1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * This file contains the default values for the operation of the
10 * Linux VM subsystem. Fine-tuning documentation can be found in
11 * Documentation/admin-guide/sysctl/vm.rst.
13 * Swap aging added 23.2.95, Stephen Tweedie.
14 * Buffermem limits added 12.3.98, Rik van Riel.
18 #include <linux/sched.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/mman.h>
22 #include <linux/pagemap.h>
23 #include <linux/pagevec.h>
24 #include <linux/init.h>
25 #include <linux/export.h>
26 #include <linux/mm_inline.h>
27 #include <linux/percpu_counter.h>
28 #include <linux/memremap.h>
29 #include <linux/percpu.h>
30 #include <linux/cpu.h>
31 #include <linux/notifier.h>
32 #include <linux/backing-dev.h>
33 #include <linux/memcontrol.h>
34 #include <linux/gfp.h>
35 #include <linux/uio.h>
36 #include <linux/hugetlb.h>
37 #include <linux/page_idle.h>
38 #include <linux/local_lock.h>
39 #include <linux/buffer_head.h>
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/pagemap.h>
46 /* How many pages do we try to swap or page in/out together? As a power of 2 */
48 const int page_cluster_max = 31;
50 /* Protecting only lru_rotate.fbatch which requires disabling interrupts */
53 struct folio_batch fbatch;
55 static DEFINE_PER_CPU(struct lru_rotate, lru_rotate) = {
56 .lock = INIT_LOCAL_LOCK(lock),
60 * The following folio batches are grouped together because they are protected
61 * by disabling preemption (and interrupts remain enabled).
65 struct folio_batch lru_add;
66 struct folio_batch lru_deactivate_file;
67 struct folio_batch lru_deactivate;
68 struct folio_batch lru_lazyfree;
70 struct folio_batch activate;
73 static DEFINE_PER_CPU(struct cpu_fbatches, cpu_fbatches) = {
74 .lock = INIT_LOCAL_LOCK(lock),
77 static void __page_cache_release(struct folio *folio, struct lruvec **lruvecp,
78 unsigned long *flagsp)
80 if (folio_test_lru(folio)) {
81 folio_lruvec_relock_irqsave(folio, lruvecp, flagsp);
82 lruvec_del_folio(*lruvecp, folio);
83 __folio_clear_lru_flags(folio);
87 * In rare cases, when truncation or holepunching raced with
88 * munlock after VM_LOCKED was cleared, Mlocked may still be
89 * found set here. This does not indicate a problem, unless
90 * "unevictable_pgs_cleared" appears worryingly large.
92 if (unlikely(folio_test_mlocked(folio))) {
93 long nr_pages = folio_nr_pages(folio);
95 __folio_clear_mlocked(folio);
96 zone_stat_mod_folio(folio, NR_MLOCK, -nr_pages);
97 count_vm_events(UNEVICTABLE_PGCLEARED, nr_pages);
102 * This path almost never happens for VM activity - pages are normally freed
103 * in batches. But it gets used by networking - and for compound pages.
105 static void page_cache_release(struct folio *folio)
107 struct lruvec *lruvec = NULL;
110 __page_cache_release(folio, &lruvec, &flags);
112 unlock_page_lruvec_irqrestore(lruvec, flags);
115 static void __folio_put_small(struct folio *folio)
117 page_cache_release(folio);
118 mem_cgroup_uncharge(folio);
119 free_unref_page(&folio->page, 0);
122 static void __folio_put_large(struct folio *folio)
125 * __page_cache_release() is supposed to be called for thp, not for
126 * hugetlb. This is because hugetlb page does never have PageLRU set
127 * (it's never listed to any LRU lists) and no memcg routines should
128 * be called for hugetlb (it has a separate hugetlb_cgroup.)
130 if (!folio_test_hugetlb(folio))
131 page_cache_release(folio);
132 destroy_large_folio(folio);
135 void __folio_put(struct folio *folio)
137 if (unlikely(folio_is_zone_device(folio)))
138 free_zone_device_page(&folio->page);
139 else if (unlikely(folio_test_large(folio)))
140 __folio_put_large(folio);
142 __folio_put_small(folio);
144 EXPORT_SYMBOL(__folio_put);
147 * put_pages_list() - release a list of pages
148 * @pages: list of pages threaded on page->lru
150 * Release a list of pages which are strung together on page.lru.
152 void put_pages_list(struct list_head *pages)
154 struct folio_batch fbatch;
157 folio_batch_init(&fbatch);
158 list_for_each_entry(folio, pages, lru) {
159 if (!folio_put_testzero(folio))
161 if (folio_test_large(folio)) {
162 __folio_put_large(folio);
165 /* LRU flag must be clear because it's passed using the lru */
166 if (folio_batch_add(&fbatch, folio) > 0)
168 free_unref_folios(&fbatch);
172 free_unref_folios(&fbatch);
173 INIT_LIST_HEAD(pages);
175 EXPORT_SYMBOL(put_pages_list);
177 typedef void (*move_fn_t)(struct lruvec *lruvec, struct folio *folio);
179 static void lru_add_fn(struct lruvec *lruvec, struct folio *folio)
181 int was_unevictable = folio_test_clear_unevictable(folio);
182 long nr_pages = folio_nr_pages(folio);
184 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
187 * Is an smp_mb__after_atomic() still required here, before
188 * folio_evictable() tests the mlocked flag, to rule out the possibility
189 * of stranding an evictable folio on an unevictable LRU? I think
190 * not, because __munlock_folio() only clears the mlocked flag
191 * while the LRU lock is held.
193 * (That is not true of __page_cache_release(), and not necessarily
194 * true of folios_put(): but those only clear the mlocked flag after
195 * folio_put_testzero() has excluded any other users of the folio.)
197 if (folio_evictable(folio)) {
199 __count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages);
201 folio_clear_active(folio);
202 folio_set_unevictable(folio);
204 * folio->mlock_count = !!folio_test_mlocked(folio)?
205 * But that leaves __mlock_folio() in doubt whether another
206 * actor has already counted the mlock or not. Err on the
207 * safe side, underestimate, let page reclaim fix it, rather
208 * than leaving a page on the unevictable LRU indefinitely.
210 folio->mlock_count = 0;
211 if (!was_unevictable)
212 __count_vm_events(UNEVICTABLE_PGCULLED, nr_pages);
215 lruvec_add_folio(lruvec, folio);
216 trace_mm_lru_insertion(folio);
219 static void folio_batch_move_lru(struct folio_batch *fbatch, move_fn_t move_fn)
222 struct lruvec *lruvec = NULL;
223 unsigned long flags = 0;
225 for (i = 0; i < folio_batch_count(fbatch); i++) {
226 struct folio *folio = fbatch->folios[i];
228 /* block memcg migration while the folio moves between lru */
229 if (move_fn != lru_add_fn && !folio_test_clear_lru(folio))
232 folio_lruvec_relock_irqsave(folio, &lruvec, &flags);
233 move_fn(lruvec, folio);
235 folio_set_lru(folio);
239 unlock_page_lruvec_irqrestore(lruvec, flags);
243 static void folio_batch_add_and_move(struct folio_batch *fbatch,
244 struct folio *folio, move_fn_t move_fn)
246 if (folio_batch_add(fbatch, folio) && !folio_test_large(folio) &&
247 !lru_cache_disabled())
249 folio_batch_move_lru(fbatch, move_fn);
252 static void lru_move_tail_fn(struct lruvec *lruvec, struct folio *folio)
254 if (!folio_test_unevictable(folio)) {
255 lruvec_del_folio(lruvec, folio);
256 folio_clear_active(folio);
257 lruvec_add_folio_tail(lruvec, folio);
258 __count_vm_events(PGROTATED, folio_nr_pages(folio));
263 * Writeback is about to end against a folio which has been marked for
264 * immediate reclaim. If it still appears to be reclaimable, move it
265 * to the tail of the inactive list.
267 * folio_rotate_reclaimable() must disable IRQs, to prevent nasty races.
269 void folio_rotate_reclaimable(struct folio *folio)
271 if (!folio_test_locked(folio) && !folio_test_dirty(folio) &&
272 !folio_test_unevictable(folio) && folio_test_lru(folio)) {
273 struct folio_batch *fbatch;
277 local_lock_irqsave(&lru_rotate.lock, flags);
278 fbatch = this_cpu_ptr(&lru_rotate.fbatch);
279 folio_batch_add_and_move(fbatch, folio, lru_move_tail_fn);
280 local_unlock_irqrestore(&lru_rotate.lock, flags);
284 void lru_note_cost(struct lruvec *lruvec, bool file,
285 unsigned int nr_io, unsigned int nr_rotated)
290 * Reflect the relative cost of incurring IO and spending CPU
291 * time on rotations. This doesn't attempt to make a precise
292 * comparison, it just says: if reloads are about comparable
293 * between the LRU lists, or rotations are overwhelmingly
294 * different between them, adjust scan balance for CPU work.
296 cost = nr_io * SWAP_CLUSTER_MAX + nr_rotated;
299 unsigned long lrusize;
302 * Hold lruvec->lru_lock is safe here, since
303 * 1) The pinned lruvec in reclaim, or
304 * 2) From a pre-LRU page during refault (which also holds the
305 * rcu lock, so would be safe even if the page was on the LRU
306 * and could move simultaneously to a new lruvec).
308 spin_lock_irq(&lruvec->lru_lock);
309 /* Record cost event */
311 lruvec->file_cost += cost;
313 lruvec->anon_cost += cost;
316 * Decay previous events
318 * Because workloads change over time (and to avoid
319 * overflow) we keep these statistics as a floating
320 * average, which ends up weighing recent refaults
321 * more than old ones.
323 lrusize = lruvec_page_state(lruvec, NR_INACTIVE_ANON) +
324 lruvec_page_state(lruvec, NR_ACTIVE_ANON) +
325 lruvec_page_state(lruvec, NR_INACTIVE_FILE) +
326 lruvec_page_state(lruvec, NR_ACTIVE_FILE);
328 if (lruvec->file_cost + lruvec->anon_cost > lrusize / 4) {
329 lruvec->file_cost /= 2;
330 lruvec->anon_cost /= 2;
332 spin_unlock_irq(&lruvec->lru_lock);
333 } while ((lruvec = parent_lruvec(lruvec)));
336 void lru_note_cost_refault(struct folio *folio)
338 lru_note_cost(folio_lruvec(folio), folio_is_file_lru(folio),
339 folio_nr_pages(folio), 0);
342 static void folio_activate_fn(struct lruvec *lruvec, struct folio *folio)
344 if (!folio_test_active(folio) && !folio_test_unevictable(folio)) {
345 long nr_pages = folio_nr_pages(folio);
347 lruvec_del_folio(lruvec, folio);
348 folio_set_active(folio);
349 lruvec_add_folio(lruvec, folio);
350 trace_mm_lru_activate(folio);
352 __count_vm_events(PGACTIVATE, nr_pages);
353 __count_memcg_events(lruvec_memcg(lruvec), PGACTIVATE,
359 static void folio_activate_drain(int cpu)
361 struct folio_batch *fbatch = &per_cpu(cpu_fbatches.activate, cpu);
363 if (folio_batch_count(fbatch))
364 folio_batch_move_lru(fbatch, folio_activate_fn);
367 void folio_activate(struct folio *folio)
369 if (folio_test_lru(folio) && !folio_test_active(folio) &&
370 !folio_test_unevictable(folio)) {
371 struct folio_batch *fbatch;
374 local_lock(&cpu_fbatches.lock);
375 fbatch = this_cpu_ptr(&cpu_fbatches.activate);
376 folio_batch_add_and_move(fbatch, folio, folio_activate_fn);
377 local_unlock(&cpu_fbatches.lock);
382 static inline void folio_activate_drain(int cpu)
386 void folio_activate(struct folio *folio)
388 struct lruvec *lruvec;
390 if (folio_test_clear_lru(folio)) {
391 lruvec = folio_lruvec_lock_irq(folio);
392 folio_activate_fn(lruvec, folio);
393 unlock_page_lruvec_irq(lruvec);
394 folio_set_lru(folio);
399 static void __lru_cache_activate_folio(struct folio *folio)
401 struct folio_batch *fbatch;
404 local_lock(&cpu_fbatches.lock);
405 fbatch = this_cpu_ptr(&cpu_fbatches.lru_add);
408 * Search backwards on the optimistic assumption that the folio being
409 * activated has just been added to this batch. Note that only
410 * the local batch is examined as a !LRU folio could be in the
411 * process of being released, reclaimed, migrated or on a remote
412 * batch that is currently being drained. Furthermore, marking
413 * a remote batch's folio active potentially hits a race where
414 * a folio is marked active just after it is added to the inactive
415 * list causing accounting errors and BUG_ON checks to trigger.
417 for (i = folio_batch_count(fbatch) - 1; i >= 0; i--) {
418 struct folio *batch_folio = fbatch->folios[i];
420 if (batch_folio == folio) {
421 folio_set_active(folio);
426 local_unlock(&cpu_fbatches.lock);
429 #ifdef CONFIG_LRU_GEN
430 static void folio_inc_refs(struct folio *folio)
432 unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
434 if (folio_test_unevictable(folio))
437 if (!folio_test_referenced(folio)) {
438 folio_set_referenced(folio);
442 if (!folio_test_workingset(folio)) {
443 folio_set_workingset(folio);
447 /* see the comment on MAX_NR_TIERS */
449 new_flags = old_flags & LRU_REFS_MASK;
450 if (new_flags == LRU_REFS_MASK)
453 new_flags += BIT(LRU_REFS_PGOFF);
454 new_flags |= old_flags & ~LRU_REFS_MASK;
455 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
458 static void folio_inc_refs(struct folio *folio)
461 #endif /* CONFIG_LRU_GEN */
464 * Mark a page as having seen activity.
466 * inactive,unreferenced -> inactive,referenced
467 * inactive,referenced -> active,unreferenced
468 * active,unreferenced -> active,referenced
470 * When a newly allocated page is not yet visible, so safe for non-atomic ops,
471 * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
473 void folio_mark_accessed(struct folio *folio)
475 if (lru_gen_enabled()) {
476 folio_inc_refs(folio);
480 if (!folio_test_referenced(folio)) {
481 folio_set_referenced(folio);
482 } else if (folio_test_unevictable(folio)) {
484 * Unevictable pages are on the "LRU_UNEVICTABLE" list. But,
485 * this list is never rotated or maintained, so marking an
486 * unevictable page accessed has no effect.
488 } else if (!folio_test_active(folio)) {
490 * If the folio is on the LRU, queue it for activation via
491 * cpu_fbatches.activate. Otherwise, assume the folio is in a
492 * folio_batch, mark it active and it'll be moved to the active
493 * LRU on the next drain.
495 if (folio_test_lru(folio))
496 folio_activate(folio);
498 __lru_cache_activate_folio(folio);
499 folio_clear_referenced(folio);
500 workingset_activation(folio);
502 if (folio_test_idle(folio))
503 folio_clear_idle(folio);
505 EXPORT_SYMBOL(folio_mark_accessed);
508 * folio_add_lru - Add a folio to an LRU list.
509 * @folio: The folio to be added to the LRU.
511 * Queue the folio for addition to the LRU. The decision on whether
512 * to add the page to the [in]active [file|anon] list is deferred until the
513 * folio_batch is drained. This gives a chance for the caller of folio_add_lru()
514 * have the folio added to the active list using folio_mark_accessed().
516 void folio_add_lru(struct folio *folio)
518 struct folio_batch *fbatch;
520 VM_BUG_ON_FOLIO(folio_test_active(folio) &&
521 folio_test_unevictable(folio), folio);
522 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
524 /* see the comment in lru_gen_add_folio() */
525 if (lru_gen_enabled() && !folio_test_unevictable(folio) &&
526 lru_gen_in_fault() && !(current->flags & PF_MEMALLOC))
527 folio_set_active(folio);
530 local_lock(&cpu_fbatches.lock);
531 fbatch = this_cpu_ptr(&cpu_fbatches.lru_add);
532 folio_batch_add_and_move(fbatch, folio, lru_add_fn);
533 local_unlock(&cpu_fbatches.lock);
535 EXPORT_SYMBOL(folio_add_lru);
538 * folio_add_lru_vma() - Add a folio to the appropate LRU list for this VMA.
539 * @folio: The folio to be added to the LRU.
540 * @vma: VMA in which the folio is mapped.
542 * If the VMA is mlocked, @folio is added to the unevictable list.
543 * Otherwise, it is treated the same way as folio_add_lru().
545 void folio_add_lru_vma(struct folio *folio, struct vm_area_struct *vma)
547 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
549 if (unlikely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) == VM_LOCKED))
550 mlock_new_folio(folio);
552 folio_add_lru(folio);
556 * If the folio cannot be invalidated, it is moved to the
557 * inactive list to speed up its reclaim. It is moved to the
558 * head of the list, rather than the tail, to give the flusher
559 * threads some time to write it out, as this is much more
560 * effective than the single-page writeout from reclaim.
562 * If the folio isn't mapped and dirty/writeback, the folio
563 * could be reclaimed asap using the reclaim flag.
565 * 1. active, mapped folio -> none
566 * 2. active, dirty/writeback folio -> inactive, head, reclaim
567 * 3. inactive, mapped folio -> none
568 * 4. inactive, dirty/writeback folio -> inactive, head, reclaim
569 * 5. inactive, clean -> inactive, tail
572 * In 4, it moves to the head of the inactive list so the folio is
573 * written out by flusher threads as this is much more efficient
574 * than the single-page writeout from reclaim.
576 static void lru_deactivate_file_fn(struct lruvec *lruvec, struct folio *folio)
578 bool active = folio_test_active(folio);
579 long nr_pages = folio_nr_pages(folio);
581 if (folio_test_unevictable(folio))
584 /* Some processes are using the folio */
585 if (folio_mapped(folio))
588 lruvec_del_folio(lruvec, folio);
589 folio_clear_active(folio);
590 folio_clear_referenced(folio);
592 if (folio_test_writeback(folio) || folio_test_dirty(folio)) {
594 * Setting the reclaim flag could race with
595 * folio_end_writeback() and confuse readahead. But the
596 * race window is _really_ small and it's not a critical
599 lruvec_add_folio(lruvec, folio);
600 folio_set_reclaim(folio);
603 * The folio's writeback ended while it was in the batch.
604 * We move that folio to the tail of the inactive list.
606 lruvec_add_folio_tail(lruvec, folio);
607 __count_vm_events(PGROTATED, nr_pages);
611 __count_vm_events(PGDEACTIVATE, nr_pages);
612 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
617 static void lru_deactivate_fn(struct lruvec *lruvec, struct folio *folio)
619 if (!folio_test_unevictable(folio) && (folio_test_active(folio) || lru_gen_enabled())) {
620 long nr_pages = folio_nr_pages(folio);
622 lruvec_del_folio(lruvec, folio);
623 folio_clear_active(folio);
624 folio_clear_referenced(folio);
625 lruvec_add_folio(lruvec, folio);
627 __count_vm_events(PGDEACTIVATE, nr_pages);
628 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
633 static void lru_lazyfree_fn(struct lruvec *lruvec, struct folio *folio)
635 if (folio_test_anon(folio) && folio_test_swapbacked(folio) &&
636 !folio_test_swapcache(folio) && !folio_test_unevictable(folio)) {
637 long nr_pages = folio_nr_pages(folio);
639 lruvec_del_folio(lruvec, folio);
640 folio_clear_active(folio);
641 folio_clear_referenced(folio);
643 * Lazyfree folios are clean anonymous folios. They have
644 * the swapbacked flag cleared, to distinguish them from normal
647 folio_clear_swapbacked(folio);
648 lruvec_add_folio(lruvec, folio);
650 __count_vm_events(PGLAZYFREE, nr_pages);
651 __count_memcg_events(lruvec_memcg(lruvec), PGLAZYFREE,
657 * Drain pages out of the cpu's folio_batch.
658 * Either "cpu" is the current CPU, and preemption has already been
659 * disabled; or "cpu" is being hot-unplugged, and is already dead.
661 void lru_add_drain_cpu(int cpu)
663 struct cpu_fbatches *fbatches = &per_cpu(cpu_fbatches, cpu);
664 struct folio_batch *fbatch = &fbatches->lru_add;
666 if (folio_batch_count(fbatch))
667 folio_batch_move_lru(fbatch, lru_add_fn);
669 fbatch = &per_cpu(lru_rotate.fbatch, cpu);
670 /* Disabling interrupts below acts as a compiler barrier. */
671 if (data_race(folio_batch_count(fbatch))) {
674 /* No harm done if a racing interrupt already did this */
675 local_lock_irqsave(&lru_rotate.lock, flags);
676 folio_batch_move_lru(fbatch, lru_move_tail_fn);
677 local_unlock_irqrestore(&lru_rotate.lock, flags);
680 fbatch = &fbatches->lru_deactivate_file;
681 if (folio_batch_count(fbatch))
682 folio_batch_move_lru(fbatch, lru_deactivate_file_fn);
684 fbatch = &fbatches->lru_deactivate;
685 if (folio_batch_count(fbatch))
686 folio_batch_move_lru(fbatch, lru_deactivate_fn);
688 fbatch = &fbatches->lru_lazyfree;
689 if (folio_batch_count(fbatch))
690 folio_batch_move_lru(fbatch, lru_lazyfree_fn);
692 folio_activate_drain(cpu);
696 * deactivate_file_folio() - Deactivate a file folio.
697 * @folio: Folio to deactivate.
699 * This function hints to the VM that @folio is a good reclaim candidate,
700 * for example if its invalidation fails due to the folio being dirty
701 * or under writeback.
703 * Context: Caller holds a reference on the folio.
705 void deactivate_file_folio(struct folio *folio)
707 struct folio_batch *fbatch;
709 /* Deactivating an unevictable folio will not accelerate reclaim */
710 if (folio_test_unevictable(folio))
714 local_lock(&cpu_fbatches.lock);
715 fbatch = this_cpu_ptr(&cpu_fbatches.lru_deactivate_file);
716 folio_batch_add_and_move(fbatch, folio, lru_deactivate_file_fn);
717 local_unlock(&cpu_fbatches.lock);
721 * folio_deactivate - deactivate a folio
722 * @folio: folio to deactivate
724 * folio_deactivate() moves @folio to the inactive list if @folio was on the
725 * active list and was not unevictable. This is done to accelerate the
728 void folio_deactivate(struct folio *folio)
730 if (folio_test_lru(folio) && !folio_test_unevictable(folio) &&
731 (folio_test_active(folio) || lru_gen_enabled())) {
732 struct folio_batch *fbatch;
735 local_lock(&cpu_fbatches.lock);
736 fbatch = this_cpu_ptr(&cpu_fbatches.lru_deactivate);
737 folio_batch_add_and_move(fbatch, folio, lru_deactivate_fn);
738 local_unlock(&cpu_fbatches.lock);
743 * folio_mark_lazyfree - make an anon folio lazyfree
744 * @folio: folio to deactivate
746 * folio_mark_lazyfree() moves @folio to the inactive file list.
747 * This is done to accelerate the reclaim of @folio.
749 void folio_mark_lazyfree(struct folio *folio)
751 if (folio_test_lru(folio) && folio_test_anon(folio) &&
752 folio_test_swapbacked(folio) && !folio_test_swapcache(folio) &&
753 !folio_test_unevictable(folio)) {
754 struct folio_batch *fbatch;
757 local_lock(&cpu_fbatches.lock);
758 fbatch = this_cpu_ptr(&cpu_fbatches.lru_lazyfree);
759 folio_batch_add_and_move(fbatch, folio, lru_lazyfree_fn);
760 local_unlock(&cpu_fbatches.lock);
764 void lru_add_drain(void)
766 local_lock(&cpu_fbatches.lock);
767 lru_add_drain_cpu(smp_processor_id());
768 local_unlock(&cpu_fbatches.lock);
773 * It's called from per-cpu workqueue context in SMP case so
774 * lru_add_drain_cpu and invalidate_bh_lrus_cpu should run on
775 * the same cpu. It shouldn't be a problem in !SMP case since
776 * the core is only one and the locks will disable preemption.
778 static void lru_add_and_bh_lrus_drain(void)
780 local_lock(&cpu_fbatches.lock);
781 lru_add_drain_cpu(smp_processor_id());
782 local_unlock(&cpu_fbatches.lock);
783 invalidate_bh_lrus_cpu();
787 void lru_add_drain_cpu_zone(struct zone *zone)
789 local_lock(&cpu_fbatches.lock);
790 lru_add_drain_cpu(smp_processor_id());
791 drain_local_pages(zone);
792 local_unlock(&cpu_fbatches.lock);
798 static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
800 static void lru_add_drain_per_cpu(struct work_struct *dummy)
802 lru_add_and_bh_lrus_drain();
805 static bool cpu_needs_drain(unsigned int cpu)
807 struct cpu_fbatches *fbatches = &per_cpu(cpu_fbatches, cpu);
809 /* Check these in order of likelihood that they're not zero */
810 return folio_batch_count(&fbatches->lru_add) ||
811 data_race(folio_batch_count(&per_cpu(lru_rotate.fbatch, cpu))) ||
812 folio_batch_count(&fbatches->lru_deactivate_file) ||
813 folio_batch_count(&fbatches->lru_deactivate) ||
814 folio_batch_count(&fbatches->lru_lazyfree) ||
815 folio_batch_count(&fbatches->activate) ||
816 need_mlock_drain(cpu) ||
817 has_bh_in_lru(cpu, NULL);
821 * Doesn't need any cpu hotplug locking because we do rely on per-cpu
822 * kworkers being shut down before our page_alloc_cpu_dead callback is
823 * executed on the offlined cpu.
824 * Calling this function with cpu hotplug locks held can actually lead
825 * to obscure indirect dependencies via WQ context.
827 static inline void __lru_add_drain_all(bool force_all_cpus)
830 * lru_drain_gen - Global pages generation number
832 * (A) Definition: global lru_drain_gen = x implies that all generations
833 * 0 < n <= x are already *scheduled* for draining.
835 * This is an optimization for the highly-contended use case where a
836 * user space workload keeps constantly generating a flow of pages for
839 static unsigned int lru_drain_gen;
840 static struct cpumask has_work;
841 static DEFINE_MUTEX(lock);
842 unsigned cpu, this_gen;
845 * Make sure nobody triggers this path before mm_percpu_wq is fully
848 if (WARN_ON(!mm_percpu_wq))
852 * Guarantee folio_batch counter stores visible by this CPU
853 * are visible to other CPUs before loading the current drain
859 * (B) Locally cache global LRU draining generation number
861 * The read barrier ensures that the counter is loaded before the mutex
862 * is taken. It pairs with smp_mb() inside the mutex critical section
865 this_gen = smp_load_acquire(&lru_drain_gen);
870 * (C) Exit the draining operation if a newer generation, from another
871 * lru_add_drain_all(), was already scheduled for draining. Check (A).
873 if (unlikely(this_gen != lru_drain_gen && !force_all_cpus))
877 * (D) Increment global generation number
879 * Pairs with smp_load_acquire() at (B), outside of the critical
880 * section. Use a full memory barrier to guarantee that the
881 * new global drain generation number is stored before loading
882 * folio_batch counters.
884 * This pairing must be done here, before the for_each_online_cpu loop
885 * below which drains the page vectors.
887 * Let x, y, and z represent some system CPU numbers, where x < y < z.
888 * Assume CPU #z is in the middle of the for_each_online_cpu loop
889 * below and has already reached CPU #y's per-cpu data. CPU #x comes
890 * along, adds some pages to its per-cpu vectors, then calls
891 * lru_add_drain_all().
893 * If the paired barrier is done at any later step, e.g. after the
894 * loop, CPU #x will just exit at (C) and miss flushing out all of its
897 WRITE_ONCE(lru_drain_gen, lru_drain_gen + 1);
900 cpumask_clear(&has_work);
901 for_each_online_cpu(cpu) {
902 struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
904 if (cpu_needs_drain(cpu)) {
905 INIT_WORK(work, lru_add_drain_per_cpu);
906 queue_work_on(cpu, mm_percpu_wq, work);
907 __cpumask_set_cpu(cpu, &has_work);
911 for_each_cpu(cpu, &has_work)
912 flush_work(&per_cpu(lru_add_drain_work, cpu));
918 void lru_add_drain_all(void)
920 __lru_add_drain_all(false);
923 void lru_add_drain_all(void)
927 #endif /* CONFIG_SMP */
929 atomic_t lru_disable_count = ATOMIC_INIT(0);
932 * lru_cache_disable() needs to be called before we start compiling
933 * a list of pages to be migrated using isolate_lru_page().
934 * It drains pages on LRU cache and then disable on all cpus until
935 * lru_cache_enable is called.
937 * Must be paired with a call to lru_cache_enable().
939 void lru_cache_disable(void)
941 atomic_inc(&lru_disable_count);
943 * Readers of lru_disable_count are protected by either disabling
944 * preemption or rcu_read_lock:
946 * preempt_disable, local_irq_disable [bh_lru_lock()]
947 * rcu_read_lock [rt_spin_lock CONFIG_PREEMPT_RT]
948 * preempt_disable [local_lock !CONFIG_PREEMPT_RT]
950 * Since v5.1 kernel, synchronize_rcu() is guaranteed to wait on
951 * preempt_disable() regions of code. So any CPU which sees
952 * lru_disable_count = 0 will have exited the critical
953 * section when synchronize_rcu() returns.
955 synchronize_rcu_expedited();
957 __lru_add_drain_all(true);
959 lru_add_and_bh_lrus_drain();
964 * folios_put_refs - Reduce the reference count on a batch of folios.
965 * @folios: The folios.
966 * @refs: The number of refs to subtract from each folio.
968 * Like folio_put(), but for a batch of folios. This is more efficient
969 * than writing the loop yourself as it will optimise the locks which need
970 * to be taken if the folios are freed. The folios batch is returned
971 * empty and ready to be reused for another batch; there is no need
972 * to reinitialise it. If @refs is NULL, we subtract one from each
975 * Context: May be called in process or interrupt context, but not in NMI
976 * context. May be called while holding a spinlock.
978 void folios_put_refs(struct folio_batch *folios, unsigned int *refs)
981 struct lruvec *lruvec = NULL;
982 unsigned long flags = 0;
984 for (i = 0, j = 0; i < folios->nr; i++) {
985 struct folio *folio = folios->folios[i];
986 unsigned int nr_refs = refs ? refs[i] : 1;
988 if (is_huge_zero_page(&folio->page))
991 if (folio_is_zone_device(folio)) {
993 unlock_page_lruvec_irqrestore(lruvec, flags);
996 if (put_devmap_managed_page_refs(&folio->page, nr_refs))
998 if (folio_ref_sub_and_test(folio, nr_refs))
999 free_zone_device_page(&folio->page);
1003 if (!folio_ref_sub_and_test(folio, nr_refs))
1006 /* hugetlb has its own memcg */
1007 if (folio_test_hugetlb(folio)) {
1009 unlock_page_lruvec_irqrestore(lruvec, flags);
1012 free_huge_folio(folio);
1016 __page_cache_release(folio, &lruvec, &flags);
1019 folios->folios[j] = folio;
1023 unlock_page_lruvec_irqrestore(lruvec, flags);
1025 folio_batch_reinit(folios);
1030 mem_cgroup_uncharge_folios(folios);
1031 free_unref_folios(folios);
1033 EXPORT_SYMBOL(folios_put_refs);
1036 * release_pages - batched put_page()
1037 * @arg: array of pages to release
1038 * @nr: number of pages
1040 * Decrement the reference count on all the pages in @arg. If it
1041 * fell to zero, remove the page from the LRU and free it.
1043 * Note that the argument can be an array of pages, encoded pages,
1044 * or folio pointers. We ignore any encoded bits, and turn any of
1045 * them into just a folio that gets free'd.
1047 void release_pages(release_pages_arg arg, int nr)
1049 struct folio_batch fbatch;
1050 int refs[PAGEVEC_SIZE];
1051 struct encoded_page **encoded = arg.encoded_pages;
1054 folio_batch_init(&fbatch);
1055 for (i = 0; i < nr; i++) {
1056 /* Turn any of the argument types into a folio */
1057 struct folio *folio = page_folio(encoded_page_ptr(encoded[i]));
1059 /* Is our next entry actually "nr_pages" -> "nr_refs" ? */
1060 refs[fbatch.nr] = 1;
1061 if (unlikely(encoded_page_flags(encoded[i]) &
1062 ENCODED_PAGE_BIT_NR_PAGES_NEXT))
1063 refs[fbatch.nr] = encoded_nr_pages(encoded[++i]);
1065 if (folio_batch_add(&fbatch, folio) > 0)
1067 folios_put_refs(&fbatch, refs);
1071 folios_put_refs(&fbatch, refs);
1073 EXPORT_SYMBOL(release_pages);
1076 * The folios which we're about to release may be in the deferred lru-addition
1077 * queues. That would prevent them from really being freed right now. That's
1078 * OK from a correctness point of view but is inefficient - those folios may be
1079 * cache-warm and we want to give them back to the page allocator ASAP.
1081 * So __folio_batch_release() will drain those queues here.
1082 * folio_batch_move_lru() calls folios_put() directly to avoid
1085 void __folio_batch_release(struct folio_batch *fbatch)
1087 if (!fbatch->percpu_pvec_drained) {
1089 fbatch->percpu_pvec_drained = true;
1093 EXPORT_SYMBOL(__folio_batch_release);
1096 * folio_batch_remove_exceptionals() - Prune non-folios from a batch.
1097 * @fbatch: The batch to prune
1099 * find_get_entries() fills a batch with both folios and shadow/swap/DAX
1100 * entries. This function prunes all the non-folio entries from @fbatch
1101 * without leaving holes, so that it can be passed on to folio-only batch
1104 void folio_batch_remove_exceptionals(struct folio_batch *fbatch)
1108 for (i = 0, j = 0; i < folio_batch_count(fbatch); i++) {
1109 struct folio *folio = fbatch->folios[i];
1110 if (!xa_is_value(folio))
1111 fbatch->folios[j++] = folio;
1117 * Perform any setup for the swap system
1119 void __init swap_setup(void)
1121 unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT);
1123 /* Use a smaller cluster for small-memory machines */
1129 * Right now other parts of the system means that we
1130 * _really_ don't want to cluster much more