4 * vfs operations that deal with files
6 * Copyright (C) International Business Machines Corp., 2002,2010
10 * This library is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU Lesser General Public License as published
12 * by the Free Software Foundation; either version 2.1 of the License, or
13 * (at your option) any later version.
15 * This library is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
18 * the GNU Lesser General Public License for more details.
20 * You should have received a copy of the GNU Lesser General Public License
21 * along with this library; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
25 #include <linux/backing-dev.h>
26 #include <linux/stat.h>
27 #include <linux/fcntl.h>
28 #include <linux/pagemap.h>
29 #include <linux/pagevec.h>
30 #include <linux/writeback.h>
31 #include <linux/task_io_accounting_ops.h>
32 #include <linux/delay.h>
33 #include <linux/mount.h>
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <asm/div64.h>
40 #include "cifsproto.h"
41 #include "cifs_unicode.h"
42 #include "cifs_debug.h"
43 #include "cifs_fs_sb.h"
46 static inline int cifs_convert_flags(unsigned int flags)
48 if ((flags & O_ACCMODE) == O_RDONLY)
50 else if ((flags & O_ACCMODE) == O_WRONLY)
52 else if ((flags & O_ACCMODE) == O_RDWR) {
53 /* GENERIC_ALL is too much permission to request
54 can cause unnecessary access denied on create */
55 /* return GENERIC_ALL; */
56 return (GENERIC_READ | GENERIC_WRITE);
59 return (READ_CONTROL | FILE_WRITE_ATTRIBUTES | FILE_READ_ATTRIBUTES |
60 FILE_WRITE_EA | FILE_APPEND_DATA | FILE_WRITE_DATA |
64 static u32 cifs_posix_convert_flags(unsigned int flags)
68 if ((flags & O_ACCMODE) == O_RDONLY)
69 posix_flags = SMB_O_RDONLY;
70 else if ((flags & O_ACCMODE) == O_WRONLY)
71 posix_flags = SMB_O_WRONLY;
72 else if ((flags & O_ACCMODE) == O_RDWR)
73 posix_flags = SMB_O_RDWR;
76 posix_flags |= SMB_O_CREAT;
78 posix_flags |= SMB_O_EXCL;
80 posix_flags |= SMB_O_TRUNC;
81 /* be safe and imply O_SYNC for O_DSYNC */
83 posix_flags |= SMB_O_SYNC;
84 if (flags & O_DIRECTORY)
85 posix_flags |= SMB_O_DIRECTORY;
86 if (flags & O_NOFOLLOW)
87 posix_flags |= SMB_O_NOFOLLOW;
89 posix_flags |= SMB_O_DIRECT;
94 static inline int cifs_get_disposition(unsigned int flags)
96 if ((flags & (O_CREAT | O_EXCL)) == (O_CREAT | O_EXCL))
98 else if ((flags & (O_CREAT | O_TRUNC)) == (O_CREAT | O_TRUNC))
99 return FILE_OVERWRITE_IF;
100 else if ((flags & O_CREAT) == O_CREAT)
102 else if ((flags & O_TRUNC) == O_TRUNC)
103 return FILE_OVERWRITE;
108 int cifs_posix_open(char *full_path, struct inode **pinode,
109 struct super_block *sb, int mode, unsigned int f_flags,
110 __u32 *poplock, __u16 *pnetfid, unsigned int xid)
113 FILE_UNIX_BASIC_INFO *presp_data;
114 __u32 posix_flags = 0;
115 struct cifs_sb_info *cifs_sb = CIFS_SB(sb);
116 struct cifs_fattr fattr;
117 struct tcon_link *tlink;
118 struct cifs_tcon *tcon;
120 cFYI(1, "posix open %s", full_path);
122 presp_data = kzalloc(sizeof(FILE_UNIX_BASIC_INFO), GFP_KERNEL);
123 if (presp_data == NULL)
126 tlink = cifs_sb_tlink(cifs_sb);
132 tcon = tlink_tcon(tlink);
133 mode &= ~current_umask();
135 posix_flags = cifs_posix_convert_flags(f_flags);
136 rc = CIFSPOSIXCreate(xid, tcon, posix_flags, mode, pnetfid, presp_data,
137 poplock, full_path, cifs_sb->local_nls,
138 cifs_sb->mnt_cifs_flags &
139 CIFS_MOUNT_MAP_SPECIAL_CHR);
140 cifs_put_tlink(tlink);
145 if (presp_data->Type == cpu_to_le32(-1))
146 goto posix_open_ret; /* open ok, caller does qpathinfo */
149 goto posix_open_ret; /* caller does not need info */
151 cifs_unix_basic_to_fattr(&fattr, presp_data, cifs_sb);
153 /* get new inode and set it up */
154 if (*pinode == NULL) {
155 cifs_fill_uniqueid(sb, &fattr);
156 *pinode = cifs_iget(sb, &fattr);
162 cifs_fattr_to_inode(*pinode, &fattr);
171 cifs_nt_open(char *full_path, struct inode *inode, struct cifs_sb_info *cifs_sb,
172 struct cifs_tcon *tcon, unsigned int f_flags, __u32 *oplock,
173 struct cifs_fid *fid, unsigned int xid)
178 int create_options = CREATE_NOT_DIR;
180 struct TCP_Server_Info *server = tcon->ses->server;
182 if (!server->ops->open)
185 desired_access = cifs_convert_flags(f_flags);
187 /*********************************************************************
188 * open flag mapping table:
190 * POSIX Flag CIFS Disposition
191 * ---------- ----------------
192 * O_CREAT FILE_OPEN_IF
193 * O_CREAT | O_EXCL FILE_CREATE
194 * O_CREAT | O_TRUNC FILE_OVERWRITE_IF
195 * O_TRUNC FILE_OVERWRITE
196 * none of the above FILE_OPEN
198 * Note that there is not a direct match between disposition
199 * FILE_SUPERSEDE (ie create whether or not file exists although
200 * O_CREAT | O_TRUNC is similar but truncates the existing
201 * file rather than creating a new file as FILE_SUPERSEDE does
202 * (which uses the attributes / metadata passed in on open call)
204 *? O_SYNC is a reasonable match to CIFS writethrough flag
205 *? and the read write flags match reasonably. O_LARGEFILE
206 *? is irrelevant because largefile support is always used
207 *? by this client. Flags O_APPEND, O_DIRECT, O_DIRECTORY,
208 * O_FASYNC, O_NOFOLLOW, O_NONBLOCK need further investigation
209 *********************************************************************/
211 disposition = cifs_get_disposition(f_flags);
213 /* BB pass O_SYNC flag through on file attributes .. BB */
215 buf = kmalloc(sizeof(FILE_ALL_INFO), GFP_KERNEL);
219 if (backup_cred(cifs_sb))
220 create_options |= CREATE_OPEN_BACKUP_INTENT;
222 rc = server->ops->open(xid, tcon, full_path, disposition,
223 desired_access, create_options, fid, oplock, buf,
230 rc = cifs_get_inode_info_unix(&inode, full_path, inode->i_sb,
233 rc = cifs_get_inode_info(&inode, full_path, buf, inode->i_sb,
241 struct cifsFileInfo *
242 cifs_new_fileinfo(struct cifs_fid *fid, struct file *file,
243 struct tcon_link *tlink, __u32 oplock)
245 struct dentry *dentry = file->f_path.dentry;
246 struct inode *inode = dentry->d_inode;
247 struct cifsInodeInfo *cinode = CIFS_I(inode);
248 struct cifsFileInfo *cfile;
249 struct cifs_fid_locks *fdlocks;
250 struct cifs_tcon *tcon = tlink_tcon(tlink);
252 cfile = kzalloc(sizeof(struct cifsFileInfo), GFP_KERNEL);
256 fdlocks = kzalloc(sizeof(struct cifs_fid_locks), GFP_KERNEL);
262 INIT_LIST_HEAD(&fdlocks->locks);
263 fdlocks->cfile = cfile;
264 cfile->llist = fdlocks;
265 down_write(&cinode->lock_sem);
266 list_add(&fdlocks->llist, &cinode->llist);
267 up_write(&cinode->lock_sem);
270 cfile->pid = current->tgid;
271 cfile->uid = current_fsuid();
272 cfile->dentry = dget(dentry);
273 cfile->f_flags = file->f_flags;
274 cfile->invalidHandle = false;
275 cfile->tlink = cifs_get_tlink(tlink);
276 INIT_WORK(&cfile->oplock_break, cifs_oplock_break);
277 mutex_init(&cfile->fh_mutex);
279 spin_lock(&cifs_file_list_lock);
280 if (fid->pending_open->oplock != CIFS_OPLOCK_NO_CHANGE)
281 oplock = fid->pending_open->oplock;
282 list_del(&fid->pending_open->olist);
284 tlink_tcon(tlink)->ses->server->ops->set_fid(cfile, fid, oplock);
286 list_add(&cfile->tlist, &tcon->openFileList);
287 /* if readable file instance put first in list*/
288 if (file->f_mode & FMODE_READ)
289 list_add(&cfile->flist, &cinode->openFileList);
291 list_add_tail(&cfile->flist, &cinode->openFileList);
292 spin_unlock(&cifs_file_list_lock);
294 file->private_data = cfile;
298 struct cifsFileInfo *
299 cifsFileInfo_get(struct cifsFileInfo *cifs_file)
301 spin_lock(&cifs_file_list_lock);
302 cifsFileInfo_get_locked(cifs_file);
303 spin_unlock(&cifs_file_list_lock);
308 * Release a reference on the file private data. This may involve closing
309 * the filehandle out on the server. Must be called without holding
310 * cifs_file_list_lock.
312 void cifsFileInfo_put(struct cifsFileInfo *cifs_file)
314 struct inode *inode = cifs_file->dentry->d_inode;
315 struct cifs_tcon *tcon = tlink_tcon(cifs_file->tlink);
316 struct TCP_Server_Info *server = tcon->ses->server;
317 struct cifsInodeInfo *cifsi = CIFS_I(inode);
318 struct cifs_sb_info *cifs_sb = CIFS_SB(inode->i_sb);
319 struct cifsLockInfo *li, *tmp;
321 struct cifs_pending_open open;
323 spin_lock(&cifs_file_list_lock);
324 if (--cifs_file->count > 0) {
325 spin_unlock(&cifs_file_list_lock);
329 if (server->ops->get_lease_key)
330 server->ops->get_lease_key(inode, &fid);
332 /* store open in pending opens to make sure we don't miss lease break */
333 cifs_add_pending_open_locked(&fid, cifs_file->tlink, &open);
335 /* remove it from the lists */
336 list_del(&cifs_file->flist);
337 list_del(&cifs_file->tlist);
339 if (list_empty(&cifsi->openFileList)) {
340 cFYI(1, "closing last open instance for inode %p",
341 cifs_file->dentry->d_inode);
343 * In strict cache mode we need invalidate mapping on the last
344 * close because it may cause a error when we open this file
345 * again and get at least level II oplock.
347 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_STRICT_IO)
348 CIFS_I(inode)->invalid_mapping = true;
349 cifs_set_oplock_level(cifsi, 0);
351 spin_unlock(&cifs_file_list_lock);
353 cancel_work_sync(&cifs_file->oplock_break);
355 if (!tcon->need_reconnect && !cifs_file->invalidHandle) {
356 struct TCP_Server_Info *server = tcon->ses->server;
360 if (server->ops->close)
361 server->ops->close(xid, tcon, &cifs_file->fid);
365 cifs_del_pending_open(&open);
368 * Delete any outstanding lock records. We'll lose them when the file
371 down_write(&cifsi->lock_sem);
372 list_for_each_entry_safe(li, tmp, &cifs_file->llist->locks, llist) {
373 list_del(&li->llist);
374 cifs_del_lock_waiters(li);
377 list_del(&cifs_file->llist->llist);
378 kfree(cifs_file->llist);
379 up_write(&cifsi->lock_sem);
381 cifs_put_tlink(cifs_file->tlink);
382 dput(cifs_file->dentry);
386 int cifs_open(struct inode *inode, struct file *file)
392 struct cifs_sb_info *cifs_sb;
393 struct TCP_Server_Info *server;
394 struct cifs_tcon *tcon;
395 struct tcon_link *tlink;
396 struct cifsFileInfo *cfile = NULL;
397 char *full_path = NULL;
398 bool posix_open_ok = false;
400 struct cifs_pending_open open;
404 cifs_sb = CIFS_SB(inode->i_sb);
405 tlink = cifs_sb_tlink(cifs_sb);
408 return PTR_ERR(tlink);
410 tcon = tlink_tcon(tlink);
411 server = tcon->ses->server;
413 full_path = build_path_from_dentry(file->f_path.dentry);
414 if (full_path == NULL) {
419 cFYI(1, "inode = 0x%p file flags are 0x%x for %s",
420 inode, file->f_flags, full_path);
427 if (!tcon->broken_posix_open && tcon->unix_ext &&
428 cap_unix(tcon->ses) && (CIFS_UNIX_POSIX_PATH_OPS_CAP &
429 le64_to_cpu(tcon->fsUnixInfo.Capability))) {
430 /* can not refresh inode info since size could be stale */
431 rc = cifs_posix_open(full_path, &inode, inode->i_sb,
432 cifs_sb->mnt_file_mode /* ignored */,
433 file->f_flags, &oplock, &fid.netfid, xid);
435 cFYI(1, "posix open succeeded");
436 posix_open_ok = true;
437 } else if ((rc == -EINVAL) || (rc == -EOPNOTSUPP)) {
438 if (tcon->ses->serverNOS)
439 cERROR(1, "server %s of type %s returned"
440 " unexpected error on SMB posix open"
441 ", disabling posix open support."
442 " Check if server update available.",
443 tcon->ses->serverName,
444 tcon->ses->serverNOS);
445 tcon->broken_posix_open = true;
446 } else if ((rc != -EIO) && (rc != -EREMOTE) &&
447 (rc != -EOPNOTSUPP)) /* path not found or net err */
450 * Else fallthrough to retry open the old way on network i/o
455 if (server->ops->get_lease_key)
456 server->ops->get_lease_key(inode, &fid);
458 cifs_add_pending_open(&fid, tlink, &open);
460 if (!posix_open_ok) {
461 if (server->ops->get_lease_key)
462 server->ops->get_lease_key(inode, &fid);
464 rc = cifs_nt_open(full_path, inode, cifs_sb, tcon,
465 file->f_flags, &oplock, &fid, xid);
467 cifs_del_pending_open(&open);
472 cfile = cifs_new_fileinfo(&fid, file, tlink, oplock);
474 if (server->ops->close)
475 server->ops->close(xid, tcon, &fid);
476 cifs_del_pending_open(&open);
481 cifs_fscache_set_inode_cookie(inode, file);
483 if ((oplock & CIFS_CREATE_ACTION) && !posix_open_ok && tcon->unix_ext) {
485 * Time to set mode which we can not set earlier due to
486 * problems creating new read-only files.
488 struct cifs_unix_set_info_args args = {
489 .mode = inode->i_mode,
492 .ctime = NO_CHANGE_64,
493 .atime = NO_CHANGE_64,
494 .mtime = NO_CHANGE_64,
497 CIFSSMBUnixSetFileInfo(xid, tcon, &args, fid.netfid,
504 cifs_put_tlink(tlink);
509 * Try to reacquire byte range locks that were released when session
512 static int cifs_relock_file(struct cifsFileInfo *cifsFile)
516 /* BB list all locks open on this file and relock */
522 cifs_reopen_file(struct cifsFileInfo *cfile, bool can_flush)
527 struct cifs_sb_info *cifs_sb;
528 struct cifs_tcon *tcon;
529 struct TCP_Server_Info *server;
530 struct cifsInodeInfo *cinode;
532 char *full_path = NULL;
534 int disposition = FILE_OPEN;
535 int create_options = CREATE_NOT_DIR;
539 mutex_lock(&cfile->fh_mutex);
540 if (!cfile->invalidHandle) {
541 mutex_unlock(&cfile->fh_mutex);
547 inode = cfile->dentry->d_inode;
548 cifs_sb = CIFS_SB(inode->i_sb);
549 tcon = tlink_tcon(cfile->tlink);
550 server = tcon->ses->server;
553 * Can not grab rename sem here because various ops, including those
554 * that already have the rename sem can end up causing writepage to get
555 * called and if the server was down that means we end up here, and we
556 * can never tell if the caller already has the rename_sem.
558 full_path = build_path_from_dentry(cfile->dentry);
559 if (full_path == NULL) {
561 mutex_unlock(&cfile->fh_mutex);
566 cFYI(1, "inode = 0x%p file flags 0x%x for %s", inode, cfile->f_flags,
569 if (tcon->ses->server->oplocks)
574 if (tcon->unix_ext && cap_unix(tcon->ses) &&
575 (CIFS_UNIX_POSIX_PATH_OPS_CAP &
576 le64_to_cpu(tcon->fsUnixInfo.Capability))) {
578 * O_CREAT, O_EXCL and O_TRUNC already had their effect on the
579 * original open. Must mask them off for a reopen.
581 unsigned int oflags = cfile->f_flags &
582 ~(O_CREAT | O_EXCL | O_TRUNC);
584 rc = cifs_posix_open(full_path, NULL, inode->i_sb,
585 cifs_sb->mnt_file_mode /* ignored */,
586 oflags, &oplock, &fid.netfid, xid);
588 cFYI(1, "posix reopen succeeded");
592 * fallthrough to retry open the old way on errors, especially
593 * in the reconnect path it is important to retry hard
597 desired_access = cifs_convert_flags(cfile->f_flags);
599 if (backup_cred(cifs_sb))
600 create_options |= CREATE_OPEN_BACKUP_INTENT;
602 if (server->ops->get_lease_key)
603 server->ops->get_lease_key(inode, &fid);
606 * Can not refresh inode by passing in file_info buf to be returned by
607 * CIFSSMBOpen and then calling get_inode_info with returned buf since
608 * file might have write behind data that needs to be flushed and server
609 * version of file size can be stale. If we knew for sure that inode was
610 * not dirty locally we could do this.
612 rc = server->ops->open(xid, tcon, full_path, disposition,
613 desired_access, create_options, &fid, &oplock,
616 mutex_unlock(&cfile->fh_mutex);
617 cFYI(1, "cifs_reopen returned 0x%x", rc);
618 cFYI(1, "oplock: %d", oplock);
619 goto reopen_error_exit;
623 cfile->invalidHandle = false;
624 mutex_unlock(&cfile->fh_mutex);
625 cinode = CIFS_I(inode);
628 rc = filemap_write_and_wait(inode->i_mapping);
629 mapping_set_error(inode->i_mapping, rc);
632 rc = cifs_get_inode_info_unix(&inode, full_path,
635 rc = cifs_get_inode_info(&inode, full_path, NULL,
636 inode->i_sb, xid, NULL);
639 * Else we are writing out data to server already and could deadlock if
640 * we tried to flush data, and since we do not know if we have data that
641 * would invalidate the current end of file on the server we can not go
642 * to the server to get the new inode info.
645 server->ops->set_fid(cfile, &fid, oplock);
646 cifs_relock_file(cfile);
654 int cifs_close(struct inode *inode, struct file *file)
656 if (file->private_data != NULL) {
657 cifsFileInfo_put(file->private_data);
658 file->private_data = NULL;
661 /* return code from the ->release op is always ignored */
665 int cifs_closedir(struct inode *inode, struct file *file)
669 struct cifsFileInfo *cfile = file->private_data;
670 struct cifs_tcon *tcon;
671 struct TCP_Server_Info *server;
674 cFYI(1, "Closedir inode = 0x%p", inode);
680 tcon = tlink_tcon(cfile->tlink);
681 server = tcon->ses->server;
683 cFYI(1, "Freeing private data in close dir");
684 spin_lock(&cifs_file_list_lock);
685 if (!cfile->srch_inf.endOfSearch && !cfile->invalidHandle) {
686 cfile->invalidHandle = true;
687 spin_unlock(&cifs_file_list_lock);
688 if (server->ops->close_dir)
689 rc = server->ops->close_dir(xid, tcon, &cfile->fid);
692 cFYI(1, "Closing uncompleted readdir with rc %d", rc);
693 /* not much we can do if it fails anyway, ignore rc */
696 spin_unlock(&cifs_file_list_lock);
698 buf = cfile->srch_inf.ntwrk_buf_start;
700 cFYI(1, "closedir free smb buf in srch struct");
701 cfile->srch_inf.ntwrk_buf_start = NULL;
702 if (cfile->srch_inf.smallBuf)
703 cifs_small_buf_release(buf);
705 cifs_buf_release(buf);
708 cifs_put_tlink(cfile->tlink);
709 kfree(file->private_data);
710 file->private_data = NULL;
711 /* BB can we lock the filestruct while this is going on? */
716 static struct cifsLockInfo *
717 cifs_lock_init(__u64 offset, __u64 length, __u8 type)
719 struct cifsLockInfo *lock =
720 kmalloc(sizeof(struct cifsLockInfo), GFP_KERNEL);
723 lock->offset = offset;
724 lock->length = length;
726 lock->pid = current->tgid;
727 INIT_LIST_HEAD(&lock->blist);
728 init_waitqueue_head(&lock->block_q);
733 cifs_del_lock_waiters(struct cifsLockInfo *lock)
735 struct cifsLockInfo *li, *tmp;
736 list_for_each_entry_safe(li, tmp, &lock->blist, blist) {
737 list_del_init(&li->blist);
738 wake_up(&li->block_q);
743 cifs_find_fid_lock_conflict(struct cifs_fid_locks *fdlocks, __u64 offset,
744 __u64 length, __u8 type, struct cifsFileInfo *cfile,
745 struct cifsLockInfo **conf_lock, bool rw_check)
747 struct cifsLockInfo *li;
748 struct cifsFileInfo *cur_cfile = fdlocks->cfile;
749 struct TCP_Server_Info *server = tlink_tcon(cfile->tlink)->ses->server;
751 list_for_each_entry(li, &fdlocks->locks, llist) {
752 if (offset + length <= li->offset ||
753 offset >= li->offset + li->length)
755 if (rw_check && server->ops->compare_fids(cfile, cur_cfile) &&
756 current->tgid == li->pid)
758 if ((type & server->vals->shared_lock_type) &&
759 ((server->ops->compare_fids(cfile, cur_cfile) &&
760 current->tgid == li->pid) || type == li->type))
770 cifs_find_lock_conflict(struct cifsFileInfo *cfile, __u64 offset, __u64 length,
771 __u8 type, struct cifsLockInfo **conf_lock,
775 struct cifs_fid_locks *cur;
776 struct cifsInodeInfo *cinode = CIFS_I(cfile->dentry->d_inode);
778 list_for_each_entry(cur, &cinode->llist, llist) {
779 rc = cifs_find_fid_lock_conflict(cur, offset, length, type,
780 cfile, conf_lock, rw_check);
789 * Check if there is another lock that prevents us to set the lock (mandatory
790 * style). If such a lock exists, update the flock structure with its
791 * properties. Otherwise, set the flock type to F_UNLCK if we can cache brlocks
792 * or leave it the same if we can't. Returns 0 if we don't need to request to
793 * the server or 1 otherwise.
796 cifs_lock_test(struct cifsFileInfo *cfile, __u64 offset, __u64 length,
797 __u8 type, struct file_lock *flock)
800 struct cifsLockInfo *conf_lock;
801 struct cifsInodeInfo *cinode = CIFS_I(cfile->dentry->d_inode);
802 struct TCP_Server_Info *server = tlink_tcon(cfile->tlink)->ses->server;
805 down_read(&cinode->lock_sem);
807 exist = cifs_find_lock_conflict(cfile, offset, length, type,
810 flock->fl_start = conf_lock->offset;
811 flock->fl_end = conf_lock->offset + conf_lock->length - 1;
812 flock->fl_pid = conf_lock->pid;
813 if (conf_lock->type & server->vals->shared_lock_type)
814 flock->fl_type = F_RDLCK;
816 flock->fl_type = F_WRLCK;
817 } else if (!cinode->can_cache_brlcks)
820 flock->fl_type = F_UNLCK;
822 up_read(&cinode->lock_sem);
827 cifs_lock_add(struct cifsFileInfo *cfile, struct cifsLockInfo *lock)
829 struct cifsInodeInfo *cinode = CIFS_I(cfile->dentry->d_inode);
830 down_write(&cinode->lock_sem);
831 list_add_tail(&lock->llist, &cfile->llist->locks);
832 up_write(&cinode->lock_sem);
836 * Set the byte-range lock (mandatory style). Returns:
837 * 1) 0, if we set the lock and don't need to request to the server;
838 * 2) 1, if no locks prevent us but we need to request to the server;
839 * 3) -EACCESS, if there is a lock that prevents us and wait is false.
842 cifs_lock_add_if(struct cifsFileInfo *cfile, struct cifsLockInfo *lock,
845 struct cifsLockInfo *conf_lock;
846 struct cifsInodeInfo *cinode = CIFS_I(cfile->dentry->d_inode);
852 down_write(&cinode->lock_sem);
854 exist = cifs_find_lock_conflict(cfile, lock->offset, lock->length,
855 lock->type, &conf_lock, false);
856 if (!exist && cinode->can_cache_brlcks) {
857 list_add_tail(&lock->llist, &cfile->llist->locks);
858 up_write(&cinode->lock_sem);
867 list_add_tail(&lock->blist, &conf_lock->blist);
868 up_write(&cinode->lock_sem);
869 rc = wait_event_interruptible(lock->block_q,
870 (lock->blist.prev == &lock->blist) &&
871 (lock->blist.next == &lock->blist));
874 down_write(&cinode->lock_sem);
875 list_del_init(&lock->blist);
878 up_write(&cinode->lock_sem);
883 * Check if there is another lock that prevents us to set the lock (posix
884 * style). If such a lock exists, update the flock structure with its
885 * properties. Otherwise, set the flock type to F_UNLCK if we can cache brlocks
886 * or leave it the same if we can't. Returns 0 if we don't need to request to
887 * the server or 1 otherwise.
890 cifs_posix_lock_test(struct file *file, struct file_lock *flock)
893 struct cifsInodeInfo *cinode = CIFS_I(file->f_path.dentry->d_inode);
894 unsigned char saved_type = flock->fl_type;
896 if ((flock->fl_flags & FL_POSIX) == 0)
899 down_read(&cinode->lock_sem);
900 posix_test_lock(file, flock);
902 if (flock->fl_type == F_UNLCK && !cinode->can_cache_brlcks) {
903 flock->fl_type = saved_type;
907 up_read(&cinode->lock_sem);
912 * Set the byte-range lock (posix style). Returns:
913 * 1) 0, if we set the lock and don't need to request to the server;
914 * 2) 1, if we need to request to the server;
915 * 3) <0, if the error occurs while setting the lock.
918 cifs_posix_lock_set(struct file *file, struct file_lock *flock)
920 struct cifsInodeInfo *cinode = CIFS_I(file->f_path.dentry->d_inode);
923 if ((flock->fl_flags & FL_POSIX) == 0)
927 down_write(&cinode->lock_sem);
928 if (!cinode->can_cache_brlcks) {
929 up_write(&cinode->lock_sem);
933 rc = posix_lock_file(file, flock, NULL);
934 up_write(&cinode->lock_sem);
935 if (rc == FILE_LOCK_DEFERRED) {
936 rc = wait_event_interruptible(flock->fl_wait, !flock->fl_next);
939 locks_delete_block(flock);
945 cifs_push_mandatory_locks(struct cifsFileInfo *cfile)
948 int rc = 0, stored_rc;
949 struct cifsLockInfo *li, *tmp;
950 struct cifs_tcon *tcon;
951 struct cifsInodeInfo *cinode = CIFS_I(cfile->dentry->d_inode);
952 unsigned int num, max_num, max_buf;
953 LOCKING_ANDX_RANGE *buf, *cur;
954 int types[] = {LOCKING_ANDX_LARGE_FILES,
955 LOCKING_ANDX_SHARED_LOCK | LOCKING_ANDX_LARGE_FILES};
959 tcon = tlink_tcon(cfile->tlink);
961 /* we are going to update can_cache_brlcks here - need a write access */
962 down_write(&cinode->lock_sem);
963 if (!cinode->can_cache_brlcks) {
964 up_write(&cinode->lock_sem);
970 * Accessing maxBuf is racy with cifs_reconnect - need to store value
971 * and check it for zero before using.
973 max_buf = tcon->ses->server->maxBuf;
975 up_write(&cinode->lock_sem);
980 max_num = (max_buf - sizeof(struct smb_hdr)) /
981 sizeof(LOCKING_ANDX_RANGE);
982 buf = kzalloc(max_num * sizeof(LOCKING_ANDX_RANGE), GFP_KERNEL);
984 up_write(&cinode->lock_sem);
989 for (i = 0; i < 2; i++) {
992 list_for_each_entry_safe(li, tmp, &cfile->llist->locks, llist) {
993 if (li->type != types[i])
995 cur->Pid = cpu_to_le16(li->pid);
996 cur->LengthLow = cpu_to_le32((u32)li->length);
997 cur->LengthHigh = cpu_to_le32((u32)(li->length>>32));
998 cur->OffsetLow = cpu_to_le32((u32)li->offset);
999 cur->OffsetHigh = cpu_to_le32((u32)(li->offset>>32));
1000 if (++num == max_num) {
1001 stored_rc = cifs_lockv(xid, tcon,
1003 (__u8)li->type, 0, num,
1014 stored_rc = cifs_lockv(xid, tcon, cfile->fid.netfid,
1015 (__u8)types[i], 0, num, buf);
1021 cinode->can_cache_brlcks = false;
1022 up_write(&cinode->lock_sem);
1029 /* copied from fs/locks.c with a name change */
1030 #define cifs_for_each_lock(inode, lockp) \
1031 for (lockp = &inode->i_flock; *lockp != NULL; \
1032 lockp = &(*lockp)->fl_next)
1034 struct lock_to_push {
1035 struct list_head llist;
1044 cifs_push_posix_locks(struct cifsFileInfo *cfile)
1046 struct cifsInodeInfo *cinode = CIFS_I(cfile->dentry->d_inode);
1047 struct cifs_tcon *tcon = tlink_tcon(cfile->tlink);
1048 struct file_lock *flock, **before;
1049 unsigned int count = 0, i = 0;
1050 int rc = 0, xid, type;
1051 struct list_head locks_to_send, *el;
1052 struct lock_to_push *lck, *tmp;
1057 /* we are going to update can_cache_brlcks here - need a write access */
1058 down_write(&cinode->lock_sem);
1059 if (!cinode->can_cache_brlcks) {
1060 up_write(&cinode->lock_sem);
1066 cifs_for_each_lock(cfile->dentry->d_inode, before) {
1067 if ((*before)->fl_flags & FL_POSIX)
1072 INIT_LIST_HEAD(&locks_to_send);
1075 * Allocating count locks is enough because no FL_POSIX locks can be
1076 * added to the list while we are holding cinode->lock_sem that
1077 * protects locking operations of this inode.
1079 for (; i < count; i++) {
1080 lck = kmalloc(sizeof(struct lock_to_push), GFP_KERNEL);
1085 list_add_tail(&lck->llist, &locks_to_send);
1088 el = locks_to_send.next;
1090 cifs_for_each_lock(cfile->dentry->d_inode, before) {
1092 if ((flock->fl_flags & FL_POSIX) == 0)
1094 if (el == &locks_to_send) {
1096 * The list ended. We don't have enough allocated
1097 * structures - something is really wrong.
1099 cERROR(1, "Can't push all brlocks!");
1102 length = 1 + flock->fl_end - flock->fl_start;
1103 if (flock->fl_type == F_RDLCK || flock->fl_type == F_SHLCK)
1107 lck = list_entry(el, struct lock_to_push, llist);
1108 lck->pid = flock->fl_pid;
1109 lck->netfid = cfile->fid.netfid;
1110 lck->length = length;
1112 lck->offset = flock->fl_start;
1117 list_for_each_entry_safe(lck, tmp, &locks_to_send, llist) {
1120 stored_rc = CIFSSMBPosixLock(xid, tcon, lck->netfid, lck->pid,
1121 lck->offset, lck->length, NULL,
1125 list_del(&lck->llist);
1130 cinode->can_cache_brlcks = false;
1131 up_write(&cinode->lock_sem);
1136 list_for_each_entry_safe(lck, tmp, &locks_to_send, llist) {
1137 list_del(&lck->llist);
1144 cifs_push_locks(struct cifsFileInfo *cfile)
1146 struct cifs_sb_info *cifs_sb = CIFS_SB(cfile->dentry->d_sb);
1147 struct cifs_tcon *tcon = tlink_tcon(cfile->tlink);
1149 if (cap_unix(tcon->ses) &&
1150 (CIFS_UNIX_FCNTL_CAP & le64_to_cpu(tcon->fsUnixInfo.Capability)) &&
1151 ((cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOPOSIXBRL) == 0))
1152 return cifs_push_posix_locks(cfile);
1154 return tcon->ses->server->ops->push_mand_locks(cfile);
1158 cifs_read_flock(struct file_lock *flock, __u32 *type, int *lock, int *unlock,
1159 bool *wait_flag, struct TCP_Server_Info *server)
1161 if (flock->fl_flags & FL_POSIX)
1163 if (flock->fl_flags & FL_FLOCK)
1165 if (flock->fl_flags & FL_SLEEP) {
1166 cFYI(1, "Blocking lock");
1169 if (flock->fl_flags & FL_ACCESS)
1170 cFYI(1, "Process suspended by mandatory locking - "
1171 "not implemented yet");
1172 if (flock->fl_flags & FL_LEASE)
1173 cFYI(1, "Lease on file - not implemented yet");
1174 if (flock->fl_flags &
1175 (~(FL_POSIX | FL_FLOCK | FL_SLEEP |
1176 FL_ACCESS | FL_LEASE | FL_CLOSE)))
1177 cFYI(1, "Unknown lock flags 0x%x", flock->fl_flags);
1179 *type = server->vals->large_lock_type;
1180 if (flock->fl_type == F_WRLCK) {
1181 cFYI(1, "F_WRLCK ");
1182 *type |= server->vals->exclusive_lock_type;
1184 } else if (flock->fl_type == F_UNLCK) {
1186 *type |= server->vals->unlock_lock_type;
1188 /* Check if unlock includes more than one lock range */
1189 } else if (flock->fl_type == F_RDLCK) {
1191 *type |= server->vals->shared_lock_type;
1193 } else if (flock->fl_type == F_EXLCK) {
1195 *type |= server->vals->exclusive_lock_type;
1197 } else if (flock->fl_type == F_SHLCK) {
1199 *type |= server->vals->shared_lock_type;
1202 cFYI(1, "Unknown type of lock");
1206 cifs_getlk(struct file *file, struct file_lock *flock, __u32 type,
1207 bool wait_flag, bool posix_lck, unsigned int xid)
1210 __u64 length = 1 + flock->fl_end - flock->fl_start;
1211 struct cifsFileInfo *cfile = (struct cifsFileInfo *)file->private_data;
1212 struct cifs_tcon *tcon = tlink_tcon(cfile->tlink);
1213 struct TCP_Server_Info *server = tcon->ses->server;
1214 __u16 netfid = cfile->fid.netfid;
1217 int posix_lock_type;
1219 rc = cifs_posix_lock_test(file, flock);
1223 if (type & server->vals->shared_lock_type)
1224 posix_lock_type = CIFS_RDLCK;
1226 posix_lock_type = CIFS_WRLCK;
1227 rc = CIFSSMBPosixLock(xid, tcon, netfid, current->tgid,
1228 flock->fl_start, length, flock,
1229 posix_lock_type, wait_flag);
1233 rc = cifs_lock_test(cfile, flock->fl_start, length, type, flock);
1237 /* BB we could chain these into one lock request BB */
1238 rc = server->ops->mand_lock(xid, cfile, flock->fl_start, length, type,
1241 rc = server->ops->mand_lock(xid, cfile, flock->fl_start, length,
1243 flock->fl_type = F_UNLCK;
1245 cERROR(1, "Error unlocking previously locked "
1246 "range %d during test of lock", rc);
1250 if (type & server->vals->shared_lock_type) {
1251 flock->fl_type = F_WRLCK;
1255 type &= ~server->vals->exclusive_lock_type;
1257 rc = server->ops->mand_lock(xid, cfile, flock->fl_start, length,
1258 type | server->vals->shared_lock_type,
1261 rc = server->ops->mand_lock(xid, cfile, flock->fl_start, length,
1262 type | server->vals->shared_lock_type, 0, 1, false);
1263 flock->fl_type = F_RDLCK;
1265 cERROR(1, "Error unlocking previously locked "
1266 "range %d during test of lock", rc);
1268 flock->fl_type = F_WRLCK;
1274 cifs_move_llist(struct list_head *source, struct list_head *dest)
1276 struct list_head *li, *tmp;
1277 list_for_each_safe(li, tmp, source)
1278 list_move(li, dest);
1282 cifs_free_llist(struct list_head *llist)
1284 struct cifsLockInfo *li, *tmp;
1285 list_for_each_entry_safe(li, tmp, llist, llist) {
1286 cifs_del_lock_waiters(li);
1287 list_del(&li->llist);
1293 cifs_unlock_range(struct cifsFileInfo *cfile, struct file_lock *flock,
1296 int rc = 0, stored_rc;
1297 int types[] = {LOCKING_ANDX_LARGE_FILES,
1298 LOCKING_ANDX_SHARED_LOCK | LOCKING_ANDX_LARGE_FILES};
1300 unsigned int max_num, num, max_buf;
1301 LOCKING_ANDX_RANGE *buf, *cur;
1302 struct cifs_tcon *tcon = tlink_tcon(cfile->tlink);
1303 struct cifsInodeInfo *cinode = CIFS_I(cfile->dentry->d_inode);
1304 struct cifsLockInfo *li, *tmp;
1305 __u64 length = 1 + flock->fl_end - flock->fl_start;
1306 struct list_head tmp_llist;
1308 INIT_LIST_HEAD(&tmp_llist);
1311 * Accessing maxBuf is racy with cifs_reconnect - need to store value
1312 * and check it for zero before using.
1314 max_buf = tcon->ses->server->maxBuf;
1318 max_num = (max_buf - sizeof(struct smb_hdr)) /
1319 sizeof(LOCKING_ANDX_RANGE);
1320 buf = kzalloc(max_num * sizeof(LOCKING_ANDX_RANGE), GFP_KERNEL);
1324 down_write(&cinode->lock_sem);
1325 for (i = 0; i < 2; i++) {
1328 list_for_each_entry_safe(li, tmp, &cfile->llist->locks, llist) {
1329 if (flock->fl_start > li->offset ||
1330 (flock->fl_start + length) <
1331 (li->offset + li->length))
1333 if (current->tgid != li->pid)
1335 if (types[i] != li->type)
1337 if (cinode->can_cache_brlcks) {
1339 * We can cache brlock requests - simply remove
1340 * a lock from the file's list.
1342 list_del(&li->llist);
1343 cifs_del_lock_waiters(li);
1347 cur->Pid = cpu_to_le16(li->pid);
1348 cur->LengthLow = cpu_to_le32((u32)li->length);
1349 cur->LengthHigh = cpu_to_le32((u32)(li->length>>32));
1350 cur->OffsetLow = cpu_to_le32((u32)li->offset);
1351 cur->OffsetHigh = cpu_to_le32((u32)(li->offset>>32));
1353 * We need to save a lock here to let us add it again to
1354 * the file's list if the unlock range request fails on
1357 list_move(&li->llist, &tmp_llist);
1358 if (++num == max_num) {
1359 stored_rc = cifs_lockv(xid, tcon,
1361 li->type, num, 0, buf);
1364 * We failed on the unlock range
1365 * request - add all locks from the tmp
1366 * list to the head of the file's list.
1368 cifs_move_llist(&tmp_llist,
1369 &cfile->llist->locks);
1373 * The unlock range request succeed -
1374 * free the tmp list.
1376 cifs_free_llist(&tmp_llist);
1383 stored_rc = cifs_lockv(xid, tcon, cfile->fid.netfid,
1384 types[i], num, 0, buf);
1386 cifs_move_llist(&tmp_llist,
1387 &cfile->llist->locks);
1390 cifs_free_llist(&tmp_llist);
1394 up_write(&cinode->lock_sem);
1400 cifs_setlk(struct file *file, struct file_lock *flock, __u32 type,
1401 bool wait_flag, bool posix_lck, int lock, int unlock,
1405 __u64 length = 1 + flock->fl_end - flock->fl_start;
1406 struct cifsFileInfo *cfile = (struct cifsFileInfo *)file->private_data;
1407 struct cifs_tcon *tcon = tlink_tcon(cfile->tlink);
1408 struct TCP_Server_Info *server = tcon->ses->server;
1411 int posix_lock_type;
1413 rc = cifs_posix_lock_set(file, flock);
1417 if (type & server->vals->shared_lock_type)
1418 posix_lock_type = CIFS_RDLCK;
1420 posix_lock_type = CIFS_WRLCK;
1423 posix_lock_type = CIFS_UNLCK;
1425 rc = CIFSSMBPosixLock(xid, tcon, cfile->fid.netfid,
1426 current->tgid, flock->fl_start, length,
1427 NULL, posix_lock_type, wait_flag);
1432 struct cifsLockInfo *lock;
1434 lock = cifs_lock_init(flock->fl_start, length, type);
1438 rc = cifs_lock_add_if(cfile, lock, wait_flag);
1444 rc = server->ops->mand_lock(xid, cfile, flock->fl_start, length,
1445 type, 1, 0, wait_flag);
1451 cifs_lock_add(cfile, lock);
1453 rc = server->ops->mand_unlock_range(cfile, flock, xid);
1456 if (flock->fl_flags & FL_POSIX)
1457 posix_lock_file_wait(file, flock);
1461 int cifs_lock(struct file *file, int cmd, struct file_lock *flock)
1464 int lock = 0, unlock = 0;
1465 bool wait_flag = false;
1466 bool posix_lck = false;
1467 struct cifs_sb_info *cifs_sb;
1468 struct cifs_tcon *tcon;
1469 struct cifsInodeInfo *cinode;
1470 struct cifsFileInfo *cfile;
1477 cFYI(1, "Lock parm: 0x%x flockflags: 0x%x flocktype: 0x%x start: %lld "
1478 "end: %lld", cmd, flock->fl_flags, flock->fl_type,
1479 flock->fl_start, flock->fl_end);
1481 cfile = (struct cifsFileInfo *)file->private_data;
1482 tcon = tlink_tcon(cfile->tlink);
1484 cifs_read_flock(flock, &type, &lock, &unlock, &wait_flag,
1487 cifs_sb = CIFS_SB(file->f_path.dentry->d_sb);
1488 netfid = cfile->fid.netfid;
1489 cinode = CIFS_I(file->f_path.dentry->d_inode);
1491 if (cap_unix(tcon->ses) &&
1492 (CIFS_UNIX_FCNTL_CAP & le64_to_cpu(tcon->fsUnixInfo.Capability)) &&
1493 ((cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOPOSIXBRL) == 0))
1496 * BB add code here to normalize offset and length to account for
1497 * negative length which we can not accept over the wire.
1499 if (IS_GETLK(cmd)) {
1500 rc = cifs_getlk(file, flock, type, wait_flag, posix_lck, xid);
1505 if (!lock && !unlock) {
1507 * if no lock or unlock then nothing to do since we do not
1514 rc = cifs_setlk(file, flock, type, wait_flag, posix_lck, lock, unlock,
1521 * update the file size (if needed) after a write. Should be called with
1522 * the inode->i_lock held
1525 cifs_update_eof(struct cifsInodeInfo *cifsi, loff_t offset,
1526 unsigned int bytes_written)
1528 loff_t end_of_write = offset + bytes_written;
1530 if (end_of_write > cifsi->server_eof)
1531 cifsi->server_eof = end_of_write;
1535 cifs_write(struct cifsFileInfo *open_file, __u32 pid, const char *write_data,
1536 size_t write_size, loff_t *offset)
1539 unsigned int bytes_written = 0;
1540 unsigned int total_written;
1541 struct cifs_sb_info *cifs_sb;
1542 struct cifs_tcon *tcon;
1543 struct TCP_Server_Info *server;
1545 struct dentry *dentry = open_file->dentry;
1546 struct cifsInodeInfo *cifsi = CIFS_I(dentry->d_inode);
1547 struct cifs_io_parms io_parms;
1549 cifs_sb = CIFS_SB(dentry->d_sb);
1551 cFYI(1, "write %zd bytes to offset %lld of %s", write_size,
1552 *offset, dentry->d_name.name);
1554 tcon = tlink_tcon(open_file->tlink);
1555 server = tcon->ses->server;
1557 if (!server->ops->sync_write)
1562 for (total_written = 0; write_size > total_written;
1563 total_written += bytes_written) {
1565 while (rc == -EAGAIN) {
1569 if (open_file->invalidHandle) {
1570 /* we could deadlock if we called
1571 filemap_fdatawait from here so tell
1572 reopen_file not to flush data to
1574 rc = cifs_reopen_file(open_file, false);
1579 len = min((size_t)cifs_sb->wsize,
1580 write_size - total_written);
1581 /* iov[0] is reserved for smb header */
1582 iov[1].iov_base = (char *)write_data + total_written;
1583 iov[1].iov_len = len;
1585 io_parms.tcon = tcon;
1586 io_parms.offset = *offset;
1587 io_parms.length = len;
1588 rc = server->ops->sync_write(xid, open_file, &io_parms,
1589 &bytes_written, iov, 1);
1591 if (rc || (bytes_written == 0)) {
1599 spin_lock(&dentry->d_inode->i_lock);
1600 cifs_update_eof(cifsi, *offset, bytes_written);
1601 spin_unlock(&dentry->d_inode->i_lock);
1602 *offset += bytes_written;
1606 cifs_stats_bytes_written(tcon, total_written);
1608 if (total_written > 0) {
1609 spin_lock(&dentry->d_inode->i_lock);
1610 if (*offset > dentry->d_inode->i_size)
1611 i_size_write(dentry->d_inode, *offset);
1612 spin_unlock(&dentry->d_inode->i_lock);
1614 mark_inode_dirty_sync(dentry->d_inode);
1616 return total_written;
1619 struct cifsFileInfo *find_readable_file(struct cifsInodeInfo *cifs_inode,
1622 struct cifsFileInfo *open_file = NULL;
1623 struct cifs_sb_info *cifs_sb = CIFS_SB(cifs_inode->vfs_inode.i_sb);
1625 /* only filter by fsuid on multiuser mounts */
1626 if (!(cifs_sb->mnt_cifs_flags & CIFS_MOUNT_MULTIUSER))
1629 spin_lock(&cifs_file_list_lock);
1630 /* we could simply get the first_list_entry since write-only entries
1631 are always at the end of the list but since the first entry might
1632 have a close pending, we go through the whole list */
1633 list_for_each_entry(open_file, &cifs_inode->openFileList, flist) {
1634 if (fsuid_only && open_file->uid != current_fsuid())
1636 if (OPEN_FMODE(open_file->f_flags) & FMODE_READ) {
1637 if (!open_file->invalidHandle) {
1638 /* found a good file */
1639 /* lock it so it will not be closed on us */
1640 cifsFileInfo_get_locked(open_file);
1641 spin_unlock(&cifs_file_list_lock);
1643 } /* else might as well continue, and look for
1644 another, or simply have the caller reopen it
1645 again rather than trying to fix this handle */
1646 } else /* write only file */
1647 break; /* write only files are last so must be done */
1649 spin_unlock(&cifs_file_list_lock);
1653 struct cifsFileInfo *find_writable_file(struct cifsInodeInfo *cifs_inode,
1656 struct cifsFileInfo *open_file, *inv_file = NULL;
1657 struct cifs_sb_info *cifs_sb;
1658 bool any_available = false;
1660 unsigned int refind = 0;
1662 /* Having a null inode here (because mapping->host was set to zero by
1663 the VFS or MM) should not happen but we had reports of on oops (due to
1664 it being zero) during stress testcases so we need to check for it */
1666 if (cifs_inode == NULL) {
1667 cERROR(1, "Null inode passed to cifs_writeable_file");
1672 cifs_sb = CIFS_SB(cifs_inode->vfs_inode.i_sb);
1674 /* only filter by fsuid on multiuser mounts */
1675 if (!(cifs_sb->mnt_cifs_flags & CIFS_MOUNT_MULTIUSER))
1678 spin_lock(&cifs_file_list_lock);
1680 if (refind > MAX_REOPEN_ATT) {
1681 spin_unlock(&cifs_file_list_lock);
1684 list_for_each_entry(open_file, &cifs_inode->openFileList, flist) {
1685 if (!any_available && open_file->pid != current->tgid)
1687 if (fsuid_only && open_file->uid != current_fsuid())
1689 if (OPEN_FMODE(open_file->f_flags) & FMODE_WRITE) {
1690 if (!open_file->invalidHandle) {
1691 /* found a good writable file */
1692 cifsFileInfo_get_locked(open_file);
1693 spin_unlock(&cifs_file_list_lock);
1697 inv_file = open_file;
1701 /* couldn't find useable FH with same pid, try any available */
1702 if (!any_available) {
1703 any_available = true;
1704 goto refind_writable;
1708 any_available = false;
1709 cifsFileInfo_get_locked(inv_file);
1712 spin_unlock(&cifs_file_list_lock);
1715 rc = cifs_reopen_file(inv_file, false);
1719 spin_lock(&cifs_file_list_lock);
1720 list_move_tail(&inv_file->flist,
1721 &cifs_inode->openFileList);
1722 spin_unlock(&cifs_file_list_lock);
1723 cifsFileInfo_put(inv_file);
1724 spin_lock(&cifs_file_list_lock);
1726 goto refind_writable;
1733 static int cifs_partialpagewrite(struct page *page, unsigned from, unsigned to)
1735 struct address_space *mapping = page->mapping;
1736 loff_t offset = (loff_t)page->index << PAGE_CACHE_SHIFT;
1739 int bytes_written = 0;
1740 struct inode *inode;
1741 struct cifsFileInfo *open_file;
1743 if (!mapping || !mapping->host)
1746 inode = page->mapping->host;
1748 offset += (loff_t)from;
1749 write_data = kmap(page);
1752 if ((to > PAGE_CACHE_SIZE) || (from > to)) {
1757 /* racing with truncate? */
1758 if (offset > mapping->host->i_size) {
1760 return 0; /* don't care */
1763 /* check to make sure that we are not extending the file */
1764 if (mapping->host->i_size - offset < (loff_t)to)
1765 to = (unsigned)(mapping->host->i_size - offset);
1767 open_file = find_writable_file(CIFS_I(mapping->host), false);
1769 bytes_written = cifs_write(open_file, open_file->pid,
1770 write_data, to - from, &offset);
1771 cifsFileInfo_put(open_file);
1772 /* Does mm or vfs already set times? */
1773 inode->i_atime = inode->i_mtime = current_fs_time(inode->i_sb);
1774 if ((bytes_written > 0) && (offset))
1776 else if (bytes_written < 0)
1779 cFYI(1, "No writeable filehandles for inode");
1787 static int cifs_writepages(struct address_space *mapping,
1788 struct writeback_control *wbc)
1790 struct cifs_sb_info *cifs_sb = CIFS_SB(mapping->host->i_sb);
1791 bool done = false, scanned = false, range_whole = false;
1793 struct cifs_writedata *wdata;
1794 struct TCP_Server_Info *server;
1797 loff_t isize = i_size_read(mapping->host);
1800 * If wsize is smaller than the page cache size, default to writing
1801 * one page at a time via cifs_writepage
1803 if (cifs_sb->wsize < PAGE_CACHE_SIZE)
1804 return generic_writepages(mapping, wbc);
1806 if (wbc->range_cyclic) {
1807 index = mapping->writeback_index; /* Start from prev offset */
1810 index = wbc->range_start >> PAGE_CACHE_SHIFT;
1811 end = wbc->range_end >> PAGE_CACHE_SHIFT;
1812 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1817 while (!done && index <= end) {
1818 unsigned int i, nr_pages, found_pages;
1819 pgoff_t next = 0, tofind;
1820 struct page **pages;
1822 tofind = min((cifs_sb->wsize / PAGE_CACHE_SIZE) - 1,
1825 wdata = cifs_writedata_alloc((unsigned int)tofind,
1826 cifs_writev_complete);
1833 * find_get_pages_tag seems to return a max of 256 on each
1834 * iteration, so we must call it several times in order to
1835 * fill the array or the wsize is effectively limited to
1836 * 256 * PAGE_CACHE_SIZE.
1839 pages = wdata->pages;
1841 nr_pages = find_get_pages_tag(mapping, &index,
1842 PAGECACHE_TAG_DIRTY,
1844 found_pages += nr_pages;
1847 } while (nr_pages && tofind && index <= end);
1849 if (found_pages == 0) {
1850 kref_put(&wdata->refcount, cifs_writedata_release);
1855 for (i = 0; i < found_pages; i++) {
1856 page = wdata->pages[i];
1858 * At this point we hold neither mapping->tree_lock nor
1859 * lock on the page itself: the page may be truncated or
1860 * invalidated (changing page->mapping to NULL), or even
1861 * swizzled back from swapper_space to tmpfs file
1867 else if (!trylock_page(page))
1870 if (unlikely(page->mapping != mapping)) {
1875 if (!wbc->range_cyclic && page->index > end) {
1881 if (next && (page->index != next)) {
1882 /* Not next consecutive page */
1887 if (wbc->sync_mode != WB_SYNC_NONE)
1888 wait_on_page_writeback(page);
1890 if (PageWriteback(page) ||
1891 !clear_page_dirty_for_io(page)) {
1897 * This actually clears the dirty bit in the radix tree.
1898 * See cifs_writepage() for more commentary.
1900 set_page_writeback(page);
1902 if (page_offset(page) >= isize) {
1905 end_page_writeback(page);
1909 wdata->pages[i] = page;
1910 next = page->index + 1;
1914 /* reset index to refind any pages skipped */
1916 index = wdata->pages[0]->index + 1;
1918 /* put any pages we aren't going to use */
1919 for (i = nr_pages; i < found_pages; i++) {
1920 page_cache_release(wdata->pages[i]);
1921 wdata->pages[i] = NULL;
1924 /* nothing to write? */
1925 if (nr_pages == 0) {
1926 kref_put(&wdata->refcount, cifs_writedata_release);
1930 wdata->sync_mode = wbc->sync_mode;
1931 wdata->nr_pages = nr_pages;
1932 wdata->offset = page_offset(wdata->pages[0]);
1933 wdata->pagesz = PAGE_CACHE_SIZE;
1935 min(isize - page_offset(wdata->pages[nr_pages - 1]),
1936 (loff_t)PAGE_CACHE_SIZE);
1937 wdata->bytes = ((nr_pages - 1) * PAGE_CACHE_SIZE) +
1941 if (wdata->cfile != NULL)
1942 cifsFileInfo_put(wdata->cfile);
1943 wdata->cfile = find_writable_file(CIFS_I(mapping->host),
1945 if (!wdata->cfile) {
1946 cERROR(1, "No writable handles for inode");
1950 wdata->pid = wdata->cfile->pid;
1951 server = tlink_tcon(wdata->cfile->tlink)->ses->server;
1952 rc = server->ops->async_writev(wdata);
1953 } while (wbc->sync_mode == WB_SYNC_ALL && rc == -EAGAIN);
1955 for (i = 0; i < nr_pages; ++i)
1956 unlock_page(wdata->pages[i]);
1958 /* send failure -- clean up the mess */
1960 for (i = 0; i < nr_pages; ++i) {
1962 redirty_page_for_writepage(wbc,
1965 SetPageError(wdata->pages[i]);
1966 end_page_writeback(wdata->pages[i]);
1967 page_cache_release(wdata->pages[i]);
1970 mapping_set_error(mapping, rc);
1972 kref_put(&wdata->refcount, cifs_writedata_release);
1974 wbc->nr_to_write -= nr_pages;
1975 if (wbc->nr_to_write <= 0)
1981 if (!scanned && !done) {
1983 * We hit the last page and there is more work to be done: wrap
1984 * back to the start of the file
1991 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1992 mapping->writeback_index = index;
1998 cifs_writepage_locked(struct page *page, struct writeback_control *wbc)
2004 /* BB add check for wbc flags */
2005 page_cache_get(page);
2006 if (!PageUptodate(page))
2007 cFYI(1, "ppw - page not up to date");
2010 * Set the "writeback" flag, and clear "dirty" in the radix tree.
2012 * A writepage() implementation always needs to do either this,
2013 * or re-dirty the page with "redirty_page_for_writepage()" in
2014 * the case of a failure.
2016 * Just unlocking the page will cause the radix tree tag-bits
2017 * to fail to update with the state of the page correctly.
2019 set_page_writeback(page);
2021 rc = cifs_partialpagewrite(page, 0, PAGE_CACHE_SIZE);
2022 if (rc == -EAGAIN && wbc->sync_mode == WB_SYNC_ALL)
2024 else if (rc == -EAGAIN)
2025 redirty_page_for_writepage(wbc, page);
2029 SetPageUptodate(page);
2030 end_page_writeback(page);
2031 page_cache_release(page);
2036 static int cifs_writepage(struct page *page, struct writeback_control *wbc)
2038 int rc = cifs_writepage_locked(page, wbc);
2043 static int cifs_write_end(struct file *file, struct address_space *mapping,
2044 loff_t pos, unsigned len, unsigned copied,
2045 struct page *page, void *fsdata)
2048 struct inode *inode = mapping->host;
2049 struct cifsFileInfo *cfile = file->private_data;
2050 struct cifs_sb_info *cifs_sb = CIFS_SB(cfile->dentry->d_sb);
2053 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_RWPIDFORWARD)
2056 pid = current->tgid;
2058 cFYI(1, "write_end for page %p from pos %lld with %d bytes",
2061 if (PageChecked(page)) {
2063 SetPageUptodate(page);
2064 ClearPageChecked(page);
2065 } else if (!PageUptodate(page) && copied == PAGE_CACHE_SIZE)
2066 SetPageUptodate(page);
2068 if (!PageUptodate(page)) {
2070 unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
2074 /* this is probably better than directly calling
2075 partialpage_write since in this function the file handle is
2076 known which we might as well leverage */
2077 /* BB check if anything else missing out of ppw
2078 such as updating last write time */
2079 page_data = kmap(page);
2080 rc = cifs_write(cfile, pid, page_data + offset, copied, &pos);
2081 /* if (rc < 0) should we set writebehind rc? */
2088 set_page_dirty(page);
2092 spin_lock(&inode->i_lock);
2093 if (pos > inode->i_size)
2094 i_size_write(inode, pos);
2095 spin_unlock(&inode->i_lock);
2099 page_cache_release(page);
2104 int cifs_strict_fsync(struct file *file, loff_t start, loff_t end,
2109 struct cifs_tcon *tcon;
2110 struct TCP_Server_Info *server;
2111 struct cifsFileInfo *smbfile = file->private_data;
2112 struct inode *inode = file->f_path.dentry->d_inode;
2113 struct cifs_sb_info *cifs_sb = CIFS_SB(inode->i_sb);
2115 rc = filemap_write_and_wait_range(inode->i_mapping, start, end);
2118 mutex_lock(&inode->i_mutex);
2122 cFYI(1, "Sync file - name: %s datasync: 0x%x",
2123 file->f_path.dentry->d_name.name, datasync);
2125 if (!CIFS_I(inode)->clientCanCacheRead) {
2126 rc = cifs_invalidate_mapping(inode);
2128 cFYI(1, "rc: %d during invalidate phase", rc);
2129 rc = 0; /* don't care about it in fsync */
2133 tcon = tlink_tcon(smbfile->tlink);
2134 if (!(cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOSSYNC)) {
2135 server = tcon->ses->server;
2136 if (server->ops->flush)
2137 rc = server->ops->flush(xid, tcon, &smbfile->fid);
2143 mutex_unlock(&inode->i_mutex);
2147 int cifs_fsync(struct file *file, loff_t start, loff_t end, int datasync)
2151 struct cifs_tcon *tcon;
2152 struct TCP_Server_Info *server;
2153 struct cifsFileInfo *smbfile = file->private_data;
2154 struct cifs_sb_info *cifs_sb = CIFS_SB(file->f_path.dentry->d_sb);
2155 struct inode *inode = file->f_mapping->host;
2157 rc = filemap_write_and_wait_range(inode->i_mapping, start, end);
2160 mutex_lock(&inode->i_mutex);
2164 cFYI(1, "Sync file - name: %s datasync: 0x%x",
2165 file->f_path.dentry->d_name.name, datasync);
2167 tcon = tlink_tcon(smbfile->tlink);
2168 if (!(cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOSSYNC)) {
2169 server = tcon->ses->server;
2170 if (server->ops->flush)
2171 rc = server->ops->flush(xid, tcon, &smbfile->fid);
2177 mutex_unlock(&inode->i_mutex);
2182 * As file closes, flush all cached write data for this inode checking
2183 * for write behind errors.
2185 int cifs_flush(struct file *file, fl_owner_t id)
2187 struct inode *inode = file->f_path.dentry->d_inode;
2190 if (file->f_mode & FMODE_WRITE)
2191 rc = filemap_write_and_wait(inode->i_mapping);
2193 cFYI(1, "Flush inode %p file %p rc %d", inode, file, rc);
2199 cifs_write_allocate_pages(struct page **pages, unsigned long num_pages)
2204 for (i = 0; i < num_pages; i++) {
2205 pages[i] = alloc_page(GFP_KERNEL|__GFP_HIGHMEM);
2208 * save number of pages we have already allocated and
2209 * return with ENOMEM error
2218 for (i = 0; i < num_pages; i++)
2225 size_t get_numpages(const size_t wsize, const size_t len, size_t *cur_len)
2230 clen = min_t(const size_t, len, wsize);
2231 num_pages = DIV_ROUND_UP(clen, PAGE_SIZE);
2240 cifs_uncached_writev_complete(struct work_struct *work)
2243 struct cifs_writedata *wdata = container_of(work,
2244 struct cifs_writedata, work);
2245 struct inode *inode = wdata->cfile->dentry->d_inode;
2246 struct cifsInodeInfo *cifsi = CIFS_I(inode);
2248 spin_lock(&inode->i_lock);
2249 cifs_update_eof(cifsi, wdata->offset, wdata->bytes);
2250 if (cifsi->server_eof > inode->i_size)
2251 i_size_write(inode, cifsi->server_eof);
2252 spin_unlock(&inode->i_lock);
2254 complete(&wdata->done);
2256 if (wdata->result != -EAGAIN) {
2257 for (i = 0; i < wdata->nr_pages; i++)
2258 put_page(wdata->pages[i]);
2261 kref_put(&wdata->refcount, cifs_writedata_release);
2264 /* attempt to send write to server, retry on any -EAGAIN errors */
2266 cifs_uncached_retry_writev(struct cifs_writedata *wdata)
2269 struct TCP_Server_Info *server;
2271 server = tlink_tcon(wdata->cfile->tlink)->ses->server;
2274 if (wdata->cfile->invalidHandle) {
2275 rc = cifs_reopen_file(wdata->cfile, false);
2279 rc = server->ops->async_writev(wdata);
2280 } while (rc == -EAGAIN);
2286 cifs_iovec_write(struct file *file, const struct iovec *iov,
2287 unsigned long nr_segs, loff_t *poffset)
2289 unsigned long nr_pages, i;
2290 size_t copied, len, cur_len;
2291 ssize_t total_written = 0;
2294 struct cifsFileInfo *open_file;
2295 struct cifs_tcon *tcon;
2296 struct cifs_sb_info *cifs_sb;
2297 struct cifs_writedata *wdata, *tmp;
2298 struct list_head wdata_list;
2302 len = iov_length(iov, nr_segs);
2306 rc = generic_write_checks(file, poffset, &len, 0);
2310 INIT_LIST_HEAD(&wdata_list);
2311 cifs_sb = CIFS_SB(file->f_path.dentry->d_sb);
2312 open_file = file->private_data;
2313 tcon = tlink_tcon(open_file->tlink);
2315 if (!tcon->ses->server->ops->async_writev)
2320 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_RWPIDFORWARD)
2321 pid = open_file->pid;
2323 pid = current->tgid;
2325 iov_iter_init(&it, iov, nr_segs, len, 0);
2329 nr_pages = get_numpages(cifs_sb->wsize, len, &cur_len);
2330 wdata = cifs_writedata_alloc(nr_pages,
2331 cifs_uncached_writev_complete);
2337 rc = cifs_write_allocate_pages(wdata->pages, nr_pages);
2344 for (i = 0; i < nr_pages; i++) {
2345 copied = min_t(const size_t, cur_len, PAGE_SIZE);
2346 copied = iov_iter_copy_from_user(wdata->pages[i], &it,
2349 iov_iter_advance(&it, copied);
2351 cur_len = save_len - cur_len;
2353 wdata->sync_mode = WB_SYNC_ALL;
2354 wdata->nr_pages = nr_pages;
2355 wdata->offset = (__u64)offset;
2356 wdata->cfile = cifsFileInfo_get(open_file);
2358 wdata->bytes = cur_len;
2359 wdata->pagesz = PAGE_SIZE;
2360 wdata->tailsz = cur_len - ((nr_pages - 1) * PAGE_SIZE);
2361 rc = cifs_uncached_retry_writev(wdata);
2363 kref_put(&wdata->refcount, cifs_writedata_release);
2367 list_add_tail(&wdata->list, &wdata_list);
2373 * If at least one write was successfully sent, then discard any rc
2374 * value from the later writes. If the other write succeeds, then
2375 * we'll end up returning whatever was written. If it fails, then
2376 * we'll get a new rc value from that.
2378 if (!list_empty(&wdata_list))
2382 * Wait for and collect replies for any successful sends in order of
2383 * increasing offset. Once an error is hit or we get a fatal signal
2384 * while waiting, then return without waiting for any more replies.
2387 list_for_each_entry_safe(wdata, tmp, &wdata_list, list) {
2389 /* FIXME: freezable too? */
2390 rc = wait_for_completion_killable(&wdata->done);
2393 else if (wdata->result)
2396 total_written += wdata->bytes;
2398 /* resend call if it's a retryable error */
2399 if (rc == -EAGAIN) {
2400 rc = cifs_uncached_retry_writev(wdata);
2404 list_del_init(&wdata->list);
2405 kref_put(&wdata->refcount, cifs_writedata_release);
2408 if (total_written > 0)
2409 *poffset += total_written;
2411 cifs_stats_bytes_written(tcon, total_written);
2412 return total_written ? total_written : (ssize_t)rc;
2415 ssize_t cifs_user_writev(struct kiocb *iocb, const struct iovec *iov,
2416 unsigned long nr_segs, loff_t pos)
2419 struct inode *inode;
2421 inode = iocb->ki_filp->f_path.dentry->d_inode;
2424 * BB - optimize the way when signing is disabled. We can drop this
2425 * extra memory-to-memory copying and use iovec buffers for constructing
2429 written = cifs_iovec_write(iocb->ki_filp, iov, nr_segs, &pos);
2431 CIFS_I(inode)->invalid_mapping = true;
2439 cifs_writev(struct kiocb *iocb, const struct iovec *iov,
2440 unsigned long nr_segs, loff_t pos)
2442 struct file *file = iocb->ki_filp;
2443 struct cifsFileInfo *cfile = (struct cifsFileInfo *)file->private_data;
2444 struct inode *inode = file->f_mapping->host;
2445 struct cifsInodeInfo *cinode = CIFS_I(inode);
2446 struct TCP_Server_Info *server = tlink_tcon(cfile->tlink)->ses->server;
2447 ssize_t rc = -EACCES;
2449 BUG_ON(iocb->ki_pos != pos);
2451 sb_start_write(inode->i_sb);
2454 * We need to hold the sem to be sure nobody modifies lock list
2455 * with a brlock that prevents writing.
2457 down_read(&cinode->lock_sem);
2458 if (!cifs_find_lock_conflict(cfile, pos, iov_length(iov, nr_segs),
2459 server->vals->exclusive_lock_type, NULL,
2461 mutex_lock(&inode->i_mutex);
2462 rc = __generic_file_aio_write(iocb, iov, nr_segs,
2464 mutex_unlock(&inode->i_mutex);
2467 if (rc > 0 || rc == -EIOCBQUEUED) {
2470 err = generic_write_sync(file, pos, rc);
2471 if (err < 0 && rc > 0)
2475 up_read(&cinode->lock_sem);
2476 sb_end_write(inode->i_sb);
2481 cifs_strict_writev(struct kiocb *iocb, const struct iovec *iov,
2482 unsigned long nr_segs, loff_t pos)
2484 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
2485 struct cifsInodeInfo *cinode = CIFS_I(inode);
2486 struct cifs_sb_info *cifs_sb = CIFS_SB(inode->i_sb);
2487 struct cifsFileInfo *cfile = (struct cifsFileInfo *)
2488 iocb->ki_filp->private_data;
2489 struct cifs_tcon *tcon = tlink_tcon(cfile->tlink);
2491 #ifdef CONFIG_CIFS_SMB2
2493 * If we have an oplock for read and want to write a data to the file
2494 * we need to store it in the page cache and then push it to the server
2495 * to be sure the next read will get a valid data.
2497 if (!cinode->clientCanCacheAll && cinode->clientCanCacheRead) {
2501 written = generic_file_aio_write(iocb, iov, nr_segs, pos);
2502 rc = filemap_fdatawrite(inode->i_mapping);
2511 * For non-oplocked files in strict cache mode we need to write the data
2512 * to the server exactly from the pos to pos+len-1 rather than flush all
2513 * affected pages because it may cause a error with mandatory locks on
2514 * these pages but not on the region from pos to ppos+len-1.
2517 if (!cinode->clientCanCacheAll)
2518 return cifs_user_writev(iocb, iov, nr_segs, pos);
2520 if (cap_unix(tcon->ses) &&
2521 (CIFS_UNIX_FCNTL_CAP & le64_to_cpu(tcon->fsUnixInfo.Capability)) &&
2522 ((cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOPOSIXBRL) == 0))
2523 return generic_file_aio_write(iocb, iov, nr_segs, pos);
2525 return cifs_writev(iocb, iov, nr_segs, pos);
2528 static struct cifs_readdata *
2529 cifs_readdata_alloc(unsigned int nr_pages, work_func_t complete)
2531 struct cifs_readdata *rdata;
2533 rdata = kzalloc(sizeof(*rdata) + (sizeof(struct page *) * nr_pages),
2535 if (rdata != NULL) {
2536 kref_init(&rdata->refcount);
2537 INIT_LIST_HEAD(&rdata->list);
2538 init_completion(&rdata->done);
2539 INIT_WORK(&rdata->work, complete);
2546 cifs_readdata_release(struct kref *refcount)
2548 struct cifs_readdata *rdata = container_of(refcount,
2549 struct cifs_readdata, refcount);
2552 cifsFileInfo_put(rdata->cfile);
2558 cifs_read_allocate_pages(struct cifs_readdata *rdata, unsigned int nr_pages)
2564 for (i = 0; i < nr_pages; i++) {
2565 page = alloc_page(GFP_KERNEL|__GFP_HIGHMEM);
2570 rdata->pages[i] = page;
2574 for (i = 0; i < nr_pages; i++) {
2575 put_page(rdata->pages[i]);
2576 rdata->pages[i] = NULL;
2583 cifs_uncached_readdata_release(struct kref *refcount)
2585 struct cifs_readdata *rdata = container_of(refcount,
2586 struct cifs_readdata, refcount);
2589 for (i = 0; i < rdata->nr_pages; i++) {
2590 put_page(rdata->pages[i]);
2591 rdata->pages[i] = NULL;
2593 cifs_readdata_release(refcount);
2597 cifs_retry_async_readv(struct cifs_readdata *rdata)
2600 struct TCP_Server_Info *server;
2602 server = tlink_tcon(rdata->cfile->tlink)->ses->server;
2605 if (rdata->cfile->invalidHandle) {
2606 rc = cifs_reopen_file(rdata->cfile, true);
2610 rc = server->ops->async_readv(rdata);
2611 } while (rc == -EAGAIN);
2617 * cifs_readdata_to_iov - copy data from pages in response to an iovec
2618 * @rdata: the readdata response with list of pages holding data
2619 * @iov: vector in which we should copy the data
2620 * @nr_segs: number of segments in vector
2621 * @offset: offset into file of the first iovec
2622 * @copied: used to return the amount of data copied to the iov
2624 * This function copies data from a list of pages in a readdata response into
2625 * an array of iovecs. It will first calculate where the data should go
2626 * based on the info in the readdata and then copy the data into that spot.
2629 cifs_readdata_to_iov(struct cifs_readdata *rdata, const struct iovec *iov,
2630 unsigned long nr_segs, loff_t offset, ssize_t *copied)
2634 size_t pos = rdata->offset - offset;
2635 ssize_t remaining = rdata->bytes;
2636 unsigned char *pdata;
2639 /* set up iov_iter and advance to the correct offset */
2640 iov_iter_init(&ii, iov, nr_segs, iov_length(iov, nr_segs), 0);
2641 iov_iter_advance(&ii, pos);
2644 for (i = 0; i < rdata->nr_pages; i++) {
2646 struct page *page = rdata->pages[i];
2648 /* copy a whole page or whatever's left */
2649 copy = min_t(ssize_t, remaining, PAGE_SIZE);
2651 /* ...but limit it to whatever space is left in the iov */
2652 copy = min_t(ssize_t, copy, iov_iter_count(&ii));
2654 /* go while there's data to be copied and no errors */
2657 rc = memcpy_toiovecend(ii.iov, pdata, ii.iov_offset,
2663 iov_iter_advance(&ii, copy);
2672 cifs_uncached_readv_complete(struct work_struct *work)
2674 struct cifs_readdata *rdata = container_of(work,
2675 struct cifs_readdata, work);
2677 complete(&rdata->done);
2678 kref_put(&rdata->refcount, cifs_uncached_readdata_release);
2682 cifs_uncached_read_into_pages(struct TCP_Server_Info *server,
2683 struct cifs_readdata *rdata, unsigned int len)
2685 int total_read = 0, result = 0;
2687 unsigned int nr_pages = rdata->nr_pages;
2690 rdata->tailsz = PAGE_SIZE;
2691 for (i = 0; i < nr_pages; i++) {
2692 struct page *page = rdata->pages[i];
2694 if (len >= PAGE_SIZE) {
2695 /* enough data to fill the page */
2696 iov.iov_base = kmap(page);
2697 iov.iov_len = PAGE_SIZE;
2698 cFYI(1, "%u: iov_base=%p iov_len=%zu",
2699 i, iov.iov_base, iov.iov_len);
2701 } else if (len > 0) {
2702 /* enough for partial page, fill and zero the rest */
2703 iov.iov_base = kmap(page);
2705 cFYI(1, "%u: iov_base=%p iov_len=%zu",
2706 i, iov.iov_base, iov.iov_len);
2707 memset(iov.iov_base + len, '\0', PAGE_SIZE - len);
2708 rdata->tailsz = len;
2711 /* no need to hold page hostage */
2712 rdata->pages[i] = NULL;
2718 result = cifs_readv_from_socket(server, &iov, 1, iov.iov_len);
2723 total_read += result;
2726 return total_read > 0 ? total_read : result;
2730 cifs_iovec_read(struct file *file, const struct iovec *iov,
2731 unsigned long nr_segs, loff_t *poffset)
2734 size_t len, cur_len;
2735 ssize_t total_read = 0;
2736 loff_t offset = *poffset;
2737 unsigned int npages;
2738 struct cifs_sb_info *cifs_sb;
2739 struct cifs_tcon *tcon;
2740 struct cifsFileInfo *open_file;
2741 struct cifs_readdata *rdata, *tmp;
2742 struct list_head rdata_list;
2748 len = iov_length(iov, nr_segs);
2752 INIT_LIST_HEAD(&rdata_list);
2753 cifs_sb = CIFS_SB(file->f_path.dentry->d_sb);
2754 open_file = file->private_data;
2755 tcon = tlink_tcon(open_file->tlink);
2757 if (!tcon->ses->server->ops->async_readv)
2760 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_RWPIDFORWARD)
2761 pid = open_file->pid;
2763 pid = current->tgid;
2765 if ((file->f_flags & O_ACCMODE) == O_WRONLY)
2766 cFYI(1, "attempting read on write only file instance");
2769 cur_len = min_t(const size_t, len - total_read, cifs_sb->rsize);
2770 npages = DIV_ROUND_UP(cur_len, PAGE_SIZE);
2772 /* allocate a readdata struct */
2773 rdata = cifs_readdata_alloc(npages,
2774 cifs_uncached_readv_complete);
2780 rc = cifs_read_allocate_pages(rdata, npages);
2784 rdata->cfile = cifsFileInfo_get(open_file);
2785 rdata->nr_pages = npages;
2786 rdata->offset = offset;
2787 rdata->bytes = cur_len;
2789 rdata->pagesz = PAGE_SIZE;
2790 rdata->read_into_pages = cifs_uncached_read_into_pages;
2792 rc = cifs_retry_async_readv(rdata);
2795 kref_put(&rdata->refcount,
2796 cifs_uncached_readdata_release);
2800 list_add_tail(&rdata->list, &rdata_list);
2805 /* if at least one read request send succeeded, then reset rc */
2806 if (!list_empty(&rdata_list))
2809 /* the loop below should proceed in the order of increasing offsets */
2811 list_for_each_entry_safe(rdata, tmp, &rdata_list, list) {
2815 /* FIXME: freezable sleep too? */
2816 rc = wait_for_completion_killable(&rdata->done);
2819 else if (rdata->result)
2822 rc = cifs_readdata_to_iov(rdata, iov,
2825 total_read += copied;
2828 /* resend call if it's a retryable error */
2829 if (rc == -EAGAIN) {
2830 rc = cifs_retry_async_readv(rdata);
2834 list_del_init(&rdata->list);
2835 kref_put(&rdata->refcount, cifs_uncached_readdata_release);
2838 cifs_stats_bytes_read(tcon, total_read);
2839 *poffset += total_read;
2841 /* mask nodata case */
2845 return total_read ? total_read : rc;
2848 ssize_t cifs_user_readv(struct kiocb *iocb, const struct iovec *iov,
2849 unsigned long nr_segs, loff_t pos)
2853 read = cifs_iovec_read(iocb->ki_filp, iov, nr_segs, &pos);
2861 cifs_strict_readv(struct kiocb *iocb, const struct iovec *iov,
2862 unsigned long nr_segs, loff_t pos)
2864 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
2865 struct cifsInodeInfo *cinode = CIFS_I(inode);
2866 struct cifs_sb_info *cifs_sb = CIFS_SB(inode->i_sb);
2867 struct cifsFileInfo *cfile = (struct cifsFileInfo *)
2868 iocb->ki_filp->private_data;
2869 struct cifs_tcon *tcon = tlink_tcon(cfile->tlink);
2873 * In strict cache mode we need to read from the server all the time
2874 * if we don't have level II oplock because the server can delay mtime
2875 * change - so we can't make a decision about inode invalidating.
2876 * And we can also fail with pagereading if there are mandatory locks
2877 * on pages affected by this read but not on the region from pos to
2880 if (!cinode->clientCanCacheRead)
2881 return cifs_user_readv(iocb, iov, nr_segs, pos);
2883 if (cap_unix(tcon->ses) &&
2884 (CIFS_UNIX_FCNTL_CAP & le64_to_cpu(tcon->fsUnixInfo.Capability)) &&
2885 ((cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOPOSIXBRL) == 0))
2886 return generic_file_aio_read(iocb, iov, nr_segs, pos);
2889 * We need to hold the sem to be sure nobody modifies lock list
2890 * with a brlock that prevents reading.
2892 down_read(&cinode->lock_sem);
2893 if (!cifs_find_lock_conflict(cfile, pos, iov_length(iov, nr_segs),
2894 tcon->ses->server->vals->shared_lock_type,
2896 rc = generic_file_aio_read(iocb, iov, nr_segs, pos);
2897 up_read(&cinode->lock_sem);
2902 cifs_read(struct file *file, char *read_data, size_t read_size, loff_t *offset)
2905 unsigned int bytes_read = 0;
2906 unsigned int total_read;
2907 unsigned int current_read_size;
2909 struct cifs_sb_info *cifs_sb;
2910 struct cifs_tcon *tcon;
2911 struct TCP_Server_Info *server;
2914 struct cifsFileInfo *open_file;
2915 struct cifs_io_parms io_parms;
2916 int buf_type = CIFS_NO_BUFFER;
2920 cifs_sb = CIFS_SB(file->f_path.dentry->d_sb);
2922 /* FIXME: set up handlers for larger reads and/or convert to async */
2923 rsize = min_t(unsigned int, cifs_sb->rsize, CIFSMaxBufSize);
2925 if (file->private_data == NULL) {
2930 open_file = file->private_data;
2931 tcon = tlink_tcon(open_file->tlink);
2932 server = tcon->ses->server;
2934 if (!server->ops->sync_read) {
2939 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_RWPIDFORWARD)
2940 pid = open_file->pid;
2942 pid = current->tgid;
2944 if ((file->f_flags & O_ACCMODE) == O_WRONLY)
2945 cFYI(1, "attempting read on write only file instance");
2947 for (total_read = 0, cur_offset = read_data; read_size > total_read;
2948 total_read += bytes_read, cur_offset += bytes_read) {
2949 current_read_size = min_t(uint, read_size - total_read, rsize);
2951 * For windows me and 9x we do not want to request more than it
2952 * negotiated since it will refuse the read then.
2954 if ((tcon->ses) && !(tcon->ses->capabilities &
2955 tcon->ses->server->vals->cap_large_files)) {
2956 current_read_size = min_t(uint, current_read_size,
2960 while (rc == -EAGAIN) {
2961 if (open_file->invalidHandle) {
2962 rc = cifs_reopen_file(open_file, true);
2967 io_parms.tcon = tcon;
2968 io_parms.offset = *offset;
2969 io_parms.length = current_read_size;
2970 rc = server->ops->sync_read(xid, open_file, &io_parms,
2971 &bytes_read, &cur_offset,
2974 if (rc || (bytes_read == 0)) {
2982 cifs_stats_bytes_read(tcon, total_read);
2983 *offset += bytes_read;
2991 * If the page is mmap'ed into a process' page tables, then we need to make
2992 * sure that it doesn't change while being written back.
2995 cifs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2997 struct page *page = vmf->page;
3000 return VM_FAULT_LOCKED;
3003 static struct vm_operations_struct cifs_file_vm_ops = {
3004 .fault = filemap_fault,
3005 .page_mkwrite = cifs_page_mkwrite,
3006 .remap_pages = generic_file_remap_pages,
3009 int cifs_file_strict_mmap(struct file *file, struct vm_area_struct *vma)
3012 struct inode *inode = file->f_path.dentry->d_inode;
3016 if (!CIFS_I(inode)->clientCanCacheRead) {
3017 rc = cifs_invalidate_mapping(inode);
3022 rc = generic_file_mmap(file, vma);
3024 vma->vm_ops = &cifs_file_vm_ops;
3029 int cifs_file_mmap(struct file *file, struct vm_area_struct *vma)
3034 rc = cifs_revalidate_file(file);
3036 cFYI(1, "Validation prior to mmap failed, error=%d", rc);
3040 rc = generic_file_mmap(file, vma);
3042 vma->vm_ops = &cifs_file_vm_ops;
3048 cifs_readv_complete(struct work_struct *work)
3051 struct cifs_readdata *rdata = container_of(work,
3052 struct cifs_readdata, work);
3054 for (i = 0; i < rdata->nr_pages; i++) {
3055 struct page *page = rdata->pages[i];
3057 lru_cache_add_file(page);
3059 if (rdata->result == 0) {
3060 flush_dcache_page(page);
3061 SetPageUptodate(page);
3066 if (rdata->result == 0)
3067 cifs_readpage_to_fscache(rdata->mapping->host, page);
3069 page_cache_release(page);
3070 rdata->pages[i] = NULL;
3072 kref_put(&rdata->refcount, cifs_readdata_release);
3076 cifs_readpages_read_into_pages(struct TCP_Server_Info *server,
3077 struct cifs_readdata *rdata, unsigned int len)
3079 int total_read = 0, result = 0;
3083 unsigned int nr_pages = rdata->nr_pages;
3086 /* determine the eof that the server (probably) has */
3087 eof = CIFS_I(rdata->mapping->host)->server_eof;
3088 eof_index = eof ? (eof - 1) >> PAGE_CACHE_SHIFT : 0;
3089 cFYI(1, "eof=%llu eof_index=%lu", eof, eof_index);
3091 rdata->tailsz = PAGE_CACHE_SIZE;
3092 for (i = 0; i < nr_pages; i++) {
3093 struct page *page = rdata->pages[i];
3095 if (len >= PAGE_CACHE_SIZE) {
3096 /* enough data to fill the page */
3097 iov.iov_base = kmap(page);
3098 iov.iov_len = PAGE_CACHE_SIZE;
3099 cFYI(1, "%u: idx=%lu iov_base=%p iov_len=%zu",
3100 i, page->index, iov.iov_base, iov.iov_len);
3101 len -= PAGE_CACHE_SIZE;
3102 } else if (len > 0) {
3103 /* enough for partial page, fill and zero the rest */
3104 iov.iov_base = kmap(page);
3106 cFYI(1, "%u: idx=%lu iov_base=%p iov_len=%zu",
3107 i, page->index, iov.iov_base, iov.iov_len);
3108 memset(iov.iov_base + len,
3109 '\0', PAGE_CACHE_SIZE - len);
3110 rdata->tailsz = len;
3112 } else if (page->index > eof_index) {
3114 * The VFS will not try to do readahead past the
3115 * i_size, but it's possible that we have outstanding
3116 * writes with gaps in the middle and the i_size hasn't
3117 * caught up yet. Populate those with zeroed out pages
3118 * to prevent the VFS from repeatedly attempting to
3119 * fill them until the writes are flushed.
3121 zero_user(page, 0, PAGE_CACHE_SIZE);
3122 lru_cache_add_file(page);
3123 flush_dcache_page(page);
3124 SetPageUptodate(page);
3126 page_cache_release(page);
3127 rdata->pages[i] = NULL;
3131 /* no need to hold page hostage */
3132 lru_cache_add_file(page);
3134 page_cache_release(page);
3135 rdata->pages[i] = NULL;
3140 result = cifs_readv_from_socket(server, &iov, 1, iov.iov_len);
3145 total_read += result;
3148 return total_read > 0 ? total_read : result;
3151 static int cifs_readpages(struct file *file, struct address_space *mapping,
3152 struct list_head *page_list, unsigned num_pages)
3155 struct list_head tmplist;
3156 struct cifsFileInfo *open_file = file->private_data;
3157 struct cifs_sb_info *cifs_sb = CIFS_SB(file->f_path.dentry->d_sb);
3158 unsigned int rsize = cifs_sb->rsize;
3162 * Give up immediately if rsize is too small to read an entire page.
3163 * The VFS will fall back to readpage. We should never reach this
3164 * point however since we set ra_pages to 0 when the rsize is smaller
3165 * than a cache page.
3167 if (unlikely(rsize < PAGE_CACHE_SIZE))
3171 * Reads as many pages as possible from fscache. Returns -ENOBUFS
3172 * immediately if the cookie is negative
3174 rc = cifs_readpages_from_fscache(mapping->host, mapping, page_list,
3179 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_RWPIDFORWARD)
3180 pid = open_file->pid;
3182 pid = current->tgid;
3185 INIT_LIST_HEAD(&tmplist);
3187 cFYI(1, "%s: file=%p mapping=%p num_pages=%u", __func__, file,
3188 mapping, num_pages);
3191 * Start with the page at end of list and move it to private
3192 * list. Do the same with any following pages until we hit
3193 * the rsize limit, hit an index discontinuity, or run out of
3194 * pages. Issue the async read and then start the loop again
3195 * until the list is empty.
3197 * Note that list order is important. The page_list is in
3198 * the order of declining indexes. When we put the pages in
3199 * the rdata->pages, then we want them in increasing order.
3201 while (!list_empty(page_list)) {
3203 unsigned int bytes = PAGE_CACHE_SIZE;
3204 unsigned int expected_index;
3205 unsigned int nr_pages = 1;
3207 struct page *page, *tpage;
3208 struct cifs_readdata *rdata;
3210 page = list_entry(page_list->prev, struct page, lru);
3213 * Lock the page and put it in the cache. Since no one else
3214 * should have access to this page, we're safe to simply set
3215 * PG_locked without checking it first.
3217 __set_page_locked(page);
3218 rc = add_to_page_cache_locked(page, mapping,
3219 page->index, GFP_KERNEL);
3221 /* give up if we can't stick it in the cache */
3223 __clear_page_locked(page);
3227 /* move first page to the tmplist */
3228 offset = (loff_t)page->index << PAGE_CACHE_SHIFT;
3229 list_move_tail(&page->lru, &tmplist);
3231 /* now try and add more pages onto the request */
3232 expected_index = page->index + 1;
3233 list_for_each_entry_safe_reverse(page, tpage, page_list, lru) {
3234 /* discontinuity ? */
3235 if (page->index != expected_index)
3238 /* would this page push the read over the rsize? */
3239 if (bytes + PAGE_CACHE_SIZE > rsize)
3242 __set_page_locked(page);
3243 if (add_to_page_cache_locked(page, mapping,
3244 page->index, GFP_KERNEL)) {
3245 __clear_page_locked(page);
3248 list_move_tail(&page->lru, &tmplist);
3249 bytes += PAGE_CACHE_SIZE;
3254 rdata = cifs_readdata_alloc(nr_pages, cifs_readv_complete);
3256 /* best to give up if we're out of mem */
3257 list_for_each_entry_safe(page, tpage, &tmplist, lru) {
3258 list_del(&page->lru);
3259 lru_cache_add_file(page);
3261 page_cache_release(page);
3267 rdata->cfile = cifsFileInfo_get(open_file);
3268 rdata->mapping = mapping;
3269 rdata->offset = offset;
3270 rdata->bytes = bytes;
3272 rdata->pagesz = PAGE_CACHE_SIZE;
3273 rdata->read_into_pages = cifs_readpages_read_into_pages;
3275 list_for_each_entry_safe(page, tpage, &tmplist, lru) {
3276 list_del(&page->lru);
3277 rdata->pages[rdata->nr_pages++] = page;
3280 rc = cifs_retry_async_readv(rdata);
3282 for (i = 0; i < rdata->nr_pages; i++) {
3283 page = rdata->pages[i];
3284 lru_cache_add_file(page);
3286 page_cache_release(page);
3288 kref_put(&rdata->refcount, cifs_readdata_release);
3292 kref_put(&rdata->refcount, cifs_readdata_release);
3298 static int cifs_readpage_worker(struct file *file, struct page *page,
3304 /* Is the page cached? */
3305 rc = cifs_readpage_from_fscache(file->f_path.dentry->d_inode, page);
3309 page_cache_get(page);
3310 read_data = kmap(page);
3311 /* for reads over a certain size could initiate async read ahead */
3313 rc = cifs_read(file, read_data, PAGE_CACHE_SIZE, poffset);
3318 cFYI(1, "Bytes read %d", rc);
3320 file->f_path.dentry->d_inode->i_atime =
3321 current_fs_time(file->f_path.dentry->d_inode->i_sb);
3323 if (PAGE_CACHE_SIZE > rc)
3324 memset(read_data + rc, 0, PAGE_CACHE_SIZE - rc);
3326 flush_dcache_page(page);
3327 SetPageUptodate(page);
3329 /* send this page to the cache */
3330 cifs_readpage_to_fscache(file->f_path.dentry->d_inode, page);
3336 page_cache_release(page);
3342 static int cifs_readpage(struct file *file, struct page *page)
3344 loff_t offset = (loff_t)page->index << PAGE_CACHE_SHIFT;
3350 if (file->private_data == NULL) {
3356 cFYI(1, "readpage %p at offset %d 0x%x",
3357 page, (int)offset, (int)offset);
3359 rc = cifs_readpage_worker(file, page, &offset);
3367 static int is_inode_writable(struct cifsInodeInfo *cifs_inode)
3369 struct cifsFileInfo *open_file;
3371 spin_lock(&cifs_file_list_lock);
3372 list_for_each_entry(open_file, &cifs_inode->openFileList, flist) {
3373 if (OPEN_FMODE(open_file->f_flags) & FMODE_WRITE) {
3374 spin_unlock(&cifs_file_list_lock);
3378 spin_unlock(&cifs_file_list_lock);
3382 /* We do not want to update the file size from server for inodes
3383 open for write - to avoid races with writepage extending
3384 the file - in the future we could consider allowing
3385 refreshing the inode only on increases in the file size
3386 but this is tricky to do without racing with writebehind
3387 page caching in the current Linux kernel design */
3388 bool is_size_safe_to_change(struct cifsInodeInfo *cifsInode, __u64 end_of_file)
3393 if (is_inode_writable(cifsInode)) {
3394 /* This inode is open for write at least once */
3395 struct cifs_sb_info *cifs_sb;
3397 cifs_sb = CIFS_SB(cifsInode->vfs_inode.i_sb);
3398 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_DIRECT_IO) {
3399 /* since no page cache to corrupt on directio
3400 we can change size safely */
3404 if (i_size_read(&cifsInode->vfs_inode) < end_of_file)
3412 static int cifs_write_begin(struct file *file, struct address_space *mapping,
3413 loff_t pos, unsigned len, unsigned flags,
3414 struct page **pagep, void **fsdata)
3416 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
3417 loff_t offset = pos & (PAGE_CACHE_SIZE - 1);
3418 loff_t page_start = pos & PAGE_MASK;
3423 cFYI(1, "write_begin from %lld len %d", (long long)pos, len);
3425 page = grab_cache_page_write_begin(mapping, index, flags);
3431 if (PageUptodate(page))
3435 * If we write a full page it will be up to date, no need to read from
3436 * the server. If the write is short, we'll end up doing a sync write
3439 if (len == PAGE_CACHE_SIZE)
3443 * optimize away the read when we have an oplock, and we're not
3444 * expecting to use any of the data we'd be reading in. That
3445 * is, when the page lies beyond the EOF, or straddles the EOF
3446 * and the write will cover all of the existing data.
3448 if (CIFS_I(mapping->host)->clientCanCacheRead) {
3449 i_size = i_size_read(mapping->host);
3450 if (page_start >= i_size ||
3451 (offset == 0 && (pos + len) >= i_size)) {
3452 zero_user_segments(page, 0, offset,
3456 * PageChecked means that the parts of the page
3457 * to which we're not writing are considered up
3458 * to date. Once the data is copied to the
3459 * page, it can be set uptodate.
3461 SetPageChecked(page);
3466 if ((file->f_flags & O_ACCMODE) != O_WRONLY) {
3468 * might as well read a page, it is fast enough. If we get
3469 * an error, we don't need to return it. cifs_write_end will
3470 * do a sync write instead since PG_uptodate isn't set.
3472 cifs_readpage_worker(file, page, &page_start);
3474 /* we could try using another file handle if there is one -
3475 but how would we lock it to prevent close of that handle
3476 racing with this read? In any case
3477 this will be written out by write_end so is fine */
3484 static int cifs_release_page(struct page *page, gfp_t gfp)
3486 if (PagePrivate(page))
3489 return cifs_fscache_release_page(page, gfp);
3492 static void cifs_invalidate_page(struct page *page, unsigned long offset)
3494 struct cifsInodeInfo *cifsi = CIFS_I(page->mapping->host);
3497 cifs_fscache_invalidate_page(page, &cifsi->vfs_inode);
3500 static int cifs_launder_page(struct page *page)
3503 loff_t range_start = page_offset(page);
3504 loff_t range_end = range_start + (loff_t)(PAGE_CACHE_SIZE - 1);
3505 struct writeback_control wbc = {
3506 .sync_mode = WB_SYNC_ALL,
3508 .range_start = range_start,
3509 .range_end = range_end,
3512 cFYI(1, "Launder page: %p", page);
3514 if (clear_page_dirty_for_io(page))
3515 rc = cifs_writepage_locked(page, &wbc);
3517 cifs_fscache_invalidate_page(page, page->mapping->host);
3521 void cifs_oplock_break(struct work_struct *work)
3523 struct cifsFileInfo *cfile = container_of(work, struct cifsFileInfo,
3525 struct inode *inode = cfile->dentry->d_inode;
3526 struct cifsInodeInfo *cinode = CIFS_I(inode);
3527 struct cifs_tcon *tcon = tlink_tcon(cfile->tlink);
3530 if (inode && S_ISREG(inode->i_mode)) {
3531 if (cinode->clientCanCacheRead)
3532 break_lease(inode, O_RDONLY);
3534 break_lease(inode, O_WRONLY);
3535 rc = filemap_fdatawrite(inode->i_mapping);
3536 if (cinode->clientCanCacheRead == 0) {
3537 rc = filemap_fdatawait(inode->i_mapping);
3538 mapping_set_error(inode->i_mapping, rc);
3539 invalidate_remote_inode(inode);
3541 cFYI(1, "Oplock flush inode %p rc %d", inode, rc);
3544 rc = cifs_push_locks(cfile);
3546 cERROR(1, "Push locks rc = %d", rc);
3549 * releasing stale oplock after recent reconnect of smb session using
3550 * a now incorrect file handle is not a data integrity issue but do
3551 * not bother sending an oplock release if session to server still is
3552 * disconnected since oplock already released by the server
3554 if (!cfile->oplock_break_cancelled) {
3555 rc = tcon->ses->server->ops->oplock_response(tcon, &cfile->fid,
3557 cFYI(1, "Oplock release rc = %d", rc);
3561 const struct address_space_operations cifs_addr_ops = {
3562 .readpage = cifs_readpage,
3563 .readpages = cifs_readpages,
3564 .writepage = cifs_writepage,
3565 .writepages = cifs_writepages,
3566 .write_begin = cifs_write_begin,
3567 .write_end = cifs_write_end,
3568 .set_page_dirty = __set_page_dirty_nobuffers,
3569 .releasepage = cifs_release_page,
3570 .invalidatepage = cifs_invalidate_page,
3571 .launder_page = cifs_launder_page,
3575 * cifs_readpages requires the server to support a buffer large enough to
3576 * contain the header plus one complete page of data. Otherwise, we need
3577 * to leave cifs_readpages out of the address space operations.
3579 const struct address_space_operations cifs_addr_ops_smallbuf = {
3580 .readpage = cifs_readpage,
3581 .writepage = cifs_writepage,
3582 .writepages = cifs_writepages,
3583 .write_begin = cifs_write_begin,
3584 .write_end = cifs_write_end,
3585 .set_page_dirty = __set_page_dirty_nobuffers,
3586 .releasepage = cifs_release_page,
3587 .invalidatepage = cifs_invalidate_page,
3588 .launder_page = cifs_launder_page,