filename *name, struct path *path,
2697                         unsigned int flags)
2698 {
2699         struct nameidata nd;
2700         int error;
2701         if (IS_ERR(name))
2702                 return PTR_ERR(name);
2703         set_nameidata(&nd, dfd, name);
2704         error = path_mountpoint(&nd, flags | LOOKUP_RCU, path);
2705         if (unlikely(error == -ECHILD))
2706                 error = path_mountpoint(&nd, flags, path);
2707         if (unlikely(error == -ESTALE))
2708                 error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path);
2709         if (likely(!error))
2710                 audit_inode(name, path->dentry, 0);
2711         restore_nameidata();
2712         putname(name);
2713         return error;
2714 }
2715
2716 /**
2717  * user_path_mountpoint_at - lookup a path from userland in order to umount it
2718  * @dfd:        directory file descriptor
2719  * @name:       pathname from userland
2720  * @flags:      lookup flags
2721  * @path:       pointer to container to hold result
2722  *
2723  * A umount is a special case for path walking. We're not actually interested
2724  * in the inode in this situation, and ESTALE errors can be a problem. We
2725  * simply want track down the dentry and vfsmount attached at the mountpoint
2726  * and avoid revalidating the last component.
2727  *
2728  * Returns 0 and populates "path" on success.
2729  */
2730 int
2731 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2732                         struct path *path)
2733 {
2734         return filename_mountpoint(dfd, getname(name), path, flags);
2735 }
2736
2737 int
2738 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2739                         unsigned int flags)
2740 {
2741         return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2742 }
2743 EXPORT_SYMBOL(kern_path_mountpoint);
2744
2745 int __check_sticky(struct inode *dir, struct inode *inode)
2746 {
2747         kuid_t fsuid = current_fsuid();
2748
2749         if (uid_eq(inode->i_uid, fsuid))
2750                 return 0;
2751         if (uid_eq(dir->i_uid, fsuid))
2752                 return 0;
2753         return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2754 }
2755 EXPORT_SYMBOL(__check_sticky);
2756
2757 /*
2758  *      Check whether we can remove a link victim from directory dir, check
2759  *  whether the type of victim is right.
2760  *  1. We can't do it if dir is read-only (done in permission())
2761  *  2. We should have write and exec permissions on dir
2762  *  3. We can't remove anything from append-only dir
2763  *  4. We can't do anything with immutable dir (done in permission())
2764  *  5. If the sticky bit on dir is set we should either
2765  *      a. be owner of dir, or
2766  *      b. be owner of victim, or
2767  *      c. have CAP_FOWNER capability
2768  *  6. If the victim is append-only or immutable we can't do antyhing with
2769  *     links pointing to it.
2770  *  7. If the victim has an unknown uid or gid we can't change the inode.
2771  *  8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2772  *  9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2773  * 10. We can't remove a root or mountpoint.
2774  * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
2775  *     nfs_async_unlink().
2776  */
2777 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2778 {
2779         struct inode *inode = d_backing_inode(victim);
2780         int error;
2781
2782         if (d_is_negative(victim))
2783                 return -ENOENT;
2784         BUG_ON(!inode);
2785
2786         BUG_ON(victim->d_parent->d_inode != dir);
2787         audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2788
2789         error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2790         if (error)
2791                 return error;
2792         if (IS_APPEND(dir))
2793                 return -EPERM;
2794
2795         if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2796             IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || HAS_UNMAPPED_ID(inode))
2797                 return -EPERM;
2798         if (isdir) {
2799                 if (!d_is_dir(victim))
2800                         return -ENOTDIR;
2801                 if (IS_ROOT(victim))
2802                         return -EBUSY;
2803         } else if (d_is_dir(victim))
2804                 return -EISDIR;
2805         if (IS_DEADDIR(dir))
2806                 return -ENOENT;
2807         if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2808                 return -EBUSY;
2809         return 0;
2810 }
2811
2812 /*      Check whether we can create an object with dentry child in directory
2813  *  dir.
2814  *  1. We can't do it if child already exists (open has special treatment for
2815  *     this case, but since we are inlined it's OK)
2816  *  2. We can't do it if dir is read-only (done in permission())
2817  *  3. We should have write and exec permissions on dir
2818  *  4. We can't do it if dir is immutable (done in permission())
2819  */
2820 static inline int may_create(struct inode *dir, struct dentry *child)
2821 {
2822         audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2823         if (child->d_inode)
2824                 return -EEXIST;
2825         if (IS_DEADDIR(dir))
2826                 return -ENOENT;
2827         return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2828 }
2829
2830 /*
2831  * p1 and p2 should be directories on the same fs.
2832  */
2833 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2834 {
2835         struct dentry *p;
2836
2837         if (p1 == p2) {
2838                 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2839                 return NULL;
2840         }
2841
2842         mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
2843
2844         p = d_ancestor(p2, p1);
2845         if (p) {
2846                 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
2847                 inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
2848                 return p;
2849         }
2850
2851         p = d_ancestor(p1, p2);
2852         if (p) {
2853                 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2854                 inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
2855                 return p;
2856         }
2857
2858         inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2859         inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
2860         return NULL;
2861 }
2862 EXPORT_SYMBOL(lock_rename);
2863
2864 void unlock_rename(struct dentry *p1, struct dentry *p2)
2865 {
2866         inode_unlock(p1->d_inode);
2867         if (p1 != p2) {
2868                 inode_unlock(p2->d_inode);
2869                 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
2870         }
2871 }
2872 EXPORT_SYMBOL(unlock_rename);
2873
2874 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2875                 bool want_excl)
2876 {
2877         int error = may_create(dir, dentry);
2878         if (error)
2879                 return error;
2880
2881         if (!dir->i_op->create)
2882                 return -EACCES; /* shouldn't it be ENOSYS? */
2883         mode &= S_IALLUGO;
2884         mode |= S_IFREG;
2885         error = security_inode_create(dir, dentry, mode);
2886         if (error)
2887                 return error;
2888         error = dir->i_op->create(dir, dentry, mode, want_excl);
2889         if (!error)
2890                 fsnotify_create(dir, dentry);
2891         return error;
2892 }
2893 EXPORT_SYMBOL(vfs_create);
2894
2895 bool may_open_dev(const struct path *path)
2896 {
2897         return !(path->mnt->mnt_flags & MNT_NODEV) &&
2898                 !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
2899 }
2900
2901 static int may_open(struct path *path, int acc_mode, int flag)
2902 {
2903         struct dentry *dentry = path->dentry;
2904         struct inode *inode = dentry->d_inode;
2905         int error;
2906
2907         if (!inode)
2908                 return -ENOENT;
2909
2910         switch (inode->i_mode & S_IFMT) {
2911         case S_IFLNK:
2912                 return -ELOOP;
2913         case S_IFDIR:
2914                 if (acc_mode & MAY_WRITE)
2915                         return -EISDIR;
2916                 break;
2917         case S_IFBLK:
2918         case S_IFCHR:
2919                 if (!may_open_dev(path))
2920                         return -EACCES;
2921                 /*FALLTHRU*/
2922         case S_IFIFO:
2923         case S_IFSOCK:
2924                 flag &= ~O_TRUNC;
2925                 break;
2926         }
2927
2928         error = inode_permission(inode, MAY_OPEN | acc_mode);
2929         if (error)
2930                 return error;
2931
2932         /*
2933          * An append-only file must be opened in append mode for writing.
2934          */
2935         if (IS_APPEND(inode)) {
2936                 if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2937                         return -EPERM;
2938                 if (flag & O_TRUNC)
2939                         return -EPERM;
2940         }
2941
2942         /* O_NOATIME can only be set by the owner or superuser */
2943         if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2944                 return -EPERM;
2945
2946         return 0;
2947 }
2948
2949 static int handle_truncate(struct file *filp)
2950 {
2951         struct path *path = &filp->f_path;
2952         struct inode *inode = path->dentry->d_inode;
2953         int error = get_write_access(inode);
2954         if (error)
2955                 return error;
2956         /*
2957          * Refuse to truncate files with mandatory locks held on them.
2958          */
2959         error = locks_verify_locked(filp);
2960         if (!error)
2961                 error = security_path_truncate(path);
2962         if (!error) {
2963                 error = do_truncate(path->dentry, 0,
2964                                     ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2965                                     filp);
2966         }
2967         put_write_access(inode);
2968         return error;
2969 }
2970
2971 static inline int open_to_namei_flags(int flag)
2972 {
2973         if ((flag & O_ACCMODE) == 3)
2974                 flag--;
2975         return flag;
2976 }
2977
2978 static int may_o_create(const struct path *dir, struct dentry *dentry, umode_t mode)
2979 {
2980         int error = security_path_mknod(dir, dentry, mode, 0);
2981         if (error)
2982                 return error;
2983
2984         error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2985         if (error)
2986                 return error;
2987
2988         return security_inode_create(dir->dentry->d_inode, dentry, mode);
2989 }
2990
2991 /*
2992  * Attempt to atomically look up, create and open a file from a negative
2993  * dentry.
2994  *
2995  * Returns 0 if successful.  The file will have been created and attached to
2996  * @file by the filesystem calling finish_open().
2997  *
2998  * Returns 1 if the file was looked up only or didn't need creating.  The
2999  * caller will need to perform the open themselves.  @path will have been
3000  * updated to point to the new dentry.  This may be negative.
3001  *
3002  * Returns an error code otherwise.
3003  */
3004 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
3005                         struct path *path, struct file *file,
3006                         const struct open_flags *op,
3007                         int open_flag, umode_t mode,
3008                         int *opened)
3009 {
3010         struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
3011         struct inode *dir =  nd->path.dentry->d_inode;
3012         int error;
3013
3014         if (!(~open_flag & (O_EXCL | O_CREAT))) /* both O_EXCL and O_CREAT */
3015                 open_flag &= ~O_TRUNC;
3016
3017         if (nd->flags & LOOKUP_DIRECTORY)
3018                 open_flag |= O_DIRECTORY;
3019
3020         file->f_path.dentry = DENTRY_NOT_SET;
3021         file->f_path.mnt = nd->path.mnt;
3022         error = dir->i_op->atomic_open(dir, dentry, file,
3023                                        open_to_namei_flags(open_flag),
3024                                        mode, opened);
3025         d_lookup_done(dentry);
3026         if (!error) {
3027                 /*
3028                  * We didn't have the inode before the open, so check open
3029                  * permission here.
3030                  */
3031                 int acc_mode = op->acc_mode;
3032                 if (*opened & FILE_CREATED) {
3033                         WARN_ON(!(open_flag & O_CREAT));
3034                         fsnotify_create(dir, dentry);
3035                         acc_mode = 0;
3036                 }
3037                 error = may_open(&file->f_path, acc_mode, open_flag);
3038                 if (WARN_ON(error > 0))
3039                         error = -EINVAL;
3040         } else if (error > 0) {
3041                 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3042                         error = -EIO;
3043                 } else {
3044                         if (file->f_path.dentry) {
3045                                 dput(dentry);
3046                                 dentry = file->f_path.dentry;
3047                         }
3048                         if (*opened & FILE_CREATED)
3049                                 fsnotify_create(dir, dentry);
3050                         path->dentry = dentry;
3051                         path->mnt = nd->path.mnt;
3052                         return 1;
3053                 }
3054         }
3055         dput(dentry);
3056         return error;
3057 }
3058
3059 /*
3060  * Look up and maybe create and open the last component.
3061  *
3062  * Must be called with i_mutex held on parent.
3063  *
3064  * Returns 0 if the file was successfully atomically created (if necessary) and
3065  * opened.  In this case the file will be returned attached to @file.
3066  *
3067  * Returns 1 if the file was not completely opened at this time, though lookups
3068  * and creations will have been performed and the dentry returned in @path will
3069  * be positive upon return if O_CREAT was specified.  If O_CREAT wasn't
3070  * specified then a negative dentry may be returned.
3071  *
3072  * An error code is returned otherwise.
3073  *
3074  * FILE_CREATE will be set in @*opened if the dentry was created and will be
3075  * cleared otherwise prior to returning.
3076  */
3077 static int lookup_open(struct nameidata *nd, struct path *path,
3078                         struct file *file,
3079                         const struct open_flags *op,
3080                         bool got_write, int *opened)
3081 {
3082         struct dentry *dir = nd->path.dentry;
3083         struct inode *dir_inode = dir->d_inode;
3084         int open_flag = op->open_flag;
3085         struct dentry *dentry;
3086         int error, create_error = 0;
3087         umode_t mode = op->mode;
3088         DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3089
3090         if (unlikely(IS_DEADDIR(dir_inode)))
3091                 return -ENOENT;
3092
3093         *opened &= ~FILE_CREATED;
3094         dentry = d_lookup(dir, &nd->last);
3095         for (;;) {
3096                 if (!dentry) {
3097                         dentry = d_alloc_parallel(dir, &nd->last, &wq);
3098                         if (IS_ERR(dentry))
3099                                 return PTR_ERR(dentry);
3100                 }
3101                 if (d_in_lookup(dentry))
3102                         break;
3103
3104                 if (!(dentry->d_flags & DCACHE_OP_REVALIDATE))
3105                         break;
3106
3107                 error = d_revalidate(dentry, nd->flags);
3108                 if (likely(error > 0))
3109                         break;
3110                 if (error)
3111                         goto out_dput;
3112                 d_invalidate(dentry);
3113                 dput(dentry);
3114                 dentry = NULL;
3115         }
3116         if (dentry->d_inode) {
3117                 /* Cached positive dentry: will open in f_op->open */
3118                 goto out_no_open;
3119         }
3120
3121         /*
3122          * Checking write permission is tricky, bacuse we don't know if we are
3123          * going to actually need it: O_CREAT opens should work as long as the
3124          * file exists.  But checking existence breaks atomicity.  The trick is
3125          * to check access and if not granted clear O_CREAT from the flags.
3126          *
3127          * Another problem is returing the "right" error value (e.g. for an
3128          * O_EXCL open we want to return EEXIST not EROFS).
3129          */
3130         if (open_flag & O_CREAT) {
3131                 if (!IS_POSIXACL(dir->d_inode))
3132                         mode &= ~current_umask();
3133                 if (unlikely(!got_write)) {
3134                         create_error = -EROFS;
3135                         open_flag &= ~O_CREAT;
3136                         if (open_flag & (O_EXCL | O_TRUNC))
3137                                 goto no_open;
3138                         /* No side effects, safe to clear O_CREAT */
3139                 } else {
3140                         create_error = may_o_create(&nd->path, dentry, mode);
3141                         if (create_error) {
3142                                 open_flag &= ~O_CREAT;
3143                                 if (open_flag & O_EXCL)
3144                                         goto no_open;
3145                         }
3146                 }
3147         } else if ((open_flag & (O_TRUNC|O_WRONLY|O_RDWR)) &&
3148                    unlikely(!got_write)) {
3149                 /*
3150                  * No O_CREATE -> atomicity not a requirement -> fall
3151                  * back to lookup + open
3152                  */
3153                 goto no_open;
3154         }
3155
3156         if (dir_inode->i_op->atomic_open) {
3157                 error = atomic_open(nd, dentry, path, file, op, open_flag,
3158                                     mode, opened);
3159                 if (unlikely(error == -ENOENT) && create_error)
3160                         error = create_error;
3161                 return error;
3162         }
3163
3164 no_open:
3165         if (d_in_lookup(dentry)) {
3166                 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3167                                                              nd->flags);
3168                 d_lookup_done(dentry);
3169                 if (unlikely(res)) {
3170                         if (IS_ERR(res)) {
3171                                 error = PTR_ERR(res);
3172                                 goto out_dput;
3173                         }
3174                         dput(dentry);
3175                         dentry = res;
3176                 }
3177         }
3178
3179         /* Negative dentry, just create the file */
3180         if (!dentry->d_inode && (open_flag & O_CREAT)) {
3181                 *opened |= FILE_CREATED;
3182                 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3183                 if (!dir_inode->i_op->create) {
3184                         error = -EACCES;
3185                         goto out_dput;
3186                 }
3187                 error = dir_inode->i_op->create(dir_inode, dentry, mode,
3188                                                 open_flag & O_EXCL);
3189                 if (error)
3190                         goto out_dput;
3191                 fsnotify_create(dir_inode, dentry);
3192         }
3193         if (unlikely(create_error) && !dentry->d_inode) {
3194                 error = create_error;
3195                 goto out_dput;
3196         }
3197 out_no_open:
3198         path->dentry = dentry;
3199         path->mnt = nd->path.mnt;
3200         return 1;
3201
3202 out_dput:
3203         dput(dentry);
3204         return error;
3205 }
3206
3207 /*
3208  * Handle the last step of open()
3209  */
3210 static int do_last(struct nameidata *nd,
3211                    struct file *file, const struct open_flags *op,
3212                    int *opened)
3213 {
3214         struct dentry *dir = nd->path.dentry;
3215         int open_flag = op->open_flag;
3216         bool will_truncate = (open_flag & O_TRUNC) != 0;
3217         bool got_write = false;
3218         int acc_mode = op->acc_mode;
3219         unsigned seq;
3220         struct inode *inode;
3221         struct path save_parent = { .dentry = NULL, .mnt = NULL };
3222         struct path path;
3223         bool retried = false;
3224         int error;
3225
3226         nd->flags &= ~LOOKUP_PARENT;
3227         nd->flags |= op->intent;
3228
3229         if (nd->last_type != LAST_NORM) {
3230                 error = handle_dots(nd, nd->last_type);
3231                 if (unlikely(error))
3232                         return error;
3233                 goto finish_open;
3234         }
3235
3236         if (!(open_flag & O_CREAT)) {
3237                 if (nd->last.name[nd->last.len])
3238                         nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3239                 /* we _can_ be in RCU mode here */
3240                 error = lookup_fast(nd, &path, &inode, &seq);
3241                 if (likely(error > 0))
3242                         goto finish_lookup;
3243
3244                 if (error < 0)
3245                         return error;
3246
3247                 BUG_ON(nd->inode != dir->d_inode);
3248                 BUG_ON(nd->flags & LOOKUP_RCU);
3249         } else {
3250                 /* create side of things */
3251                 /*
3252                  * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
3253                  * has been cleared when we got to the last component we are
3254                  * about to look up
3255                  */
3256                 error = complete_walk(nd);
3257                 if (error)
3258                         return error;
3259
3260                 audit_inode(nd->name, dir, LOOKUP_PARENT);
3261                 /* trailing slashes? */
3262                 if (unlikely(nd->last.name[nd->last.len]))
3263                         return -EISDIR;
3264         }
3265
3266 retry_lookup:
3267         if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3268                 error = mnt_want_write(nd->path.mnt);
3269                 if (!error)
3270                         got_write = true;
3271                 /*
3272                  * do _not_ fail yet - we might not need that or fail with
3273                  * a different error; let lookup_open() decide; we'll be
3274                  * dropping this one anyway.
3275                  */
3276         }
3277         if (open_flag & O_CREAT)
3278                 inode_lock(dir->d_inode);
3279         else
3280                 inode_lock_shared(dir->d_inode);
3281         error = lookup_open(nd, &path, file, op, got_write, opened);
3282         if (open_flag & O_CREAT)
3283                 inode_unlock(dir->d_inode);
3284         else
3285                 inode_unlock_shared(dir->d_inode);
3286
3287         if (error <= 0) {
3288                 if (error)
3289                         goto out;
3290
3291                 if ((*opened & FILE_CREATED) ||
3292                     !S_ISREG(file_inode(file)->i_mode))
3293                         will_truncate = false;
3294
3295                 audit_inode(nd->name, file->f_path.dentry, 0);
3296                 goto opened;
3297         }
3298
3299         if (*opened & FILE_CREATED) {
3300                 /* Don't check for write permission, don't truncate */
3301                 open_flag &= ~O_TRUNC;
3302                 will_truncate = false;
3303                 acc_mode = 0;
3304                 path_to_nameidata(&path, nd);
3305                 goto finish_open_created;
3306         }
3307
3308         /*
3309          * If atomic_open() acquired write access it is dropped now due to
3310          * possible mount and symlink following (this might be optimized away if
3311          * necessary...)
3312          */
3313         if (got_write) {
3314                 mnt_drop_write(nd->path.mnt);
3315                 got_write = false;
3316         }
3317
3318         if (unlikely(d_is_negative(path.dentry))) {
3319                 path_to_nameidata(&path, nd);
3320                 return -ENOENT;
3321         }
3322
3323         /*
3324          * create/update audit record if it already exists.
3325          */
3326         audit_inode(nd->name, path.dentry, 0);
3327
3328         if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) {
3329                 path_to_nameidata(&path, nd);
3330                 return -EEXIST;
3331         }
3332
3333         error = follow_managed(&path, nd);
3334         if (unlikely(error < 0))
3335                 return error;
3336
3337         seq = 0;        /* out of RCU mode, so the value doesn't matter */
3338         inode = d_backing_inode(path.dentry);
3339 finish_lookup:
3340         if (nd->depth)
3341                 put_link(nd);
3342         error = should_follow_link(nd, &path, nd->flags & LOOKUP_FOLLOW,
3343                                    inode, seq);
3344         if (unlikely(error))
3345                 return error;
3346
3347         if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path.mnt) {
3348                 path_to_nameidata(&path, nd);
3349         } else {
3350                 save_parent.dentry = nd->path.dentry;
3351                 save_parent.mnt = mntget(path.mnt);
3352                 nd->path.dentry = path.dentry;
3353
3354         }
3355         nd->inode = inode;
3356         nd->seq = seq;
3357         /* Why this, you ask?  _Now_ we might have grown LOOKUP_JUMPED... */
3358 finish_open:
3359         error = complete_walk(nd);
3360         if (error) {
3361                 path_put(&save_parent);
3362                 return error;
3363         }
3364         audit_inode(nd->name, nd->path.dentry, 0);
3365         error = -EISDIR;
3366         if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3367                 goto out;
3368         error = -ENOTDIR;
3369         if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3370                 goto out;
3371         if (!d_is_reg(nd->path.dentry))
3372                 will_truncate = false;
3373
3374         if (will_truncate) {
3375                 error = mnt_want_write(nd->path.mnt);
3376                 if (error)
3377                         goto out;
3378                 got_write = true;
3379         }
3380 finish_open_created:
3381         error = may_open(&nd->path, acc_mode, open_flag);
3382         if (error)
3383                 goto out;
3384         BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */
3385         error = vfs_open(&nd->path, file, current_cred());
3386         if (!error) {
3387                 *opened |= FILE_OPENED;
3388         } else {
3389                 if (error == -EOPENSTALE)
3390                         goto stale_open;
3391                 goto out;
3392         }
3393 opened:
3394         error = open_check_o_direct(file);
3395         if (!error)
3396                 error = ima_file_check(file, op->acc_mode, *opened);
3397         if (!error && will_truncate)
3398                 error = handle_truncate(file);
3399 out:
3400         if (unlikely(error) && (*opened & FILE_OPENED))
3401                 fput(file);
3402         if (unlikely(error > 0)) {
3403                 WARN_ON(1);
3404                 error = -EINVAL;
3405         }
3406         if (got_write)
3407                 mnt_drop_write(nd->path.mnt);
3408         path_put(&save_parent);
3409         return error;
3410
3411 stale_open:
3412         /* If no saved parent or already retried then can't retry */
3413         if (!save_parent.dentry || retried)
3414                 goto out;
3415
3416         BUG_ON(save_parent.dentry != dir);
3417         path_put(&nd->path);
3418         nd->path = save_parent;
3419         nd->inode = dir->d_inode;
3420         save_parent.mnt = NULL;
3421         save_parent.dentry = NULL;
3422         if (got_write) {
3423                 mnt_drop_write(nd->path.mnt);
3424                 got_write = false;
3425         }
3426         retried = true;
3427         goto retry_lookup;
3428 }
3429
3430 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3431                 const struct open_flags *op,
3432                 struct file *file, int *opened)
3433 {
3434         static const struct qstr name = QSTR_INIT("/", 1);
3435         struct dentry *child;
3436         struct inode *dir;
3437         struct path path;
3438         int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3439         if (unlikely(error))
3440                 return error;
3441         error = mnt_want_write(path.mnt);
3442         if (unlikely(error))
3443                 goto out;
3444         dir = path.dentry->d_inode;
3445         /* we want directory to be writable */
3446         error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
3447         if (error)
3448                 goto out2;
3449         if (!dir->i_op->tmpfile) {
3450                 error = -EOPNOTSUPP;
3451                 goto out2;
3452         }
3453         child = d_alloc(path.dentry, &name);
3454         if (unlikely(!child)) {
3455                 error = -ENOMEM;
3456                 goto out2;
3457         }
3458         dput(path.dentry);
3459         path.dentry = child;
3460         error = dir->i_op->tmpfile(dir, child, op->mode);
3461         if (error)
3462                 goto out2;
3463         audit_inode(nd->name, child, 0);
3464         /* Don't check for other permissions, the inode was just created */
3465         error = may_open(&path, 0, op->open_flag);
3466         if (error)
3467                 goto out2;
3468         file->f_path.mnt = path.mnt;
3469         error = finish_open(file, child, NULL, opened);
3470         if (error)
3471                 goto out2;
3472         error = open_check_o_direct(file);
3473         if (error) {
3474                 fput(file);
3475         } else if (!(op->open_flag & O_EXCL)) {
3476                 struct inode *inode = file_inode(file);
3477                 spin_lock(&inode->i_lock);
3478                 inode->i_state |= I_LINKABLE;
3479                 spin_unlock(&inode->i_lock);
3480         }
3481 out2:
3482         mnt_drop_write(path.mnt);
3483 out:
3484         path_put(&path);
3485         return error;
3486 }
3487
3488 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3489 {
3490         struct path path;
3491         int error = path_lookupat(nd, flags, &path);
3492         if (!error) {
3493                 audit_inode(nd->name, path.dentry, 0);
3494                 error = vfs_open(&path, file, current_cred());
3495                 path_put(&path);
3496         }
3497         return error;
3498 }
3499
3500 static struct file *path_openat(struct nameidata *nd,
3501                         const struct open_flags *op, unsigned flags)
3502 {
3503         const char *s;
3504         struct file *file;
3505         int opened = 0;
3506         int error;
3507
3508         file = get_empty_filp();
3509         if (IS_ERR(file))
3510                 return file;
3511
3512         file->f_flags = op->open_flag;
3513
3514         if (unlikely(file->f_flags & __O_TMPFILE)) {
3515                 error = do_tmpfile(nd, flags, op, file, &opened);
3516                 goto out2;
3517         }
3518
3519         if (unlikely(file->f_flags & O_PATH)) {
3520                 error = do_o_path(nd, flags, file);
3521                 if (!error)
3522                         opened |= FILE_OPENED;
3523                 goto out2;
3524         }
3525
3526         s = path_init(nd, flags);
3527         if (IS_ERR(s)) {
3528                 put_filp(file);
3529                 return ERR_CAST(s);
3530         }
3531         while (!(error = link_path_walk(s, nd)) &&
3532                 (error = do_last(nd, file, op, &opened)) > 0) {
3533                 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3534                 s = trailing_symlink(nd);
3535                 if (IS_ERR(s)) {
3536                         error = PTR_ERR(s);
3537                         break;
3538                 }
3539         }
3540         terminate_walk(nd);
3541 out2:
3542         if (!(opened & FILE_OPENED)) {
3543                 BUG_ON(!error);
3544                 put_filp(file);
3545         }
3546         if (unlikely(error)) {
3547                 if (error == -EOPENSTALE) {
3548                         if (flags & LOOKUP_RCU)
3549                                 error = -ECHILD;
3550                         else
3551                                 error = -ESTALE;
3552                 }
3553                 file = ERR_PTR(error);
3554         }
3555         return file;
3556 }
3557
3558 struct file *do_filp_open(int dfd, struct filename *pathname,
3559                 const struct open_flags *op)
3560 {
3561         struct nameidata nd;
3562         int flags = op->lookup_flags;
3563         struct file *filp;
3564
3565         set_nameidata(&nd, dfd, pathname);
3566         filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3567         if (unlikely(filp == ERR_PTR(-ECHILD)))
3568                 filp = path_openat(&nd, op, flags);
3569         if (unlikely(filp == ERR_PTR(-ESTALE)))
3570                 filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3571         restore_nameidata();
3572         return filp;
3573 }
3574
3575 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3576                 const char *name, const struct open_flags *op)
3577 {
3578         struct nameidata nd;
3579         struct file *file;
3580         struct filename *filename;
3581         int flags = op->lookup_flags | LOOKUP_ROOT;
3582
3583         nd.root.mnt = mnt;
3584         nd.root.dentry = dentry;
3585
3586         if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3587                 return ERR_PTR(-ELOOP);
3588
3589         filename = getname_kernel(name);
3590         if (IS_ERR(filename))
3591                 return ERR_CAST(filename);
3592
3593         set_nameidata(&nd, -1, filename);
3594         file = path_openat(&nd, op, flags | LOOKUP_RCU);
3595         if (unlikely(file == ERR_PTR(-ECHILD)))
3596                 file = path_openat(&nd, op, flags);
3597         if (unlikely(file == ERR_PTR(-ESTALE)))
3598                 file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3599         restore_nameidata();
3600         putname(filename);
3601         return file;
3602 }
3603
3604 static struct dentry *filename_create(int dfd, struct filename *name,
3605                                 struct path *path, unsigned int lookup_flags)
3606 {
3607         struct dentry *dentry = ERR_PTR(-EEXIST);
3608         struct qstr last;
3609         int type;
3610         int err2;
3611         int error;
3612         bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3613
3614         /*
3615          * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3616          * other flags passed in are ignored!
3617          */
3618         lookup_flags &= LOOKUP_REVAL;
3619
3620         name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3621         if (IS_ERR(name))
3622                 return ERR_CAST(name);
3623
3624         /*
3625          * Yucky last component or no last component at all?
3626          * (foo/., foo/.., /////)
3627          */
3628         if (unlikely(type != LAST_NORM))
3629                 goto out;
3630
3631         /* don't fail immediately if it's r/o, at least try to report other errors */
3632         err2 = mnt_want_write(path->mnt);
3633         /*
3634          * Do the final lookup.
3635          */
3636         lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3637         inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3638         dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3639         if (IS_ERR(dentry))
3640                 goto unlock;
3641
3642         error = -EEXIST;
3643         if (d_is_positive(dentry))
3644                 goto fail;
3645
3646         /*
3647          * Special case - lookup gave negative, but... we had foo/bar/
3648          * From the vfs_mknod() POV we just have a negative dentry -
3649          * all is fine. Let's be bastards - you had / on the end, you've
3650          * been asking for (non-existent) directory. -ENOENT for you.
3651          */
3652         if (unlikely(!is_dir && last.name[last.len])) {
3653                 error = -ENOENT;
3654                 goto fail;
3655         }
3656         if (unlikely(err2)) {
3657                 error = err2;
3658                 goto fail;
3659         }
3660         putname(name);
3661         return dentry;
3662 fail:
3663         dput(dentry);
3664         dentry = ERR_PTR(error);
3665 unlock:
3666         inode_unlock(path->dentry->d_inode);
3667         if (!err2)
3668                 mnt_drop_write(path->mnt);
3669 out:
3670         path_put(path);
3671         putname(name);
3672         return dentry;
3673 }
3674
3675 struct dentry *kern_path_create(int dfd, const char *pathname,
3676                                 struct path *path, unsigned int lookup_flags)
3677 {
3678         return filename_create(dfd, getname_kernel(pathname),
3679                                 path, lookup_flags);
3680 }
3681 EXPORT_SYMBOL(kern_path_create);
3682
3683 void done_path_create(struct path *path, struct dentry *dentry)
3684 {
3685         dput(dentry);
3686         inode_unlock(path->dentry->d_inode);
3687         mnt_drop_write(path->mnt);
3688         path_put(path);
3689 }
3690 EXPORT_SYMBOL(done_path_create);
3691
3692 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3693                                 struct path *path, unsigned int lookup_flags)
3694 {
3695         return filename_create(dfd, getname(pathname), path, lookup_flags);
3696 }
3697 EXPORT_SYMBOL(user_path_create);
3698
3699 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3700 {
3701         int error = may_create(dir, dentry);
3702
3703         if (error)
3704                 return error;
3705
3706         if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3707                 return -EPERM;
3708
3709         if (!dir->i_op->mknod)
3710                 return -EPERM;
3711
3712         error = devcgroup_inode_mknod(mode, dev);
3713         if (error)
3714                 return error;
3715
3716         error = security_inode_mknod(dir, dentry, mode, dev);
3717         if (error)
3718                 return error;
3719
3720         error = dir->i_op->mknod(dir, dentry, mode, dev);
3721         if (!error)
3722                 fsnotify_create(dir, dentry);
3723         return error;
3724 }
3725 EXPORT_SYMBOL(vfs_mknod);
3726
3727 static int may_mknod(umode_t mode)
3728 {
3729         switch (mode & S_IFMT) {
3730         case S_IFREG:
3731         case S_IFCHR:
3732         case S_IFBLK:
3733         case S_IFIFO:
3734         case S_IFSOCK:
3735         case 0: /* zero mode translates to S_IFREG */
3736                 return 0;
3737         case S_IFDIR:
3738                 return -EPERM;
3739         default:
3740                 return -EINVAL;
3741         }
3742 }
3743
3744 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3745                 unsigned, dev)
3746 {
3747         struct dentry *dentry;
3748         struct path path;
3749         int error;
3750         unsigned int lookup_flags = 0;
3751
3752         error = may_mknod(mode);
3753         if (error)
3754                 return error;
3755 retry:
3756         dentry = user_path_create(dfd, filename, &path, lookup_flags);
3757         if (IS_ERR(dentry))
3758                 return PTR_ERR(dentry);
3759
3760         if (!IS_POSIXACL(path.dentry->d_inode))
3761                 mode &= ~current_umask();
3762         error = security_path_mknod(&path, dentry, mode, dev);
3763         if (error)
3764                 goto out;
3765         switch (mode & S_IFMT) {
3766                 case 0: case S_IFREG:
3767                         error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3768                         if (!error)
3769                                 ima_post_path_mknod(dentry);
3770                         break;
3771                 case S_IFCHR: case S_IFBLK:
3772                         error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3773                                         new_decode_dev(dev));
3774                         break;
3775                 case S_IFIFO: case S_IFSOCK:
3776                         error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3777                         break;
3778         }
3779 out:
3780         done_path_create(&path, dentry);
3781         if (retry_estale(error, lookup_flags)) {
3782                 lookup_flags |= LOOKUP_REVAL;
3783                 goto retry;
3784         }
3785         return error;
3786 }
3787
3788 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3789 {
3790         return sys_mknodat(AT_FDCWD, filename, mode, dev);
3791 }
3792
3793 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3794 {
3795         int error = may_create(dir, dentry);
3796         unsigned max_links = dir->i_sb->s_max_links;
3797
3798         if (error)
3799                 return error;
3800
3801         if (!dir->i_op->mkdir)
3802                 return -EPERM;
3803
3804         mode &= (S_IRWXUGO|S_ISVTX);
3805         error = security_inode_mkdir(dir, dentry, mode);
3806         if (error)
3807                 return error;
3808
3809         if (max_links && dir->i_nlink >= max_links)
3810                 return -EMLINK;
3811
3812         error = dir->i_op->mkdir(dir, dentry, mode);
3813         if (!error)
3814                 fsnotify_mkdir(dir, dentry);
3815         return error;
3816 }
3817 EXPORT_SYMBOL(vfs_mkdir);
3818
3819 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3820 {
3821         struct dentry *dentry;
3822         struct path path;
3823         int error;
3824         unsigned int lookup_flags = LOOKUP_DIRECTORY;
3825
3826 retry:
3827         dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3828         if (IS_ERR(dentry))
3829                 return PTR_ERR(dentry);
3830
3831         if (!IS_POSIXACL(path.dentry->d_inode))
3832                 mode &= ~current_umask();
3833         error = security_path_mkdir(&path, dentry, mode);
3834         if (!error)
3835                 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3836         done_path_create(&path, dentry);
3837         if (retry_estale(error, lookup_flags)) {
3838                 lookup_flags |= LOOKUP_REVAL;
3839                 goto retry;
3840         }
3841         return error;
3842 }
3843
3844 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3845 {
3846         return sys_mkdirat(AT_FDCWD, pathname, mode);
3847 }
3848
3849 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3850 {
3851         int error = may_delete(dir, dentry, 1);
3852
3853         if (error)
3854                 return error;
3855
3856         if (!dir->i_op->rmdir)
3857                 return -EPERM;
3858
3859         dget(dentry);
3860         inode_lock(dentry->d_inode);
3861
3862         error = -EBUSY;
3863         if (is_local_mountpoint(dentry))
3864                 goto out;
3865
3866         error = security_inode_rmdir(dir, dentry);
3867         if (error)
3868                 goto out;
3869
3870         shrink_dcache_parent(dentry);
3871         error = dir->i_op->rmdir(dir, dentry);
3872         if (error)
3873                 goto out;
3874
3875         dentry->d_inode->i_flags |= S_DEAD;
3876         dont_mount(dentry);
3877         detach_mounts(dentry);
3878
3879 out:
3880         inode_unlock(dentry->d_inode);
3881         dput(dentry);
3882         if (!error)
3883                 d_delete(dentry);
3884         return error;
3885 }
3886 EXPORT_SYMBOL(vfs_rmdir);
3887
3888 static long do_rmdir(int dfd, const char __user *pathname)
3889 {
3890         int error = 0;
3891         struct filename *name;
3892         struct dentry *dentry;
3893         struct path path;
3894         struct qstr last;
3895         int type;
3896         unsigned int lookup_flags = 0;
3897 retry:
3898         name = user_path_parent(dfd, pathname,
3899                                 &path, &last, &type, lookup_flags);
3900         if (IS_ERR(name))
3901                 return PTR_ERR(name);
3902
3903         switch (type) {
3904         case LAST_DOTDOT:
3905                 error = -ENOTEMPTY;
3906                 goto exit1;
3907         case LAST_DOT:
3908                 error = -EINVAL;
3909                 goto exit1;
3910         case LAST_ROOT:
3911                 error = -EBUSY;
3912                 goto exit1;
3913         }
3914
3915         error = mnt_want_write(path.mnt);
3916         if (error)
3917                 goto exit1;
3918
3919         inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3920         dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3921         error = PTR_ERR(dentry);
3922         if (IS_ERR(dentry))
3923                 goto exit2;
3924         if (!dentry->d_inode) {
3925                 error = -ENOENT;
3926                 goto exit3;
3927         }
3928         error = security_path_rmdir(&path, dentry);
3929         if (error)
3930                 goto exit3;
3931         error = vfs_rmdir(path.dentry->d_inode, dentry);
3932 exit3:
3933         dput(dentry);
3934 exit2:
3935         inode_unlock(path.dentry->d_inode);
3936         mnt_drop_write(path.mnt);
3937 exit1:
3938         path_put(&path);
3939         putname(name);
3940         if (retry_estale(error, lookup_flags)) {
3941                 lookup_flags |= LOOKUP_REVAL;
3942                 goto retry;
3943         }
3944         return error;
3945 }
3946
3947 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3948 {
3949         return do_rmdir(AT_FDCWD, pathname);
3950 }
3951
3952 /**
3953  * vfs_unlink - unlink a filesystem object
3954  * @dir:        parent directory
3955  * @dentry:     victim
3956  * @delegated_inode: returns victim inode, if the inode is delegated.
3957  *
3958  * The caller must hold dir->i_mutex.
3959  *
3960  * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3961  * return a reference to the inode in delegated_inode.  The caller
3962  * should then break the delegation on that inode and retry.  Because
3963  * breaking a delegation may take a long time, the caller should drop
3964  * dir->i_mutex before doing so.
3965  *
3966  * Alternatively, a caller may pass NULL for delegated_inode.  This may
3967  * be appropriate for callers that expect the underlying filesystem not
3968  * to be NFS exported.
3969  */
3970 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3971 {
3972         struct inode *target = dentry->d_inode;
3973         int error = may_delete(dir, dentry, 0);
3974
3975         if (error)
3976                 return error;
3977
3978         if (!dir->i_op->unlink)
3979                 return -EPERM;
3980
3981         inode_lock(target);
3982         if (is_local_mountpoint(dentry))
3983                 error = -EBUSY;
3984         else {
3985                 error = security_inode_unlink(dir, dentry);
3986                 if (!error) {
3987                         error = try_break_deleg(target, delegated_inode);
3988                         if (error)
3989                                 goto out;
3990                         error = dir->i_op->unlink(dir, dentry);
3991                         if (!error) {
3992                                 dont_mount(dentry);
3993                                 detach_mounts(dentry);
3994                         }
3995                 }
3996         }
3997 out:
3998         inode_unlock(target);
3999
4000         /* We don't d_delete() NFS sillyrenamed files--they still exist. */
4001         if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
4002                 fsnotify_link_count(target);
4003                 d_delete(dentry);
4004         }
4005
4006         return error;
4007 }
4008 EXPORT_SYMBOL(vfs_unlink);
4009
4010 /*
4011  * Make sure that the actual truncation of the file will occur outside its
4012  * directory's i_mutex.  Truncate can take a long time if there is a lot of
4013  * writeout happening, and we don't want to prevent access to the directory
4014  * while waiting on the I/O.
4015  */
4016 static long do_unlinkat(int dfd, const char __user *pathname)
4017 {
4018         int error;
4019         struct filename *name;
4020         struct dentry *dentry;
4021         struct path path;
4022         struct qstr last;
4023         int type;
4024         struct inode *inode = NULL;
4025         struct inode *delegated_inode = NULL;
4026         unsigned int lookup_flags = 0;
4027 retry:
4028         name = user_path_parent(dfd, pathname,
4029                                 &path, &last, &type, lookup_flags);
4030         if (IS_ERR(name))
4031                 return PTR_ERR(name);
4032
4033         error = -EISDIR;
4034         if (type != LAST_NORM)
4035                 goto exit1;
4036
4037         error = mnt_want_write(path.mnt);
4038         if (error)
4039                 goto exit1;
4040 retry_deleg:
4041         inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4042         dentry = __lookup_hash(&last, path.dentry, lookup_flags);
4043         error = PTR_ERR(dentry);
4044         if (!IS_ERR(dentry)) {
4045                 /* Why not before? Because we want correct error value */
4046                 if (last.name[last.len])
4047                         goto slashes;
4048                 inode = dentry->d_inode;
4049                 if (d_is_negative(dentry))
4050                         goto slashes;
4051                 ihold(inode);
4052                 error = security_path_unlink(&path, dentry);
4053                 if (error)
4054                         goto exit2;
4055                 error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
4056 exit2:
4057                 dput(dentry);
4058         }
4059         inode_unlock(path.dentry->d_inode);
4060         if (inode)
4061                 iput(inode);    /* truncate the inode here */
4062         inode = NULL;
4063         if (delegated_inode) {
4064                 error = break_deleg_wait(&delegated_inode);
4065                 if (!error)
4066                         goto retry_deleg;
4067         }
4068         mnt_drop_write(path.mnt);
4069 exit1:
4070         path_put(&path);
4071         putname(name);
4072         if (retry_estale(error, lookup_flags)) {
4073                 lookup_flags |= LOOKUP_REVAL;
4074                 inode = NULL;
4075                 goto retry;
4076         }
4077         return error;
4078
4079 slashes:
4080         if (d_is_negative(dentry))
4081                 error = -ENOENT;
4082         else if (d_is_dir(dentry))
4083                 error = -EISDIR;
4084         else
4085                 error = -ENOTDIR;
4086         goto exit2;
4087 }
4088
4089 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4090 {
4091         if ((flag & ~AT_REMOVEDIR) != 0)
4092                 return -EINVAL;
4093
4094         if (flag & AT_REMOVEDIR)
4095                 return do_rmdir(dfd, pathname);
4096
4097         return do_unlinkat(dfd, pathname);
4098 }
4099
4100 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4101 {
4102         return do_unlinkat(AT_FDCWD, pathname);
4103 }
4104
4105 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
4106 {
4107         int error = may_create(dir, dentry);
4108
4109         if (error)
4110                 return error;
4111
4112         if (!dir->i_op->symlink)
4113                 return -EPERM;
4114
4115         error = security_inode_symlink(dir, dentry, oldname);
4116         if (error)
4117                 return error;
4118
4119         error = dir->i_op->symlink(dir, dentry, oldname);
4120         if (!error)
4121                 fsnotify_create(dir, dentry);
4122         return error;
4123 }
4124 EXPORT_SYMBOL(vfs_symlink);
4125
4126 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4127                 int, newdfd, const char __user *, newname)
4128 {
4129         int error;
4130         struct filename *from;
4131         struct dentry *dentry;
4132         struct path path;
4133         unsigned int lookup_flags = 0;
4134
4135         from = getname(oldname);
4136         if (IS_ERR(from))
4137                 return PTR_ERR(from);
4138 retry:
4139         dentry = user_path_create(newdfd, newname, &path, lookup_flags);
4140         error = PTR_ERR(dentry);
4141         if (IS_ERR(dentry))
4142                 goto out_putname;
4143
4144         error = security_path_symlink(&path, dentry, from->name);
4145         if (!error)
4146                 error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
4147         done_path_create(&path, dentry);
4148         if (retry_estale(error, lookup_flags)) {
4149                 lookup_flags |= LOOKUP_REVAL;
4150                 goto retry;
4151         }
4152 out_putname:
4153         putname(from);
4154         return error;
4155 }
4156
4157 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4158 {
4159         return sys_symlinkat(oldname, AT_FDCWD, newname);
4160 }
4161
4162 /**
4163  * vfs_link - create a new link
4164  * @old_dentry: object to be linked
4165  * @dir:        new parent
4166  * @new_dentry: where to create the new link
4167  * @delegated_inode: returns inode needing a delegation break
4168  *
4169  * The caller must hold dir->i_mutex
4170  *
4171  * If vfs_link discovers a delegation on the to-be-linked file in need
4172  * of breaking, it will return -EWOULDBLOCK and return a reference to the
4173  * inode in delegated_inode.  The caller should then break the delegation
4174  * and retry.  Because breaking a delegation may take a long time, the
4175  * caller should drop the i_mutex before doing so.
4176  *
4177  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4178  * be appropriate for callers that expect the underlying filesystem not
4179  * to be NFS exported.
4180  */
4181 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
4182 {
4183         struct inode *inode = old_dentry->d_inode;
4184         unsigned max_links = dir->i_sb->s_max_links;
4185         int error;
4186
4187         if (!inode)
4188                 return -ENOENT;
4189
4190         error = may_create(dir, new_dentry);
4191         if (error)
4192                 return error;
4193
4194         if (dir->i_sb != inode->i_sb)
4195                 return -EXDEV;
4196
4197         /*
4198          * A link to an append-only or immutable file cannot be created.
4199          */
4200         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4201                 return -EPERM;
4202         /*
4203          * Updating the link count will likely cause i_uid and i_gid to
4204          * be writen back improperly if their true value is unknown to
4205          * the vfs.
4206          */
4207         if (HAS_UNMAPPED_ID(inode))
4208                 return -EPERM;
4209         if (!dir->i_op->link)
4210                 return -EPERM;
4211         if (S_ISDIR(inode->i_mode))
4212                 return -EPERM;
4213
4214         error = security_inode_link(old_dentry, dir, new_dentry);
4215         if (error)
4216                 return error;
4217
4218         inode_lock(inode);
4219         /* Make sure we don't allow creating hardlink to an unlinked file */
4220         if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4221                 error =  -ENOENT;
4222         else if (max_links && inode->i_nlink >= max_links)
4223                 error = -EMLINK;
4224         else {
4225                 error = try_break_deleg(inode, delegated_inode);
4226                 if (!error)
4227                         error = dir->i_op->link(old_dentry, dir, new_dentry);
4228         }
4229
4230         if (!error && (inode->i_state & I_LINKABLE)) {
4231                 spin_lock(&inode->i_lock);
4232                 inode->i_state &= ~I_LINKABLE;
4233                 spin_unlock(&inode->i_lock);
4234         }
4235         inode_unlock(inode);
4236         if (!error)
4237                 fsnotify_link(dir, inode, new_dentry);
4238         return error;
4239 }
4240 EXPORT_SYMBOL(vfs_link);
4241
4242 /*
4243  * Hardlinks are often used in delicate situations.  We avoid
4244  * security-related surprises by not following symlinks on the
4245  * newname.  --KAB
4246  *
4247  * We don't follow them on the oldname either to be compatible
4248  * with linux 2.0, and to avoid hard-linking to directories
4249  * and other special files.  --ADM
4250  */
4251 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4252                 int, newdfd, const char __user *, newname, int, flags)
4253 {
4254         struct dentry *new_dentry;
4255         struct path old_path, new_path;
4256         struct inode *delegated_inode = NULL;
4257         int how = 0;
4258         int error;
4259
4260         if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4261                 return -EINVAL;
4262         /*
4263          * To use null names we require CAP_DAC_READ_SEARCH
4264          * This ensures that not everyone will be able to create
4265          * handlink using the passed filedescriptor.
4266          */
4267         if (flags & AT_EMPTY_PATH) {
4268                 if (!capable(CAP_DAC_READ_SEARCH))
4269                         return -ENOENT;
4270                 how = LOOKUP_EMPTY;
4271         }
4272
4273         if (flags & AT_SYMLINK_FOLLOW)
4274                 how |= LOOKUP_FOLLOW;
4275 retry:
4276         error = user_path_at(olddfd, oldname, how, &old_path);
4277         if (error)
4278                 return error;
4279
4280         new_dentry = user_path_create(newdfd, newname, &new_path,
4281                                         (how & LOOKUP_REVAL));
4282         error = PTR_ERR(new_dentry);
4283         if (IS_ERR(new_dentry))
4284                 goto out;
4285
4286         error = -EXDEV;
4287         if (old_path.mnt != new_path.mnt)
4288                 goto out_dput;
4289         error = may_linkat(&old_path);
4290         if (unlikely(error))
4291                 goto out_dput;
4292         error = security_path_link(old_path.dentry, &new_path, new_dentry);
4293         if (error)
4294                 goto out_dput;
4295         error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4296 out_dput:
4297         done_path_create(&new_path, new_dentry);
4298         if (delegated_inode) {
4299                 error = break_deleg_wait(&delegated_inode);
4300                 if (!error) {
4301                         path_put(&old_path);
4302                         goto retry;
4303                 }
4304         }
4305         if (retry_estale(error, how)) {
4306                 path_put(&old_path);
4307                 how |= LOOKUP_REVAL;
4308                 goto retry;
4309         }
4310 out:
4311         path_put(&old_path);
4312
4313         return error;
4314 }
4315
4316 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4317 {
4318         return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4319 }
4320
4321 /**
4322  * vfs_rename - rename a filesystem object
4323  * @old_dir:    parent of source
4324  * @old_dentry: source
4325  * @new_dir:    parent of destination
4326  * @new_dentry: destination
4327  * @delegated_inode: returns an inode needing a delegation break
4328  * @flags:      rename flags
4329  *
4330  * The caller must hold multiple mutexes--see lock_rename()).
4331  *
4332  * If vfs_rename discovers a delegation in need of breaking at either
4333  * the source or destination, it will return -EWOULDBLOCK and return a
4334  * reference to the inode in delegated_inode.  The caller should then
4335  * break the delegation and retry.  Because breaking a delegation may
4336  * take a long time, the caller should drop all locks before doing
4337  * so.
4338  *
4339  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4340  * be appropriate for callers that expect the underlying filesystem not
4341  * to be NFS exported.
4342  *
4343  * The worst of all namespace operations - renaming directory. "Perverted"
4344  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4345  * Problems:
4346  *      a) we can get into loop creation.
4347  *      b) race potential - two innocent renames can create a loop together.
4348  *         That's where 4.4 screws up. Current fix: serialization on
4349  *         sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4350  *         story.
4351  *      c) we have to lock _four_ objects - parents and victim (if it exists),
4352  *         and source (if it is not a directory).
4353  *         And that - after we got ->i_mutex on parents (until then we don't know
4354  *         whether the target exists).  Solution: try to be smart with locking
4355  *         order for inodes.  We rely on the fact that tree topology may change
4356  *         only under ->s_vfs_rename_mutex _and_ that parent of the object we
4357  *         move will be locked.  Thus we can rank directories by the tree
4358  *         (ancestors first) and rank all non-directories after them.
4359  *         That works since everybody except rename does "lock parent, lookup,
4360  *         lock child" and rename is under ->s_vfs_rename_mutex.
4361  *         HOWEVER, it relies on the assumption that any object with ->lookup()
4362  *         has no more than 1 dentry.  If "hybrid" objects will ever appear,
4363  *         we'd better make sure that there's no link(2) for them.
4364  *      d) conversion from fhandle to dentry may come in the wrong moment - when
4365  *         we are removing the target. Solution: we will have to grab ->i_mutex
4366  *         in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4367  *         ->i_mutex on parents, which works but leads to some truly excessive
4368  *         locking].
4369  */
4370 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4371                struct inode *new_dir, struct dentry *new_dentry,
4372                struct inode **delegated_inode, unsigned int flags)
4373 {
4374         int error;
4375         bool is_dir = d_is_dir(old_dentry);
4376         const unsigned char *old_name;
4377         struct inode *source = old_dentry->d_inode;
4378         struct inode *target = new_dentry->d_inode;
4379         bool new_is_dir = false;
4380         unsigned max_links = new_dir->i_sb->s_max_links;
4381
4382         /*
4383          * Check source == target.
4384          * On overlayfs need to look at underlying inodes.
4385          */
4386         if (vfs_select_inode(old_dentry, 0) == vfs_select_inode(new_dentry, 0))
4387                 return 0;
4388
4389         error = may_delete(old_dir, old_dentry, is_dir);
4390         if (error)
4391                 return error;
4392
4393         if (!target) {
4394                 error = may_create(new_dir, new_dentry);
4395         } else {
4396                 new_is_dir = d_is_dir(new_dentry);
4397
4398                 if (!(flags & RENAME_EXCHANGE))
4399                         error = may_delete(new_dir, new_dentry, is_dir);
4400                 else
4401                         error = may_delete(new_dir, new_dentry, new_is_dir);
4402         }
4403         if (error)
4404                 return error;
4405
4406         if (!old_dir->i_op->rename && !old_dir->i_op->rename2)
4407                 return -EPERM;
4408
4409         if (flags && !old_dir->i_op->rename2)
4410                 return -EINVAL;
4411
4412         /*
4413          * If we are going to change the parent - check write permissions,
4414          * we'll need to flip '..'.
4415          */
4416         if (new_dir != old_dir) {
4417                 if (is_dir) {
4418                         error = inode_permission(source, MAY_WRITE);
4419                         if (error)
4420                                 return error;
4421                 }
4422                 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4423                         error = inode_permission(target, MAY_WRITE);
4424                         if (error)
4425                                 return error;
4426                 }
4427         }
4428
4429         error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4430                                       flags);
4431         if (error)
4432                 return error;
4433
4434         old_name = fsnotify_oldname_init(old_dentry->d_name.name);
4435         dget(new_dentry);
4436         if (!is_dir || (flags & RENAME_EXCHANGE))
4437                 lock_two_nondirectories(source, target);
4438         else if (target)
4439                 inode_lock(target);
4440
4441         error = -EBUSY;
4442         if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4443                 goto out;
4444
4445         if (max_links && new_dir != old_dir) {
4446                 error = -EMLINK;
4447                 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4448                         goto out;
4449                 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4450                     old_dir->i_nlink >= max_links)
4451                         goto out;
4452         }
4453         if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4454                 shrink_dcache_parent(new_dentry);
4455         if (!is_dir) {
4456                 error = try_break_deleg(source, delegated_inode);
4457                 if (error)
4458                         goto out;
4459         }
4460         if (target && !new_is_dir) {
4461                 error = try_break_deleg(target, delegated_inode);
4462                 if (error)
4463                         goto out;
4464         }
4465         if (!old_dir->i_op->rename2) {
4466                 error = old_dir->i_op->rename(old_dir, old_dentry,
4467                                               new_dir, new_dentry);
4468         } else {
4469                 WARN_ON(old_dir->i_op->rename != NULL);
4470                 error = old_dir->i_op->rename2(old_dir, old_dentry,
4471                                                new_dir, new_dentry, flags);
4472         }
4473         if (error)
4474                 goto out;
4475
4476         if (!(flags & RENAME_EXCHANGE) && target) {
4477                 if (is_dir)
4478                         target->i_flags |= S_DEAD;
4479                 dont_mount(new_dentry);
4480                 detach_mounts(new_dentry);
4481         }
4482         if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4483                 if (!(flags & RENAME_EXCHANGE))
4484                         d_move(old_dentry, new_dentry);
4485                 else
4486                         d_exchange(old_dentry, new_dentry);
4487         }
4488 out:
4489         if (!is_dir || (flags & RENAME_EXCHANGE))
4490                 unlock_two_nondirectories(source, target);
4491         else if (target)
4492                 inode_unlock(target);
4493         dput(new_dentry);
4494         if (!error) {
4495                 fsnotify_move(old_dir, new_dir, old_name, is_dir,
4496                               !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4497                 if (flags & RENAME_EXCHANGE) {
4498                         fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4499                                       new_is_dir, NULL, new_dentry);
4500                 }
4501         }
4502         fsnotify_oldname_free(old_name);
4503
4504         return error;
4505 }
4506 EXPORT_SYMBOL(vfs_rename);
4507
4508 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4509                 int, newdfd, const char __user *, newname, unsigned int, flags)
4510 {
4511         struct dentry *old_dentry, *new_dentry;
4512         struct dentry *trap;
4513         struct path old_path, new_path;
4514         struct qstr old_last, new_last;
4515         int old_type, new_type;
4516         struct inode *delegated_inode = NULL;
4517         struct filename *from;
4518         struct filename *to;
4519         unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4520         bool should_retry = false;
4521         int error;
4522
4523         if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4524                 return -EINVAL;
4525
4526         if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4527             (flags & RENAME_EXCHANGE))
4528                 return -EINVAL;
4529
4530         if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4531                 return -EPERM;
4532
4533         if (flags & RENAME_EXCHANGE)
4534                 target_flags = 0;
4535
4536 retry:
4537         from = user_path_parent(olddfd, oldname,
4538                                 &old_path, &old_last, &old_type, lookup_flags);
4539         if (IS_ERR(from)) {
4540                 error = PTR_ERR(from);
4541                 goto exit;
4542         }
4543
4544         to = user_path_parent(newdfd, newname,
4545                                 &new_path, &new_last, &new_type, lookup_flags);
4546         if (IS_ERR(to)) {
4547                 error = PTR_ERR(to);
4548                 goto exit1;
4549         }
4550
4551         error = -EXDEV;
4552         if (old_path.mnt != new_path.mnt)
4553                 goto exit2;
4554
4555         error = -EBUSY;
4556         if (old_type != LAST_NORM)
4557                 goto exit2;
4558
4559         if (flags & RENAME_NOREPLACE)
4560                 error = -EEXIST;
4561         if (new_type != LAST_NORM)
4562                 goto exit2;
4563
4564         error = mnt_want_write(old_path.mnt);
4565         if (error)
4566                 goto exit2;
4567
4568 retry_deleg:
4569         trap = lock_rename(new_path.dentry, old_path.dentry);
4570
4571         old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4572         error = PTR_ERR(old_dentry);
4573         if (IS_ERR(old_dentry))
4574                 goto exit3;
4575         /* source must exist */
4576         error = -ENOENT;
4577         if (d_is_negative(old_dentry))
4578                 goto exit4;
4579         new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4580         error = PTR_ERR(new_dentry);
4581         if (IS_ERR(new_dentry))
4582                 goto exit4;
4583         error = -EEXIST;
4584         if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4585                 goto exit5;
4586         if (flags & RENAME_EXCHANGE) {
4587                 error = -ENOENT;
4588                 if (d_is_negative(new_dentry))
4589                         goto exit5;
4590
4591                 if (!d_is_dir(new_dentry)) {
4592                         error = -ENOTDIR;
4593                         if (new_last.name[new_last.len])
4594                                 goto exit5;
4595                 }
4596         }
4597         /* unless the source is a directory trailing slashes give -ENOTDIR */
4598         if (!d_is_dir(old_dentry)) {
4599                 error = -ENOTDIR;
4600                 if (old_last.name[old_last.len])
4601                         goto exit5;
4602                 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4603                         goto exit5;
4604         }
4605         /* source should not be ancestor of target */
4606         error = -EINVAL;
4607         if (old_dentry == trap)
4608                 goto exit5;
4609         /* target should not be an ancestor of source */
4610         if (!(flags & RENAME_EXCHANGE))
4611                 error = -ENOTEMPTY;
4612         if (new_dentry == trap)
4613                 goto exit5;
4614
4615         error = security_path_rename(&old_path, old_dentry,
4616                                      &new_path, new_dentry, flags);
4617         if (error)
4618                 goto exit5;
4619         error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4620                            new_path.dentry->d_inode, new_dentry,
4621                            &delegated_inode, flags);
4622 exit5:
4623         dput(new_dentry);
4624 exit4:
4625         dput(old_dentry);
4626 exit3:
4627         unlock_rename(new_path.dentry, old_path.dentry);
4628         if (delegated_inode) {
4629                 error = break_deleg_wait(&delegated_inode);
4630                 if (!error)
4631                         goto retry_deleg;
4632         }
4633         mnt_drop_write(old_path.mnt);
4634 exit2:
4635         if (retry_estale(error, lookup_flags))
4636                 should_retry = true;
4637         path_put(&new_path);
4638         putname(to);
4639 exit1:
4640         path_put(&old_path);
4641         putname(from);
4642         if (should_retry) {
4643                 should_retry = false;
4644                 lookup_flags |= LOOKUP_REVAL;
4645                 goto retry;
4646         }
4647 exit:
4648         return error;
4649 }
4650
4651 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4652                 int, newdfd, const char __user *, newname)
4653 {
4654         return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4655 }
4656
4657 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4658 {
4659         return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4660 }
4661
4662 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4663 {
4664         int error = may_create(dir, dentry);
4665         if (error)
4666                 return error;
4667
4668         if (!dir->i_op->mknod)
4669                 return -EPERM;
4670
4671         return dir->i_op->mknod(dir, dentry,
4672                                 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4673 }
4674 EXPORT_SYMBOL(vfs_whiteout);
4675
4676 int readlink_copy(char __user *buffer, int buflen, const char *link)
4677 {
4678         int len = PTR_ERR(link);
4679         if (IS_ERR(link))
4680                 goto out;
4681
4682         len = strlen(link);
4683         if (len > (unsigned) buflen)
4684                 len = buflen;
4685         if (copy_to_user(buffer, link, len))
4686                 len = -EFAULT;
4687 out:
4688         return len;
4689 }
4690
4691 /*
4692  * A helper for ->readlink().  This should be used *ONLY* for symlinks that
4693  * have ->get_link() not calling nd_jump_link().  Using (or not using) it
4694  * for any given inode is up to filesystem.
4695  */
4696 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4697 {
4698         DEFINE_DELAYED_CALL(done);
4699         struct inode *inode = d_inode(dentry);
4700         const char *link = inode->i_link;
4701         int res;
4702
4703         if (!link) {
4704                 link = inode->i_op->get_link(dentry, inode, &done);
4705                 if (IS_ERR(link))
4706                         return PTR_ERR(link);
4707         }
4708         res = readlink_copy(buffer, buflen, link);
4709         do_delayed_call(&done);
4710         return res;
4711 }
4712 EXPORT_SYMBOL(generic_readlink);
4713
4714 /* get the link contents into pagecache */
4715 const char *page_get_link(struct dentry *dentry, struct inode *inode,
4716                           struct delayed_call *callback)
4717 {
4718         char *kaddr;
4719         struct page *page;
4720         struct address_space *mapping = inode->i_mapping;
4721
4722         if (!dentry) {
4723                 page = find_get_page(mapping, 0);
4724                 if (!page)
4725                         return ERR_PTR(-ECHILD);
4726                 if (!PageUptodate(page)) {
4727                         put_page(page);
4728                         return ERR_PTR(-ECHILD);
4729                 }
4730         } else {
4731                 page = read_mapping_page(mapping, 0, NULL);
4732                 if (IS_ERR(page))
4733                         return (char*)page;
4734         }
4735         set_delayed_call(callback, page_put_link, page);
4736         BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
4737         kaddr = page_address(page);
4738         nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
4739         return kaddr;
4740 }
4741
4742 EXPORT_SYMBOL(page_get_link);
4743
4744 void page_put_link(void *arg)
4745 {
4746         put_page(arg);
4747 }
4748 EXPORT_SYMBOL(page_put_link);
4749
4750 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4751 {
4752         DEFINE_DELAYED_CALL(done);
4753         int res = readlink_copy(buffer, buflen,
4754                                 page_get_link(dentry, d_inode(dentry),
4755                                               &done));
4756         do_delayed_call(&done);
4757         return res;
4758 }
4759 EXPORT_SYMBOL(page_readlink);
4760
4761 /*
4762  * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4763  */
4764 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4765 {
4766         struct address_space *mapping = inode->i_mapping;
4767         struct page *page;
4768         void *fsdata;
4769         int err;
4770         unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4771         if (nofs)
4772                 flags |= AOP_FLAG_NOFS;
4773
4774 retry:
4775         err = pagecache_write_begin(NULL, mapping, 0, len-1,
4776                                 flags, &page, &fsdata);
4777         if (err)
4778                 goto fail;
4779
4780         memcpy(page_address(page), symname, len-1);
4781
4782         err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4783                                                         page, fsdata);
4784         if (err < 0)
4785                 goto fail;
4786         if (err < len-1)
4787                 goto retry;
4788
4789         mark_inode_dirty(inode);
4790         return 0;
4791 fail:
4792         return err;
4793 }
4794 EXPORT_SYMBOL(__page_symlink);
4795
4796 int page_symlink(struct inode *inode, const char *symname, int len)
4797 {
4798         return __page_symlink(inode, symname, len,
4799                         !mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
4800 }
4801 EXPORT_SYMBOL(page_symlink);
4802
4803 const struct inode_operations page_symlink_inode_operations = {
4804         .readlink       = generic_readlink,
4805         .get_link       = page_get_link,
4806 };
4807 EXPORT_SYMBOL(page_symlink_inode_operations);
This page took 0.330359 seconds and 4 git commands to generate.