1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie.
6 * kswapd added: 7.1.96 sct
7 * Removed kswapd_ctl limits, and swap out as many pages as needed
8 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Multiqueue VM started 5.8.00, Rik van Riel.
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 #include <linux/sched/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h> /* for buffer_heads_over_limit */
30 #include <linux/mm_inline.h>
31 #include <linux/backing-dev.h>
32 #include <linux/rmap.h>
33 #include <linux/topology.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/compaction.h>
37 #include <linux/notifier.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/migrate.h>
43 #include <linux/delayacct.h>
44 #include <linux/sysctl.h>
45 #include <linux/memory-tiers.h>
46 #include <linux/oom.h>
47 #include <linux/pagevec.h>
48 #include <linux/prefetch.h>
49 #include <linux/printk.h>
50 #include <linux/dax.h>
51 #include <linux/psi.h>
52 #include <linux/pagewalk.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/ctype.h>
55 #include <linux/debugfs.h>
56 #include <linux/khugepaged.h>
57 #include <linux/rculist_nulls.h>
58 #include <linux/random.h>
60 #include <asm/tlbflush.h>
61 #include <asm/div64.h>
63 #include <linux/swapops.h>
64 #include <linux/balloon_compaction.h>
65 #include <linux/sched/sysctl.h>
70 #define CREATE_TRACE_POINTS
71 #include <trace/events/vmscan.h>
74 /* How many pages shrink_list() should reclaim */
75 unsigned long nr_to_reclaim;
78 * Nodemask of nodes allowed by the caller. If NULL, all nodes
84 * The memory cgroup that hit its limit and as a result is the
85 * primary target of this reclaim invocation.
87 struct mem_cgroup *target_mem_cgroup;
90 * Scan pressure balancing between anon and file LRUs
92 unsigned long anon_cost;
93 unsigned long file_cost;
95 /* Can active folios be deactivated as part of reclaim? */
96 #define DEACTIVATE_ANON 1
97 #define DEACTIVATE_FILE 2
98 unsigned int may_deactivate:2;
99 unsigned int force_deactivate:1;
100 unsigned int skipped_deactivate:1;
102 /* Writepage batching in laptop mode; RECLAIM_WRITE */
103 unsigned int may_writepage:1;
105 /* Can mapped folios be reclaimed? */
106 unsigned int may_unmap:1;
108 /* Can folios be swapped as part of reclaim? */
109 unsigned int may_swap:1;
111 /* Proactive reclaim invoked by userspace through memory.reclaim */
112 unsigned int proactive:1;
115 * Cgroup memory below memory.low is protected as long as we
116 * don't threaten to OOM. If any cgroup is reclaimed at
117 * reduced force or passed over entirely due to its memory.low
118 * setting (memcg_low_skipped), and nothing is reclaimed as a
119 * result, then go back for one more cycle that reclaims the protected
120 * memory (memcg_low_reclaim) to avert OOM.
122 unsigned int memcg_low_reclaim:1;
123 unsigned int memcg_low_skipped:1;
125 unsigned int hibernation_mode:1;
127 /* One of the zones is ready for compaction */
128 unsigned int compaction_ready:1;
130 /* There is easily reclaimable cold cache in the current node */
131 unsigned int cache_trim_mode:1;
133 /* The file folios on the current node are dangerously low */
134 unsigned int file_is_tiny:1;
136 /* Always discard instead of demoting to lower tier memory */
137 unsigned int no_demotion:1;
139 /* Allocation order */
142 /* Scan (total_size >> priority) pages at once */
145 /* The highest zone to isolate folios for reclaim from */
148 /* This context's GFP mask */
151 /* Incremented by the number of inactive pages that were scanned */
152 unsigned long nr_scanned;
154 /* Number of pages freed so far during a call to shrink_zones() */
155 unsigned long nr_reclaimed;
159 unsigned int unqueued_dirty;
160 unsigned int congested;
161 unsigned int writeback;
162 unsigned int immediate;
163 unsigned int file_taken;
167 /* for recording the reclaimed slab by now */
168 struct reclaim_state reclaim_state;
171 #ifdef ARCH_HAS_PREFETCHW
172 #define prefetchw_prev_lru_folio(_folio, _base, _field) \
174 if ((_folio)->lru.prev != _base) { \
175 struct folio *prev; \
177 prev = lru_to_folio(&(_folio->lru)); \
178 prefetchw(&prev->_field); \
182 #define prefetchw_prev_lru_folio(_folio, _base, _field) do { } while (0)
186 * From 0 .. 200. Higher means more swappy.
188 int vm_swappiness = 60;
192 /* Returns true for reclaim through cgroup limits or cgroup interfaces. */
193 static bool cgroup_reclaim(struct scan_control *sc)
195 return sc->target_mem_cgroup;
199 * Returns true for reclaim on the root cgroup. This is true for direct
200 * allocator reclaim and reclaim through cgroup interfaces on the root cgroup.
202 static bool root_reclaim(struct scan_control *sc)
204 return !sc->target_mem_cgroup || mem_cgroup_is_root(sc->target_mem_cgroup);
208 * writeback_throttling_sane - is the usual dirty throttling mechanism available?
209 * @sc: scan_control in question
211 * The normal page dirty throttling mechanism in balance_dirty_pages() is
212 * completely broken with the legacy memcg and direct stalling in
213 * shrink_folio_list() is used for throttling instead, which lacks all the
214 * niceties such as fairness, adaptive pausing, bandwidth proportional
215 * allocation and configurability.
217 * This function tests whether the vmscan currently in progress can assume
218 * that the normal dirty throttling mechanism is operational.
220 static bool writeback_throttling_sane(struct scan_control *sc)
222 if (!cgroup_reclaim(sc))
224 #ifdef CONFIG_CGROUP_WRITEBACK
225 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
231 static bool cgroup_reclaim(struct scan_control *sc)
236 static bool root_reclaim(struct scan_control *sc)
241 static bool writeback_throttling_sane(struct scan_control *sc)
247 static void set_task_reclaim_state(struct task_struct *task,
248 struct reclaim_state *rs)
250 /* Check for an overwrite */
251 WARN_ON_ONCE(rs && task->reclaim_state);
253 /* Check for the nulling of an already-nulled member */
254 WARN_ON_ONCE(!rs && !task->reclaim_state);
256 task->reclaim_state = rs;
260 * flush_reclaim_state(): add pages reclaimed outside of LRU-based reclaim to
261 * scan_control->nr_reclaimed.
263 static void flush_reclaim_state(struct scan_control *sc)
266 * Currently, reclaim_state->reclaimed includes three types of pages
267 * freed outside of vmscan:
269 * (2) Clean file pages from pruned inodes (on highmem systems).
270 * (3) XFS freed buffer pages.
272 * For all of these cases, we cannot universally link the pages to a
273 * single memcg. For example, a memcg-aware shrinker can free one object
274 * charged to the target memcg, causing an entire page to be freed.
275 * If we count the entire page as reclaimed from the memcg, we end up
276 * overestimating the reclaimed amount (potentially under-reclaiming).
278 * Only count such pages for global reclaim to prevent under-reclaiming
279 * from the target memcg; preventing unnecessary retries during memcg
280 * charging and false positives from proactive reclaim.
282 * For uncommon cases where the freed pages were actually mostly
283 * charged to the target memcg, we end up underestimating the reclaimed
284 * amount. This should be fine. The freed pages will be uncharged
285 * anyway, even if they are not counted here properly, and we will be
286 * able to make forward progress in charging (which is usually in a
289 * We can go one step further, and report the uncharged objcg pages in
290 * memcg reclaim, to make reporting more accurate and reduce
291 * underestimation, but it's probably not worth the complexity for now.
293 if (current->reclaim_state && root_reclaim(sc)) {
294 sc->nr_reclaimed += current->reclaim_state->reclaimed;
295 current->reclaim_state->reclaimed = 0;
299 static bool can_demote(int nid, struct scan_control *sc)
301 if (!numa_demotion_enabled)
303 if (sc && sc->no_demotion)
305 if (next_demotion_node(nid) == NUMA_NO_NODE)
311 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
313 struct scan_control *sc)
317 * For non-memcg reclaim, is there
318 * space in any swap device?
320 if (get_nr_swap_pages() > 0)
323 /* Is the memcg below its swap limit? */
324 if (mem_cgroup_get_nr_swap_pages(memcg) > 0)
329 * The page can not be swapped.
331 * Can it be reclaimed from this node via demotion?
333 return can_demote(nid, sc);
337 * This misses isolated folios which are not accounted for to save counters.
338 * As the data only determines if reclaim or compaction continues, it is
339 * not expected that isolated folios will be a dominating factor.
341 unsigned long zone_reclaimable_pages(struct zone *zone)
345 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
346 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
347 if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL))
348 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
349 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
355 * lruvec_lru_size - Returns the number of pages on the given LRU list.
356 * @lruvec: lru vector
358 * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list)
360 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
363 unsigned long size = 0;
366 for (zid = 0; zid <= zone_idx; zid++) {
367 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
369 if (!managed_zone(zone))
372 if (!mem_cgroup_disabled())
373 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
375 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
380 static unsigned long drop_slab_node(int nid)
382 unsigned long freed = 0;
383 struct mem_cgroup *memcg = NULL;
385 memcg = mem_cgroup_iter(NULL, NULL, NULL);
387 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
388 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
401 for_each_online_node(nid) {
402 if (fatal_signal_pending(current))
405 freed += drop_slab_node(nid);
407 } while ((freed >> shift++) > 1);
410 static int reclaimer_offset(void)
412 BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD !=
413 PGDEMOTE_DIRECT - PGDEMOTE_KSWAPD);
414 BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD !=
415 PGDEMOTE_KHUGEPAGED - PGDEMOTE_KSWAPD);
416 BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD !=
417 PGSCAN_DIRECT - PGSCAN_KSWAPD);
418 BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD !=
419 PGSCAN_KHUGEPAGED - PGSCAN_KSWAPD);
421 if (current_is_kswapd())
423 if (current_is_khugepaged())
424 return PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD;
425 return PGSTEAL_DIRECT - PGSTEAL_KSWAPD;
428 static inline int is_page_cache_freeable(struct folio *folio)
431 * A freeable page cache folio is referenced only by the caller
432 * that isolated the folio, the page cache and optional filesystem
433 * private data at folio->private.
435 return folio_ref_count(folio) - folio_test_private(folio) ==
436 1 + folio_nr_pages(folio);
440 * We detected a synchronous write error writing a folio out. Probably
441 * -ENOSPC. We need to propagate that into the address_space for a subsequent
442 * fsync(), msync() or close().
444 * The tricky part is that after writepage we cannot touch the mapping: nothing
445 * prevents it from being freed up. But we have a ref on the folio and once
446 * that folio is locked, the mapping is pinned.
448 * We're allowed to run sleeping folio_lock() here because we know the caller has
451 static void handle_write_error(struct address_space *mapping,
452 struct folio *folio, int error)
455 if (folio_mapping(folio) == mapping)
456 mapping_set_error(mapping, error);
460 static bool skip_throttle_noprogress(pg_data_t *pgdat)
462 int reclaimable = 0, write_pending = 0;
466 * If kswapd is disabled, reschedule if necessary but do not
467 * throttle as the system is likely near OOM.
469 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
473 * If there are a lot of dirty/writeback folios then do not
474 * throttle as throttling will occur when the folios cycle
475 * towards the end of the LRU if still under writeback.
477 for (i = 0; i < MAX_NR_ZONES; i++) {
478 struct zone *zone = pgdat->node_zones + i;
480 if (!managed_zone(zone))
483 reclaimable += zone_reclaimable_pages(zone);
484 write_pending += zone_page_state_snapshot(zone,
485 NR_ZONE_WRITE_PENDING);
487 if (2 * write_pending <= reclaimable)
493 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason)
495 wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason];
500 * Do not throttle user workers, kthreads other than kswapd or
501 * workqueues. They may be required for reclaim to make
502 * forward progress (e.g. journalling workqueues or kthreads).
504 if (!current_is_kswapd() &&
505 current->flags & (PF_USER_WORKER|PF_KTHREAD)) {
511 * These figures are pulled out of thin air.
512 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many
513 * parallel reclaimers which is a short-lived event so the timeout is
514 * short. Failing to make progress or waiting on writeback are
515 * potentially long-lived events so use a longer timeout. This is shaky
516 * logic as a failure to make progress could be due to anything from
517 * writeback to a slow device to excessive referenced folios at the tail
518 * of the inactive LRU.
521 case VMSCAN_THROTTLE_WRITEBACK:
524 if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) {
525 WRITE_ONCE(pgdat->nr_reclaim_start,
526 node_page_state(pgdat, NR_THROTTLED_WRITTEN));
530 case VMSCAN_THROTTLE_CONGESTED:
532 case VMSCAN_THROTTLE_NOPROGRESS:
533 if (skip_throttle_noprogress(pgdat)) {
541 case VMSCAN_THROTTLE_ISOLATED:
550 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
551 ret = schedule_timeout(timeout);
552 finish_wait(wqh, &wait);
554 if (reason == VMSCAN_THROTTLE_WRITEBACK)
555 atomic_dec(&pgdat->nr_writeback_throttled);
557 trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout),
558 jiffies_to_usecs(timeout - ret),
563 * Account for folios written if tasks are throttled waiting on dirty
564 * folios to clean. If enough folios have been cleaned since throttling
565 * started then wakeup the throttled tasks.
567 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
570 unsigned long nr_written;
572 node_stat_add_folio(folio, NR_THROTTLED_WRITTEN);
575 * This is an inaccurate read as the per-cpu deltas may not
576 * be synchronised. However, given that the system is
577 * writeback throttled, it is not worth taking the penalty
578 * of getting an accurate count. At worst, the throttle
579 * timeout guarantees forward progress.
581 nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) -
582 READ_ONCE(pgdat->nr_reclaim_start);
584 if (nr_written > SWAP_CLUSTER_MAX * nr_throttled)
585 wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]);
588 /* possible outcome of pageout() */
590 /* failed to write folio out, folio is locked */
592 /* move folio to the active list, folio is locked */
594 /* folio has been sent to the disk successfully, folio is unlocked */
596 /* folio is clean and locked */
601 * pageout is called by shrink_folio_list() for each dirty folio.
602 * Calls ->writepage().
604 static pageout_t pageout(struct folio *folio, struct address_space *mapping,
605 struct swap_iocb **plug)
608 * If the folio is dirty, only perform writeback if that write
609 * will be non-blocking. To prevent this allocation from being
610 * stalled by pagecache activity. But note that there may be
611 * stalls if we need to run get_block(). We could test
612 * PagePrivate for that.
614 * If this process is currently in __generic_file_write_iter() against
615 * this folio's queue, we can perform writeback even if that
618 * If the folio is swapcache, write it back even if that would
619 * block, for some throttling. This happens by accident, because
620 * swap_backing_dev_info is bust: it doesn't reflect the
621 * congestion state of the swapdevs. Easy to fix, if needed.
623 if (!is_page_cache_freeable(folio))
627 * Some data journaling orphaned folios can have
628 * folio->mapping == NULL while being dirty with clean buffers.
630 if (folio_test_private(folio)) {
631 if (try_to_free_buffers(folio)) {
632 folio_clear_dirty(folio);
633 pr_info("%s: orphaned folio\n", __func__);
639 if (mapping->a_ops->writepage == NULL)
640 return PAGE_ACTIVATE;
642 if (folio_clear_dirty_for_io(folio)) {
644 struct writeback_control wbc = {
645 .sync_mode = WB_SYNC_NONE,
646 .nr_to_write = SWAP_CLUSTER_MAX,
648 .range_end = LLONG_MAX,
653 folio_set_reclaim(folio);
654 res = mapping->a_ops->writepage(&folio->page, &wbc);
656 handle_write_error(mapping, folio, res);
657 if (res == AOP_WRITEPAGE_ACTIVATE) {
658 folio_clear_reclaim(folio);
659 return PAGE_ACTIVATE;
662 if (!folio_test_writeback(folio)) {
663 /* synchronous write or broken a_ops? */
664 folio_clear_reclaim(folio);
666 trace_mm_vmscan_write_folio(folio);
667 node_stat_add_folio(folio, NR_VMSCAN_WRITE);
675 * Same as remove_mapping, but if the folio is removed from the mapping, it
676 * gets returned with a refcount of 0.
678 static int __remove_mapping(struct address_space *mapping, struct folio *folio,
679 bool reclaimed, struct mem_cgroup *target_memcg)
684 BUG_ON(!folio_test_locked(folio));
685 BUG_ON(mapping != folio_mapping(folio));
687 if (!folio_test_swapcache(folio))
688 spin_lock(&mapping->host->i_lock);
689 xa_lock_irq(&mapping->i_pages);
691 * The non racy check for a busy folio.
693 * Must be careful with the order of the tests. When someone has
694 * a ref to the folio, it may be possible that they dirty it then
695 * drop the reference. So if the dirty flag is tested before the
696 * refcount here, then the following race may occur:
698 * get_user_pages(&page);
699 * [user mapping goes away]
701 * !folio_test_dirty(folio) [good]
702 * folio_set_dirty(folio);
704 * !refcount(folio) [good, discard it]
706 * [oops, our write_to data is lost]
708 * Reversing the order of the tests ensures such a situation cannot
709 * escape unnoticed. The smp_rmb is needed to ensure the folio->flags
710 * load is not satisfied before that of folio->_refcount.
712 * Note that if the dirty flag is always set via folio_mark_dirty,
713 * and thus under the i_pages lock, then this ordering is not required.
715 refcount = 1 + folio_nr_pages(folio);
716 if (!folio_ref_freeze(folio, refcount))
718 /* note: atomic_cmpxchg in folio_ref_freeze provides the smp_rmb */
719 if (unlikely(folio_test_dirty(folio))) {
720 folio_ref_unfreeze(folio, refcount);
724 if (folio_test_swapcache(folio)) {
725 swp_entry_t swap = folio->swap;
727 if (reclaimed && !mapping_exiting(mapping))
728 shadow = workingset_eviction(folio, target_memcg);
729 __delete_from_swap_cache(folio, swap, shadow);
730 mem_cgroup_swapout(folio, swap);
731 xa_unlock_irq(&mapping->i_pages);
732 put_swap_folio(folio, swap);
734 void (*free_folio)(struct folio *);
736 free_folio = mapping->a_ops->free_folio;
738 * Remember a shadow entry for reclaimed file cache in
739 * order to detect refaults, thus thrashing, later on.
741 * But don't store shadows in an address space that is
742 * already exiting. This is not just an optimization,
743 * inode reclaim needs to empty out the radix tree or
744 * the nodes are lost. Don't plant shadows behind its
747 * We also don't store shadows for DAX mappings because the
748 * only page cache folios found in these are zero pages
749 * covering holes, and because we don't want to mix DAX
750 * exceptional entries and shadow exceptional entries in the
751 * same address_space.
753 if (reclaimed && folio_is_file_lru(folio) &&
754 !mapping_exiting(mapping) && !dax_mapping(mapping))
755 shadow = workingset_eviction(folio, target_memcg);
756 __filemap_remove_folio(folio, shadow);
757 xa_unlock_irq(&mapping->i_pages);
758 if (mapping_shrinkable(mapping))
759 inode_add_lru(mapping->host);
760 spin_unlock(&mapping->host->i_lock);
769 xa_unlock_irq(&mapping->i_pages);
770 if (!folio_test_swapcache(folio))
771 spin_unlock(&mapping->host->i_lock);
776 * remove_mapping() - Attempt to remove a folio from its mapping.
777 * @mapping: The address space.
778 * @folio: The folio to remove.
780 * If the folio is dirty, under writeback or if someone else has a ref
781 * on it, removal will fail.
782 * Return: The number of pages removed from the mapping. 0 if the folio
783 * could not be removed.
784 * Context: The caller should have a single refcount on the folio and
787 long remove_mapping(struct address_space *mapping, struct folio *folio)
789 if (__remove_mapping(mapping, folio, false, NULL)) {
791 * Unfreezing the refcount with 1 effectively
792 * drops the pagecache ref for us without requiring another
795 folio_ref_unfreeze(folio, 1);
796 return folio_nr_pages(folio);
802 * folio_putback_lru - Put previously isolated folio onto appropriate LRU list.
803 * @folio: Folio to be returned to an LRU list.
805 * Add previously isolated @folio to appropriate LRU list.
806 * The folio may still be unevictable for other reasons.
808 * Context: lru_lock must not be held, interrupts must be enabled.
810 void folio_putback_lru(struct folio *folio)
812 folio_add_lru(folio);
813 folio_put(folio); /* drop ref from isolate */
816 enum folio_references {
818 FOLIOREF_RECLAIM_CLEAN,
823 static enum folio_references folio_check_references(struct folio *folio,
824 struct scan_control *sc)
826 int referenced_ptes, referenced_folio;
827 unsigned long vm_flags;
829 referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup,
831 referenced_folio = folio_test_clear_referenced(folio);
834 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma.
835 * Let the folio, now marked Mlocked, be moved to the unevictable list.
837 if (vm_flags & VM_LOCKED)
838 return FOLIOREF_ACTIVATE;
840 /* rmap lock contention: rotate */
841 if (referenced_ptes == -1)
842 return FOLIOREF_KEEP;
844 if (referenced_ptes) {
846 * All mapped folios start out with page table
847 * references from the instantiating fault, so we need
848 * to look twice if a mapped file/anon folio is used more
851 * Mark it and spare it for another trip around the
852 * inactive list. Another page table reference will
853 * lead to its activation.
855 * Note: the mark is set for activated folios as well
856 * so that recently deactivated but used folios are
859 folio_set_referenced(folio);
861 if (referenced_folio || referenced_ptes > 1)
862 return FOLIOREF_ACTIVATE;
865 * Activate file-backed executable folios after first usage.
867 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio))
868 return FOLIOREF_ACTIVATE;
870 return FOLIOREF_KEEP;
873 /* Reclaim if clean, defer dirty folios to writeback */
874 if (referenced_folio && folio_is_file_lru(folio))
875 return FOLIOREF_RECLAIM_CLEAN;
877 return FOLIOREF_RECLAIM;
880 /* Check if a folio is dirty or under writeback */
881 static void folio_check_dirty_writeback(struct folio *folio,
882 bool *dirty, bool *writeback)
884 struct address_space *mapping;
887 * Anonymous folios are not handled by flushers and must be written
888 * from reclaim context. Do not stall reclaim based on them.
889 * MADV_FREE anonymous folios are put into inactive file list too.
890 * They could be mistakenly treated as file lru. So further anon
893 if (!folio_is_file_lru(folio) ||
894 (folio_test_anon(folio) && !folio_test_swapbacked(folio))) {
900 /* By default assume that the folio flags are accurate */
901 *dirty = folio_test_dirty(folio);
902 *writeback = folio_test_writeback(folio);
904 /* Verify dirty/writeback state if the filesystem supports it */
905 if (!folio_test_private(folio))
908 mapping = folio_mapping(folio);
909 if (mapping && mapping->a_ops->is_dirty_writeback)
910 mapping->a_ops->is_dirty_writeback(folio, dirty, writeback);
913 static struct folio *alloc_demote_folio(struct folio *src,
914 unsigned long private)
917 nodemask_t *allowed_mask;
918 struct migration_target_control *mtc;
920 mtc = (struct migration_target_control *)private;
922 allowed_mask = mtc->nmask;
924 * make sure we allocate from the target node first also trying to
925 * demote or reclaim pages from the target node via kswapd if we are
926 * low on free memory on target node. If we don't do this and if
927 * we have free memory on the slower(lower) memtier, we would start
928 * allocating pages from slower(lower) memory tiers without even forcing
929 * a demotion of cold pages from the target memtier. This can result
930 * in the kernel placing hot pages in slower(lower) memory tiers.
933 mtc->gfp_mask |= __GFP_THISNODE;
934 dst = alloc_migration_target(src, (unsigned long)mtc);
938 mtc->gfp_mask &= ~__GFP_THISNODE;
939 mtc->nmask = allowed_mask;
941 return alloc_migration_target(src, (unsigned long)mtc);
945 * Take folios on @demote_folios and attempt to demote them to another node.
946 * Folios which are not demoted are left on @demote_folios.
948 static unsigned int demote_folio_list(struct list_head *demote_folios,
949 struct pglist_data *pgdat)
951 int target_nid = next_demotion_node(pgdat->node_id);
952 unsigned int nr_succeeded;
953 nodemask_t allowed_mask;
955 struct migration_target_control mtc = {
957 * Allocate from 'node', or fail quickly and quietly.
958 * When this happens, 'page' will likely just be discarded
959 * instead of migrated.
961 .gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) | __GFP_NOWARN |
962 __GFP_NOMEMALLOC | GFP_NOWAIT,
964 .nmask = &allowed_mask
967 if (list_empty(demote_folios))
970 if (target_nid == NUMA_NO_NODE)
973 node_get_allowed_targets(pgdat, &allowed_mask);
975 /* Demotion ignores all cpuset and mempolicy settings */
976 migrate_pages(demote_folios, alloc_demote_folio, NULL,
977 (unsigned long)&mtc, MIGRATE_ASYNC, MR_DEMOTION,
980 mod_node_page_state(pgdat, PGDEMOTE_KSWAPD + reclaimer_offset(),
986 static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask)
988 if (gfp_mask & __GFP_FS)
990 if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO))
993 * We can "enter_fs" for swap-cache with only __GFP_IO
994 * providing this isn't SWP_FS_OPS.
995 * ->flags can be updated non-atomicially (scan_swap_map_slots),
996 * but that will never affect SWP_FS_OPS, so the data_race
999 return !data_race(folio_swap_flags(folio) & SWP_FS_OPS);
1003 * shrink_folio_list() returns the number of reclaimed pages
1005 static unsigned int shrink_folio_list(struct list_head *folio_list,
1006 struct pglist_data *pgdat, struct scan_control *sc,
1007 struct reclaim_stat *stat, bool ignore_references)
1009 struct folio_batch free_folios;
1010 LIST_HEAD(ret_folios);
1011 LIST_HEAD(demote_folios);
1012 unsigned int nr_reclaimed = 0;
1013 unsigned int pgactivate = 0;
1014 bool do_demote_pass;
1015 struct swap_iocb *plug = NULL;
1017 folio_batch_init(&free_folios);
1018 memset(stat, 0, sizeof(*stat));
1020 do_demote_pass = can_demote(pgdat->node_id, sc);
1023 while (!list_empty(folio_list)) {
1024 struct address_space *mapping;
1025 struct folio *folio;
1026 enum folio_references references = FOLIOREF_RECLAIM;
1027 bool dirty, writeback;
1028 unsigned int nr_pages;
1032 folio = lru_to_folio(folio_list);
1033 list_del(&folio->lru);
1035 if (!folio_trylock(folio))
1038 VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
1040 nr_pages = folio_nr_pages(folio);
1042 /* Account the number of base pages */
1043 sc->nr_scanned += nr_pages;
1045 if (unlikely(!folio_evictable(folio)))
1046 goto activate_locked;
1048 if (!sc->may_unmap && folio_mapped(folio))
1051 /* folio_update_gen() tried to promote this page? */
1052 if (lru_gen_enabled() && !ignore_references &&
1053 folio_mapped(folio) && folio_test_referenced(folio))
1057 * The number of dirty pages determines if a node is marked
1058 * reclaim_congested. kswapd will stall and start writing
1059 * folios if the tail of the LRU is all dirty unqueued folios.
1061 folio_check_dirty_writeback(folio, &dirty, &writeback);
1062 if (dirty || writeback)
1063 stat->nr_dirty += nr_pages;
1065 if (dirty && !writeback)
1066 stat->nr_unqueued_dirty += nr_pages;
1069 * Treat this folio as congested if folios are cycling
1070 * through the LRU so quickly that the folios marked
1071 * for immediate reclaim are making it to the end of
1072 * the LRU a second time.
1074 if (writeback && folio_test_reclaim(folio))
1075 stat->nr_congested += nr_pages;
1078 * If a folio at the tail of the LRU is under writeback, there
1079 * are three cases to consider.
1081 * 1) If reclaim is encountering an excessive number
1082 * of folios under writeback and this folio has both
1083 * the writeback and reclaim flags set, then it
1084 * indicates that folios are being queued for I/O but
1085 * are being recycled through the LRU before the I/O
1086 * can complete. Waiting on the folio itself risks an
1087 * indefinite stall if it is impossible to writeback
1088 * the folio due to I/O error or disconnected storage
1089 * so instead note that the LRU is being scanned too
1090 * quickly and the caller can stall after the folio
1091 * list has been processed.
1093 * 2) Global or new memcg reclaim encounters a folio that is
1094 * not marked for immediate reclaim, or the caller does not
1095 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1096 * not to fs). In this case mark the folio for immediate
1097 * reclaim and continue scanning.
1099 * Require may_enter_fs() because we would wait on fs, which
1100 * may not have submitted I/O yet. And the loop driver might
1101 * enter reclaim, and deadlock if it waits on a folio for
1102 * which it is needed to do the write (loop masks off
1103 * __GFP_IO|__GFP_FS for this reason); but more thought
1104 * would probably show more reasons.
1106 * 3) Legacy memcg encounters a folio that already has the
1107 * reclaim flag set. memcg does not have any dirty folio
1108 * throttling so we could easily OOM just because too many
1109 * folios are in writeback and there is nothing else to
1110 * reclaim. Wait for the writeback to complete.
1112 * In cases 1) and 2) we activate the folios to get them out of
1113 * the way while we continue scanning for clean folios on the
1114 * inactive list and refilling from the active list. The
1115 * observation here is that waiting for disk writes is more
1116 * expensive than potentially causing reloads down the line.
1117 * Since they're marked for immediate reclaim, they won't put
1118 * memory pressure on the cache working set any longer than it
1119 * takes to write them to disk.
1121 if (folio_test_writeback(folio)) {
1123 if (current_is_kswapd() &&
1124 folio_test_reclaim(folio) &&
1125 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1126 stat->nr_immediate += nr_pages;
1127 goto activate_locked;
1130 } else if (writeback_throttling_sane(sc) ||
1131 !folio_test_reclaim(folio) ||
1132 !may_enter_fs(folio, sc->gfp_mask)) {
1134 * This is slightly racy -
1135 * folio_end_writeback() might have
1136 * just cleared the reclaim flag, then
1137 * setting the reclaim flag here ends up
1138 * interpreted as the readahead flag - but
1139 * that does not matter enough to care.
1140 * What we do want is for this folio to
1141 * have the reclaim flag set next time
1142 * memcg reclaim reaches the tests above,
1143 * so it will then wait for writeback to
1144 * avoid OOM; and it's also appropriate
1145 * in global reclaim.
1147 folio_set_reclaim(folio);
1148 stat->nr_writeback += nr_pages;
1149 goto activate_locked;
1153 folio_unlock(folio);
1154 folio_wait_writeback(folio);
1155 /* then go back and try same folio again */
1156 list_add_tail(&folio->lru, folio_list);
1161 if (!ignore_references)
1162 references = folio_check_references(folio, sc);
1164 switch (references) {
1165 case FOLIOREF_ACTIVATE:
1166 goto activate_locked;
1168 stat->nr_ref_keep += nr_pages;
1170 case FOLIOREF_RECLAIM:
1171 case FOLIOREF_RECLAIM_CLEAN:
1172 ; /* try to reclaim the folio below */
1176 * Before reclaiming the folio, try to relocate
1177 * its contents to another node.
1179 if (do_demote_pass &&
1180 (thp_migration_supported() || !folio_test_large(folio))) {
1181 list_add(&folio->lru, &demote_folios);
1182 folio_unlock(folio);
1187 * Anonymous process memory has backing store?
1188 * Try to allocate it some swap space here.
1189 * Lazyfree folio could be freed directly
1191 if (folio_test_anon(folio) && folio_test_swapbacked(folio)) {
1192 if (!folio_test_swapcache(folio)) {
1193 if (!(sc->gfp_mask & __GFP_IO))
1195 if (folio_maybe_dma_pinned(folio))
1197 if (folio_test_large(folio)) {
1198 /* cannot split folio, skip it */
1199 if (!can_split_folio(folio, NULL))
1200 goto activate_locked;
1202 * Split folios without a PMD map right
1203 * away. Chances are some or all of the
1204 * tail pages can be freed without IO.
1206 if (!folio_entire_mapcount(folio) &&
1207 split_folio_to_list(folio,
1209 goto activate_locked;
1211 if (!add_to_swap(folio)) {
1212 if (!folio_test_large(folio))
1213 goto activate_locked_split;
1214 /* Fallback to swap normal pages */
1215 if (split_folio_to_list(folio,
1217 goto activate_locked;
1218 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1219 count_memcg_folio_events(folio, THP_SWPOUT_FALLBACK, 1);
1220 count_vm_event(THP_SWPOUT_FALLBACK);
1222 if (!add_to_swap(folio))
1223 goto activate_locked_split;
1226 } else if (folio_test_swapbacked(folio) &&
1227 folio_test_large(folio)) {
1228 /* Split shmem folio */
1229 if (split_folio_to_list(folio, folio_list))
1234 * If the folio was split above, the tail pages will make
1235 * their own pass through this function and be accounted
1238 if ((nr_pages > 1) && !folio_test_large(folio)) {
1239 sc->nr_scanned -= (nr_pages - 1);
1244 * The folio is mapped into the page tables of one or more
1245 * processes. Try to unmap it here.
1247 if (folio_mapped(folio)) {
1248 enum ttu_flags flags = TTU_BATCH_FLUSH;
1249 bool was_swapbacked = folio_test_swapbacked(folio);
1251 if (folio_test_pmd_mappable(folio))
1252 flags |= TTU_SPLIT_HUGE_PMD;
1254 try_to_unmap(folio, flags);
1255 if (folio_mapped(folio)) {
1256 stat->nr_unmap_fail += nr_pages;
1257 if (!was_swapbacked &&
1258 folio_test_swapbacked(folio))
1259 stat->nr_lazyfree_fail += nr_pages;
1260 goto activate_locked;
1265 * Folio is unmapped now so it cannot be newly pinned anymore.
1266 * No point in trying to reclaim folio if it is pinned.
1267 * Furthermore we don't want to reclaim underlying fs metadata
1268 * if the folio is pinned and thus potentially modified by the
1269 * pinning process as that may upset the filesystem.
1271 if (folio_maybe_dma_pinned(folio))
1272 goto activate_locked;
1274 mapping = folio_mapping(folio);
1275 if (folio_test_dirty(folio)) {
1277 * Only kswapd can writeback filesystem folios
1278 * to avoid risk of stack overflow. But avoid
1279 * injecting inefficient single-folio I/O into
1280 * flusher writeback as much as possible: only
1281 * write folios when we've encountered many
1282 * dirty folios, and when we've already scanned
1283 * the rest of the LRU for clean folios and see
1284 * the same dirty folios again (with the reclaim
1287 if (folio_is_file_lru(folio) &&
1288 (!current_is_kswapd() ||
1289 !folio_test_reclaim(folio) ||
1290 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1292 * Immediately reclaim when written back.
1293 * Similar in principle to folio_deactivate()
1294 * except we already have the folio isolated
1295 * and know it's dirty
1297 node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE,
1299 folio_set_reclaim(folio);
1301 goto activate_locked;
1304 if (references == FOLIOREF_RECLAIM_CLEAN)
1306 if (!may_enter_fs(folio, sc->gfp_mask))
1308 if (!sc->may_writepage)
1312 * Folio is dirty. Flush the TLB if a writable entry
1313 * potentially exists to avoid CPU writes after I/O
1314 * starts and then write it out here.
1316 try_to_unmap_flush_dirty();
1317 switch (pageout(folio, mapping, &plug)) {
1321 goto activate_locked;
1323 stat->nr_pageout += nr_pages;
1325 if (folio_test_writeback(folio))
1327 if (folio_test_dirty(folio))
1331 * A synchronous write - probably a ramdisk. Go
1332 * ahead and try to reclaim the folio.
1334 if (!folio_trylock(folio))
1336 if (folio_test_dirty(folio) ||
1337 folio_test_writeback(folio))
1339 mapping = folio_mapping(folio);
1342 ; /* try to free the folio below */
1347 * If the folio has buffers, try to free the buffer
1348 * mappings associated with this folio. If we succeed
1349 * we try to free the folio as well.
1351 * We do this even if the folio is dirty.
1352 * filemap_release_folio() does not perform I/O, but it
1353 * is possible for a folio to have the dirty flag set,
1354 * but it is actually clean (all its buffers are clean).
1355 * This happens if the buffers were written out directly,
1356 * with submit_bh(). ext3 will do this, as well as
1357 * the blockdev mapping. filemap_release_folio() will
1358 * discover that cleanness and will drop the buffers
1359 * and mark the folio clean - it can be freed.
1361 * Rarely, folios can have buffers and no ->mapping.
1362 * These are the folios which were not successfully
1363 * invalidated in truncate_cleanup_folio(). We try to
1364 * drop those buffers here and if that worked, and the
1365 * folio is no longer mapped into process address space
1366 * (refcount == 1) it can be freed. Otherwise, leave
1367 * the folio on the LRU so it is swappable.
1369 if (folio_needs_release(folio)) {
1370 if (!filemap_release_folio(folio, sc->gfp_mask))
1371 goto activate_locked;
1372 if (!mapping && folio_ref_count(folio) == 1) {
1373 folio_unlock(folio);
1374 if (folio_put_testzero(folio))
1378 * rare race with speculative reference.
1379 * the speculative reference will free
1380 * this folio shortly, so we may
1381 * increment nr_reclaimed here (and
1382 * leave it off the LRU).
1384 nr_reclaimed += nr_pages;
1390 if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) {
1391 /* follow __remove_mapping for reference */
1392 if (!folio_ref_freeze(folio, 1))
1395 * The folio has only one reference left, which is
1396 * from the isolation. After the caller puts the
1397 * folio back on the lru and drops the reference, the
1398 * folio will be freed anyway. It doesn't matter
1399 * which lru it goes on. So we don't bother checking
1400 * the dirty flag here.
1402 count_vm_events(PGLAZYFREED, nr_pages);
1403 count_memcg_folio_events(folio, PGLAZYFREED, nr_pages);
1404 } else if (!mapping || !__remove_mapping(mapping, folio, true,
1405 sc->target_mem_cgroup))
1408 folio_unlock(folio);
1411 * Folio may get swapped out as a whole, need to account
1414 nr_reclaimed += nr_pages;
1416 if (folio_batch_add(&free_folios, folio) == 0) {
1417 mem_cgroup_uncharge_folios(&free_folios);
1418 try_to_unmap_flush();
1419 free_unref_folios(&free_folios);
1423 activate_locked_split:
1425 * The tail pages that are failed to add into swap cache
1426 * reach here. Fixup nr_scanned and nr_pages.
1429 sc->nr_scanned -= (nr_pages - 1);
1433 /* Not a candidate for swapping, so reclaim swap space. */
1434 if (folio_test_swapcache(folio) &&
1435 (mem_cgroup_swap_full(folio) || folio_test_mlocked(folio)))
1436 folio_free_swap(folio);
1437 VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
1438 if (!folio_test_mlocked(folio)) {
1439 int type = folio_is_file_lru(folio);
1440 folio_set_active(folio);
1441 stat->nr_activate[type] += nr_pages;
1442 count_memcg_folio_events(folio, PGACTIVATE, nr_pages);
1445 folio_unlock(folio);
1447 list_add(&folio->lru, &ret_folios);
1448 VM_BUG_ON_FOLIO(folio_test_lru(folio) ||
1449 folio_test_unevictable(folio), folio);
1451 /* 'folio_list' is always empty here */
1453 /* Migrate folios selected for demotion */
1454 nr_reclaimed += demote_folio_list(&demote_folios, pgdat);
1455 /* Folios that could not be demoted are still in @demote_folios */
1456 if (!list_empty(&demote_folios)) {
1457 /* Folios which weren't demoted go back on @folio_list */
1458 list_splice_init(&demote_folios, folio_list);
1461 * goto retry to reclaim the undemoted folios in folio_list if
1464 * Reclaiming directly from top tier nodes is not often desired
1465 * due to it breaking the LRU ordering: in general memory
1466 * should be reclaimed from lower tier nodes and demoted from
1469 * However, disabling reclaim from top tier nodes entirely
1470 * would cause ooms in edge scenarios where lower tier memory
1471 * is unreclaimable for whatever reason, eg memory being
1472 * mlocked or too hot to reclaim. We can disable reclaim
1473 * from top tier nodes in proactive reclaim though as that is
1474 * not real memory pressure.
1476 if (!sc->proactive) {
1477 do_demote_pass = false;
1482 pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1484 mem_cgroup_uncharge_folios(&free_folios);
1485 try_to_unmap_flush();
1486 free_unref_folios(&free_folios);
1488 list_splice(&ret_folios, folio_list);
1489 count_vm_events(PGACTIVATE, pgactivate);
1492 swap_write_unplug(plug);
1493 return nr_reclaimed;
1496 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
1497 struct list_head *folio_list)
1499 struct scan_control sc = {
1500 .gfp_mask = GFP_KERNEL,
1503 struct reclaim_stat stat;
1504 unsigned int nr_reclaimed;
1505 struct folio *folio, *next;
1506 LIST_HEAD(clean_folios);
1507 unsigned int noreclaim_flag;
1509 list_for_each_entry_safe(folio, next, folio_list, lru) {
1510 if (!folio_test_hugetlb(folio) && folio_is_file_lru(folio) &&
1511 !folio_test_dirty(folio) && !__folio_test_movable(folio) &&
1512 !folio_test_unevictable(folio)) {
1513 folio_clear_active(folio);
1514 list_move(&folio->lru, &clean_folios);
1519 * We should be safe here since we are only dealing with file pages and
1520 * we are not kswapd and therefore cannot write dirty file pages. But
1521 * call memalloc_noreclaim_save() anyway, just in case these conditions
1522 * change in the future.
1524 noreclaim_flag = memalloc_noreclaim_save();
1525 nr_reclaimed = shrink_folio_list(&clean_folios, zone->zone_pgdat, &sc,
1527 memalloc_noreclaim_restore(noreclaim_flag);
1529 list_splice(&clean_folios, folio_list);
1530 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1531 -(long)nr_reclaimed);
1533 * Since lazyfree pages are isolated from file LRU from the beginning,
1534 * they will rotate back to anonymous LRU in the end if it failed to
1535 * discard so isolated count will be mismatched.
1536 * Compensate the isolated count for both LRU lists.
1538 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
1539 stat.nr_lazyfree_fail);
1540 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1541 -(long)stat.nr_lazyfree_fail);
1542 return nr_reclaimed;
1546 * Update LRU sizes after isolating pages. The LRU size updates must
1547 * be complete before mem_cgroup_update_lru_size due to a sanity check.
1549 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1550 enum lru_list lru, unsigned long *nr_zone_taken)
1554 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1555 if (!nr_zone_taken[zid])
1558 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1565 * It is waste of effort to scan and reclaim CMA pages if it is not available
1566 * for current allocation context. Kswapd can not be enrolled as it can not
1567 * distinguish this scenario by using sc->gfp_mask = GFP_KERNEL
1569 static bool skip_cma(struct folio *folio, struct scan_control *sc)
1571 return !current_is_kswapd() &&
1572 gfp_migratetype(sc->gfp_mask) != MIGRATE_MOVABLE &&
1573 folio_migratetype(folio) == MIGRATE_CMA;
1576 static bool skip_cma(struct folio *folio, struct scan_control *sc)
1583 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
1585 * lruvec->lru_lock is heavily contended. Some of the functions that
1586 * shrink the lists perform better by taking out a batch of pages
1587 * and working on them outside the LRU lock.
1589 * For pagecache intensive workloads, this function is the hottest
1590 * spot in the kernel (apart from copy_*_user functions).
1592 * Lru_lock must be held before calling this function.
1594 * @nr_to_scan: The number of eligible pages to look through on the list.
1595 * @lruvec: The LRU vector to pull pages from.
1596 * @dst: The temp list to put pages on to.
1597 * @nr_scanned: The number of pages that were scanned.
1598 * @sc: The scan_control struct for this reclaim session
1599 * @lru: LRU list id for isolating
1601 * returns how many pages were moved onto *@dst.
1603 static unsigned long isolate_lru_folios(unsigned long nr_to_scan,
1604 struct lruvec *lruvec, struct list_head *dst,
1605 unsigned long *nr_scanned, struct scan_control *sc,
1608 struct list_head *src = &lruvec->lists[lru];
1609 unsigned long nr_taken = 0;
1610 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1611 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1612 unsigned long skipped = 0;
1613 unsigned long scan, total_scan, nr_pages;
1614 LIST_HEAD(folios_skipped);
1618 while (scan < nr_to_scan && !list_empty(src)) {
1619 struct list_head *move_to = src;
1620 struct folio *folio;
1622 folio = lru_to_folio(src);
1623 prefetchw_prev_lru_folio(folio, src, flags);
1625 nr_pages = folio_nr_pages(folio);
1626 total_scan += nr_pages;
1628 if (folio_zonenum(folio) > sc->reclaim_idx ||
1629 skip_cma(folio, sc)) {
1630 nr_skipped[folio_zonenum(folio)] += nr_pages;
1631 move_to = &folios_skipped;
1636 * Do not count skipped folios because that makes the function
1637 * return with no isolated folios if the LRU mostly contains
1638 * ineligible folios. This causes the VM to not reclaim any
1639 * folios, triggering a premature OOM.
1640 * Account all pages in a folio.
1644 if (!folio_test_lru(folio))
1646 if (!sc->may_unmap && folio_mapped(folio))
1650 * Be careful not to clear the lru flag until after we're
1651 * sure the folio is not being freed elsewhere -- the
1652 * folio release code relies on it.
1654 if (unlikely(!folio_try_get(folio)))
1657 if (!folio_test_clear_lru(folio)) {
1658 /* Another thread is already isolating this folio */
1663 nr_taken += nr_pages;
1664 nr_zone_taken[folio_zonenum(folio)] += nr_pages;
1667 list_move(&folio->lru, move_to);
1671 * Splice any skipped folios to the start of the LRU list. Note that
1672 * this disrupts the LRU order when reclaiming for lower zones but
1673 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1674 * scanning would soon rescan the same folios to skip and waste lots
1677 if (!list_empty(&folios_skipped)) {
1680 list_splice(&folios_skipped, src);
1681 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1682 if (!nr_skipped[zid])
1685 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1686 skipped += nr_skipped[zid];
1689 *nr_scanned = total_scan;
1690 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1691 total_scan, skipped, nr_taken, lru);
1692 update_lru_sizes(lruvec, lru, nr_zone_taken);
1697 * folio_isolate_lru() - Try to isolate a folio from its LRU list.
1698 * @folio: Folio to isolate from its LRU list.
1700 * Isolate a @folio from an LRU list and adjust the vmstat statistic
1701 * corresponding to whatever LRU list the folio was on.
1703 * The folio will have its LRU flag cleared. If it was found on the
1704 * active list, it will have the Active flag set. If it was found on the
1705 * unevictable list, it will have the Unevictable flag set. These flags
1706 * may need to be cleared by the caller before letting the page go.
1710 * (1) Must be called with an elevated refcount on the folio. This is a
1711 * fundamental difference from isolate_lru_folios() (which is called
1712 * without a stable reference).
1713 * (2) The lru_lock must not be held.
1714 * (3) Interrupts must be enabled.
1716 * Return: true if the folio was removed from an LRU list.
1717 * false if the folio was not on an LRU list.
1719 bool folio_isolate_lru(struct folio *folio)
1723 VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio);
1725 if (folio_test_clear_lru(folio)) {
1726 struct lruvec *lruvec;
1729 lruvec = folio_lruvec_lock_irq(folio);
1730 lruvec_del_folio(lruvec, folio);
1731 unlock_page_lruvec_irq(lruvec);
1739 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1740 * then get rescheduled. When there are massive number of tasks doing page
1741 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1742 * the LRU list will go small and be scanned faster than necessary, leading to
1743 * unnecessary swapping, thrashing and OOM.
1745 static bool too_many_isolated(struct pglist_data *pgdat, int file,
1746 struct scan_control *sc)
1748 unsigned long inactive, isolated;
1751 if (current_is_kswapd())
1754 if (!writeback_throttling_sane(sc))
1758 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1759 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1761 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1762 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1766 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1767 * won't get blocked by normal direct-reclaimers, forming a circular
1770 if (gfp_has_io_fs(sc->gfp_mask))
1773 too_many = isolated > inactive;
1775 /* Wake up tasks throttled due to too_many_isolated. */
1777 wake_throttle_isolated(pgdat);
1783 * move_folios_to_lru() moves folios from private @list to appropriate LRU list.
1785 * Returns the number of pages moved to the given lruvec.
1787 static unsigned int move_folios_to_lru(struct lruvec *lruvec,
1788 struct list_head *list)
1790 int nr_pages, nr_moved = 0;
1791 struct folio_batch free_folios;
1793 folio_batch_init(&free_folios);
1794 while (!list_empty(list)) {
1795 struct folio *folio = lru_to_folio(list);
1797 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
1798 list_del(&folio->lru);
1799 if (unlikely(!folio_evictable(folio))) {
1800 spin_unlock_irq(&lruvec->lru_lock);
1801 folio_putback_lru(folio);
1802 spin_lock_irq(&lruvec->lru_lock);
1807 * The folio_set_lru needs to be kept here for list integrity.
1809 * #0 move_folios_to_lru #1 release_pages
1810 * if (!folio_put_testzero())
1811 * if (folio_put_testzero())
1812 * !lru //skip lru_lock
1814 * list_add(&folio->lru,)
1815 * list_add(&folio->lru,)
1817 folio_set_lru(folio);
1819 if (unlikely(folio_put_testzero(folio))) {
1820 __folio_clear_lru_flags(folio);
1822 if (folio_batch_add(&free_folios, folio) == 0) {
1823 spin_unlock_irq(&lruvec->lru_lock);
1824 mem_cgroup_uncharge_folios(&free_folios);
1825 free_unref_folios(&free_folios);
1826 spin_lock_irq(&lruvec->lru_lock);
1833 * All pages were isolated from the same lruvec (and isolation
1834 * inhibits memcg migration).
1836 VM_BUG_ON_FOLIO(!folio_matches_lruvec(folio, lruvec), folio);
1837 lruvec_add_folio(lruvec, folio);
1838 nr_pages = folio_nr_pages(folio);
1839 nr_moved += nr_pages;
1840 if (folio_test_active(folio))
1841 workingset_age_nonresident(lruvec, nr_pages);
1844 if (free_folios.nr) {
1845 spin_unlock_irq(&lruvec->lru_lock);
1846 mem_cgroup_uncharge_folios(&free_folios);
1847 free_unref_folios(&free_folios);
1848 spin_lock_irq(&lruvec->lru_lock);
1855 * If a kernel thread (such as nfsd for loop-back mounts) services a backing
1856 * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case
1857 * we should not throttle. Otherwise it is safe to do so.
1859 static int current_may_throttle(void)
1861 return !(current->flags & PF_LOCAL_THROTTLE);
1865 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1866 * of reclaimed pages
1868 static unsigned long shrink_inactive_list(unsigned long nr_to_scan,
1869 struct lruvec *lruvec, struct scan_control *sc,
1872 LIST_HEAD(folio_list);
1873 unsigned long nr_scanned;
1874 unsigned int nr_reclaimed = 0;
1875 unsigned long nr_taken;
1876 struct reclaim_stat stat;
1877 bool file = is_file_lru(lru);
1878 enum vm_event_item item;
1879 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1880 bool stalled = false;
1882 while (unlikely(too_many_isolated(pgdat, file, sc))) {
1886 /* wait a bit for the reclaimer. */
1888 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
1890 /* We are about to die and free our memory. Return now. */
1891 if (fatal_signal_pending(current))
1892 return SWAP_CLUSTER_MAX;
1897 spin_lock_irq(&lruvec->lru_lock);
1899 nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &folio_list,
1900 &nr_scanned, sc, lru);
1902 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1903 item = PGSCAN_KSWAPD + reclaimer_offset();
1904 if (!cgroup_reclaim(sc))
1905 __count_vm_events(item, nr_scanned);
1906 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
1907 __count_vm_events(PGSCAN_ANON + file, nr_scanned);
1909 spin_unlock_irq(&lruvec->lru_lock);
1914 nr_reclaimed = shrink_folio_list(&folio_list, pgdat, sc, &stat, false);
1916 spin_lock_irq(&lruvec->lru_lock);
1917 move_folios_to_lru(lruvec, &folio_list);
1919 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1920 item = PGSTEAL_KSWAPD + reclaimer_offset();
1921 if (!cgroup_reclaim(sc))
1922 __count_vm_events(item, nr_reclaimed);
1923 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
1924 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
1925 spin_unlock_irq(&lruvec->lru_lock);
1927 lru_note_cost(lruvec, file, stat.nr_pageout, nr_scanned - nr_reclaimed);
1930 * If dirty folios are scanned that are not queued for IO, it
1931 * implies that flushers are not doing their job. This can
1932 * happen when memory pressure pushes dirty folios to the end of
1933 * the LRU before the dirty limits are breached and the dirty
1934 * data has expired. It can also happen when the proportion of
1935 * dirty folios grows not through writes but through memory
1936 * pressure reclaiming all the clean cache. And in some cases,
1937 * the flushers simply cannot keep up with the allocation
1938 * rate. Nudge the flusher threads in case they are asleep.
1940 if (stat.nr_unqueued_dirty == nr_taken) {
1941 wakeup_flusher_threads(WB_REASON_VMSCAN);
1943 * For cgroupv1 dirty throttling is achieved by waking up
1944 * the kernel flusher here and later waiting on folios
1945 * which are in writeback to finish (see shrink_folio_list()).
1947 * Flusher may not be able to issue writeback quickly
1948 * enough for cgroupv1 writeback throttling to work
1949 * on a large system.
1951 if (!writeback_throttling_sane(sc))
1952 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
1955 sc->nr.dirty += stat.nr_dirty;
1956 sc->nr.congested += stat.nr_congested;
1957 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
1958 sc->nr.writeback += stat.nr_writeback;
1959 sc->nr.immediate += stat.nr_immediate;
1960 sc->nr.taken += nr_taken;
1962 sc->nr.file_taken += nr_taken;
1964 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1965 nr_scanned, nr_reclaimed, &stat, sc->priority, file);
1966 return nr_reclaimed;
1970 * shrink_active_list() moves folios from the active LRU to the inactive LRU.
1972 * We move them the other way if the folio is referenced by one or more
1975 * If the folios are mostly unmapped, the processing is fast and it is
1976 * appropriate to hold lru_lock across the whole operation. But if
1977 * the folios are mapped, the processing is slow (folio_referenced()), so
1978 * we should drop lru_lock around each folio. It's impossible to balance
1979 * this, so instead we remove the folios from the LRU while processing them.
1980 * It is safe to rely on the active flag against the non-LRU folios in here
1981 * because nobody will play with that bit on a non-LRU folio.
1983 * The downside is that we have to touch folio->_refcount against each folio.
1984 * But we had to alter folio->flags anyway.
1986 static void shrink_active_list(unsigned long nr_to_scan,
1987 struct lruvec *lruvec,
1988 struct scan_control *sc,
1991 unsigned long nr_taken;
1992 unsigned long nr_scanned;
1993 unsigned long vm_flags;
1994 LIST_HEAD(l_hold); /* The folios which were snipped off */
1995 LIST_HEAD(l_active);
1996 LIST_HEAD(l_inactive);
1997 unsigned nr_deactivate, nr_activate;
1998 unsigned nr_rotated = 0;
1999 bool file = is_file_lru(lru);
2000 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2004 spin_lock_irq(&lruvec->lru_lock);
2006 nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &l_hold,
2007 &nr_scanned, sc, lru);
2009 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2011 if (!cgroup_reclaim(sc))
2012 __count_vm_events(PGREFILL, nr_scanned);
2013 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2015 spin_unlock_irq(&lruvec->lru_lock);
2017 while (!list_empty(&l_hold)) {
2018 struct folio *folio;
2021 folio = lru_to_folio(&l_hold);
2022 list_del(&folio->lru);
2024 if (unlikely(!folio_evictable(folio))) {
2025 folio_putback_lru(folio);
2029 if (unlikely(buffer_heads_over_limit)) {
2030 if (folio_needs_release(folio) &&
2031 folio_trylock(folio)) {
2032 filemap_release_folio(folio, 0);
2033 folio_unlock(folio);
2037 /* Referenced or rmap lock contention: rotate */
2038 if (folio_referenced(folio, 0, sc->target_mem_cgroup,
2041 * Identify referenced, file-backed active folios and
2042 * give them one more trip around the active list. So
2043 * that executable code get better chances to stay in
2044 * memory under moderate memory pressure. Anon folios
2045 * are not likely to be evicted by use-once streaming
2046 * IO, plus JVM can create lots of anon VM_EXEC folios,
2047 * so we ignore them here.
2049 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) {
2050 nr_rotated += folio_nr_pages(folio);
2051 list_add(&folio->lru, &l_active);
2056 folio_clear_active(folio); /* we are de-activating */
2057 folio_set_workingset(folio);
2058 list_add(&folio->lru, &l_inactive);
2062 * Move folios back to the lru list.
2064 spin_lock_irq(&lruvec->lru_lock);
2066 nr_activate = move_folios_to_lru(lruvec, &l_active);
2067 nr_deactivate = move_folios_to_lru(lruvec, &l_inactive);
2069 __count_vm_events(PGDEACTIVATE, nr_deactivate);
2070 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2072 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2073 spin_unlock_irq(&lruvec->lru_lock);
2076 lru_note_cost(lruvec, file, 0, nr_rotated);
2077 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2078 nr_deactivate, nr_rotated, sc->priority, file);
2081 static unsigned int reclaim_folio_list(struct list_head *folio_list,
2082 struct pglist_data *pgdat,
2083 bool ignore_references)
2085 struct reclaim_stat dummy_stat;
2086 unsigned int nr_reclaimed;
2087 struct folio *folio;
2088 struct scan_control sc = {
2089 .gfp_mask = GFP_KERNEL,
2096 nr_reclaimed = shrink_folio_list(folio_list, pgdat, &sc, &dummy_stat, ignore_references);
2097 while (!list_empty(folio_list)) {
2098 folio = lru_to_folio(folio_list);
2099 list_del(&folio->lru);
2100 folio_putback_lru(folio);
2103 return nr_reclaimed;
2106 unsigned long reclaim_pages(struct list_head *folio_list, bool ignore_references)
2109 unsigned int nr_reclaimed = 0;
2110 LIST_HEAD(node_folio_list);
2111 unsigned int noreclaim_flag;
2113 if (list_empty(folio_list))
2114 return nr_reclaimed;
2116 noreclaim_flag = memalloc_noreclaim_save();
2118 nid = folio_nid(lru_to_folio(folio_list));
2120 struct folio *folio = lru_to_folio(folio_list);
2122 if (nid == folio_nid(folio)) {
2123 folio_clear_active(folio);
2124 list_move(&folio->lru, &node_folio_list);
2128 nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid),
2130 nid = folio_nid(lru_to_folio(folio_list));
2131 } while (!list_empty(folio_list));
2133 nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid), ignore_references);
2135 memalloc_noreclaim_restore(noreclaim_flag);
2137 return nr_reclaimed;
2140 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2141 struct lruvec *lruvec, struct scan_control *sc)
2143 if (is_active_lru(lru)) {
2144 if (sc->may_deactivate & (1 << is_file_lru(lru)))
2145 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2147 sc->skipped_deactivate = 1;
2151 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2155 * The inactive anon list should be small enough that the VM never has
2156 * to do too much work.
2158 * The inactive file list should be small enough to leave most memory
2159 * to the established workingset on the scan-resistant active list,
2160 * but large enough to avoid thrashing the aggregate readahead window.
2162 * Both inactive lists should also be large enough that each inactive
2163 * folio has a chance to be referenced again before it is reclaimed.
2165 * If that fails and refaulting is observed, the inactive list grows.
2167 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE folios
2168 * on this LRU, maintained by the pageout code. An inactive_ratio
2169 * of 3 means 3:1 or 25% of the folios are kept on the inactive list.
2172 * memory ratio inactive
2173 * -------------------------------------
2182 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2184 enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2185 unsigned long inactive, active;
2186 unsigned long inactive_ratio;
2189 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2190 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2192 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2194 inactive_ratio = int_sqrt(10 * gb);
2198 return inactive * inactive_ratio < active;
2208 static void prepare_scan_control(pg_data_t *pgdat, struct scan_control *sc)
2211 struct lruvec *target_lruvec;
2213 if (lru_gen_enabled())
2216 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
2219 * Flush the memory cgroup stats, so that we read accurate per-memcg
2220 * lruvec stats for heuristics.
2222 mem_cgroup_flush_stats(sc->target_mem_cgroup);
2225 * Determine the scan balance between anon and file LRUs.
2227 spin_lock_irq(&target_lruvec->lru_lock);
2228 sc->anon_cost = target_lruvec->anon_cost;
2229 sc->file_cost = target_lruvec->file_cost;
2230 spin_unlock_irq(&target_lruvec->lru_lock);
2233 * Target desirable inactive:active list ratios for the anon
2234 * and file LRU lists.
2236 if (!sc->force_deactivate) {
2237 unsigned long refaults;
2240 * When refaults are being observed, it means a new
2241 * workingset is being established. Deactivate to get
2242 * rid of any stale active pages quickly.
2244 refaults = lruvec_page_state(target_lruvec,
2245 WORKINGSET_ACTIVATE_ANON);
2246 if (refaults != target_lruvec->refaults[WORKINGSET_ANON] ||
2247 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
2248 sc->may_deactivate |= DEACTIVATE_ANON;
2250 sc->may_deactivate &= ~DEACTIVATE_ANON;
2252 refaults = lruvec_page_state(target_lruvec,
2253 WORKINGSET_ACTIVATE_FILE);
2254 if (refaults != target_lruvec->refaults[WORKINGSET_FILE] ||
2255 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
2256 sc->may_deactivate |= DEACTIVATE_FILE;
2258 sc->may_deactivate &= ~DEACTIVATE_FILE;
2260 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
2263 * If we have plenty of inactive file pages that aren't
2264 * thrashing, try to reclaim those first before touching
2267 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
2268 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
2269 sc->cache_trim_mode = 1;
2271 sc->cache_trim_mode = 0;
2274 * Prevent the reclaimer from falling into the cache trap: as
2275 * cache pages start out inactive, every cache fault will tip
2276 * the scan balance towards the file LRU. And as the file LRU
2277 * shrinks, so does the window for rotation from references.
2278 * This means we have a runaway feedback loop where a tiny
2279 * thrashing file LRU becomes infinitely more attractive than
2280 * anon pages. Try to detect this based on file LRU size.
2282 if (!cgroup_reclaim(sc)) {
2283 unsigned long total_high_wmark = 0;
2284 unsigned long free, anon;
2287 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2288 file = node_page_state(pgdat, NR_ACTIVE_FILE) +
2289 node_page_state(pgdat, NR_INACTIVE_FILE);
2291 for (z = 0; z < MAX_NR_ZONES; z++) {
2292 struct zone *zone = &pgdat->node_zones[z];
2294 if (!managed_zone(zone))
2297 total_high_wmark += high_wmark_pages(zone);
2301 * Consider anon: if that's low too, this isn't a
2302 * runaway file reclaim problem, but rather just
2303 * extreme pressure. Reclaim as per usual then.
2305 anon = node_page_state(pgdat, NR_INACTIVE_ANON);
2308 file + free <= total_high_wmark &&
2309 !(sc->may_deactivate & DEACTIVATE_ANON) &&
2310 anon >> sc->priority;
2315 * Determine how aggressively the anon and file LRU lists should be
2318 * nr[0] = anon inactive folios to scan; nr[1] = anon active folios to scan
2319 * nr[2] = file inactive folios to scan; nr[3] = file active folios to scan
2321 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2324 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2325 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2326 unsigned long anon_cost, file_cost, total_cost;
2327 int swappiness = mem_cgroup_swappiness(memcg);
2328 u64 fraction[ANON_AND_FILE];
2329 u64 denominator = 0; /* gcc */
2330 enum scan_balance scan_balance;
2331 unsigned long ap, fp;
2334 /* If we have no swap space, do not bother scanning anon folios. */
2335 if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) {
2336 scan_balance = SCAN_FILE;
2341 * Global reclaim will swap to prevent OOM even with no
2342 * swappiness, but memcg users want to use this knob to
2343 * disable swapping for individual groups completely when
2344 * using the memory controller's swap limit feature would be
2347 if (cgroup_reclaim(sc) && !swappiness) {
2348 scan_balance = SCAN_FILE;
2353 * Do not apply any pressure balancing cleverness when the
2354 * system is close to OOM, scan both anon and file equally
2355 * (unless the swappiness setting disagrees with swapping).
2357 if (!sc->priority && swappiness) {
2358 scan_balance = SCAN_EQUAL;
2363 * If the system is almost out of file pages, force-scan anon.
2365 if (sc->file_is_tiny) {
2366 scan_balance = SCAN_ANON;
2371 * If there is enough inactive page cache, we do not reclaim
2372 * anything from the anonymous working right now.
2374 if (sc->cache_trim_mode) {
2375 scan_balance = SCAN_FILE;
2379 scan_balance = SCAN_FRACT;
2381 * Calculate the pressure balance between anon and file pages.
2383 * The amount of pressure we put on each LRU is inversely
2384 * proportional to the cost of reclaiming each list, as
2385 * determined by the share of pages that are refaulting, times
2386 * the relative IO cost of bringing back a swapped out
2387 * anonymous page vs reloading a filesystem page (swappiness).
2389 * Although we limit that influence to ensure no list gets
2390 * left behind completely: at least a third of the pressure is
2391 * applied, before swappiness.
2393 * With swappiness at 100, anon and file have equal IO cost.
2395 total_cost = sc->anon_cost + sc->file_cost;
2396 anon_cost = total_cost + sc->anon_cost;
2397 file_cost = total_cost + sc->file_cost;
2398 total_cost = anon_cost + file_cost;
2400 ap = swappiness * (total_cost + 1);
2401 ap /= anon_cost + 1;
2403 fp = (200 - swappiness) * (total_cost + 1);
2404 fp /= file_cost + 1;
2408 denominator = ap + fp;
2410 for_each_evictable_lru(lru) {
2411 bool file = is_file_lru(lru);
2412 unsigned long lruvec_size;
2413 unsigned long low, min;
2416 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2417 mem_cgroup_protection(sc->target_mem_cgroup, memcg,
2422 * Scale a cgroup's reclaim pressure by proportioning
2423 * its current usage to its memory.low or memory.min
2426 * This is important, as otherwise scanning aggression
2427 * becomes extremely binary -- from nothing as we
2428 * approach the memory protection threshold, to totally
2429 * nominal as we exceed it. This results in requiring
2430 * setting extremely liberal protection thresholds. It
2431 * also means we simply get no protection at all if we
2432 * set it too low, which is not ideal.
2434 * If there is any protection in place, we reduce scan
2435 * pressure by how much of the total memory used is
2436 * within protection thresholds.
2438 * There is one special case: in the first reclaim pass,
2439 * we skip over all groups that are within their low
2440 * protection. If that fails to reclaim enough pages to
2441 * satisfy the reclaim goal, we come back and override
2442 * the best-effort low protection. However, we still
2443 * ideally want to honor how well-behaved groups are in
2444 * that case instead of simply punishing them all
2445 * equally. As such, we reclaim them based on how much
2446 * memory they are using, reducing the scan pressure
2447 * again by how much of the total memory used is under
2450 unsigned long cgroup_size = mem_cgroup_size(memcg);
2451 unsigned long protection;
2453 /* memory.low scaling, make sure we retry before OOM */
2454 if (!sc->memcg_low_reclaim && low > min) {
2456 sc->memcg_low_skipped = 1;
2461 /* Avoid TOCTOU with earlier protection check */
2462 cgroup_size = max(cgroup_size, protection);
2464 scan = lruvec_size - lruvec_size * protection /
2468 * Minimally target SWAP_CLUSTER_MAX pages to keep
2469 * reclaim moving forwards, avoiding decrementing
2470 * sc->priority further than desirable.
2472 scan = max(scan, SWAP_CLUSTER_MAX);
2477 scan >>= sc->priority;
2480 * If the cgroup's already been deleted, make sure to
2481 * scrape out the remaining cache.
2483 if (!scan && !mem_cgroup_online(memcg))
2484 scan = min(lruvec_size, SWAP_CLUSTER_MAX);
2486 switch (scan_balance) {
2488 /* Scan lists relative to size */
2492 * Scan types proportional to swappiness and
2493 * their relative recent reclaim efficiency.
2494 * Make sure we don't miss the last page on
2495 * the offlined memory cgroups because of a
2498 scan = mem_cgroup_online(memcg) ?
2499 div64_u64(scan * fraction[file], denominator) :
2500 DIV64_U64_ROUND_UP(scan * fraction[file],
2505 /* Scan one type exclusively */
2506 if ((scan_balance == SCAN_FILE) != file)
2510 /* Look ma, no brain */
2519 * Anonymous LRU management is a waste if there is
2520 * ultimately no way to reclaim the memory.
2522 static bool can_age_anon_pages(struct pglist_data *pgdat,
2523 struct scan_control *sc)
2525 /* Aging the anon LRU is valuable if swap is present: */
2526 if (total_swap_pages > 0)
2529 /* Also valuable if anon pages can be demoted: */
2530 return can_demote(pgdat->node_id, sc);
2533 #ifdef CONFIG_LRU_GEN
2535 #ifdef CONFIG_LRU_GEN_ENABLED
2536 DEFINE_STATIC_KEY_ARRAY_TRUE(lru_gen_caps, NR_LRU_GEN_CAPS);
2537 #define get_cap(cap) static_branch_likely(&lru_gen_caps[cap])
2539 DEFINE_STATIC_KEY_ARRAY_FALSE(lru_gen_caps, NR_LRU_GEN_CAPS);
2540 #define get_cap(cap) static_branch_unlikely(&lru_gen_caps[cap])
2543 static bool should_walk_mmu(void)
2545 return arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK);
2548 static bool should_clear_pmd_young(void)
2550 return arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG);
2553 /******************************************************************************
2555 ******************************************************************************/
2557 #define LRU_REFS_FLAGS (BIT(PG_referenced) | BIT(PG_workingset))
2559 #define DEFINE_MAX_SEQ(lruvec) \
2560 unsigned long max_seq = READ_ONCE((lruvec)->lrugen.max_seq)
2562 #define DEFINE_MIN_SEQ(lruvec) \
2563 unsigned long min_seq[ANON_AND_FILE] = { \
2564 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_ANON]), \
2565 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_FILE]), \
2568 #define for_each_gen_type_zone(gen, type, zone) \
2569 for ((gen) = 0; (gen) < MAX_NR_GENS; (gen)++) \
2570 for ((type) = 0; (type) < ANON_AND_FILE; (type)++) \
2571 for ((zone) = 0; (zone) < MAX_NR_ZONES; (zone)++)
2573 #define get_memcg_gen(seq) ((seq) % MEMCG_NR_GENS)
2574 #define get_memcg_bin(bin) ((bin) % MEMCG_NR_BINS)
2576 static struct lruvec *get_lruvec(struct mem_cgroup *memcg, int nid)
2578 struct pglist_data *pgdat = NODE_DATA(nid);
2582 struct lruvec *lruvec = &memcg->nodeinfo[nid]->lruvec;
2584 /* see the comment in mem_cgroup_lruvec() */
2586 lruvec->pgdat = pgdat;
2591 VM_WARN_ON_ONCE(!mem_cgroup_disabled());
2593 return &pgdat->__lruvec;
2596 static int get_swappiness(struct lruvec *lruvec, struct scan_control *sc)
2598 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2599 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2604 if (!can_demote(pgdat->node_id, sc) &&
2605 mem_cgroup_get_nr_swap_pages(memcg) < MIN_LRU_BATCH)
2608 return mem_cgroup_swappiness(memcg);
2611 static int get_nr_gens(struct lruvec *lruvec, int type)
2613 return lruvec->lrugen.max_seq - lruvec->lrugen.min_seq[type] + 1;
2616 static bool __maybe_unused seq_is_valid(struct lruvec *lruvec)
2618 /* see the comment on lru_gen_folio */
2619 return get_nr_gens(lruvec, LRU_GEN_FILE) >= MIN_NR_GENS &&
2620 get_nr_gens(lruvec, LRU_GEN_FILE) <= get_nr_gens(lruvec, LRU_GEN_ANON) &&
2621 get_nr_gens(lruvec, LRU_GEN_ANON) <= MAX_NR_GENS;
2624 /******************************************************************************
2626 ******************************************************************************/
2629 * Bloom filters with m=1<<15, k=2 and the false positive rates of ~1/5 when
2630 * n=10,000 and ~1/2 when n=20,000, where, conventionally, m is the number of
2631 * bits in a bitmap, k is the number of hash functions and n is the number of
2634 * Page table walkers use one of the two filters to reduce their search space.
2635 * To get rid of non-leaf entries that no longer have enough leaf entries, the
2636 * aging uses the double-buffering technique to flip to the other filter each
2637 * time it produces a new generation. For non-leaf entries that have enough
2638 * leaf entries, the aging carries them over to the next generation in
2639 * walk_pmd_range(); the eviction also report them when walking the rmap
2640 * in lru_gen_look_around().
2642 * For future optimizations:
2643 * 1. It's not necessary to keep both filters all the time. The spare one can be
2644 * freed after the RCU grace period and reallocated if needed again.
2645 * 2. And when reallocating, it's worth scaling its size according to the number
2646 * of inserted entries in the other filter, to reduce the memory overhead on
2647 * small systems and false positives on large systems.
2648 * 3. Jenkins' hash function is an alternative to Knuth's.
2650 #define BLOOM_FILTER_SHIFT 15
2652 static inline int filter_gen_from_seq(unsigned long seq)
2654 return seq % NR_BLOOM_FILTERS;
2657 static void get_item_key(void *item, int *key)
2659 u32 hash = hash_ptr(item, BLOOM_FILTER_SHIFT * 2);
2661 BUILD_BUG_ON(BLOOM_FILTER_SHIFT * 2 > BITS_PER_TYPE(u32));
2663 key[0] = hash & (BIT(BLOOM_FILTER_SHIFT) - 1);
2664 key[1] = hash >> BLOOM_FILTER_SHIFT;
2667 static bool test_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq,
2671 unsigned long *filter;
2672 int gen = filter_gen_from_seq(seq);
2674 filter = READ_ONCE(mm_state->filters[gen]);
2678 get_item_key(item, key);
2680 return test_bit(key[0], filter) && test_bit(key[1], filter);
2683 static void update_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq,
2687 unsigned long *filter;
2688 int gen = filter_gen_from_seq(seq);
2690 filter = READ_ONCE(mm_state->filters[gen]);
2694 get_item_key(item, key);
2696 if (!test_bit(key[0], filter))
2697 set_bit(key[0], filter);
2698 if (!test_bit(key[1], filter))
2699 set_bit(key[1], filter);
2702 static void reset_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq)
2704 unsigned long *filter;
2705 int gen = filter_gen_from_seq(seq);
2707 filter = mm_state->filters[gen];
2709 bitmap_clear(filter, 0, BIT(BLOOM_FILTER_SHIFT));
2713 filter = bitmap_zalloc(BIT(BLOOM_FILTER_SHIFT),
2714 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
2715 WRITE_ONCE(mm_state->filters[gen], filter);
2718 /******************************************************************************
2720 ******************************************************************************/
2722 #ifdef CONFIG_LRU_GEN_WALKS_MMU
2724 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg)
2726 static struct lru_gen_mm_list mm_list = {
2727 .fifo = LIST_HEAD_INIT(mm_list.fifo),
2728 .lock = __SPIN_LOCK_UNLOCKED(mm_list.lock),
2733 return &memcg->mm_list;
2735 VM_WARN_ON_ONCE(!mem_cgroup_disabled());
2740 static struct lru_gen_mm_state *get_mm_state(struct lruvec *lruvec)
2742 return &lruvec->mm_state;
2745 static struct mm_struct *get_next_mm(struct lru_gen_mm_walk *walk)
2748 struct mm_struct *mm;
2749 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
2750 struct lru_gen_mm_state *mm_state = get_mm_state(walk->lruvec);
2752 mm = list_entry(mm_state->head, struct mm_struct, lru_gen.list);
2753 key = pgdat->node_id % BITS_PER_TYPE(mm->lru_gen.bitmap);
2755 if (!walk->force_scan && !test_bit(key, &mm->lru_gen.bitmap))
2758 clear_bit(key, &mm->lru_gen.bitmap);
2760 return mmget_not_zero(mm) ? mm : NULL;
2763 void lru_gen_add_mm(struct mm_struct *mm)
2766 struct mem_cgroup *memcg = get_mem_cgroup_from_mm(mm);
2767 struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
2769 VM_WARN_ON_ONCE(!list_empty(&mm->lru_gen.list));
2771 VM_WARN_ON_ONCE(mm->lru_gen.memcg);
2772 mm->lru_gen.memcg = memcg;
2774 spin_lock(&mm_list->lock);
2776 for_each_node_state(nid, N_MEMORY) {
2777 struct lruvec *lruvec = get_lruvec(memcg, nid);
2778 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
2780 /* the first addition since the last iteration */
2781 if (mm_state->tail == &mm_list->fifo)
2782 mm_state->tail = &mm->lru_gen.list;
2785 list_add_tail(&mm->lru_gen.list, &mm_list->fifo);
2787 spin_unlock(&mm_list->lock);
2790 void lru_gen_del_mm(struct mm_struct *mm)
2793 struct lru_gen_mm_list *mm_list;
2794 struct mem_cgroup *memcg = NULL;
2796 if (list_empty(&mm->lru_gen.list))
2800 memcg = mm->lru_gen.memcg;
2802 mm_list = get_mm_list(memcg);
2804 spin_lock(&mm_list->lock);
2806 for_each_node(nid) {
2807 struct lruvec *lruvec = get_lruvec(memcg, nid);
2808 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
2810 /* where the current iteration continues after */
2811 if (mm_state->head == &mm->lru_gen.list)
2812 mm_state->head = mm_state->head->prev;
2814 /* where the last iteration ended before */
2815 if (mm_state->tail == &mm->lru_gen.list)
2816 mm_state->tail = mm_state->tail->next;
2819 list_del_init(&mm->lru_gen.list);
2821 spin_unlock(&mm_list->lock);
2824 mem_cgroup_put(mm->lru_gen.memcg);
2825 mm->lru_gen.memcg = NULL;
2830 void lru_gen_migrate_mm(struct mm_struct *mm)
2832 struct mem_cgroup *memcg;
2833 struct task_struct *task = rcu_dereference_protected(mm->owner, true);
2835 VM_WARN_ON_ONCE(task->mm != mm);
2836 lockdep_assert_held(&task->alloc_lock);
2838 /* for mm_update_next_owner() */
2839 if (mem_cgroup_disabled())
2842 /* migration can happen before addition */
2843 if (!mm->lru_gen.memcg)
2847 memcg = mem_cgroup_from_task(task);
2849 if (memcg == mm->lru_gen.memcg)
2852 VM_WARN_ON_ONCE(list_empty(&mm->lru_gen.list));
2859 #else /* !CONFIG_LRU_GEN_WALKS_MMU */
2861 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg)
2866 static struct lru_gen_mm_state *get_mm_state(struct lruvec *lruvec)
2871 static struct mm_struct *get_next_mm(struct lru_gen_mm_walk *walk)
2878 static void reset_mm_stats(struct lru_gen_mm_walk *walk, bool last)
2882 struct lruvec *lruvec = walk->lruvec;
2883 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
2885 lockdep_assert_held(&get_mm_list(lruvec_memcg(lruvec))->lock);
2887 hist = lru_hist_from_seq(walk->seq);
2889 for (i = 0; i < NR_MM_STATS; i++) {
2890 WRITE_ONCE(mm_state->stats[hist][i],
2891 mm_state->stats[hist][i] + walk->mm_stats[i]);
2892 walk->mm_stats[i] = 0;
2895 if (NR_HIST_GENS > 1 && last) {
2896 hist = lru_hist_from_seq(walk->seq + 1);
2898 for (i = 0; i < NR_MM_STATS; i++)
2899 WRITE_ONCE(mm_state->stats[hist][i], 0);
2903 static bool iterate_mm_list(struct lru_gen_mm_walk *walk, struct mm_struct **iter)
2907 struct mm_struct *mm = NULL;
2908 struct lruvec *lruvec = walk->lruvec;
2909 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2910 struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
2911 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
2914 * mm_state->seq is incremented after each iteration of mm_list. There
2915 * are three interesting cases for this page table walker:
2916 * 1. It tries to start a new iteration with a stale max_seq: there is
2917 * nothing left to do.
2918 * 2. It started the next iteration: it needs to reset the Bloom filter
2919 * so that a fresh set of PTE tables can be recorded.
2920 * 3. It ended the current iteration: it needs to reset the mm stats
2921 * counters and tell its caller to increment max_seq.
2923 spin_lock(&mm_list->lock);
2925 VM_WARN_ON_ONCE(mm_state->seq + 1 < walk->seq);
2927 if (walk->seq <= mm_state->seq)
2930 if (!mm_state->head)
2931 mm_state->head = &mm_list->fifo;
2933 if (mm_state->head == &mm_list->fifo)
2937 mm_state->head = mm_state->head->next;
2938 if (mm_state->head == &mm_list->fifo) {
2939 WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
2944 /* force scan for those added after the last iteration */
2945 if (!mm_state->tail || mm_state->tail == mm_state->head) {
2946 mm_state->tail = mm_state->head->next;
2947 walk->force_scan = true;
2949 } while (!(mm = get_next_mm(walk)));
2952 reset_mm_stats(walk, last);
2954 spin_unlock(&mm_list->lock);
2957 reset_bloom_filter(mm_state, walk->seq + 1);
2967 static bool iterate_mm_list_nowalk(struct lruvec *lruvec, unsigned long seq)
2969 bool success = false;
2970 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2971 struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
2972 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
2974 spin_lock(&mm_list->lock);
2976 VM_WARN_ON_ONCE(mm_state->seq + 1 < seq);
2978 if (seq > mm_state->seq) {
2979 mm_state->head = NULL;
2980 mm_state->tail = NULL;
2981 WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
2985 spin_unlock(&mm_list->lock);
2990 /******************************************************************************
2992 ******************************************************************************/
2995 * A feedback loop based on Proportional-Integral-Derivative (PID) controller.
2997 * The P term is refaulted/(evicted+protected) from a tier in the generation
2998 * currently being evicted; the I term is the exponential moving average of the
2999 * P term over the generations previously evicted, using the smoothing factor
3000 * 1/2; the D term isn't supported.
3002 * The setpoint (SP) is always the first tier of one type; the process variable
3003 * (PV) is either any tier of the other type or any other tier of the same
3006 * The error is the difference between the SP and the PV; the correction is to
3007 * turn off protection when SP>PV or turn on protection when SP<PV.
3009 * For future optimizations:
3010 * 1. The D term may discount the other two terms over time so that long-lived
3011 * generations can resist stale information.
3014 unsigned long refaulted;
3015 unsigned long total;
3019 static void read_ctrl_pos(struct lruvec *lruvec, int type, int tier, int gain,
3020 struct ctrl_pos *pos)
3022 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3023 int hist = lru_hist_from_seq(lrugen->min_seq[type]);
3025 pos->refaulted = lrugen->avg_refaulted[type][tier] +
3026 atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3027 pos->total = lrugen->avg_total[type][tier] +
3028 atomic_long_read(&lrugen->evicted[hist][type][tier]);
3030 pos->total += lrugen->protected[hist][type][tier - 1];
3034 static void reset_ctrl_pos(struct lruvec *lruvec, int type, bool carryover)
3037 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3038 bool clear = carryover ? NR_HIST_GENS == 1 : NR_HIST_GENS > 1;
3039 unsigned long seq = carryover ? lrugen->min_seq[type] : lrugen->max_seq + 1;
3041 lockdep_assert_held(&lruvec->lru_lock);
3043 if (!carryover && !clear)
3046 hist = lru_hist_from_seq(seq);
3048 for (tier = 0; tier < MAX_NR_TIERS; tier++) {
3052 sum = lrugen->avg_refaulted[type][tier] +
3053 atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3054 WRITE_ONCE(lrugen->avg_refaulted[type][tier], sum / 2);
3056 sum = lrugen->avg_total[type][tier] +
3057 atomic_long_read(&lrugen->evicted[hist][type][tier]);
3059 sum += lrugen->protected[hist][type][tier - 1];
3060 WRITE_ONCE(lrugen->avg_total[type][tier], sum / 2);
3064 atomic_long_set(&lrugen->refaulted[hist][type][tier], 0);
3065 atomic_long_set(&lrugen->evicted[hist][type][tier], 0);
3067 WRITE_ONCE(lrugen->protected[hist][type][tier - 1], 0);
3072 static bool positive_ctrl_err(struct ctrl_pos *sp, struct ctrl_pos *pv)
3075 * Return true if the PV has a limited number of refaults or a lower
3076 * refaulted/total than the SP.
3078 return pv->refaulted < MIN_LRU_BATCH ||
3079 pv->refaulted * (sp->total + MIN_LRU_BATCH) * sp->gain <=
3080 (sp->refaulted + 1) * pv->total * pv->gain;
3083 /******************************************************************************
3085 ******************************************************************************/
3087 /* promote pages accessed through page tables */
3088 static int folio_update_gen(struct folio *folio, int gen)
3090 unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3092 VM_WARN_ON_ONCE(gen >= MAX_NR_GENS);
3093 VM_WARN_ON_ONCE(!rcu_read_lock_held());
3096 /* lru_gen_del_folio() has isolated this page? */
3097 if (!(old_flags & LRU_GEN_MASK)) {
3098 /* for shrink_folio_list() */
3099 new_flags = old_flags | BIT(PG_referenced);
3103 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS);
3104 new_flags |= (gen + 1UL) << LRU_GEN_PGOFF;
3105 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3107 return ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3110 /* protect pages accessed multiple times through file descriptors */
3111 static int folio_inc_gen(struct lruvec *lruvec, struct folio *folio, bool reclaiming)
3113 int type = folio_is_file_lru(folio);
3114 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3115 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
3116 unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3118 VM_WARN_ON_ONCE_FOLIO(!(old_flags & LRU_GEN_MASK), folio);
3121 new_gen = ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3122 /* folio_update_gen() has promoted this page? */
3123 if (new_gen >= 0 && new_gen != old_gen)
3126 new_gen = (old_gen + 1) % MAX_NR_GENS;
3128 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS);
3129 new_flags |= (new_gen + 1UL) << LRU_GEN_PGOFF;
3130 /* for folio_end_writeback() */
3132 new_flags |= BIT(PG_reclaim);
3133 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3135 lru_gen_update_size(lruvec, folio, old_gen, new_gen);
3140 static void update_batch_size(struct lru_gen_mm_walk *walk, struct folio *folio,
3141 int old_gen, int new_gen)
3143 int type = folio_is_file_lru(folio);
3144 int zone = folio_zonenum(folio);
3145 int delta = folio_nr_pages(folio);
3147 VM_WARN_ON_ONCE(old_gen >= MAX_NR_GENS);
3148 VM_WARN_ON_ONCE(new_gen >= MAX_NR_GENS);
3152 walk->nr_pages[old_gen][type][zone] -= delta;
3153 walk->nr_pages[new_gen][type][zone] += delta;
3156 static void reset_batch_size(struct lru_gen_mm_walk *walk)
3158 int gen, type, zone;
3159 struct lruvec *lruvec = walk->lruvec;
3160 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3164 for_each_gen_type_zone(gen, type, zone) {
3165 enum lru_list lru = type * LRU_INACTIVE_FILE;
3166 int delta = walk->nr_pages[gen][type][zone];
3171 walk->nr_pages[gen][type][zone] = 0;
3172 WRITE_ONCE(lrugen->nr_pages[gen][type][zone],
3173 lrugen->nr_pages[gen][type][zone] + delta);
3175 if (lru_gen_is_active(lruvec, gen))
3177 __update_lru_size(lruvec, lru, zone, delta);
3181 static int should_skip_vma(unsigned long start, unsigned long end, struct mm_walk *args)
3183 struct address_space *mapping;
3184 struct vm_area_struct *vma = args->vma;
3185 struct lru_gen_mm_walk *walk = args->private;
3187 if (!vma_is_accessible(vma))
3190 if (is_vm_hugetlb_page(vma))
3193 if (!vma_has_recency(vma))
3196 if (vma->vm_flags & (VM_LOCKED | VM_SPECIAL))
3199 if (vma == get_gate_vma(vma->vm_mm))
3202 if (vma_is_anonymous(vma))
3203 return !walk->can_swap;
3205 if (WARN_ON_ONCE(!vma->vm_file || !vma->vm_file->f_mapping))
3208 mapping = vma->vm_file->f_mapping;
3209 if (mapping_unevictable(mapping))
3212 if (shmem_mapping(mapping))
3213 return !walk->can_swap;
3215 /* to exclude special mappings like dax, etc. */
3216 return !mapping->a_ops->read_folio;
3220 * Some userspace memory allocators map many single-page VMAs. Instead of
3221 * returning back to the PGD table for each of such VMAs, finish an entire PMD
3222 * table to reduce zigzags and improve cache performance.
3224 static bool get_next_vma(unsigned long mask, unsigned long size, struct mm_walk *args,
3225 unsigned long *vm_start, unsigned long *vm_end)
3227 unsigned long start = round_up(*vm_end, size);
3228 unsigned long end = (start | ~mask) + 1;
3229 VMA_ITERATOR(vmi, args->mm, start);
3231 VM_WARN_ON_ONCE(mask & size);
3232 VM_WARN_ON_ONCE((start & mask) != (*vm_start & mask));
3234 for_each_vma(vmi, args->vma) {
3235 if (end && end <= args->vma->vm_start)
3238 if (should_skip_vma(args->vma->vm_start, args->vma->vm_end, args))
3241 *vm_start = max(start, args->vma->vm_start);
3242 *vm_end = min(end - 1, args->vma->vm_end - 1) + 1;
3250 static unsigned long get_pte_pfn(pte_t pte, struct vm_area_struct *vma, unsigned long addr)
3252 unsigned long pfn = pte_pfn(pte);
3254 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3256 if (!pte_present(pte) || is_zero_pfn(pfn))
3259 if (WARN_ON_ONCE(pte_devmap(pte) || pte_special(pte)))
3262 if (WARN_ON_ONCE(!pfn_valid(pfn)))
3268 static unsigned long get_pmd_pfn(pmd_t pmd, struct vm_area_struct *vma, unsigned long addr)
3270 unsigned long pfn = pmd_pfn(pmd);
3272 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3274 if (!pmd_present(pmd) || is_huge_zero_pmd(pmd))
3277 if (WARN_ON_ONCE(pmd_devmap(pmd)))
3280 if (WARN_ON_ONCE(!pfn_valid(pfn)))
3286 static struct folio *get_pfn_folio(unsigned long pfn, struct mem_cgroup *memcg,
3287 struct pglist_data *pgdat, bool can_swap)
3289 struct folio *folio;
3291 /* try to avoid unnecessary memory loads */
3292 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
3295 folio = pfn_folio(pfn);
3296 if (folio_nid(folio) != pgdat->node_id)
3299 if (folio_memcg_rcu(folio) != memcg)
3302 /* file VMAs can contain anon pages from COW */
3303 if (!folio_is_file_lru(folio) && !can_swap)
3309 static bool suitable_to_scan(int total, int young)
3311 int n = clamp_t(int, cache_line_size() / sizeof(pte_t), 2, 8);
3313 /* suitable if the average number of young PTEs per cacheline is >=1 */
3314 return young * n >= total;
3317 static bool walk_pte_range(pmd_t *pmd, unsigned long start, unsigned long end,
3318 struct mm_walk *args)
3326 struct lru_gen_mm_walk *walk = args->private;
3327 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
3328 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3329 DEFINE_MAX_SEQ(walk->lruvec);
3330 int old_gen, new_gen = lru_gen_from_seq(max_seq);
3332 pte = pte_offset_map_nolock(args->mm, pmd, start & PMD_MASK, &ptl);
3335 if (!spin_trylock(ptl)) {
3340 arch_enter_lazy_mmu_mode();
3342 for (i = pte_index(start), addr = start; addr != end; i++, addr += PAGE_SIZE) {
3344 struct folio *folio;
3345 pte_t ptent = ptep_get(pte + i);
3348 walk->mm_stats[MM_LEAF_TOTAL]++;
3350 pfn = get_pte_pfn(ptent, args->vma, addr);
3354 if (!pte_young(ptent)) {
3355 walk->mm_stats[MM_LEAF_OLD]++;
3359 folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap);
3363 if (!ptep_test_and_clear_young(args->vma, addr, pte + i))
3364 VM_WARN_ON_ONCE(true);
3367 walk->mm_stats[MM_LEAF_YOUNG]++;
3369 if (pte_dirty(ptent) && !folio_test_dirty(folio) &&
3370 !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
3371 !folio_test_swapcache(folio)))
3372 folio_mark_dirty(folio);
3374 old_gen = folio_update_gen(folio, new_gen);
3375 if (old_gen >= 0 && old_gen != new_gen)
3376 update_batch_size(walk, folio, old_gen, new_gen);
3379 if (i < PTRS_PER_PTE && get_next_vma(PMD_MASK, PAGE_SIZE, args, &start, &end))
3382 arch_leave_lazy_mmu_mode();
3383 pte_unmap_unlock(pte, ptl);
3385 return suitable_to_scan(total, young);
3388 static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma,
3389 struct mm_walk *args, unsigned long *bitmap, unsigned long *first)
3394 struct lru_gen_mm_walk *walk = args->private;
3395 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
3396 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3397 DEFINE_MAX_SEQ(walk->lruvec);
3398 int old_gen, new_gen = lru_gen_from_seq(max_seq);
3400 VM_WARN_ON_ONCE(pud_leaf(*pud));
3402 /* try to batch at most 1+MIN_LRU_BATCH+1 entries */
3405 bitmap_zero(bitmap, MIN_LRU_BATCH);
3409 i = addr == -1 ? 0 : pmd_index(addr) - pmd_index(*first);
3410 if (i && i <= MIN_LRU_BATCH) {
3411 __set_bit(i - 1, bitmap);
3415 pmd = pmd_offset(pud, *first);
3417 ptl = pmd_lockptr(args->mm, pmd);
3418 if (!spin_trylock(ptl))
3421 arch_enter_lazy_mmu_mode();
3425 struct folio *folio;
3427 /* don't round down the first address */
3428 addr = i ? (*first & PMD_MASK) + i * PMD_SIZE : *first;
3430 pfn = get_pmd_pfn(pmd[i], vma, addr);
3434 if (!pmd_trans_huge(pmd[i])) {
3435 if (should_clear_pmd_young())
3436 pmdp_test_and_clear_young(vma, addr, pmd + i);
3440 folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap);
3444 if (!pmdp_test_and_clear_young(vma, addr, pmd + i))
3447 walk->mm_stats[MM_LEAF_YOUNG]++;
3449 if (pmd_dirty(pmd[i]) && !folio_test_dirty(folio) &&
3450 !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
3451 !folio_test_swapcache(folio)))
3452 folio_mark_dirty(folio);
3454 old_gen = folio_update_gen(folio, new_gen);
3455 if (old_gen >= 0 && old_gen != new_gen)
3456 update_batch_size(walk, folio, old_gen, new_gen);
3458 i = i > MIN_LRU_BATCH ? 0 : find_next_bit(bitmap, MIN_LRU_BATCH, i) + 1;
3459 } while (i <= MIN_LRU_BATCH);
3461 arch_leave_lazy_mmu_mode();
3467 static void walk_pmd_range(pud_t *pud, unsigned long start, unsigned long end,
3468 struct mm_walk *args)
3474 struct vm_area_struct *vma;
3475 DECLARE_BITMAP(bitmap, MIN_LRU_BATCH);
3476 unsigned long first = -1;
3477 struct lru_gen_mm_walk *walk = args->private;
3478 struct lru_gen_mm_state *mm_state = get_mm_state(walk->lruvec);
3480 VM_WARN_ON_ONCE(pud_leaf(*pud));
3483 * Finish an entire PMD in two passes: the first only reaches to PTE
3484 * tables to avoid taking the PMD lock; the second, if necessary, takes
3485 * the PMD lock to clear the accessed bit in PMD entries.
3487 pmd = pmd_offset(pud, start & PUD_MASK);
3489 /* walk_pte_range() may call get_next_vma() */
3491 for (i = pmd_index(start), addr = start; addr != end; i++, addr = next) {
3492 pmd_t val = pmdp_get_lockless(pmd + i);
3494 next = pmd_addr_end(addr, end);
3496 if (!pmd_present(val) || is_huge_zero_pmd(val)) {
3497 walk->mm_stats[MM_LEAF_TOTAL]++;
3501 if (pmd_trans_huge(val)) {
3502 unsigned long pfn = pmd_pfn(val);
3503 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3505 walk->mm_stats[MM_LEAF_TOTAL]++;
3507 if (!pmd_young(val)) {
3508 walk->mm_stats[MM_LEAF_OLD]++;
3512 /* try to avoid unnecessary memory loads */
3513 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
3516 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first);
3520 walk->mm_stats[MM_NONLEAF_TOTAL]++;
3522 if (should_clear_pmd_young()) {
3523 if (!pmd_young(val))
3526 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first);
3529 if (!walk->force_scan && !test_bloom_filter(mm_state, walk->seq, pmd + i))
3532 walk->mm_stats[MM_NONLEAF_FOUND]++;
3534 if (!walk_pte_range(&val, addr, next, args))
3537 walk->mm_stats[MM_NONLEAF_ADDED]++;
3539 /* carry over to the next generation */
3540 update_bloom_filter(mm_state, walk->seq + 1, pmd + i);
3543 walk_pmd_range_locked(pud, -1, vma, args, bitmap, &first);
3545 if (i < PTRS_PER_PMD && get_next_vma(PUD_MASK, PMD_SIZE, args, &start, &end))
3549 static int walk_pud_range(p4d_t *p4d, unsigned long start, unsigned long end,
3550 struct mm_walk *args)
3556 struct lru_gen_mm_walk *walk = args->private;
3558 VM_WARN_ON_ONCE(p4d_leaf(*p4d));
3560 pud = pud_offset(p4d, start & P4D_MASK);
3562 for (i = pud_index(start), addr = start; addr != end; i++, addr = next) {
3563 pud_t val = READ_ONCE(pud[i]);
3565 next = pud_addr_end(addr, end);
3567 if (!pud_present(val) || WARN_ON_ONCE(pud_leaf(val)))
3570 walk_pmd_range(&val, addr, next, args);
3572 if (need_resched() || walk->batched >= MAX_LRU_BATCH) {
3573 end = (addr | ~PUD_MASK) + 1;
3578 if (i < PTRS_PER_PUD && get_next_vma(P4D_MASK, PUD_SIZE, args, &start, &end))
3581 end = round_up(end, P4D_SIZE);
3583 if (!end || !args->vma)
3586 walk->next_addr = max(end, args->vma->vm_start);
3591 static void walk_mm(struct mm_struct *mm, struct lru_gen_mm_walk *walk)
3593 static const struct mm_walk_ops mm_walk_ops = {
3594 .test_walk = should_skip_vma,
3595 .p4d_entry = walk_pud_range,
3596 .walk_lock = PGWALK_RDLOCK,
3600 struct lruvec *lruvec = walk->lruvec;
3601 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3603 walk->next_addr = FIRST_USER_ADDRESS;
3606 DEFINE_MAX_SEQ(lruvec);
3610 /* another thread might have called inc_max_seq() */
3611 if (walk->seq != max_seq)
3614 /* folio_update_gen() requires stable folio_memcg() */
3615 if (!mem_cgroup_trylock_pages(memcg))
3618 /* the caller might be holding the lock for write */
3619 if (mmap_read_trylock(mm)) {
3620 err = walk_page_range(mm, walk->next_addr, ULONG_MAX, &mm_walk_ops, walk);
3622 mmap_read_unlock(mm);
3625 mem_cgroup_unlock_pages();
3627 if (walk->batched) {
3628 spin_lock_irq(&lruvec->lru_lock);
3629 reset_batch_size(walk);
3630 spin_unlock_irq(&lruvec->lru_lock);
3634 } while (err == -EAGAIN);
3637 static struct lru_gen_mm_walk *set_mm_walk(struct pglist_data *pgdat, bool force_alloc)
3639 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
3641 if (pgdat && current_is_kswapd()) {
3642 VM_WARN_ON_ONCE(walk);
3644 walk = &pgdat->mm_walk;
3645 } else if (!walk && force_alloc) {
3646 VM_WARN_ON_ONCE(current_is_kswapd());
3648 walk = kzalloc(sizeof(*walk), __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
3651 current->reclaim_state->mm_walk = walk;
3656 static void clear_mm_walk(void)
3658 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
3660 VM_WARN_ON_ONCE(walk && memchr_inv(walk->nr_pages, 0, sizeof(walk->nr_pages)));
3661 VM_WARN_ON_ONCE(walk && memchr_inv(walk->mm_stats, 0, sizeof(walk->mm_stats)));
3663 current->reclaim_state->mm_walk = NULL;
3665 if (!current_is_kswapd())
3669 static bool inc_min_seq(struct lruvec *lruvec, int type, bool can_swap)
3672 int remaining = MAX_LRU_BATCH;
3673 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3674 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
3676 if (type == LRU_GEN_ANON && !can_swap)
3679 /* prevent cold/hot inversion if force_scan is true */
3680 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3681 struct list_head *head = &lrugen->folios[old_gen][type][zone];
3683 while (!list_empty(head)) {
3684 struct folio *folio = lru_to_folio(head);
3686 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
3687 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
3688 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
3689 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
3691 new_gen = folio_inc_gen(lruvec, folio, false);
3692 list_move_tail(&folio->lru, &lrugen->folios[new_gen][type][zone]);
3699 reset_ctrl_pos(lruvec, type, true);
3700 WRITE_ONCE(lrugen->min_seq[type], lrugen->min_seq[type] + 1);
3705 static bool try_to_inc_min_seq(struct lruvec *lruvec, bool can_swap)
3707 int gen, type, zone;
3708 bool success = false;
3709 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3710 DEFINE_MIN_SEQ(lruvec);
3712 VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
3714 /* find the oldest populated generation */
3715 for (type = !can_swap; type < ANON_AND_FILE; type++) {
3716 while (min_seq[type] + MIN_NR_GENS <= lrugen->max_seq) {
3717 gen = lru_gen_from_seq(min_seq[type]);
3719 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3720 if (!list_empty(&lrugen->folios[gen][type][zone]))
3730 /* see the comment on lru_gen_folio */
3732 min_seq[LRU_GEN_ANON] = min(min_seq[LRU_GEN_ANON], min_seq[LRU_GEN_FILE]);
3733 min_seq[LRU_GEN_FILE] = max(min_seq[LRU_GEN_ANON], lrugen->min_seq[LRU_GEN_FILE]);
3736 for (type = !can_swap; type < ANON_AND_FILE; type++) {
3737 if (min_seq[type] == lrugen->min_seq[type])
3740 reset_ctrl_pos(lruvec, type, true);
3741 WRITE_ONCE(lrugen->min_seq[type], min_seq[type]);
3748 static bool inc_max_seq(struct lruvec *lruvec, unsigned long seq,
3749 bool can_swap, bool force_scan)
3754 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3756 if (seq < READ_ONCE(lrugen->max_seq))
3759 spin_lock_irq(&lruvec->lru_lock);
3761 VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
3763 success = seq == lrugen->max_seq;
3767 for (type = ANON_AND_FILE - 1; type >= 0; type--) {
3768 if (get_nr_gens(lruvec, type) != MAX_NR_GENS)
3771 VM_WARN_ON_ONCE(!force_scan && (type == LRU_GEN_FILE || can_swap));
3773 if (inc_min_seq(lruvec, type, can_swap))
3776 spin_unlock_irq(&lruvec->lru_lock);
3782 * Update the active/inactive LRU sizes for compatibility. Both sides of
3783 * the current max_seq need to be covered, since max_seq+1 can overlap
3784 * with min_seq[LRU_GEN_ANON] if swapping is constrained. And if they do
3785 * overlap, cold/hot inversion happens.
3787 prev = lru_gen_from_seq(lrugen->max_seq - 1);
3788 next = lru_gen_from_seq(lrugen->max_seq + 1);
3790 for (type = 0; type < ANON_AND_FILE; type++) {
3791 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3792 enum lru_list lru = type * LRU_INACTIVE_FILE;
3793 long delta = lrugen->nr_pages[prev][type][zone] -
3794 lrugen->nr_pages[next][type][zone];
3799 __update_lru_size(lruvec, lru, zone, delta);
3800 __update_lru_size(lruvec, lru + LRU_ACTIVE, zone, -delta);
3804 for (type = 0; type < ANON_AND_FILE; type++)
3805 reset_ctrl_pos(lruvec, type, false);
3807 WRITE_ONCE(lrugen->timestamps[next], jiffies);
3808 /* make sure preceding modifications appear */
3809 smp_store_release(&lrugen->max_seq, lrugen->max_seq + 1);
3811 spin_unlock_irq(&lruvec->lru_lock);
3816 static bool try_to_inc_max_seq(struct lruvec *lruvec, unsigned long seq,
3817 bool can_swap, bool force_scan)
3820 struct lru_gen_mm_walk *walk;
3821 struct mm_struct *mm = NULL;
3822 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3823 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
3825 VM_WARN_ON_ONCE(seq > READ_ONCE(lrugen->max_seq));
3828 return inc_max_seq(lruvec, seq, can_swap, force_scan);
3830 /* see the comment in iterate_mm_list() */
3831 if (seq <= READ_ONCE(mm_state->seq))
3835 * If the hardware doesn't automatically set the accessed bit, fallback
3836 * to lru_gen_look_around(), which only clears the accessed bit in a
3837 * handful of PTEs. Spreading the work out over a period of time usually
3838 * is less efficient, but it avoids bursty page faults.
3840 if (!should_walk_mmu()) {
3841 success = iterate_mm_list_nowalk(lruvec, seq);
3845 walk = set_mm_walk(NULL, true);
3847 success = iterate_mm_list_nowalk(lruvec, seq);
3851 walk->lruvec = lruvec;
3853 walk->can_swap = can_swap;
3854 walk->force_scan = force_scan;
3857 success = iterate_mm_list(walk, &mm);
3863 success = inc_max_seq(lruvec, seq, can_swap, force_scan);
3864 WARN_ON_ONCE(!success);
3870 /******************************************************************************
3871 * working set protection
3872 ******************************************************************************/
3874 static bool lruvec_is_sizable(struct lruvec *lruvec, struct scan_control *sc)
3876 int gen, type, zone;
3877 unsigned long total = 0;
3878 bool can_swap = get_swappiness(lruvec, sc);
3879 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3880 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3881 DEFINE_MAX_SEQ(lruvec);
3882 DEFINE_MIN_SEQ(lruvec);
3884 for (type = !can_swap; type < ANON_AND_FILE; type++) {
3887 for (seq = min_seq[type]; seq <= max_seq; seq++) {
3888 gen = lru_gen_from_seq(seq);
3890 for (zone = 0; zone < MAX_NR_ZONES; zone++)
3891 total += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
3895 /* whether the size is big enough to be helpful */
3896 return mem_cgroup_online(memcg) ? (total >> sc->priority) : total;
3899 static bool lruvec_is_reclaimable(struct lruvec *lruvec, struct scan_control *sc,
3900 unsigned long min_ttl)
3903 unsigned long birth;
3904 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3905 DEFINE_MIN_SEQ(lruvec);
3907 /* see the comment on lru_gen_folio */
3908 gen = lru_gen_from_seq(min_seq[LRU_GEN_FILE]);
3909 birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
3911 if (time_is_after_jiffies(birth + min_ttl))
3914 if (!lruvec_is_sizable(lruvec, sc))
3917 mem_cgroup_calculate_protection(NULL, memcg);
3919 return !mem_cgroup_below_min(NULL, memcg);
3922 /* to protect the working set of the last N jiffies */
3923 static unsigned long lru_gen_min_ttl __read_mostly;
3925 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
3927 struct mem_cgroup *memcg;
3928 unsigned long min_ttl = READ_ONCE(lru_gen_min_ttl);
3930 VM_WARN_ON_ONCE(!current_is_kswapd());
3932 /* check the order to exclude compaction-induced reclaim */
3933 if (!min_ttl || sc->order || sc->priority == DEF_PRIORITY)
3936 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3938 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
3940 if (lruvec_is_reclaimable(lruvec, sc, min_ttl)) {
3941 mem_cgroup_iter_break(NULL, memcg);
3946 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
3949 * The main goal is to OOM kill if every generation from all memcgs is
3950 * younger than min_ttl. However, another possibility is all memcgs are
3951 * either too small or below min.
3953 if (mutex_trylock(&oom_lock)) {
3954 struct oom_control oc = {
3955 .gfp_mask = sc->gfp_mask,
3960 mutex_unlock(&oom_lock);
3964 /******************************************************************************
3965 * rmap/PT walk feedback
3966 ******************************************************************************/
3969 * This function exploits spatial locality when shrink_folio_list() walks the
3970 * rmap. It scans the adjacent PTEs of a young PTE and promotes hot pages. If
3971 * the scan was done cacheline efficiently, it adds the PMD entry pointing to
3972 * the PTE table to the Bloom filter. This forms a feedback loop between the
3973 * eviction and the aging.
3975 void lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
3978 unsigned long start;
3980 struct lru_gen_mm_walk *walk;
3982 pte_t *pte = pvmw->pte;
3983 unsigned long addr = pvmw->address;
3984 struct vm_area_struct *vma = pvmw->vma;
3985 struct folio *folio = pfn_folio(pvmw->pfn);
3986 bool can_swap = !folio_is_file_lru(folio);
3987 struct mem_cgroup *memcg = folio_memcg(folio);
3988 struct pglist_data *pgdat = folio_pgdat(folio);
3989 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
3990 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
3991 DEFINE_MAX_SEQ(lruvec);
3992 int old_gen, new_gen = lru_gen_from_seq(max_seq);
3994 lockdep_assert_held(pvmw->ptl);
3995 VM_WARN_ON_ONCE_FOLIO(folio_test_lru(folio), folio);
3997 if (spin_is_contended(pvmw->ptl))
4000 /* exclude special VMAs containing anon pages from COW */
4001 if (vma->vm_flags & VM_SPECIAL)
4004 /* avoid taking the LRU lock under the PTL when possible */
4005 walk = current->reclaim_state ? current->reclaim_state->mm_walk : NULL;
4007 start = max(addr & PMD_MASK, vma->vm_start);
4008 end = min(addr | ~PMD_MASK, vma->vm_end - 1) + 1;
4010 if (end - start > MIN_LRU_BATCH * PAGE_SIZE) {
4011 if (addr - start < MIN_LRU_BATCH * PAGE_SIZE / 2)
4012 end = start + MIN_LRU_BATCH * PAGE_SIZE;
4013 else if (end - addr < MIN_LRU_BATCH * PAGE_SIZE / 2)
4014 start = end - MIN_LRU_BATCH * PAGE_SIZE;
4016 start = addr - MIN_LRU_BATCH * PAGE_SIZE / 2;
4017 end = addr + MIN_LRU_BATCH * PAGE_SIZE / 2;
4021 /* folio_update_gen() requires stable folio_memcg() */
4022 if (!mem_cgroup_trylock_pages(memcg))
4025 arch_enter_lazy_mmu_mode();
4027 pte -= (addr - start) / PAGE_SIZE;
4029 for (i = 0, addr = start; addr != end; i++, addr += PAGE_SIZE) {
4031 pte_t ptent = ptep_get(pte + i);
4033 pfn = get_pte_pfn(ptent, vma, addr);
4037 if (!pte_young(ptent))
4040 folio = get_pfn_folio(pfn, memcg, pgdat, can_swap);
4044 if (!ptep_test_and_clear_young(vma, addr, pte + i))
4045 VM_WARN_ON_ONCE(true);
4049 if (pte_dirty(ptent) && !folio_test_dirty(folio) &&
4050 !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
4051 !folio_test_swapcache(folio)))
4052 folio_mark_dirty(folio);
4055 old_gen = folio_update_gen(folio, new_gen);
4056 if (old_gen >= 0 && old_gen != new_gen)
4057 update_batch_size(walk, folio, old_gen, new_gen);
4062 old_gen = folio_lru_gen(folio);
4064 folio_set_referenced(folio);
4065 else if (old_gen != new_gen)
4066 folio_activate(folio);
4069 arch_leave_lazy_mmu_mode();
4070 mem_cgroup_unlock_pages();
4072 /* feedback from rmap walkers to page table walkers */
4073 if (mm_state && suitable_to_scan(i, young))
4074 update_bloom_filter(mm_state, max_seq, pvmw->pmd);
4077 /******************************************************************************
4079 ******************************************************************************/
4081 /* see the comment on MEMCG_NR_GENS */
4090 static void lru_gen_rotate_memcg(struct lruvec *lruvec, int op)
4094 unsigned long flags;
4095 int bin = get_random_u32_below(MEMCG_NR_BINS);
4096 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4098 spin_lock_irqsave(&pgdat->memcg_lru.lock, flags);
4100 VM_WARN_ON_ONCE(hlist_nulls_unhashed(&lruvec->lrugen.list));
4103 new = old = lruvec->lrugen.gen;
4105 /* see the comment on MEMCG_NR_GENS */
4106 if (op == MEMCG_LRU_HEAD)
4107 seg = MEMCG_LRU_HEAD;
4108 else if (op == MEMCG_LRU_TAIL)
4109 seg = MEMCG_LRU_TAIL;
4110 else if (op == MEMCG_LRU_OLD)
4111 new = get_memcg_gen(pgdat->memcg_lru.seq);
4112 else if (op == MEMCG_LRU_YOUNG)
4113 new = get_memcg_gen(pgdat->memcg_lru.seq + 1);
4115 VM_WARN_ON_ONCE(true);
4117 WRITE_ONCE(lruvec->lrugen.seg, seg);
4118 WRITE_ONCE(lruvec->lrugen.gen, new);
4120 hlist_nulls_del_rcu(&lruvec->lrugen.list);
4122 if (op == MEMCG_LRU_HEAD || op == MEMCG_LRU_OLD)
4123 hlist_nulls_add_head_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]);
4125 hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]);
4127 pgdat->memcg_lru.nr_memcgs[old]--;
4128 pgdat->memcg_lru.nr_memcgs[new]++;
4130 if (!pgdat->memcg_lru.nr_memcgs[old] && old == get_memcg_gen(pgdat->memcg_lru.seq))
4131 WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
4133 spin_unlock_irqrestore(&pgdat->memcg_lru.lock, flags);
4138 void lru_gen_online_memcg(struct mem_cgroup *memcg)
4142 int bin = get_random_u32_below(MEMCG_NR_BINS);
4144 for_each_node(nid) {
4145 struct pglist_data *pgdat = NODE_DATA(nid);
4146 struct lruvec *lruvec = get_lruvec(memcg, nid);
4148 spin_lock_irq(&pgdat->memcg_lru.lock);
4150 VM_WARN_ON_ONCE(!hlist_nulls_unhashed(&lruvec->lrugen.list));
4152 gen = get_memcg_gen(pgdat->memcg_lru.seq);
4154 lruvec->lrugen.gen = gen;
4156 hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[gen][bin]);
4157 pgdat->memcg_lru.nr_memcgs[gen]++;
4159 spin_unlock_irq(&pgdat->memcg_lru.lock);
4163 void lru_gen_offline_memcg(struct mem_cgroup *memcg)
4167 for_each_node(nid) {
4168 struct lruvec *lruvec = get_lruvec(memcg, nid);
4170 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_OLD);
4174 void lru_gen_release_memcg(struct mem_cgroup *memcg)
4179 for_each_node(nid) {
4180 struct pglist_data *pgdat = NODE_DATA(nid);
4181 struct lruvec *lruvec = get_lruvec(memcg, nid);
4183 spin_lock_irq(&pgdat->memcg_lru.lock);
4185 if (hlist_nulls_unhashed(&lruvec->lrugen.list))
4188 gen = lruvec->lrugen.gen;
4190 hlist_nulls_del_init_rcu(&lruvec->lrugen.list);
4191 pgdat->memcg_lru.nr_memcgs[gen]--;
4193 if (!pgdat->memcg_lru.nr_memcgs[gen] && gen == get_memcg_gen(pgdat->memcg_lru.seq))
4194 WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
4196 spin_unlock_irq(&pgdat->memcg_lru.lock);
4200 void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid)
4202 struct lruvec *lruvec = get_lruvec(memcg, nid);
4204 /* see the comment on MEMCG_NR_GENS */
4205 if (READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_HEAD)
4206 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_HEAD);
4209 #endif /* CONFIG_MEMCG */
4211 /******************************************************************************
4213 ******************************************************************************/
4215 static bool sort_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc,
4219 int gen = folio_lru_gen(folio);
4220 int type = folio_is_file_lru(folio);
4221 int zone = folio_zonenum(folio);
4222 int delta = folio_nr_pages(folio);
4223 int refs = folio_lru_refs(folio);
4224 int tier = lru_tier_from_refs(refs);
4225 struct lru_gen_folio *lrugen = &lruvec->lrugen;
4227 VM_WARN_ON_ONCE_FOLIO(gen >= MAX_NR_GENS, folio);
4230 if (!folio_evictable(folio)) {
4231 success = lru_gen_del_folio(lruvec, folio, true);
4232 VM_WARN_ON_ONCE_FOLIO(!success, folio);
4233 folio_set_unevictable(folio);
4234 lruvec_add_folio(lruvec, folio);
4235 __count_vm_events(UNEVICTABLE_PGCULLED, delta);
4239 /* dirty lazyfree */
4240 if (type == LRU_GEN_FILE && folio_test_anon(folio) && folio_test_dirty(folio)) {
4241 success = lru_gen_del_folio(lruvec, folio, true);
4242 VM_WARN_ON_ONCE_FOLIO(!success, folio);
4243 folio_set_swapbacked(folio);
4244 lruvec_add_folio_tail(lruvec, folio);
4249 if (gen != lru_gen_from_seq(lrugen->min_seq[type])) {
4250 list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4255 if (tier > tier_idx || refs == BIT(LRU_REFS_WIDTH)) {
4256 int hist = lru_hist_from_seq(lrugen->min_seq[type]);
4258 gen = folio_inc_gen(lruvec, folio, false);
4259 list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]);
4261 WRITE_ONCE(lrugen->protected[hist][type][tier - 1],
4262 lrugen->protected[hist][type][tier - 1] + delta);
4267 if (zone > sc->reclaim_idx || skip_cma(folio, sc)) {
4268 gen = folio_inc_gen(lruvec, folio, false);
4269 list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]);
4273 /* waiting for writeback */
4274 if (folio_test_locked(folio) || folio_test_writeback(folio) ||
4275 (type == LRU_GEN_FILE && folio_test_dirty(folio))) {
4276 gen = folio_inc_gen(lruvec, folio, true);
4277 list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4284 static bool isolate_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc)
4288 /* swap constrained */
4289 if (!(sc->gfp_mask & __GFP_IO) &&
4290 (folio_test_dirty(folio) ||
4291 (folio_test_anon(folio) && !folio_test_swapcache(folio))))
4294 /* raced with release_pages() */
4295 if (!folio_try_get(folio))
4298 /* raced with another isolation */
4299 if (!folio_test_clear_lru(folio)) {
4304 /* see the comment on MAX_NR_TIERS */
4305 if (!folio_test_referenced(folio))
4306 set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS, 0);
4308 /* for shrink_folio_list() */
4309 folio_clear_reclaim(folio);
4310 folio_clear_referenced(folio);
4312 success = lru_gen_del_folio(lruvec, folio, true);
4313 VM_WARN_ON_ONCE_FOLIO(!success, folio);
4318 static int scan_folios(struct lruvec *lruvec, struct scan_control *sc,
4319 int type, int tier, struct list_head *list)
4323 enum vm_event_item item;
4328 int remaining = MAX_LRU_BATCH;
4329 struct lru_gen_folio *lrugen = &lruvec->lrugen;
4330 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4332 VM_WARN_ON_ONCE(!list_empty(list));
4334 if (get_nr_gens(lruvec, type) == MIN_NR_GENS)
4337 gen = lru_gen_from_seq(lrugen->min_seq[type]);
4339 for (i = MAX_NR_ZONES; i > 0; i--) {
4341 int skipped_zone = 0;
4342 int zone = (sc->reclaim_idx + i) % MAX_NR_ZONES;
4343 struct list_head *head = &lrugen->folios[gen][type][zone];
4345 while (!list_empty(head)) {
4346 struct folio *folio = lru_to_folio(head);
4347 int delta = folio_nr_pages(folio);
4349 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
4350 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
4351 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
4352 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
4356 if (sort_folio(lruvec, folio, sc, tier))
4358 else if (isolate_folio(lruvec, folio, sc)) {
4359 list_add(&folio->lru, list);
4362 list_move(&folio->lru, &moved);
4363 skipped_zone += delta;
4366 if (!--remaining || max(isolated, skipped_zone) >= MIN_LRU_BATCH)
4371 list_splice(&moved, head);
4372 __count_zid_vm_events(PGSCAN_SKIP, zone, skipped_zone);
4373 skipped += skipped_zone;
4376 if (!remaining || isolated >= MIN_LRU_BATCH)
4380 item = PGSCAN_KSWAPD + reclaimer_offset();
4381 if (!cgroup_reclaim(sc)) {
4382 __count_vm_events(item, isolated);
4383 __count_vm_events(PGREFILL, sorted);
4385 __count_memcg_events(memcg, item, isolated);
4386 __count_memcg_events(memcg, PGREFILL, sorted);
4387 __count_vm_events(PGSCAN_ANON + type, isolated);
4388 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, MAX_LRU_BATCH,
4389 scanned, skipped, isolated,
4390 type ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON);
4393 * There might not be eligible folios due to reclaim_idx. Check the
4394 * remaining to prevent livelock if it's not making progress.
4396 return isolated || !remaining ? scanned : 0;
4399 static int get_tier_idx(struct lruvec *lruvec, int type)
4402 struct ctrl_pos sp, pv;
4405 * To leave a margin for fluctuations, use a larger gain factor (1:2).
4406 * This value is chosen because any other tier would have at least twice
4407 * as many refaults as the first tier.
4409 read_ctrl_pos(lruvec, type, 0, 1, &sp);
4410 for (tier = 1; tier < MAX_NR_TIERS; tier++) {
4411 read_ctrl_pos(lruvec, type, tier, 2, &pv);
4412 if (!positive_ctrl_err(&sp, &pv))
4419 static int get_type_to_scan(struct lruvec *lruvec, int swappiness, int *tier_idx)
4422 struct ctrl_pos sp, pv;
4423 int gain[ANON_AND_FILE] = { swappiness, 200 - swappiness };
4426 * Compare the first tier of anon with that of file to determine which
4427 * type to scan. Also need to compare other tiers of the selected type
4428 * with the first tier of the other type to determine the last tier (of
4429 * the selected type) to evict.
4431 read_ctrl_pos(lruvec, LRU_GEN_ANON, 0, gain[LRU_GEN_ANON], &sp);
4432 read_ctrl_pos(lruvec, LRU_GEN_FILE, 0, gain[LRU_GEN_FILE], &pv);
4433 type = positive_ctrl_err(&sp, &pv);
4435 read_ctrl_pos(lruvec, !type, 0, gain[!type], &sp);
4436 for (tier = 1; tier < MAX_NR_TIERS; tier++) {
4437 read_ctrl_pos(lruvec, type, tier, gain[type], &pv);
4438 if (!positive_ctrl_err(&sp, &pv))
4442 *tier_idx = tier - 1;
4447 static int isolate_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness,
4448 int *type_scanned, struct list_head *list)
4454 DEFINE_MIN_SEQ(lruvec);
4457 * Try to make the obvious choice first, and if anon and file are both
4458 * available from the same generation,
4459 * 1. Interpret swappiness 1 as file first and MAX_SWAPPINESS as anon
4461 * 2. If !__GFP_IO, file first since clean pagecache is more likely to
4462 * exist than clean swapcache.
4465 type = LRU_GEN_FILE;
4466 else if (min_seq[LRU_GEN_ANON] < min_seq[LRU_GEN_FILE])
4467 type = LRU_GEN_ANON;
4468 else if (swappiness == 1)
4469 type = LRU_GEN_FILE;
4470 else if (swappiness == 200)
4471 type = LRU_GEN_ANON;
4472 else if (!(sc->gfp_mask & __GFP_IO))
4473 type = LRU_GEN_FILE;
4475 type = get_type_to_scan(lruvec, swappiness, &tier);
4477 for (i = !swappiness; i < ANON_AND_FILE; i++) {
4479 tier = get_tier_idx(lruvec, type);
4481 scanned = scan_folios(lruvec, sc, type, tier, list);
4489 *type_scanned = type;
4494 static int evict_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness)
4501 struct folio *folio;
4503 enum vm_event_item item;
4504 struct reclaim_stat stat;
4505 struct lru_gen_mm_walk *walk;
4506 bool skip_retry = false;
4507 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4508 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4510 spin_lock_irq(&lruvec->lru_lock);
4512 scanned = isolate_folios(lruvec, sc, swappiness, &type, &list);
4514 scanned += try_to_inc_min_seq(lruvec, swappiness);
4516 if (get_nr_gens(lruvec, !swappiness) == MIN_NR_GENS)
4519 spin_unlock_irq(&lruvec->lru_lock);
4521 if (list_empty(&list))
4524 reclaimed = shrink_folio_list(&list, pgdat, sc, &stat, false);
4525 sc->nr_reclaimed += reclaimed;
4526 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
4527 scanned, reclaimed, &stat, sc->priority,
4528 type ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON);
4530 list_for_each_entry_safe_reverse(folio, next, &list, lru) {
4531 if (!folio_evictable(folio)) {
4532 list_del(&folio->lru);
4533 folio_putback_lru(folio);
4537 if (folio_test_reclaim(folio) &&
4538 (folio_test_dirty(folio) || folio_test_writeback(folio))) {
4539 /* restore LRU_REFS_FLAGS cleared by isolate_folio() */
4540 if (folio_test_workingset(folio))
4541 folio_set_referenced(folio);
4545 if (skip_retry || folio_test_active(folio) || folio_test_referenced(folio) ||
4546 folio_mapped(folio) || folio_test_locked(folio) ||
4547 folio_test_dirty(folio) || folio_test_writeback(folio)) {
4548 /* don't add rejected folios to the oldest generation */
4549 set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS,
4554 /* retry folios that may have missed folio_rotate_reclaimable() */
4555 list_move(&folio->lru, &clean);
4556 sc->nr_scanned -= folio_nr_pages(folio);
4559 spin_lock_irq(&lruvec->lru_lock);
4561 move_folios_to_lru(lruvec, &list);
4563 walk = current->reclaim_state->mm_walk;
4564 if (walk && walk->batched) {
4565 walk->lruvec = lruvec;
4566 reset_batch_size(walk);
4569 item = PGSTEAL_KSWAPD + reclaimer_offset();
4570 if (!cgroup_reclaim(sc))
4571 __count_vm_events(item, reclaimed);
4572 __count_memcg_events(memcg, item, reclaimed);
4573 __count_vm_events(PGSTEAL_ANON + type, reclaimed);
4575 spin_unlock_irq(&lruvec->lru_lock);
4577 list_splice_init(&clean, &list);
4579 if (!list_empty(&list)) {
4587 static bool should_run_aging(struct lruvec *lruvec, unsigned long max_seq,
4588 bool can_swap, unsigned long *nr_to_scan)
4590 int gen, type, zone;
4591 unsigned long old = 0;
4592 unsigned long young = 0;
4593 unsigned long total = 0;
4594 struct lru_gen_folio *lrugen = &lruvec->lrugen;
4595 DEFINE_MIN_SEQ(lruvec);
4597 /* whether this lruvec is completely out of cold folios */
4598 if (min_seq[!can_swap] + MIN_NR_GENS > max_seq) {
4603 for (type = !can_swap; type < ANON_AND_FILE; type++) {
4606 for (seq = min_seq[type]; seq <= max_seq; seq++) {
4607 unsigned long size = 0;
4609 gen = lru_gen_from_seq(seq);
4611 for (zone = 0; zone < MAX_NR_ZONES; zone++)
4612 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
4617 else if (seq + MIN_NR_GENS == max_seq)
4622 *nr_to_scan = total;
4625 * The aging tries to be lazy to reduce the overhead, while the eviction
4626 * stalls when the number of generations reaches MIN_NR_GENS. Hence, the
4627 * ideal number of generations is MIN_NR_GENS+1.
4629 if (min_seq[!can_swap] + MIN_NR_GENS < max_seq)
4633 * It's also ideal to spread pages out evenly, i.e., 1/(MIN_NR_GENS+1)
4634 * of the total number of pages for each generation. A reasonable range
4635 * for this average portion is [1/MIN_NR_GENS, 1/(MIN_NR_GENS+2)]. The
4636 * aging cares about the upper bound of hot pages, while the eviction
4637 * cares about the lower bound of cold pages.
4639 if (young * MIN_NR_GENS > total)
4641 if (old * (MIN_NR_GENS + 2) < total)
4648 * For future optimizations:
4649 * 1. Defer try_to_inc_max_seq() to workqueues to reduce latency for memcg
4652 static long get_nr_to_scan(struct lruvec *lruvec, struct scan_control *sc, bool can_swap)
4655 unsigned long nr_to_scan;
4656 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4657 DEFINE_MAX_SEQ(lruvec);
4659 if (mem_cgroup_below_min(sc->target_mem_cgroup, memcg))
4662 success = should_run_aging(lruvec, max_seq, can_swap, &nr_to_scan);
4664 /* try to scrape all its memory if this memcg was deleted */
4665 if (nr_to_scan && !mem_cgroup_online(memcg))
4668 /* try to get away with not aging at the default priority */
4669 if (!success || sc->priority == DEF_PRIORITY)
4670 return nr_to_scan >> sc->priority;
4672 /* stop scanning this lruvec as it's low on cold folios */
4673 return try_to_inc_max_seq(lruvec, max_seq, can_swap, false) ? -1 : 0;
4676 static bool should_abort_scan(struct lruvec *lruvec, struct scan_control *sc)
4679 enum zone_watermarks mark;
4681 /* don't abort memcg reclaim to ensure fairness */
4682 if (!root_reclaim(sc))
4685 if (sc->nr_reclaimed >= max(sc->nr_to_reclaim, compact_gap(sc->order)))
4688 /* check the order to exclude compaction-induced reclaim */
4689 if (!current_is_kswapd() || sc->order)
4692 mark = sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ?
4693 WMARK_PROMO : WMARK_HIGH;
4695 for (i = 0; i <= sc->reclaim_idx; i++) {
4696 struct zone *zone = lruvec_pgdat(lruvec)->node_zones + i;
4697 unsigned long size = wmark_pages(zone, mark) + MIN_LRU_BATCH;
4699 if (managed_zone(zone) && !zone_watermark_ok(zone, 0, size, sc->reclaim_idx, 0))
4703 /* kswapd should abort if all eligible zones are safe */
4707 static bool try_to_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
4710 unsigned long scanned = 0;
4711 int swappiness = get_swappiness(lruvec, sc);
4716 nr_to_scan = get_nr_to_scan(lruvec, sc, swappiness);
4717 if (nr_to_scan <= 0)
4720 delta = evict_folios(lruvec, sc, swappiness);
4725 if (scanned >= nr_to_scan)
4728 if (should_abort_scan(lruvec, sc))
4734 /* whether this lruvec should be rotated */
4735 return nr_to_scan < 0;
4738 static int shrink_one(struct lruvec *lruvec, struct scan_control *sc)
4741 unsigned long scanned = sc->nr_scanned;
4742 unsigned long reclaimed = sc->nr_reclaimed;
4743 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4744 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4746 mem_cgroup_calculate_protection(NULL, memcg);
4748 if (mem_cgroup_below_min(NULL, memcg))
4749 return MEMCG_LRU_YOUNG;
4751 if (mem_cgroup_below_low(NULL, memcg)) {
4752 /* see the comment on MEMCG_NR_GENS */
4753 if (READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_TAIL)
4754 return MEMCG_LRU_TAIL;
4756 memcg_memory_event(memcg, MEMCG_LOW);
4759 success = try_to_shrink_lruvec(lruvec, sc);
4761 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, sc->priority);
4764 vmpressure(sc->gfp_mask, memcg, false, sc->nr_scanned - scanned,
4765 sc->nr_reclaimed - reclaimed);
4767 flush_reclaim_state(sc);
4769 if (success && mem_cgroup_online(memcg))
4770 return MEMCG_LRU_YOUNG;
4772 if (!success && lruvec_is_sizable(lruvec, sc))
4775 /* one retry if offlined or too small */
4776 return READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_TAIL ?
4777 MEMCG_LRU_TAIL : MEMCG_LRU_YOUNG;
4780 static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc)
4786 struct lruvec *lruvec;
4787 struct lru_gen_folio *lrugen;
4788 struct mem_cgroup *memcg;
4789 struct hlist_nulls_node *pos;
4791 gen = get_memcg_gen(READ_ONCE(pgdat->memcg_lru.seq));
4792 bin = first_bin = get_random_u32_below(MEMCG_NR_BINS);
4799 hlist_nulls_for_each_entry_rcu(lrugen, pos, &pgdat->memcg_lru.fifo[gen][bin], list) {
4801 lru_gen_rotate_memcg(lruvec, op);
4805 mem_cgroup_put(memcg);
4808 if (gen != READ_ONCE(lrugen->gen))
4811 lruvec = container_of(lrugen, struct lruvec, lrugen);
4812 memcg = lruvec_memcg(lruvec);
4814 if (!mem_cgroup_tryget(memcg)) {
4815 lru_gen_release_memcg(memcg);
4822 op = shrink_one(lruvec, sc);
4826 if (should_abort_scan(lruvec, sc))
4833 lru_gen_rotate_memcg(lruvec, op);
4835 mem_cgroup_put(memcg);
4837 if (!is_a_nulls(pos))
4840 /* restart if raced with lru_gen_rotate_memcg() */
4841 if (gen != get_nulls_value(pos))
4844 /* try the rest of the bins of the current generation */
4845 bin = get_memcg_bin(bin + 1);
4846 if (bin != first_bin)
4850 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
4852 struct blk_plug plug;
4854 VM_WARN_ON_ONCE(root_reclaim(sc));
4855 VM_WARN_ON_ONCE(!sc->may_writepage || !sc->may_unmap);
4859 blk_start_plug(&plug);
4861 set_mm_walk(NULL, sc->proactive);
4863 if (try_to_shrink_lruvec(lruvec, sc))
4864 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_YOUNG);
4868 blk_finish_plug(&plug);
4871 static void set_initial_priority(struct pglist_data *pgdat, struct scan_control *sc)
4874 unsigned long reclaimable;
4876 if (sc->priority != DEF_PRIORITY || sc->nr_to_reclaim < MIN_LRU_BATCH)
4879 * Determine the initial priority based on
4880 * (total >> priority) * reclaimed_to_scanned_ratio = nr_to_reclaim,
4881 * where reclaimed_to_scanned_ratio = inactive / total.
4883 reclaimable = node_page_state(pgdat, NR_INACTIVE_FILE);
4884 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
4885 reclaimable += node_page_state(pgdat, NR_INACTIVE_ANON);
4887 /* round down reclaimable and round up sc->nr_to_reclaim */
4888 priority = fls_long(reclaimable) - 1 - fls_long(sc->nr_to_reclaim - 1);
4890 sc->priority = clamp(priority, 0, DEF_PRIORITY);
4893 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
4895 struct blk_plug plug;
4896 unsigned long reclaimed = sc->nr_reclaimed;
4898 VM_WARN_ON_ONCE(!root_reclaim(sc));
4901 * Unmapped clean folios are already prioritized. Scanning for more of
4902 * them is likely futile and can cause high reclaim latency when there
4903 * is a large number of memcgs.
4905 if (!sc->may_writepage || !sc->may_unmap)
4910 blk_start_plug(&plug);
4912 set_mm_walk(pgdat, sc->proactive);
4914 set_initial_priority(pgdat, sc);
4916 if (current_is_kswapd())
4917 sc->nr_reclaimed = 0;
4919 if (mem_cgroup_disabled())
4920 shrink_one(&pgdat->__lruvec, sc);
4922 shrink_many(pgdat, sc);
4924 if (current_is_kswapd())
4925 sc->nr_reclaimed += reclaimed;
4929 blk_finish_plug(&plug);
4931 /* kswapd should never fail */
4932 pgdat->kswapd_failures = 0;
4935 /******************************************************************************
4937 ******************************************************************************/
4939 static bool __maybe_unused state_is_valid(struct lruvec *lruvec)
4941 struct lru_gen_folio *lrugen = &lruvec->lrugen;
4943 if (lrugen->enabled) {
4946 for_each_evictable_lru(lru) {
4947 if (!list_empty(&lruvec->lists[lru]))
4951 int gen, type, zone;
4953 for_each_gen_type_zone(gen, type, zone) {
4954 if (!list_empty(&lrugen->folios[gen][type][zone]))
4962 static bool fill_evictable(struct lruvec *lruvec)
4965 int remaining = MAX_LRU_BATCH;
4967 for_each_evictable_lru(lru) {
4968 int type = is_file_lru(lru);
4969 bool active = is_active_lru(lru);
4970 struct list_head *head = &lruvec->lists[lru];
4972 while (!list_empty(head)) {
4974 struct folio *folio = lru_to_folio(head);
4976 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
4977 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio) != active, folio);
4978 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
4979 VM_WARN_ON_ONCE_FOLIO(folio_lru_gen(folio) != -1, folio);
4981 lruvec_del_folio(lruvec, folio);
4982 success = lru_gen_add_folio(lruvec, folio, false);
4983 VM_WARN_ON_ONCE(!success);
4993 static bool drain_evictable(struct lruvec *lruvec)
4995 int gen, type, zone;
4996 int remaining = MAX_LRU_BATCH;
4998 for_each_gen_type_zone(gen, type, zone) {
4999 struct list_head *head = &lruvec->lrugen.folios[gen][type][zone];
5001 while (!list_empty(head)) {
5003 struct folio *folio = lru_to_folio(head);
5005 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5006 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
5007 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5008 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
5010 success = lru_gen_del_folio(lruvec, folio, false);
5011 VM_WARN_ON_ONCE(!success);
5012 lruvec_add_folio(lruvec, folio);
5022 static void lru_gen_change_state(bool enabled)
5024 static DEFINE_MUTEX(state_mutex);
5026 struct mem_cgroup *memcg;
5031 mutex_lock(&state_mutex);
5033 if (enabled == lru_gen_enabled())
5037 static_branch_enable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5039 static_branch_disable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5041 memcg = mem_cgroup_iter(NULL, NULL, NULL);
5045 for_each_node(nid) {
5046 struct lruvec *lruvec = get_lruvec(memcg, nid);
5048 spin_lock_irq(&lruvec->lru_lock);
5050 VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
5051 VM_WARN_ON_ONCE(!state_is_valid(lruvec));
5053 lruvec->lrugen.enabled = enabled;
5055 while (!(enabled ? fill_evictable(lruvec) : drain_evictable(lruvec))) {
5056 spin_unlock_irq(&lruvec->lru_lock);
5058 spin_lock_irq(&lruvec->lru_lock);
5061 spin_unlock_irq(&lruvec->lru_lock);
5065 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5067 mutex_unlock(&state_mutex);
5073 /******************************************************************************
5075 ******************************************************************************/
5077 static ssize_t min_ttl_ms_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5079 return sysfs_emit(buf, "%u\n", jiffies_to_msecs(READ_ONCE(lru_gen_min_ttl)));
5082 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5083 static ssize_t min_ttl_ms_store(struct kobject *kobj, struct kobj_attribute *attr,
5084 const char *buf, size_t len)
5088 if (kstrtouint(buf, 0, &msecs))
5091 WRITE_ONCE(lru_gen_min_ttl, msecs_to_jiffies(msecs));
5096 static struct kobj_attribute lru_gen_min_ttl_attr = __ATTR_RW(min_ttl_ms);
5098 static ssize_t enabled_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5100 unsigned int caps = 0;
5102 if (get_cap(LRU_GEN_CORE))
5103 caps |= BIT(LRU_GEN_CORE);
5105 if (should_walk_mmu())
5106 caps |= BIT(LRU_GEN_MM_WALK);
5108 if (should_clear_pmd_young())
5109 caps |= BIT(LRU_GEN_NONLEAF_YOUNG);
5111 return sysfs_emit(buf, "0x%04x\n", caps);
5114 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5115 static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr,
5116 const char *buf, size_t len)
5121 if (tolower(*buf) == 'n')
5123 else if (tolower(*buf) == 'y')
5125 else if (kstrtouint(buf, 0, &caps))
5128 for (i = 0; i < NR_LRU_GEN_CAPS; i++) {
5129 bool enabled = caps & BIT(i);
5131 if (i == LRU_GEN_CORE)
5132 lru_gen_change_state(enabled);
5134 static_branch_enable(&lru_gen_caps[i]);
5136 static_branch_disable(&lru_gen_caps[i]);
5142 static struct kobj_attribute lru_gen_enabled_attr = __ATTR_RW(enabled);
5144 static struct attribute *lru_gen_attrs[] = {
5145 &lru_gen_min_ttl_attr.attr,
5146 &lru_gen_enabled_attr.attr,
5150 static const struct attribute_group lru_gen_attr_group = {
5152 .attrs = lru_gen_attrs,
5155 /******************************************************************************
5157 ******************************************************************************/
5159 static void *lru_gen_seq_start(struct seq_file *m, loff_t *pos)
5161 struct mem_cgroup *memcg;
5162 loff_t nr_to_skip = *pos;
5164 m->private = kvmalloc(PATH_MAX, GFP_KERNEL);
5166 return ERR_PTR(-ENOMEM);
5168 memcg = mem_cgroup_iter(NULL, NULL, NULL);
5172 for_each_node_state(nid, N_MEMORY) {
5174 return get_lruvec(memcg, nid);
5176 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5181 static void lru_gen_seq_stop(struct seq_file *m, void *v)
5183 if (!IS_ERR_OR_NULL(v))
5184 mem_cgroup_iter_break(NULL, lruvec_memcg(v));
5190 static void *lru_gen_seq_next(struct seq_file *m, void *v, loff_t *pos)
5192 int nid = lruvec_pgdat(v)->node_id;
5193 struct mem_cgroup *memcg = lruvec_memcg(v);
5197 nid = next_memory_node(nid);
5198 if (nid == MAX_NUMNODES) {
5199 memcg = mem_cgroup_iter(NULL, memcg, NULL);
5203 nid = first_memory_node;
5206 return get_lruvec(memcg, nid);
5209 static void lru_gen_seq_show_full(struct seq_file *m, struct lruvec *lruvec,
5210 unsigned long max_seq, unsigned long *min_seq,
5215 int hist = lru_hist_from_seq(seq);
5216 struct lru_gen_folio *lrugen = &lruvec->lrugen;
5217 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
5219 for (tier = 0; tier < MAX_NR_TIERS; tier++) {
5220 seq_printf(m, " %10d", tier);
5221 for (type = 0; type < ANON_AND_FILE; type++) {
5222 const char *s = " ";
5223 unsigned long n[3] = {};
5225 if (seq == max_seq) {
5227 n[0] = READ_ONCE(lrugen->avg_refaulted[type][tier]);
5228 n[1] = READ_ONCE(lrugen->avg_total[type][tier]);
5229 } else if (seq == min_seq[type] || NR_HIST_GENS > 1) {
5231 n[0] = atomic_long_read(&lrugen->refaulted[hist][type][tier]);
5232 n[1] = atomic_long_read(&lrugen->evicted[hist][type][tier]);
5234 n[2] = READ_ONCE(lrugen->protected[hist][type][tier - 1]);
5237 for (i = 0; i < 3; i++)
5238 seq_printf(m, " %10lu%c", n[i], s[i]);
5247 for (i = 0; i < NR_MM_STATS; i++) {
5248 const char *s = " ";
5249 unsigned long n = 0;
5251 if (seq == max_seq && NR_HIST_GENS == 1) {
5253 n = READ_ONCE(mm_state->stats[hist][i]);
5254 } else if (seq != max_seq && NR_HIST_GENS > 1) {
5256 n = READ_ONCE(mm_state->stats[hist][i]);
5259 seq_printf(m, " %10lu%c", n, s[i]);
5264 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5265 static int lru_gen_seq_show(struct seq_file *m, void *v)
5268 bool full = !debugfs_real_fops(m->file)->write;
5269 struct lruvec *lruvec = v;
5270 struct lru_gen_folio *lrugen = &lruvec->lrugen;
5271 int nid = lruvec_pgdat(lruvec)->node_id;
5272 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5273 DEFINE_MAX_SEQ(lruvec);
5274 DEFINE_MIN_SEQ(lruvec);
5276 if (nid == first_memory_node) {
5277 const char *path = memcg ? m->private : "";
5281 cgroup_path(memcg->css.cgroup, m->private, PATH_MAX);
5283 seq_printf(m, "memcg %5hu %s\n", mem_cgroup_id(memcg), path);
5286 seq_printf(m, " node %5d\n", nid);
5289 seq = min_seq[LRU_GEN_ANON];
5290 else if (max_seq >= MAX_NR_GENS)
5291 seq = max_seq - MAX_NR_GENS + 1;
5295 for (; seq <= max_seq; seq++) {
5297 int gen = lru_gen_from_seq(seq);
5298 unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
5300 seq_printf(m, " %10lu %10u", seq, jiffies_to_msecs(jiffies - birth));
5302 for (type = 0; type < ANON_AND_FILE; type++) {
5303 unsigned long size = 0;
5304 char mark = full && seq < min_seq[type] ? 'x' : ' ';
5306 for (zone = 0; zone < MAX_NR_ZONES; zone++)
5307 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
5309 seq_printf(m, " %10lu%c", size, mark);
5315 lru_gen_seq_show_full(m, lruvec, max_seq, min_seq, seq);
5321 static const struct seq_operations lru_gen_seq_ops = {
5322 .start = lru_gen_seq_start,
5323 .stop = lru_gen_seq_stop,
5324 .next = lru_gen_seq_next,
5325 .show = lru_gen_seq_show,
5328 static int run_aging(struct lruvec *lruvec, unsigned long seq,
5329 bool can_swap, bool force_scan)
5331 DEFINE_MAX_SEQ(lruvec);
5332 DEFINE_MIN_SEQ(lruvec);
5340 if (!force_scan && min_seq[!can_swap] + MAX_NR_GENS - 1 <= max_seq)
5343 try_to_inc_max_seq(lruvec, max_seq, can_swap, force_scan);
5348 static int run_eviction(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
5349 int swappiness, unsigned long nr_to_reclaim)
5351 DEFINE_MAX_SEQ(lruvec);
5353 if (seq + MIN_NR_GENS > max_seq)
5356 sc->nr_reclaimed = 0;
5358 while (!signal_pending(current)) {
5359 DEFINE_MIN_SEQ(lruvec);
5361 if (seq < min_seq[!swappiness])
5364 if (sc->nr_reclaimed >= nr_to_reclaim)
5367 if (!evict_folios(lruvec, sc, swappiness))
5376 static int run_cmd(char cmd, int memcg_id, int nid, unsigned long seq,
5377 struct scan_control *sc, int swappiness, unsigned long opt)
5379 struct lruvec *lruvec;
5381 struct mem_cgroup *memcg = NULL;
5383 if (nid < 0 || nid >= MAX_NUMNODES || !node_state(nid, N_MEMORY))
5386 if (!mem_cgroup_disabled()) {
5389 memcg = mem_cgroup_from_id(memcg_id);
5390 if (!mem_cgroup_tryget(memcg))
5399 if (memcg_id != mem_cgroup_id(memcg))
5402 lruvec = get_lruvec(memcg, nid);
5405 swappiness = get_swappiness(lruvec, sc);
5406 else if (swappiness > 200)
5411 err = run_aging(lruvec, seq, swappiness, opt);
5414 err = run_eviction(lruvec, seq, sc, swappiness, opt);
5418 mem_cgroup_put(memcg);
5423 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5424 static ssize_t lru_gen_seq_write(struct file *file, const char __user *src,
5425 size_t len, loff_t *pos)
5430 struct blk_plug plug;
5432 struct scan_control sc = {
5433 .may_writepage = true,
5436 .reclaim_idx = MAX_NR_ZONES - 1,
5437 .gfp_mask = GFP_KERNEL,
5440 buf = kvmalloc(len + 1, GFP_KERNEL);
5444 if (copy_from_user(buf, src, len)) {
5449 set_task_reclaim_state(current, &sc.reclaim_state);
5450 flags = memalloc_noreclaim_save();
5451 blk_start_plug(&plug);
5452 if (!set_mm_walk(NULL, true)) {
5460 while ((cur = strsep(&next, ",;\n"))) {
5464 unsigned int memcg_id;
5467 unsigned int swappiness = -1;
5468 unsigned long opt = -1;
5470 cur = skip_spaces(cur);
5474 n = sscanf(cur, "%c %u %u %lu %n %u %n %lu %n", &cmd, &memcg_id, &nid,
5475 &seq, &end, &swappiness, &end, &opt, &end);
5476 if (n < 4 || cur[end]) {
5481 err = run_cmd(cmd, memcg_id, nid, seq, &sc, swappiness, opt);
5487 blk_finish_plug(&plug);
5488 memalloc_noreclaim_restore(flags);
5489 set_task_reclaim_state(current, NULL);
5496 static int lru_gen_seq_open(struct inode *inode, struct file *file)
5498 return seq_open(file, &lru_gen_seq_ops);
5501 static const struct file_operations lru_gen_rw_fops = {
5502 .open = lru_gen_seq_open,
5504 .write = lru_gen_seq_write,
5505 .llseek = seq_lseek,
5506 .release = seq_release,
5509 static const struct file_operations lru_gen_ro_fops = {
5510 .open = lru_gen_seq_open,
5512 .llseek = seq_lseek,
5513 .release = seq_release,
5516 /******************************************************************************
5518 ******************************************************************************/
5520 void lru_gen_init_pgdat(struct pglist_data *pgdat)
5524 spin_lock_init(&pgdat->memcg_lru.lock);
5526 for (i = 0; i < MEMCG_NR_GENS; i++) {
5527 for (j = 0; j < MEMCG_NR_BINS; j++)
5528 INIT_HLIST_NULLS_HEAD(&pgdat->memcg_lru.fifo[i][j], i);
5532 void lru_gen_init_lruvec(struct lruvec *lruvec)
5535 int gen, type, zone;
5536 struct lru_gen_folio *lrugen = &lruvec->lrugen;
5537 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
5539 lrugen->max_seq = MIN_NR_GENS + 1;
5540 lrugen->enabled = lru_gen_enabled();
5542 for (i = 0; i <= MIN_NR_GENS + 1; i++)
5543 lrugen->timestamps[i] = jiffies;
5545 for_each_gen_type_zone(gen, type, zone)
5546 INIT_LIST_HEAD(&lrugen->folios[gen][type][zone]);
5549 mm_state->seq = MIN_NR_GENS;
5554 void lru_gen_init_memcg(struct mem_cgroup *memcg)
5556 struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
5561 INIT_LIST_HEAD(&mm_list->fifo);
5562 spin_lock_init(&mm_list->lock);
5565 void lru_gen_exit_memcg(struct mem_cgroup *memcg)
5569 struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
5571 VM_WARN_ON_ONCE(mm_list && !list_empty(&mm_list->fifo));
5573 for_each_node(nid) {
5574 struct lruvec *lruvec = get_lruvec(memcg, nid);
5575 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
5577 VM_WARN_ON_ONCE(memchr_inv(lruvec->lrugen.nr_pages, 0,
5578 sizeof(lruvec->lrugen.nr_pages)));
5580 lruvec->lrugen.list.next = LIST_POISON1;
5585 for (i = 0; i < NR_BLOOM_FILTERS; i++) {
5586 bitmap_free(mm_state->filters[i]);
5587 mm_state->filters[i] = NULL;
5592 #endif /* CONFIG_MEMCG */
5594 static int __init init_lru_gen(void)
5596 BUILD_BUG_ON(MIN_NR_GENS + 1 >= MAX_NR_GENS);
5597 BUILD_BUG_ON(BIT(LRU_GEN_WIDTH) <= MAX_NR_GENS);
5599 if (sysfs_create_group(mm_kobj, &lru_gen_attr_group))
5600 pr_err("lru_gen: failed to create sysfs group\n");
5602 debugfs_create_file("lru_gen", 0644, NULL, NULL, &lru_gen_rw_fops);
5603 debugfs_create_file("lru_gen_full", 0444, NULL, NULL, &lru_gen_ro_fops);
5607 late_initcall(init_lru_gen);
5609 #else /* !CONFIG_LRU_GEN */
5611 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
5616 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5621 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
5626 #endif /* CONFIG_LRU_GEN */
5628 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5630 unsigned long nr[NR_LRU_LISTS];
5631 unsigned long targets[NR_LRU_LISTS];
5632 unsigned long nr_to_scan;
5634 unsigned long nr_reclaimed = 0;
5635 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
5636 bool proportional_reclaim;
5637 struct blk_plug plug;
5639 if (lru_gen_enabled() && !root_reclaim(sc)) {
5640 lru_gen_shrink_lruvec(lruvec, sc);
5644 get_scan_count(lruvec, sc, nr);
5646 /* Record the original scan target for proportional adjustments later */
5647 memcpy(targets, nr, sizeof(nr));
5650 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
5651 * event that can occur when there is little memory pressure e.g.
5652 * multiple streaming readers/writers. Hence, we do not abort scanning
5653 * when the requested number of pages are reclaimed when scanning at
5654 * DEF_PRIORITY on the assumption that the fact we are direct
5655 * reclaiming implies that kswapd is not keeping up and it is best to
5656 * do a batch of work at once. For memcg reclaim one check is made to
5657 * abort proportional reclaim if either the file or anon lru has already
5658 * dropped to zero at the first pass.
5660 proportional_reclaim = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
5661 sc->priority == DEF_PRIORITY);
5663 blk_start_plug(&plug);
5664 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
5665 nr[LRU_INACTIVE_FILE]) {
5666 unsigned long nr_anon, nr_file, percentage;
5667 unsigned long nr_scanned;
5669 for_each_evictable_lru(lru) {
5671 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
5672 nr[lru] -= nr_to_scan;
5674 nr_reclaimed += shrink_list(lru, nr_to_scan,
5681 if (nr_reclaimed < nr_to_reclaim || proportional_reclaim)
5685 * For kswapd and memcg, reclaim at least the number of pages
5686 * requested. Ensure that the anon and file LRUs are scanned
5687 * proportionally what was requested by get_scan_count(). We
5688 * stop reclaiming one LRU and reduce the amount scanning
5689 * proportional to the original scan target.
5691 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
5692 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
5695 * It's just vindictive to attack the larger once the smaller
5696 * has gone to zero. And given the way we stop scanning the
5697 * smaller below, this makes sure that we only make one nudge
5698 * towards proportionality once we've got nr_to_reclaim.
5700 if (!nr_file || !nr_anon)
5703 if (nr_file > nr_anon) {
5704 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
5705 targets[LRU_ACTIVE_ANON] + 1;
5707 percentage = nr_anon * 100 / scan_target;
5709 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
5710 targets[LRU_ACTIVE_FILE] + 1;
5712 percentage = nr_file * 100 / scan_target;
5715 /* Stop scanning the smaller of the LRU */
5717 nr[lru + LRU_ACTIVE] = 0;
5720 * Recalculate the other LRU scan count based on its original
5721 * scan target and the percentage scanning already complete
5723 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
5724 nr_scanned = targets[lru] - nr[lru];
5725 nr[lru] = targets[lru] * (100 - percentage) / 100;
5726 nr[lru] -= min(nr[lru], nr_scanned);
5729 nr_scanned = targets[lru] - nr[lru];
5730 nr[lru] = targets[lru] * (100 - percentage) / 100;
5731 nr[lru] -= min(nr[lru], nr_scanned);
5733 blk_finish_plug(&plug);
5734 sc->nr_reclaimed += nr_reclaimed;
5737 * Even if we did not try to evict anon pages at all, we want to
5738 * rebalance the anon lru active/inactive ratio.
5740 if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) &&
5741 inactive_is_low(lruvec, LRU_INACTIVE_ANON))
5742 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
5743 sc, LRU_ACTIVE_ANON);
5746 /* Use reclaim/compaction for costly allocs or under memory pressure */
5747 static bool in_reclaim_compaction(struct scan_control *sc)
5749 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
5750 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
5751 sc->priority < DEF_PRIORITY - 2))
5758 * Reclaim/compaction is used for high-order allocation requests. It reclaims
5759 * order-0 pages before compacting the zone. should_continue_reclaim() returns
5760 * true if more pages should be reclaimed such that when the page allocator
5761 * calls try_to_compact_pages() that it will have enough free pages to succeed.
5762 * It will give up earlier than that if there is difficulty reclaiming pages.
5764 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
5765 unsigned long nr_reclaimed,
5766 struct scan_control *sc)
5768 unsigned long pages_for_compaction;
5769 unsigned long inactive_lru_pages;
5772 /* If not in reclaim/compaction mode, stop */
5773 if (!in_reclaim_compaction(sc))
5777 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
5778 * number of pages that were scanned. This will return to the caller
5779 * with the risk reclaim/compaction and the resulting allocation attempt
5780 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
5781 * allocations through requiring that the full LRU list has been scanned
5782 * first, by assuming that zero delta of sc->nr_scanned means full LRU
5783 * scan, but that approximation was wrong, and there were corner cases
5784 * where always a non-zero amount of pages were scanned.
5789 /* If compaction would go ahead or the allocation would succeed, stop */
5790 for (z = 0; z <= sc->reclaim_idx; z++) {
5791 struct zone *zone = &pgdat->node_zones[z];
5792 if (!managed_zone(zone))
5795 /* Allocation can already succeed, nothing to do */
5796 if (zone_watermark_ok(zone, sc->order, min_wmark_pages(zone),
5797 sc->reclaim_idx, 0))
5800 if (compaction_suitable(zone, sc->order, sc->reclaim_idx))
5805 * If we have not reclaimed enough pages for compaction and the
5806 * inactive lists are large enough, continue reclaiming
5808 pages_for_compaction = compact_gap(sc->order);
5809 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
5810 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
5811 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
5813 return inactive_lru_pages > pages_for_compaction;
5816 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
5818 struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
5819 struct mem_cgroup *memcg;
5821 memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
5823 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
5824 unsigned long reclaimed;
5825 unsigned long scanned;
5828 * This loop can become CPU-bound when target memcgs
5829 * aren't eligible for reclaim - either because they
5830 * don't have any reclaimable pages, or because their
5831 * memory is explicitly protected. Avoid soft lockups.
5835 mem_cgroup_calculate_protection(target_memcg, memcg);
5837 if (mem_cgroup_below_min(target_memcg, memcg)) {
5840 * If there is no reclaimable memory, OOM.
5843 } else if (mem_cgroup_below_low(target_memcg, memcg)) {
5846 * Respect the protection only as long as
5847 * there is an unprotected supply
5848 * of reclaimable memory from other cgroups.
5850 if (!sc->memcg_low_reclaim) {
5851 sc->memcg_low_skipped = 1;
5854 memcg_memory_event(memcg, MEMCG_LOW);
5857 reclaimed = sc->nr_reclaimed;
5858 scanned = sc->nr_scanned;
5860 shrink_lruvec(lruvec, sc);
5862 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
5865 /* Record the group's reclaim efficiency */
5867 vmpressure(sc->gfp_mask, memcg, false,
5868 sc->nr_scanned - scanned,
5869 sc->nr_reclaimed - reclaimed);
5871 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
5874 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
5876 unsigned long nr_reclaimed, nr_scanned, nr_node_reclaimed;
5877 struct lruvec *target_lruvec;
5878 bool reclaimable = false;
5880 if (lru_gen_enabled() && root_reclaim(sc)) {
5881 lru_gen_shrink_node(pgdat, sc);
5885 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
5888 memset(&sc->nr, 0, sizeof(sc->nr));
5890 nr_reclaimed = sc->nr_reclaimed;
5891 nr_scanned = sc->nr_scanned;
5893 prepare_scan_control(pgdat, sc);
5895 shrink_node_memcgs(pgdat, sc);
5897 flush_reclaim_state(sc);
5899 nr_node_reclaimed = sc->nr_reclaimed - nr_reclaimed;
5901 /* Record the subtree's reclaim efficiency */
5903 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
5904 sc->nr_scanned - nr_scanned, nr_node_reclaimed);
5906 if (nr_node_reclaimed)
5909 if (current_is_kswapd()) {
5911 * If reclaim is isolating dirty pages under writeback,
5912 * it implies that the long-lived page allocation rate
5913 * is exceeding the page laundering rate. Either the
5914 * global limits are not being effective at throttling
5915 * processes due to the page distribution throughout
5916 * zones or there is heavy usage of a slow backing
5917 * device. The only option is to throttle from reclaim
5918 * context which is not ideal as there is no guarantee
5919 * the dirtying process is throttled in the same way
5920 * balance_dirty_pages() manages.
5922 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
5923 * count the number of pages under pages flagged for
5924 * immediate reclaim and stall if any are encountered
5925 * in the nr_immediate check below.
5927 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
5928 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
5930 /* Allow kswapd to start writing pages during reclaim.*/
5931 if (sc->nr.unqueued_dirty == sc->nr.file_taken)
5932 set_bit(PGDAT_DIRTY, &pgdat->flags);
5935 * If kswapd scans pages marked for immediate
5936 * reclaim and under writeback (nr_immediate), it
5937 * implies that pages are cycling through the LRU
5938 * faster than they are written so forcibly stall
5939 * until some pages complete writeback.
5941 if (sc->nr.immediate)
5942 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
5946 * Tag a node/memcg as congested if all the dirty pages were marked
5947 * for writeback and immediate reclaim (counted in nr.congested).
5949 * Legacy memcg will stall in page writeback so avoid forcibly
5950 * stalling in reclaim_throttle().
5952 if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested) {
5953 if (cgroup_reclaim(sc) && writeback_throttling_sane(sc))
5954 set_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags);
5956 if (current_is_kswapd())
5957 set_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags);
5961 * Stall direct reclaim for IO completions if the lruvec is
5962 * node is congested. Allow kswapd to continue until it
5963 * starts encountering unqueued dirty pages or cycling through
5964 * the LRU too quickly.
5966 if (!current_is_kswapd() && current_may_throttle() &&
5967 !sc->hibernation_mode &&
5968 (test_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags) ||
5969 test_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags)))
5970 reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED);
5972 if (should_continue_reclaim(pgdat, nr_node_reclaimed, sc))
5976 * Kswapd gives up on balancing particular nodes after too
5977 * many failures to reclaim anything from them and goes to
5978 * sleep. On reclaim progress, reset the failure counter. A
5979 * successful direct reclaim run will revive a dormant kswapd.
5982 pgdat->kswapd_failures = 0;
5986 * Returns true if compaction should go ahead for a costly-order request, or
5987 * the allocation would already succeed without compaction. Return false if we
5988 * should reclaim first.
5990 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
5992 unsigned long watermark;
5994 /* Allocation can already succeed, nothing to do */
5995 if (zone_watermark_ok(zone, sc->order, min_wmark_pages(zone),
5996 sc->reclaim_idx, 0))
5999 /* Compaction cannot yet proceed. Do reclaim. */
6000 if (!compaction_suitable(zone, sc->order, sc->reclaim_idx))
6004 * Compaction is already possible, but it takes time to run and there
6005 * are potentially other callers using the pages just freed. So proceed
6006 * with reclaim to make a buffer of free pages available to give
6007 * compaction a reasonable chance of completing and allocating the page.
6008 * Note that we won't actually reclaim the whole buffer in one attempt
6009 * as the target watermark in should_continue_reclaim() is lower. But if
6010 * we are already above the high+gap watermark, don't reclaim at all.
6012 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
6014 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
6017 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc)
6020 * If reclaim is making progress greater than 12% efficiency then
6021 * wake all the NOPROGRESS throttled tasks.
6023 if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) {
6024 wait_queue_head_t *wqh;
6026 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS];
6027 if (waitqueue_active(wqh))
6034 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will
6035 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages
6036 * under writeback and marked for immediate reclaim at the tail of the
6039 if (current_is_kswapd() || cgroup_reclaim(sc))
6042 /* Throttle if making no progress at high prioities. */
6043 if (sc->priority == 1 && !sc->nr_reclaimed)
6044 reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS);
6048 * This is the direct reclaim path, for page-allocating processes. We only
6049 * try to reclaim pages from zones which will satisfy the caller's allocation
6052 * If a zone is deemed to be full of pinned pages then just give it a light
6053 * scan then give up on it.
6055 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
6059 unsigned long nr_soft_reclaimed;
6060 unsigned long nr_soft_scanned;
6062 pg_data_t *last_pgdat = NULL;
6063 pg_data_t *first_pgdat = NULL;
6066 * If the number of buffer_heads in the machine exceeds the maximum
6067 * allowed level, force direct reclaim to scan the highmem zone as
6068 * highmem pages could be pinning lowmem pages storing buffer_heads
6070 orig_mask = sc->gfp_mask;
6071 if (buffer_heads_over_limit) {
6072 sc->gfp_mask |= __GFP_HIGHMEM;
6073 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
6076 for_each_zone_zonelist_nodemask(zone, z, zonelist,
6077 sc->reclaim_idx, sc->nodemask) {
6079 * Take care memory controller reclaiming has small influence
6082 if (!cgroup_reclaim(sc)) {
6083 if (!cpuset_zone_allowed(zone,
6084 GFP_KERNEL | __GFP_HARDWALL))
6088 * If we already have plenty of memory free for
6089 * compaction in this zone, don't free any more.
6090 * Even though compaction is invoked for any
6091 * non-zero order, only frequent costly order
6092 * reclamation is disruptive enough to become a
6093 * noticeable problem, like transparent huge
6096 if (IS_ENABLED(CONFIG_COMPACTION) &&
6097 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
6098 compaction_ready(zone, sc)) {
6099 sc->compaction_ready = true;
6104 * Shrink each node in the zonelist once. If the
6105 * zonelist is ordered by zone (not the default) then a
6106 * node may be shrunk multiple times but in that case
6107 * the user prefers lower zones being preserved.
6109 if (zone->zone_pgdat == last_pgdat)
6113 * This steals pages from memory cgroups over softlimit
6114 * and returns the number of reclaimed pages and
6115 * scanned pages. This works for global memory pressure
6116 * and balancing, not for a memcg's limit.
6118 nr_soft_scanned = 0;
6119 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
6120 sc->order, sc->gfp_mask,
6122 sc->nr_reclaimed += nr_soft_reclaimed;
6123 sc->nr_scanned += nr_soft_scanned;
6124 /* need some check for avoid more shrink_zone() */
6128 first_pgdat = zone->zone_pgdat;
6130 /* See comment about same check for global reclaim above */
6131 if (zone->zone_pgdat == last_pgdat)
6133 last_pgdat = zone->zone_pgdat;
6134 shrink_node(zone->zone_pgdat, sc);
6138 consider_reclaim_throttle(first_pgdat, sc);
6141 * Restore to original mask to avoid the impact on the caller if we
6142 * promoted it to __GFP_HIGHMEM.
6144 sc->gfp_mask = orig_mask;
6147 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
6149 struct lruvec *target_lruvec;
6150 unsigned long refaults;
6152 if (lru_gen_enabled())
6155 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
6156 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
6157 target_lruvec->refaults[WORKINGSET_ANON] = refaults;
6158 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
6159 target_lruvec->refaults[WORKINGSET_FILE] = refaults;
6163 * This is the main entry point to direct page reclaim.
6165 * If a full scan of the inactive list fails to free enough memory then we
6166 * are "out of memory" and something needs to be killed.
6168 * If the caller is !__GFP_FS then the probability of a failure is reasonably
6169 * high - the zone may be full of dirty or under-writeback pages, which this
6170 * caller can't do much about. We kick the writeback threads and take explicit
6171 * naps in the hope that some of these pages can be written. But if the
6172 * allocating task holds filesystem locks which prevent writeout this might not
6173 * work, and the allocation attempt will fail.
6175 * returns: 0, if no pages reclaimed
6176 * else, the number of pages reclaimed
6178 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
6179 struct scan_control *sc)
6181 int initial_priority = sc->priority;
6182 pg_data_t *last_pgdat;
6186 delayacct_freepages_start();
6188 if (!cgroup_reclaim(sc))
6189 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
6193 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
6196 shrink_zones(zonelist, sc);
6198 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
6201 if (sc->compaction_ready)
6205 * If we're getting trouble reclaiming, start doing
6206 * writepage even in laptop mode.
6208 if (sc->priority < DEF_PRIORITY - 2)
6209 sc->may_writepage = 1;
6210 } while (--sc->priority >= 0);
6213 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
6215 if (zone->zone_pgdat == last_pgdat)
6217 last_pgdat = zone->zone_pgdat;
6219 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
6221 if (cgroup_reclaim(sc)) {
6222 struct lruvec *lruvec;
6224 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
6226 clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags);
6230 delayacct_freepages_end();
6232 if (sc->nr_reclaimed)
6233 return sc->nr_reclaimed;
6235 /* Aborted reclaim to try compaction? don't OOM, then */
6236 if (sc->compaction_ready)
6240 * We make inactive:active ratio decisions based on the node's
6241 * composition of memory, but a restrictive reclaim_idx or a
6242 * memory.low cgroup setting can exempt large amounts of
6243 * memory from reclaim. Neither of which are very common, so
6244 * instead of doing costly eligibility calculations of the
6245 * entire cgroup subtree up front, we assume the estimates are
6246 * good, and retry with forcible deactivation if that fails.
6248 if (sc->skipped_deactivate) {
6249 sc->priority = initial_priority;
6250 sc->force_deactivate = 1;
6251 sc->skipped_deactivate = 0;
6255 /* Untapped cgroup reserves? Don't OOM, retry. */
6256 if (sc->memcg_low_skipped) {
6257 sc->priority = initial_priority;
6258 sc->force_deactivate = 0;
6259 sc->memcg_low_reclaim = 1;
6260 sc->memcg_low_skipped = 0;
6267 static bool allow_direct_reclaim(pg_data_t *pgdat)
6270 unsigned long pfmemalloc_reserve = 0;
6271 unsigned long free_pages = 0;
6275 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
6278 for (i = 0; i <= ZONE_NORMAL; i++) {
6279 zone = &pgdat->node_zones[i];
6280 if (!managed_zone(zone))
6283 if (!zone_reclaimable_pages(zone))
6286 pfmemalloc_reserve += min_wmark_pages(zone);
6287 free_pages += zone_page_state_snapshot(zone, NR_FREE_PAGES);
6290 /* If there are no reserves (unexpected config) then do not throttle */
6291 if (!pfmemalloc_reserve)
6294 wmark_ok = free_pages > pfmemalloc_reserve / 2;
6296 /* kswapd must be awake if processes are being throttled */
6297 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
6298 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
6299 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
6301 wake_up_interruptible(&pgdat->kswapd_wait);
6308 * Throttle direct reclaimers if backing storage is backed by the network
6309 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
6310 * depleted. kswapd will continue to make progress and wake the processes
6311 * when the low watermark is reached.
6313 * Returns true if a fatal signal was delivered during throttling. If this
6314 * happens, the page allocator should not consider triggering the OOM killer.
6316 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
6317 nodemask_t *nodemask)
6321 pg_data_t *pgdat = NULL;
6324 * Kernel threads should not be throttled as they may be indirectly
6325 * responsible for cleaning pages necessary for reclaim to make forward
6326 * progress. kjournald for example may enter direct reclaim while
6327 * committing a transaction where throttling it could forcing other
6328 * processes to block on log_wait_commit().
6330 if (current->flags & PF_KTHREAD)
6334 * If a fatal signal is pending, this process should not throttle.
6335 * It should return quickly so it can exit and free its memory
6337 if (fatal_signal_pending(current))
6341 * Check if the pfmemalloc reserves are ok by finding the first node
6342 * with a usable ZONE_NORMAL or lower zone. The expectation is that
6343 * GFP_KERNEL will be required for allocating network buffers when
6344 * swapping over the network so ZONE_HIGHMEM is unusable.
6346 * Throttling is based on the first usable node and throttled processes
6347 * wait on a queue until kswapd makes progress and wakes them. There
6348 * is an affinity then between processes waking up and where reclaim
6349 * progress has been made assuming the process wakes on the same node.
6350 * More importantly, processes running on remote nodes will not compete
6351 * for remote pfmemalloc reserves and processes on different nodes
6352 * should make reasonable progress.
6354 for_each_zone_zonelist_nodemask(zone, z, zonelist,
6355 gfp_zone(gfp_mask), nodemask) {
6356 if (zone_idx(zone) > ZONE_NORMAL)
6359 /* Throttle based on the first usable node */
6360 pgdat = zone->zone_pgdat;
6361 if (allow_direct_reclaim(pgdat))
6366 /* If no zone was usable by the allocation flags then do not throttle */
6370 /* Account for the throttling */
6371 count_vm_event(PGSCAN_DIRECT_THROTTLE);
6374 * If the caller cannot enter the filesystem, it's possible that it
6375 * is due to the caller holding an FS lock or performing a journal
6376 * transaction in the case of a filesystem like ext[3|4]. In this case,
6377 * it is not safe to block on pfmemalloc_wait as kswapd could be
6378 * blocked waiting on the same lock. Instead, throttle for up to a
6379 * second before continuing.
6381 if (!(gfp_mask & __GFP_FS))
6382 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
6383 allow_direct_reclaim(pgdat), HZ);
6385 /* Throttle until kswapd wakes the process */
6386 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
6387 allow_direct_reclaim(pgdat));
6389 if (fatal_signal_pending(current))
6396 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
6397 gfp_t gfp_mask, nodemask_t *nodemask)
6399 unsigned long nr_reclaimed;
6400 struct scan_control sc = {
6401 .nr_to_reclaim = SWAP_CLUSTER_MAX,
6402 .gfp_mask = current_gfp_context(gfp_mask),
6403 .reclaim_idx = gfp_zone(gfp_mask),
6405 .nodemask = nodemask,
6406 .priority = DEF_PRIORITY,
6407 .may_writepage = !laptop_mode,
6413 * scan_control uses s8 fields for order, priority, and reclaim_idx.
6414 * Confirm they are large enough for max values.
6416 BUILD_BUG_ON(MAX_PAGE_ORDER >= S8_MAX);
6417 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
6418 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
6421 * Do not enter reclaim if fatal signal was delivered while throttled.
6422 * 1 is returned so that the page allocator does not OOM kill at this
6425 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
6428 set_task_reclaim_state(current, &sc.reclaim_state);
6429 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
6431 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
6433 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
6434 set_task_reclaim_state(current, NULL);
6436 return nr_reclaimed;
6441 /* Only used by soft limit reclaim. Do not reuse for anything else. */
6442 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
6443 gfp_t gfp_mask, bool noswap,
6445 unsigned long *nr_scanned)
6447 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
6448 struct scan_control sc = {
6449 .nr_to_reclaim = SWAP_CLUSTER_MAX,
6450 .target_mem_cgroup = memcg,
6451 .may_writepage = !laptop_mode,
6453 .reclaim_idx = MAX_NR_ZONES - 1,
6454 .may_swap = !noswap,
6457 WARN_ON_ONCE(!current->reclaim_state);
6459 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
6460 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
6462 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
6466 * NOTE: Although we can get the priority field, using it
6467 * here is not a good idea, since it limits the pages we can scan.
6468 * if we don't reclaim here, the shrink_node from balance_pgdat
6469 * will pick up pages from other mem cgroup's as well. We hack
6470 * the priority and make it zero.
6472 shrink_lruvec(lruvec, &sc);
6474 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
6476 *nr_scanned = sc.nr_scanned;
6478 return sc.nr_reclaimed;
6481 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
6482 unsigned long nr_pages,
6484 unsigned int reclaim_options)
6486 unsigned long nr_reclaimed;
6487 unsigned int noreclaim_flag;
6488 struct scan_control sc = {
6489 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
6490 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
6491 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
6492 .reclaim_idx = MAX_NR_ZONES - 1,
6493 .target_mem_cgroup = memcg,
6494 .priority = DEF_PRIORITY,
6495 .may_writepage = !laptop_mode,
6497 .may_swap = !!(reclaim_options & MEMCG_RECLAIM_MAY_SWAP),
6498 .proactive = !!(reclaim_options & MEMCG_RECLAIM_PROACTIVE),
6501 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
6502 * equal pressure on all the nodes. This is based on the assumption that
6503 * the reclaim does not bail out early.
6505 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
6507 set_task_reclaim_state(current, &sc.reclaim_state);
6508 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
6509 noreclaim_flag = memalloc_noreclaim_save();
6511 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
6513 memalloc_noreclaim_restore(noreclaim_flag);
6514 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
6515 set_task_reclaim_state(current, NULL);
6517 return nr_reclaimed;
6521 static void kswapd_age_node(struct pglist_data *pgdat, struct scan_control *sc)
6523 struct mem_cgroup *memcg;
6524 struct lruvec *lruvec;
6526 if (lru_gen_enabled()) {
6527 lru_gen_age_node(pgdat, sc);
6531 if (!can_age_anon_pages(pgdat, sc))
6534 lruvec = mem_cgroup_lruvec(NULL, pgdat);
6535 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
6538 memcg = mem_cgroup_iter(NULL, NULL, NULL);
6540 lruvec = mem_cgroup_lruvec(memcg, pgdat);
6541 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
6542 sc, LRU_ACTIVE_ANON);
6543 memcg = mem_cgroup_iter(NULL, memcg, NULL);
6547 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
6553 * Check for watermark boosts top-down as the higher zones
6554 * are more likely to be boosted. Both watermarks and boosts
6555 * should not be checked at the same time as reclaim would
6556 * start prematurely when there is no boosting and a lower
6559 for (i = highest_zoneidx; i >= 0; i--) {
6560 zone = pgdat->node_zones + i;
6561 if (!managed_zone(zone))
6564 if (zone->watermark_boost)
6572 * Returns true if there is an eligible zone balanced for the request order
6573 * and highest_zoneidx
6575 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
6578 unsigned long mark = -1;
6582 * Check watermarks bottom-up as lower zones are more likely to
6585 for (i = 0; i <= highest_zoneidx; i++) {
6586 zone = pgdat->node_zones + i;
6588 if (!managed_zone(zone))
6591 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)
6592 mark = wmark_pages(zone, WMARK_PROMO);
6594 mark = high_wmark_pages(zone);
6595 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
6600 * If a node has no managed zone within highest_zoneidx, it does not
6601 * need balancing by definition. This can happen if a zone-restricted
6602 * allocation tries to wake a remote kswapd.
6610 /* Clear pgdat state for congested, dirty or under writeback. */
6611 static void clear_pgdat_congested(pg_data_t *pgdat)
6613 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
6615 clear_bit(LRUVEC_NODE_CONGESTED, &lruvec->flags);
6616 clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags);
6617 clear_bit(PGDAT_DIRTY, &pgdat->flags);
6618 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
6622 * Prepare kswapd for sleeping. This verifies that there are no processes
6623 * waiting in throttle_direct_reclaim() and that watermarks have been met.
6625 * Returns true if kswapd is ready to sleep
6627 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
6628 int highest_zoneidx)
6631 * The throttled processes are normally woken up in balance_pgdat() as
6632 * soon as allow_direct_reclaim() is true. But there is a potential
6633 * race between when kswapd checks the watermarks and a process gets
6634 * throttled. There is also a potential race if processes get
6635 * throttled, kswapd wakes, a large process exits thereby balancing the
6636 * zones, which causes kswapd to exit balance_pgdat() before reaching
6637 * the wake up checks. If kswapd is going to sleep, no process should
6638 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
6639 * the wake up is premature, processes will wake kswapd and get
6640 * throttled again. The difference from wake ups in balance_pgdat() is
6641 * that here we are under prepare_to_wait().
6643 if (waitqueue_active(&pgdat->pfmemalloc_wait))
6644 wake_up_all(&pgdat->pfmemalloc_wait);
6646 /* Hopeless node, leave it to direct reclaim */
6647 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
6650 if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
6651 clear_pgdat_congested(pgdat);
6659 * kswapd shrinks a node of pages that are at or below the highest usable
6660 * zone that is currently unbalanced.
6662 * Returns true if kswapd scanned at least the requested number of pages to
6663 * reclaim or if the lack of progress was due to pages under writeback.
6664 * This is used to determine if the scanning priority needs to be raised.
6666 static bool kswapd_shrink_node(pg_data_t *pgdat,
6667 struct scan_control *sc)
6672 /* Reclaim a number of pages proportional to the number of zones */
6673 sc->nr_to_reclaim = 0;
6674 for (z = 0; z <= sc->reclaim_idx; z++) {
6675 zone = pgdat->node_zones + z;
6676 if (!managed_zone(zone))
6679 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
6683 * Historically care was taken to put equal pressure on all zones but
6684 * now pressure is applied based on node LRU order.
6686 shrink_node(pgdat, sc);
6689 * Fragmentation may mean that the system cannot be rebalanced for
6690 * high-order allocations. If twice the allocation size has been
6691 * reclaimed then recheck watermarks only at order-0 to prevent
6692 * excessive reclaim. Assume that a process requested a high-order
6693 * can direct reclaim/compact.
6695 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
6698 return sc->nr_scanned >= sc->nr_to_reclaim;
6701 /* Page allocator PCP high watermark is lowered if reclaim is active. */
6703 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
6708 for (i = 0; i <= highest_zoneidx; i++) {
6709 zone = pgdat->node_zones + i;
6711 if (!managed_zone(zone))
6715 set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
6717 clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
6722 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
6724 update_reclaim_active(pgdat, highest_zoneidx, true);
6728 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
6730 update_reclaim_active(pgdat, highest_zoneidx, false);
6734 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
6735 * that are eligible for use by the caller until at least one zone is
6738 * Returns the order kswapd finished reclaiming at.
6740 * kswapd scans the zones in the highmem->normal->dma direction. It skips
6741 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
6742 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
6743 * or lower is eligible for reclaim until at least one usable zone is
6746 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
6749 unsigned long nr_soft_reclaimed;
6750 unsigned long nr_soft_scanned;
6751 unsigned long pflags;
6752 unsigned long nr_boost_reclaim;
6753 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
6756 struct scan_control sc = {
6757 .gfp_mask = GFP_KERNEL,
6762 set_task_reclaim_state(current, &sc.reclaim_state);
6763 psi_memstall_enter(&pflags);
6764 __fs_reclaim_acquire(_THIS_IP_);
6766 count_vm_event(PAGEOUTRUN);
6769 * Account for the reclaim boost. Note that the zone boost is left in
6770 * place so that parallel allocations that are near the watermark will
6771 * stall or direct reclaim until kswapd is finished.
6773 nr_boost_reclaim = 0;
6774 for (i = 0; i <= highest_zoneidx; i++) {
6775 zone = pgdat->node_zones + i;
6776 if (!managed_zone(zone))
6779 nr_boost_reclaim += zone->watermark_boost;
6780 zone_boosts[i] = zone->watermark_boost;
6782 boosted = nr_boost_reclaim;
6785 set_reclaim_active(pgdat, highest_zoneidx);
6786 sc.priority = DEF_PRIORITY;
6788 unsigned long nr_reclaimed = sc.nr_reclaimed;
6789 bool raise_priority = true;
6794 sc.reclaim_idx = highest_zoneidx;
6797 * If the number of buffer_heads exceeds the maximum allowed
6798 * then consider reclaiming from all zones. This has a dual
6799 * purpose -- on 64-bit systems it is expected that
6800 * buffer_heads are stripped during active rotation. On 32-bit
6801 * systems, highmem pages can pin lowmem memory and shrinking
6802 * buffers can relieve lowmem pressure. Reclaim may still not
6803 * go ahead if all eligible zones for the original allocation
6804 * request are balanced to avoid excessive reclaim from kswapd.
6806 if (buffer_heads_over_limit) {
6807 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
6808 zone = pgdat->node_zones + i;
6809 if (!managed_zone(zone))
6818 * If the pgdat is imbalanced then ignore boosting and preserve
6819 * the watermarks for a later time and restart. Note that the
6820 * zone watermarks will be still reset at the end of balancing
6821 * on the grounds that the normal reclaim should be enough to
6822 * re-evaluate if boosting is required when kswapd next wakes.
6824 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
6825 if (!balanced && nr_boost_reclaim) {
6826 nr_boost_reclaim = 0;
6831 * If boosting is not active then only reclaim if there are no
6832 * eligible zones. Note that sc.reclaim_idx is not used as
6833 * buffer_heads_over_limit may have adjusted it.
6835 if (!nr_boost_reclaim && balanced)
6838 /* Limit the priority of boosting to avoid reclaim writeback */
6839 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
6840 raise_priority = false;
6843 * Do not writeback or swap pages for boosted reclaim. The
6844 * intent is to relieve pressure not issue sub-optimal IO
6845 * from reclaim context. If no pages are reclaimed, the
6846 * reclaim will be aborted.
6848 sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
6849 sc.may_swap = !nr_boost_reclaim;
6852 * Do some background aging, to give pages a chance to be
6853 * referenced before reclaiming. All pages are rotated
6854 * regardless of classzone as this is about consistent aging.
6856 kswapd_age_node(pgdat, &sc);
6859 * If we're getting trouble reclaiming, start doing writepage
6860 * even in laptop mode.
6862 if (sc.priority < DEF_PRIORITY - 2)
6863 sc.may_writepage = 1;
6865 /* Call soft limit reclaim before calling shrink_node. */
6867 nr_soft_scanned = 0;
6868 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
6869 sc.gfp_mask, &nr_soft_scanned);
6870 sc.nr_reclaimed += nr_soft_reclaimed;
6873 * There should be no need to raise the scanning priority if
6874 * enough pages are already being scanned that that high
6875 * watermark would be met at 100% efficiency.
6877 if (kswapd_shrink_node(pgdat, &sc))
6878 raise_priority = false;
6881 * If the low watermark is met there is no need for processes
6882 * to be throttled on pfmemalloc_wait as they should not be
6883 * able to safely make forward progress. Wake them
6885 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
6886 allow_direct_reclaim(pgdat))
6887 wake_up_all(&pgdat->pfmemalloc_wait);
6889 /* Check if kswapd should be suspending */
6890 __fs_reclaim_release(_THIS_IP_);
6891 ret = kthread_freezable_should_stop(&was_frozen);
6892 __fs_reclaim_acquire(_THIS_IP_);
6893 if (was_frozen || ret)
6897 * Raise priority if scanning rate is too low or there was no
6898 * progress in reclaiming pages
6900 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
6901 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
6904 * If reclaim made no progress for a boost, stop reclaim as
6905 * IO cannot be queued and it could be an infinite loop in
6906 * extreme circumstances.
6908 if (nr_boost_reclaim && !nr_reclaimed)
6911 if (raise_priority || !nr_reclaimed)
6913 } while (sc.priority >= 1);
6915 if (!sc.nr_reclaimed)
6916 pgdat->kswapd_failures++;
6919 clear_reclaim_active(pgdat, highest_zoneidx);
6921 /* If reclaim was boosted, account for the reclaim done in this pass */
6923 unsigned long flags;
6925 for (i = 0; i <= highest_zoneidx; i++) {
6926 if (!zone_boosts[i])
6929 /* Increments are under the zone lock */
6930 zone = pgdat->node_zones + i;
6931 spin_lock_irqsave(&zone->lock, flags);
6932 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
6933 spin_unlock_irqrestore(&zone->lock, flags);
6937 * As there is now likely space, wakeup kcompact to defragment
6940 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
6943 snapshot_refaults(NULL, pgdat);
6944 __fs_reclaim_release(_THIS_IP_);
6945 psi_memstall_leave(&pflags);
6946 set_task_reclaim_state(current, NULL);
6949 * Return the order kswapd stopped reclaiming at as
6950 * prepare_kswapd_sleep() takes it into account. If another caller
6951 * entered the allocator slow path while kswapd was awake, order will
6952 * remain at the higher level.
6958 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
6959 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
6960 * not a valid index then either kswapd runs for first time or kswapd couldn't
6961 * sleep after previous reclaim attempt (node is still unbalanced). In that
6962 * case return the zone index of the previous kswapd reclaim cycle.
6964 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
6965 enum zone_type prev_highest_zoneidx)
6967 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
6969 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
6972 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
6973 unsigned int highest_zoneidx)
6978 if (freezing(current) || kthread_should_stop())
6981 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
6984 * Try to sleep for a short interval. Note that kcompactd will only be
6985 * woken if it is possible to sleep for a short interval. This is
6986 * deliberate on the assumption that if reclaim cannot keep an
6987 * eligible zone balanced that it's also unlikely that compaction will
6990 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
6992 * Compaction records what page blocks it recently failed to
6993 * isolate pages from and skips them in the future scanning.
6994 * When kswapd is going to sleep, it is reasonable to assume
6995 * that pages and compaction may succeed so reset the cache.
6997 reset_isolation_suitable(pgdat);
7000 * We have freed the memory, now we should compact it to make
7001 * allocation of the requested order possible.
7003 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
7005 remaining = schedule_timeout(HZ/10);
7008 * If woken prematurely then reset kswapd_highest_zoneidx and
7009 * order. The values will either be from a wakeup request or
7010 * the previous request that slept prematurely.
7013 WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
7014 kswapd_highest_zoneidx(pgdat,
7017 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
7018 WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
7021 finish_wait(&pgdat->kswapd_wait, &wait);
7022 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7026 * After a short sleep, check if it was a premature sleep. If not, then
7027 * go fully to sleep until explicitly woken up.
7030 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7031 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
7034 * vmstat counters are not perfectly accurate and the estimated
7035 * value for counters such as NR_FREE_PAGES can deviate from the
7036 * true value by nr_online_cpus * threshold. To avoid the zone
7037 * watermarks being breached while under pressure, we reduce the
7038 * per-cpu vmstat threshold while kswapd is awake and restore
7039 * them before going back to sleep.
7041 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
7043 if (!kthread_should_stop())
7046 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
7049 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
7051 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
7053 finish_wait(&pgdat->kswapd_wait, &wait);
7057 * The background pageout daemon, started as a kernel thread
7058 * from the init process.
7060 * This basically trickles out pages so that we have _some_
7061 * free memory available even if there is no other activity
7062 * that frees anything up. This is needed for things like routing
7063 * etc, where we otherwise might have all activity going on in
7064 * asynchronous contexts that cannot page things out.
7066 * If there are applications that are active memory-allocators
7067 * (most normal use), this basically shouldn't matter.
7069 static int kswapd(void *p)
7071 unsigned int alloc_order, reclaim_order;
7072 unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
7073 pg_data_t *pgdat = (pg_data_t *)p;
7074 struct task_struct *tsk = current;
7075 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7077 if (!cpumask_empty(cpumask))
7078 set_cpus_allowed_ptr(tsk, cpumask);
7081 * Tell the memory management that we're a "memory allocator",
7082 * and that if we need more memory we should get access to it
7083 * regardless (see "__alloc_pages()"). "kswapd" should
7084 * never get caught in the normal page freeing logic.
7086 * (Kswapd normally doesn't need memory anyway, but sometimes
7087 * you need a small amount of memory in order to be able to
7088 * page out something else, and this flag essentially protects
7089 * us from recursively trying to free more memory as we're
7090 * trying to free the first piece of memory in the first place).
7092 tsk->flags |= PF_MEMALLOC | PF_KSWAPD;
7095 WRITE_ONCE(pgdat->kswapd_order, 0);
7096 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7097 atomic_set(&pgdat->nr_writeback_throttled, 0);
7101 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
7102 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7106 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
7109 /* Read the new order and highest_zoneidx */
7110 alloc_order = READ_ONCE(pgdat->kswapd_order);
7111 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7113 WRITE_ONCE(pgdat->kswapd_order, 0);
7114 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7116 if (kthread_freezable_should_stop(&was_frozen))
7120 * We can speed up thawing tasks if we don't call balance_pgdat
7121 * after returning from the refrigerator
7127 * Reclaim begins at the requested order but if a high-order
7128 * reclaim fails then kswapd falls back to reclaiming for
7129 * order-0. If that happens, kswapd will consider sleeping
7130 * for the order it finished reclaiming at (reclaim_order)
7131 * but kcompactd is woken to compact for the original
7132 * request (alloc_order).
7134 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
7136 reclaim_order = balance_pgdat(pgdat, alloc_order,
7138 if (reclaim_order < alloc_order)
7139 goto kswapd_try_sleep;
7142 tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD);
7148 * A zone is low on free memory or too fragmented for high-order memory. If
7149 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
7150 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
7151 * has failed or is not needed, still wake up kcompactd if only compaction is
7154 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
7155 enum zone_type highest_zoneidx)
7158 enum zone_type curr_idx;
7160 if (!managed_zone(zone))
7163 if (!cpuset_zone_allowed(zone, gfp_flags))
7166 pgdat = zone->zone_pgdat;
7167 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7169 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
7170 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
7172 if (READ_ONCE(pgdat->kswapd_order) < order)
7173 WRITE_ONCE(pgdat->kswapd_order, order);
7175 if (!waitqueue_active(&pgdat->kswapd_wait))
7178 /* Hopeless node, leave it to direct reclaim if possible */
7179 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
7180 (pgdat_balanced(pgdat, order, highest_zoneidx) &&
7181 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
7183 * There may be plenty of free memory available, but it's too
7184 * fragmented for high-order allocations. Wake up kcompactd
7185 * and rely on compaction_suitable() to determine if it's
7186 * needed. If it fails, it will defer subsequent attempts to
7187 * ratelimit its work.
7189 if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
7190 wakeup_kcompactd(pgdat, order, highest_zoneidx);
7194 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
7196 wake_up_interruptible(&pgdat->kswapd_wait);
7199 #ifdef CONFIG_HIBERNATION
7201 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
7204 * Rather than trying to age LRUs the aim is to preserve the overall
7205 * LRU order by reclaiming preferentially
7206 * inactive > active > active referenced > active mapped
7208 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
7210 struct scan_control sc = {
7211 .nr_to_reclaim = nr_to_reclaim,
7212 .gfp_mask = GFP_HIGHUSER_MOVABLE,
7213 .reclaim_idx = MAX_NR_ZONES - 1,
7214 .priority = DEF_PRIORITY,
7218 .hibernation_mode = 1,
7220 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7221 unsigned long nr_reclaimed;
7222 unsigned int noreclaim_flag;
7224 fs_reclaim_acquire(sc.gfp_mask);
7225 noreclaim_flag = memalloc_noreclaim_save();
7226 set_task_reclaim_state(current, &sc.reclaim_state);
7228 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
7230 set_task_reclaim_state(current, NULL);
7231 memalloc_noreclaim_restore(noreclaim_flag);
7232 fs_reclaim_release(sc.gfp_mask);
7234 return nr_reclaimed;
7236 #endif /* CONFIG_HIBERNATION */
7239 * This kswapd start function will be called by init and node-hot-add.
7241 void __meminit kswapd_run(int nid)
7243 pg_data_t *pgdat = NODE_DATA(nid);
7245 pgdat_kswapd_lock(pgdat);
7246 if (!pgdat->kswapd) {
7247 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
7248 if (IS_ERR(pgdat->kswapd)) {
7249 /* failure at boot is fatal */
7250 pr_err("Failed to start kswapd on node %d,ret=%ld\n",
7251 nid, PTR_ERR(pgdat->kswapd));
7252 BUG_ON(system_state < SYSTEM_RUNNING);
7253 pgdat->kswapd = NULL;
7256 pgdat_kswapd_unlock(pgdat);
7260 * Called by memory hotplug when all memory in a node is offlined. Caller must
7261 * be holding mem_hotplug_begin/done().
7263 void __meminit kswapd_stop(int nid)
7265 pg_data_t *pgdat = NODE_DATA(nid);
7266 struct task_struct *kswapd;
7268 pgdat_kswapd_lock(pgdat);
7269 kswapd = pgdat->kswapd;
7271 kthread_stop(kswapd);
7272 pgdat->kswapd = NULL;
7274 pgdat_kswapd_unlock(pgdat);
7277 static int __init kswapd_init(void)
7282 for_each_node_state(nid, N_MEMORY)
7287 module_init(kswapd_init)
7293 * If non-zero call node_reclaim when the number of free pages falls below
7296 int node_reclaim_mode __read_mostly;
7299 * Priority for NODE_RECLAIM. This determines the fraction of pages
7300 * of a node considered for each zone_reclaim. 4 scans 1/16th of
7303 #define NODE_RECLAIM_PRIORITY 4
7306 * Percentage of pages in a zone that must be unmapped for node_reclaim to
7309 int sysctl_min_unmapped_ratio = 1;
7312 * If the number of slab pages in a zone grows beyond this percentage then
7313 * slab reclaim needs to occur.
7315 int sysctl_min_slab_ratio = 5;
7317 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
7319 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
7320 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
7321 node_page_state(pgdat, NR_ACTIVE_FILE);
7324 * It's possible for there to be more file mapped pages than
7325 * accounted for by the pages on the file LRU lists because
7326 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
7328 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
7331 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
7332 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
7334 unsigned long nr_pagecache_reclaimable;
7335 unsigned long delta = 0;
7338 * If RECLAIM_UNMAP is set, then all file pages are considered
7339 * potentially reclaimable. Otherwise, we have to worry about
7340 * pages like swapcache and node_unmapped_file_pages() provides
7343 if (node_reclaim_mode & RECLAIM_UNMAP)
7344 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
7346 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
7348 /* If we can't clean pages, remove dirty pages from consideration */
7349 if (!(node_reclaim_mode & RECLAIM_WRITE))
7350 delta += node_page_state(pgdat, NR_FILE_DIRTY);
7352 /* Watch for any possible underflows due to delta */
7353 if (unlikely(delta > nr_pagecache_reclaimable))
7354 delta = nr_pagecache_reclaimable;
7356 return nr_pagecache_reclaimable - delta;
7360 * Try to free up some pages from this node through reclaim.
7362 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
7364 /* Minimum pages needed in order to stay on node */
7365 const unsigned long nr_pages = 1 << order;
7366 struct task_struct *p = current;
7367 unsigned int noreclaim_flag;
7368 struct scan_control sc = {
7369 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7370 .gfp_mask = current_gfp_context(gfp_mask),
7372 .priority = NODE_RECLAIM_PRIORITY,
7373 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
7374 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
7376 .reclaim_idx = gfp_zone(gfp_mask),
7378 unsigned long pflags;
7380 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
7384 psi_memstall_enter(&pflags);
7385 delayacct_freepages_start();
7386 fs_reclaim_acquire(sc.gfp_mask);
7388 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
7390 noreclaim_flag = memalloc_noreclaim_save();
7391 set_task_reclaim_state(p, &sc.reclaim_state);
7393 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages ||
7394 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) {
7396 * Free memory by calling shrink node with increasing
7397 * priorities until we have enough memory freed.
7400 shrink_node(pgdat, &sc);
7401 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
7404 set_task_reclaim_state(p, NULL);
7405 memalloc_noreclaim_restore(noreclaim_flag);
7406 fs_reclaim_release(sc.gfp_mask);
7407 psi_memstall_leave(&pflags);
7408 delayacct_freepages_end();
7410 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
7412 return sc.nr_reclaimed >= nr_pages;
7415 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
7420 * Node reclaim reclaims unmapped file backed pages and
7421 * slab pages if we are over the defined limits.
7423 * A small portion of unmapped file backed pages is needed for
7424 * file I/O otherwise pages read by file I/O will be immediately
7425 * thrown out if the node is overallocated. So we do not reclaim
7426 * if less than a specified percentage of the node is used by
7427 * unmapped file backed pages.
7429 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
7430 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
7431 pgdat->min_slab_pages)
7432 return NODE_RECLAIM_FULL;
7435 * Do not scan if the allocation should not be delayed.
7437 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
7438 return NODE_RECLAIM_NOSCAN;
7441 * Only run node reclaim on the local node or on nodes that do not
7442 * have associated processors. This will favor the local processor
7443 * over remote processors and spread off node memory allocations
7444 * as wide as possible.
7446 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
7447 return NODE_RECLAIM_NOSCAN;
7449 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
7450 return NODE_RECLAIM_NOSCAN;
7452 ret = __node_reclaim(pgdat, gfp_mask, order);
7453 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
7456 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
7463 * check_move_unevictable_folios - Move evictable folios to appropriate zone
7465 * @fbatch: Batch of lru folios to check.
7467 * Checks folios for evictability, if an evictable folio is in the unevictable
7468 * lru list, moves it to the appropriate evictable lru list. This function
7469 * should be only used for lru folios.
7471 void check_move_unevictable_folios(struct folio_batch *fbatch)
7473 struct lruvec *lruvec = NULL;
7478 for (i = 0; i < fbatch->nr; i++) {
7479 struct folio *folio = fbatch->folios[i];
7480 int nr_pages = folio_nr_pages(folio);
7482 pgscanned += nr_pages;
7484 /* block memcg migration while the folio moves between lrus */
7485 if (!folio_test_clear_lru(folio))
7488 lruvec = folio_lruvec_relock_irq(folio, lruvec);
7489 if (folio_evictable(folio) && folio_test_unevictable(folio)) {
7490 lruvec_del_folio(lruvec, folio);
7491 folio_clear_unevictable(folio);
7492 lruvec_add_folio(lruvec, folio);
7493 pgrescued += nr_pages;
7495 folio_set_lru(folio);
7499 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
7500 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
7501 unlock_page_lruvec_irq(lruvec);
7502 } else if (pgscanned) {
7503 count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
7506 EXPORT_SYMBOL_GPL(check_move_unevictable_folios);