2 * mm/rmap.c - physical to virtual reverse mappings
5 * Released under the General Public License (GPL).
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
17 * Contributions by Hugh Dickins 2003, 2004
21 * Lock ordering in mm:
23 * inode->i_rwsem (while writing or truncating, not reading or faulting)
25 * mapping->invalidate_lock (in filemap_fault)
26 * page->flags PG_locked (lock_page)
27 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share, see hugetlbfs below)
28 * mapping->i_mmap_rwsem
30 * mm->page_table_lock or pte_lock
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in block_dirty_folio)
34 * folio_lock_memcg move_lock (in block_dirty_folio)
35 * i_pages lock (widely used)
36 * lruvec->lru_lock (in folio_lruvec_lock_irq)
37 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
38 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
39 * sb_lock (within inode_lock in fs/fs-writeback.c)
40 * i_pages lock (widely used, in set_page_dirty,
41 * in arch-dependent flush_dcache_mmap_lock,
42 * within bdi.wb->list_lock in __sync_single_inode)
44 * anon_vma->rwsem,mapping->i_mmap_rwsem (memory_failure, collect_procs_anon)
48 * hugetlbfs PageHuge() take locks in this order:
49 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
50 * vma_lock (hugetlb specific lock for pmd_sharing)
51 * mapping->i_mmap_rwsem (also used for hugetlb pmd sharing)
52 * page->flags PG_locked (lock_page)
56 #include <linux/sched/mm.h>
57 #include <linux/sched/task.h>
58 #include <linux/pagemap.h>
59 #include <linux/swap.h>
60 #include <linux/swapops.h>
61 #include <linux/slab.h>
62 #include <linux/init.h>
63 #include <linux/ksm.h>
64 #include <linux/rmap.h>
65 #include <linux/rcupdate.h>
66 #include <linux/export.h>
67 #include <linux/memcontrol.h>
68 #include <linux/mmu_notifier.h>
69 #include <linux/migrate.h>
70 #include <linux/hugetlb.h>
71 #include <linux/huge_mm.h>
72 #include <linux/backing-dev.h>
73 #include <linux/page_idle.h>
74 #include <linux/memremap.h>
75 #include <linux/userfaultfd_k.h>
76 #include <linux/mm_inline.h>
78 #include <asm/tlbflush.h>
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/tlb.h>
82 #include <trace/events/migrate.h>
86 static struct kmem_cache *anon_vma_cachep;
87 static struct kmem_cache *anon_vma_chain_cachep;
89 static inline struct anon_vma *anon_vma_alloc(void)
91 struct anon_vma *anon_vma;
93 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
95 atomic_set(&anon_vma->refcount, 1);
96 anon_vma->num_children = 0;
97 anon_vma->num_active_vmas = 0;
98 anon_vma->parent = anon_vma;
100 * Initialise the anon_vma root to point to itself. If called
101 * from fork, the root will be reset to the parents anon_vma.
103 anon_vma->root = anon_vma;
109 static inline void anon_vma_free(struct anon_vma *anon_vma)
111 VM_BUG_ON(atomic_read(&anon_vma->refcount));
114 * Synchronize against folio_lock_anon_vma_read() such that
115 * we can safely hold the lock without the anon_vma getting
118 * Relies on the full mb implied by the atomic_dec_and_test() from
119 * put_anon_vma() against the acquire barrier implied by
120 * down_read_trylock() from folio_lock_anon_vma_read(). This orders:
122 * folio_lock_anon_vma_read() VS put_anon_vma()
123 * down_read_trylock() atomic_dec_and_test()
125 * atomic_read() rwsem_is_locked()
127 * LOCK should suffice since the actual taking of the lock must
128 * happen _before_ what follows.
131 if (rwsem_is_locked(&anon_vma->root->rwsem)) {
132 anon_vma_lock_write(anon_vma);
133 anon_vma_unlock_write(anon_vma);
136 kmem_cache_free(anon_vma_cachep, anon_vma);
139 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
141 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
144 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
146 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
149 static void anon_vma_chain_link(struct vm_area_struct *vma,
150 struct anon_vma_chain *avc,
151 struct anon_vma *anon_vma)
154 avc->anon_vma = anon_vma;
155 list_add(&avc->same_vma, &vma->anon_vma_chain);
156 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
160 * __anon_vma_prepare - attach an anon_vma to a memory region
161 * @vma: the memory region in question
163 * This makes sure the memory mapping described by 'vma' has
164 * an 'anon_vma' attached to it, so that we can associate the
165 * anonymous pages mapped into it with that anon_vma.
167 * The common case will be that we already have one, which
168 * is handled inline by anon_vma_prepare(). But if
169 * not we either need to find an adjacent mapping that we
170 * can re-use the anon_vma from (very common when the only
171 * reason for splitting a vma has been mprotect()), or we
172 * allocate a new one.
174 * Anon-vma allocations are very subtle, because we may have
175 * optimistically looked up an anon_vma in folio_lock_anon_vma_read()
176 * and that may actually touch the rwsem even in the newly
177 * allocated vma (it depends on RCU to make sure that the
178 * anon_vma isn't actually destroyed).
180 * As a result, we need to do proper anon_vma locking even
181 * for the new allocation. At the same time, we do not want
182 * to do any locking for the common case of already having
185 * This must be called with the mmap_lock held for reading.
187 int __anon_vma_prepare(struct vm_area_struct *vma)
189 struct mm_struct *mm = vma->vm_mm;
190 struct anon_vma *anon_vma, *allocated;
191 struct anon_vma_chain *avc;
195 avc = anon_vma_chain_alloc(GFP_KERNEL);
199 anon_vma = find_mergeable_anon_vma(vma);
202 anon_vma = anon_vma_alloc();
203 if (unlikely(!anon_vma))
204 goto out_enomem_free_avc;
205 anon_vma->num_children++; /* self-parent link for new root */
206 allocated = anon_vma;
209 anon_vma_lock_write(anon_vma);
210 /* page_table_lock to protect against threads */
211 spin_lock(&mm->page_table_lock);
212 if (likely(!vma->anon_vma)) {
213 vma->anon_vma = anon_vma;
214 anon_vma_chain_link(vma, avc, anon_vma);
215 anon_vma->num_active_vmas++;
219 spin_unlock(&mm->page_table_lock);
220 anon_vma_unlock_write(anon_vma);
222 if (unlikely(allocated))
223 put_anon_vma(allocated);
225 anon_vma_chain_free(avc);
230 anon_vma_chain_free(avc);
236 * This is a useful helper function for locking the anon_vma root as
237 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
240 * Such anon_vma's should have the same root, so you'd expect to see
241 * just a single mutex_lock for the whole traversal.
243 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
245 struct anon_vma *new_root = anon_vma->root;
246 if (new_root != root) {
247 if (WARN_ON_ONCE(root))
248 up_write(&root->rwsem);
250 down_write(&root->rwsem);
255 static inline void unlock_anon_vma_root(struct anon_vma *root)
258 up_write(&root->rwsem);
262 * Attach the anon_vmas from src to dst.
263 * Returns 0 on success, -ENOMEM on failure.
265 * anon_vma_clone() is called by vma_expand(), vma_merge(), __split_vma(),
266 * copy_vma() and anon_vma_fork(). The first four want an exact copy of src,
267 * while the last one, anon_vma_fork(), may try to reuse an existing anon_vma to
268 * prevent endless growth of anon_vma. Since dst->anon_vma is set to NULL before
269 * call, we can identify this case by checking (!dst->anon_vma &&
272 * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find
273 * and reuse existing anon_vma which has no vmas and only one child anon_vma.
274 * This prevents degradation of anon_vma hierarchy to endless linear chain in
275 * case of constantly forking task. On the other hand, an anon_vma with more
276 * than one child isn't reused even if there was no alive vma, thus rmap
277 * walker has a good chance of avoiding scanning the whole hierarchy when it
278 * searches where page is mapped.
280 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
282 struct anon_vma_chain *avc, *pavc;
283 struct anon_vma *root = NULL;
285 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
286 struct anon_vma *anon_vma;
288 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
289 if (unlikely(!avc)) {
290 unlock_anon_vma_root(root);
292 avc = anon_vma_chain_alloc(GFP_KERNEL);
296 anon_vma = pavc->anon_vma;
297 root = lock_anon_vma_root(root, anon_vma);
298 anon_vma_chain_link(dst, avc, anon_vma);
301 * Reuse existing anon_vma if it has no vma and only one
304 * Root anon_vma is never reused:
305 * it has self-parent reference and at least one child.
307 if (!dst->anon_vma && src->anon_vma &&
308 anon_vma->num_children < 2 &&
309 anon_vma->num_active_vmas == 0)
310 dst->anon_vma = anon_vma;
313 dst->anon_vma->num_active_vmas++;
314 unlock_anon_vma_root(root);
319 * dst->anon_vma is dropped here otherwise its num_active_vmas can
320 * be incorrectly decremented in unlink_anon_vmas().
321 * We can safely do this because callers of anon_vma_clone() don't care
322 * about dst->anon_vma if anon_vma_clone() failed.
324 dst->anon_vma = NULL;
325 unlink_anon_vmas(dst);
330 * Attach vma to its own anon_vma, as well as to the anon_vmas that
331 * the corresponding VMA in the parent process is attached to.
332 * Returns 0 on success, non-zero on failure.
334 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
336 struct anon_vma_chain *avc;
337 struct anon_vma *anon_vma;
340 /* Don't bother if the parent process has no anon_vma here. */
344 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
345 vma->anon_vma = NULL;
348 * First, attach the new VMA to the parent VMA's anon_vmas,
349 * so rmap can find non-COWed pages in child processes.
351 error = anon_vma_clone(vma, pvma);
355 /* An existing anon_vma has been reused, all done then. */
359 /* Then add our own anon_vma. */
360 anon_vma = anon_vma_alloc();
363 anon_vma->num_active_vmas++;
364 avc = anon_vma_chain_alloc(GFP_KERNEL);
366 goto out_error_free_anon_vma;
369 * The root anon_vma's rwsem is the lock actually used when we
370 * lock any of the anon_vmas in this anon_vma tree.
372 anon_vma->root = pvma->anon_vma->root;
373 anon_vma->parent = pvma->anon_vma;
375 * With refcounts, an anon_vma can stay around longer than the
376 * process it belongs to. The root anon_vma needs to be pinned until
377 * this anon_vma is freed, because the lock lives in the root.
379 get_anon_vma(anon_vma->root);
380 /* Mark this anon_vma as the one where our new (COWed) pages go. */
381 vma->anon_vma = anon_vma;
382 anon_vma_lock_write(anon_vma);
383 anon_vma_chain_link(vma, avc, anon_vma);
384 anon_vma->parent->num_children++;
385 anon_vma_unlock_write(anon_vma);
389 out_error_free_anon_vma:
390 put_anon_vma(anon_vma);
392 unlink_anon_vmas(vma);
396 void unlink_anon_vmas(struct vm_area_struct *vma)
398 struct anon_vma_chain *avc, *next;
399 struct anon_vma *root = NULL;
402 * Unlink each anon_vma chained to the VMA. This list is ordered
403 * from newest to oldest, ensuring the root anon_vma gets freed last.
405 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
406 struct anon_vma *anon_vma = avc->anon_vma;
408 root = lock_anon_vma_root(root, anon_vma);
409 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
412 * Leave empty anon_vmas on the list - we'll need
413 * to free them outside the lock.
415 if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
416 anon_vma->parent->num_children--;
420 list_del(&avc->same_vma);
421 anon_vma_chain_free(avc);
424 vma->anon_vma->num_active_vmas--;
427 * vma would still be needed after unlink, and anon_vma will be prepared
430 vma->anon_vma = NULL;
432 unlock_anon_vma_root(root);
435 * Iterate the list once more, it now only contains empty and unlinked
436 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
437 * needing to write-acquire the anon_vma->root->rwsem.
439 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
440 struct anon_vma *anon_vma = avc->anon_vma;
442 VM_WARN_ON(anon_vma->num_children);
443 VM_WARN_ON(anon_vma->num_active_vmas);
444 put_anon_vma(anon_vma);
446 list_del(&avc->same_vma);
447 anon_vma_chain_free(avc);
451 static void anon_vma_ctor(void *data)
453 struct anon_vma *anon_vma = data;
455 init_rwsem(&anon_vma->rwsem);
456 atomic_set(&anon_vma->refcount, 0);
457 anon_vma->rb_root = RB_ROOT_CACHED;
460 void __init anon_vma_init(void)
462 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
463 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
465 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
466 SLAB_PANIC|SLAB_ACCOUNT);
470 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
472 * Since there is no serialization what so ever against page_remove_rmap()
473 * the best this function can do is return a refcount increased anon_vma
474 * that might have been relevant to this page.
476 * The page might have been remapped to a different anon_vma or the anon_vma
477 * returned may already be freed (and even reused).
479 * In case it was remapped to a different anon_vma, the new anon_vma will be a
480 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
481 * ensure that any anon_vma obtained from the page will still be valid for as
482 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
484 * All users of this function must be very careful when walking the anon_vma
485 * chain and verify that the page in question is indeed mapped in it
486 * [ something equivalent to page_mapped_in_vma() ].
488 * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from
489 * page_remove_rmap() that the anon_vma pointer from page->mapping is valid
490 * if there is a mapcount, we can dereference the anon_vma after observing
493 struct anon_vma *folio_get_anon_vma(struct folio *folio)
495 struct anon_vma *anon_vma = NULL;
496 unsigned long anon_mapping;
499 anon_mapping = (unsigned long)READ_ONCE(folio->mapping);
500 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
502 if (!folio_mapped(folio))
505 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
506 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
512 * If this folio is still mapped, then its anon_vma cannot have been
513 * freed. But if it has been unmapped, we have no security against the
514 * anon_vma structure being freed and reused (for another anon_vma:
515 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
516 * above cannot corrupt).
518 if (!folio_mapped(folio)) {
520 put_anon_vma(anon_vma);
530 * Similar to folio_get_anon_vma() except it locks the anon_vma.
532 * Its a little more complex as it tries to keep the fast path to a single
533 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
534 * reference like with folio_get_anon_vma() and then block on the mutex
535 * on !rwc->try_lock case.
537 struct anon_vma *folio_lock_anon_vma_read(struct folio *folio,
538 struct rmap_walk_control *rwc)
540 struct anon_vma *anon_vma = NULL;
541 struct anon_vma *root_anon_vma;
542 unsigned long anon_mapping;
545 anon_mapping = (unsigned long)READ_ONCE(folio->mapping);
546 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
548 if (!folio_mapped(folio))
551 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
552 root_anon_vma = READ_ONCE(anon_vma->root);
553 if (down_read_trylock(&root_anon_vma->rwsem)) {
555 * If the folio is still mapped, then this anon_vma is still
556 * its anon_vma, and holding the mutex ensures that it will
557 * not go away, see anon_vma_free().
559 if (!folio_mapped(folio)) {
560 up_read(&root_anon_vma->rwsem);
566 if (rwc && rwc->try_lock) {
568 rwc->contended = true;
572 /* trylock failed, we got to sleep */
573 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
578 if (!folio_mapped(folio)) {
580 put_anon_vma(anon_vma);
584 /* we pinned the anon_vma, its safe to sleep */
586 anon_vma_lock_read(anon_vma);
588 if (atomic_dec_and_test(&anon_vma->refcount)) {
590 * Oops, we held the last refcount, release the lock
591 * and bail -- can't simply use put_anon_vma() because
592 * we'll deadlock on the anon_vma_lock_write() recursion.
594 anon_vma_unlock_read(anon_vma);
595 __put_anon_vma(anon_vma);
606 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
608 * Flush TLB entries for recently unmapped pages from remote CPUs. It is
609 * important if a PTE was dirty when it was unmapped that it's flushed
610 * before any IO is initiated on the page to prevent lost writes. Similarly,
611 * it must be flushed before freeing to prevent data leakage.
613 void try_to_unmap_flush(void)
615 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc;
617 if (!tlb_ubc->flush_required)
620 arch_tlbbatch_flush(&tlb_ubc->arch);
621 tlb_ubc->flush_required = false;
622 tlb_ubc->writable = false;
625 /* Flush iff there are potentially writable TLB entries that can race with IO */
626 void try_to_unmap_flush_dirty(void)
628 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc;
630 if (tlb_ubc->writable)
631 try_to_unmap_flush();
635 * Bits 0-14 of mm->tlb_flush_batched record pending generations.
636 * Bits 16-30 of mm->tlb_flush_batched bit record flushed generations.
638 #define TLB_FLUSH_BATCH_FLUSHED_SHIFT 16
639 #define TLB_FLUSH_BATCH_PENDING_MASK \
640 ((1 << (TLB_FLUSH_BATCH_FLUSHED_SHIFT - 1)) - 1)
641 #define TLB_FLUSH_BATCH_PENDING_LARGE \
642 (TLB_FLUSH_BATCH_PENDING_MASK / 2)
644 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
646 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc;
649 arch_tlbbatch_add_mm(&tlb_ubc->arch, mm);
650 tlb_ubc->flush_required = true;
653 * Ensure compiler does not re-order the setting of tlb_flush_batched
654 * before the PTE is cleared.
657 batch = atomic_read(&mm->tlb_flush_batched);
659 if ((batch & TLB_FLUSH_BATCH_PENDING_MASK) > TLB_FLUSH_BATCH_PENDING_LARGE) {
661 * Prevent `pending' from catching up with `flushed' because of
662 * overflow. Reset `pending' and `flushed' to be 1 and 0 if
663 * `pending' becomes large.
665 if (!atomic_try_cmpxchg(&mm->tlb_flush_batched, &batch, 1))
668 atomic_inc(&mm->tlb_flush_batched);
672 * If the PTE was dirty then it's best to assume it's writable. The
673 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
674 * before the page is queued for IO.
677 tlb_ubc->writable = true;
681 * Returns true if the TLB flush should be deferred to the end of a batch of
682 * unmap operations to reduce IPIs.
684 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
686 bool should_defer = false;
688 if (!(flags & TTU_BATCH_FLUSH))
691 /* If remote CPUs need to be flushed then defer batch the flush */
692 if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
700 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
701 * releasing the PTL if TLB flushes are batched. It's possible for a parallel
702 * operation such as mprotect or munmap to race between reclaim unmapping
703 * the page and flushing the page. If this race occurs, it potentially allows
704 * access to data via a stale TLB entry. Tracking all mm's that have TLB
705 * batching in flight would be expensive during reclaim so instead track
706 * whether TLB batching occurred in the past and if so then do a flush here
707 * if required. This will cost one additional flush per reclaim cycle paid
708 * by the first operation at risk such as mprotect and mumap.
710 * This must be called under the PTL so that an access to tlb_flush_batched
711 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
714 void flush_tlb_batched_pending(struct mm_struct *mm)
716 int batch = atomic_read(&mm->tlb_flush_batched);
717 int pending = batch & TLB_FLUSH_BATCH_PENDING_MASK;
718 int flushed = batch >> TLB_FLUSH_BATCH_FLUSHED_SHIFT;
720 if (pending != flushed) {
723 * If the new TLB flushing is pending during flushing, leave
724 * mm->tlb_flush_batched as is, to avoid losing flushing.
726 atomic_cmpxchg(&mm->tlb_flush_batched, batch,
727 pending | (pending << TLB_FLUSH_BATCH_FLUSHED_SHIFT));
731 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
735 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
739 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
742 * At what user virtual address is page expected in vma?
743 * Caller should check the page is actually part of the vma.
745 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
747 struct folio *folio = page_folio(page);
748 if (folio_test_anon(folio)) {
749 struct anon_vma *page__anon_vma = folio_anon_vma(folio);
751 * Note: swapoff's unuse_vma() is more efficient with this
752 * check, and needs it to match anon_vma when KSM is active.
754 if (!vma->anon_vma || !page__anon_vma ||
755 vma->anon_vma->root != page__anon_vma->root)
757 } else if (!vma->vm_file) {
759 } else if (vma->vm_file->f_mapping != folio->mapping) {
763 return vma_address(page, vma);
767 * Returns the actual pmd_t* where we expect 'address' to be mapped from, or
768 * NULL if it doesn't exist. No guarantees / checks on what the pmd_t*
771 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
778 pgd = pgd_offset(mm, address);
779 if (!pgd_present(*pgd))
782 p4d = p4d_offset(pgd, address);
783 if (!p4d_present(*p4d))
786 pud = pud_offset(p4d, address);
787 if (!pud_present(*pud))
790 pmd = pmd_offset(pud, address);
795 struct folio_referenced_arg {
798 unsigned long vm_flags;
799 struct mem_cgroup *memcg;
802 * arg: folio_referenced_arg will be passed
804 static bool folio_referenced_one(struct folio *folio,
805 struct vm_area_struct *vma, unsigned long address, void *arg)
807 struct folio_referenced_arg *pra = arg;
808 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
811 while (page_vma_mapped_walk(&pvmw)) {
812 address = pvmw.address;
814 if ((vma->vm_flags & VM_LOCKED) &&
815 (!folio_test_large(folio) || !pvmw.pte)) {
816 /* Restore the mlock which got missed */
817 mlock_vma_folio(folio, vma, !pvmw.pte);
818 page_vma_mapped_walk_done(&pvmw);
819 pra->vm_flags |= VM_LOCKED;
820 return false; /* To break the loop */
824 if (lru_gen_enabled() && pte_young(*pvmw.pte)) {
825 lru_gen_look_around(&pvmw);
829 if (ptep_clear_flush_young_notify(vma, address,
832 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
833 if (pmdp_clear_flush_young_notify(vma, address,
837 /* unexpected pmd-mapped folio? */
845 folio_clear_idle(folio);
846 if (folio_test_clear_young(folio))
851 pra->vm_flags |= vma->vm_flags & ~VM_LOCKED;
855 return false; /* To break the loop */
860 static bool invalid_folio_referenced_vma(struct vm_area_struct *vma, void *arg)
862 struct folio_referenced_arg *pra = arg;
863 struct mem_cgroup *memcg = pra->memcg;
866 * Ignore references from this mapping if it has no recency. If the
867 * folio has been used in another mapping, we will catch it; if this
868 * other mapping is already gone, the unmap path will have set the
869 * referenced flag or activated the folio in zap_pte_range().
871 if (!vma_has_recency(vma))
875 * If we are reclaiming on behalf of a cgroup, skip counting on behalf
876 * of references from different cgroups.
878 if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
885 * folio_referenced() - Test if the folio was referenced.
886 * @folio: The folio to test.
887 * @is_locked: Caller holds lock on the folio.
888 * @memcg: target memory cgroup
889 * @vm_flags: A combination of all the vma->vm_flags which referenced the folio.
891 * Quick test_and_clear_referenced for all mappings of a folio,
893 * Return: The number of mappings which referenced the folio. Return -1 if
894 * the function bailed out due to rmap lock contention.
896 int folio_referenced(struct folio *folio, int is_locked,
897 struct mem_cgroup *memcg, unsigned long *vm_flags)
900 struct folio_referenced_arg pra = {
901 .mapcount = folio_mapcount(folio),
904 struct rmap_walk_control rwc = {
905 .rmap_one = folio_referenced_one,
907 .anon_lock = folio_lock_anon_vma_read,
909 .invalid_vma = invalid_folio_referenced_vma,
916 if (!folio_raw_mapping(folio))
919 if (!is_locked && (!folio_test_anon(folio) || folio_test_ksm(folio))) {
920 we_locked = folio_trylock(folio);
925 rmap_walk(folio, &rwc);
926 *vm_flags = pra.vm_flags;
931 return rwc.contended ? -1 : pra.referenced;
934 static int page_vma_mkclean_one(struct page_vma_mapped_walk *pvmw)
937 struct vm_area_struct *vma = pvmw->vma;
938 struct mmu_notifier_range range;
939 unsigned long address = pvmw->address;
942 * We have to assume the worse case ie pmd for invalidation. Note that
943 * the folio can not be freed from this function.
945 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 0,
946 vma->vm_mm, address, vma_address_end(pvmw));
947 mmu_notifier_invalidate_range_start(&range);
949 while (page_vma_mapped_walk(pvmw)) {
952 address = pvmw->address;
955 pte_t *pte = pvmw->pte;
957 if (!pte_dirty(*pte) && !pte_write(*pte))
960 flush_cache_page(vma, address, pte_pfn(*pte));
961 entry = ptep_clear_flush(vma, address, pte);
962 entry = pte_wrprotect(entry);
963 entry = pte_mkclean(entry);
964 set_pte_at(vma->vm_mm, address, pte, entry);
967 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
968 pmd_t *pmd = pvmw->pmd;
971 if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
974 flush_cache_range(vma, address,
975 address + HPAGE_PMD_SIZE);
976 entry = pmdp_invalidate(vma, address, pmd);
977 entry = pmd_wrprotect(entry);
978 entry = pmd_mkclean(entry);
979 set_pmd_at(vma->vm_mm, address, pmd, entry);
982 /* unexpected pmd-mapped folio? */
988 * No need to call mmu_notifier_invalidate_range() as we are
989 * downgrading page table protection not changing it to point
992 * See Documentation/mm/mmu_notifier.rst
998 mmu_notifier_invalidate_range_end(&range);
1003 static bool page_mkclean_one(struct folio *folio, struct vm_area_struct *vma,
1004 unsigned long address, void *arg)
1006 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, PVMW_SYNC);
1009 *cleaned += page_vma_mkclean_one(&pvmw);
1014 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
1016 if (vma->vm_flags & VM_SHARED)
1022 int folio_mkclean(struct folio *folio)
1025 struct address_space *mapping;
1026 struct rmap_walk_control rwc = {
1027 .arg = (void *)&cleaned,
1028 .rmap_one = page_mkclean_one,
1029 .invalid_vma = invalid_mkclean_vma,
1032 BUG_ON(!folio_test_locked(folio));
1034 if (!folio_mapped(folio))
1037 mapping = folio_mapping(folio);
1041 rmap_walk(folio, &rwc);
1045 EXPORT_SYMBOL_GPL(folio_mkclean);
1048 * pfn_mkclean_range - Cleans the PTEs (including PMDs) mapped with range of
1049 * [@pfn, @pfn + @nr_pages) at the specific offset (@pgoff)
1050 * within the @vma of shared mappings. And since clean PTEs
1051 * should also be readonly, write protects them too.
1053 * @nr_pages: number of physically contiguous pages srarting with @pfn.
1054 * @pgoff: page offset that the @pfn mapped with.
1055 * @vma: vma that @pfn mapped within.
1057 * Returns the number of cleaned PTEs (including PMDs).
1059 int pfn_mkclean_range(unsigned long pfn, unsigned long nr_pages, pgoff_t pgoff,
1060 struct vm_area_struct *vma)
1062 struct page_vma_mapped_walk pvmw = {
1064 .nr_pages = nr_pages,
1070 if (invalid_mkclean_vma(vma, NULL))
1073 pvmw.address = vma_pgoff_address(pgoff, nr_pages, vma);
1074 VM_BUG_ON_VMA(pvmw.address == -EFAULT, vma);
1076 return page_vma_mkclean_one(&pvmw);
1079 int folio_total_mapcount(struct folio *folio)
1081 int mapcount = folio_entire_mapcount(folio);
1085 /* In the common case, avoid the loop when no pages mapped by PTE */
1086 if (folio_nr_pages_mapped(folio) == 0)
1089 * Add all the PTE mappings of those pages mapped by PTE.
1090 * Limit the loop to folio_nr_pages_mapped()?
1091 * Perhaps: given all the raciness, that may be a good or a bad idea.
1093 nr_pages = folio_nr_pages(folio);
1094 for (i = 0; i < nr_pages; i++)
1095 mapcount += atomic_read(&folio_page(folio, i)->_mapcount);
1097 /* But each of those _mapcounts was based on -1 */
1098 mapcount += nr_pages;
1103 * page_move_anon_rmap - move a page to our anon_vma
1104 * @page: the page to move to our anon_vma
1105 * @vma: the vma the page belongs to
1107 * When a page belongs exclusively to one process after a COW event,
1108 * that page can be moved into the anon_vma that belongs to just that
1109 * process, so the rmap code will not search the parent or sibling
1112 void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)
1114 void *anon_vma = vma->anon_vma;
1115 struct folio *folio = page_folio(page);
1117 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1118 VM_BUG_ON_VMA(!anon_vma, vma);
1120 anon_vma += PAGE_MAPPING_ANON;
1122 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1123 * simultaneously, so a concurrent reader (eg folio_referenced()'s
1124 * folio_test_anon()) will not see one without the other.
1126 WRITE_ONCE(folio->mapping, anon_vma);
1127 SetPageAnonExclusive(page);
1131 * __page_set_anon_rmap - set up new anonymous rmap
1132 * @folio: Folio which contains page.
1133 * @page: Page to add to rmap.
1134 * @vma: VM area to add page to.
1135 * @address: User virtual address of the mapping
1136 * @exclusive: the page is exclusively owned by the current process
1138 static void __page_set_anon_rmap(struct folio *folio, struct page *page,
1139 struct vm_area_struct *vma, unsigned long address, int exclusive)
1141 struct anon_vma *anon_vma = vma->anon_vma;
1145 if (folio_test_anon(folio))
1149 * If the page isn't exclusively mapped into this vma,
1150 * we must use the _oldest_ possible anon_vma for the
1154 anon_vma = anon_vma->root;
1157 * page_idle does a lockless/optimistic rmap scan on folio->mapping.
1158 * Make sure the compiler doesn't split the stores of anon_vma and
1159 * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code
1160 * could mistake the mapping for a struct address_space and crash.
1162 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1163 WRITE_ONCE(folio->mapping, (struct address_space *) anon_vma);
1164 folio->index = linear_page_index(vma, address);
1167 SetPageAnonExclusive(page);
1171 * __page_check_anon_rmap - sanity check anonymous rmap addition
1172 * @page: the page to add the mapping to
1173 * @vma: the vm area in which the mapping is added
1174 * @address: the user virtual address mapped
1176 static void __page_check_anon_rmap(struct page *page,
1177 struct vm_area_struct *vma, unsigned long address)
1179 struct folio *folio = page_folio(page);
1181 * The page's anon-rmap details (mapping and index) are guaranteed to
1182 * be set up correctly at this point.
1184 * We have exclusion against page_add_anon_rmap because the caller
1185 * always holds the page locked.
1187 * We have exclusion against page_add_new_anon_rmap because those pages
1188 * are initially only visible via the pagetables, and the pte is locked
1189 * over the call to page_add_new_anon_rmap.
1191 VM_BUG_ON_FOLIO(folio_anon_vma(folio)->root != vma->anon_vma->root,
1193 VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address),
1198 * page_add_anon_rmap - add pte mapping to an anonymous page
1199 * @page: the page to add the mapping to
1200 * @vma: the vm area in which the mapping is added
1201 * @address: the user virtual address mapped
1202 * @flags: the rmap flags
1204 * The caller needs to hold the pte lock, and the page must be locked in
1205 * the anon_vma case: to serialize mapping,index checking after setting,
1206 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1207 * (but PageKsm is never downgraded to PageAnon).
1209 void page_add_anon_rmap(struct page *page, struct vm_area_struct *vma,
1210 unsigned long address, rmap_t flags)
1212 struct folio *folio = page_folio(page);
1213 atomic_t *mapped = &folio->_nr_pages_mapped;
1214 int nr = 0, nr_pmdmapped = 0;
1215 bool compound = flags & RMAP_COMPOUND;
1218 /* Is page being mapped by PTE? Is this its first map to be added? */
1219 if (likely(!compound)) {
1220 first = atomic_inc_and_test(&page->_mapcount);
1222 if (first && folio_test_large(folio)) {
1223 nr = atomic_inc_return_relaxed(mapped);
1224 nr = (nr < COMPOUND_MAPPED);
1226 } else if (folio_test_pmd_mappable(folio)) {
1227 /* That test is redundant: it's for safety or to optimize out */
1229 first = atomic_inc_and_test(&folio->_entire_mapcount);
1231 nr = atomic_add_return_relaxed(COMPOUND_MAPPED, mapped);
1232 if (likely(nr < COMPOUND_MAPPED + COMPOUND_MAPPED)) {
1233 nr_pmdmapped = folio_nr_pages(folio);
1234 nr = nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED);
1235 /* Raced ahead of a remove and another add? */
1236 if (unlikely(nr < 0))
1239 /* Raced ahead of a remove of COMPOUND_MAPPED */
1245 VM_BUG_ON_PAGE(!first && (flags & RMAP_EXCLUSIVE), page);
1246 VM_BUG_ON_PAGE(!first && PageAnonExclusive(page), page);
1249 __lruvec_stat_mod_folio(folio, NR_ANON_THPS, nr_pmdmapped);
1251 __lruvec_stat_mod_folio(folio, NR_ANON_MAPPED, nr);
1253 if (likely(!folio_test_ksm(folio))) {
1254 /* address might be in next vma when migration races vma_merge */
1256 __page_set_anon_rmap(folio, page, vma, address,
1257 !!(flags & RMAP_EXCLUSIVE));
1259 __page_check_anon_rmap(page, vma, address);
1262 mlock_vma_folio(folio, vma, compound);
1266 * folio_add_new_anon_rmap - Add mapping to a new anonymous folio.
1267 * @folio: The folio to add the mapping to.
1268 * @vma: the vm area in which the mapping is added
1269 * @address: the user virtual address mapped
1271 * Like page_add_anon_rmap() but must only be called on *new* folios.
1272 * This means the inc-and-test can be bypassed.
1273 * The folio does not have to be locked.
1275 * If the folio is large, it is accounted as a THP. As the folio
1276 * is new, it's assumed to be mapped exclusively by a single process.
1278 void folio_add_new_anon_rmap(struct folio *folio, struct vm_area_struct *vma,
1279 unsigned long address)
1283 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1284 __folio_set_swapbacked(folio);
1286 if (likely(!folio_test_pmd_mappable(folio))) {
1287 /* increment count (starts at -1) */
1288 atomic_set(&folio->_mapcount, 0);
1291 /* increment count (starts at -1) */
1292 atomic_set(&folio->_entire_mapcount, 0);
1293 atomic_set(&folio->_nr_pages_mapped, COMPOUND_MAPPED);
1294 nr = folio_nr_pages(folio);
1295 __lruvec_stat_mod_folio(folio, NR_ANON_THPS, nr);
1298 __lruvec_stat_mod_folio(folio, NR_ANON_MAPPED, nr);
1299 __page_set_anon_rmap(folio, &folio->page, vma, address, 1);
1303 * page_add_file_rmap - add pte mapping to a file page
1304 * @page: the page to add the mapping to
1305 * @vma: the vm area in which the mapping is added
1306 * @compound: charge the page as compound or small page
1308 * The caller needs to hold the pte lock.
1310 void page_add_file_rmap(struct page *page, struct vm_area_struct *vma,
1313 struct folio *folio = page_folio(page);
1314 atomic_t *mapped = &folio->_nr_pages_mapped;
1315 int nr = 0, nr_pmdmapped = 0;
1318 VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page);
1320 /* Is page being mapped by PTE? Is this its first map to be added? */
1321 if (likely(!compound)) {
1322 first = atomic_inc_and_test(&page->_mapcount);
1324 if (first && folio_test_large(folio)) {
1325 nr = atomic_inc_return_relaxed(mapped);
1326 nr = (nr < COMPOUND_MAPPED);
1328 } else if (folio_test_pmd_mappable(folio)) {
1329 /* That test is redundant: it's for safety or to optimize out */
1331 first = atomic_inc_and_test(&folio->_entire_mapcount);
1333 nr = atomic_add_return_relaxed(COMPOUND_MAPPED, mapped);
1334 if (likely(nr < COMPOUND_MAPPED + COMPOUND_MAPPED)) {
1335 nr_pmdmapped = folio_nr_pages(folio);
1336 nr = nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED);
1337 /* Raced ahead of a remove and another add? */
1338 if (unlikely(nr < 0))
1341 /* Raced ahead of a remove of COMPOUND_MAPPED */
1348 __lruvec_stat_mod_folio(folio, folio_test_swapbacked(folio) ?
1349 NR_SHMEM_PMDMAPPED : NR_FILE_PMDMAPPED, nr_pmdmapped);
1351 __lruvec_stat_mod_folio(folio, NR_FILE_MAPPED, nr);
1353 mlock_vma_folio(folio, vma, compound);
1357 * page_remove_rmap - take down pte mapping from a page
1358 * @page: page to remove mapping from
1359 * @vma: the vm area from which the mapping is removed
1360 * @compound: uncharge the page as compound or small page
1362 * The caller needs to hold the pte lock.
1364 void page_remove_rmap(struct page *page, struct vm_area_struct *vma,
1367 struct folio *folio = page_folio(page);
1368 atomic_t *mapped = &folio->_nr_pages_mapped;
1369 int nr = 0, nr_pmdmapped = 0;
1371 enum node_stat_item idx;
1373 VM_BUG_ON_PAGE(compound && !PageHead(page), page);
1375 /* Hugetlb pages are not counted in NR_*MAPPED */
1376 if (unlikely(folio_test_hugetlb(folio))) {
1377 /* hugetlb pages are always mapped with pmds */
1378 atomic_dec(&folio->_entire_mapcount);
1382 /* Is page being unmapped by PTE? Is this its last map to be removed? */
1383 if (likely(!compound)) {
1384 last = atomic_add_negative(-1, &page->_mapcount);
1386 if (last && folio_test_large(folio)) {
1387 nr = atomic_dec_return_relaxed(mapped);
1388 nr = (nr < COMPOUND_MAPPED);
1390 } else if (folio_test_pmd_mappable(folio)) {
1391 /* That test is redundant: it's for safety or to optimize out */
1393 last = atomic_add_negative(-1, &folio->_entire_mapcount);
1395 nr = atomic_sub_return_relaxed(COMPOUND_MAPPED, mapped);
1396 if (likely(nr < COMPOUND_MAPPED)) {
1397 nr_pmdmapped = folio_nr_pages(folio);
1398 nr = nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED);
1399 /* Raced ahead of another remove and an add? */
1400 if (unlikely(nr < 0))
1403 /* An add of COMPOUND_MAPPED raced ahead */
1410 if (folio_test_anon(folio))
1412 else if (folio_test_swapbacked(folio))
1413 idx = NR_SHMEM_PMDMAPPED;
1415 idx = NR_FILE_PMDMAPPED;
1416 __lruvec_stat_mod_folio(folio, idx, -nr_pmdmapped);
1419 idx = folio_test_anon(folio) ? NR_ANON_MAPPED : NR_FILE_MAPPED;
1420 __lruvec_stat_mod_folio(folio, idx, -nr);
1423 * Queue anon THP for deferred split if at least one
1424 * page of the folio is unmapped and at least one page
1427 if (folio_test_pmd_mappable(folio) && folio_test_anon(folio))
1428 if (!compound || nr < nr_pmdmapped)
1429 deferred_split_folio(folio);
1433 * It would be tidy to reset folio_test_anon mapping when fully
1434 * unmapped, but that might overwrite a racing page_add_anon_rmap
1435 * which increments mapcount after us but sets mapping before us:
1436 * so leave the reset to free_pages_prepare, and remember that
1437 * it's only reliable while mapped.
1440 munlock_vma_folio(folio, vma, compound);
1444 * @arg: enum ttu_flags will be passed to this argument
1446 static bool try_to_unmap_one(struct folio *folio, struct vm_area_struct *vma,
1447 unsigned long address, void *arg)
1449 struct mm_struct *mm = vma->vm_mm;
1450 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
1452 struct page *subpage;
1453 bool anon_exclusive, ret = true;
1454 struct mmu_notifier_range range;
1455 enum ttu_flags flags = (enum ttu_flags)(long)arg;
1458 * When racing against e.g. zap_pte_range() on another cpu,
1459 * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1460 * try_to_unmap() may return before page_mapped() has become false,
1461 * if page table locking is skipped: use TTU_SYNC to wait for that.
1463 if (flags & TTU_SYNC)
1464 pvmw.flags = PVMW_SYNC;
1466 if (flags & TTU_SPLIT_HUGE_PMD)
1467 split_huge_pmd_address(vma, address, false, folio);
1470 * For THP, we have to assume the worse case ie pmd for invalidation.
1471 * For hugetlb, it could be much worse if we need to do pud
1472 * invalidation in the case of pmd sharing.
1474 * Note that the folio can not be freed in this function as call of
1475 * try_to_unmap() must hold a reference on the folio.
1477 range.end = vma_address_end(&pvmw);
1478 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1479 address, range.end);
1480 if (folio_test_hugetlb(folio)) {
1482 * If sharing is possible, start and end will be adjusted
1485 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1488 mmu_notifier_invalidate_range_start(&range);
1490 while (page_vma_mapped_walk(&pvmw)) {
1491 /* Unexpected PMD-mapped THP? */
1492 VM_BUG_ON_FOLIO(!pvmw.pte, folio);
1495 * If the folio is in an mlock()d vma, we must not swap it out.
1497 if (!(flags & TTU_IGNORE_MLOCK) &&
1498 (vma->vm_flags & VM_LOCKED)) {
1499 /* Restore the mlock which got missed */
1500 mlock_vma_folio(folio, vma, false);
1501 page_vma_mapped_walk_done(&pvmw);
1506 subpage = folio_page(folio,
1507 pte_pfn(*pvmw.pte) - folio_pfn(folio));
1508 address = pvmw.address;
1509 anon_exclusive = folio_test_anon(folio) &&
1510 PageAnonExclusive(subpage);
1512 if (folio_test_hugetlb(folio)) {
1513 bool anon = folio_test_anon(folio);
1516 * The try_to_unmap() is only passed a hugetlb page
1517 * in the case where the hugetlb page is poisoned.
1519 VM_BUG_ON_PAGE(!PageHWPoison(subpage), subpage);
1521 * huge_pmd_unshare may unmap an entire PMD page.
1522 * There is no way of knowing exactly which PMDs may
1523 * be cached for this mm, so we must flush them all.
1524 * start/end were already adjusted above to cover this
1527 flush_cache_range(vma, range.start, range.end);
1530 * To call huge_pmd_unshare, i_mmap_rwsem must be
1531 * held in write mode. Caller needs to explicitly
1532 * do this outside rmap routines.
1534 * We also must hold hugetlb vma_lock in write mode.
1535 * Lock order dictates acquiring vma_lock BEFORE
1536 * i_mmap_rwsem. We can only try lock here and fail
1540 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
1541 if (!hugetlb_vma_trylock_write(vma)) {
1542 page_vma_mapped_walk_done(&pvmw);
1546 if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) {
1547 hugetlb_vma_unlock_write(vma);
1548 flush_tlb_range(vma,
1549 range.start, range.end);
1550 mmu_notifier_invalidate_range(mm,
1551 range.start, range.end);
1553 * The ref count of the PMD page was
1554 * dropped which is part of the way map
1555 * counting is done for shared PMDs.
1556 * Return 'true' here. When there is
1557 * no other sharing, huge_pmd_unshare
1558 * returns false and we will unmap the
1559 * actual page and drop map count
1562 page_vma_mapped_walk_done(&pvmw);
1565 hugetlb_vma_unlock_write(vma);
1567 pteval = huge_ptep_clear_flush(vma, address, pvmw.pte);
1569 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1570 /* Nuke the page table entry. */
1571 if (should_defer_flush(mm, flags)) {
1573 * We clear the PTE but do not flush so potentially
1574 * a remote CPU could still be writing to the folio.
1575 * If the entry was previously clean then the
1576 * architecture must guarantee that a clear->dirty
1577 * transition on a cached TLB entry is written through
1578 * and traps if the PTE is unmapped.
1580 pteval = ptep_get_and_clear(mm, address, pvmw.pte);
1582 set_tlb_ubc_flush_pending(mm, pte_dirty(pteval));
1584 pteval = ptep_clear_flush(vma, address, pvmw.pte);
1589 * Now the pte is cleared. If this pte was uffd-wp armed,
1590 * we may want to replace a none pte with a marker pte if
1591 * it's file-backed, so we don't lose the tracking info.
1593 pte_install_uffd_wp_if_needed(vma, address, pvmw.pte, pteval);
1595 /* Set the dirty flag on the folio now the pte is gone. */
1596 if (pte_dirty(pteval))
1597 folio_mark_dirty(folio);
1599 /* Update high watermark before we lower rss */
1600 update_hiwater_rss(mm);
1602 if (PageHWPoison(subpage) && (flags & TTU_HWPOISON)) {
1603 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1604 if (folio_test_hugetlb(folio)) {
1605 hugetlb_count_sub(folio_nr_pages(folio), mm);
1606 set_huge_pte_at(mm, address, pvmw.pte, pteval);
1608 dec_mm_counter(mm, mm_counter(&folio->page));
1609 set_pte_at(mm, address, pvmw.pte, pteval);
1612 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
1614 * The guest indicated that the page content is of no
1615 * interest anymore. Simply discard the pte, vmscan
1616 * will take care of the rest.
1617 * A future reference will then fault in a new zero
1618 * page. When userfaultfd is active, we must not drop
1619 * this page though, as its main user (postcopy
1620 * migration) will not expect userfaults on already
1623 dec_mm_counter(mm, mm_counter(&folio->page));
1624 /* We have to invalidate as we cleared the pte */
1625 mmu_notifier_invalidate_range(mm, address,
1626 address + PAGE_SIZE);
1627 } else if (folio_test_anon(folio)) {
1628 swp_entry_t entry = { .val = page_private(subpage) };
1631 * Store the swap location in the pte.
1632 * See handle_pte_fault() ...
1634 if (unlikely(folio_test_swapbacked(folio) !=
1635 folio_test_swapcache(folio))) {
1638 /* We have to invalidate as we cleared the pte */
1639 mmu_notifier_invalidate_range(mm, address,
1640 address + PAGE_SIZE);
1641 page_vma_mapped_walk_done(&pvmw);
1645 /* MADV_FREE page check */
1646 if (!folio_test_swapbacked(folio)) {
1647 int ref_count, map_count;
1650 * Synchronize with gup_pte_range():
1651 * - clear PTE; barrier; read refcount
1652 * - inc refcount; barrier; read PTE
1656 ref_count = folio_ref_count(folio);
1657 map_count = folio_mapcount(folio);
1660 * Order reads for page refcount and dirty flag
1661 * (see comments in __remove_mapping()).
1666 * The only page refs must be one from isolation
1667 * plus the rmap(s) (dropped by discard:).
1669 if (ref_count == 1 + map_count &&
1670 !folio_test_dirty(folio)) {
1671 /* Invalidate as we cleared the pte */
1672 mmu_notifier_invalidate_range(mm,
1673 address, address + PAGE_SIZE);
1674 dec_mm_counter(mm, MM_ANONPAGES);
1679 * If the folio was redirtied, it cannot be
1680 * discarded. Remap the page to page table.
1682 set_pte_at(mm, address, pvmw.pte, pteval);
1683 folio_set_swapbacked(folio);
1685 page_vma_mapped_walk_done(&pvmw);
1689 if (swap_duplicate(entry) < 0) {
1690 set_pte_at(mm, address, pvmw.pte, pteval);
1692 page_vma_mapped_walk_done(&pvmw);
1695 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1697 set_pte_at(mm, address, pvmw.pte, pteval);
1699 page_vma_mapped_walk_done(&pvmw);
1703 /* See page_try_share_anon_rmap(): clear PTE first. */
1704 if (anon_exclusive &&
1705 page_try_share_anon_rmap(subpage)) {
1707 set_pte_at(mm, address, pvmw.pte, pteval);
1709 page_vma_mapped_walk_done(&pvmw);
1712 if (list_empty(&mm->mmlist)) {
1713 spin_lock(&mmlist_lock);
1714 if (list_empty(&mm->mmlist))
1715 list_add(&mm->mmlist, &init_mm.mmlist);
1716 spin_unlock(&mmlist_lock);
1718 dec_mm_counter(mm, MM_ANONPAGES);
1719 inc_mm_counter(mm, MM_SWAPENTS);
1720 swp_pte = swp_entry_to_pte(entry);
1722 swp_pte = pte_swp_mkexclusive(swp_pte);
1723 if (pte_soft_dirty(pteval))
1724 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1725 if (pte_uffd_wp(pteval))
1726 swp_pte = pte_swp_mkuffd_wp(swp_pte);
1727 set_pte_at(mm, address, pvmw.pte, swp_pte);
1728 /* Invalidate as we cleared the pte */
1729 mmu_notifier_invalidate_range(mm, address,
1730 address + PAGE_SIZE);
1733 * This is a locked file-backed folio,
1734 * so it cannot be removed from the page
1735 * cache and replaced by a new folio before
1736 * mmu_notifier_invalidate_range_end, so no
1737 * concurrent thread might update its page table
1738 * to point at a new folio while a device is
1739 * still using this folio.
1741 * See Documentation/mm/mmu_notifier.rst
1743 dec_mm_counter(mm, mm_counter_file(&folio->page));
1747 * No need to call mmu_notifier_invalidate_range() it has be
1748 * done above for all cases requiring it to happen under page
1749 * table lock before mmu_notifier_invalidate_range_end()
1751 * See Documentation/mm/mmu_notifier.rst
1753 page_remove_rmap(subpage, vma, folio_test_hugetlb(folio));
1754 if (vma->vm_flags & VM_LOCKED)
1755 mlock_drain_local();
1759 mmu_notifier_invalidate_range_end(&range);
1764 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1766 return vma_is_temporary_stack(vma);
1769 static int folio_not_mapped(struct folio *folio)
1771 return !folio_mapped(folio);
1775 * try_to_unmap - Try to remove all page table mappings to a folio.
1776 * @folio: The folio to unmap.
1777 * @flags: action and flags
1779 * Tries to remove all the page table entries which are mapping this
1780 * folio. It is the caller's responsibility to check if the folio is
1781 * still mapped if needed (use TTU_SYNC to prevent accounting races).
1783 * Context: Caller must hold the folio lock.
1785 void try_to_unmap(struct folio *folio, enum ttu_flags flags)
1787 struct rmap_walk_control rwc = {
1788 .rmap_one = try_to_unmap_one,
1789 .arg = (void *)flags,
1790 .done = folio_not_mapped,
1791 .anon_lock = folio_lock_anon_vma_read,
1794 if (flags & TTU_RMAP_LOCKED)
1795 rmap_walk_locked(folio, &rwc);
1797 rmap_walk(folio, &rwc);
1801 * @arg: enum ttu_flags will be passed to this argument.
1803 * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs
1804 * containing migration entries.
1806 static bool try_to_migrate_one(struct folio *folio, struct vm_area_struct *vma,
1807 unsigned long address, void *arg)
1809 struct mm_struct *mm = vma->vm_mm;
1810 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
1812 struct page *subpage;
1813 bool anon_exclusive, ret = true;
1814 struct mmu_notifier_range range;
1815 enum ttu_flags flags = (enum ttu_flags)(long)arg;
1818 * When racing against e.g. zap_pte_range() on another cpu,
1819 * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1820 * try_to_migrate() may return before page_mapped() has become false,
1821 * if page table locking is skipped: use TTU_SYNC to wait for that.
1823 if (flags & TTU_SYNC)
1824 pvmw.flags = PVMW_SYNC;
1827 * unmap_page() in mm/huge_memory.c is the only user of migration with
1828 * TTU_SPLIT_HUGE_PMD and it wants to freeze.
1830 if (flags & TTU_SPLIT_HUGE_PMD)
1831 split_huge_pmd_address(vma, address, true, folio);
1834 * For THP, we have to assume the worse case ie pmd for invalidation.
1835 * For hugetlb, it could be much worse if we need to do pud
1836 * invalidation in the case of pmd sharing.
1838 * Note that the page can not be free in this function as call of
1839 * try_to_unmap() must hold a reference on the page.
1841 range.end = vma_address_end(&pvmw);
1842 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1843 address, range.end);
1844 if (folio_test_hugetlb(folio)) {
1846 * If sharing is possible, start and end will be adjusted
1849 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1852 mmu_notifier_invalidate_range_start(&range);
1854 while (page_vma_mapped_walk(&pvmw)) {
1855 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1856 /* PMD-mapped THP migration entry */
1858 subpage = folio_page(folio,
1859 pmd_pfn(*pvmw.pmd) - folio_pfn(folio));
1860 VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) ||
1861 !folio_test_pmd_mappable(folio), folio);
1863 if (set_pmd_migration_entry(&pvmw, subpage)) {
1865 page_vma_mapped_walk_done(&pvmw);
1872 /* Unexpected PMD-mapped THP? */
1873 VM_BUG_ON_FOLIO(!pvmw.pte, folio);
1875 if (folio_is_zone_device(folio)) {
1877 * Our PTE is a non-present device exclusive entry and
1878 * calculating the subpage as for the common case would
1879 * result in an invalid pointer.
1881 * Since only PAGE_SIZE pages can currently be
1882 * migrated, just set it to page. This will need to be
1883 * changed when hugepage migrations to device private
1884 * memory are supported.
1886 VM_BUG_ON_FOLIO(folio_nr_pages(folio) > 1, folio);
1887 subpage = &folio->page;
1889 subpage = folio_page(folio,
1890 pte_pfn(*pvmw.pte) - folio_pfn(folio));
1892 address = pvmw.address;
1893 anon_exclusive = folio_test_anon(folio) &&
1894 PageAnonExclusive(subpage);
1896 if (folio_test_hugetlb(folio)) {
1897 bool anon = folio_test_anon(folio);
1900 * huge_pmd_unshare may unmap an entire PMD page.
1901 * There is no way of knowing exactly which PMDs may
1902 * be cached for this mm, so we must flush them all.
1903 * start/end were already adjusted above to cover this
1906 flush_cache_range(vma, range.start, range.end);
1909 * To call huge_pmd_unshare, i_mmap_rwsem must be
1910 * held in write mode. Caller needs to explicitly
1911 * do this outside rmap routines.
1913 * We also must hold hugetlb vma_lock in write mode.
1914 * Lock order dictates acquiring vma_lock BEFORE
1915 * i_mmap_rwsem. We can only try lock here and
1916 * fail if unsuccessful.
1919 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
1920 if (!hugetlb_vma_trylock_write(vma)) {
1921 page_vma_mapped_walk_done(&pvmw);
1925 if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) {
1926 hugetlb_vma_unlock_write(vma);
1927 flush_tlb_range(vma,
1928 range.start, range.end);
1929 mmu_notifier_invalidate_range(mm,
1930 range.start, range.end);
1933 * The ref count of the PMD page was
1934 * dropped which is part of the way map
1935 * counting is done for shared PMDs.
1936 * Return 'true' here. When there is
1937 * no other sharing, huge_pmd_unshare
1938 * returns false and we will unmap the
1939 * actual page and drop map count
1942 page_vma_mapped_walk_done(&pvmw);
1945 hugetlb_vma_unlock_write(vma);
1947 /* Nuke the hugetlb page table entry */
1948 pteval = huge_ptep_clear_flush(vma, address, pvmw.pte);
1950 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1951 /* Nuke the page table entry. */
1952 if (should_defer_flush(mm, flags)) {
1954 * We clear the PTE but do not flush so potentially
1955 * a remote CPU could still be writing to the folio.
1956 * If the entry was previously clean then the
1957 * architecture must guarantee that a clear->dirty
1958 * transition on a cached TLB entry is written through
1959 * and traps if the PTE is unmapped.
1961 pteval = ptep_get_and_clear(mm, address, pvmw.pte);
1963 set_tlb_ubc_flush_pending(mm, pte_dirty(pteval));
1965 pteval = ptep_clear_flush(vma, address, pvmw.pte);
1969 /* Set the dirty flag on the folio now the pte is gone. */
1970 if (pte_dirty(pteval))
1971 folio_mark_dirty(folio);
1973 /* Update high watermark before we lower rss */
1974 update_hiwater_rss(mm);
1976 if (folio_is_device_private(folio)) {
1977 unsigned long pfn = folio_pfn(folio);
1982 BUG_ON(page_try_share_anon_rmap(subpage));
1985 * Store the pfn of the page in a special migration
1986 * pte. do_swap_page() will wait until the migration
1987 * pte is removed and then restart fault handling.
1989 entry = pte_to_swp_entry(pteval);
1990 if (is_writable_device_private_entry(entry))
1991 entry = make_writable_migration_entry(pfn);
1992 else if (anon_exclusive)
1993 entry = make_readable_exclusive_migration_entry(pfn);
1995 entry = make_readable_migration_entry(pfn);
1996 swp_pte = swp_entry_to_pte(entry);
1999 * pteval maps a zone device page and is therefore
2002 if (pte_swp_soft_dirty(pteval))
2003 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2004 if (pte_swp_uffd_wp(pteval))
2005 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2006 set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte);
2007 trace_set_migration_pte(pvmw.address, pte_val(swp_pte),
2008 compound_order(&folio->page));
2010 * No need to invalidate here it will synchronize on
2011 * against the special swap migration pte.
2013 } else if (PageHWPoison(subpage)) {
2014 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
2015 if (folio_test_hugetlb(folio)) {
2016 hugetlb_count_sub(folio_nr_pages(folio), mm);
2017 set_huge_pte_at(mm, address, pvmw.pte, pteval);
2019 dec_mm_counter(mm, mm_counter(&folio->page));
2020 set_pte_at(mm, address, pvmw.pte, pteval);
2023 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
2025 * The guest indicated that the page content is of no
2026 * interest anymore. Simply discard the pte, vmscan
2027 * will take care of the rest.
2028 * A future reference will then fault in a new zero
2029 * page. When userfaultfd is active, we must not drop
2030 * this page though, as its main user (postcopy
2031 * migration) will not expect userfaults on already
2034 dec_mm_counter(mm, mm_counter(&folio->page));
2035 /* We have to invalidate as we cleared the pte */
2036 mmu_notifier_invalidate_range(mm, address,
2037 address + PAGE_SIZE);
2042 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
2043 if (folio_test_hugetlb(folio))
2044 set_huge_pte_at(mm, address, pvmw.pte, pteval);
2046 set_pte_at(mm, address, pvmw.pte, pteval);
2048 page_vma_mapped_walk_done(&pvmw);
2051 VM_BUG_ON_PAGE(pte_write(pteval) && folio_test_anon(folio) &&
2052 !anon_exclusive, subpage);
2054 /* See page_try_share_anon_rmap(): clear PTE first. */
2055 if (anon_exclusive &&
2056 page_try_share_anon_rmap(subpage)) {
2057 if (folio_test_hugetlb(folio))
2058 set_huge_pte_at(mm, address, pvmw.pte, pteval);
2060 set_pte_at(mm, address, pvmw.pte, pteval);
2062 page_vma_mapped_walk_done(&pvmw);
2067 * Store the pfn of the page in a special migration
2068 * pte. do_swap_page() will wait until the migration
2069 * pte is removed and then restart fault handling.
2071 if (pte_write(pteval))
2072 entry = make_writable_migration_entry(
2073 page_to_pfn(subpage));
2074 else if (anon_exclusive)
2075 entry = make_readable_exclusive_migration_entry(
2076 page_to_pfn(subpage));
2078 entry = make_readable_migration_entry(
2079 page_to_pfn(subpage));
2080 if (pte_young(pteval))
2081 entry = make_migration_entry_young(entry);
2082 if (pte_dirty(pteval))
2083 entry = make_migration_entry_dirty(entry);
2084 swp_pte = swp_entry_to_pte(entry);
2085 if (pte_soft_dirty(pteval))
2086 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2087 if (pte_uffd_wp(pteval))
2088 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2089 if (folio_test_hugetlb(folio))
2090 set_huge_pte_at(mm, address, pvmw.pte, swp_pte);
2092 set_pte_at(mm, address, pvmw.pte, swp_pte);
2093 trace_set_migration_pte(address, pte_val(swp_pte),
2094 compound_order(&folio->page));
2096 * No need to invalidate here it will synchronize on
2097 * against the special swap migration pte.
2102 * No need to call mmu_notifier_invalidate_range() it has be
2103 * done above for all cases requiring it to happen under page
2104 * table lock before mmu_notifier_invalidate_range_end()
2106 * See Documentation/mm/mmu_notifier.rst
2108 page_remove_rmap(subpage, vma, folio_test_hugetlb(folio));
2109 if (vma->vm_flags & VM_LOCKED)
2110 mlock_drain_local();
2114 mmu_notifier_invalidate_range_end(&range);
2120 * try_to_migrate - try to replace all page table mappings with swap entries
2121 * @folio: the folio to replace page table entries for
2122 * @flags: action and flags
2124 * Tries to remove all the page table entries which are mapping this folio and
2125 * replace them with special swap entries. Caller must hold the folio lock.
2127 void try_to_migrate(struct folio *folio, enum ttu_flags flags)
2129 struct rmap_walk_control rwc = {
2130 .rmap_one = try_to_migrate_one,
2131 .arg = (void *)flags,
2132 .done = folio_not_mapped,
2133 .anon_lock = folio_lock_anon_vma_read,
2137 * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and
2138 * TTU_SPLIT_HUGE_PMD, TTU_SYNC, and TTU_BATCH_FLUSH flags.
2140 if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
2141 TTU_SYNC | TTU_BATCH_FLUSH)))
2144 if (folio_is_zone_device(folio) &&
2145 (!folio_is_device_private(folio) && !folio_is_device_coherent(folio)))
2149 * During exec, a temporary VMA is setup and later moved.
2150 * The VMA is moved under the anon_vma lock but not the
2151 * page tables leading to a race where migration cannot
2152 * find the migration ptes. Rather than increasing the
2153 * locking requirements of exec(), migration skips
2154 * temporary VMAs until after exec() completes.
2156 if (!folio_test_ksm(folio) && folio_test_anon(folio))
2157 rwc.invalid_vma = invalid_migration_vma;
2159 if (flags & TTU_RMAP_LOCKED)
2160 rmap_walk_locked(folio, &rwc);
2162 rmap_walk(folio, &rwc);
2165 #ifdef CONFIG_DEVICE_PRIVATE
2166 struct make_exclusive_args {
2167 struct mm_struct *mm;
2168 unsigned long address;
2173 static bool page_make_device_exclusive_one(struct folio *folio,
2174 struct vm_area_struct *vma, unsigned long address, void *priv)
2176 struct mm_struct *mm = vma->vm_mm;
2177 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
2178 struct make_exclusive_args *args = priv;
2180 struct page *subpage;
2182 struct mmu_notifier_range range;
2186 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
2187 vma->vm_mm, address, min(vma->vm_end,
2188 address + folio_size(folio)),
2190 mmu_notifier_invalidate_range_start(&range);
2192 while (page_vma_mapped_walk(&pvmw)) {
2193 /* Unexpected PMD-mapped THP? */
2194 VM_BUG_ON_FOLIO(!pvmw.pte, folio);
2196 if (!pte_present(*pvmw.pte)) {
2198 page_vma_mapped_walk_done(&pvmw);
2202 subpage = folio_page(folio,
2203 pte_pfn(*pvmw.pte) - folio_pfn(folio));
2204 address = pvmw.address;
2206 /* Nuke the page table entry. */
2207 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
2208 pteval = ptep_clear_flush(vma, address, pvmw.pte);
2210 /* Set the dirty flag on the folio now the pte is gone. */
2211 if (pte_dirty(pteval))
2212 folio_mark_dirty(folio);
2215 * Check that our target page is still mapped at the expected
2218 if (args->mm == mm && args->address == address &&
2223 * Store the pfn of the page in a special migration
2224 * pte. do_swap_page() will wait until the migration
2225 * pte is removed and then restart fault handling.
2227 if (pte_write(pteval))
2228 entry = make_writable_device_exclusive_entry(
2229 page_to_pfn(subpage));
2231 entry = make_readable_device_exclusive_entry(
2232 page_to_pfn(subpage));
2233 swp_pte = swp_entry_to_pte(entry);
2234 if (pte_soft_dirty(pteval))
2235 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2236 if (pte_uffd_wp(pteval))
2237 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2239 set_pte_at(mm, address, pvmw.pte, swp_pte);
2242 * There is a reference on the page for the swap entry which has
2243 * been removed, so shouldn't take another.
2245 page_remove_rmap(subpage, vma, false);
2248 mmu_notifier_invalidate_range_end(&range);
2254 * folio_make_device_exclusive - Mark the folio exclusively owned by a device.
2255 * @folio: The folio to replace page table entries for.
2256 * @mm: The mm_struct where the folio is expected to be mapped.
2257 * @address: Address where the folio is expected to be mapped.
2258 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier callbacks
2260 * Tries to remove all the page table entries which are mapping this
2261 * folio and replace them with special device exclusive swap entries to
2262 * grant a device exclusive access to the folio.
2264 * Context: Caller must hold the folio lock.
2265 * Return: false if the page is still mapped, or if it could not be unmapped
2266 * from the expected address. Otherwise returns true (success).
2268 static bool folio_make_device_exclusive(struct folio *folio,
2269 struct mm_struct *mm, unsigned long address, void *owner)
2271 struct make_exclusive_args args = {
2277 struct rmap_walk_control rwc = {
2278 .rmap_one = page_make_device_exclusive_one,
2279 .done = folio_not_mapped,
2280 .anon_lock = folio_lock_anon_vma_read,
2285 * Restrict to anonymous folios for now to avoid potential writeback
2288 if (!folio_test_anon(folio))
2291 rmap_walk(folio, &rwc);
2293 return args.valid && !folio_mapcount(folio);
2297 * make_device_exclusive_range() - Mark a range for exclusive use by a device
2298 * @mm: mm_struct of associated target process
2299 * @start: start of the region to mark for exclusive device access
2300 * @end: end address of region
2301 * @pages: returns the pages which were successfully marked for exclusive access
2302 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering
2304 * Returns: number of pages found in the range by GUP. A page is marked for
2305 * exclusive access only if the page pointer is non-NULL.
2307 * This function finds ptes mapping page(s) to the given address range, locks
2308 * them and replaces mappings with special swap entries preventing userspace CPU
2309 * access. On fault these entries are replaced with the original mapping after
2310 * calling MMU notifiers.
2312 * A driver using this to program access from a device must use a mmu notifier
2313 * critical section to hold a device specific lock during programming. Once
2314 * programming is complete it should drop the page lock and reference after
2315 * which point CPU access to the page will revoke the exclusive access.
2317 int make_device_exclusive_range(struct mm_struct *mm, unsigned long start,
2318 unsigned long end, struct page **pages,
2321 long npages = (end - start) >> PAGE_SHIFT;
2324 npages = get_user_pages_remote(mm, start, npages,
2325 FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD,
2330 for (i = 0; i < npages; i++, start += PAGE_SIZE) {
2331 struct folio *folio = page_folio(pages[i]);
2332 if (PageTail(pages[i]) || !folio_trylock(folio)) {
2338 if (!folio_make_device_exclusive(folio, mm, start, owner)) {
2339 folio_unlock(folio);
2347 EXPORT_SYMBOL_GPL(make_device_exclusive_range);
2350 void __put_anon_vma(struct anon_vma *anon_vma)
2352 struct anon_vma *root = anon_vma->root;
2354 anon_vma_free(anon_vma);
2355 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
2356 anon_vma_free(root);
2359 static struct anon_vma *rmap_walk_anon_lock(struct folio *folio,
2360 struct rmap_walk_control *rwc)
2362 struct anon_vma *anon_vma;
2365 return rwc->anon_lock(folio, rwc);
2368 * Note: remove_migration_ptes() cannot use folio_lock_anon_vma_read()
2369 * because that depends on page_mapped(); but not all its usages
2370 * are holding mmap_lock. Users without mmap_lock are required to
2371 * take a reference count to prevent the anon_vma disappearing
2373 anon_vma = folio_anon_vma(folio);
2377 if (anon_vma_trylock_read(anon_vma))
2380 if (rwc->try_lock) {
2382 rwc->contended = true;
2386 anon_vma_lock_read(anon_vma);
2392 * rmap_walk_anon - do something to anonymous page using the object-based
2394 * @page: the page to be handled
2395 * @rwc: control variable according to each walk type
2397 * Find all the mappings of a page using the mapping pointer and the vma chains
2398 * contained in the anon_vma struct it points to.
2400 static void rmap_walk_anon(struct folio *folio,
2401 struct rmap_walk_control *rwc, bool locked)
2403 struct anon_vma *anon_vma;
2404 pgoff_t pgoff_start, pgoff_end;
2405 struct anon_vma_chain *avc;
2408 anon_vma = folio_anon_vma(folio);
2409 /* anon_vma disappear under us? */
2410 VM_BUG_ON_FOLIO(!anon_vma, folio);
2412 anon_vma = rmap_walk_anon_lock(folio, rwc);
2417 pgoff_start = folio_pgoff(folio);
2418 pgoff_end = pgoff_start + folio_nr_pages(folio) - 1;
2419 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
2420 pgoff_start, pgoff_end) {
2421 struct vm_area_struct *vma = avc->vma;
2422 unsigned long address = vma_address(&folio->page, vma);
2424 VM_BUG_ON_VMA(address == -EFAULT, vma);
2427 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2430 if (!rwc->rmap_one(folio, vma, address, rwc->arg))
2432 if (rwc->done && rwc->done(folio))
2437 anon_vma_unlock_read(anon_vma);
2441 * rmap_walk_file - do something to file page using the object-based rmap method
2442 * @page: the page to be handled
2443 * @rwc: control variable according to each walk type
2445 * Find all the mappings of a page using the mapping pointer and the vma chains
2446 * contained in the address_space struct it points to.
2448 static void rmap_walk_file(struct folio *folio,
2449 struct rmap_walk_control *rwc, bool locked)
2451 struct address_space *mapping = folio_mapping(folio);
2452 pgoff_t pgoff_start, pgoff_end;
2453 struct vm_area_struct *vma;
2456 * The page lock not only makes sure that page->mapping cannot
2457 * suddenly be NULLified by truncation, it makes sure that the
2458 * structure at mapping cannot be freed and reused yet,
2459 * so we can safely take mapping->i_mmap_rwsem.
2461 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2466 pgoff_start = folio_pgoff(folio);
2467 pgoff_end = pgoff_start + folio_nr_pages(folio) - 1;
2469 if (i_mmap_trylock_read(mapping))
2472 if (rwc->try_lock) {
2473 rwc->contended = true;
2477 i_mmap_lock_read(mapping);
2480 vma_interval_tree_foreach(vma, &mapping->i_mmap,
2481 pgoff_start, pgoff_end) {
2482 unsigned long address = vma_address(&folio->page, vma);
2484 VM_BUG_ON_VMA(address == -EFAULT, vma);
2487 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2490 if (!rwc->rmap_one(folio, vma, address, rwc->arg))
2492 if (rwc->done && rwc->done(folio))
2498 i_mmap_unlock_read(mapping);
2501 void rmap_walk(struct folio *folio, struct rmap_walk_control *rwc)
2503 if (unlikely(folio_test_ksm(folio)))
2504 rmap_walk_ksm(folio, rwc);
2505 else if (folio_test_anon(folio))
2506 rmap_walk_anon(folio, rwc, false);
2508 rmap_walk_file(folio, rwc, false);
2511 /* Like rmap_walk, but caller holds relevant rmap lock */
2512 void rmap_walk_locked(struct folio *folio, struct rmap_walk_control *rwc)
2514 /* no ksm support for now */
2515 VM_BUG_ON_FOLIO(folio_test_ksm(folio), folio);
2516 if (folio_test_anon(folio))
2517 rmap_walk_anon(folio, rwc, true);
2519 rmap_walk_file(folio, rwc, true);
2522 #ifdef CONFIG_HUGETLB_PAGE
2524 * The following two functions are for anonymous (private mapped) hugepages.
2525 * Unlike common anonymous pages, anonymous hugepages have no accounting code
2526 * and no lru code, because we handle hugepages differently from common pages.
2528 * RMAP_COMPOUND is ignored.
2530 void hugepage_add_anon_rmap(struct page *page, struct vm_area_struct *vma,
2531 unsigned long address, rmap_t flags)
2533 struct folio *folio = page_folio(page);
2534 struct anon_vma *anon_vma = vma->anon_vma;
2537 BUG_ON(!folio_test_locked(folio));
2539 /* address might be in next vma when migration races vma_merge */
2540 first = atomic_inc_and_test(&folio->_entire_mapcount);
2541 VM_BUG_ON_PAGE(!first && (flags & RMAP_EXCLUSIVE), page);
2542 VM_BUG_ON_PAGE(!first && PageAnonExclusive(page), page);
2544 __page_set_anon_rmap(folio, page, vma, address,
2545 !!(flags & RMAP_EXCLUSIVE));
2548 void hugepage_add_new_anon_rmap(struct folio *folio,
2549 struct vm_area_struct *vma, unsigned long address)
2551 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
2552 /* increment count (starts at -1) */
2553 atomic_set(&folio->_entire_mapcount, 0);
2554 folio_clear_hugetlb_restore_reserve(folio);
2555 __page_set_anon_rmap(folio, &folio->page, vma, address, 1);
2557 #endif /* CONFIG_HUGETLB_PAGE */