1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
6 #include <linux/slab.h>
7 #include <linux/blkdev.h>
8 #include <linux/writeback.h>
9 #include <linux/sched/mm.h>
12 #include "transaction.h"
13 #include "btrfs_inode.h"
14 #include "extent_io.h"
16 #include "compression.h"
17 #include "delalloc-space.h"
20 static struct kmem_cache *btrfs_ordered_extent_cache;
22 static u64 entry_end(struct btrfs_ordered_extent *entry)
24 if (entry->file_offset + entry->num_bytes < entry->file_offset)
26 return entry->file_offset + entry->num_bytes;
29 /* returns NULL if the insertion worked, or it returns the node it did find
32 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
35 struct rb_node **p = &root->rb_node;
36 struct rb_node *parent = NULL;
37 struct btrfs_ordered_extent *entry;
41 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
43 if (file_offset < entry->file_offset)
45 else if (file_offset >= entry_end(entry))
51 rb_link_node(node, parent, p);
52 rb_insert_color(node, root);
57 * look for a given offset in the tree, and if it can't be found return the
60 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
61 struct rb_node **prev_ret)
63 struct rb_node *n = root->rb_node;
64 struct rb_node *prev = NULL;
66 struct btrfs_ordered_extent *entry;
67 struct btrfs_ordered_extent *prev_entry = NULL;
70 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
74 if (file_offset < entry->file_offset)
76 else if (file_offset >= entry_end(entry))
84 while (prev && file_offset >= entry_end(prev_entry)) {
88 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
90 if (file_offset < entry_end(prev_entry))
96 prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
98 while (prev && file_offset < entry_end(prev_entry)) {
102 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
111 * helper to check if a given offset is inside a given entry
113 static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
115 if (file_offset < entry->file_offset ||
116 entry->file_offset + entry->num_bytes <= file_offset)
121 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
124 if (file_offset + len <= entry->file_offset ||
125 entry->file_offset + entry->num_bytes <= file_offset)
131 * look find the first ordered struct that has this offset, otherwise
132 * the first one less than this offset
134 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
137 struct rb_root *root = &tree->tree;
138 struct rb_node *prev = NULL;
140 struct btrfs_ordered_extent *entry;
143 entry = rb_entry(tree->last, struct btrfs_ordered_extent,
145 if (offset_in_entry(entry, file_offset))
148 ret = __tree_search(root, file_offset, &prev);
157 * Allocate and add a new ordered_extent into the per-inode tree.
159 * The tree is given a single reference on the ordered extent that was
162 static int __btrfs_add_ordered_extent(struct btrfs_inode *inode, u64 file_offset,
163 u64 disk_bytenr, u64 num_bytes,
164 u64 disk_num_bytes, int type, int dio,
167 struct btrfs_root *root = inode->root;
168 struct btrfs_fs_info *fs_info = root->fs_info;
169 struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
170 struct rb_node *node;
171 struct btrfs_ordered_extent *entry;
174 if (type == BTRFS_ORDERED_NOCOW || type == BTRFS_ORDERED_PREALLOC) {
175 /* For nocow write, we can release the qgroup rsv right now */
176 ret = btrfs_qgroup_free_data(inode, NULL, file_offset, num_bytes);
182 * The ordered extent has reserved qgroup space, release now
183 * and pass the reserved number for qgroup_record to free.
185 ret = btrfs_qgroup_release_data(inode, file_offset, num_bytes);
189 entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
193 entry->file_offset = file_offset;
194 entry->disk_bytenr = disk_bytenr;
195 entry->num_bytes = num_bytes;
196 entry->disk_num_bytes = disk_num_bytes;
197 entry->bytes_left = num_bytes;
198 entry->inode = igrab(&inode->vfs_inode);
199 entry->compress_type = compress_type;
200 entry->truncated_len = (u64)-1;
201 entry->qgroup_rsv = ret;
202 if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
203 set_bit(type, &entry->flags);
206 percpu_counter_add_batch(&fs_info->dio_bytes, num_bytes,
207 fs_info->delalloc_batch);
208 set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
211 /* one ref for the tree */
212 refcount_set(&entry->refs, 1);
213 init_waitqueue_head(&entry->wait);
214 INIT_LIST_HEAD(&entry->list);
215 INIT_LIST_HEAD(&entry->log_list);
216 INIT_LIST_HEAD(&entry->root_extent_list);
217 INIT_LIST_HEAD(&entry->work_list);
218 init_completion(&entry->completion);
220 trace_btrfs_ordered_extent_add(inode, entry);
222 spin_lock_irq(&tree->lock);
223 node = tree_insert(&tree->tree, file_offset,
226 btrfs_panic(fs_info, -EEXIST,
227 "inconsistency in ordered tree at offset %llu",
229 spin_unlock_irq(&tree->lock);
231 spin_lock(&root->ordered_extent_lock);
232 list_add_tail(&entry->root_extent_list,
233 &root->ordered_extents);
234 root->nr_ordered_extents++;
235 if (root->nr_ordered_extents == 1) {
236 spin_lock(&fs_info->ordered_root_lock);
237 BUG_ON(!list_empty(&root->ordered_root));
238 list_add_tail(&root->ordered_root, &fs_info->ordered_roots);
239 spin_unlock(&fs_info->ordered_root_lock);
241 spin_unlock(&root->ordered_extent_lock);
244 * We don't need the count_max_extents here, we can assume that all of
245 * that work has been done at higher layers, so this is truly the
246 * smallest the extent is going to get.
248 spin_lock(&inode->lock);
249 btrfs_mod_outstanding_extents(inode, 1);
250 spin_unlock(&inode->lock);
255 int btrfs_add_ordered_extent(struct btrfs_inode *inode, u64 file_offset,
256 u64 disk_bytenr, u64 num_bytes, u64 disk_num_bytes,
259 return __btrfs_add_ordered_extent(inode, file_offset, disk_bytenr,
260 num_bytes, disk_num_bytes, type, 0,
261 BTRFS_COMPRESS_NONE);
264 int btrfs_add_ordered_extent_dio(struct btrfs_inode *inode, u64 file_offset,
265 u64 disk_bytenr, u64 num_bytes,
266 u64 disk_num_bytes, int type)
268 return __btrfs_add_ordered_extent(inode, file_offset, disk_bytenr,
269 num_bytes, disk_num_bytes, type, 1,
270 BTRFS_COMPRESS_NONE);
273 int btrfs_add_ordered_extent_compress(struct btrfs_inode *inode, u64 file_offset,
274 u64 disk_bytenr, u64 num_bytes,
275 u64 disk_num_bytes, int type,
278 return __btrfs_add_ordered_extent(inode, file_offset, disk_bytenr,
279 num_bytes, disk_num_bytes, type, 0,
284 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
285 * when an ordered extent is finished. If the list covers more than one
286 * ordered extent, it is split across multiples.
288 void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry,
289 struct btrfs_ordered_sum *sum)
291 struct btrfs_ordered_inode_tree *tree;
293 tree = &BTRFS_I(entry->inode)->ordered_tree;
294 spin_lock_irq(&tree->lock);
295 list_add_tail(&sum->list, &entry->list);
296 spin_unlock_irq(&tree->lock);
300 * this is used to account for finished IO across a given range
301 * of the file. The IO may span ordered extents. If
302 * a given ordered_extent is completely done, 1 is returned, otherwise
305 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
306 * to make sure this function only returns 1 once for a given ordered extent.
308 * file_offset is updated to one byte past the range that is recorded as
309 * complete. This allows you to walk forward in the file.
311 int btrfs_dec_test_first_ordered_pending(struct btrfs_inode *inode,
312 struct btrfs_ordered_extent **cached,
313 u64 *file_offset, u64 io_size, int uptodate)
315 struct btrfs_fs_info *fs_info = inode->root->fs_info;
316 struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
317 struct rb_node *node;
318 struct btrfs_ordered_extent *entry = NULL;
325 spin_lock_irqsave(&tree->lock, flags);
326 node = tree_search(tree, *file_offset);
332 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
333 if (!offset_in_entry(entry, *file_offset)) {
338 dec_start = max(*file_offset, entry->file_offset);
339 dec_end = min(*file_offset + io_size,
340 entry->file_offset + entry->num_bytes);
341 *file_offset = dec_end;
342 if (dec_start > dec_end) {
343 btrfs_crit(fs_info, "bad ordering dec_start %llu end %llu",
346 to_dec = dec_end - dec_start;
347 if (to_dec > entry->bytes_left) {
349 "bad ordered accounting left %llu size %llu",
350 entry->bytes_left, to_dec);
352 entry->bytes_left -= to_dec;
354 set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
356 if (entry->bytes_left == 0) {
357 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
358 /* test_and_set_bit implies a barrier */
359 cond_wake_up_nomb(&entry->wait);
364 if (!ret && cached && entry) {
366 refcount_inc(&entry->refs);
368 spin_unlock_irqrestore(&tree->lock, flags);
373 * this is used to account for finished IO across a given range
374 * of the file. The IO should not span ordered extents. If
375 * a given ordered_extent is completely done, 1 is returned, otherwise
378 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
379 * to make sure this function only returns 1 once for a given ordered extent.
381 int btrfs_dec_test_ordered_pending(struct btrfs_inode *inode,
382 struct btrfs_ordered_extent **cached,
383 u64 file_offset, u64 io_size, int uptodate)
385 struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
386 struct rb_node *node;
387 struct btrfs_ordered_extent *entry = NULL;
391 spin_lock_irqsave(&tree->lock, flags);
392 if (cached && *cached) {
397 node = tree_search(tree, file_offset);
403 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
405 if (!offset_in_entry(entry, file_offset)) {
410 if (io_size > entry->bytes_left) {
411 btrfs_crit(inode->root->fs_info,
412 "bad ordered accounting left %llu size %llu",
413 entry->bytes_left, io_size);
415 entry->bytes_left -= io_size;
417 set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
419 if (entry->bytes_left == 0) {
420 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
421 /* test_and_set_bit implies a barrier */
422 cond_wake_up_nomb(&entry->wait);
427 if (!ret && cached && entry) {
429 refcount_inc(&entry->refs);
431 spin_unlock_irqrestore(&tree->lock, flags);
436 * used to drop a reference on an ordered extent. This will free
437 * the extent if the last reference is dropped
439 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
441 struct list_head *cur;
442 struct btrfs_ordered_sum *sum;
444 trace_btrfs_ordered_extent_put(BTRFS_I(entry->inode), entry);
446 if (refcount_dec_and_test(&entry->refs)) {
447 ASSERT(list_empty(&entry->root_extent_list));
448 ASSERT(list_empty(&entry->log_list));
449 ASSERT(RB_EMPTY_NODE(&entry->rb_node));
451 btrfs_add_delayed_iput(entry->inode);
452 while (!list_empty(&entry->list)) {
453 cur = entry->list.next;
454 sum = list_entry(cur, struct btrfs_ordered_sum, list);
455 list_del(&sum->list);
458 kmem_cache_free(btrfs_ordered_extent_cache, entry);
463 * remove an ordered extent from the tree. No references are dropped
464 * and waiters are woken up.
466 void btrfs_remove_ordered_extent(struct btrfs_inode *btrfs_inode,
467 struct btrfs_ordered_extent *entry)
469 struct btrfs_ordered_inode_tree *tree;
470 struct btrfs_root *root = btrfs_inode->root;
471 struct btrfs_fs_info *fs_info = root->fs_info;
472 struct rb_node *node;
475 /* This is paired with btrfs_add_ordered_extent. */
476 spin_lock(&btrfs_inode->lock);
477 btrfs_mod_outstanding_extents(btrfs_inode, -1);
478 spin_unlock(&btrfs_inode->lock);
479 if (root != fs_info->tree_root)
480 btrfs_delalloc_release_metadata(btrfs_inode, entry->num_bytes,
483 if (test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
484 percpu_counter_add_batch(&fs_info->dio_bytes, -entry->num_bytes,
485 fs_info->delalloc_batch);
487 tree = &btrfs_inode->ordered_tree;
488 spin_lock_irq(&tree->lock);
489 node = &entry->rb_node;
490 rb_erase(node, &tree->tree);
492 if (tree->last == node)
494 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
495 pending = test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags);
496 spin_unlock_irq(&tree->lock);
499 * The current running transaction is waiting on us, we need to let it
500 * know that we're complete and wake it up.
503 struct btrfs_transaction *trans;
506 * The checks for trans are just a formality, it should be set,
507 * but if it isn't we don't want to deref/assert under the spin
508 * lock, so be nice and check if trans is set, but ASSERT() so
509 * if it isn't set a developer will notice.
511 spin_lock(&fs_info->trans_lock);
512 trans = fs_info->running_transaction;
514 refcount_inc(&trans->use_count);
515 spin_unlock(&fs_info->trans_lock);
519 if (atomic_dec_and_test(&trans->pending_ordered))
520 wake_up(&trans->pending_wait);
521 btrfs_put_transaction(trans);
525 spin_lock(&root->ordered_extent_lock);
526 list_del_init(&entry->root_extent_list);
527 root->nr_ordered_extents--;
529 trace_btrfs_ordered_extent_remove(btrfs_inode, entry);
531 if (!root->nr_ordered_extents) {
532 spin_lock(&fs_info->ordered_root_lock);
533 BUG_ON(list_empty(&root->ordered_root));
534 list_del_init(&root->ordered_root);
535 spin_unlock(&fs_info->ordered_root_lock);
537 spin_unlock(&root->ordered_extent_lock);
538 wake_up(&entry->wait);
541 static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
543 struct btrfs_ordered_extent *ordered;
545 ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
546 btrfs_start_ordered_extent(ordered, 1);
547 complete(&ordered->completion);
551 * wait for all the ordered extents in a root. This is done when balancing
552 * space between drives.
554 u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr,
555 const u64 range_start, const u64 range_len)
557 struct btrfs_fs_info *fs_info = root->fs_info;
561 struct btrfs_ordered_extent *ordered, *next;
563 const u64 range_end = range_start + range_len;
565 mutex_lock(&root->ordered_extent_mutex);
566 spin_lock(&root->ordered_extent_lock);
567 list_splice_init(&root->ordered_extents, &splice);
568 while (!list_empty(&splice) && nr) {
569 ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
572 if (range_end <= ordered->disk_bytenr ||
573 ordered->disk_bytenr + ordered->disk_num_bytes <= range_start) {
574 list_move_tail(&ordered->root_extent_list, &skipped);
575 cond_resched_lock(&root->ordered_extent_lock);
579 list_move_tail(&ordered->root_extent_list,
580 &root->ordered_extents);
581 refcount_inc(&ordered->refs);
582 spin_unlock(&root->ordered_extent_lock);
584 btrfs_init_work(&ordered->flush_work,
585 btrfs_run_ordered_extent_work, NULL, NULL);
586 list_add_tail(&ordered->work_list, &works);
587 btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work);
590 spin_lock(&root->ordered_extent_lock);
595 list_splice_tail(&skipped, &root->ordered_extents);
596 list_splice_tail(&splice, &root->ordered_extents);
597 spin_unlock(&root->ordered_extent_lock);
599 list_for_each_entry_safe(ordered, next, &works, work_list) {
600 list_del_init(&ordered->work_list);
601 wait_for_completion(&ordered->completion);
602 btrfs_put_ordered_extent(ordered);
605 mutex_unlock(&root->ordered_extent_mutex);
610 void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr,
611 const u64 range_start, const u64 range_len)
613 struct btrfs_root *root;
614 struct list_head splice;
617 INIT_LIST_HEAD(&splice);
619 mutex_lock(&fs_info->ordered_operations_mutex);
620 spin_lock(&fs_info->ordered_root_lock);
621 list_splice_init(&fs_info->ordered_roots, &splice);
622 while (!list_empty(&splice) && nr) {
623 root = list_first_entry(&splice, struct btrfs_root,
625 root = btrfs_grab_root(root);
627 list_move_tail(&root->ordered_root,
628 &fs_info->ordered_roots);
629 spin_unlock(&fs_info->ordered_root_lock);
631 done = btrfs_wait_ordered_extents(root, nr,
632 range_start, range_len);
633 btrfs_put_root(root);
635 spin_lock(&fs_info->ordered_root_lock);
640 list_splice_tail(&splice, &fs_info->ordered_roots);
641 spin_unlock(&fs_info->ordered_root_lock);
642 mutex_unlock(&fs_info->ordered_operations_mutex);
646 * Used to start IO or wait for a given ordered extent to finish.
648 * If wait is one, this effectively waits on page writeback for all the pages
649 * in the extent, and it waits on the io completion code to insert
650 * metadata into the btree corresponding to the extent
652 void btrfs_start_ordered_extent(struct btrfs_ordered_extent *entry, int wait)
654 u64 start = entry->file_offset;
655 u64 end = start + entry->num_bytes - 1;
656 struct btrfs_inode *inode = BTRFS_I(entry->inode);
658 trace_btrfs_ordered_extent_start(inode, entry);
661 * pages in the range can be dirty, clean or writeback. We
662 * start IO on any dirty ones so the wait doesn't stall waiting
663 * for the flusher thread to find them
665 if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
666 filemap_fdatawrite_range(inode->vfs_inode.i_mapping, start, end);
668 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
674 * Used to wait on ordered extents across a large range of bytes.
676 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
682 struct btrfs_ordered_extent *ordered;
684 if (start + len < start) {
685 orig_end = INT_LIMIT(loff_t);
687 orig_end = start + len - 1;
688 if (orig_end > INT_LIMIT(loff_t))
689 orig_end = INT_LIMIT(loff_t);
692 /* start IO across the range first to instantiate any delalloc
695 ret = btrfs_fdatawrite_range(inode, start, orig_end);
700 * If we have a writeback error don't return immediately. Wait first
701 * for any ordered extents that haven't completed yet. This is to make
702 * sure no one can dirty the same page ranges and call writepages()
703 * before the ordered extents complete - to avoid failures (-EEXIST)
704 * when adding the new ordered extents to the ordered tree.
706 ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
710 ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode), end);
713 if (ordered->file_offset > orig_end) {
714 btrfs_put_ordered_extent(ordered);
717 if (ordered->file_offset + ordered->num_bytes <= start) {
718 btrfs_put_ordered_extent(ordered);
721 btrfs_start_ordered_extent(ordered, 1);
722 end = ordered->file_offset;
724 * If the ordered extent had an error save the error but don't
725 * exit without waiting first for all other ordered extents in
726 * the range to complete.
728 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
730 btrfs_put_ordered_extent(ordered);
731 if (end == 0 || end == start)
735 return ret_wb ? ret_wb : ret;
739 * find an ordered extent corresponding to file_offset. return NULL if
740 * nothing is found, otherwise take a reference on the extent and return it
742 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct btrfs_inode *inode,
745 struct btrfs_ordered_inode_tree *tree;
746 struct rb_node *node;
747 struct btrfs_ordered_extent *entry = NULL;
749 tree = &inode->ordered_tree;
750 spin_lock_irq(&tree->lock);
751 node = tree_search(tree, file_offset);
755 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
756 if (!offset_in_entry(entry, file_offset))
759 refcount_inc(&entry->refs);
761 spin_unlock_irq(&tree->lock);
765 /* Since the DIO code tries to lock a wide area we need to look for any ordered
766 * extents that exist in the range, rather than just the start of the range.
768 struct btrfs_ordered_extent *btrfs_lookup_ordered_range(
769 struct btrfs_inode *inode, u64 file_offset, u64 len)
771 struct btrfs_ordered_inode_tree *tree;
772 struct rb_node *node;
773 struct btrfs_ordered_extent *entry = NULL;
775 tree = &inode->ordered_tree;
776 spin_lock_irq(&tree->lock);
777 node = tree_search(tree, file_offset);
779 node = tree_search(tree, file_offset + len);
785 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
786 if (range_overlaps(entry, file_offset, len))
789 if (entry->file_offset >= file_offset + len) {
794 node = rb_next(node);
800 refcount_inc(&entry->refs);
801 spin_unlock_irq(&tree->lock);
806 * Adds all ordered extents to the given list. The list ends up sorted by the
807 * file_offset of the ordered extents.
809 void btrfs_get_ordered_extents_for_logging(struct btrfs_inode *inode,
810 struct list_head *list)
812 struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
815 ASSERT(inode_is_locked(&inode->vfs_inode));
817 spin_lock_irq(&tree->lock);
818 for (n = rb_first(&tree->tree); n; n = rb_next(n)) {
819 struct btrfs_ordered_extent *ordered;
821 ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
823 if (test_bit(BTRFS_ORDERED_LOGGED, &ordered->flags))
826 ASSERT(list_empty(&ordered->log_list));
827 list_add_tail(&ordered->log_list, list);
828 refcount_inc(&ordered->refs);
830 spin_unlock_irq(&tree->lock);
834 * lookup and return any extent before 'file_offset'. NULL is returned
837 struct btrfs_ordered_extent *
838 btrfs_lookup_first_ordered_extent(struct btrfs_inode *inode, u64 file_offset)
840 struct btrfs_ordered_inode_tree *tree;
841 struct rb_node *node;
842 struct btrfs_ordered_extent *entry = NULL;
844 tree = &inode->ordered_tree;
845 spin_lock_irq(&tree->lock);
846 node = tree_search(tree, file_offset);
850 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
851 refcount_inc(&entry->refs);
853 spin_unlock_irq(&tree->lock);
858 * btrfs_flush_ordered_range - Lock the passed range and ensures all pending
859 * ordered extents in it are run to completion.
861 * @inode: Inode whose ordered tree is to be searched
862 * @start: Beginning of range to flush
863 * @end: Last byte of range to lock
864 * @cached_state: If passed, will return the extent state responsible for the
865 * locked range. It's the caller's responsibility to free the cached state.
867 * This function always returns with the given range locked, ensuring after it's
868 * called no order extent can be pending.
870 void btrfs_lock_and_flush_ordered_range(struct btrfs_inode *inode, u64 start,
872 struct extent_state **cached_state)
874 struct btrfs_ordered_extent *ordered;
875 struct extent_state *cache = NULL;
876 struct extent_state **cachedp = &cache;
879 cachedp = cached_state;
882 lock_extent_bits(&inode->io_tree, start, end, cachedp);
883 ordered = btrfs_lookup_ordered_range(inode, start,
887 * If no external cached_state has been passed then
888 * decrement the extra ref taken for cachedp since we
889 * aren't exposing it outside of this function
892 refcount_dec(&cache->refs);
895 unlock_extent_cached(&inode->io_tree, start, end, cachedp);
896 btrfs_start_ordered_extent(ordered, 1);
897 btrfs_put_ordered_extent(ordered);
901 int __init ordered_data_init(void)
903 btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
904 sizeof(struct btrfs_ordered_extent), 0,
907 if (!btrfs_ordered_extent_cache)
913 void __cold ordered_data_exit(void)
915 kmem_cache_destroy(btrfs_ordered_extent_cache);