2 * Kernel-based Virtual Machine driver for Linux
4 * derived from drivers/kvm/kvm_main.c
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
22 #include <linux/kvm_host.h>
27 #include "kvm_cache_regs.h"
30 #include <linux/clocksource.h>
31 #include <linux/interrupt.h>
32 #include <linux/kvm.h>
34 #include <linux/vmalloc.h>
35 #include <linux/module.h>
36 #include <linux/mman.h>
37 #include <linux/highmem.h>
38 #include <linux/iommu.h>
39 #include <linux/intel-iommu.h>
40 #include <linux/cpufreq.h>
41 #include <linux/user-return-notifier.h>
42 #include <linux/srcu.h>
43 #include <linux/slab.h>
44 #include <linux/perf_event.h>
45 #include <linux/uaccess.h>
46 #include <linux/hash.h>
47 #include <trace/events/kvm.h>
49 #define CREATE_TRACE_POINTS
52 #include <asm/debugreg.h>
59 #include <asm/pvclock.h>
60 #include <asm/div64.h>
62 #define MAX_IO_MSRS 256
63 #define CR0_RESERVED_BITS \
64 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
65 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
66 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
67 #define CR4_RESERVED_BITS \
68 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
69 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
70 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
72 | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
74 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
76 #define KVM_MAX_MCE_BANKS 32
77 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
80 * - enable syscall per default because its emulated by KVM
81 * - enable LME and LMA per default on 64 bit KVM
84 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
86 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
89 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
90 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
92 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
93 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
94 struct kvm_cpuid_entry2 __user *entries);
96 struct kvm_x86_ops *kvm_x86_ops;
97 EXPORT_SYMBOL_GPL(kvm_x86_ops);
100 module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
102 #define KVM_NR_SHARED_MSRS 16
104 struct kvm_shared_msrs_global {
106 u32 msrs[KVM_NR_SHARED_MSRS];
109 struct kvm_shared_msrs {
110 struct user_return_notifier urn;
112 struct kvm_shared_msr_values {
115 } values[KVM_NR_SHARED_MSRS];
118 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
119 static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
121 struct kvm_stats_debugfs_item debugfs_entries[] = {
122 { "pf_fixed", VCPU_STAT(pf_fixed) },
123 { "pf_guest", VCPU_STAT(pf_guest) },
124 { "tlb_flush", VCPU_STAT(tlb_flush) },
125 { "invlpg", VCPU_STAT(invlpg) },
126 { "exits", VCPU_STAT(exits) },
127 { "io_exits", VCPU_STAT(io_exits) },
128 { "mmio_exits", VCPU_STAT(mmio_exits) },
129 { "signal_exits", VCPU_STAT(signal_exits) },
130 { "irq_window", VCPU_STAT(irq_window_exits) },
131 { "nmi_window", VCPU_STAT(nmi_window_exits) },
132 { "halt_exits", VCPU_STAT(halt_exits) },
133 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
134 { "hypercalls", VCPU_STAT(hypercalls) },
135 { "request_irq", VCPU_STAT(request_irq_exits) },
136 { "irq_exits", VCPU_STAT(irq_exits) },
137 { "host_state_reload", VCPU_STAT(host_state_reload) },
138 { "efer_reload", VCPU_STAT(efer_reload) },
139 { "fpu_reload", VCPU_STAT(fpu_reload) },
140 { "insn_emulation", VCPU_STAT(insn_emulation) },
141 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
142 { "irq_injections", VCPU_STAT(irq_injections) },
143 { "nmi_injections", VCPU_STAT(nmi_injections) },
144 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
145 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
146 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
147 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
148 { "mmu_flooded", VM_STAT(mmu_flooded) },
149 { "mmu_recycled", VM_STAT(mmu_recycled) },
150 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
151 { "mmu_unsync", VM_STAT(mmu_unsync) },
152 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
153 { "largepages", VM_STAT(lpages) },
157 u64 __read_mostly host_xcr0;
159 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
162 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
163 vcpu->arch.apf.gfns[i] = ~0;
166 static void kvm_on_user_return(struct user_return_notifier *urn)
169 struct kvm_shared_msrs *locals
170 = container_of(urn, struct kvm_shared_msrs, urn);
171 struct kvm_shared_msr_values *values;
173 for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
174 values = &locals->values[slot];
175 if (values->host != values->curr) {
176 wrmsrl(shared_msrs_global.msrs[slot], values->host);
177 values->curr = values->host;
180 locals->registered = false;
181 user_return_notifier_unregister(urn);
184 static void shared_msr_update(unsigned slot, u32 msr)
186 struct kvm_shared_msrs *smsr;
189 smsr = &__get_cpu_var(shared_msrs);
190 /* only read, and nobody should modify it at this time,
191 * so don't need lock */
192 if (slot >= shared_msrs_global.nr) {
193 printk(KERN_ERR "kvm: invalid MSR slot!");
196 rdmsrl_safe(msr, &value);
197 smsr->values[slot].host = value;
198 smsr->values[slot].curr = value;
201 void kvm_define_shared_msr(unsigned slot, u32 msr)
203 if (slot >= shared_msrs_global.nr)
204 shared_msrs_global.nr = slot + 1;
205 shared_msrs_global.msrs[slot] = msr;
206 /* we need ensured the shared_msr_global have been updated */
209 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
211 static void kvm_shared_msr_cpu_online(void)
215 for (i = 0; i < shared_msrs_global.nr; ++i)
216 shared_msr_update(i, shared_msrs_global.msrs[i]);
219 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
221 struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
223 if (((value ^ smsr->values[slot].curr) & mask) == 0)
225 smsr->values[slot].curr = value;
226 wrmsrl(shared_msrs_global.msrs[slot], value);
227 if (!smsr->registered) {
228 smsr->urn.on_user_return = kvm_on_user_return;
229 user_return_notifier_register(&smsr->urn);
230 smsr->registered = true;
233 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
235 static void drop_user_return_notifiers(void *ignore)
237 struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
239 if (smsr->registered)
240 kvm_on_user_return(&smsr->urn);
243 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
245 if (irqchip_in_kernel(vcpu->kvm))
246 return vcpu->arch.apic_base;
248 return vcpu->arch.apic_base;
250 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
252 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
254 /* TODO: reserve bits check */
255 if (irqchip_in_kernel(vcpu->kvm))
256 kvm_lapic_set_base(vcpu, data);
258 vcpu->arch.apic_base = data;
260 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
262 #define EXCPT_BENIGN 0
263 #define EXCPT_CONTRIBUTORY 1
266 static int exception_class(int vector)
276 return EXCPT_CONTRIBUTORY;
283 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
284 unsigned nr, bool has_error, u32 error_code,
290 kvm_make_request(KVM_REQ_EVENT, vcpu);
292 if (!vcpu->arch.exception.pending) {
294 vcpu->arch.exception.pending = true;
295 vcpu->arch.exception.has_error_code = has_error;
296 vcpu->arch.exception.nr = nr;
297 vcpu->arch.exception.error_code = error_code;
298 vcpu->arch.exception.reinject = reinject;
302 /* to check exception */
303 prev_nr = vcpu->arch.exception.nr;
304 if (prev_nr == DF_VECTOR) {
305 /* triple fault -> shutdown */
306 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
309 class1 = exception_class(prev_nr);
310 class2 = exception_class(nr);
311 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
312 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
313 /* generate double fault per SDM Table 5-5 */
314 vcpu->arch.exception.pending = true;
315 vcpu->arch.exception.has_error_code = true;
316 vcpu->arch.exception.nr = DF_VECTOR;
317 vcpu->arch.exception.error_code = 0;
319 /* replace previous exception with a new one in a hope
320 that instruction re-execution will regenerate lost
325 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
327 kvm_multiple_exception(vcpu, nr, false, 0, false);
329 EXPORT_SYMBOL_GPL(kvm_queue_exception);
331 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
333 kvm_multiple_exception(vcpu, nr, false, 0, true);
335 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
337 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
340 kvm_inject_gp(vcpu, 0);
342 kvm_x86_ops->skip_emulated_instruction(vcpu);
344 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
346 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
348 ++vcpu->stat.pf_guest;
349 vcpu->arch.cr2 = fault->address;
350 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
353 void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
355 if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
356 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
358 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
361 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
363 kvm_make_request(KVM_REQ_EVENT, vcpu);
364 vcpu->arch.nmi_pending = 1;
366 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
368 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
370 kvm_multiple_exception(vcpu, nr, true, error_code, false);
372 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
374 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
376 kvm_multiple_exception(vcpu, nr, true, error_code, true);
378 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
381 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
382 * a #GP and return false.
384 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
386 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
388 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
391 EXPORT_SYMBOL_GPL(kvm_require_cpl);
394 * This function will be used to read from the physical memory of the currently
395 * running guest. The difference to kvm_read_guest_page is that this function
396 * can read from guest physical or from the guest's guest physical memory.
398 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
399 gfn_t ngfn, void *data, int offset, int len,
405 ngpa = gfn_to_gpa(ngfn);
406 real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
407 if (real_gfn == UNMAPPED_GVA)
410 real_gfn = gpa_to_gfn(real_gfn);
412 return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
414 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
416 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
417 void *data, int offset, int len, u32 access)
419 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
420 data, offset, len, access);
424 * Load the pae pdptrs. Return true is they are all valid.
426 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
428 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
429 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
432 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
434 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
435 offset * sizeof(u64), sizeof(pdpte),
436 PFERR_USER_MASK|PFERR_WRITE_MASK);
441 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
442 if (is_present_gpte(pdpte[i]) &&
443 (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
450 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
451 __set_bit(VCPU_EXREG_PDPTR,
452 (unsigned long *)&vcpu->arch.regs_avail);
453 __set_bit(VCPU_EXREG_PDPTR,
454 (unsigned long *)&vcpu->arch.regs_dirty);
459 EXPORT_SYMBOL_GPL(load_pdptrs);
461 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
463 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
469 if (is_long_mode(vcpu) || !is_pae(vcpu))
472 if (!test_bit(VCPU_EXREG_PDPTR,
473 (unsigned long *)&vcpu->arch.regs_avail))
476 gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
477 offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
478 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
479 PFERR_USER_MASK | PFERR_WRITE_MASK);
482 changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
488 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
490 unsigned long old_cr0 = kvm_read_cr0(vcpu);
491 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
492 X86_CR0_CD | X86_CR0_NW;
497 if (cr0 & 0xffffffff00000000UL)
501 cr0 &= ~CR0_RESERVED_BITS;
503 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
506 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
509 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
511 if ((vcpu->arch.efer & EFER_LME)) {
516 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
521 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
526 kvm_x86_ops->set_cr0(vcpu, cr0);
528 if ((cr0 ^ old_cr0) & X86_CR0_PG)
529 kvm_clear_async_pf_completion_queue(vcpu);
531 if ((cr0 ^ old_cr0) & update_bits)
532 kvm_mmu_reset_context(vcpu);
535 EXPORT_SYMBOL_GPL(kvm_set_cr0);
537 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
539 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
541 EXPORT_SYMBOL_GPL(kvm_lmsw);
543 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
547 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
548 if (index != XCR_XFEATURE_ENABLED_MASK)
551 if (kvm_x86_ops->get_cpl(vcpu) != 0)
553 if (!(xcr0 & XSTATE_FP))
555 if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
557 if (xcr0 & ~host_xcr0)
559 vcpu->arch.xcr0 = xcr0;
560 vcpu->guest_xcr0_loaded = 0;
564 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
566 if (__kvm_set_xcr(vcpu, index, xcr)) {
567 kvm_inject_gp(vcpu, 0);
572 EXPORT_SYMBOL_GPL(kvm_set_xcr);
574 static bool guest_cpuid_has_xsave(struct kvm_vcpu *vcpu)
576 struct kvm_cpuid_entry2 *best;
578 best = kvm_find_cpuid_entry(vcpu, 1, 0);
579 return best && (best->ecx & bit(X86_FEATURE_XSAVE));
582 static void update_cpuid(struct kvm_vcpu *vcpu)
584 struct kvm_cpuid_entry2 *best;
586 best = kvm_find_cpuid_entry(vcpu, 1, 0);
590 /* Update OSXSAVE bit */
591 if (cpu_has_xsave && best->function == 0x1) {
592 best->ecx &= ~(bit(X86_FEATURE_OSXSAVE));
593 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
594 best->ecx |= bit(X86_FEATURE_OSXSAVE);
598 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
600 unsigned long old_cr4 = kvm_read_cr4(vcpu);
601 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
603 if (cr4 & CR4_RESERVED_BITS)
606 if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
609 if (is_long_mode(vcpu)) {
610 if (!(cr4 & X86_CR4_PAE))
612 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
613 && ((cr4 ^ old_cr4) & pdptr_bits)
614 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
618 if (cr4 & X86_CR4_VMXE)
621 kvm_x86_ops->set_cr4(vcpu, cr4);
623 if ((cr4 ^ old_cr4) & pdptr_bits)
624 kvm_mmu_reset_context(vcpu);
626 if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
631 EXPORT_SYMBOL_GPL(kvm_set_cr4);
633 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
635 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
636 kvm_mmu_sync_roots(vcpu);
637 kvm_mmu_flush_tlb(vcpu);
641 if (is_long_mode(vcpu)) {
642 if (cr3 & CR3_L_MODE_RESERVED_BITS)
646 if (cr3 & CR3_PAE_RESERVED_BITS)
648 if (is_paging(vcpu) &&
649 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
653 * We don't check reserved bits in nonpae mode, because
654 * this isn't enforced, and VMware depends on this.
659 * Does the new cr3 value map to physical memory? (Note, we
660 * catch an invalid cr3 even in real-mode, because it would
661 * cause trouble later on when we turn on paging anyway.)
663 * A real CPU would silently accept an invalid cr3 and would
664 * attempt to use it - with largely undefined (and often hard
665 * to debug) behavior on the guest side.
667 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
669 vcpu->arch.cr3 = cr3;
670 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
671 vcpu->arch.mmu.new_cr3(vcpu);
674 EXPORT_SYMBOL_GPL(kvm_set_cr3);
676 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
678 if (cr8 & CR8_RESERVED_BITS)
680 if (irqchip_in_kernel(vcpu->kvm))
681 kvm_lapic_set_tpr(vcpu, cr8);
683 vcpu->arch.cr8 = cr8;
686 EXPORT_SYMBOL_GPL(kvm_set_cr8);
688 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
690 if (irqchip_in_kernel(vcpu->kvm))
691 return kvm_lapic_get_cr8(vcpu);
693 return vcpu->arch.cr8;
695 EXPORT_SYMBOL_GPL(kvm_get_cr8);
697 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
701 vcpu->arch.db[dr] = val;
702 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
703 vcpu->arch.eff_db[dr] = val;
706 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
710 if (val & 0xffffffff00000000ULL)
712 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
715 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
719 if (val & 0xffffffff00000000ULL)
721 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
722 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
723 kvm_x86_ops->set_dr7(vcpu, vcpu->arch.dr7);
724 vcpu->arch.switch_db_regs = (val & DR7_BP_EN_MASK);
732 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
736 res = __kvm_set_dr(vcpu, dr, val);
738 kvm_queue_exception(vcpu, UD_VECTOR);
740 kvm_inject_gp(vcpu, 0);
744 EXPORT_SYMBOL_GPL(kvm_set_dr);
746 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
750 *val = vcpu->arch.db[dr];
753 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
757 *val = vcpu->arch.dr6;
760 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
764 *val = vcpu->arch.dr7;
771 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
773 if (_kvm_get_dr(vcpu, dr, val)) {
774 kvm_queue_exception(vcpu, UD_VECTOR);
779 EXPORT_SYMBOL_GPL(kvm_get_dr);
782 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
783 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
785 * This list is modified at module load time to reflect the
786 * capabilities of the host cpu. This capabilities test skips MSRs that are
787 * kvm-specific. Those are put in the beginning of the list.
790 #define KVM_SAVE_MSRS_BEGIN 8
791 static u32 msrs_to_save[] = {
792 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
793 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
794 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
795 HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN,
796 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
799 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
801 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
804 static unsigned num_msrs_to_save;
806 static u32 emulated_msrs[] = {
807 MSR_IA32_MISC_ENABLE,
812 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
814 u64 old_efer = vcpu->arch.efer;
816 if (efer & efer_reserved_bits)
820 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
823 if (efer & EFER_FFXSR) {
824 struct kvm_cpuid_entry2 *feat;
826 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
827 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
831 if (efer & EFER_SVME) {
832 struct kvm_cpuid_entry2 *feat;
834 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
835 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
840 efer |= vcpu->arch.efer & EFER_LMA;
842 kvm_x86_ops->set_efer(vcpu, efer);
844 vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
846 /* Update reserved bits */
847 if ((efer ^ old_efer) & EFER_NX)
848 kvm_mmu_reset_context(vcpu);
853 void kvm_enable_efer_bits(u64 mask)
855 efer_reserved_bits &= ~mask;
857 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
861 * Writes msr value into into the appropriate "register".
862 * Returns 0 on success, non-0 otherwise.
863 * Assumes vcpu_load() was already called.
865 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
867 return kvm_x86_ops->set_msr(vcpu, msr_index, data);
871 * Adapt set_msr() to msr_io()'s calling convention
873 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
875 return kvm_set_msr(vcpu, index, *data);
878 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
882 struct pvclock_wall_clock wc;
883 struct timespec boot;
888 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
893 ++version; /* first time write, random junk */
897 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
900 * The guest calculates current wall clock time by adding
901 * system time (updated by kvm_guest_time_update below) to the
902 * wall clock specified here. guest system time equals host
903 * system time for us, thus we must fill in host boot time here.
907 wc.sec = boot.tv_sec;
908 wc.nsec = boot.tv_nsec;
909 wc.version = version;
911 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
914 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
917 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
919 uint32_t quotient, remainder;
921 /* Don't try to replace with do_div(), this one calculates
922 * "(dividend << 32) / divisor" */
924 : "=a" (quotient), "=d" (remainder)
925 : "0" (0), "1" (dividend), "r" (divisor) );
929 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
930 s8 *pshift, u32 *pmultiplier)
937 tps64 = base_khz * 1000LL;
938 scaled64 = scaled_khz * 1000LL;
939 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
944 tps32 = (uint32_t)tps64;
945 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
946 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
954 *pmultiplier = div_frac(scaled64, tps32);
956 pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
957 __func__, base_khz, scaled_khz, shift, *pmultiplier);
960 static inline u64 get_kernel_ns(void)
964 WARN_ON(preemptible());
966 monotonic_to_bootbased(&ts);
967 return timespec_to_ns(&ts);
970 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
971 unsigned long max_tsc_khz;
973 static inline int kvm_tsc_changes_freq(void)
976 int ret = !boot_cpu_has(X86_FEATURE_CONSTANT_TSC) &&
977 cpufreq_quick_get(cpu) != 0;
982 static inline u64 nsec_to_cycles(u64 nsec)
986 WARN_ON(preemptible());
987 if (kvm_tsc_changes_freq())
988 printk_once(KERN_WARNING
989 "kvm: unreliable cycle conversion on adjustable rate TSC\n");
990 ret = nsec * __this_cpu_read(cpu_tsc_khz);
991 do_div(ret, USEC_PER_SEC);
995 static void kvm_arch_set_tsc_khz(struct kvm *kvm, u32 this_tsc_khz)
997 /* Compute a scale to convert nanoseconds in TSC cycles */
998 kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
999 &kvm->arch.virtual_tsc_shift,
1000 &kvm->arch.virtual_tsc_mult);
1001 kvm->arch.virtual_tsc_khz = this_tsc_khz;
1004 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1006 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.last_tsc_nsec,
1007 vcpu->kvm->arch.virtual_tsc_mult,
1008 vcpu->kvm->arch.virtual_tsc_shift);
1009 tsc += vcpu->arch.last_tsc_write;
1013 void kvm_write_tsc(struct kvm_vcpu *vcpu, u64 data)
1015 struct kvm *kvm = vcpu->kvm;
1016 u64 offset, ns, elapsed;
1017 unsigned long flags;
1020 spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1021 offset = data - native_read_tsc();
1022 ns = get_kernel_ns();
1023 elapsed = ns - kvm->arch.last_tsc_nsec;
1024 sdiff = data - kvm->arch.last_tsc_write;
1029 * Special case: close write to TSC within 5 seconds of
1030 * another CPU is interpreted as an attempt to synchronize
1031 * The 5 seconds is to accomodate host load / swapping as
1032 * well as any reset of TSC during the boot process.
1034 * In that case, for a reliable TSC, we can match TSC offsets,
1035 * or make a best guest using elapsed value.
1037 if (sdiff < nsec_to_cycles(5ULL * NSEC_PER_SEC) &&
1038 elapsed < 5ULL * NSEC_PER_SEC) {
1039 if (!check_tsc_unstable()) {
1040 offset = kvm->arch.last_tsc_offset;
1041 pr_debug("kvm: matched tsc offset for %llu\n", data);
1043 u64 delta = nsec_to_cycles(elapsed);
1045 pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1047 ns = kvm->arch.last_tsc_nsec;
1049 kvm->arch.last_tsc_nsec = ns;
1050 kvm->arch.last_tsc_write = data;
1051 kvm->arch.last_tsc_offset = offset;
1052 kvm_x86_ops->write_tsc_offset(vcpu, offset);
1053 spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1055 /* Reset of TSC must disable overshoot protection below */
1056 vcpu->arch.hv_clock.tsc_timestamp = 0;
1057 vcpu->arch.last_tsc_write = data;
1058 vcpu->arch.last_tsc_nsec = ns;
1060 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1062 static int kvm_guest_time_update(struct kvm_vcpu *v)
1064 unsigned long flags;
1065 struct kvm_vcpu_arch *vcpu = &v->arch;
1067 unsigned long this_tsc_khz;
1068 s64 kernel_ns, max_kernel_ns;
1071 /* Keep irq disabled to prevent changes to the clock */
1072 local_irq_save(flags);
1073 kvm_get_msr(v, MSR_IA32_TSC, &tsc_timestamp);
1074 kernel_ns = get_kernel_ns();
1075 this_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1077 if (unlikely(this_tsc_khz == 0)) {
1078 local_irq_restore(flags);
1079 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1084 * We may have to catch up the TSC to match elapsed wall clock
1085 * time for two reasons, even if kvmclock is used.
1086 * 1) CPU could have been running below the maximum TSC rate
1087 * 2) Broken TSC compensation resets the base at each VCPU
1088 * entry to avoid unknown leaps of TSC even when running
1089 * again on the same CPU. This may cause apparent elapsed
1090 * time to disappear, and the guest to stand still or run
1093 if (vcpu->tsc_catchup) {
1094 u64 tsc = compute_guest_tsc(v, kernel_ns);
1095 if (tsc > tsc_timestamp) {
1096 kvm_x86_ops->adjust_tsc_offset(v, tsc - tsc_timestamp);
1097 tsc_timestamp = tsc;
1101 local_irq_restore(flags);
1103 if (!vcpu->time_page)
1107 * Time as measured by the TSC may go backwards when resetting the base
1108 * tsc_timestamp. The reason for this is that the TSC resolution is
1109 * higher than the resolution of the other clock scales. Thus, many
1110 * possible measurments of the TSC correspond to one measurement of any
1111 * other clock, and so a spread of values is possible. This is not a
1112 * problem for the computation of the nanosecond clock; with TSC rates
1113 * around 1GHZ, there can only be a few cycles which correspond to one
1114 * nanosecond value, and any path through this code will inevitably
1115 * take longer than that. However, with the kernel_ns value itself,
1116 * the precision may be much lower, down to HZ granularity. If the
1117 * first sampling of TSC against kernel_ns ends in the low part of the
1118 * range, and the second in the high end of the range, we can get:
1120 * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
1122 * As the sampling errors potentially range in the thousands of cycles,
1123 * it is possible such a time value has already been observed by the
1124 * guest. To protect against this, we must compute the system time as
1125 * observed by the guest and ensure the new system time is greater.
1128 if (vcpu->hv_clock.tsc_timestamp && vcpu->last_guest_tsc) {
1129 max_kernel_ns = vcpu->last_guest_tsc -
1130 vcpu->hv_clock.tsc_timestamp;
1131 max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
1132 vcpu->hv_clock.tsc_to_system_mul,
1133 vcpu->hv_clock.tsc_shift);
1134 max_kernel_ns += vcpu->last_kernel_ns;
1137 if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1138 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1139 &vcpu->hv_clock.tsc_shift,
1140 &vcpu->hv_clock.tsc_to_system_mul);
1141 vcpu->hw_tsc_khz = this_tsc_khz;
1144 if (max_kernel_ns > kernel_ns)
1145 kernel_ns = max_kernel_ns;
1147 /* With all the info we got, fill in the values */
1148 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1149 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1150 vcpu->last_kernel_ns = kernel_ns;
1151 vcpu->last_guest_tsc = tsc_timestamp;
1152 vcpu->hv_clock.flags = 0;
1155 * The interface expects us to write an even number signaling that the
1156 * update is finished. Since the guest won't see the intermediate
1157 * state, we just increase by 2 at the end.
1159 vcpu->hv_clock.version += 2;
1161 shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
1163 memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
1164 sizeof(vcpu->hv_clock));
1166 kunmap_atomic(shared_kaddr, KM_USER0);
1168 mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
1172 static bool msr_mtrr_valid(unsigned msr)
1175 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1176 case MSR_MTRRfix64K_00000:
1177 case MSR_MTRRfix16K_80000:
1178 case MSR_MTRRfix16K_A0000:
1179 case MSR_MTRRfix4K_C0000:
1180 case MSR_MTRRfix4K_C8000:
1181 case MSR_MTRRfix4K_D0000:
1182 case MSR_MTRRfix4K_D8000:
1183 case MSR_MTRRfix4K_E0000:
1184 case MSR_MTRRfix4K_E8000:
1185 case MSR_MTRRfix4K_F0000:
1186 case MSR_MTRRfix4K_F8000:
1187 case MSR_MTRRdefType:
1188 case MSR_IA32_CR_PAT:
1196 static bool valid_pat_type(unsigned t)
1198 return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1201 static bool valid_mtrr_type(unsigned t)
1203 return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1206 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1210 if (!msr_mtrr_valid(msr))
1213 if (msr == MSR_IA32_CR_PAT) {
1214 for (i = 0; i < 8; i++)
1215 if (!valid_pat_type((data >> (i * 8)) & 0xff))
1218 } else if (msr == MSR_MTRRdefType) {
1221 return valid_mtrr_type(data & 0xff);
1222 } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1223 for (i = 0; i < 8 ; i++)
1224 if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1229 /* variable MTRRs */
1230 return valid_mtrr_type(data & 0xff);
1233 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1235 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1237 if (!mtrr_valid(vcpu, msr, data))
1240 if (msr == MSR_MTRRdefType) {
1241 vcpu->arch.mtrr_state.def_type = data;
1242 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1243 } else if (msr == MSR_MTRRfix64K_00000)
1245 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1246 p[1 + msr - MSR_MTRRfix16K_80000] = data;
1247 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1248 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1249 else if (msr == MSR_IA32_CR_PAT)
1250 vcpu->arch.pat = data;
1251 else { /* Variable MTRRs */
1252 int idx, is_mtrr_mask;
1255 idx = (msr - 0x200) / 2;
1256 is_mtrr_mask = msr - 0x200 - 2 * idx;
1259 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1262 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1266 kvm_mmu_reset_context(vcpu);
1270 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1272 u64 mcg_cap = vcpu->arch.mcg_cap;
1273 unsigned bank_num = mcg_cap & 0xff;
1276 case MSR_IA32_MCG_STATUS:
1277 vcpu->arch.mcg_status = data;
1279 case MSR_IA32_MCG_CTL:
1280 if (!(mcg_cap & MCG_CTL_P))
1282 if (data != 0 && data != ~(u64)0)
1284 vcpu->arch.mcg_ctl = data;
1287 if (msr >= MSR_IA32_MC0_CTL &&
1288 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1289 u32 offset = msr - MSR_IA32_MC0_CTL;
1290 /* only 0 or all 1s can be written to IA32_MCi_CTL
1291 * some Linux kernels though clear bit 10 in bank 4 to
1292 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1293 * this to avoid an uncatched #GP in the guest
1295 if ((offset & 0x3) == 0 &&
1296 data != 0 && (data | (1 << 10)) != ~(u64)0)
1298 vcpu->arch.mce_banks[offset] = data;
1306 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1308 struct kvm *kvm = vcpu->kvm;
1309 int lm = is_long_mode(vcpu);
1310 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1311 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1312 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1313 : kvm->arch.xen_hvm_config.blob_size_32;
1314 u32 page_num = data & ~PAGE_MASK;
1315 u64 page_addr = data & PAGE_MASK;
1320 if (page_num >= blob_size)
1323 page = kzalloc(PAGE_SIZE, GFP_KERNEL);
1327 if (copy_from_user(page, blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE))
1329 if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1338 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1340 return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1343 static bool kvm_hv_msr_partition_wide(u32 msr)
1347 case HV_X64_MSR_GUEST_OS_ID:
1348 case HV_X64_MSR_HYPERCALL:
1356 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1358 struct kvm *kvm = vcpu->kvm;
1361 case HV_X64_MSR_GUEST_OS_ID:
1362 kvm->arch.hv_guest_os_id = data;
1363 /* setting guest os id to zero disables hypercall page */
1364 if (!kvm->arch.hv_guest_os_id)
1365 kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1367 case HV_X64_MSR_HYPERCALL: {
1372 /* if guest os id is not set hypercall should remain disabled */
1373 if (!kvm->arch.hv_guest_os_id)
1375 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1376 kvm->arch.hv_hypercall = data;
1379 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1380 addr = gfn_to_hva(kvm, gfn);
1381 if (kvm_is_error_hva(addr))
1383 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1384 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1385 if (copy_to_user((void __user *)addr, instructions, 4))
1387 kvm->arch.hv_hypercall = data;
1391 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1392 "data 0x%llx\n", msr, data);
1398 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1401 case HV_X64_MSR_APIC_ASSIST_PAGE: {
1404 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1405 vcpu->arch.hv_vapic = data;
1408 addr = gfn_to_hva(vcpu->kvm, data >>
1409 HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1410 if (kvm_is_error_hva(addr))
1412 if (clear_user((void __user *)addr, PAGE_SIZE))
1414 vcpu->arch.hv_vapic = data;
1417 case HV_X64_MSR_EOI:
1418 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1419 case HV_X64_MSR_ICR:
1420 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1421 case HV_X64_MSR_TPR:
1422 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1424 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1425 "data 0x%llx\n", msr, data);
1432 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1434 gpa_t gpa = data & ~0x3f;
1436 /* Bits 2:5 are resrved, Should be zero */
1440 vcpu->arch.apf.msr_val = data;
1442 if (!(data & KVM_ASYNC_PF_ENABLED)) {
1443 kvm_clear_async_pf_completion_queue(vcpu);
1444 kvm_async_pf_hash_reset(vcpu);
1448 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa))
1451 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1452 kvm_async_pf_wakeup_all(vcpu);
1456 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1460 return set_efer(vcpu, data);
1462 data &= ~(u64)0x40; /* ignore flush filter disable */
1463 data &= ~(u64)0x100; /* ignore ignne emulation enable */
1465 pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1470 case MSR_FAM10H_MMIO_CONF_BASE:
1472 pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1477 case MSR_AMD64_NB_CFG:
1479 case MSR_IA32_DEBUGCTLMSR:
1481 /* We support the non-activated case already */
1483 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1484 /* Values other than LBR and BTF are vendor-specific,
1485 thus reserved and should throw a #GP */
1488 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1491 case MSR_IA32_UCODE_REV:
1492 case MSR_IA32_UCODE_WRITE:
1493 case MSR_VM_HSAVE_PA:
1494 case MSR_AMD64_PATCH_LOADER:
1496 case 0x200 ... 0x2ff:
1497 return set_msr_mtrr(vcpu, msr, data);
1498 case MSR_IA32_APICBASE:
1499 kvm_set_apic_base(vcpu, data);
1501 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1502 return kvm_x2apic_msr_write(vcpu, msr, data);
1503 case MSR_IA32_MISC_ENABLE:
1504 vcpu->arch.ia32_misc_enable_msr = data;
1506 case MSR_KVM_WALL_CLOCK_NEW:
1507 case MSR_KVM_WALL_CLOCK:
1508 vcpu->kvm->arch.wall_clock = data;
1509 kvm_write_wall_clock(vcpu->kvm, data);
1511 case MSR_KVM_SYSTEM_TIME_NEW:
1512 case MSR_KVM_SYSTEM_TIME: {
1513 if (vcpu->arch.time_page) {
1514 kvm_release_page_dirty(vcpu->arch.time_page);
1515 vcpu->arch.time_page = NULL;
1518 vcpu->arch.time = data;
1519 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1521 /* we verify if the enable bit is set... */
1525 /* ...but clean it before doing the actual write */
1526 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
1528 vcpu->arch.time_page =
1529 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
1531 if (is_error_page(vcpu->arch.time_page)) {
1532 kvm_release_page_clean(vcpu->arch.time_page);
1533 vcpu->arch.time_page = NULL;
1537 case MSR_KVM_ASYNC_PF_EN:
1538 if (kvm_pv_enable_async_pf(vcpu, data))
1541 case MSR_IA32_MCG_CTL:
1542 case MSR_IA32_MCG_STATUS:
1543 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1544 return set_msr_mce(vcpu, msr, data);
1546 /* Performance counters are not protected by a CPUID bit,
1547 * so we should check all of them in the generic path for the sake of
1548 * cross vendor migration.
1549 * Writing a zero into the event select MSRs disables them,
1550 * which we perfectly emulate ;-). Any other value should be at least
1551 * reported, some guests depend on them.
1553 case MSR_P6_EVNTSEL0:
1554 case MSR_P6_EVNTSEL1:
1555 case MSR_K7_EVNTSEL0:
1556 case MSR_K7_EVNTSEL1:
1557 case MSR_K7_EVNTSEL2:
1558 case MSR_K7_EVNTSEL3:
1560 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1561 "0x%x data 0x%llx\n", msr, data);
1563 /* at least RHEL 4 unconditionally writes to the perfctr registers,
1564 * so we ignore writes to make it happy.
1566 case MSR_P6_PERFCTR0:
1567 case MSR_P6_PERFCTR1:
1568 case MSR_K7_PERFCTR0:
1569 case MSR_K7_PERFCTR1:
1570 case MSR_K7_PERFCTR2:
1571 case MSR_K7_PERFCTR3:
1572 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1573 "0x%x data 0x%llx\n", msr, data);
1575 case MSR_K7_CLK_CTL:
1577 * Ignore all writes to this no longer documented MSR.
1578 * Writes are only relevant for old K7 processors,
1579 * all pre-dating SVM, but a recommended workaround from
1580 * AMD for these chips. It is possible to speicify the
1581 * affected processor models on the command line, hence
1582 * the need to ignore the workaround.
1585 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1586 if (kvm_hv_msr_partition_wide(msr)) {
1588 mutex_lock(&vcpu->kvm->lock);
1589 r = set_msr_hyperv_pw(vcpu, msr, data);
1590 mutex_unlock(&vcpu->kvm->lock);
1593 return set_msr_hyperv(vcpu, msr, data);
1596 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
1597 return xen_hvm_config(vcpu, data);
1599 pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
1603 pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
1610 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1614 * Reads an msr value (of 'msr_index') into 'pdata'.
1615 * Returns 0 on success, non-0 otherwise.
1616 * Assumes vcpu_load() was already called.
1618 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1620 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
1623 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1625 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1627 if (!msr_mtrr_valid(msr))
1630 if (msr == MSR_MTRRdefType)
1631 *pdata = vcpu->arch.mtrr_state.def_type +
1632 (vcpu->arch.mtrr_state.enabled << 10);
1633 else if (msr == MSR_MTRRfix64K_00000)
1635 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1636 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
1637 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1638 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
1639 else if (msr == MSR_IA32_CR_PAT)
1640 *pdata = vcpu->arch.pat;
1641 else { /* Variable MTRRs */
1642 int idx, is_mtrr_mask;
1645 idx = (msr - 0x200) / 2;
1646 is_mtrr_mask = msr - 0x200 - 2 * idx;
1649 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1652 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1659 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1662 u64 mcg_cap = vcpu->arch.mcg_cap;
1663 unsigned bank_num = mcg_cap & 0xff;
1666 case MSR_IA32_P5_MC_ADDR:
1667 case MSR_IA32_P5_MC_TYPE:
1670 case MSR_IA32_MCG_CAP:
1671 data = vcpu->arch.mcg_cap;
1673 case MSR_IA32_MCG_CTL:
1674 if (!(mcg_cap & MCG_CTL_P))
1676 data = vcpu->arch.mcg_ctl;
1678 case MSR_IA32_MCG_STATUS:
1679 data = vcpu->arch.mcg_status;
1682 if (msr >= MSR_IA32_MC0_CTL &&
1683 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1684 u32 offset = msr - MSR_IA32_MC0_CTL;
1685 data = vcpu->arch.mce_banks[offset];
1694 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1697 struct kvm *kvm = vcpu->kvm;
1700 case HV_X64_MSR_GUEST_OS_ID:
1701 data = kvm->arch.hv_guest_os_id;
1703 case HV_X64_MSR_HYPERCALL:
1704 data = kvm->arch.hv_hypercall;
1707 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1715 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1720 case HV_X64_MSR_VP_INDEX: {
1723 kvm_for_each_vcpu(r, v, vcpu->kvm)
1728 case HV_X64_MSR_EOI:
1729 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
1730 case HV_X64_MSR_ICR:
1731 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
1732 case HV_X64_MSR_TPR:
1733 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1735 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1742 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1747 case MSR_IA32_PLATFORM_ID:
1748 case MSR_IA32_UCODE_REV:
1749 case MSR_IA32_EBL_CR_POWERON:
1750 case MSR_IA32_DEBUGCTLMSR:
1751 case MSR_IA32_LASTBRANCHFROMIP:
1752 case MSR_IA32_LASTBRANCHTOIP:
1753 case MSR_IA32_LASTINTFROMIP:
1754 case MSR_IA32_LASTINTTOIP:
1757 case MSR_VM_HSAVE_PA:
1758 case MSR_P6_PERFCTR0:
1759 case MSR_P6_PERFCTR1:
1760 case MSR_P6_EVNTSEL0:
1761 case MSR_P6_EVNTSEL1:
1762 case MSR_K7_EVNTSEL0:
1763 case MSR_K7_PERFCTR0:
1764 case MSR_K8_INT_PENDING_MSG:
1765 case MSR_AMD64_NB_CFG:
1766 case MSR_FAM10H_MMIO_CONF_BASE:
1770 data = 0x500 | KVM_NR_VAR_MTRR;
1772 case 0x200 ... 0x2ff:
1773 return get_msr_mtrr(vcpu, msr, pdata);
1774 case 0xcd: /* fsb frequency */
1778 * MSR_EBC_FREQUENCY_ID
1779 * Conservative value valid for even the basic CPU models.
1780 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
1781 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
1782 * and 266MHz for model 3, or 4. Set Core Clock
1783 * Frequency to System Bus Frequency Ratio to 1 (bits
1784 * 31:24) even though these are only valid for CPU
1785 * models > 2, however guests may end up dividing or
1786 * multiplying by zero otherwise.
1788 case MSR_EBC_FREQUENCY_ID:
1791 case MSR_IA32_APICBASE:
1792 data = kvm_get_apic_base(vcpu);
1794 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1795 return kvm_x2apic_msr_read(vcpu, msr, pdata);
1797 case MSR_IA32_MISC_ENABLE:
1798 data = vcpu->arch.ia32_misc_enable_msr;
1800 case MSR_IA32_PERF_STATUS:
1801 /* TSC increment by tick */
1803 /* CPU multiplier */
1804 data |= (((uint64_t)4ULL) << 40);
1807 data = vcpu->arch.efer;
1809 case MSR_KVM_WALL_CLOCK:
1810 case MSR_KVM_WALL_CLOCK_NEW:
1811 data = vcpu->kvm->arch.wall_clock;
1813 case MSR_KVM_SYSTEM_TIME:
1814 case MSR_KVM_SYSTEM_TIME_NEW:
1815 data = vcpu->arch.time;
1817 case MSR_KVM_ASYNC_PF_EN:
1818 data = vcpu->arch.apf.msr_val;
1820 case MSR_IA32_P5_MC_ADDR:
1821 case MSR_IA32_P5_MC_TYPE:
1822 case MSR_IA32_MCG_CAP:
1823 case MSR_IA32_MCG_CTL:
1824 case MSR_IA32_MCG_STATUS:
1825 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1826 return get_msr_mce(vcpu, msr, pdata);
1827 case MSR_K7_CLK_CTL:
1829 * Provide expected ramp-up count for K7. All other
1830 * are set to zero, indicating minimum divisors for
1833 * This prevents guest kernels on AMD host with CPU
1834 * type 6, model 8 and higher from exploding due to
1835 * the rdmsr failing.
1839 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1840 if (kvm_hv_msr_partition_wide(msr)) {
1842 mutex_lock(&vcpu->kvm->lock);
1843 r = get_msr_hyperv_pw(vcpu, msr, pdata);
1844 mutex_unlock(&vcpu->kvm->lock);
1847 return get_msr_hyperv(vcpu, msr, pdata);
1851 pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
1854 pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
1862 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1865 * Read or write a bunch of msrs. All parameters are kernel addresses.
1867 * @return number of msrs set successfully.
1869 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
1870 struct kvm_msr_entry *entries,
1871 int (*do_msr)(struct kvm_vcpu *vcpu,
1872 unsigned index, u64 *data))
1876 idx = srcu_read_lock(&vcpu->kvm->srcu);
1877 for (i = 0; i < msrs->nmsrs; ++i)
1878 if (do_msr(vcpu, entries[i].index, &entries[i].data))
1880 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1886 * Read or write a bunch of msrs. Parameters are user addresses.
1888 * @return number of msrs set successfully.
1890 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
1891 int (*do_msr)(struct kvm_vcpu *vcpu,
1892 unsigned index, u64 *data),
1895 struct kvm_msrs msrs;
1896 struct kvm_msr_entry *entries;
1901 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
1905 if (msrs.nmsrs >= MAX_IO_MSRS)
1909 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
1910 entries = kmalloc(size, GFP_KERNEL);
1915 if (copy_from_user(entries, user_msrs->entries, size))
1918 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
1923 if (writeback && copy_to_user(user_msrs->entries, entries, size))
1934 int kvm_dev_ioctl_check_extension(long ext)
1939 case KVM_CAP_IRQCHIP:
1941 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
1942 case KVM_CAP_SET_TSS_ADDR:
1943 case KVM_CAP_EXT_CPUID:
1944 case KVM_CAP_CLOCKSOURCE:
1946 case KVM_CAP_NOP_IO_DELAY:
1947 case KVM_CAP_MP_STATE:
1948 case KVM_CAP_SYNC_MMU:
1949 case KVM_CAP_USER_NMI:
1950 case KVM_CAP_REINJECT_CONTROL:
1951 case KVM_CAP_IRQ_INJECT_STATUS:
1952 case KVM_CAP_ASSIGN_DEV_IRQ:
1954 case KVM_CAP_IOEVENTFD:
1956 case KVM_CAP_PIT_STATE2:
1957 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
1958 case KVM_CAP_XEN_HVM:
1959 case KVM_CAP_ADJUST_CLOCK:
1960 case KVM_CAP_VCPU_EVENTS:
1961 case KVM_CAP_HYPERV:
1962 case KVM_CAP_HYPERV_VAPIC:
1963 case KVM_CAP_HYPERV_SPIN:
1964 case KVM_CAP_PCI_SEGMENT:
1965 case KVM_CAP_DEBUGREGS:
1966 case KVM_CAP_X86_ROBUST_SINGLESTEP:
1968 case KVM_CAP_ASYNC_PF:
1971 case KVM_CAP_COALESCED_MMIO:
1972 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1975 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
1977 case KVM_CAP_NR_VCPUS:
1980 case KVM_CAP_NR_MEMSLOTS:
1981 r = KVM_MEMORY_SLOTS;
1983 case KVM_CAP_PV_MMU: /* obsolete */
1990 r = KVM_MAX_MCE_BANKS;
2003 long kvm_arch_dev_ioctl(struct file *filp,
2004 unsigned int ioctl, unsigned long arg)
2006 void __user *argp = (void __user *)arg;
2010 case KVM_GET_MSR_INDEX_LIST: {
2011 struct kvm_msr_list __user *user_msr_list = argp;
2012 struct kvm_msr_list msr_list;
2016 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2019 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2020 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2023 if (n < msr_list.nmsrs)
2026 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2027 num_msrs_to_save * sizeof(u32)))
2029 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2031 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2036 case KVM_GET_SUPPORTED_CPUID: {
2037 struct kvm_cpuid2 __user *cpuid_arg = argp;
2038 struct kvm_cpuid2 cpuid;
2041 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2043 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
2044 cpuid_arg->entries);
2049 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2054 case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2057 mce_cap = KVM_MCE_CAP_SUPPORTED;
2059 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2071 static void wbinvd_ipi(void *garbage)
2076 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2078 return vcpu->kvm->arch.iommu_domain &&
2079 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
2082 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2084 /* Address WBINVD may be executed by guest */
2085 if (need_emulate_wbinvd(vcpu)) {
2086 if (kvm_x86_ops->has_wbinvd_exit())
2087 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2088 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2089 smp_call_function_single(vcpu->cpu,
2090 wbinvd_ipi, NULL, 1);
2093 kvm_x86_ops->vcpu_load(vcpu, cpu);
2094 if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2095 /* Make sure TSC doesn't go backwards */
2096 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2097 native_read_tsc() - vcpu->arch.last_host_tsc;
2099 mark_tsc_unstable("KVM discovered backwards TSC");
2100 if (check_tsc_unstable()) {
2101 kvm_x86_ops->adjust_tsc_offset(vcpu, -tsc_delta);
2102 vcpu->arch.tsc_catchup = 1;
2103 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2105 if (vcpu->cpu != cpu)
2106 kvm_migrate_timers(vcpu);
2111 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2113 kvm_x86_ops->vcpu_put(vcpu);
2114 kvm_put_guest_fpu(vcpu);
2115 vcpu->arch.last_host_tsc = native_read_tsc();
2118 static int is_efer_nx(void)
2120 unsigned long long efer = 0;
2122 rdmsrl_safe(MSR_EFER, &efer);
2123 return efer & EFER_NX;
2126 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
2129 struct kvm_cpuid_entry2 *e, *entry;
2132 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
2133 e = &vcpu->arch.cpuid_entries[i];
2134 if (e->function == 0x80000001) {
2139 if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
2140 entry->edx &= ~(1 << 20);
2141 printk(KERN_INFO "kvm: guest NX capability removed\n");
2145 /* when an old userspace process fills a new kernel module */
2146 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
2147 struct kvm_cpuid *cpuid,
2148 struct kvm_cpuid_entry __user *entries)
2151 struct kvm_cpuid_entry *cpuid_entries;
2154 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2157 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
2161 if (copy_from_user(cpuid_entries, entries,
2162 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
2164 for (i = 0; i < cpuid->nent; i++) {
2165 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
2166 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
2167 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
2168 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
2169 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
2170 vcpu->arch.cpuid_entries[i].index = 0;
2171 vcpu->arch.cpuid_entries[i].flags = 0;
2172 vcpu->arch.cpuid_entries[i].padding[0] = 0;
2173 vcpu->arch.cpuid_entries[i].padding[1] = 0;
2174 vcpu->arch.cpuid_entries[i].padding[2] = 0;
2176 vcpu->arch.cpuid_nent = cpuid->nent;
2177 cpuid_fix_nx_cap(vcpu);
2179 kvm_apic_set_version(vcpu);
2180 kvm_x86_ops->cpuid_update(vcpu);
2184 vfree(cpuid_entries);
2189 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
2190 struct kvm_cpuid2 *cpuid,
2191 struct kvm_cpuid_entry2 __user *entries)
2196 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2199 if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
2200 cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
2202 vcpu->arch.cpuid_nent = cpuid->nent;
2203 kvm_apic_set_version(vcpu);
2204 kvm_x86_ops->cpuid_update(vcpu);
2212 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
2213 struct kvm_cpuid2 *cpuid,
2214 struct kvm_cpuid_entry2 __user *entries)
2219 if (cpuid->nent < vcpu->arch.cpuid_nent)
2222 if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
2223 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
2228 cpuid->nent = vcpu->arch.cpuid_nent;
2232 static void cpuid_mask(u32 *word, int wordnum)
2234 *word &= boot_cpu_data.x86_capability[wordnum];
2237 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
2240 entry->function = function;
2241 entry->index = index;
2242 cpuid_count(entry->function, entry->index,
2243 &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
2247 #define F(x) bit(X86_FEATURE_##x)
2249 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
2250 u32 index, int *nent, int maxnent)
2252 unsigned f_nx = is_efer_nx() ? F(NX) : 0;
2253 #ifdef CONFIG_X86_64
2254 unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
2256 unsigned f_lm = F(LM);
2258 unsigned f_gbpages = 0;
2261 unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
2264 const u32 kvm_supported_word0_x86_features =
2265 F(FPU) | F(VME) | F(DE) | F(PSE) |
2266 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
2267 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
2268 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
2269 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
2270 0 /* Reserved, DS, ACPI */ | F(MMX) |
2271 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
2272 0 /* HTT, TM, Reserved, PBE */;
2273 /* cpuid 0x80000001.edx */
2274 const u32 kvm_supported_word1_x86_features =
2275 F(FPU) | F(VME) | F(DE) | F(PSE) |
2276 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
2277 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
2278 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
2279 F(PAT) | F(PSE36) | 0 /* Reserved */ |
2280 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
2281 F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
2282 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
2284 const u32 kvm_supported_word4_x86_features =
2285 F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
2286 0 /* DS-CPL, VMX, SMX, EST */ |
2287 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
2288 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
2289 0 /* Reserved, DCA */ | F(XMM4_1) |
2290 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
2291 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
2293 /* cpuid 0x80000001.ecx */
2294 const u32 kvm_supported_word6_x86_features =
2295 F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
2296 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
2297 F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(XOP) |
2298 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM);
2300 /* all calls to cpuid_count() should be made on the same cpu */
2302 do_cpuid_1_ent(entry, function, index);
2307 entry->eax = min(entry->eax, (u32)0xd);
2310 entry->edx &= kvm_supported_word0_x86_features;
2311 cpuid_mask(&entry->edx, 0);
2312 entry->ecx &= kvm_supported_word4_x86_features;
2313 cpuid_mask(&entry->ecx, 4);
2314 /* we support x2apic emulation even if host does not support
2315 * it since we emulate x2apic in software */
2316 entry->ecx |= F(X2APIC);
2318 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
2319 * may return different values. This forces us to get_cpu() before
2320 * issuing the first command, and also to emulate this annoying behavior
2321 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
2323 int t, times = entry->eax & 0xff;
2325 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
2326 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
2327 for (t = 1; t < times && *nent < maxnent; ++t) {
2328 do_cpuid_1_ent(&entry[t], function, 0);
2329 entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
2334 /* function 4 and 0xb have additional index. */
2338 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2339 /* read more entries until cache_type is zero */
2340 for (i = 1; *nent < maxnent; ++i) {
2341 cache_type = entry[i - 1].eax & 0x1f;
2344 do_cpuid_1_ent(&entry[i], function, i);
2346 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2354 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2355 /* read more entries until level_type is zero */
2356 for (i = 1; *nent < maxnent; ++i) {
2357 level_type = entry[i - 1].ecx & 0xff00;
2360 do_cpuid_1_ent(&entry[i], function, i);
2362 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2370 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2371 for (i = 1; *nent < maxnent; ++i) {
2372 if (entry[i - 1].eax == 0 && i != 2)
2374 do_cpuid_1_ent(&entry[i], function, i);
2376 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2381 case KVM_CPUID_SIGNATURE: {
2382 char signature[12] = "KVMKVMKVM\0\0";
2383 u32 *sigptr = (u32 *)signature;
2385 entry->ebx = sigptr[0];
2386 entry->ecx = sigptr[1];
2387 entry->edx = sigptr[2];
2390 case KVM_CPUID_FEATURES:
2391 entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
2392 (1 << KVM_FEATURE_NOP_IO_DELAY) |
2393 (1 << KVM_FEATURE_CLOCKSOURCE2) |
2394 (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT);
2400 entry->eax = min(entry->eax, 0x8000001a);
2403 entry->edx &= kvm_supported_word1_x86_features;
2404 cpuid_mask(&entry->edx, 1);
2405 entry->ecx &= kvm_supported_word6_x86_features;
2406 cpuid_mask(&entry->ecx, 6);
2410 kvm_x86_ops->set_supported_cpuid(function, entry);
2417 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
2418 struct kvm_cpuid_entry2 __user *entries)
2420 struct kvm_cpuid_entry2 *cpuid_entries;
2421 int limit, nent = 0, r = -E2BIG;
2424 if (cpuid->nent < 1)
2426 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2427 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
2429 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
2433 do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
2434 limit = cpuid_entries[0].eax;
2435 for (func = 1; func <= limit && nent < cpuid->nent; ++func)
2436 do_cpuid_ent(&cpuid_entries[nent], func, 0,
2437 &nent, cpuid->nent);
2439 if (nent >= cpuid->nent)
2442 do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
2443 limit = cpuid_entries[nent - 1].eax;
2444 for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
2445 do_cpuid_ent(&cpuid_entries[nent], func, 0,
2446 &nent, cpuid->nent);
2451 if (nent >= cpuid->nent)
2454 do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_SIGNATURE, 0, &nent,
2458 if (nent >= cpuid->nent)
2461 do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_FEATURES, 0, &nent,
2465 if (nent >= cpuid->nent)
2469 if (copy_to_user(entries, cpuid_entries,
2470 nent * sizeof(struct kvm_cpuid_entry2)))
2476 vfree(cpuid_entries);
2481 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2482 struct kvm_lapic_state *s)
2484 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2489 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2490 struct kvm_lapic_state *s)
2492 memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
2493 kvm_apic_post_state_restore(vcpu);
2494 update_cr8_intercept(vcpu);
2499 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2500 struct kvm_interrupt *irq)
2502 if (irq->irq < 0 || irq->irq >= 256)
2504 if (irqchip_in_kernel(vcpu->kvm))
2507 kvm_queue_interrupt(vcpu, irq->irq, false);
2508 kvm_make_request(KVM_REQ_EVENT, vcpu);
2513 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2515 kvm_inject_nmi(vcpu);
2520 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2521 struct kvm_tpr_access_ctl *tac)
2525 vcpu->arch.tpr_access_reporting = !!tac->enabled;
2529 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2533 unsigned bank_num = mcg_cap & 0xff, bank;
2536 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2538 if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2541 vcpu->arch.mcg_cap = mcg_cap;
2542 /* Init IA32_MCG_CTL to all 1s */
2543 if (mcg_cap & MCG_CTL_P)
2544 vcpu->arch.mcg_ctl = ~(u64)0;
2545 /* Init IA32_MCi_CTL to all 1s */
2546 for (bank = 0; bank < bank_num; bank++)
2547 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2552 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2553 struct kvm_x86_mce *mce)
2555 u64 mcg_cap = vcpu->arch.mcg_cap;
2556 unsigned bank_num = mcg_cap & 0xff;
2557 u64 *banks = vcpu->arch.mce_banks;
2559 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2562 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2563 * reporting is disabled
2565 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2566 vcpu->arch.mcg_ctl != ~(u64)0)
2568 banks += 4 * mce->bank;
2570 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2571 * reporting is disabled for the bank
2573 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2575 if (mce->status & MCI_STATUS_UC) {
2576 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2577 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2578 printk(KERN_DEBUG "kvm: set_mce: "
2579 "injects mce exception while "
2580 "previous one is in progress!\n");
2581 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2584 if (banks[1] & MCI_STATUS_VAL)
2585 mce->status |= MCI_STATUS_OVER;
2586 banks[2] = mce->addr;
2587 banks[3] = mce->misc;
2588 vcpu->arch.mcg_status = mce->mcg_status;
2589 banks[1] = mce->status;
2590 kvm_queue_exception(vcpu, MC_VECTOR);
2591 } else if (!(banks[1] & MCI_STATUS_VAL)
2592 || !(banks[1] & MCI_STATUS_UC)) {
2593 if (banks[1] & MCI_STATUS_VAL)
2594 mce->status |= MCI_STATUS_OVER;
2595 banks[2] = mce->addr;
2596 banks[3] = mce->misc;
2597 banks[1] = mce->status;
2599 banks[1] |= MCI_STATUS_OVER;
2603 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2604 struct kvm_vcpu_events *events)
2606 events->exception.injected =
2607 vcpu->arch.exception.pending &&
2608 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2609 events->exception.nr = vcpu->arch.exception.nr;
2610 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2611 events->exception.pad = 0;
2612 events->exception.error_code = vcpu->arch.exception.error_code;
2614 events->interrupt.injected =
2615 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2616 events->interrupt.nr = vcpu->arch.interrupt.nr;
2617 events->interrupt.soft = 0;
2618 events->interrupt.shadow =
2619 kvm_x86_ops->get_interrupt_shadow(vcpu,
2620 KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2622 events->nmi.injected = vcpu->arch.nmi_injected;
2623 events->nmi.pending = vcpu->arch.nmi_pending;
2624 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2625 events->nmi.pad = 0;
2627 events->sipi_vector = vcpu->arch.sipi_vector;
2629 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2630 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2631 | KVM_VCPUEVENT_VALID_SHADOW);
2632 memset(&events->reserved, 0, sizeof(events->reserved));
2635 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2636 struct kvm_vcpu_events *events)
2638 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2639 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2640 | KVM_VCPUEVENT_VALID_SHADOW))
2643 vcpu->arch.exception.pending = events->exception.injected;
2644 vcpu->arch.exception.nr = events->exception.nr;
2645 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2646 vcpu->arch.exception.error_code = events->exception.error_code;
2648 vcpu->arch.interrupt.pending = events->interrupt.injected;
2649 vcpu->arch.interrupt.nr = events->interrupt.nr;
2650 vcpu->arch.interrupt.soft = events->interrupt.soft;
2651 if (vcpu->arch.interrupt.pending && irqchip_in_kernel(vcpu->kvm))
2652 kvm_pic_clear_isr_ack(vcpu->kvm);
2653 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2654 kvm_x86_ops->set_interrupt_shadow(vcpu,
2655 events->interrupt.shadow);
2657 vcpu->arch.nmi_injected = events->nmi.injected;
2658 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2659 vcpu->arch.nmi_pending = events->nmi.pending;
2660 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2662 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
2663 vcpu->arch.sipi_vector = events->sipi_vector;
2665 kvm_make_request(KVM_REQ_EVENT, vcpu);
2670 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2671 struct kvm_debugregs *dbgregs)
2673 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2674 dbgregs->dr6 = vcpu->arch.dr6;
2675 dbgregs->dr7 = vcpu->arch.dr7;
2677 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
2680 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2681 struct kvm_debugregs *dbgregs)
2686 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2687 vcpu->arch.dr6 = dbgregs->dr6;
2688 vcpu->arch.dr7 = dbgregs->dr7;
2693 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
2694 struct kvm_xsave *guest_xsave)
2697 memcpy(guest_xsave->region,
2698 &vcpu->arch.guest_fpu.state->xsave,
2701 memcpy(guest_xsave->region,
2702 &vcpu->arch.guest_fpu.state->fxsave,
2703 sizeof(struct i387_fxsave_struct));
2704 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
2709 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
2710 struct kvm_xsave *guest_xsave)
2713 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
2716 memcpy(&vcpu->arch.guest_fpu.state->xsave,
2717 guest_xsave->region, xstate_size);
2719 if (xstate_bv & ~XSTATE_FPSSE)
2721 memcpy(&vcpu->arch.guest_fpu.state->fxsave,
2722 guest_xsave->region, sizeof(struct i387_fxsave_struct));
2727 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
2728 struct kvm_xcrs *guest_xcrs)
2730 if (!cpu_has_xsave) {
2731 guest_xcrs->nr_xcrs = 0;
2735 guest_xcrs->nr_xcrs = 1;
2736 guest_xcrs->flags = 0;
2737 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
2738 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
2741 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
2742 struct kvm_xcrs *guest_xcrs)
2749 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
2752 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
2753 /* Only support XCR0 currently */
2754 if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
2755 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
2756 guest_xcrs->xcrs[0].value);
2764 long kvm_arch_vcpu_ioctl(struct file *filp,
2765 unsigned int ioctl, unsigned long arg)
2767 struct kvm_vcpu *vcpu = filp->private_data;
2768 void __user *argp = (void __user *)arg;
2771 struct kvm_lapic_state *lapic;
2772 struct kvm_xsave *xsave;
2773 struct kvm_xcrs *xcrs;
2779 case KVM_GET_LAPIC: {
2781 if (!vcpu->arch.apic)
2783 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2788 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
2792 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
2797 case KVM_SET_LAPIC: {
2799 if (!vcpu->arch.apic)
2801 u.lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2806 if (copy_from_user(u.lapic, argp, sizeof(struct kvm_lapic_state)))
2808 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
2814 case KVM_INTERRUPT: {
2815 struct kvm_interrupt irq;
2818 if (copy_from_user(&irq, argp, sizeof irq))
2820 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2827 r = kvm_vcpu_ioctl_nmi(vcpu);
2833 case KVM_SET_CPUID: {
2834 struct kvm_cpuid __user *cpuid_arg = argp;
2835 struct kvm_cpuid cpuid;
2838 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2840 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
2845 case KVM_SET_CPUID2: {
2846 struct kvm_cpuid2 __user *cpuid_arg = argp;
2847 struct kvm_cpuid2 cpuid;
2850 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2852 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
2853 cpuid_arg->entries);
2858 case KVM_GET_CPUID2: {
2859 struct kvm_cpuid2 __user *cpuid_arg = argp;
2860 struct kvm_cpuid2 cpuid;
2863 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2865 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
2866 cpuid_arg->entries);
2870 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2876 r = msr_io(vcpu, argp, kvm_get_msr, 1);
2879 r = msr_io(vcpu, argp, do_set_msr, 0);
2881 case KVM_TPR_ACCESS_REPORTING: {
2882 struct kvm_tpr_access_ctl tac;
2885 if (copy_from_user(&tac, argp, sizeof tac))
2887 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
2891 if (copy_to_user(argp, &tac, sizeof tac))
2896 case KVM_SET_VAPIC_ADDR: {
2897 struct kvm_vapic_addr va;
2900 if (!irqchip_in_kernel(vcpu->kvm))
2903 if (copy_from_user(&va, argp, sizeof va))
2906 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
2909 case KVM_X86_SETUP_MCE: {
2913 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
2915 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
2918 case KVM_X86_SET_MCE: {
2919 struct kvm_x86_mce mce;
2922 if (copy_from_user(&mce, argp, sizeof mce))
2924 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
2927 case KVM_GET_VCPU_EVENTS: {
2928 struct kvm_vcpu_events events;
2930 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
2933 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
2938 case KVM_SET_VCPU_EVENTS: {
2939 struct kvm_vcpu_events events;
2942 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
2945 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
2948 case KVM_GET_DEBUGREGS: {
2949 struct kvm_debugregs dbgregs;
2951 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
2954 if (copy_to_user(argp, &dbgregs,
2955 sizeof(struct kvm_debugregs)))
2960 case KVM_SET_DEBUGREGS: {
2961 struct kvm_debugregs dbgregs;
2964 if (copy_from_user(&dbgregs, argp,
2965 sizeof(struct kvm_debugregs)))
2968 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
2971 case KVM_GET_XSAVE: {
2972 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
2977 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
2980 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
2985 case KVM_SET_XSAVE: {
2986 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
2992 if (copy_from_user(u.xsave, argp, sizeof(struct kvm_xsave)))
2995 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
2998 case KVM_GET_XCRS: {
2999 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3004 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3007 if (copy_to_user(argp, u.xcrs,
3008 sizeof(struct kvm_xcrs)))
3013 case KVM_SET_XCRS: {
3014 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3020 if (copy_from_user(u.xcrs, argp,
3021 sizeof(struct kvm_xcrs)))
3024 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3035 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3039 if (addr > (unsigned int)(-3 * PAGE_SIZE))
3041 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3045 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3048 kvm->arch.ept_identity_map_addr = ident_addr;
3052 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3053 u32 kvm_nr_mmu_pages)
3055 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3058 mutex_lock(&kvm->slots_lock);
3059 spin_lock(&kvm->mmu_lock);
3061 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3062 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3064 spin_unlock(&kvm->mmu_lock);
3065 mutex_unlock(&kvm->slots_lock);
3069 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3071 return kvm->arch.n_max_mmu_pages;
3074 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3079 switch (chip->chip_id) {
3080 case KVM_IRQCHIP_PIC_MASTER:
3081 memcpy(&chip->chip.pic,
3082 &pic_irqchip(kvm)->pics[0],
3083 sizeof(struct kvm_pic_state));
3085 case KVM_IRQCHIP_PIC_SLAVE:
3086 memcpy(&chip->chip.pic,
3087 &pic_irqchip(kvm)->pics[1],
3088 sizeof(struct kvm_pic_state));
3090 case KVM_IRQCHIP_IOAPIC:
3091 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3100 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3105 switch (chip->chip_id) {
3106 case KVM_IRQCHIP_PIC_MASTER:
3107 spin_lock(&pic_irqchip(kvm)->lock);
3108 memcpy(&pic_irqchip(kvm)->pics[0],
3110 sizeof(struct kvm_pic_state));
3111 spin_unlock(&pic_irqchip(kvm)->lock);
3113 case KVM_IRQCHIP_PIC_SLAVE:
3114 spin_lock(&pic_irqchip(kvm)->lock);
3115 memcpy(&pic_irqchip(kvm)->pics[1],
3117 sizeof(struct kvm_pic_state));
3118 spin_unlock(&pic_irqchip(kvm)->lock);
3120 case KVM_IRQCHIP_IOAPIC:
3121 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3127 kvm_pic_update_irq(pic_irqchip(kvm));
3131 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3135 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3136 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3137 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3141 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3145 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3146 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3147 kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3148 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3152 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3156 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3157 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3158 sizeof(ps->channels));
3159 ps->flags = kvm->arch.vpit->pit_state.flags;
3160 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3161 memset(&ps->reserved, 0, sizeof(ps->reserved));
3165 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3167 int r = 0, start = 0;
3168 u32 prev_legacy, cur_legacy;
3169 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3170 prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3171 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3172 if (!prev_legacy && cur_legacy)
3174 memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3175 sizeof(kvm->arch.vpit->pit_state.channels));
3176 kvm->arch.vpit->pit_state.flags = ps->flags;
3177 kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3178 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3182 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3183 struct kvm_reinject_control *control)
3185 if (!kvm->arch.vpit)
3187 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3188 kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
3189 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3194 * Get (and clear) the dirty memory log for a memory slot.
3196 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
3197 struct kvm_dirty_log *log)
3200 struct kvm_memory_slot *memslot;
3202 unsigned long is_dirty = 0;
3204 mutex_lock(&kvm->slots_lock);
3207 if (log->slot >= KVM_MEMORY_SLOTS)
3210 memslot = &kvm->memslots->memslots[log->slot];
3212 if (!memslot->dirty_bitmap)
3215 n = kvm_dirty_bitmap_bytes(memslot);
3217 for (i = 0; !is_dirty && i < n/sizeof(long); i++)
3218 is_dirty = memslot->dirty_bitmap[i];
3220 /* If nothing is dirty, don't bother messing with page tables. */
3222 struct kvm_memslots *slots, *old_slots;
3223 unsigned long *dirty_bitmap;
3225 dirty_bitmap = memslot->dirty_bitmap_head;
3226 if (memslot->dirty_bitmap == dirty_bitmap)
3227 dirty_bitmap += n / sizeof(long);
3228 memset(dirty_bitmap, 0, n);
3231 slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
3234 memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
3235 slots->memslots[log->slot].dirty_bitmap = dirty_bitmap;
3236 slots->generation++;
3238 old_slots = kvm->memslots;
3239 rcu_assign_pointer(kvm->memslots, slots);
3240 synchronize_srcu_expedited(&kvm->srcu);
3241 dirty_bitmap = old_slots->memslots[log->slot].dirty_bitmap;
3244 spin_lock(&kvm->mmu_lock);
3245 kvm_mmu_slot_remove_write_access(kvm, log->slot);
3246 spin_unlock(&kvm->mmu_lock);
3249 if (copy_to_user(log->dirty_bitmap, dirty_bitmap, n))
3253 if (clear_user(log->dirty_bitmap, n))
3259 mutex_unlock(&kvm->slots_lock);
3263 long kvm_arch_vm_ioctl(struct file *filp,
3264 unsigned int ioctl, unsigned long arg)
3266 struct kvm *kvm = filp->private_data;
3267 void __user *argp = (void __user *)arg;
3270 * This union makes it completely explicit to gcc-3.x
3271 * that these two variables' stack usage should be
3272 * combined, not added together.
3275 struct kvm_pit_state ps;
3276 struct kvm_pit_state2 ps2;
3277 struct kvm_pit_config pit_config;
3281 case KVM_SET_TSS_ADDR:
3282 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3286 case KVM_SET_IDENTITY_MAP_ADDR: {
3290 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3292 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3297 case KVM_SET_NR_MMU_PAGES:
3298 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3302 case KVM_GET_NR_MMU_PAGES:
3303 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3305 case KVM_CREATE_IRQCHIP: {
3306 struct kvm_pic *vpic;
3308 mutex_lock(&kvm->lock);
3311 goto create_irqchip_unlock;
3313 vpic = kvm_create_pic(kvm);
3315 r = kvm_ioapic_init(kvm);
3317 mutex_lock(&kvm->slots_lock);
3318 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3320 mutex_unlock(&kvm->slots_lock);
3322 goto create_irqchip_unlock;
3325 goto create_irqchip_unlock;
3327 kvm->arch.vpic = vpic;
3329 r = kvm_setup_default_irq_routing(kvm);
3331 mutex_lock(&kvm->slots_lock);
3332 mutex_lock(&kvm->irq_lock);
3333 kvm_ioapic_destroy(kvm);
3334 kvm_destroy_pic(kvm);
3335 mutex_unlock(&kvm->irq_lock);
3336 mutex_unlock(&kvm->slots_lock);
3338 create_irqchip_unlock:
3339 mutex_unlock(&kvm->lock);
3342 case KVM_CREATE_PIT:
3343 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3345 case KVM_CREATE_PIT2:
3347 if (copy_from_user(&u.pit_config, argp,
3348 sizeof(struct kvm_pit_config)))
3351 mutex_lock(&kvm->slots_lock);
3354 goto create_pit_unlock;
3356 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3360 mutex_unlock(&kvm->slots_lock);
3362 case KVM_IRQ_LINE_STATUS:
3363 case KVM_IRQ_LINE: {
3364 struct kvm_irq_level irq_event;
3367 if (copy_from_user(&irq_event, argp, sizeof irq_event))
3370 if (irqchip_in_kernel(kvm)) {
3372 status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3373 irq_event.irq, irq_event.level);
3374 if (ioctl == KVM_IRQ_LINE_STATUS) {
3376 irq_event.status = status;
3377 if (copy_to_user(argp, &irq_event,
3385 case KVM_GET_IRQCHIP: {
3386 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3387 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
3393 if (copy_from_user(chip, argp, sizeof *chip))
3394 goto get_irqchip_out;
3396 if (!irqchip_in_kernel(kvm))
3397 goto get_irqchip_out;
3398 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3400 goto get_irqchip_out;
3402 if (copy_to_user(argp, chip, sizeof *chip))
3403 goto get_irqchip_out;
3411 case KVM_SET_IRQCHIP: {
3412 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3413 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
3419 if (copy_from_user(chip, argp, sizeof *chip))
3420 goto set_irqchip_out;
3422 if (!irqchip_in_kernel(kvm))
3423 goto set_irqchip_out;
3424 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3426 goto set_irqchip_out;
3436 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3439 if (!kvm->arch.vpit)
3441 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3445 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3452 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3455 if (!kvm->arch.vpit)
3457 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3463 case KVM_GET_PIT2: {
3465 if (!kvm->arch.vpit)
3467 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3471 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3476 case KVM_SET_PIT2: {
3478 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3481 if (!kvm->arch.vpit)
3483 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3489 case KVM_REINJECT_CONTROL: {
3490 struct kvm_reinject_control control;
3492 if (copy_from_user(&control, argp, sizeof(control)))
3494 r = kvm_vm_ioctl_reinject(kvm, &control);
3500 case KVM_XEN_HVM_CONFIG: {
3502 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3503 sizeof(struct kvm_xen_hvm_config)))
3506 if (kvm->arch.xen_hvm_config.flags)
3511 case KVM_SET_CLOCK: {
3512 struct kvm_clock_data user_ns;
3517 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3525 local_irq_disable();
3526 now_ns = get_kernel_ns();
3527 delta = user_ns.clock - now_ns;
3529 kvm->arch.kvmclock_offset = delta;
3532 case KVM_GET_CLOCK: {
3533 struct kvm_clock_data user_ns;
3536 local_irq_disable();
3537 now_ns = get_kernel_ns();
3538 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3541 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3544 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3557 static void kvm_init_msr_list(void)
3562 /* skip the first msrs in the list. KVM-specific */
3563 for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3564 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3567 msrs_to_save[j] = msrs_to_save[i];
3570 num_msrs_to_save = j;
3573 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3576 if (vcpu->arch.apic &&
3577 !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v))
3580 return kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
3583 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3585 if (vcpu->arch.apic &&
3586 !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v))
3589 return kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
3592 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3593 struct kvm_segment *var, int seg)
3595 kvm_x86_ops->set_segment(vcpu, var, seg);
3598 void kvm_get_segment(struct kvm_vcpu *vcpu,
3599 struct kvm_segment *var, int seg)
3601 kvm_x86_ops->get_segment(vcpu, var, seg);
3604 static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3609 static gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3612 struct x86_exception exception;
3614 BUG_ON(!mmu_is_nested(vcpu));
3616 /* NPT walks are always user-walks */
3617 access |= PFERR_USER_MASK;
3618 t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception);
3623 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
3624 struct x86_exception *exception)
3626 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3627 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3630 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
3631 struct x86_exception *exception)
3633 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3634 access |= PFERR_FETCH_MASK;
3635 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3638 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
3639 struct x86_exception *exception)
3641 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3642 access |= PFERR_WRITE_MASK;
3643 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3646 /* uses this to access any guest's mapped memory without checking CPL */
3647 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
3648 struct x86_exception *exception)
3650 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
3653 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3654 struct kvm_vcpu *vcpu, u32 access,
3655 struct x86_exception *exception)
3658 int r = X86EMUL_CONTINUE;
3661 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
3663 unsigned offset = addr & (PAGE_SIZE-1);
3664 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3667 if (gpa == UNMAPPED_GVA)
3668 return X86EMUL_PROPAGATE_FAULT;
3669 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
3671 r = X86EMUL_IO_NEEDED;
3683 /* used for instruction fetching */
3684 static int kvm_fetch_guest_virt(gva_t addr, void *val, unsigned int bytes,
3685 struct kvm_vcpu *vcpu,
3686 struct x86_exception *exception)
3688 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3689 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
3690 access | PFERR_FETCH_MASK,
3694 static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
3695 struct kvm_vcpu *vcpu,
3696 struct x86_exception *exception)
3698 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3699 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
3703 static int kvm_read_guest_virt_system(gva_t addr, void *val, unsigned int bytes,
3704 struct kvm_vcpu *vcpu,
3705 struct x86_exception *exception)
3707 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
3710 static int kvm_write_guest_virt_system(gva_t addr, void *val,
3712 struct kvm_vcpu *vcpu,
3713 struct x86_exception *exception)
3716 int r = X86EMUL_CONTINUE;
3719 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
3722 unsigned offset = addr & (PAGE_SIZE-1);
3723 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
3726 if (gpa == UNMAPPED_GVA)
3727 return X86EMUL_PROPAGATE_FAULT;
3728 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
3730 r = X86EMUL_IO_NEEDED;
3742 static int emulator_read_emulated(unsigned long addr,
3745 struct x86_exception *exception,
3746 struct kvm_vcpu *vcpu)
3750 if (vcpu->mmio_read_completed) {
3751 memcpy(val, vcpu->mmio_data, bytes);
3752 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
3753 vcpu->mmio_phys_addr, *(u64 *)val);
3754 vcpu->mmio_read_completed = 0;
3755 return X86EMUL_CONTINUE;
3758 gpa = kvm_mmu_gva_to_gpa_read(vcpu, addr, exception);
3760 if (gpa == UNMAPPED_GVA)
3761 return X86EMUL_PROPAGATE_FAULT;
3763 /* For APIC access vmexit */
3764 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3767 if (kvm_read_guest_virt(addr, val, bytes, vcpu, exception)
3768 == X86EMUL_CONTINUE)
3769 return X86EMUL_CONTINUE;
3773 * Is this MMIO handled locally?
3775 if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) {
3776 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val);
3777 return X86EMUL_CONTINUE;
3780 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
3782 vcpu->mmio_needed = 1;
3783 vcpu->run->exit_reason = KVM_EXIT_MMIO;
3784 vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
3785 vcpu->run->mmio.len = vcpu->mmio_size = bytes;
3786 vcpu->run->mmio.is_write = vcpu->mmio_is_write = 0;
3788 return X86EMUL_IO_NEEDED;
3791 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
3792 const void *val, int bytes)
3796 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
3799 kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
3803 static int emulator_write_emulated_onepage(unsigned long addr,
3806 struct x86_exception *exception,
3807 struct kvm_vcpu *vcpu)
3811 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, exception);
3813 if (gpa == UNMAPPED_GVA)
3814 return X86EMUL_PROPAGATE_FAULT;
3816 /* For APIC access vmexit */
3817 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3820 if (emulator_write_phys(vcpu, gpa, val, bytes))
3821 return X86EMUL_CONTINUE;
3824 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
3826 * Is this MMIO handled locally?
3828 if (!vcpu_mmio_write(vcpu, gpa, bytes, val))
3829 return X86EMUL_CONTINUE;
3831 vcpu->mmio_needed = 1;
3832 vcpu->run->exit_reason = KVM_EXIT_MMIO;
3833 vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
3834 vcpu->run->mmio.len = vcpu->mmio_size = bytes;
3835 vcpu->run->mmio.is_write = vcpu->mmio_is_write = 1;
3836 memcpy(vcpu->run->mmio.data, val, bytes);
3838 return X86EMUL_CONTINUE;
3841 int emulator_write_emulated(unsigned long addr,
3844 struct x86_exception *exception,
3845 struct kvm_vcpu *vcpu)
3847 /* Crossing a page boundary? */
3848 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
3851 now = -addr & ~PAGE_MASK;
3852 rc = emulator_write_emulated_onepage(addr, val, now, exception,
3854 if (rc != X86EMUL_CONTINUE)
3860 return emulator_write_emulated_onepage(addr, val, bytes, exception,
3864 #define CMPXCHG_TYPE(t, ptr, old, new) \
3865 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
3867 #ifdef CONFIG_X86_64
3868 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
3870 # define CMPXCHG64(ptr, old, new) \
3871 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
3874 static int emulator_cmpxchg_emulated(unsigned long addr,
3878 struct x86_exception *exception,
3879 struct kvm_vcpu *vcpu)
3886 /* guests cmpxchg8b have to be emulated atomically */
3887 if (bytes > 8 || (bytes & (bytes - 1)))
3890 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
3892 if (gpa == UNMAPPED_GVA ||
3893 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3896 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
3899 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
3900 if (is_error_page(page)) {
3901 kvm_release_page_clean(page);
3905 kaddr = kmap_atomic(page, KM_USER0);
3906 kaddr += offset_in_page(gpa);
3909 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
3912 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
3915 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
3918 exchanged = CMPXCHG64(kaddr, old, new);
3923 kunmap_atomic(kaddr, KM_USER0);
3924 kvm_release_page_dirty(page);
3927 return X86EMUL_CMPXCHG_FAILED;
3929 kvm_mmu_pte_write(vcpu, gpa, new, bytes, 1);
3931 return X86EMUL_CONTINUE;
3934 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
3936 return emulator_write_emulated(addr, new, bytes, exception, vcpu);
3939 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
3941 /* TODO: String I/O for in kernel device */
3944 if (vcpu->arch.pio.in)
3945 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
3946 vcpu->arch.pio.size, pd);
3948 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
3949 vcpu->arch.pio.port, vcpu->arch.pio.size,
3955 static int emulator_pio_in_emulated(int size, unsigned short port, void *val,
3956 unsigned int count, struct kvm_vcpu *vcpu)
3958 if (vcpu->arch.pio.count)
3961 trace_kvm_pio(0, port, size, count);
3963 vcpu->arch.pio.port = port;
3964 vcpu->arch.pio.in = 1;
3965 vcpu->arch.pio.count = count;
3966 vcpu->arch.pio.size = size;
3968 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
3970 memcpy(val, vcpu->arch.pio_data, size * count);
3971 vcpu->arch.pio.count = 0;
3975 vcpu->run->exit_reason = KVM_EXIT_IO;
3976 vcpu->run->io.direction = KVM_EXIT_IO_IN;
3977 vcpu->run->io.size = size;
3978 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3979 vcpu->run->io.count = count;
3980 vcpu->run->io.port = port;
3985 static int emulator_pio_out_emulated(int size, unsigned short port,
3986 const void *val, unsigned int count,
3987 struct kvm_vcpu *vcpu)
3989 trace_kvm_pio(1, port, size, count);
3991 vcpu->arch.pio.port = port;
3992 vcpu->arch.pio.in = 0;
3993 vcpu->arch.pio.count = count;
3994 vcpu->arch.pio.size = size;
3996 memcpy(vcpu->arch.pio_data, val, size * count);
3998 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
3999 vcpu->arch.pio.count = 0;
4003 vcpu->run->exit_reason = KVM_EXIT_IO;
4004 vcpu->run->io.direction = KVM_EXIT_IO_OUT;
4005 vcpu->run->io.size = size;
4006 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4007 vcpu->run->io.count = count;
4008 vcpu->run->io.port = port;
4013 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4015 return kvm_x86_ops->get_segment_base(vcpu, seg);
4018 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
4020 kvm_mmu_invlpg(vcpu, address);
4021 return X86EMUL_CONTINUE;
4024 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4026 if (!need_emulate_wbinvd(vcpu))
4027 return X86EMUL_CONTINUE;
4029 if (kvm_x86_ops->has_wbinvd_exit()) {
4030 int cpu = get_cpu();
4032 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4033 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4034 wbinvd_ipi, NULL, 1);
4036 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4039 return X86EMUL_CONTINUE;
4041 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4043 int emulate_clts(struct kvm_vcpu *vcpu)
4045 kvm_x86_ops->set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
4046 kvm_x86_ops->fpu_activate(vcpu);
4047 return X86EMUL_CONTINUE;
4050 int emulator_get_dr(int dr, unsigned long *dest, struct kvm_vcpu *vcpu)
4052 return _kvm_get_dr(vcpu, dr, dest);
4055 int emulator_set_dr(int dr, unsigned long value, struct kvm_vcpu *vcpu)
4058 return __kvm_set_dr(vcpu, dr, value);
4061 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4063 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4066 static unsigned long emulator_get_cr(int cr, struct kvm_vcpu *vcpu)
4068 unsigned long value;
4072 value = kvm_read_cr0(vcpu);
4075 value = vcpu->arch.cr2;
4078 value = kvm_read_cr3(vcpu);
4081 value = kvm_read_cr4(vcpu);
4084 value = kvm_get_cr8(vcpu);
4087 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
4094 static int emulator_set_cr(int cr, unsigned long val, struct kvm_vcpu *vcpu)
4100 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4103 vcpu->arch.cr2 = val;
4106 res = kvm_set_cr3(vcpu, val);
4109 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4112 res = kvm_set_cr8(vcpu, val);
4115 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
4122 static int emulator_get_cpl(struct kvm_vcpu *vcpu)
4124 return kvm_x86_ops->get_cpl(vcpu);
4127 static void emulator_get_gdt(struct desc_ptr *dt, struct kvm_vcpu *vcpu)
4129 kvm_x86_ops->get_gdt(vcpu, dt);
4132 static void emulator_get_idt(struct desc_ptr *dt, struct kvm_vcpu *vcpu)
4134 kvm_x86_ops->get_idt(vcpu, dt);
4137 static unsigned long emulator_get_cached_segment_base(int seg,
4138 struct kvm_vcpu *vcpu)
4140 return get_segment_base(vcpu, seg);
4143 static bool emulator_get_cached_descriptor(struct desc_struct *desc, int seg,
4144 struct kvm_vcpu *vcpu)
4146 struct kvm_segment var;
4148 kvm_get_segment(vcpu, &var, seg);
4155 set_desc_limit(desc, var.limit);
4156 set_desc_base(desc, (unsigned long)var.base);
4157 desc->type = var.type;
4159 desc->dpl = var.dpl;
4160 desc->p = var.present;
4161 desc->avl = var.avl;
4169 static void emulator_set_cached_descriptor(struct desc_struct *desc, int seg,
4170 struct kvm_vcpu *vcpu)
4172 struct kvm_segment var;
4174 /* needed to preserve selector */
4175 kvm_get_segment(vcpu, &var, seg);
4177 var.base = get_desc_base(desc);
4178 var.limit = get_desc_limit(desc);
4180 var.limit = (var.limit << 12) | 0xfff;
4181 var.type = desc->type;
4182 var.present = desc->p;
4183 var.dpl = desc->dpl;
4188 var.avl = desc->avl;
4189 var.present = desc->p;
4190 var.unusable = !var.present;
4193 kvm_set_segment(vcpu, &var, seg);
4197 static u16 emulator_get_segment_selector(int seg, struct kvm_vcpu *vcpu)
4199 struct kvm_segment kvm_seg;
4201 kvm_get_segment(vcpu, &kvm_seg, seg);
4202 return kvm_seg.selector;
4205 static void emulator_set_segment_selector(u16 sel, int seg,
4206 struct kvm_vcpu *vcpu)
4208 struct kvm_segment kvm_seg;
4210 kvm_get_segment(vcpu, &kvm_seg, seg);
4211 kvm_seg.selector = sel;
4212 kvm_set_segment(vcpu, &kvm_seg, seg);
4215 static struct x86_emulate_ops emulate_ops = {
4216 .read_std = kvm_read_guest_virt_system,
4217 .write_std = kvm_write_guest_virt_system,
4218 .fetch = kvm_fetch_guest_virt,
4219 .read_emulated = emulator_read_emulated,
4220 .write_emulated = emulator_write_emulated,
4221 .cmpxchg_emulated = emulator_cmpxchg_emulated,
4222 .pio_in_emulated = emulator_pio_in_emulated,
4223 .pio_out_emulated = emulator_pio_out_emulated,
4224 .get_cached_descriptor = emulator_get_cached_descriptor,
4225 .set_cached_descriptor = emulator_set_cached_descriptor,
4226 .get_segment_selector = emulator_get_segment_selector,
4227 .set_segment_selector = emulator_set_segment_selector,
4228 .get_cached_segment_base = emulator_get_cached_segment_base,
4229 .get_gdt = emulator_get_gdt,
4230 .get_idt = emulator_get_idt,
4231 .get_cr = emulator_get_cr,
4232 .set_cr = emulator_set_cr,
4233 .cpl = emulator_get_cpl,
4234 .get_dr = emulator_get_dr,
4235 .set_dr = emulator_set_dr,
4236 .set_msr = kvm_set_msr,
4237 .get_msr = kvm_get_msr,
4240 static void cache_all_regs(struct kvm_vcpu *vcpu)
4242 kvm_register_read(vcpu, VCPU_REGS_RAX);
4243 kvm_register_read(vcpu, VCPU_REGS_RSP);
4244 kvm_register_read(vcpu, VCPU_REGS_RIP);
4245 vcpu->arch.regs_dirty = ~0;
4248 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4250 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
4252 * an sti; sti; sequence only disable interrupts for the first
4253 * instruction. So, if the last instruction, be it emulated or
4254 * not, left the system with the INT_STI flag enabled, it
4255 * means that the last instruction is an sti. We should not
4256 * leave the flag on in this case. The same goes for mov ss
4258 if (!(int_shadow & mask))
4259 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4262 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
4264 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4265 if (ctxt->exception.vector == PF_VECTOR)
4266 kvm_propagate_fault(vcpu, &ctxt->exception);
4267 else if (ctxt->exception.error_code_valid)
4268 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
4269 ctxt->exception.error_code);
4271 kvm_queue_exception(vcpu, ctxt->exception.vector);
4274 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4276 struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
4279 cache_all_regs(vcpu);
4281 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4283 vcpu->arch.emulate_ctxt.vcpu = vcpu;
4284 vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
4285 vcpu->arch.emulate_ctxt.eip = kvm_rip_read(vcpu);
4286 vcpu->arch.emulate_ctxt.mode =
4287 (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
4288 (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
4289 ? X86EMUL_MODE_VM86 : cs_l
4290 ? X86EMUL_MODE_PROT64 : cs_db
4291 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
4292 memset(c, 0, sizeof(struct decode_cache));
4293 memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
4296 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq)
4298 struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
4301 init_emulate_ctxt(vcpu);
4303 vcpu->arch.emulate_ctxt.decode.op_bytes = 2;
4304 vcpu->arch.emulate_ctxt.decode.ad_bytes = 2;
4305 vcpu->arch.emulate_ctxt.decode.eip = vcpu->arch.emulate_ctxt.eip;
4306 ret = emulate_int_real(&vcpu->arch.emulate_ctxt, &emulate_ops, irq);
4308 if (ret != X86EMUL_CONTINUE)
4309 return EMULATE_FAIL;
4311 vcpu->arch.emulate_ctxt.eip = c->eip;
4312 memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
4313 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
4314 kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
4316 if (irq == NMI_VECTOR)
4317 vcpu->arch.nmi_pending = false;
4319 vcpu->arch.interrupt.pending = false;
4321 return EMULATE_DONE;
4323 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
4325 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4327 int r = EMULATE_DONE;
4329 ++vcpu->stat.insn_emulation_fail;
4330 trace_kvm_emulate_insn_failed(vcpu);
4331 if (!is_guest_mode(vcpu)) {
4332 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4333 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4334 vcpu->run->internal.ndata = 0;
4337 kvm_queue_exception(vcpu, UD_VECTOR);
4342 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t gva)
4350 * if emulation was due to access to shadowed page table
4351 * and it failed try to unshadow page and re-entetr the
4352 * guest to let CPU execute the instruction.
4354 if (kvm_mmu_unprotect_page_virt(vcpu, gva))
4357 gpa = kvm_mmu_gva_to_gpa_system(vcpu, gva, NULL);
4359 if (gpa == UNMAPPED_GVA)
4360 return true; /* let cpu generate fault */
4362 if (!kvm_is_error_hva(gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT)))
4368 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
4375 struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
4377 kvm_clear_exception_queue(vcpu);
4378 vcpu->arch.mmio_fault_cr2 = cr2;
4380 * TODO: fix emulate.c to use guest_read/write_register
4381 * instead of direct ->regs accesses, can save hundred cycles
4382 * on Intel for instructions that don't read/change RSP, for
4385 cache_all_regs(vcpu);
4387 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
4388 init_emulate_ctxt(vcpu);
4389 vcpu->arch.emulate_ctxt.interruptibility = 0;
4390 vcpu->arch.emulate_ctxt.have_exception = false;
4391 vcpu->arch.emulate_ctxt.perm_ok = false;
4393 r = x86_decode_insn(&vcpu->arch.emulate_ctxt, insn, insn_len);
4394 if (r == X86EMUL_PROPAGATE_FAULT)
4397 trace_kvm_emulate_insn_start(vcpu);
4399 /* Only allow emulation of specific instructions on #UD
4400 * (namely VMMCALL, sysenter, sysexit, syscall)*/
4401 if (emulation_type & EMULTYPE_TRAP_UD) {
4403 return EMULATE_FAIL;
4405 case 0x01: /* VMMCALL */
4406 if (c->modrm_mod != 3 || c->modrm_rm != 1)
4407 return EMULATE_FAIL;
4409 case 0x34: /* sysenter */
4410 case 0x35: /* sysexit */
4411 if (c->modrm_mod != 0 || c->modrm_rm != 0)
4412 return EMULATE_FAIL;
4414 case 0x05: /* syscall */
4415 if (c->modrm_mod != 0 || c->modrm_rm != 0)
4416 return EMULATE_FAIL;
4419 return EMULATE_FAIL;
4422 if (!(c->modrm_reg == 0 || c->modrm_reg == 3))
4423 return EMULATE_FAIL;
4426 ++vcpu->stat.insn_emulation;
4428 if (reexecute_instruction(vcpu, cr2))
4429 return EMULATE_DONE;
4430 if (emulation_type & EMULTYPE_SKIP)
4431 return EMULATE_FAIL;
4432 return handle_emulation_failure(vcpu);
4436 if (emulation_type & EMULTYPE_SKIP) {
4437 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
4438 return EMULATE_DONE;
4441 /* this is needed for vmware backdor interface to work since it
4442 changes registers values during IO operation */
4443 memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
4446 r = x86_emulate_insn(&vcpu->arch.emulate_ctxt);
4448 if (r == EMULATION_FAILED) {
4449 if (reexecute_instruction(vcpu, cr2))
4450 return EMULATE_DONE;
4452 return handle_emulation_failure(vcpu);
4456 if (vcpu->arch.emulate_ctxt.have_exception) {
4457 inject_emulated_exception(vcpu);
4459 } else if (vcpu->arch.pio.count) {
4460 if (!vcpu->arch.pio.in)
4461 vcpu->arch.pio.count = 0;
4462 r = EMULATE_DO_MMIO;
4463 } else if (vcpu->mmio_needed) {
4464 if (vcpu->mmio_is_write)
4465 vcpu->mmio_needed = 0;
4466 r = EMULATE_DO_MMIO;
4467 } else if (r == EMULATION_RESTART)
4472 toggle_interruptibility(vcpu, vcpu->arch.emulate_ctxt.interruptibility);
4473 kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
4474 kvm_make_request(KVM_REQ_EVENT, vcpu);
4475 memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
4476 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
4480 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
4482 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
4484 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
4485 int ret = emulator_pio_out_emulated(size, port, &val, 1, vcpu);
4486 /* do not return to emulator after return from userspace */
4487 vcpu->arch.pio.count = 0;
4490 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
4492 static void tsc_bad(void *info)
4494 __this_cpu_write(cpu_tsc_khz, 0);
4497 static void tsc_khz_changed(void *data)
4499 struct cpufreq_freqs *freq = data;
4500 unsigned long khz = 0;
4504 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4505 khz = cpufreq_quick_get(raw_smp_processor_id());
4508 __this_cpu_write(cpu_tsc_khz, khz);
4511 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
4514 struct cpufreq_freqs *freq = data;
4516 struct kvm_vcpu *vcpu;
4517 int i, send_ipi = 0;
4520 * We allow guests to temporarily run on slowing clocks,
4521 * provided we notify them after, or to run on accelerating
4522 * clocks, provided we notify them before. Thus time never
4525 * However, we have a problem. We can't atomically update
4526 * the frequency of a given CPU from this function; it is
4527 * merely a notifier, which can be called from any CPU.
4528 * Changing the TSC frequency at arbitrary points in time
4529 * requires a recomputation of local variables related to
4530 * the TSC for each VCPU. We must flag these local variables
4531 * to be updated and be sure the update takes place with the
4532 * new frequency before any guests proceed.
4534 * Unfortunately, the combination of hotplug CPU and frequency
4535 * change creates an intractable locking scenario; the order
4536 * of when these callouts happen is undefined with respect to
4537 * CPU hotplug, and they can race with each other. As such,
4538 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
4539 * undefined; you can actually have a CPU frequency change take
4540 * place in between the computation of X and the setting of the
4541 * variable. To protect against this problem, all updates of
4542 * the per_cpu tsc_khz variable are done in an interrupt
4543 * protected IPI, and all callers wishing to update the value
4544 * must wait for a synchronous IPI to complete (which is trivial
4545 * if the caller is on the CPU already). This establishes the
4546 * necessary total order on variable updates.
4548 * Note that because a guest time update may take place
4549 * anytime after the setting of the VCPU's request bit, the
4550 * correct TSC value must be set before the request. However,
4551 * to ensure the update actually makes it to any guest which
4552 * starts running in hardware virtualization between the set
4553 * and the acquisition of the spinlock, we must also ping the
4554 * CPU after setting the request bit.
4558 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
4560 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
4563 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4565 spin_lock(&kvm_lock);
4566 list_for_each_entry(kvm, &vm_list, vm_list) {
4567 kvm_for_each_vcpu(i, vcpu, kvm) {
4568 if (vcpu->cpu != freq->cpu)
4570 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4571 if (vcpu->cpu != smp_processor_id())
4575 spin_unlock(&kvm_lock);
4577 if (freq->old < freq->new && send_ipi) {
4579 * We upscale the frequency. Must make the guest
4580 * doesn't see old kvmclock values while running with
4581 * the new frequency, otherwise we risk the guest sees
4582 * time go backwards.
4584 * In case we update the frequency for another cpu
4585 * (which might be in guest context) send an interrupt
4586 * to kick the cpu out of guest context. Next time
4587 * guest context is entered kvmclock will be updated,
4588 * so the guest will not see stale values.
4590 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4595 static struct notifier_block kvmclock_cpufreq_notifier_block = {
4596 .notifier_call = kvmclock_cpufreq_notifier
4599 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
4600 unsigned long action, void *hcpu)
4602 unsigned int cpu = (unsigned long)hcpu;
4606 case CPU_DOWN_FAILED:
4607 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
4609 case CPU_DOWN_PREPARE:
4610 smp_call_function_single(cpu, tsc_bad, NULL, 1);
4616 static struct notifier_block kvmclock_cpu_notifier_block = {
4617 .notifier_call = kvmclock_cpu_notifier,
4618 .priority = -INT_MAX
4621 static void kvm_timer_init(void)
4625 max_tsc_khz = tsc_khz;
4626 register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
4627 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
4628 #ifdef CONFIG_CPU_FREQ
4629 struct cpufreq_policy policy;
4630 memset(&policy, 0, sizeof(policy));
4632 cpufreq_get_policy(&policy, cpu);
4633 if (policy.cpuinfo.max_freq)
4634 max_tsc_khz = policy.cpuinfo.max_freq;
4637 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
4638 CPUFREQ_TRANSITION_NOTIFIER);
4640 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
4641 for_each_online_cpu(cpu)
4642 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
4645 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
4647 static int kvm_is_in_guest(void)
4649 return percpu_read(current_vcpu) != NULL;
4652 static int kvm_is_user_mode(void)
4656 if (percpu_read(current_vcpu))
4657 user_mode = kvm_x86_ops->get_cpl(percpu_read(current_vcpu));
4659 return user_mode != 0;
4662 static unsigned long kvm_get_guest_ip(void)
4664 unsigned long ip = 0;
4666 if (percpu_read(current_vcpu))
4667 ip = kvm_rip_read(percpu_read(current_vcpu));
4672 static struct perf_guest_info_callbacks kvm_guest_cbs = {
4673 .is_in_guest = kvm_is_in_guest,
4674 .is_user_mode = kvm_is_user_mode,
4675 .get_guest_ip = kvm_get_guest_ip,
4678 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
4680 percpu_write(current_vcpu, vcpu);
4682 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
4684 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
4686 percpu_write(current_vcpu, NULL);
4688 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
4690 int kvm_arch_init(void *opaque)
4693 struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
4696 printk(KERN_ERR "kvm: already loaded the other module\n");
4701 if (!ops->cpu_has_kvm_support()) {
4702 printk(KERN_ERR "kvm: no hardware support\n");
4706 if (ops->disabled_by_bios()) {
4707 printk(KERN_ERR "kvm: disabled by bios\n");
4712 r = kvm_mmu_module_init();
4716 kvm_init_msr_list();
4719 kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
4720 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
4721 PT_DIRTY_MASK, PT64_NX_MASK, 0);
4725 perf_register_guest_info_callbacks(&kvm_guest_cbs);
4728 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
4736 void kvm_arch_exit(void)
4738 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
4740 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4741 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
4742 CPUFREQ_TRANSITION_NOTIFIER);
4743 unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
4745 kvm_mmu_module_exit();
4748 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
4750 ++vcpu->stat.halt_exits;
4751 if (irqchip_in_kernel(vcpu->kvm)) {
4752 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
4755 vcpu->run->exit_reason = KVM_EXIT_HLT;
4759 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
4761 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
4764 if (is_long_mode(vcpu))
4767 return a0 | ((gpa_t)a1 << 32);
4770 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
4772 u64 param, ingpa, outgpa, ret;
4773 uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
4774 bool fast, longmode;
4778 * hypercall generates UD from non zero cpl and real mode
4781 if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
4782 kvm_queue_exception(vcpu, UD_VECTOR);
4786 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4787 longmode = is_long_mode(vcpu) && cs_l == 1;
4790 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
4791 (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
4792 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
4793 (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
4794 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
4795 (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
4797 #ifdef CONFIG_X86_64
4799 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
4800 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
4801 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
4805 code = param & 0xffff;
4806 fast = (param >> 16) & 0x1;
4807 rep_cnt = (param >> 32) & 0xfff;
4808 rep_idx = (param >> 48) & 0xfff;
4810 trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
4813 case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
4814 kvm_vcpu_on_spin(vcpu);
4817 res = HV_STATUS_INVALID_HYPERCALL_CODE;
4821 ret = res | (((u64)rep_done & 0xfff) << 32);
4823 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
4825 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
4826 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
4832 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
4834 unsigned long nr, a0, a1, a2, a3, ret;
4837 if (kvm_hv_hypercall_enabled(vcpu->kvm))
4838 return kvm_hv_hypercall(vcpu);
4840 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
4841 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
4842 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
4843 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
4844 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
4846 trace_kvm_hypercall(nr, a0, a1, a2, a3);
4848 if (!is_long_mode(vcpu)) {
4856 if (kvm_x86_ops->get_cpl(vcpu) != 0) {
4862 case KVM_HC_VAPIC_POLL_IRQ:
4866 r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
4873 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
4874 ++vcpu->stat.hypercalls;
4877 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
4879 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
4881 char instruction[3];
4882 unsigned long rip = kvm_rip_read(vcpu);
4885 * Blow out the MMU to ensure that no other VCPU has an active mapping
4886 * to ensure that the updated hypercall appears atomically across all
4889 kvm_mmu_zap_all(vcpu->kvm);
4891 kvm_x86_ops->patch_hypercall(vcpu, instruction);
4893 return emulator_write_emulated(rip, instruction, 3, NULL, vcpu);
4896 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
4898 struct desc_ptr dt = { limit, base };
4900 kvm_x86_ops->set_gdt(vcpu, &dt);
4903 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
4905 struct desc_ptr dt = { limit, base };
4907 kvm_x86_ops->set_idt(vcpu, &dt);
4910 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
4912 struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
4913 int j, nent = vcpu->arch.cpuid_nent;
4915 e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
4916 /* when no next entry is found, the current entry[i] is reselected */
4917 for (j = i + 1; ; j = (j + 1) % nent) {
4918 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
4919 if (ej->function == e->function) {
4920 ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
4924 return 0; /* silence gcc, even though control never reaches here */
4927 /* find an entry with matching function, matching index (if needed), and that
4928 * should be read next (if it's stateful) */
4929 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
4930 u32 function, u32 index)
4932 if (e->function != function)
4934 if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
4936 if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
4937 !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
4942 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
4943 u32 function, u32 index)
4946 struct kvm_cpuid_entry2 *best = NULL;
4948 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
4949 struct kvm_cpuid_entry2 *e;
4951 e = &vcpu->arch.cpuid_entries[i];
4952 if (is_matching_cpuid_entry(e, function, index)) {
4953 if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
4954 move_to_next_stateful_cpuid_entry(vcpu, i);
4959 * Both basic or both extended?
4961 if (((e->function ^ function) & 0x80000000) == 0)
4962 if (!best || e->function > best->function)
4967 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
4969 int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
4971 struct kvm_cpuid_entry2 *best;
4973 best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
4974 if (!best || best->eax < 0x80000008)
4976 best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
4978 return best->eax & 0xff;
4983 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
4985 u32 function, index;
4986 struct kvm_cpuid_entry2 *best;
4988 function = kvm_register_read(vcpu, VCPU_REGS_RAX);
4989 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
4990 kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
4991 kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
4992 kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
4993 kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
4994 best = kvm_find_cpuid_entry(vcpu, function, index);
4996 kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
4997 kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
4998 kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
4999 kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
5001 kvm_x86_ops->skip_emulated_instruction(vcpu);
5002 trace_kvm_cpuid(function,
5003 kvm_register_read(vcpu, VCPU_REGS_RAX),
5004 kvm_register_read(vcpu, VCPU_REGS_RBX),
5005 kvm_register_read(vcpu, VCPU_REGS_RCX),
5006 kvm_register_read(vcpu, VCPU_REGS_RDX));
5008 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
5011 * Check if userspace requested an interrupt window, and that the
5012 * interrupt window is open.
5014 * No need to exit to userspace if we already have an interrupt queued.
5016 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5018 return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
5019 vcpu->run->request_interrupt_window &&
5020 kvm_arch_interrupt_allowed(vcpu));
5023 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5025 struct kvm_run *kvm_run = vcpu->run;
5027 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5028 kvm_run->cr8 = kvm_get_cr8(vcpu);
5029 kvm_run->apic_base = kvm_get_apic_base(vcpu);
5030 if (irqchip_in_kernel(vcpu->kvm))
5031 kvm_run->ready_for_interrupt_injection = 1;
5033 kvm_run->ready_for_interrupt_injection =
5034 kvm_arch_interrupt_allowed(vcpu) &&
5035 !kvm_cpu_has_interrupt(vcpu) &&
5036 !kvm_event_needs_reinjection(vcpu);
5039 static void vapic_enter(struct kvm_vcpu *vcpu)
5041 struct kvm_lapic *apic = vcpu->arch.apic;
5044 if (!apic || !apic->vapic_addr)
5047 page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5049 vcpu->arch.apic->vapic_page = page;
5052 static void vapic_exit(struct kvm_vcpu *vcpu)
5054 struct kvm_lapic *apic = vcpu->arch.apic;
5057 if (!apic || !apic->vapic_addr)
5060 idx = srcu_read_lock(&vcpu->kvm->srcu);
5061 kvm_release_page_dirty(apic->vapic_page);
5062 mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5063 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5066 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5070 if (!kvm_x86_ops->update_cr8_intercept)
5073 if (!vcpu->arch.apic)
5076 if (!vcpu->arch.apic->vapic_addr)
5077 max_irr = kvm_lapic_find_highest_irr(vcpu);
5084 tpr = kvm_lapic_get_cr8(vcpu);
5086 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5089 static void inject_pending_event(struct kvm_vcpu *vcpu)
5091 /* try to reinject previous events if any */
5092 if (vcpu->arch.exception.pending) {
5093 trace_kvm_inj_exception(vcpu->arch.exception.nr,
5094 vcpu->arch.exception.has_error_code,
5095 vcpu->arch.exception.error_code);
5096 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
5097 vcpu->arch.exception.has_error_code,
5098 vcpu->arch.exception.error_code,
5099 vcpu->arch.exception.reinject);
5103 if (vcpu->arch.nmi_injected) {
5104 kvm_x86_ops->set_nmi(vcpu);
5108 if (vcpu->arch.interrupt.pending) {
5109 kvm_x86_ops->set_irq(vcpu);
5113 /* try to inject new event if pending */
5114 if (vcpu->arch.nmi_pending) {
5115 if (kvm_x86_ops->nmi_allowed(vcpu)) {
5116 vcpu->arch.nmi_pending = false;
5117 vcpu->arch.nmi_injected = true;
5118 kvm_x86_ops->set_nmi(vcpu);
5120 } else if (kvm_cpu_has_interrupt(vcpu)) {
5121 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
5122 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
5124 kvm_x86_ops->set_irq(vcpu);
5129 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
5131 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
5132 !vcpu->guest_xcr0_loaded) {
5133 /* kvm_set_xcr() also depends on this */
5134 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
5135 vcpu->guest_xcr0_loaded = 1;
5139 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
5141 if (vcpu->guest_xcr0_loaded) {
5142 if (vcpu->arch.xcr0 != host_xcr0)
5143 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
5144 vcpu->guest_xcr0_loaded = 0;
5148 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
5151 bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
5152 vcpu->run->request_interrupt_window;
5154 if (vcpu->requests) {
5155 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
5156 kvm_mmu_unload(vcpu);
5157 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
5158 __kvm_migrate_timers(vcpu);
5159 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
5160 r = kvm_guest_time_update(vcpu);
5164 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
5165 kvm_mmu_sync_roots(vcpu);
5166 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
5167 kvm_x86_ops->tlb_flush(vcpu);
5168 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
5169 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
5173 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
5174 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5178 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
5179 vcpu->fpu_active = 0;
5180 kvm_x86_ops->fpu_deactivate(vcpu);
5182 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
5183 /* Page is swapped out. Do synthetic halt */
5184 vcpu->arch.apf.halted = true;
5190 r = kvm_mmu_reload(vcpu);
5194 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
5195 inject_pending_event(vcpu);
5197 /* enable NMI/IRQ window open exits if needed */
5198 if (vcpu->arch.nmi_pending)
5199 kvm_x86_ops->enable_nmi_window(vcpu);
5200 else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
5201 kvm_x86_ops->enable_irq_window(vcpu);
5203 if (kvm_lapic_enabled(vcpu)) {
5204 update_cr8_intercept(vcpu);
5205 kvm_lapic_sync_to_vapic(vcpu);
5211 kvm_x86_ops->prepare_guest_switch(vcpu);
5212 if (vcpu->fpu_active)
5213 kvm_load_guest_fpu(vcpu);
5214 kvm_load_guest_xcr0(vcpu);
5216 atomic_set(&vcpu->guest_mode, 1);
5219 local_irq_disable();
5221 if (!atomic_read(&vcpu->guest_mode) || vcpu->requests
5222 || need_resched() || signal_pending(current)) {
5223 atomic_set(&vcpu->guest_mode, 0);
5227 kvm_x86_ops->cancel_injection(vcpu);
5232 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5236 if (unlikely(vcpu->arch.switch_db_regs)) {
5238 set_debugreg(vcpu->arch.eff_db[0], 0);
5239 set_debugreg(vcpu->arch.eff_db[1], 1);
5240 set_debugreg(vcpu->arch.eff_db[2], 2);
5241 set_debugreg(vcpu->arch.eff_db[3], 3);
5244 trace_kvm_entry(vcpu->vcpu_id);
5245 kvm_x86_ops->run(vcpu);
5248 * If the guest has used debug registers, at least dr7
5249 * will be disabled while returning to the host.
5250 * If we don't have active breakpoints in the host, we don't
5251 * care about the messed up debug address registers. But if
5252 * we have some of them active, restore the old state.
5254 if (hw_breakpoint_active())
5255 hw_breakpoint_restore();
5257 kvm_get_msr(vcpu, MSR_IA32_TSC, &vcpu->arch.last_guest_tsc);
5259 atomic_set(&vcpu->guest_mode, 0);
5266 * We must have an instruction between local_irq_enable() and
5267 * kvm_guest_exit(), so the timer interrupt isn't delayed by
5268 * the interrupt shadow. The stat.exits increment will do nicely.
5269 * But we need to prevent reordering, hence this barrier():
5277 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5280 * Profile KVM exit RIPs:
5282 if (unlikely(prof_on == KVM_PROFILING)) {
5283 unsigned long rip = kvm_rip_read(vcpu);
5284 profile_hit(KVM_PROFILING, (void *)rip);
5288 kvm_lapic_sync_from_vapic(vcpu);
5290 r = kvm_x86_ops->handle_exit(vcpu);
5296 static int __vcpu_run(struct kvm_vcpu *vcpu)
5299 struct kvm *kvm = vcpu->kvm;
5301 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
5302 pr_debug("vcpu %d received sipi with vector # %x\n",
5303 vcpu->vcpu_id, vcpu->arch.sipi_vector);
5304 kvm_lapic_reset(vcpu);
5305 r = kvm_arch_vcpu_reset(vcpu);
5308 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5311 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5316 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
5317 !vcpu->arch.apf.halted)
5318 r = vcpu_enter_guest(vcpu);
5320 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5321 kvm_vcpu_block(vcpu);
5322 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5323 if (kvm_check_request(KVM_REQ_UNHALT, vcpu))
5325 switch(vcpu->arch.mp_state) {
5326 case KVM_MP_STATE_HALTED:
5327 vcpu->arch.mp_state =
5328 KVM_MP_STATE_RUNNABLE;
5329 case KVM_MP_STATE_RUNNABLE:
5330 vcpu->arch.apf.halted = false;
5332 case KVM_MP_STATE_SIPI_RECEIVED:
5343 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
5344 if (kvm_cpu_has_pending_timer(vcpu))
5345 kvm_inject_pending_timer_irqs(vcpu);
5347 if (dm_request_for_irq_injection(vcpu)) {
5349 vcpu->run->exit_reason = KVM_EXIT_INTR;
5350 ++vcpu->stat.request_irq_exits;
5353 kvm_check_async_pf_completion(vcpu);
5355 if (signal_pending(current)) {
5357 vcpu->run->exit_reason = KVM_EXIT_INTR;
5358 ++vcpu->stat.signal_exits;
5360 if (need_resched()) {
5361 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5363 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5367 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5374 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
5379 if (!tsk_used_math(current) && init_fpu(current))
5382 if (vcpu->sigset_active)
5383 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
5385 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
5386 kvm_vcpu_block(vcpu);
5387 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
5392 /* re-sync apic's tpr */
5393 if (!irqchip_in_kernel(vcpu->kvm)) {
5394 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
5400 if (vcpu->arch.pio.count || vcpu->mmio_needed) {
5401 if (vcpu->mmio_needed) {
5402 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
5403 vcpu->mmio_read_completed = 1;
5404 vcpu->mmio_needed = 0;
5406 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5407 r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
5408 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5409 if (r != EMULATE_DONE) {
5414 if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
5415 kvm_register_write(vcpu, VCPU_REGS_RAX,
5416 kvm_run->hypercall.ret);
5418 r = __vcpu_run(vcpu);
5421 post_kvm_run_save(vcpu);
5422 if (vcpu->sigset_active)
5423 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
5428 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5430 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
5431 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
5432 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
5433 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
5434 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
5435 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
5436 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
5437 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
5438 #ifdef CONFIG_X86_64
5439 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
5440 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
5441 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
5442 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
5443 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
5444 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
5445 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
5446 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
5449 regs->rip = kvm_rip_read(vcpu);
5450 regs->rflags = kvm_get_rflags(vcpu);
5455 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5457 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
5458 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
5459 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
5460 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
5461 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
5462 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
5463 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
5464 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
5465 #ifdef CONFIG_X86_64
5466 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
5467 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
5468 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
5469 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
5470 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
5471 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
5472 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
5473 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
5476 kvm_rip_write(vcpu, regs->rip);
5477 kvm_set_rflags(vcpu, regs->rflags);
5479 vcpu->arch.exception.pending = false;
5481 kvm_make_request(KVM_REQ_EVENT, vcpu);
5486 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
5488 struct kvm_segment cs;
5490 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
5494 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
5496 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
5497 struct kvm_sregs *sregs)
5501 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5502 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5503 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5504 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5505 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5506 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5508 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5509 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5511 kvm_x86_ops->get_idt(vcpu, &dt);
5512 sregs->idt.limit = dt.size;
5513 sregs->idt.base = dt.address;
5514 kvm_x86_ops->get_gdt(vcpu, &dt);
5515 sregs->gdt.limit = dt.size;
5516 sregs->gdt.base = dt.address;
5518 sregs->cr0 = kvm_read_cr0(vcpu);
5519 sregs->cr2 = vcpu->arch.cr2;
5520 sregs->cr3 = kvm_read_cr3(vcpu);
5521 sregs->cr4 = kvm_read_cr4(vcpu);
5522 sregs->cr8 = kvm_get_cr8(vcpu);
5523 sregs->efer = vcpu->arch.efer;
5524 sregs->apic_base = kvm_get_apic_base(vcpu);
5526 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
5528 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
5529 set_bit(vcpu->arch.interrupt.nr,
5530 (unsigned long *)sregs->interrupt_bitmap);
5535 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
5536 struct kvm_mp_state *mp_state)
5538 mp_state->mp_state = vcpu->arch.mp_state;
5542 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
5543 struct kvm_mp_state *mp_state)
5545 vcpu->arch.mp_state = mp_state->mp_state;
5546 kvm_make_request(KVM_REQ_EVENT, vcpu);
5550 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason,
5551 bool has_error_code, u32 error_code)
5553 struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
5556 init_emulate_ctxt(vcpu);
5558 ret = emulator_task_switch(&vcpu->arch.emulate_ctxt,
5559 tss_selector, reason, has_error_code,
5563 return EMULATE_FAIL;
5565 memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
5566 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
5567 kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
5568 kvm_make_request(KVM_REQ_EVENT, vcpu);
5569 return EMULATE_DONE;
5571 EXPORT_SYMBOL_GPL(kvm_task_switch);
5573 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
5574 struct kvm_sregs *sregs)
5576 int mmu_reset_needed = 0;
5577 int pending_vec, max_bits;
5580 dt.size = sregs->idt.limit;
5581 dt.address = sregs->idt.base;
5582 kvm_x86_ops->set_idt(vcpu, &dt);
5583 dt.size = sregs->gdt.limit;
5584 dt.address = sregs->gdt.base;
5585 kvm_x86_ops->set_gdt(vcpu, &dt);
5587 vcpu->arch.cr2 = sregs->cr2;
5588 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
5589 vcpu->arch.cr3 = sregs->cr3;
5590 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
5592 kvm_set_cr8(vcpu, sregs->cr8);
5594 mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
5595 kvm_x86_ops->set_efer(vcpu, sregs->efer);
5596 kvm_set_apic_base(vcpu, sregs->apic_base);
5598 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
5599 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
5600 vcpu->arch.cr0 = sregs->cr0;
5602 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
5603 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
5604 if (sregs->cr4 & X86_CR4_OSXSAVE)
5606 if (!is_long_mode(vcpu) && is_pae(vcpu)) {
5607 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
5608 mmu_reset_needed = 1;
5611 if (mmu_reset_needed)
5612 kvm_mmu_reset_context(vcpu);
5614 max_bits = (sizeof sregs->interrupt_bitmap) << 3;
5615 pending_vec = find_first_bit(
5616 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
5617 if (pending_vec < max_bits) {
5618 kvm_queue_interrupt(vcpu, pending_vec, false);
5619 pr_debug("Set back pending irq %d\n", pending_vec);
5620 if (irqchip_in_kernel(vcpu->kvm))
5621 kvm_pic_clear_isr_ack(vcpu->kvm);
5624 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5625 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5626 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5627 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5628 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5629 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5631 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5632 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5634 update_cr8_intercept(vcpu);
5636 /* Older userspace won't unhalt the vcpu on reset. */
5637 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
5638 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
5640 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5642 kvm_make_request(KVM_REQ_EVENT, vcpu);
5647 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
5648 struct kvm_guest_debug *dbg)
5650 unsigned long rflags;
5653 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
5655 if (vcpu->arch.exception.pending)
5657 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
5658 kvm_queue_exception(vcpu, DB_VECTOR);
5660 kvm_queue_exception(vcpu, BP_VECTOR);
5664 * Read rflags as long as potentially injected trace flags are still
5667 rflags = kvm_get_rflags(vcpu);
5669 vcpu->guest_debug = dbg->control;
5670 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
5671 vcpu->guest_debug = 0;
5673 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5674 for (i = 0; i < KVM_NR_DB_REGS; ++i)
5675 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
5676 vcpu->arch.switch_db_regs =
5677 (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
5679 for (i = 0; i < KVM_NR_DB_REGS; i++)
5680 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
5681 vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
5684 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
5685 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
5686 get_segment_base(vcpu, VCPU_SREG_CS);
5689 * Trigger an rflags update that will inject or remove the trace
5692 kvm_set_rflags(vcpu, rflags);
5694 kvm_x86_ops->set_guest_debug(vcpu, dbg);
5704 * Translate a guest virtual address to a guest physical address.
5706 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
5707 struct kvm_translation *tr)
5709 unsigned long vaddr = tr->linear_address;
5713 idx = srcu_read_lock(&vcpu->kvm->srcu);
5714 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
5715 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5716 tr->physical_address = gpa;
5717 tr->valid = gpa != UNMAPPED_GVA;
5724 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5726 struct i387_fxsave_struct *fxsave =
5727 &vcpu->arch.guest_fpu.state->fxsave;
5729 memcpy(fpu->fpr, fxsave->st_space, 128);
5730 fpu->fcw = fxsave->cwd;
5731 fpu->fsw = fxsave->swd;
5732 fpu->ftwx = fxsave->twd;
5733 fpu->last_opcode = fxsave->fop;
5734 fpu->last_ip = fxsave->rip;
5735 fpu->last_dp = fxsave->rdp;
5736 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
5741 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5743 struct i387_fxsave_struct *fxsave =
5744 &vcpu->arch.guest_fpu.state->fxsave;
5746 memcpy(fxsave->st_space, fpu->fpr, 128);
5747 fxsave->cwd = fpu->fcw;
5748 fxsave->swd = fpu->fsw;
5749 fxsave->twd = fpu->ftwx;
5750 fxsave->fop = fpu->last_opcode;
5751 fxsave->rip = fpu->last_ip;
5752 fxsave->rdp = fpu->last_dp;
5753 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
5758 int fx_init(struct kvm_vcpu *vcpu)
5762 err = fpu_alloc(&vcpu->arch.guest_fpu);
5766 fpu_finit(&vcpu->arch.guest_fpu);
5769 * Ensure guest xcr0 is valid for loading
5771 vcpu->arch.xcr0 = XSTATE_FP;
5773 vcpu->arch.cr0 |= X86_CR0_ET;
5777 EXPORT_SYMBOL_GPL(fx_init);
5779 static void fx_free(struct kvm_vcpu *vcpu)
5781 fpu_free(&vcpu->arch.guest_fpu);
5784 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
5786 if (vcpu->guest_fpu_loaded)
5790 * Restore all possible states in the guest,
5791 * and assume host would use all available bits.
5792 * Guest xcr0 would be loaded later.
5794 kvm_put_guest_xcr0(vcpu);
5795 vcpu->guest_fpu_loaded = 1;
5796 unlazy_fpu(current);
5797 fpu_restore_checking(&vcpu->arch.guest_fpu);
5801 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
5803 kvm_put_guest_xcr0(vcpu);
5805 if (!vcpu->guest_fpu_loaded)
5808 vcpu->guest_fpu_loaded = 0;
5809 fpu_save_init(&vcpu->arch.guest_fpu);
5810 ++vcpu->stat.fpu_reload;
5811 kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
5815 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
5817 if (vcpu->arch.time_page) {
5818 kvm_release_page_dirty(vcpu->arch.time_page);
5819 vcpu->arch.time_page = NULL;
5822 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
5824 kvm_x86_ops->vcpu_free(vcpu);
5827 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
5830 if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
5831 printk_once(KERN_WARNING
5832 "kvm: SMP vm created on host with unstable TSC; "
5833 "guest TSC will not be reliable\n");
5834 return kvm_x86_ops->vcpu_create(kvm, id);
5837 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
5841 vcpu->arch.mtrr_state.have_fixed = 1;
5843 r = kvm_arch_vcpu_reset(vcpu);
5845 r = kvm_mmu_setup(vcpu);
5852 kvm_x86_ops->vcpu_free(vcpu);
5856 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
5858 vcpu->arch.apf.msr_val = 0;
5861 kvm_mmu_unload(vcpu);
5865 kvm_x86_ops->vcpu_free(vcpu);
5868 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
5870 vcpu->arch.nmi_pending = false;
5871 vcpu->arch.nmi_injected = false;
5873 vcpu->arch.switch_db_regs = 0;
5874 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
5875 vcpu->arch.dr6 = DR6_FIXED_1;
5876 vcpu->arch.dr7 = DR7_FIXED_1;
5878 kvm_make_request(KVM_REQ_EVENT, vcpu);
5879 vcpu->arch.apf.msr_val = 0;
5881 kvm_clear_async_pf_completion_queue(vcpu);
5882 kvm_async_pf_hash_reset(vcpu);
5883 vcpu->arch.apf.halted = false;
5885 return kvm_x86_ops->vcpu_reset(vcpu);
5888 int kvm_arch_hardware_enable(void *garbage)
5891 struct kvm_vcpu *vcpu;
5894 kvm_shared_msr_cpu_online();
5895 list_for_each_entry(kvm, &vm_list, vm_list)
5896 kvm_for_each_vcpu(i, vcpu, kvm)
5897 if (vcpu->cpu == smp_processor_id())
5898 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5899 return kvm_x86_ops->hardware_enable(garbage);
5902 void kvm_arch_hardware_disable(void *garbage)
5904 kvm_x86_ops->hardware_disable(garbage);
5905 drop_user_return_notifiers(garbage);
5908 int kvm_arch_hardware_setup(void)
5910 return kvm_x86_ops->hardware_setup();
5913 void kvm_arch_hardware_unsetup(void)
5915 kvm_x86_ops->hardware_unsetup();
5918 void kvm_arch_check_processor_compat(void *rtn)
5920 kvm_x86_ops->check_processor_compatibility(rtn);
5923 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
5929 BUG_ON(vcpu->kvm == NULL);
5932 vcpu->arch.emulate_ctxt.ops = &emulate_ops;
5933 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
5934 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
5935 vcpu->arch.mmu.translate_gpa = translate_gpa;
5936 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5937 if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
5938 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5940 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
5942 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
5947 vcpu->arch.pio_data = page_address(page);
5949 if (!kvm->arch.virtual_tsc_khz)
5950 kvm_arch_set_tsc_khz(kvm, max_tsc_khz);
5952 r = kvm_mmu_create(vcpu);
5954 goto fail_free_pio_data;
5956 if (irqchip_in_kernel(kvm)) {
5957 r = kvm_create_lapic(vcpu);
5959 goto fail_mmu_destroy;
5962 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
5964 if (!vcpu->arch.mce_banks) {
5966 goto fail_free_lapic;
5968 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
5970 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL))
5971 goto fail_free_mce_banks;
5973 kvm_async_pf_hash_reset(vcpu);
5976 fail_free_mce_banks:
5977 kfree(vcpu->arch.mce_banks);
5979 kvm_free_lapic(vcpu);
5981 kvm_mmu_destroy(vcpu);
5983 free_page((unsigned long)vcpu->arch.pio_data);
5988 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
5992 kfree(vcpu->arch.mce_banks);
5993 kvm_free_lapic(vcpu);
5994 idx = srcu_read_lock(&vcpu->kvm->srcu);
5995 kvm_mmu_destroy(vcpu);
5996 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5997 free_page((unsigned long)vcpu->arch.pio_data);
6000 int kvm_arch_init_vm(struct kvm *kvm)
6002 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
6003 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
6005 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
6006 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
6008 spin_lock_init(&kvm->arch.tsc_write_lock);
6013 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
6016 kvm_mmu_unload(vcpu);
6020 static void kvm_free_vcpus(struct kvm *kvm)
6023 struct kvm_vcpu *vcpu;
6026 * Unpin any mmu pages first.
6028 kvm_for_each_vcpu(i, vcpu, kvm) {
6029 kvm_clear_async_pf_completion_queue(vcpu);
6030 kvm_unload_vcpu_mmu(vcpu);
6032 kvm_for_each_vcpu(i, vcpu, kvm)
6033 kvm_arch_vcpu_free(vcpu);
6035 mutex_lock(&kvm->lock);
6036 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
6037 kvm->vcpus[i] = NULL;
6039 atomic_set(&kvm->online_vcpus, 0);
6040 mutex_unlock(&kvm->lock);
6043 void kvm_arch_sync_events(struct kvm *kvm)
6045 kvm_free_all_assigned_devices(kvm);
6049 void kvm_arch_destroy_vm(struct kvm *kvm)
6051 kvm_iommu_unmap_guest(kvm);
6052 kfree(kvm->arch.vpic);
6053 kfree(kvm->arch.vioapic);
6054 kvm_free_vcpus(kvm);
6055 if (kvm->arch.apic_access_page)
6056 put_page(kvm->arch.apic_access_page);
6057 if (kvm->arch.ept_identity_pagetable)
6058 put_page(kvm->arch.ept_identity_pagetable);
6061 int kvm_arch_prepare_memory_region(struct kvm *kvm,
6062 struct kvm_memory_slot *memslot,
6063 struct kvm_memory_slot old,
6064 struct kvm_userspace_memory_region *mem,
6067 int npages = memslot->npages;
6068 int map_flags = MAP_PRIVATE | MAP_ANONYMOUS;
6070 /* Prevent internal slot pages from being moved by fork()/COW. */
6071 if (memslot->id >= KVM_MEMORY_SLOTS)
6072 map_flags = MAP_SHARED | MAP_ANONYMOUS;
6074 /*To keep backward compatibility with older userspace,
6075 *x86 needs to hanlde !user_alloc case.
6078 if (npages && !old.rmap) {
6079 unsigned long userspace_addr;
6081 down_write(¤t->mm->mmap_sem);
6082 userspace_addr = do_mmap(NULL, 0,
6084 PROT_READ | PROT_WRITE,
6087 up_write(¤t->mm->mmap_sem);
6089 if (IS_ERR((void *)userspace_addr))
6090 return PTR_ERR((void *)userspace_addr);
6092 memslot->userspace_addr = userspace_addr;
6100 void kvm_arch_commit_memory_region(struct kvm *kvm,
6101 struct kvm_userspace_memory_region *mem,
6102 struct kvm_memory_slot old,
6106 int npages = mem->memory_size >> PAGE_SHIFT;
6108 if (!user_alloc && !old.user_alloc && old.rmap && !npages) {
6111 down_write(¤t->mm->mmap_sem);
6112 ret = do_munmap(current->mm, old.userspace_addr,
6113 old.npages * PAGE_SIZE);
6114 up_write(¤t->mm->mmap_sem);
6117 "kvm_vm_ioctl_set_memory_region: "
6118 "failed to munmap memory\n");
6121 spin_lock(&kvm->mmu_lock);
6122 if (!kvm->arch.n_requested_mmu_pages) {
6123 unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
6124 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
6127 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
6128 spin_unlock(&kvm->mmu_lock);
6131 void kvm_arch_flush_shadow(struct kvm *kvm)
6133 kvm_mmu_zap_all(kvm);
6134 kvm_reload_remote_mmus(kvm);
6137 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
6139 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6140 !vcpu->arch.apf.halted)
6141 || !list_empty_careful(&vcpu->async_pf.done)
6142 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
6143 || vcpu->arch.nmi_pending ||
6144 (kvm_arch_interrupt_allowed(vcpu) &&
6145 kvm_cpu_has_interrupt(vcpu));
6148 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
6151 int cpu = vcpu->cpu;
6153 if (waitqueue_active(&vcpu->wq)) {
6154 wake_up_interruptible(&vcpu->wq);
6155 ++vcpu->stat.halt_wakeup;
6159 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
6160 if (atomic_xchg(&vcpu->guest_mode, 0))
6161 smp_send_reschedule(cpu);
6165 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
6167 return kvm_x86_ops->interrupt_allowed(vcpu);
6170 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
6172 unsigned long current_rip = kvm_rip_read(vcpu) +
6173 get_segment_base(vcpu, VCPU_SREG_CS);
6175 return current_rip == linear_rip;
6177 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
6179 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
6181 unsigned long rflags;
6183 rflags = kvm_x86_ops->get_rflags(vcpu);
6184 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6185 rflags &= ~X86_EFLAGS_TF;
6188 EXPORT_SYMBOL_GPL(kvm_get_rflags);
6190 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
6192 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
6193 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
6194 rflags |= X86_EFLAGS_TF;
6195 kvm_x86_ops->set_rflags(vcpu, rflags);
6196 kvm_make_request(KVM_REQ_EVENT, vcpu);
6198 EXPORT_SYMBOL_GPL(kvm_set_rflags);
6200 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
6204 if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
6205 is_error_page(work->page))
6208 r = kvm_mmu_reload(vcpu);
6212 if (!vcpu->arch.mmu.direct_map &&
6213 work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
6216 vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
6219 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
6221 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
6224 static inline u32 kvm_async_pf_next_probe(u32 key)
6226 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
6229 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6231 u32 key = kvm_async_pf_hash_fn(gfn);
6233 while (vcpu->arch.apf.gfns[key] != ~0)
6234 key = kvm_async_pf_next_probe(key);
6236 vcpu->arch.apf.gfns[key] = gfn;
6239 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
6242 u32 key = kvm_async_pf_hash_fn(gfn);
6244 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
6245 (vcpu->arch.apf.gfns[key] != gfn &&
6246 vcpu->arch.apf.gfns[key] != ~0); i++)
6247 key = kvm_async_pf_next_probe(key);
6252 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6254 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
6257 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6261 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
6263 vcpu->arch.apf.gfns[i] = ~0;
6265 j = kvm_async_pf_next_probe(j);
6266 if (vcpu->arch.apf.gfns[j] == ~0)
6268 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
6270 * k lies cyclically in ]i,j]
6272 * |....j i.k.| or |.k..j i...|
6274 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
6275 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
6280 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
6283 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
6287 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
6288 struct kvm_async_pf *work)
6290 struct x86_exception fault;
6292 trace_kvm_async_pf_not_present(work->arch.token, work->gva);
6293 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
6295 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
6296 (vcpu->arch.apf.send_user_only &&
6297 kvm_x86_ops->get_cpl(vcpu) == 0))
6298 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
6299 else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
6300 fault.vector = PF_VECTOR;
6301 fault.error_code_valid = true;
6302 fault.error_code = 0;
6303 fault.nested_page_fault = false;
6304 fault.address = work->arch.token;
6305 kvm_inject_page_fault(vcpu, &fault);
6309 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
6310 struct kvm_async_pf *work)
6312 struct x86_exception fault;
6314 trace_kvm_async_pf_ready(work->arch.token, work->gva);
6315 if (is_error_page(work->page))
6316 work->arch.token = ~0; /* broadcast wakeup */
6318 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
6320 if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
6321 !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
6322 fault.vector = PF_VECTOR;
6323 fault.error_code_valid = true;
6324 fault.error_code = 0;
6325 fault.nested_page_fault = false;
6326 fault.address = work->arch.token;
6327 kvm_inject_page_fault(vcpu, &fault);
6329 vcpu->arch.apf.halted = false;
6332 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
6334 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
6337 return !kvm_event_needs_reinjection(vcpu) &&
6338 kvm_x86_ops->interrupt_allowed(vcpu);
6341 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
6342 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
6343 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
6344 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
6345 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
6346 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
6347 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
6348 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
6349 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
6350 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
6351 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
6352 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);