4 * Copyright (C) 1991, 1992 Linus Torvalds
8 * Some corrections by tytso.
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <linux/hash.h>
38 #include <linux/bitops.h>
39 #include <asm/uaccess.h>
44 /* [Feb-1997 T. Schoebel-Theuer]
45 * Fundamental changes in the pathname lookup mechanisms (namei)
46 * were necessary because of omirr. The reason is that omirr needs
47 * to know the _real_ pathname, not the user-supplied one, in case
48 * of symlinks (and also when transname replacements occur).
50 * The new code replaces the old recursive symlink resolution with
51 * an iterative one (in case of non-nested symlink chains). It does
52 * this with calls to <fs>_follow_link().
53 * As a side effect, dir_namei(), _namei() and follow_link() are now
54 * replaced with a single function lookup_dentry() that can handle all
55 * the special cases of the former code.
57 * With the new dcache, the pathname is stored at each inode, at least as
58 * long as the refcount of the inode is positive. As a side effect, the
59 * size of the dcache depends on the inode cache and thus is dynamic.
61 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
62 * resolution to correspond with current state of the code.
64 * Note that the symlink resolution is not *completely* iterative.
65 * There is still a significant amount of tail- and mid- recursion in
66 * the algorithm. Also, note that <fs>_readlink() is not used in
67 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
68 * may return different results than <fs>_follow_link(). Many virtual
69 * filesystems (including /proc) exhibit this behavior.
72 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
73 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
74 * and the name already exists in form of a symlink, try to create the new
75 * name indicated by the symlink. The old code always complained that the
76 * name already exists, due to not following the symlink even if its target
77 * is nonexistent. The new semantics affects also mknod() and link() when
78 * the name is a symlink pointing to a non-existent name.
80 * I don't know which semantics is the right one, since I have no access
81 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
82 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
83 * "old" one. Personally, I think the new semantics is much more logical.
84 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
85 * file does succeed in both HP-UX and SunOs, but not in Solaris
86 * and in the old Linux semantics.
89 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
90 * semantics. See the comments in "open_namei" and "do_link" below.
92 * [10-Sep-98 Alan Modra] Another symlink change.
95 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
96 * inside the path - always follow.
97 * in the last component in creation/removal/renaming - never follow.
98 * if LOOKUP_FOLLOW passed - follow.
99 * if the pathname has trailing slashes - follow.
100 * otherwise - don't follow.
101 * (applied in that order).
103 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
104 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
105 * During the 2.4 we need to fix the userland stuff depending on it -
106 * hopefully we will be able to get rid of that wart in 2.5. So far only
107 * XEmacs seems to be relying on it...
110 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
111 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
112 * any extra contention...
115 /* In order to reduce some races, while at the same time doing additional
116 * checking and hopefully speeding things up, we copy filenames to the
117 * kernel data space before using them..
119 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
120 * PATH_MAX includes the nul terminator --RR.
123 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname))
126 getname_flags(const char __user *filename, int flags, int *empty)
128 struct filename *result;
132 result = audit_reusename(filename);
136 result = __getname();
137 if (unlikely(!result))
138 return ERR_PTR(-ENOMEM);
141 * First, try to embed the struct filename inside the names_cache
144 kname = (char *)result->iname;
145 result->name = kname;
147 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
148 if (unlikely(len < 0)) {
154 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
155 * separate struct filename so we can dedicate the entire
156 * names_cache allocation for the pathname, and re-do the copy from
159 if (unlikely(len == EMBEDDED_NAME_MAX)) {
160 const size_t size = offsetof(struct filename, iname[1]);
161 kname = (char *)result;
164 * size is chosen that way we to guarantee that
165 * result->iname[0] is within the same object and that
166 * kname can't be equal to result->iname, no matter what.
168 result = kzalloc(size, GFP_KERNEL);
169 if (unlikely(!result)) {
171 return ERR_PTR(-ENOMEM);
173 result->name = kname;
174 len = strncpy_from_user(kname, filename, PATH_MAX);
175 if (unlikely(len < 0)) {
180 if (unlikely(len == PATH_MAX)) {
183 return ERR_PTR(-ENAMETOOLONG);
188 /* The empty path is special. */
189 if (unlikely(!len)) {
192 if (!(flags & LOOKUP_EMPTY)) {
194 return ERR_PTR(-ENOENT);
198 result->uptr = filename;
199 result->aname = NULL;
200 audit_getname(result);
205 getname(const char __user * filename)
207 return getname_flags(filename, 0, NULL);
211 getname_kernel(const char * filename)
213 struct filename *result;
214 int len = strlen(filename) + 1;
216 result = __getname();
217 if (unlikely(!result))
218 return ERR_PTR(-ENOMEM);
220 if (len <= EMBEDDED_NAME_MAX) {
221 result->name = (char *)result->iname;
222 } else if (len <= PATH_MAX) {
223 struct filename *tmp;
225 tmp = kmalloc(sizeof(*tmp), GFP_KERNEL);
226 if (unlikely(!tmp)) {
228 return ERR_PTR(-ENOMEM);
230 tmp->name = (char *)result;
234 return ERR_PTR(-ENAMETOOLONG);
236 memcpy((char *)result->name, filename, len);
238 result->aname = NULL;
240 audit_getname(result);
245 void putname(struct filename *name)
247 BUG_ON(name->refcnt <= 0);
249 if (--name->refcnt > 0)
252 if (name->name != name->iname) {
253 __putname(name->name);
259 static int check_acl(struct inode *inode, int mask)
261 #ifdef CONFIG_FS_POSIX_ACL
262 struct posix_acl *acl;
264 if (mask & MAY_NOT_BLOCK) {
265 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
268 /* no ->get_acl() calls in RCU mode... */
269 if (is_uncached_acl(acl))
271 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
274 acl = get_acl(inode, ACL_TYPE_ACCESS);
278 int error = posix_acl_permission(inode, acl, mask);
279 posix_acl_release(acl);
288 * This does the basic permission checking
290 static int acl_permission_check(struct inode *inode, int mask)
292 unsigned int mode = inode->i_mode;
294 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
297 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
298 int error = check_acl(inode, mask);
299 if (error != -EAGAIN)
303 if (in_group_p(inode->i_gid))
308 * If the DACs are ok we don't need any capability check.
310 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
316 * generic_permission - check for access rights on a Posix-like filesystem
317 * @inode: inode to check access rights for
318 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
320 * Used to check for read/write/execute permissions on a file.
321 * We use "fsuid" for this, letting us set arbitrary permissions
322 * for filesystem access without changing the "normal" uids which
323 * are used for other things.
325 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
326 * request cannot be satisfied (eg. requires blocking or too much complexity).
327 * It would then be called again in ref-walk mode.
329 int generic_permission(struct inode *inode, int mask)
334 * Do the basic permission checks.
336 ret = acl_permission_check(inode, mask);
340 if (S_ISDIR(inode->i_mode)) {
341 /* DACs are overridable for directories */
342 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
344 if (!(mask & MAY_WRITE))
345 if (capable_wrt_inode_uidgid(inode,
346 CAP_DAC_READ_SEARCH))
351 * Read/write DACs are always overridable.
352 * Executable DACs are overridable when there is
353 * at least one exec bit set.
355 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
356 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
360 * Searching includes executable on directories, else just read.
362 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
363 if (mask == MAY_READ)
364 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
369 EXPORT_SYMBOL(generic_permission);
372 * We _really_ want to just do "generic_permission()" without
373 * even looking at the inode->i_op values. So we keep a cache
374 * flag in inode->i_opflags, that says "this has not special
375 * permission function, use the fast case".
377 static inline int do_inode_permission(struct inode *inode, int mask)
379 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
380 if (likely(inode->i_op->permission))
381 return inode->i_op->permission(inode, mask);
383 /* This gets set once for the inode lifetime */
384 spin_lock(&inode->i_lock);
385 inode->i_opflags |= IOP_FASTPERM;
386 spin_unlock(&inode->i_lock);
388 return generic_permission(inode, mask);
392 * __inode_permission - Check for access rights to a given inode
393 * @inode: Inode to check permission on
394 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
396 * Check for read/write/execute permissions on an inode.
398 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
400 * This does not check for a read-only file system. You probably want
401 * inode_permission().
403 int __inode_permission(struct inode *inode, int mask)
407 if (unlikely(mask & MAY_WRITE)) {
409 * Nobody gets write access to an immutable file.
411 if (IS_IMMUTABLE(inode))
415 * Updating mtime will likely cause i_uid and i_gid to be
416 * written back improperly if their true value is unknown
419 if (HAS_UNMAPPED_ID(inode))
423 retval = do_inode_permission(inode, mask);
427 retval = devcgroup_inode_permission(inode, mask);
431 return security_inode_permission(inode, mask);
433 EXPORT_SYMBOL(__inode_permission);
436 * sb_permission - Check superblock-level permissions
437 * @sb: Superblock of inode to check permission on
438 * @inode: Inode to check permission on
439 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
441 * Separate out file-system wide checks from inode-specific permission checks.
443 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
445 if (unlikely(mask & MAY_WRITE)) {
446 umode_t mode = inode->i_mode;
448 /* Nobody gets write access to a read-only fs. */
449 if ((sb->s_flags & MS_RDONLY) &&
450 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
457 * inode_permission - Check for access rights to a given inode
458 * @inode: Inode to check permission on
459 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
461 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
462 * this, letting us set arbitrary permissions for filesystem access without
463 * changing the "normal" UIDs which are used for other things.
465 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
467 int inode_permission(struct inode *inode, int mask)
471 retval = sb_permission(inode->i_sb, inode, mask);
474 return __inode_permission(inode, mask);
476 EXPORT_SYMBOL(inode_permission);
479 * path_get - get a reference to a path
480 * @path: path to get the reference to
482 * Given a path increment the reference count to the dentry and the vfsmount.
484 void path_get(const struct path *path)
489 EXPORT_SYMBOL(path_get);
492 * path_put - put a reference to a path
493 * @path: path to put the reference to
495 * Given a path decrement the reference count to the dentry and the vfsmount.
497 void path_put(const struct path *path)
502 EXPORT_SYMBOL(path_put);
504 #define EMBEDDED_LEVELS 2
509 struct inode *inode; /* path.dentry.d_inode */
514 int total_link_count;
517 struct delayed_call done;
520 } *stack, internal[EMBEDDED_LEVELS];
521 struct filename *name;
522 struct nameidata *saved;
523 struct inode *link_inode;
528 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
530 struct nameidata *old = current->nameidata;
531 p->stack = p->internal;
534 p->total_link_count = old ? old->total_link_count : 0;
536 current->nameidata = p;
539 static void restore_nameidata(void)
541 struct nameidata *now = current->nameidata, *old = now->saved;
543 current->nameidata = old;
545 old->total_link_count = now->total_link_count;
546 if (now->stack != now->internal)
550 static int __nd_alloc_stack(struct nameidata *nd)
554 if (nd->flags & LOOKUP_RCU) {
555 p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
560 p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
565 memcpy(p, nd->internal, sizeof(nd->internal));
571 * path_connected - Verify that a path->dentry is below path->mnt.mnt_root
572 * @path: nameidate to verify
574 * Rename can sometimes move a file or directory outside of a bind
575 * mount, path_connected allows those cases to be detected.
577 static bool path_connected(const struct path *path)
579 struct vfsmount *mnt = path->mnt;
581 /* Only bind mounts can have disconnected paths */
582 if (mnt->mnt_root == mnt->mnt_sb->s_root)
585 return is_subdir(path->dentry, mnt->mnt_root);
588 static inline int nd_alloc_stack(struct nameidata *nd)
590 if (likely(nd->depth != EMBEDDED_LEVELS))
592 if (likely(nd->stack != nd->internal))
594 return __nd_alloc_stack(nd);
597 static void drop_links(struct nameidata *nd)
601 struct saved *last = nd->stack + i;
602 do_delayed_call(&last->done);
603 clear_delayed_call(&last->done);
607 static void terminate_walk(struct nameidata *nd)
610 if (!(nd->flags & LOOKUP_RCU)) {
613 for (i = 0; i < nd->depth; i++)
614 path_put(&nd->stack[i].link);
615 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
620 nd->flags &= ~LOOKUP_RCU;
621 if (!(nd->flags & LOOKUP_ROOT))
628 /* path_put is needed afterwards regardless of success or failure */
629 static bool legitimize_path(struct nameidata *nd,
630 struct path *path, unsigned seq)
632 int res = __legitimize_mnt(path->mnt, nd->m_seq);
639 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
643 return !read_seqcount_retry(&path->dentry->d_seq, seq);
646 static bool legitimize_links(struct nameidata *nd)
649 for (i = 0; i < nd->depth; i++) {
650 struct saved *last = nd->stack + i;
651 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
661 * Path walking has 2 modes, rcu-walk and ref-walk (see
662 * Documentation/filesystems/path-lookup.txt). In situations when we can't
663 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
664 * normal reference counts on dentries and vfsmounts to transition to ref-walk
665 * mode. Refcounts are grabbed at the last known good point before rcu-walk
666 * got stuck, so ref-walk may continue from there. If this is not successful
667 * (eg. a seqcount has changed), then failure is returned and it's up to caller
668 * to restart the path walk from the beginning in ref-walk mode.
672 * unlazy_walk - try to switch to ref-walk mode.
673 * @nd: nameidata pathwalk data
674 * @dentry: child of nd->path.dentry or NULL
675 * @seq: seq number to check dentry against
676 * Returns: 0 on success, -ECHILD on failure
678 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
679 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
680 * @nd or NULL. Must be called from rcu-walk context.
681 * Nothing should touch nameidata between unlazy_walk() failure and
684 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry, unsigned seq)
686 struct dentry *parent = nd->path.dentry;
688 BUG_ON(!(nd->flags & LOOKUP_RCU));
690 nd->flags &= ~LOOKUP_RCU;
691 if (unlikely(!legitimize_links(nd)))
693 if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
695 if (unlikely(!lockref_get_not_dead(&parent->d_lockref)))
699 * For a negative lookup, the lookup sequence point is the parents
700 * sequence point, and it only needs to revalidate the parent dentry.
702 * For a positive lookup, we need to move both the parent and the
703 * dentry from the RCU domain to be properly refcounted. And the
704 * sequence number in the dentry validates *both* dentry counters,
705 * since we checked the sequence number of the parent after we got
706 * the child sequence number. So we know the parent must still
707 * be valid if the child sequence number is still valid.
710 if (read_seqcount_retry(&parent->d_seq, nd->seq))
712 BUG_ON(nd->inode != parent->d_inode);
714 if (!lockref_get_not_dead(&dentry->d_lockref))
716 if (read_seqcount_retry(&dentry->d_seq, seq))
721 * Sequence counts matched. Now make sure that the root is
722 * still valid and get it if required.
724 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
725 if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) {
742 nd->path.dentry = NULL;
746 if (!(nd->flags & LOOKUP_ROOT))
751 static int unlazy_link(struct nameidata *nd, struct path *link, unsigned seq)
753 if (unlikely(!legitimize_path(nd, link, seq))) {
756 nd->flags &= ~LOOKUP_RCU;
758 nd->path.dentry = NULL;
759 if (!(nd->flags & LOOKUP_ROOT))
762 } else if (likely(unlazy_walk(nd, NULL, 0)) == 0) {
769 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
771 return dentry->d_op->d_revalidate(dentry, flags);
775 * complete_walk - successful completion of path walk
776 * @nd: pointer nameidata
778 * If we had been in RCU mode, drop out of it and legitimize nd->path.
779 * Revalidate the final result, unless we'd already done that during
780 * the path walk or the filesystem doesn't ask for it. Return 0 on
781 * success, -error on failure. In case of failure caller does not
782 * need to drop nd->path.
784 static int complete_walk(struct nameidata *nd)
786 struct dentry *dentry = nd->path.dentry;
789 if (nd->flags & LOOKUP_RCU) {
790 if (!(nd->flags & LOOKUP_ROOT))
792 if (unlikely(unlazy_walk(nd, NULL, 0)))
796 if (likely(!(nd->flags & LOOKUP_JUMPED)))
799 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
802 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
812 static void set_root(struct nameidata *nd)
814 struct fs_struct *fs = current->fs;
816 if (nd->flags & LOOKUP_RCU) {
820 seq = read_seqcount_begin(&fs->seq);
822 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
823 } while (read_seqcount_retry(&fs->seq, seq));
825 get_fs_root(fs, &nd->root);
829 static void path_put_conditional(struct path *path, struct nameidata *nd)
832 if (path->mnt != nd->path.mnt)
836 static inline void path_to_nameidata(const struct path *path,
837 struct nameidata *nd)
839 if (!(nd->flags & LOOKUP_RCU)) {
840 dput(nd->path.dentry);
841 if (nd->path.mnt != path->mnt)
842 mntput(nd->path.mnt);
844 nd->path.mnt = path->mnt;
845 nd->path.dentry = path->dentry;
848 static int nd_jump_root(struct nameidata *nd)
850 if (nd->flags & LOOKUP_RCU) {
854 nd->inode = d->d_inode;
855 nd->seq = nd->root_seq;
856 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
862 nd->inode = nd->path.dentry->d_inode;
864 nd->flags |= LOOKUP_JUMPED;
869 * Helper to directly jump to a known parsed path from ->get_link,
870 * caller must have taken a reference to path beforehand.
872 void nd_jump_link(struct path *path)
874 struct nameidata *nd = current->nameidata;
878 nd->inode = nd->path.dentry->d_inode;
879 nd->flags |= LOOKUP_JUMPED;
882 static inline void put_link(struct nameidata *nd)
884 struct saved *last = nd->stack + --nd->depth;
885 do_delayed_call(&last->done);
886 if (!(nd->flags & LOOKUP_RCU))
887 path_put(&last->link);
890 int sysctl_protected_symlinks __read_mostly = 0;
891 int sysctl_protected_hardlinks __read_mostly = 0;
894 * may_follow_link - Check symlink following for unsafe situations
895 * @nd: nameidata pathwalk data
897 * In the case of the sysctl_protected_symlinks sysctl being enabled,
898 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
899 * in a sticky world-writable directory. This is to protect privileged
900 * processes from failing races against path names that may change out
901 * from under them by way of other users creating malicious symlinks.
902 * It will permit symlinks to be followed only when outside a sticky
903 * world-writable directory, or when the uid of the symlink and follower
904 * match, or when the directory owner matches the symlink's owner.
906 * Returns 0 if following the symlink is allowed, -ve on error.
908 static inline int may_follow_link(struct nameidata *nd)
910 const struct inode *inode;
911 const struct inode *parent;
914 if (!sysctl_protected_symlinks)
917 /* Allowed if owner and follower match. */
918 inode = nd->link_inode;
919 if (uid_eq(current_cred()->fsuid, inode->i_uid))
922 /* Allowed if parent directory not sticky and world-writable. */
924 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
927 /* Allowed if parent directory and link owner match. */
928 puid = parent->i_uid;
929 if (uid_valid(puid) && uid_eq(puid, inode->i_uid))
932 if (nd->flags & LOOKUP_RCU)
935 audit_log_link_denied("follow_link", &nd->stack[0].link);
940 * safe_hardlink_source - Check for safe hardlink conditions
941 * @inode: the source inode to hardlink from
943 * Return false if at least one of the following conditions:
944 * - inode is not a regular file
946 * - inode is setgid and group-exec
947 * - access failure for read and write
949 * Otherwise returns true.
951 static bool safe_hardlink_source(struct inode *inode)
953 umode_t mode = inode->i_mode;
955 /* Special files should not get pinned to the filesystem. */
959 /* Setuid files should not get pinned to the filesystem. */
963 /* Executable setgid files should not get pinned to the filesystem. */
964 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
967 /* Hardlinking to unreadable or unwritable sources is dangerous. */
968 if (inode_permission(inode, MAY_READ | MAY_WRITE))
975 * may_linkat - Check permissions for creating a hardlink
976 * @link: the source to hardlink from
978 * Block hardlink when all of:
979 * - sysctl_protected_hardlinks enabled
980 * - fsuid does not match inode
981 * - hardlink source is unsafe (see safe_hardlink_source() above)
982 * - not CAP_FOWNER in a namespace with the inode owner uid mapped
984 * Returns 0 if successful, -ve on error.
986 static int may_linkat(struct path *link)
990 if (!sysctl_protected_hardlinks)
993 inode = link->dentry->d_inode;
995 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
996 * otherwise, it must be a safe source.
998 if (inode_owner_or_capable(inode) || safe_hardlink_source(inode))
1001 audit_log_link_denied("linkat", link);
1005 static __always_inline
1006 const char *get_link(struct nameidata *nd)
1008 struct saved *last = nd->stack + nd->depth - 1;
1009 struct dentry *dentry = last->link.dentry;
1010 struct inode *inode = nd->link_inode;
1014 if (!(nd->flags & LOOKUP_RCU)) {
1015 touch_atime(&last->link);
1017 } else if (atime_needs_update(&last->link, inode)) {
1018 if (unlikely(unlazy_walk(nd, NULL, 0)))
1019 return ERR_PTR(-ECHILD);
1020 touch_atime(&last->link);
1023 error = security_inode_follow_link(dentry, inode,
1024 nd->flags & LOOKUP_RCU);
1025 if (unlikely(error))
1026 return ERR_PTR(error);
1028 nd->last_type = LAST_BIND;
1029 res = inode->i_link;
1031 const char * (*get)(struct dentry *, struct inode *,
1032 struct delayed_call *);
1033 get = inode->i_op->get_link;
1034 if (nd->flags & LOOKUP_RCU) {
1035 res = get(NULL, inode, &last->done);
1036 if (res == ERR_PTR(-ECHILD)) {
1037 if (unlikely(unlazy_walk(nd, NULL, 0)))
1038 return ERR_PTR(-ECHILD);
1039 res = get(dentry, inode, &last->done);
1042 res = get(dentry, inode, &last->done);
1044 if (IS_ERR_OR_NULL(res))
1050 if (unlikely(nd_jump_root(nd)))
1051 return ERR_PTR(-ECHILD);
1052 while (unlikely(*++res == '/'))
1061 * follow_up - Find the mountpoint of path's vfsmount
1063 * Given a path, find the mountpoint of its source file system.
1064 * Replace @path with the path of the mountpoint in the parent mount.
1067 * Return 1 if we went up a level and 0 if we were already at the
1070 int follow_up(struct path *path)
1072 struct mount *mnt = real_mount(path->mnt);
1073 struct mount *parent;
1074 struct dentry *mountpoint;
1076 read_seqlock_excl(&mount_lock);
1077 parent = mnt->mnt_parent;
1078 if (parent == mnt) {
1079 read_sequnlock_excl(&mount_lock);
1082 mntget(&parent->mnt);
1083 mountpoint = dget(mnt->mnt_mountpoint);
1084 read_sequnlock_excl(&mount_lock);
1086 path->dentry = mountpoint;
1088 path->mnt = &parent->mnt;
1091 EXPORT_SYMBOL(follow_up);
1094 * Perform an automount
1095 * - return -EISDIR to tell follow_managed() to stop and return the path we
1098 static int follow_automount(struct path *path, struct nameidata *nd,
1101 struct vfsmount *mnt;
1104 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
1107 /* We don't want to mount if someone's just doing a stat -
1108 * unless they're stat'ing a directory and appended a '/' to
1111 * We do, however, want to mount if someone wants to open or
1112 * create a file of any type under the mountpoint, wants to
1113 * traverse through the mountpoint or wants to open the
1114 * mounted directory. Also, autofs may mark negative dentries
1115 * as being automount points. These will need the attentions
1116 * of the daemon to instantiate them before they can be used.
1118 if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1119 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1120 path->dentry->d_inode)
1123 nd->total_link_count++;
1124 if (nd->total_link_count >= 40)
1127 mnt = path->dentry->d_op->d_automount(path);
1130 * The filesystem is allowed to return -EISDIR here to indicate
1131 * it doesn't want to automount. For instance, autofs would do
1132 * this so that its userspace daemon can mount on this dentry.
1134 * However, we can only permit this if it's a terminal point in
1135 * the path being looked up; if it wasn't then the remainder of
1136 * the path is inaccessible and we should say so.
1138 if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT))
1140 return PTR_ERR(mnt);
1143 if (!mnt) /* mount collision */
1146 if (!*need_mntput) {
1147 /* lock_mount() may release path->mnt on error */
1149 *need_mntput = true;
1151 err = finish_automount(mnt, path);
1155 /* Someone else made a mount here whilst we were busy */
1160 path->dentry = dget(mnt->mnt_root);
1169 * Handle a dentry that is managed in some way.
1170 * - Flagged for transit management (autofs)
1171 * - Flagged as mountpoint
1172 * - Flagged as automount point
1174 * This may only be called in refwalk mode.
1176 * Serialization is taken care of in namespace.c
1178 static int follow_managed(struct path *path, struct nameidata *nd)
1180 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1182 bool need_mntput = false;
1185 /* Given that we're not holding a lock here, we retain the value in a
1186 * local variable for each dentry as we look at it so that we don't see
1187 * the components of that value change under us */
1188 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1189 managed &= DCACHE_MANAGED_DENTRY,
1190 unlikely(managed != 0)) {
1191 /* Allow the filesystem to manage the transit without i_mutex
1193 if (managed & DCACHE_MANAGE_TRANSIT) {
1194 BUG_ON(!path->dentry->d_op);
1195 BUG_ON(!path->dentry->d_op->d_manage);
1196 ret = path->dentry->d_op->d_manage(path->dentry, false);
1201 /* Transit to a mounted filesystem. */
1202 if (managed & DCACHE_MOUNTED) {
1203 struct vfsmount *mounted = lookup_mnt(path);
1208 path->mnt = mounted;
1209 path->dentry = dget(mounted->mnt_root);
1214 /* Something is mounted on this dentry in another
1215 * namespace and/or whatever was mounted there in this
1216 * namespace got unmounted before lookup_mnt() could
1220 /* Handle an automount point */
1221 if (managed & DCACHE_NEED_AUTOMOUNT) {
1222 ret = follow_automount(path, nd, &need_mntput);
1228 /* We didn't change the current path point */
1232 if (need_mntput && path->mnt == mnt)
1234 if (ret == -EISDIR || !ret)
1237 nd->flags |= LOOKUP_JUMPED;
1238 if (unlikely(ret < 0))
1239 path_put_conditional(path, nd);
1243 int follow_down_one(struct path *path)
1245 struct vfsmount *mounted;
1247 mounted = lookup_mnt(path);
1251 path->mnt = mounted;
1252 path->dentry = dget(mounted->mnt_root);
1257 EXPORT_SYMBOL(follow_down_one);
1259 static inline int managed_dentry_rcu(struct dentry *dentry)
1261 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1262 dentry->d_op->d_manage(dentry, true) : 0;
1266 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1267 * we meet a managed dentry that would need blocking.
1269 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1270 struct inode **inode, unsigned *seqp)
1273 struct mount *mounted;
1275 * Don't forget we might have a non-mountpoint managed dentry
1276 * that wants to block transit.
1278 switch (managed_dentry_rcu(path->dentry)) {
1288 if (!d_mountpoint(path->dentry))
1289 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1291 mounted = __lookup_mnt(path->mnt, path->dentry);
1294 path->mnt = &mounted->mnt;
1295 path->dentry = mounted->mnt.mnt_root;
1296 nd->flags |= LOOKUP_JUMPED;
1297 *seqp = read_seqcount_begin(&path->dentry->d_seq);
1299 * Update the inode too. We don't need to re-check the
1300 * dentry sequence number here after this d_inode read,
1301 * because a mount-point is always pinned.
1303 *inode = path->dentry->d_inode;
1305 return !read_seqretry(&mount_lock, nd->m_seq) &&
1306 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1309 static int follow_dotdot_rcu(struct nameidata *nd)
1311 struct inode *inode = nd->inode;
1314 if (path_equal(&nd->path, &nd->root))
1316 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1317 struct dentry *old = nd->path.dentry;
1318 struct dentry *parent = old->d_parent;
1321 inode = parent->d_inode;
1322 seq = read_seqcount_begin(&parent->d_seq);
1323 if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1325 nd->path.dentry = parent;
1327 if (unlikely(!path_connected(&nd->path)))
1331 struct mount *mnt = real_mount(nd->path.mnt);
1332 struct mount *mparent = mnt->mnt_parent;
1333 struct dentry *mountpoint = mnt->mnt_mountpoint;
1334 struct inode *inode2 = mountpoint->d_inode;
1335 unsigned seq = read_seqcount_begin(&mountpoint->d_seq);
1336 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1338 if (&mparent->mnt == nd->path.mnt)
1340 /* we know that mountpoint was pinned */
1341 nd->path.dentry = mountpoint;
1342 nd->path.mnt = &mparent->mnt;
1347 while (unlikely(d_mountpoint(nd->path.dentry))) {
1348 struct mount *mounted;
1349 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1350 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1354 nd->path.mnt = &mounted->mnt;
1355 nd->path.dentry = mounted->mnt.mnt_root;
1356 inode = nd->path.dentry->d_inode;
1357 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1364 * Follow down to the covering mount currently visible to userspace. At each
1365 * point, the filesystem owning that dentry may be queried as to whether the
1366 * caller is permitted to proceed or not.
1368 int follow_down(struct path *path)
1373 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1374 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1375 /* Allow the filesystem to manage the transit without i_mutex
1378 * We indicate to the filesystem if someone is trying to mount
1379 * something here. This gives autofs the chance to deny anyone
1380 * other than its daemon the right to mount on its
1383 * The filesystem may sleep at this point.
1385 if (managed & DCACHE_MANAGE_TRANSIT) {
1386 BUG_ON(!path->dentry->d_op);
1387 BUG_ON(!path->dentry->d_op->d_manage);
1388 ret = path->dentry->d_op->d_manage(
1389 path->dentry, false);
1391 return ret == -EISDIR ? 0 : ret;
1394 /* Transit to a mounted filesystem. */
1395 if (managed & DCACHE_MOUNTED) {
1396 struct vfsmount *mounted = lookup_mnt(path);
1401 path->mnt = mounted;
1402 path->dentry = dget(mounted->mnt_root);
1406 /* Don't handle automount points here */
1411 EXPORT_SYMBOL(follow_down);
1414 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1416 static void follow_mount(struct path *path)
1418 while (d_mountpoint(path->dentry)) {
1419 struct vfsmount *mounted = lookup_mnt(path);
1424 path->mnt = mounted;
1425 path->dentry = dget(mounted->mnt_root);
1429 static int path_parent_directory(struct path *path)
1431 struct dentry *old = path->dentry;
1432 /* rare case of legitimate dget_parent()... */
1433 path->dentry = dget_parent(path->dentry);
1435 if (unlikely(!path_connected(path)))
1440 static int follow_dotdot(struct nameidata *nd)
1443 if (nd->path.dentry == nd->root.dentry &&
1444 nd->path.mnt == nd->root.mnt) {
1447 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1448 int ret = path_parent_directory(&nd->path);
1453 if (!follow_up(&nd->path))
1456 follow_mount(&nd->path);
1457 nd->inode = nd->path.dentry->d_inode;
1462 * This looks up the name in dcache, possibly revalidates the old dentry and
1463 * allocates a new one if not found or not valid. In the need_lookup argument
1464 * returns whether i_op->lookup is necessary.
1466 static struct dentry *lookup_dcache(const struct qstr *name,
1470 struct dentry *dentry;
1473 dentry = d_lookup(dir, name);
1475 if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1476 error = d_revalidate(dentry, flags);
1477 if (unlikely(error <= 0)) {
1479 d_invalidate(dentry);
1481 return ERR_PTR(error);
1489 * Call i_op->lookup on the dentry. The dentry must be negative and
1492 * dir->d_inode->i_mutex must be held
1494 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1499 /* Don't create child dentry for a dead directory. */
1500 if (unlikely(IS_DEADDIR(dir))) {
1502 return ERR_PTR(-ENOENT);
1505 old = dir->i_op->lookup(dir, dentry, flags);
1506 if (unlikely(old)) {
1513 static struct dentry *__lookup_hash(const struct qstr *name,
1514 struct dentry *base, unsigned int flags)
1516 struct dentry *dentry = lookup_dcache(name, base, flags);
1521 dentry = d_alloc(base, name);
1522 if (unlikely(!dentry))
1523 return ERR_PTR(-ENOMEM);
1525 return lookup_real(base->d_inode, dentry, flags);
1528 static int lookup_fast(struct nameidata *nd,
1529 struct path *path, struct inode **inode,
1532 struct vfsmount *mnt = nd->path.mnt;
1533 struct dentry *dentry, *parent = nd->path.dentry;
1538 * Rename seqlock is not required here because in the off chance
1539 * of a false negative due to a concurrent rename, the caller is
1540 * going to fall back to non-racy lookup.
1542 if (nd->flags & LOOKUP_RCU) {
1545 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1546 if (unlikely(!dentry)) {
1547 if (unlazy_walk(nd, NULL, 0))
1553 * This sequence count validates that the inode matches
1554 * the dentry name information from lookup.
1556 *inode = d_backing_inode(dentry);
1557 negative = d_is_negative(dentry);
1558 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
1562 * This sequence count validates that the parent had no
1563 * changes while we did the lookup of the dentry above.
1565 * The memory barrier in read_seqcount_begin of child is
1566 * enough, we can use __read_seqcount_retry here.
1568 if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq)))
1572 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
1573 status = d_revalidate(dentry, nd->flags);
1574 if (unlikely(status <= 0)) {
1575 if (unlazy_walk(nd, dentry, seq))
1577 if (status == -ECHILD)
1578 status = d_revalidate(dentry, nd->flags);
1581 * Note: do negative dentry check after revalidation in
1582 * case that drops it.
1584 if (unlikely(negative))
1587 path->dentry = dentry;
1588 if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1590 if (unlazy_walk(nd, dentry, seq))
1594 dentry = __d_lookup(parent, &nd->last);
1595 if (unlikely(!dentry))
1597 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
1598 status = d_revalidate(dentry, nd->flags);
1600 if (unlikely(status <= 0)) {
1602 d_invalidate(dentry);
1606 if (unlikely(d_is_negative(dentry))) {
1612 path->dentry = dentry;
1613 err = follow_managed(path, nd);
1614 if (likely(err > 0))
1615 *inode = d_backing_inode(path->dentry);
1619 /* Fast lookup failed, do it the slow way */
1620 static struct dentry *lookup_slow(const struct qstr *name,
1624 struct dentry *dentry = ERR_PTR(-ENOENT), *old;
1625 struct inode *inode = dir->d_inode;
1626 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1628 inode_lock_shared(inode);
1629 /* Don't go there if it's already dead */
1630 if (unlikely(IS_DEADDIR(inode)))
1633 dentry = d_alloc_parallel(dir, name, &wq);
1636 if (unlikely(!d_in_lookup(dentry))) {
1637 if ((dentry->d_flags & DCACHE_OP_REVALIDATE) &&
1638 !(flags & LOOKUP_NO_REVAL)) {
1639 int error = d_revalidate(dentry, flags);
1640 if (unlikely(error <= 0)) {
1642 d_invalidate(dentry);
1647 dentry = ERR_PTR(error);
1651 old = inode->i_op->lookup(inode, dentry, flags);
1652 d_lookup_done(dentry);
1653 if (unlikely(old)) {
1659 inode_unlock_shared(inode);
1663 static inline int may_lookup(struct nameidata *nd)
1665 if (nd->flags & LOOKUP_RCU) {
1666 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1669 if (unlazy_walk(nd, NULL, 0))
1672 return inode_permission(nd->inode, MAY_EXEC);
1675 static inline int handle_dots(struct nameidata *nd, int type)
1677 if (type == LAST_DOTDOT) {
1680 if (nd->flags & LOOKUP_RCU) {
1681 return follow_dotdot_rcu(nd);
1683 return follow_dotdot(nd);
1688 static int pick_link(struct nameidata *nd, struct path *link,
1689 struct inode *inode, unsigned seq)
1693 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) {
1694 path_to_nameidata(link, nd);
1697 if (!(nd->flags & LOOKUP_RCU)) {
1698 if (link->mnt == nd->path.mnt)
1701 error = nd_alloc_stack(nd);
1702 if (unlikely(error)) {
1703 if (error == -ECHILD) {
1704 if (unlikely(unlazy_link(nd, link, seq)))
1706 error = nd_alloc_stack(nd);
1714 last = nd->stack + nd->depth++;
1716 clear_delayed_call(&last->done);
1717 nd->link_inode = inode;
1723 * Do we need to follow links? We _really_ want to be able
1724 * to do this check without having to look at inode->i_op,
1725 * so we keep a cache of "no, this doesn't need follow_link"
1726 * for the common case.
1728 static inline int should_follow_link(struct nameidata *nd, struct path *link,
1730 struct inode *inode, unsigned seq)
1732 if (likely(!d_is_symlink(link->dentry)))
1736 /* make sure that d_is_symlink above matches inode */
1737 if (nd->flags & LOOKUP_RCU) {
1738 if (read_seqcount_retry(&link->dentry->d_seq, seq))
1741 return pick_link(nd, link, inode, seq);
1744 enum {WALK_GET = 1, WALK_PUT = 2};
1746 static int walk_component(struct nameidata *nd, int flags)
1749 struct inode *inode;
1753 * "." and ".." are special - ".." especially so because it has
1754 * to be able to know about the current root directory and
1755 * parent relationships.
1757 if (unlikely(nd->last_type != LAST_NORM)) {
1758 err = handle_dots(nd, nd->last_type);
1759 if (flags & WALK_PUT)
1763 err = lookup_fast(nd, &path, &inode, &seq);
1764 if (unlikely(err <= 0)) {
1767 path.dentry = lookup_slow(&nd->last, nd->path.dentry,
1769 if (IS_ERR(path.dentry))
1770 return PTR_ERR(path.dentry);
1772 path.mnt = nd->path.mnt;
1773 err = follow_managed(&path, nd);
1774 if (unlikely(err < 0))
1777 if (unlikely(d_is_negative(path.dentry))) {
1778 path_to_nameidata(&path, nd);
1782 seq = 0; /* we are already out of RCU mode */
1783 inode = d_backing_inode(path.dentry);
1786 if (flags & WALK_PUT)
1788 err = should_follow_link(nd, &path, flags & WALK_GET, inode, seq);
1791 path_to_nameidata(&path, nd);
1798 * We can do the critical dentry name comparison and hashing
1799 * operations one word at a time, but we are limited to:
1801 * - Architectures with fast unaligned word accesses. We could
1802 * do a "get_unaligned()" if this helps and is sufficiently
1805 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1806 * do not trap on the (extremely unlikely) case of a page
1807 * crossing operation.
1809 * - Furthermore, we need an efficient 64-bit compile for the
1810 * 64-bit case in order to generate the "number of bytes in
1811 * the final mask". Again, that could be replaced with a
1812 * efficient population count instruction or similar.
1814 #ifdef CONFIG_DCACHE_WORD_ACCESS
1816 #include <asm/word-at-a-time.h>
1820 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
1822 #elif defined(CONFIG_64BIT)
1824 * Register pressure in the mixing function is an issue, particularly
1825 * on 32-bit x86, but almost any function requires one state value and
1826 * one temporary. Instead, use a function designed for two state values
1827 * and no temporaries.
1829 * This function cannot create a collision in only two iterations, so
1830 * we have two iterations to achieve avalanche. In those two iterations,
1831 * we have six layers of mixing, which is enough to spread one bit's
1832 * influence out to 2^6 = 64 state bits.
1834 * Rotate constants are scored by considering either 64 one-bit input
1835 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
1836 * probability of that delta causing a change to each of the 128 output
1837 * bits, using a sample of random initial states.
1839 * The Shannon entropy of the computed probabilities is then summed
1840 * to produce a score. Ideally, any input change has a 50% chance of
1841 * toggling any given output bit.
1843 * Mixing scores (in bits) for (12,45):
1844 * Input delta: 1-bit 2-bit
1845 * 1 round: 713.3 42542.6
1846 * 2 rounds: 2753.7 140389.8
1847 * 3 rounds: 5954.1 233458.2
1848 * 4 rounds: 7862.6 256672.2
1849 * Perfect: 8192 258048
1850 * (64*128) (64*63/2 * 128)
1852 #define HASH_MIX(x, y, a) \
1854 y ^= x, x = rol64(x,12),\
1855 x += y, y = rol64(y,45),\
1859 * Fold two longs into one 32-bit hash value. This must be fast, but
1860 * latency isn't quite as critical, as there is a fair bit of additional
1861 * work done before the hash value is used.
1863 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1865 y ^= x * GOLDEN_RATIO_64;
1866 y *= GOLDEN_RATIO_64;
1870 #else /* 32-bit case */
1873 * Mixing scores (in bits) for (7,20):
1874 * Input delta: 1-bit 2-bit
1875 * 1 round: 330.3 9201.6
1876 * 2 rounds: 1246.4 25475.4
1877 * 3 rounds: 1907.1 31295.1
1878 * 4 rounds: 2042.3 31718.6
1879 * Perfect: 2048 31744
1880 * (32*64) (32*31/2 * 64)
1882 #define HASH_MIX(x, y, a) \
1884 y ^= x, x = rol32(x, 7),\
1885 x += y, y = rol32(y,20),\
1888 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1890 /* Use arch-optimized multiply if one exists */
1891 return __hash_32(y ^ __hash_32(x));
1897 * Return the hash of a string of known length. This is carfully
1898 * designed to match hash_name(), which is the more critical function.
1899 * In particular, we must end by hashing a final word containing 0..7
1900 * payload bytes, to match the way that hash_name() iterates until it
1901 * finds the delimiter after the name.
1903 unsigned int full_name_hash(const char *name, unsigned int len)
1905 unsigned long a, x = 0, y = 0;
1910 a = load_unaligned_zeropad(name);
1911 if (len < sizeof(unsigned long))
1914 name += sizeof(unsigned long);
1915 len -= sizeof(unsigned long);
1917 x ^= a & bytemask_from_count(len);
1919 return fold_hash(x, y);
1921 EXPORT_SYMBOL(full_name_hash);
1923 /* Return the "hash_len" (hash and length) of a null-terminated string */
1924 u64 hashlen_string(const char *name)
1926 unsigned long a = 0, x = 0, y = 0, adata, mask, len;
1927 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1929 len = -sizeof(unsigned long);
1932 len += sizeof(unsigned long);
1933 a = load_unaligned_zeropad(name+len);
1934 } while (!has_zero(a, &adata, &constants));
1936 adata = prep_zero_mask(a, adata, &constants);
1937 mask = create_zero_mask(adata);
1938 x ^= a & zero_bytemask(mask);
1940 return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1942 EXPORT_SYMBOL(hashlen_string);
1945 * Calculate the length and hash of the path component, and
1946 * return the "hash_len" as the result.
1948 static inline u64 hash_name(const char *name)
1950 unsigned long a = 0, b, x = 0, y = 0, adata, bdata, mask, len;
1951 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1953 len = -sizeof(unsigned long);
1956 len += sizeof(unsigned long);
1957 a = load_unaligned_zeropad(name+len);
1958 b = a ^ REPEAT_BYTE('/');
1959 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1961 adata = prep_zero_mask(a, adata, &constants);
1962 bdata = prep_zero_mask(b, bdata, &constants);
1963 mask = create_zero_mask(adata | bdata);
1964 x ^= a & zero_bytemask(mask);
1966 return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1969 #else /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
1971 /* Return the hash of a string of known length */
1972 unsigned int full_name_hash(const char *name, unsigned int len)
1974 unsigned long hash = init_name_hash();
1976 hash = partial_name_hash((unsigned char)*name++, hash);
1977 return end_name_hash(hash);
1979 EXPORT_SYMBOL(full_name_hash);
1981 /* Return the "hash_len" (hash and length) of a null-terminated string */
1982 u64 hashlen_string(const char *name)
1984 unsigned long hash = init_name_hash();
1985 unsigned long len = 0, c;
1987 c = (unsigned char)*name;
1990 hash = partial_name_hash(c, hash);
1991 c = (unsigned char)name[len];
1993 return hashlen_create(end_name_hash(hash), len);
1995 EXPORT_SYMBOL(hashlen_string);
1998 * We know there's a real path component here of at least
2001 static inline u64 hash_name(const char *name)
2003 unsigned long hash = init_name_hash();
2004 unsigned long len = 0, c;
2006 c = (unsigned char)*name;
2009 hash = partial_name_hash(c, hash);
2010 c = (unsigned char)name[len];
2011 } while (c && c != '/');
2012 return hashlen_create(end_name_hash(hash), len);
2019 * This is the basic name resolution function, turning a pathname into
2020 * the final dentry. We expect 'base' to be positive and a directory.
2022 * Returns 0 and nd will have valid dentry and mnt on success.
2023 * Returns error and drops reference to input namei data on failure.
2025 static int link_path_walk(const char *name, struct nameidata *nd)
2034 /* At this point we know we have a real path component. */
2039 err = may_lookup(nd);
2043 hash_len = hash_name(name);
2046 if (name[0] == '.') switch (hashlen_len(hash_len)) {
2048 if (name[1] == '.') {
2050 nd->flags |= LOOKUP_JUMPED;
2056 if (likely(type == LAST_NORM)) {
2057 struct dentry *parent = nd->path.dentry;
2058 nd->flags &= ~LOOKUP_JUMPED;
2059 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2060 struct qstr this = { { .hash_len = hash_len }, .name = name };
2061 err = parent->d_op->d_hash(parent, &this);
2064 hash_len = this.hash_len;
2069 nd->last.hash_len = hash_len;
2070 nd->last.name = name;
2071 nd->last_type = type;
2073 name += hashlen_len(hash_len);
2077 * If it wasn't NUL, we know it was '/'. Skip that
2078 * slash, and continue until no more slashes.
2082 } while (unlikely(*name == '/'));
2083 if (unlikely(!*name)) {
2085 /* pathname body, done */
2088 name = nd->stack[nd->depth - 1].name;
2089 /* trailing symlink, done */
2092 /* last component of nested symlink */
2093 err = walk_component(nd, WALK_GET | WALK_PUT);
2095 err = walk_component(nd, WALK_GET);
2101 const char *s = get_link(nd);
2110 nd->stack[nd->depth - 1].name = name;
2115 if (unlikely(!d_can_lookup(nd->path.dentry))) {
2116 if (nd->flags & LOOKUP_RCU) {
2117 if (unlazy_walk(nd, NULL, 0))
2125 static const char *path_init(struct nameidata *nd, unsigned flags)
2128 const char *s = nd->name->name;
2130 nd->last_type = LAST_ROOT; /* if there are only slashes... */
2131 nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
2133 if (flags & LOOKUP_ROOT) {
2134 struct dentry *root = nd->root.dentry;
2135 struct inode *inode = root->d_inode;
2137 if (!d_can_lookup(root))
2138 return ERR_PTR(-ENOTDIR);
2139 retval = inode_permission(inode, MAY_EXEC);
2141 return ERR_PTR(retval);
2143 nd->path = nd->root;
2145 if (flags & LOOKUP_RCU) {
2147 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2148 nd->root_seq = nd->seq;
2149 nd->m_seq = read_seqbegin(&mount_lock);
2151 path_get(&nd->path);
2156 nd->root.mnt = NULL;
2157 nd->path.mnt = NULL;
2158 nd->path.dentry = NULL;
2160 nd->m_seq = read_seqbegin(&mount_lock);
2162 if (flags & LOOKUP_RCU)
2165 if (likely(!nd_jump_root(nd)))
2167 nd->root.mnt = NULL;
2169 return ERR_PTR(-ECHILD);
2170 } else if (nd->dfd == AT_FDCWD) {
2171 if (flags & LOOKUP_RCU) {
2172 struct fs_struct *fs = current->fs;
2178 seq = read_seqcount_begin(&fs->seq);
2180 nd->inode = nd->path.dentry->d_inode;
2181 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2182 } while (read_seqcount_retry(&fs->seq, seq));
2184 get_fs_pwd(current->fs, &nd->path);
2185 nd->inode = nd->path.dentry->d_inode;
2189 /* Caller must check execute permissions on the starting path component */
2190 struct fd f = fdget_raw(nd->dfd);
2191 struct dentry *dentry;
2194 return ERR_PTR(-EBADF);
2196 dentry = f.file->f_path.dentry;
2199 if (!d_can_lookup(dentry)) {
2201 return ERR_PTR(-ENOTDIR);
2205 nd->path = f.file->f_path;
2206 if (flags & LOOKUP_RCU) {
2208 nd->inode = nd->path.dentry->d_inode;
2209 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2211 path_get(&nd->path);
2212 nd->inode = nd->path.dentry->d_inode;
2219 static const char *trailing_symlink(struct nameidata *nd)
2222 int error = may_follow_link(nd);
2223 if (unlikely(error))
2224 return ERR_PTR(error);
2225 nd->flags |= LOOKUP_PARENT;
2226 nd->stack[0].name = NULL;
2231 static inline int lookup_last(struct nameidata *nd)
2233 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2234 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2236 nd->flags &= ~LOOKUP_PARENT;
2237 return walk_component(nd,
2238 nd->flags & LOOKUP_FOLLOW
2240 ? WALK_PUT | WALK_GET
2245 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2246 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2248 const char *s = path_init(nd, flags);
2253 while (!(err = link_path_walk(s, nd))
2254 && ((err = lookup_last(nd)) > 0)) {
2255 s = trailing_symlink(nd);
2262 err = complete_walk(nd);
2264 if (!err && nd->flags & LOOKUP_DIRECTORY)
2265 if (!d_can_lookup(nd->path.dentry))
2269 nd->path.mnt = NULL;
2270 nd->path.dentry = NULL;
2276 static int filename_lookup(int dfd, struct filename *name, unsigned flags,
2277 struct path *path, struct path *root)
2280 struct nameidata nd;
2282 return PTR_ERR(name);
2283 if (unlikely(root)) {
2285 flags |= LOOKUP_ROOT;
2287 set_nameidata(&nd, dfd, name);
2288 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2289 if (unlikely(retval == -ECHILD))
2290 retval = path_lookupat(&nd, flags, path);
2291 if (unlikely(retval == -ESTALE))
2292 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2294 if (likely(!retval))
2295 audit_inode(name, path->dentry, flags & LOOKUP_PARENT);
2296 restore_nameidata();
2301 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2302 static int path_parentat(struct nameidata *nd, unsigned flags,
2303 struct path *parent)
2305 const char *s = path_init(nd, flags);
2309 err = link_path_walk(s, nd);
2311 err = complete_walk(nd);
2314 nd->path.mnt = NULL;
2315 nd->path.dentry = NULL;
2321 static struct filename *filename_parentat(int dfd, struct filename *name,
2322 unsigned int flags, struct path *parent,
2323 struct qstr *last, int *type)
2326 struct nameidata nd;
2330 set_nameidata(&nd, dfd, name);
2331 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2332 if (unlikely(retval == -ECHILD))
2333 retval = path_parentat(&nd, flags, parent);
2334 if (unlikely(retval == -ESTALE))
2335 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2336 if (likely(!retval)) {
2338 *type = nd.last_type;
2339 audit_inode(name, parent->dentry, LOOKUP_PARENT);
2342 name = ERR_PTR(retval);
2344 restore_nameidata();
2348 /* does lookup, returns the object with parent locked */
2349 struct dentry *kern_path_locked(const char *name, struct path *path)
2351 struct filename *filename;
2356 filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2358 if (IS_ERR(filename))
2359 return ERR_CAST(filename);
2360 if (unlikely(type != LAST_NORM)) {
2363 return ERR_PTR(-EINVAL);
2365 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2366 d = __lookup_hash(&last, path->dentry, 0);
2368 inode_unlock(path->dentry->d_inode);
2375 int kern_path(const char *name, unsigned int flags, struct path *path)
2377 return filename_lookup(AT_FDCWD, getname_kernel(name),
2380 EXPORT_SYMBOL(kern_path);
2383 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2384 * @dentry: pointer to dentry of the base directory
2385 * @mnt: pointer to vfs mount of the base directory
2386 * @name: pointer to file name
2387 * @flags: lookup flags
2388 * @path: pointer to struct path to fill
2390 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2391 const char *name, unsigned int flags,
2394 struct path root = {.mnt = mnt, .dentry = dentry};
2395 /* the first argument of filename_lookup() is ignored with root */
2396 return filename_lookup(AT_FDCWD, getname_kernel(name),
2397 flags , path, &root);
2399 EXPORT_SYMBOL(vfs_path_lookup);
2402 * lookup_hash - lookup single pathname component on already hashed name
2403 * @name: name and hash to lookup
2404 * @base: base directory to lookup from
2406 * The name must have been verified and hashed (see lookup_one_len()). Using
2407 * this after just full_name_hash() is unsafe.
2409 * This function also doesn't check for search permission on base directory.
2411 * Use lookup_one_len_unlocked() instead, unless you really know what you are
2414 * Do not hold i_mutex; this helper takes i_mutex if necessary.
2416 struct dentry *lookup_hash(const struct qstr *name, struct dentry *base)
2420 ret = lookup_dcache(name, base, 0);
2422 ret = lookup_slow(name, base, 0);
2426 EXPORT_SYMBOL(lookup_hash);
2429 * lookup_one_len - filesystem helper to lookup single pathname component
2430 * @name: pathname component to lookup
2431 * @base: base directory to lookup from
2432 * @len: maximum length @len should be interpreted to
2434 * Note that this routine is purely a helper for filesystem usage and should
2435 * not be called by generic code.
2437 * The caller must hold base->i_mutex.
2439 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2445 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2449 this.hash = full_name_hash(name, len);
2451 return ERR_PTR(-EACCES);
2453 if (unlikely(name[0] == '.')) {
2454 if (len < 2 || (len == 2 && name[1] == '.'))
2455 return ERR_PTR(-EACCES);
2459 c = *(const unsigned char *)name++;
2460 if (c == '/' || c == '\0')
2461 return ERR_PTR(-EACCES);
2464 * See if the low-level filesystem might want
2465 * to use its own hash..
2467 if (base->d_flags & DCACHE_OP_HASH) {
2468 int err = base->d_op->d_hash(base, &this);
2470 return ERR_PTR(err);
2473 err = inode_permission(base->d_inode, MAY_EXEC);
2475 return ERR_PTR(err);
2477 return __lookup_hash(&this, base, 0);
2479 EXPORT_SYMBOL(lookup_one_len);
2482 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2483 * @name: pathname component to lookup
2484 * @base: base directory to lookup from
2485 * @len: maximum length @len should be interpreted to
2487 * Note that this routine is purely a helper for filesystem usage and should
2488 * not be called by generic code.
2490 * Unlike lookup_one_len, it should be called without the parent
2491 * i_mutex held, and will take the i_mutex itself if necessary.
2493 struct dentry *lookup_one_len_unlocked(const char *name,
2494 struct dentry *base, int len)
2502 this.hash = full_name_hash(name, len);
2504 return ERR_PTR(-EACCES);
2506 if (unlikely(name[0] == '.')) {
2507 if (len < 2 || (len == 2 && name[1] == '.'))
2508 return ERR_PTR(-EACCES);
2512 c = *(const unsigned char *)name++;
2513 if (c == '/' || c == '\0')
2514 return ERR_PTR(-EACCES);
2517 * See if the low-level filesystem might want
2518 * to use its own hash..
2520 if (base->d_flags & DCACHE_OP_HASH) {
2521 int err = base->d_op->d_hash(base, &this);
2523 return ERR_PTR(err);
2526 err = inode_permission(base->d_inode, MAY_EXEC);
2528 return ERR_PTR(err);
2530 return lookup_hash(&this, base);
2532 EXPORT_SYMBOL(lookup_one_len_unlocked);
2534 #ifdef CONFIG_UNIX98_PTYS
2535 int path_pts(struct path *path)
2537 /* Find something mounted on "pts" in the same directory as
2540 struct dentry *child, *parent;
2544 ret = path_parent_directory(path);
2548 parent = path->dentry;
2551 child = d_hash_and_lookup(parent, &this);
2555 path->dentry = child;
2562 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2563 struct path *path, int *empty)
2565 return filename_lookup(dfd, getname_flags(name, flags, empty),
2568 EXPORT_SYMBOL(user_path_at_empty);
2571 * NB: most callers don't do anything directly with the reference to the
2572 * to struct filename, but the nd->last pointer points into the name string
2573 * allocated by getname. So we must hold the reference to it until all
2574 * path-walking is complete.
2576 static inline struct filename *
2577 user_path_parent(int dfd, const char __user *path,
2578 struct path *parent,
2583 /* only LOOKUP_REVAL is allowed in extra flags */
2584 return filename_parentat(dfd, getname(path), flags & LOOKUP_REVAL,
2585 parent, last, type);
2589 * mountpoint_last - look up last component for umount
2590 * @nd: pathwalk nameidata - currently pointing at parent directory of "last"
2591 * @path: pointer to container for result
2593 * This is a special lookup_last function just for umount. In this case, we
2594 * need to resolve the path without doing any revalidation.
2596 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2597 * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2598 * in almost all cases, this lookup will be served out of the dcache. The only
2599 * cases where it won't are if nd->last refers to a symlink or the path is
2600 * bogus and it doesn't exist.
2603 * -error: if there was an error during lookup. This includes -ENOENT if the
2604 * lookup found a negative dentry. The nd->path reference will also be
2607 * 0: if we successfully resolved nd->path and found it to not to be a
2608 * symlink that needs to be followed. "path" will also be populated.
2609 * The nd->path reference will also be put.
2611 * 1: if we successfully resolved nd->last and found it to be a symlink
2612 * that needs to be followed. "path" will be populated with the path
2613 * to the link, and nd->path will *not* be put.
2616 mountpoint_last(struct nameidata *nd, struct path *path)
2619 struct dentry *dentry;
2620 struct dentry *dir = nd->path.dentry;
2622 /* If we're in rcuwalk, drop out of it to handle last component */
2623 if (nd->flags & LOOKUP_RCU) {
2624 if (unlazy_walk(nd, NULL, 0))
2628 nd->flags &= ~LOOKUP_PARENT;
2630 if (unlikely(nd->last_type != LAST_NORM)) {
2631 error = handle_dots(nd, nd->last_type);
2634 dentry = dget(nd->path.dentry);
2636 dentry = d_lookup(dir, &nd->last);
2639 * No cached dentry. Mounted dentries are pinned in the
2640 * cache, so that means that this dentry is probably
2641 * a symlink or the path doesn't actually point
2642 * to a mounted dentry.
2644 dentry = lookup_slow(&nd->last, dir,
2645 nd->flags | LOOKUP_NO_REVAL);
2647 return PTR_ERR(dentry);
2650 if (d_is_negative(dentry)) {
2656 path->dentry = dentry;
2657 path->mnt = nd->path.mnt;
2658 error = should_follow_link(nd, path, nd->flags & LOOKUP_FOLLOW,
2659 d_backing_inode(dentry), 0);
2660 if (unlikely(error))
2668 * path_mountpoint - look up a path to be umounted
2669 * @nd: lookup context
2670 * @flags: lookup flags
2671 * @path: pointer to container for result
2673 * Look up the given name, but don't attempt to revalidate the last component.
2674 * Returns 0 and "path" will be valid on success; Returns error otherwise.
2677 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path)
2679 const char *s = path_init(nd, flags);
2683 while (!(err = link_path_walk(s, nd)) &&
2684 (err = mountpoint_last(nd, path)) > 0) {
2685 s = trailing_symlink(nd);
2696 filename_mountpoint(int dfd, struct filename *name, struct path *path,
2699 struct nameidata nd;
2702 return PTR_ERR(name);
2703 set_nameidata(&nd, dfd, name);
2704 error = path_mountpoint(&nd, flags | LOOKUP_RCU, path);
2705 if (unlikely(error == -ECHILD))
2706 error = path_mountpoint(&nd, flags, path);
2707 if (unlikely(error == -ESTALE))
2708 error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path);
2710 audit_inode(name, path->dentry, 0);
2711 restore_nameidata();
2717 * user_path_mountpoint_at - lookup a path from userland in order to umount it
2718 * @dfd: directory file descriptor
2719 * @name: pathname from userland
2720 * @flags: lookup flags
2721 * @path: pointer to container to hold result
2723 * A umount is a special case for path walking. We're not actually interested
2724 * in the inode in this situation, and ESTALE errors can be a problem. We
2725 * simply want track down the dentry and vfsmount attached at the mountpoint
2726 * and avoid revalidating the last component.
2728 * Returns 0 and populates "path" on success.
2731 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2734 return filename_mountpoint(dfd, getname(name), path, flags);
2738 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2741 return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2743 EXPORT_SYMBOL(kern_path_mountpoint);
2745 int __check_sticky(struct inode *dir, struct inode *inode)
2747 kuid_t fsuid = current_fsuid();
2749 if (uid_eq(inode->i_uid, fsuid))
2751 if (uid_eq(dir->i_uid, fsuid))
2753 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2755 EXPORT_SYMBOL(__check_sticky);
2758 * Check whether we can remove a link victim from directory dir, check
2759 * whether the type of victim is right.
2760 * 1. We can't do it if dir is read-only (done in permission())
2761 * 2. We should have write and exec permissions on dir
2762 * 3. We can't remove anything from append-only dir
2763 * 4. We can't do anything with immutable dir (done in permission())
2764 * 5. If the sticky bit on dir is set we should either
2765 * a. be owner of dir, or
2766 * b. be owner of victim, or
2767 * c. have CAP_FOWNER capability
2768 * 6. If the victim is append-only or immutable we can't do antyhing with
2769 * links pointing to it.
2770 * 7. If the victim has an unknown uid or gid we can't change the inode.
2771 * 8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2772 * 9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2773 * 10. We can't remove a root or mountpoint.
2774 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
2775 * nfs_async_unlink().
2777 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2779 struct inode *inode = d_backing_inode(victim);
2782 if (d_is_negative(victim))
2786 BUG_ON(victim->d_parent->d_inode != dir);
2787 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2789 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2795 if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2796 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || HAS_UNMAPPED_ID(inode))
2799 if (!d_is_dir(victim))
2801 if (IS_ROOT(victim))
2803 } else if (d_is_dir(victim))
2805 if (IS_DEADDIR(dir))
2807 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2812 /* Check whether we can create an object with dentry child in directory
2814 * 1. We can't do it if child already exists (open has special treatment for
2815 * this case, but since we are inlined it's OK)
2816 * 2. We can't do it if dir is read-only (done in permission())
2817 * 3. We should have write and exec permissions on dir
2818 * 4. We can't do it if dir is immutable (done in permission())
2820 static inline int may_create(struct inode *dir, struct dentry *child)
2822 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2825 if (IS_DEADDIR(dir))
2827 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2831 * p1 and p2 should be directories on the same fs.
2833 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2838 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2842 mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
2844 p = d_ancestor(p2, p1);
2846 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
2847 inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
2851 p = d_ancestor(p1, p2);
2853 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2854 inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
2858 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2859 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
2862 EXPORT_SYMBOL(lock_rename);
2864 void unlock_rename(struct dentry *p1, struct dentry *p2)
2866 inode_unlock(p1->d_inode);
2868 inode_unlock(p2->d_inode);
2869 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
2872 EXPORT_SYMBOL(unlock_rename);
2874 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2877 int error = may_create(dir, dentry);
2881 if (!dir->i_op->create)
2882 return -EACCES; /* shouldn't it be ENOSYS? */
2885 error = security_inode_create(dir, dentry, mode);
2888 error = dir->i_op->create(dir, dentry, mode, want_excl);
2890 fsnotify_create(dir, dentry);
2893 EXPORT_SYMBOL(vfs_create);
2895 bool may_open_dev(const struct path *path)
2897 return !(path->mnt->mnt_flags & MNT_NODEV) &&
2898 !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
2901 static int may_open(struct path *path, int acc_mode, int flag)
2903 struct dentry *dentry = path->dentry;
2904 struct inode *inode = dentry->d_inode;
2910 switch (inode->i_mode & S_IFMT) {
2914 if (acc_mode & MAY_WRITE)
2919 if (!may_open_dev(path))
2928 error = inode_permission(inode, MAY_OPEN | acc_mode);
2933 * An append-only file must be opened in append mode for writing.
2935 if (IS_APPEND(inode)) {
2936 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2942 /* O_NOATIME can only be set by the owner or superuser */
2943 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2949 static int handle_truncate(struct file *filp)
2951 struct path *path = &filp->f_path;
2952 struct inode *inode = path->dentry->d_inode;
2953 int error = get_write_access(inode);
2957 * Refuse to truncate files with mandatory locks held on them.
2959 error = locks_verify_locked(filp);
2961 error = security_path_truncate(path);
2963 error = do_truncate(path->dentry, 0,
2964 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2967 put_write_access(inode);
2971 static inline int open_to_namei_flags(int flag)
2973 if ((flag & O_ACCMODE) == 3)
2978 static int may_o_create(const struct path *dir, struct dentry *dentry, umode_t mode)
2980 int error = security_path_mknod(dir, dentry, mode, 0);
2984 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2988 return security_inode_create(dir->dentry->d_inode, dentry, mode);
2992 * Attempt to atomically look up, create and open a file from a negative
2995 * Returns 0 if successful. The file will have been created and attached to
2996 * @file by the filesystem calling finish_open().
2998 * Returns 1 if the file was looked up only or didn't need creating. The
2999 * caller will need to perform the open themselves. @path will have been
3000 * updated to point to the new dentry. This may be negative.
3002 * Returns an error code otherwise.
3004 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
3005 struct path *path, struct file *file,
3006 const struct open_flags *op,
3007 int open_flag, umode_t mode,
3010 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
3011 struct inode *dir = nd->path.dentry->d_inode;
3014 if (!(~open_flag & (O_EXCL | O_CREAT))) /* both O_EXCL and O_CREAT */
3015 open_flag &= ~O_TRUNC;
3017 if (nd->flags & LOOKUP_DIRECTORY)
3018 open_flag |= O_DIRECTORY;
3020 file->f_path.dentry = DENTRY_NOT_SET;
3021 file->f_path.mnt = nd->path.mnt;
3022 error = dir->i_op->atomic_open(dir, dentry, file,
3023 open_to_namei_flags(open_flag),
3025 d_lookup_done(dentry);
3028 * We didn't have the inode before the open, so check open
3031 int acc_mode = op->acc_mode;
3032 if (*opened & FILE_CREATED) {
3033 WARN_ON(!(open_flag & O_CREAT));
3034 fsnotify_create(dir, dentry);
3037 error = may_open(&file->f_path, acc_mode, open_flag);
3038 if (WARN_ON(error > 0))
3040 } else if (error > 0) {
3041 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3044 if (file->f_path.dentry) {
3046 dentry = file->f_path.dentry;
3048 if (*opened & FILE_CREATED)
3049 fsnotify_create(dir, dentry);
3050 path->dentry = dentry;
3051 path->mnt = nd->path.mnt;
3060 * Look up and maybe create and open the last component.
3062 * Must be called with i_mutex held on parent.
3064 * Returns 0 if the file was successfully atomically created (if necessary) and
3065 * opened. In this case the file will be returned attached to @file.
3067 * Returns 1 if the file was not completely opened at this time, though lookups
3068 * and creations will have been performed and the dentry returned in @path will
3069 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't
3070 * specified then a negative dentry may be returned.
3072 * An error code is returned otherwise.
3074 * FILE_CREATE will be set in @*opened if the dentry was created and will be
3075 * cleared otherwise prior to returning.
3077 static int lookup_open(struct nameidata *nd, struct path *path,
3079 const struct open_flags *op,
3080 bool got_write, int *opened)
3082 struct dentry *dir = nd->path.dentry;
3083 struct inode *dir_inode = dir->d_inode;
3084 int open_flag = op->open_flag;
3085 struct dentry *dentry;
3086 int error, create_error = 0;
3087 umode_t mode = op->mode;
3088 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3090 if (unlikely(IS_DEADDIR(dir_inode)))
3093 *opened &= ~FILE_CREATED;
3094 dentry = d_lookup(dir, &nd->last);
3097 dentry = d_alloc_parallel(dir, &nd->last, &wq);
3099 return PTR_ERR(dentry);
3101 if (d_in_lookup(dentry))
3104 if (!(dentry->d_flags & DCACHE_OP_REVALIDATE))
3107 error = d_revalidate(dentry, nd->flags);
3108 if (likely(error > 0))
3112 d_invalidate(dentry);
3116 if (dentry->d_inode) {
3117 /* Cached positive dentry: will open in f_op->open */
3122 * Checking write permission is tricky, bacuse we don't know if we are
3123 * going to actually need it: O_CREAT opens should work as long as the
3124 * file exists. But checking existence breaks atomicity. The trick is
3125 * to check access and if not granted clear O_CREAT from the flags.
3127 * Another problem is returing the "right" error value (e.g. for an
3128 * O_EXCL open we want to return EEXIST not EROFS).
3130 if (open_flag & O_CREAT) {
3131 if (!IS_POSIXACL(dir->d_inode))
3132 mode &= ~current_umask();
3133 if (unlikely(!got_write)) {
3134 create_error = -EROFS;
3135 open_flag &= ~O_CREAT;
3136 if (open_flag & (O_EXCL | O_TRUNC))
3138 /* No side effects, safe to clear O_CREAT */
3140 create_error = may_o_create(&nd->path, dentry, mode);
3142 open_flag &= ~O_CREAT;
3143 if (open_flag & O_EXCL)
3147 } else if ((open_flag & (O_TRUNC|O_WRONLY|O_RDWR)) &&
3148 unlikely(!got_write)) {
3150 * No O_CREATE -> atomicity not a requirement -> fall
3151 * back to lookup + open
3156 if (dir_inode->i_op->atomic_open) {
3157 error = atomic_open(nd, dentry, path, file, op, open_flag,
3159 if (unlikely(error == -ENOENT) && create_error)
3160 error = create_error;
3165 if (d_in_lookup(dentry)) {
3166 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3168 d_lookup_done(dentry);
3169 if (unlikely(res)) {
3171 error = PTR_ERR(res);
3179 /* Negative dentry, just create the file */
3180 if (!dentry->d_inode && (open_flag & O_CREAT)) {
3181 *opened |= FILE_CREATED;
3182 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3183 if (!dir_inode->i_op->create) {
3187 error = dir_inode->i_op->create(dir_inode, dentry, mode,
3188 open_flag & O_EXCL);
3191 fsnotify_create(dir_inode, dentry);
3193 if (unlikely(create_error) && !dentry->d_inode) {
3194 error = create_error;
3198 path->dentry = dentry;
3199 path->mnt = nd->path.mnt;
3208 * Handle the last step of open()
3210 static int do_last(struct nameidata *nd,
3211 struct file *file, const struct open_flags *op,
3214 struct dentry *dir = nd->path.dentry;
3215 int open_flag = op->open_flag;
3216 bool will_truncate = (open_flag & O_TRUNC) != 0;
3217 bool got_write = false;
3218 int acc_mode = op->acc_mode;
3220 struct inode *inode;
3221 struct path save_parent = { .dentry = NULL, .mnt = NULL };
3223 bool retried = false;
3226 nd->flags &= ~LOOKUP_PARENT;
3227 nd->flags |= op->intent;
3229 if (nd->last_type != LAST_NORM) {
3230 error = handle_dots(nd, nd->last_type);
3231 if (unlikely(error))
3236 if (!(open_flag & O_CREAT)) {
3237 if (nd->last.name[nd->last.len])
3238 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3239 /* we _can_ be in RCU mode here */
3240 error = lookup_fast(nd, &path, &inode, &seq);
3241 if (likely(error > 0))
3247 BUG_ON(nd->inode != dir->d_inode);
3248 BUG_ON(nd->flags & LOOKUP_RCU);
3250 /* create side of things */
3252 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
3253 * has been cleared when we got to the last component we are
3256 error = complete_walk(nd);
3260 audit_inode(nd->name, dir, LOOKUP_PARENT);
3261 /* trailing slashes? */
3262 if (unlikely(nd->last.name[nd->last.len]))
3267 if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3268 error = mnt_want_write(nd->path.mnt);
3272 * do _not_ fail yet - we might not need that or fail with
3273 * a different error; let lookup_open() decide; we'll be
3274 * dropping this one anyway.
3277 if (open_flag & O_CREAT)
3278 inode_lock(dir->d_inode);
3280 inode_lock_shared(dir->d_inode);
3281 error = lookup_open(nd, &path, file, op, got_write, opened);
3282 if (open_flag & O_CREAT)
3283 inode_unlock(dir->d_inode);
3285 inode_unlock_shared(dir->d_inode);
3291 if ((*opened & FILE_CREATED) ||
3292 !S_ISREG(file_inode(file)->i_mode))
3293 will_truncate = false;
3295 audit_inode(nd->name, file->f_path.dentry, 0);
3299 if (*opened & FILE_CREATED) {
3300 /* Don't check for write permission, don't truncate */
3301 open_flag &= ~O_TRUNC;
3302 will_truncate = false;
3304 path_to_nameidata(&path, nd);
3305 goto finish_open_created;
3309 * If atomic_open() acquired write access it is dropped now due to
3310 * possible mount and symlink following (this might be optimized away if
3314 mnt_drop_write(nd->path.mnt);
3318 if (unlikely(d_is_negative(path.dentry))) {
3319 path_to_nameidata(&path, nd);
3324 * create/update audit record if it already exists.
3326 audit_inode(nd->name, path.dentry, 0);
3328 if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) {
3329 path_to_nameidata(&path, nd);
3333 error = follow_managed(&path, nd);
3334 if (unlikely(error < 0))
3337 seq = 0; /* out of RCU mode, so the value doesn't matter */
3338 inode = d_backing_inode(path.dentry);
3342 error = should_follow_link(nd, &path, nd->flags & LOOKUP_FOLLOW,
3344 if (unlikely(error))
3347 if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path.mnt) {
3348 path_to_nameidata(&path, nd);
3350 save_parent.dentry = nd->path.dentry;
3351 save_parent.mnt = mntget(path.mnt);
3352 nd->path.dentry = path.dentry;
3357 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
3359 error = complete_walk(nd);
3361 path_put(&save_parent);
3364 audit_inode(nd->name, nd->path.dentry, 0);
3366 if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3369 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3371 if (!d_is_reg(nd->path.dentry))
3372 will_truncate = false;
3374 if (will_truncate) {
3375 error = mnt_want_write(nd->path.mnt);
3380 finish_open_created:
3381 error = may_open(&nd->path, acc_mode, open_flag);
3384 BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */
3385 error = vfs_open(&nd->path, file, current_cred());
3387 *opened |= FILE_OPENED;
3389 if (error == -EOPENSTALE)
3394 error = open_check_o_direct(file);
3396 error = ima_file_check(file, op->acc_mode, *opened);
3397 if (!error && will_truncate)
3398 error = handle_truncate(file);
3400 if (unlikely(error) && (*opened & FILE_OPENED))
3402 if (unlikely(error > 0)) {
3407 mnt_drop_write(nd->path.mnt);
3408 path_put(&save_parent);
3412 /* If no saved parent or already retried then can't retry */
3413 if (!save_parent.dentry || retried)
3416 BUG_ON(save_parent.dentry != dir);
3417 path_put(&nd->path);
3418 nd->path = save_parent;
3419 nd->inode = dir->d_inode;
3420 save_parent.mnt = NULL;
3421 save_parent.dentry = NULL;
3423 mnt_drop_write(nd->path.mnt);
3430 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3431 const struct open_flags *op,
3432 struct file *file, int *opened)
3434 static const struct qstr name = QSTR_INIT("/", 1);
3435 struct dentry *child;
3438 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3439 if (unlikely(error))
3441 error = mnt_want_write(path.mnt);
3442 if (unlikely(error))
3444 dir = path.dentry->d_inode;
3445 /* we want directory to be writable */
3446 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
3449 if (!dir->i_op->tmpfile) {
3450 error = -EOPNOTSUPP;
3453 child = d_alloc(path.dentry, &name);
3454 if (unlikely(!child)) {
3459 path.dentry = child;
3460 error = dir->i_op->tmpfile(dir, child, op->mode);
3463 audit_inode(nd->name, child, 0);
3464 /* Don't check for other permissions, the inode was just created */
3465 error = may_open(&path, 0, op->open_flag);
3468 file->f_path.mnt = path.mnt;
3469 error = finish_open(file, child, NULL, opened);
3472 error = open_check_o_direct(file);
3475 } else if (!(op->open_flag & O_EXCL)) {
3476 struct inode *inode = file_inode(file);
3477 spin_lock(&inode->i_lock);
3478 inode->i_state |= I_LINKABLE;
3479 spin_unlock(&inode->i_lock);
3482 mnt_drop_write(path.mnt);
3488 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3491 int error = path_lookupat(nd, flags, &path);
3493 audit_inode(nd->name, path.dentry, 0);
3494 error = vfs_open(&path, file, current_cred());
3500 static struct file *path_openat(struct nameidata *nd,
3501 const struct open_flags *op, unsigned flags)
3508 file = get_empty_filp();
3512 file->f_flags = op->open_flag;
3514 if (unlikely(file->f_flags & __O_TMPFILE)) {
3515 error = do_tmpfile(nd, flags, op, file, &opened);
3519 if (unlikely(file->f_flags & O_PATH)) {
3520 error = do_o_path(nd, flags, file);
3522 opened |= FILE_OPENED;
3526 s = path_init(nd, flags);
3531 while (!(error = link_path_walk(s, nd)) &&
3532 (error = do_last(nd, file, op, &opened)) > 0) {
3533 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3534 s = trailing_symlink(nd);
3542 if (!(opened & FILE_OPENED)) {
3546 if (unlikely(error)) {
3547 if (error == -EOPENSTALE) {
3548 if (flags & LOOKUP_RCU)
3553 file = ERR_PTR(error);
3558 struct file *do_filp_open(int dfd, struct filename *pathname,
3559 const struct open_flags *op)
3561 struct nameidata nd;
3562 int flags = op->lookup_flags;
3565 set_nameidata(&nd, dfd, pathname);
3566 filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3567 if (unlikely(filp == ERR_PTR(-ECHILD)))
3568 filp = path_openat(&nd, op, flags);
3569 if (unlikely(filp == ERR_PTR(-ESTALE)))
3570 filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3571 restore_nameidata();
3575 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3576 const char *name, const struct open_flags *op)
3578 struct nameidata nd;
3580 struct filename *filename;
3581 int flags = op->lookup_flags | LOOKUP_ROOT;
3584 nd.root.dentry = dentry;
3586 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3587 return ERR_PTR(-ELOOP);
3589 filename = getname_kernel(name);
3590 if (IS_ERR(filename))
3591 return ERR_CAST(filename);
3593 set_nameidata(&nd, -1, filename);
3594 file = path_openat(&nd, op, flags | LOOKUP_RCU);
3595 if (unlikely(file == ERR_PTR(-ECHILD)))
3596 file = path_openat(&nd, op, flags);
3597 if (unlikely(file == ERR_PTR(-ESTALE)))
3598 file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3599 restore_nameidata();
3604 static struct dentry *filename_create(int dfd, struct filename *name,
3605 struct path *path, unsigned int lookup_flags)
3607 struct dentry *dentry = ERR_PTR(-EEXIST);
3612 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3615 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3616 * other flags passed in are ignored!
3618 lookup_flags &= LOOKUP_REVAL;
3620 name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3622 return ERR_CAST(name);
3625 * Yucky last component or no last component at all?
3626 * (foo/., foo/.., /////)
3628 if (unlikely(type != LAST_NORM))
3631 /* don't fail immediately if it's r/o, at least try to report other errors */
3632 err2 = mnt_want_write(path->mnt);
3634 * Do the final lookup.
3636 lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3637 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3638 dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3643 if (d_is_positive(dentry))
3647 * Special case - lookup gave negative, but... we had foo/bar/
3648 * From the vfs_mknod() POV we just have a negative dentry -
3649 * all is fine. Let's be bastards - you had / on the end, you've
3650 * been asking for (non-existent) directory. -ENOENT for you.
3652 if (unlikely(!is_dir && last.name[last.len])) {
3656 if (unlikely(err2)) {
3664 dentry = ERR_PTR(error);
3666 inode_unlock(path->dentry->d_inode);
3668 mnt_drop_write(path->mnt);
3675 struct dentry *kern_path_create(int dfd, const char *pathname,
3676 struct path *path, unsigned int lookup_flags)
3678 return filename_create(dfd, getname_kernel(pathname),
3679 path, lookup_flags);
3681 EXPORT_SYMBOL(kern_path_create);
3683 void done_path_create(struct path *path, struct dentry *dentry)
3686 inode_unlock(path->dentry->d_inode);
3687 mnt_drop_write(path->mnt);
3690 EXPORT_SYMBOL(done_path_create);
3692 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3693 struct path *path, unsigned int lookup_flags)
3695 return filename_create(dfd, getname(pathname), path, lookup_flags);
3697 EXPORT_SYMBOL(user_path_create);
3699 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3701 int error = may_create(dir, dentry);
3706 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3709 if (!dir->i_op->mknod)
3712 error = devcgroup_inode_mknod(mode, dev);
3716 error = security_inode_mknod(dir, dentry, mode, dev);
3720 error = dir->i_op->mknod(dir, dentry, mode, dev);
3722 fsnotify_create(dir, dentry);
3725 EXPORT_SYMBOL(vfs_mknod);
3727 static int may_mknod(umode_t mode)
3729 switch (mode & S_IFMT) {
3735 case 0: /* zero mode translates to S_IFREG */
3744 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3747 struct dentry *dentry;
3750 unsigned int lookup_flags = 0;
3752 error = may_mknod(mode);
3756 dentry = user_path_create(dfd, filename, &path, lookup_flags);
3758 return PTR_ERR(dentry);
3760 if (!IS_POSIXACL(path.dentry->d_inode))
3761 mode &= ~current_umask();
3762 error = security_path_mknod(&path, dentry, mode, dev);
3765 switch (mode & S_IFMT) {
3766 case 0: case S_IFREG:
3767 error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3769 ima_post_path_mknod(dentry);
3771 case S_IFCHR: case S_IFBLK:
3772 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3773 new_decode_dev(dev));
3775 case S_IFIFO: case S_IFSOCK:
3776 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3780 done_path_create(&path, dentry);
3781 if (retry_estale(error, lookup_flags)) {
3782 lookup_flags |= LOOKUP_REVAL;
3788 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3790 return sys_mknodat(AT_FDCWD, filename, mode, dev);
3793 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3795 int error = may_create(dir, dentry);
3796 unsigned max_links = dir->i_sb->s_max_links;
3801 if (!dir->i_op->mkdir)
3804 mode &= (S_IRWXUGO|S_ISVTX);
3805 error = security_inode_mkdir(dir, dentry, mode);
3809 if (max_links && dir->i_nlink >= max_links)
3812 error = dir->i_op->mkdir(dir, dentry, mode);
3814 fsnotify_mkdir(dir, dentry);
3817 EXPORT_SYMBOL(vfs_mkdir);
3819 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3821 struct dentry *dentry;
3824 unsigned int lookup_flags = LOOKUP_DIRECTORY;
3827 dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3829 return PTR_ERR(dentry);
3831 if (!IS_POSIXACL(path.dentry->d_inode))
3832 mode &= ~current_umask();
3833 error = security_path_mkdir(&path, dentry, mode);
3835 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3836 done_path_create(&path, dentry);
3837 if (retry_estale(error, lookup_flags)) {
3838 lookup_flags |= LOOKUP_REVAL;
3844 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3846 return sys_mkdirat(AT_FDCWD, pathname, mode);
3849 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3851 int error = may_delete(dir, dentry, 1);
3856 if (!dir->i_op->rmdir)
3860 inode_lock(dentry->d_inode);
3863 if (is_local_mountpoint(dentry))
3866 error = security_inode_rmdir(dir, dentry);
3870 shrink_dcache_parent(dentry);
3871 error = dir->i_op->rmdir(dir, dentry);
3875 dentry->d_inode->i_flags |= S_DEAD;
3877 detach_mounts(dentry);
3880 inode_unlock(dentry->d_inode);
3886 EXPORT_SYMBOL(vfs_rmdir);
3888 static long do_rmdir(int dfd, const char __user *pathname)
3891 struct filename *name;
3892 struct dentry *dentry;
3896 unsigned int lookup_flags = 0;
3898 name = user_path_parent(dfd, pathname,
3899 &path, &last, &type, lookup_flags);
3901 return PTR_ERR(name);
3915 error = mnt_want_write(path.mnt);
3919 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3920 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3921 error = PTR_ERR(dentry);
3924 if (!dentry->d_inode) {
3928 error = security_path_rmdir(&path, dentry);
3931 error = vfs_rmdir(path.dentry->d_inode, dentry);
3935 inode_unlock(path.dentry->d_inode);
3936 mnt_drop_write(path.mnt);
3940 if (retry_estale(error, lookup_flags)) {
3941 lookup_flags |= LOOKUP_REVAL;
3947 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3949 return do_rmdir(AT_FDCWD, pathname);
3953 * vfs_unlink - unlink a filesystem object
3954 * @dir: parent directory
3956 * @delegated_inode: returns victim inode, if the inode is delegated.
3958 * The caller must hold dir->i_mutex.
3960 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3961 * return a reference to the inode in delegated_inode. The caller
3962 * should then break the delegation on that inode and retry. Because
3963 * breaking a delegation may take a long time, the caller should drop
3964 * dir->i_mutex before doing so.
3966 * Alternatively, a caller may pass NULL for delegated_inode. This may
3967 * be appropriate for callers that expect the underlying filesystem not
3968 * to be NFS exported.
3970 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3972 struct inode *target = dentry->d_inode;
3973 int error = may_delete(dir, dentry, 0);
3978 if (!dir->i_op->unlink)
3982 if (is_local_mountpoint(dentry))
3985 error = security_inode_unlink(dir, dentry);
3987 error = try_break_deleg(target, delegated_inode);
3990 error = dir->i_op->unlink(dir, dentry);
3993 detach_mounts(dentry);
3998 inode_unlock(target);
4000 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
4001 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
4002 fsnotify_link_count(target);
4008 EXPORT_SYMBOL(vfs_unlink);
4011 * Make sure that the actual truncation of the file will occur outside its
4012 * directory's i_mutex. Truncate can take a long time if there is a lot of
4013 * writeout happening, and we don't want to prevent access to the directory
4014 * while waiting on the I/O.
4016 static long do_unlinkat(int dfd, const char __user *pathname)
4019 struct filename *name;
4020 struct dentry *dentry;
4024 struct inode *inode = NULL;
4025 struct inode *delegated_inode = NULL;
4026 unsigned int lookup_flags = 0;
4028 name = user_path_parent(dfd, pathname,
4029 &path, &last, &type, lookup_flags);
4031 return PTR_ERR(name);
4034 if (type != LAST_NORM)
4037 error = mnt_want_write(path.mnt);
4041 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4042 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
4043 error = PTR_ERR(dentry);
4044 if (!IS_ERR(dentry)) {
4045 /* Why not before? Because we want correct error value */
4046 if (last.name[last.len])
4048 inode = dentry->d_inode;
4049 if (d_is_negative(dentry))
4052 error = security_path_unlink(&path, dentry);
4055 error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
4059 inode_unlock(path.dentry->d_inode);
4061 iput(inode); /* truncate the inode here */
4063 if (delegated_inode) {
4064 error = break_deleg_wait(&delegated_inode);
4068 mnt_drop_write(path.mnt);
4072 if (retry_estale(error, lookup_flags)) {
4073 lookup_flags |= LOOKUP_REVAL;
4080 if (d_is_negative(dentry))
4082 else if (d_is_dir(dentry))
4089 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4091 if ((flag & ~AT_REMOVEDIR) != 0)
4094 if (flag & AT_REMOVEDIR)
4095 return do_rmdir(dfd, pathname);
4097 return do_unlinkat(dfd, pathname);
4100 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4102 return do_unlinkat(AT_FDCWD, pathname);
4105 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
4107 int error = may_create(dir, dentry);
4112 if (!dir->i_op->symlink)
4115 error = security_inode_symlink(dir, dentry, oldname);
4119 error = dir->i_op->symlink(dir, dentry, oldname);
4121 fsnotify_create(dir, dentry);
4124 EXPORT_SYMBOL(vfs_symlink);
4126 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4127 int, newdfd, const char __user *, newname)
4130 struct filename *from;
4131 struct dentry *dentry;
4133 unsigned int lookup_flags = 0;
4135 from = getname(oldname);
4137 return PTR_ERR(from);
4139 dentry = user_path_create(newdfd, newname, &path, lookup_flags);
4140 error = PTR_ERR(dentry);
4144 error = security_path_symlink(&path, dentry, from->name);
4146 error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
4147 done_path_create(&path, dentry);
4148 if (retry_estale(error, lookup_flags)) {
4149 lookup_flags |= LOOKUP_REVAL;
4157 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4159 return sys_symlinkat(oldname, AT_FDCWD, newname);
4163 * vfs_link - create a new link
4164 * @old_dentry: object to be linked
4166 * @new_dentry: where to create the new link
4167 * @delegated_inode: returns inode needing a delegation break
4169 * The caller must hold dir->i_mutex
4171 * If vfs_link discovers a delegation on the to-be-linked file in need
4172 * of breaking, it will return -EWOULDBLOCK and return a reference to the
4173 * inode in delegated_inode. The caller should then break the delegation
4174 * and retry. Because breaking a delegation may take a long time, the
4175 * caller should drop the i_mutex before doing so.
4177 * Alternatively, a caller may pass NULL for delegated_inode. This may
4178 * be appropriate for callers that expect the underlying filesystem not
4179 * to be NFS exported.
4181 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
4183 struct inode *inode = old_dentry->d_inode;
4184 unsigned max_links = dir->i_sb->s_max_links;
4190 error = may_create(dir, new_dentry);
4194 if (dir->i_sb != inode->i_sb)
4198 * A link to an append-only or immutable file cannot be created.
4200 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4203 * Updating the link count will likely cause i_uid and i_gid to
4204 * be writen back improperly if their true value is unknown to
4207 if (HAS_UNMAPPED_ID(inode))
4209 if (!dir->i_op->link)
4211 if (S_ISDIR(inode->i_mode))
4214 error = security_inode_link(old_dentry, dir, new_dentry);
4219 /* Make sure we don't allow creating hardlink to an unlinked file */
4220 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4222 else if (max_links && inode->i_nlink >= max_links)
4225 error = try_break_deleg(inode, delegated_inode);
4227 error = dir->i_op->link(old_dentry, dir, new_dentry);
4230 if (!error && (inode->i_state & I_LINKABLE)) {
4231 spin_lock(&inode->i_lock);
4232 inode->i_state &= ~I_LINKABLE;
4233 spin_unlock(&inode->i_lock);
4235 inode_unlock(inode);
4237 fsnotify_link(dir, inode, new_dentry);
4240 EXPORT_SYMBOL(vfs_link);
4243 * Hardlinks are often used in delicate situations. We avoid
4244 * security-related surprises by not following symlinks on the
4247 * We don't follow them on the oldname either to be compatible
4248 * with linux 2.0, and to avoid hard-linking to directories
4249 * and other special files. --ADM
4251 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4252 int, newdfd, const char __user *, newname, int, flags)
4254 struct dentry *new_dentry;
4255 struct path old_path, new_path;
4256 struct inode *delegated_inode = NULL;
4260 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4263 * To use null names we require CAP_DAC_READ_SEARCH
4264 * This ensures that not everyone will be able to create
4265 * handlink using the passed filedescriptor.
4267 if (flags & AT_EMPTY_PATH) {
4268 if (!capable(CAP_DAC_READ_SEARCH))
4273 if (flags & AT_SYMLINK_FOLLOW)
4274 how |= LOOKUP_FOLLOW;
4276 error = user_path_at(olddfd, oldname, how, &old_path);
4280 new_dentry = user_path_create(newdfd, newname, &new_path,
4281 (how & LOOKUP_REVAL));
4282 error = PTR_ERR(new_dentry);
4283 if (IS_ERR(new_dentry))
4287 if (old_path.mnt != new_path.mnt)
4289 error = may_linkat(&old_path);
4290 if (unlikely(error))
4292 error = security_path_link(old_path.dentry, &new_path, new_dentry);
4295 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4297 done_path_create(&new_path, new_dentry);
4298 if (delegated_inode) {
4299 error = break_deleg_wait(&delegated_inode);
4301 path_put(&old_path);
4305 if (retry_estale(error, how)) {
4306 path_put(&old_path);
4307 how |= LOOKUP_REVAL;
4311 path_put(&old_path);
4316 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4318 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4322 * vfs_rename - rename a filesystem object
4323 * @old_dir: parent of source
4324 * @old_dentry: source
4325 * @new_dir: parent of destination
4326 * @new_dentry: destination
4327 * @delegated_inode: returns an inode needing a delegation break
4328 * @flags: rename flags
4330 * The caller must hold multiple mutexes--see lock_rename()).
4332 * If vfs_rename discovers a delegation in need of breaking at either
4333 * the source or destination, it will return -EWOULDBLOCK and return a
4334 * reference to the inode in delegated_inode. The caller should then
4335 * break the delegation and retry. Because breaking a delegation may
4336 * take a long time, the caller should drop all locks before doing
4339 * Alternatively, a caller may pass NULL for delegated_inode. This may
4340 * be appropriate for callers that expect the underlying filesystem not
4341 * to be NFS exported.
4343 * The worst of all namespace operations - renaming directory. "Perverted"
4344 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4346 * a) we can get into loop creation.
4347 * b) race potential - two innocent renames can create a loop together.
4348 * That's where 4.4 screws up. Current fix: serialization on
4349 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4351 * c) we have to lock _four_ objects - parents and victim (if it exists),
4352 * and source (if it is not a directory).
4353 * And that - after we got ->i_mutex on parents (until then we don't know
4354 * whether the target exists). Solution: try to be smart with locking
4355 * order for inodes. We rely on the fact that tree topology may change
4356 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
4357 * move will be locked. Thus we can rank directories by the tree
4358 * (ancestors first) and rank all non-directories after them.
4359 * That works since everybody except rename does "lock parent, lookup,
4360 * lock child" and rename is under ->s_vfs_rename_mutex.
4361 * HOWEVER, it relies on the assumption that any object with ->lookup()
4362 * has no more than 1 dentry. If "hybrid" objects will ever appear,
4363 * we'd better make sure that there's no link(2) for them.
4364 * d) conversion from fhandle to dentry may come in the wrong moment - when
4365 * we are removing the target. Solution: we will have to grab ->i_mutex
4366 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4367 * ->i_mutex on parents, which works but leads to some truly excessive
4370 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4371 struct inode *new_dir, struct dentry *new_dentry,
4372 struct inode **delegated_inode, unsigned int flags)
4375 bool is_dir = d_is_dir(old_dentry);
4376 const unsigned char *old_name;
4377 struct inode *source = old_dentry->d_inode;
4378 struct inode *target = new_dentry->d_inode;
4379 bool new_is_dir = false;
4380 unsigned max_links = new_dir->i_sb->s_max_links;
4383 * Check source == target.
4384 * On overlayfs need to look at underlying inodes.
4386 if (vfs_select_inode(old_dentry, 0) == vfs_select_inode(new_dentry, 0))
4389 error = may_delete(old_dir, old_dentry, is_dir);
4394 error = may_create(new_dir, new_dentry);
4396 new_is_dir = d_is_dir(new_dentry);
4398 if (!(flags & RENAME_EXCHANGE))
4399 error = may_delete(new_dir, new_dentry, is_dir);
4401 error = may_delete(new_dir, new_dentry, new_is_dir);
4406 if (!old_dir->i_op->rename && !old_dir->i_op->rename2)
4409 if (flags && !old_dir->i_op->rename2)
4413 * If we are going to change the parent - check write permissions,
4414 * we'll need to flip '..'.
4416 if (new_dir != old_dir) {
4418 error = inode_permission(source, MAY_WRITE);
4422 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4423 error = inode_permission(target, MAY_WRITE);
4429 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4434 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
4436 if (!is_dir || (flags & RENAME_EXCHANGE))
4437 lock_two_nondirectories(source, target);
4442 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4445 if (max_links && new_dir != old_dir) {
4447 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4449 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4450 old_dir->i_nlink >= max_links)
4453 if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4454 shrink_dcache_parent(new_dentry);
4456 error = try_break_deleg(source, delegated_inode);
4460 if (target && !new_is_dir) {
4461 error = try_break_deleg(target, delegated_inode);
4465 if (!old_dir->i_op->rename2) {
4466 error = old_dir->i_op->rename(old_dir, old_dentry,
4467 new_dir, new_dentry);
4469 WARN_ON(old_dir->i_op->rename != NULL);
4470 error = old_dir->i_op->rename2(old_dir, old_dentry,
4471 new_dir, new_dentry, flags);
4476 if (!(flags & RENAME_EXCHANGE) && target) {
4478 target->i_flags |= S_DEAD;
4479 dont_mount(new_dentry);
4480 detach_mounts(new_dentry);
4482 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4483 if (!(flags & RENAME_EXCHANGE))
4484 d_move(old_dentry, new_dentry);
4486 d_exchange(old_dentry, new_dentry);
4489 if (!is_dir || (flags & RENAME_EXCHANGE))
4490 unlock_two_nondirectories(source, target);
4492 inode_unlock(target);
4495 fsnotify_move(old_dir, new_dir, old_name, is_dir,
4496 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4497 if (flags & RENAME_EXCHANGE) {
4498 fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4499 new_is_dir, NULL, new_dentry);
4502 fsnotify_oldname_free(old_name);
4506 EXPORT_SYMBOL(vfs_rename);
4508 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4509 int, newdfd, const char __user *, newname, unsigned int, flags)
4511 struct dentry *old_dentry, *new_dentry;
4512 struct dentry *trap;
4513 struct path old_path, new_path;
4514 struct qstr old_last, new_last;
4515 int old_type, new_type;
4516 struct inode *delegated_inode = NULL;
4517 struct filename *from;
4518 struct filename *to;
4519 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4520 bool should_retry = false;
4523 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4526 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4527 (flags & RENAME_EXCHANGE))
4530 if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4533 if (flags & RENAME_EXCHANGE)
4537 from = user_path_parent(olddfd, oldname,
4538 &old_path, &old_last, &old_type, lookup_flags);
4540 error = PTR_ERR(from);
4544 to = user_path_parent(newdfd, newname,
4545 &new_path, &new_last, &new_type, lookup_flags);
4547 error = PTR_ERR(to);
4552 if (old_path.mnt != new_path.mnt)
4556 if (old_type != LAST_NORM)
4559 if (flags & RENAME_NOREPLACE)
4561 if (new_type != LAST_NORM)
4564 error = mnt_want_write(old_path.mnt);
4569 trap = lock_rename(new_path.dentry, old_path.dentry);
4571 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4572 error = PTR_ERR(old_dentry);
4573 if (IS_ERR(old_dentry))
4575 /* source must exist */
4577 if (d_is_negative(old_dentry))
4579 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4580 error = PTR_ERR(new_dentry);
4581 if (IS_ERR(new_dentry))
4584 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4586 if (flags & RENAME_EXCHANGE) {
4588 if (d_is_negative(new_dentry))
4591 if (!d_is_dir(new_dentry)) {
4593 if (new_last.name[new_last.len])
4597 /* unless the source is a directory trailing slashes give -ENOTDIR */
4598 if (!d_is_dir(old_dentry)) {
4600 if (old_last.name[old_last.len])
4602 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4605 /* source should not be ancestor of target */
4607 if (old_dentry == trap)
4609 /* target should not be an ancestor of source */
4610 if (!(flags & RENAME_EXCHANGE))
4612 if (new_dentry == trap)
4615 error = security_path_rename(&old_path, old_dentry,
4616 &new_path, new_dentry, flags);
4619 error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4620 new_path.dentry->d_inode, new_dentry,
4621 &delegated_inode, flags);
4627 unlock_rename(new_path.dentry, old_path.dentry);
4628 if (delegated_inode) {
4629 error = break_deleg_wait(&delegated_inode);
4633 mnt_drop_write(old_path.mnt);
4635 if (retry_estale(error, lookup_flags))
4636 should_retry = true;
4637 path_put(&new_path);
4640 path_put(&old_path);
4643 should_retry = false;
4644 lookup_flags |= LOOKUP_REVAL;
4651 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4652 int, newdfd, const char __user *, newname)
4654 return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4657 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4659 return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4662 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4664 int error = may_create(dir, dentry);
4668 if (!dir->i_op->mknod)
4671 return dir->i_op->mknod(dir, dentry,
4672 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4674 EXPORT_SYMBOL(vfs_whiteout);
4676 int readlink_copy(char __user *buffer, int buflen, const char *link)
4678 int len = PTR_ERR(link);
4683 if (len > (unsigned) buflen)
4685 if (copy_to_user(buffer, link, len))
4692 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
4693 * have ->get_link() not calling nd_jump_link(). Using (or not using) it
4694 * for any given inode is up to filesystem.
4696 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4698 DEFINE_DELAYED_CALL(done);
4699 struct inode *inode = d_inode(dentry);
4700 const char *link = inode->i_link;
4704 link = inode->i_op->get_link(dentry, inode, &done);
4706 return PTR_ERR(link);
4708 res = readlink_copy(buffer, buflen, link);
4709 do_delayed_call(&done);
4712 EXPORT_SYMBOL(generic_readlink);
4714 /* get the link contents into pagecache */
4715 const char *page_get_link(struct dentry *dentry, struct inode *inode,
4716 struct delayed_call *callback)
4720 struct address_space *mapping = inode->i_mapping;
4723 page = find_get_page(mapping, 0);
4725 return ERR_PTR(-ECHILD);
4726 if (!PageUptodate(page)) {
4728 return ERR_PTR(-ECHILD);
4731 page = read_mapping_page(mapping, 0, NULL);
4735 set_delayed_call(callback, page_put_link, page);
4736 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
4737 kaddr = page_address(page);
4738 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
4742 EXPORT_SYMBOL(page_get_link);
4744 void page_put_link(void *arg)
4748 EXPORT_SYMBOL(page_put_link);
4750 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4752 DEFINE_DELAYED_CALL(done);
4753 int res = readlink_copy(buffer, buflen,
4754 page_get_link(dentry, d_inode(dentry),
4756 do_delayed_call(&done);
4759 EXPORT_SYMBOL(page_readlink);
4762 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4764 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4766 struct address_space *mapping = inode->i_mapping;
4770 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4772 flags |= AOP_FLAG_NOFS;
4775 err = pagecache_write_begin(NULL, mapping, 0, len-1,
4776 flags, &page, &fsdata);
4780 memcpy(page_address(page), symname, len-1);
4782 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4789 mark_inode_dirty(inode);
4794 EXPORT_SYMBOL(__page_symlink);
4796 int page_symlink(struct inode *inode, const char *symname, int len)
4798 return __page_symlink(inode, symname, len,
4799 !mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
4801 EXPORT_SYMBOL(page_symlink);
4803 const struct inode_operations page_symlink_inode_operations = {
4804 .readlink = generic_readlink,
4805 .get_link = page_get_link,
4807 EXPORT_SYMBOL(page_symlink_inode_operations);