1 // SPDX-License-Identifier: GPL-2.0-only
3 * linux/mm/page_alloc.c
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
18 #include <linux/stddef.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/swapops.h>
23 #include <linux/interrupt.h>
24 #include <linux/pagemap.h>
25 #include <linux/jiffies.h>
26 #include <linux/memblock.h>
27 #include <linux/compiler.h>
28 #include <linux/kernel.h>
29 #include <linux/kasan.h>
30 #include <linux/kmsan.h>
31 #include <linux/module.h>
32 #include <linux/suspend.h>
33 #include <linux/pagevec.h>
34 #include <linux/blkdev.h>
35 #include <linux/slab.h>
36 #include <linux/ratelimit.h>
37 #include <linux/oom.h>
38 #include <linux/topology.h>
39 #include <linux/sysctl.h>
40 #include <linux/cpu.h>
41 #include <linux/cpuset.h>
42 #include <linux/memory_hotplug.h>
43 #include <linux/nodemask.h>
44 #include <linux/vmalloc.h>
45 #include <linux/vmstat.h>
46 #include <linux/mempolicy.h>
47 #include <linux/memremap.h>
48 #include <linux/stop_machine.h>
49 #include <linux/random.h>
50 #include <linux/sort.h>
51 #include <linux/pfn.h>
52 #include <linux/backing-dev.h>
53 #include <linux/fault-inject.h>
54 #include <linux/page-isolation.h>
55 #include <linux/debugobjects.h>
56 #include <linux/kmemleak.h>
57 #include <linux/compaction.h>
58 #include <trace/events/kmem.h>
59 #include <trace/events/oom.h>
60 #include <linux/prefetch.h>
61 #include <linux/mm_inline.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/migrate.h>
64 #include <linux/hugetlb.h>
65 #include <linux/sched/rt.h>
66 #include <linux/sched/mm.h>
67 #include <linux/page_owner.h>
68 #include <linux/page_table_check.h>
69 #include <linux/kthread.h>
70 #include <linux/memcontrol.h>
71 #include <linux/ftrace.h>
72 #include <linux/lockdep.h>
73 #include <linux/nmi.h>
74 #include <linux/psi.h>
75 #include <linux/padata.h>
76 #include <linux/khugepaged.h>
77 #include <linux/buffer_head.h>
78 #include <linux/delayacct.h>
79 #include <asm/sections.h>
80 #include <asm/tlbflush.h>
81 #include <asm/div64.h>
84 #include "page_reporting.h"
87 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
88 typedef int __bitwise fpi_t;
90 /* No special request */
91 #define FPI_NONE ((__force fpi_t)0)
94 * Skip free page reporting notification for the (possibly merged) page.
95 * This does not hinder free page reporting from grabbing the page,
96 * reporting it and marking it "reported" - it only skips notifying
97 * the free page reporting infrastructure about a newly freed page. For
98 * example, used when temporarily pulling a page from a freelist and
99 * putting it back unmodified.
101 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0))
104 * Place the (possibly merged) page to the tail of the freelist. Will ignore
105 * page shuffling (relevant code - e.g., memory onlining - is expected to
106 * shuffle the whole zone).
108 * Note: No code should rely on this flag for correctness - it's purely
109 * to allow for optimizations when handing back either fresh pages
110 * (memory onlining) or untouched pages (page isolation, free page
113 #define FPI_TO_TAIL ((__force fpi_t)BIT(1))
115 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
116 static DEFINE_MUTEX(pcp_batch_high_lock);
117 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
119 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
121 * On SMP, spin_trylock is sufficient protection.
122 * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
124 #define pcp_trylock_prepare(flags) do { } while (0)
125 #define pcp_trylock_finish(flag) do { } while (0)
128 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
129 #define pcp_trylock_prepare(flags) local_irq_save(flags)
130 #define pcp_trylock_finish(flags) local_irq_restore(flags)
134 * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
135 * a migration causing the wrong PCP to be locked and remote memory being
136 * potentially allocated, pin the task to the CPU for the lookup+lock.
137 * preempt_disable is used on !RT because it is faster than migrate_disable.
138 * migrate_disable is used on RT because otherwise RT spinlock usage is
139 * interfered with and a high priority task cannot preempt the allocator.
141 #ifndef CONFIG_PREEMPT_RT
142 #define pcpu_task_pin() preempt_disable()
143 #define pcpu_task_unpin() preempt_enable()
145 #define pcpu_task_pin() migrate_disable()
146 #define pcpu_task_unpin() migrate_enable()
150 * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
151 * Return value should be used with equivalent unlock helper.
153 #define pcpu_spin_lock(type, member, ptr) \
157 _ret = this_cpu_ptr(ptr); \
158 spin_lock(&_ret->member); \
162 #define pcpu_spin_trylock(type, member, ptr) \
166 _ret = this_cpu_ptr(ptr); \
167 if (!spin_trylock(&_ret->member)) { \
174 #define pcpu_spin_unlock(member, ptr) \
176 spin_unlock(&ptr->member); \
180 /* struct per_cpu_pages specific helpers. */
181 #define pcp_spin_lock(ptr) \
182 pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
184 #define pcp_spin_trylock(ptr) \
185 pcpu_spin_trylock(struct per_cpu_pages, lock, ptr)
187 #define pcp_spin_unlock(ptr) \
188 pcpu_spin_unlock(lock, ptr)
190 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
191 DEFINE_PER_CPU(int, numa_node);
192 EXPORT_PER_CPU_SYMBOL(numa_node);
195 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
197 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
199 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
200 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
201 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
202 * defined in <linux/topology.h>.
204 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
205 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
208 static DEFINE_MUTEX(pcpu_drain_mutex);
210 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
211 volatile unsigned long latent_entropy __latent_entropy;
212 EXPORT_SYMBOL(latent_entropy);
216 * Array of node states.
218 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
219 [N_POSSIBLE] = NODE_MASK_ALL,
220 [N_ONLINE] = { { [0] = 1UL } },
222 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
223 #ifdef CONFIG_HIGHMEM
224 [N_HIGH_MEMORY] = { { [0] = 1UL } },
226 [N_MEMORY] = { { [0] = 1UL } },
227 [N_CPU] = { { [0] = 1UL } },
230 EXPORT_SYMBOL(node_states);
232 atomic_long_t _totalram_pages __read_mostly;
233 EXPORT_SYMBOL(_totalram_pages);
234 unsigned long totalreserve_pages __read_mostly;
235 unsigned long totalcma_pages __read_mostly;
237 int percpu_pagelist_high_fraction;
238 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
239 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
240 EXPORT_SYMBOL(init_on_alloc);
242 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
243 EXPORT_SYMBOL(init_on_free);
245 /* perform sanity checks on struct pages being allocated or freed */
246 static DEFINE_STATIC_KEY_MAYBE(CONFIG_DEBUG_VM, check_pages_enabled);
248 static bool _init_on_alloc_enabled_early __read_mostly
249 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
250 static int __init early_init_on_alloc(char *buf)
253 return kstrtobool(buf, &_init_on_alloc_enabled_early);
255 early_param("init_on_alloc", early_init_on_alloc);
257 static bool _init_on_free_enabled_early __read_mostly
258 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
259 static int __init early_init_on_free(char *buf)
261 return kstrtobool(buf, &_init_on_free_enabled_early);
263 early_param("init_on_free", early_init_on_free);
266 * A cached value of the page's pageblock's migratetype, used when the page is
267 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
268 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
269 * Also the migratetype set in the page does not necessarily match the pcplist
270 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
271 * other index - this ensures that it will be put on the correct CMA freelist.
273 static inline int get_pcppage_migratetype(struct page *page)
278 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
280 page->index = migratetype;
283 #ifdef CONFIG_PM_SLEEP
285 * The following functions are used by the suspend/hibernate code to temporarily
286 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
287 * while devices are suspended. To avoid races with the suspend/hibernate code,
288 * they should always be called with system_transition_mutex held
289 * (gfp_allowed_mask also should only be modified with system_transition_mutex
290 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
291 * with that modification).
294 static gfp_t saved_gfp_mask;
296 void pm_restore_gfp_mask(void)
298 WARN_ON(!mutex_is_locked(&system_transition_mutex));
299 if (saved_gfp_mask) {
300 gfp_allowed_mask = saved_gfp_mask;
305 void pm_restrict_gfp_mask(void)
307 WARN_ON(!mutex_is_locked(&system_transition_mutex));
308 WARN_ON(saved_gfp_mask);
309 saved_gfp_mask = gfp_allowed_mask;
310 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
313 bool pm_suspended_storage(void)
315 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
319 #endif /* CONFIG_PM_SLEEP */
321 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
322 unsigned int pageblock_order __read_mostly;
325 static void __free_pages_ok(struct page *page, unsigned int order,
329 * results with 256, 32 in the lowmem_reserve sysctl:
330 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
331 * 1G machine -> (16M dma, 784M normal, 224M high)
332 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
333 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
334 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
336 * TBD: should special case ZONE_DMA32 machines here - in those we normally
337 * don't need any ZONE_NORMAL reservation
339 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
340 #ifdef CONFIG_ZONE_DMA
343 #ifdef CONFIG_ZONE_DMA32
347 #ifdef CONFIG_HIGHMEM
353 static char * const zone_names[MAX_NR_ZONES] = {
354 #ifdef CONFIG_ZONE_DMA
357 #ifdef CONFIG_ZONE_DMA32
361 #ifdef CONFIG_HIGHMEM
365 #ifdef CONFIG_ZONE_DEVICE
370 const char * const migratetype_names[MIGRATE_TYPES] = {
378 #ifdef CONFIG_MEMORY_ISOLATION
383 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
384 [NULL_COMPOUND_DTOR] = NULL,
385 [COMPOUND_PAGE_DTOR] = free_compound_page,
386 #ifdef CONFIG_HUGETLB_PAGE
387 [HUGETLB_PAGE_DTOR] = free_huge_page,
389 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
390 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
394 int min_free_kbytes = 1024;
395 int user_min_free_kbytes = -1;
396 int watermark_boost_factor __read_mostly = 15000;
397 int watermark_scale_factor = 10;
399 static unsigned long nr_kernel_pages __initdata;
400 static unsigned long nr_all_pages __initdata;
401 static unsigned long dma_reserve __initdata;
403 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
404 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
405 static unsigned long required_kernelcore __initdata;
406 static unsigned long required_kernelcore_percent __initdata;
407 static unsigned long required_movablecore __initdata;
408 static unsigned long required_movablecore_percent __initdata;
409 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
410 bool mirrored_kernelcore __initdata_memblock;
412 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
414 EXPORT_SYMBOL(movable_zone);
417 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
418 unsigned int nr_online_nodes __read_mostly = 1;
419 EXPORT_SYMBOL(nr_node_ids);
420 EXPORT_SYMBOL(nr_online_nodes);
423 int page_group_by_mobility_disabled __read_mostly;
425 bool deferred_struct_pages __meminitdata;
427 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
429 * During boot we initialize deferred pages on-demand, as needed, but once
430 * page_alloc_init_late() has finished, the deferred pages are all initialized,
431 * and we can permanently disable that path.
433 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
435 static inline bool deferred_pages_enabled(void)
437 return static_branch_unlikely(&deferred_pages);
440 /* Returns true if the struct page for the pfn is initialised */
441 static inline bool __meminit early_page_initialised(unsigned long pfn)
443 int nid = early_pfn_to_nid(pfn);
445 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
452 * Returns true when the remaining initialisation should be deferred until
453 * later in the boot cycle when it can be parallelised.
455 static bool __meminit
456 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
458 static unsigned long prev_end_pfn, nr_initialised;
460 if (early_page_ext_enabled())
463 * prev_end_pfn static that contains the end of previous zone
464 * No need to protect because called very early in boot before smp_init.
466 if (prev_end_pfn != end_pfn) {
467 prev_end_pfn = end_pfn;
471 /* Always populate low zones for address-constrained allocations */
472 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
475 if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
478 * We start only with one section of pages, more pages are added as
479 * needed until the rest of deferred pages are initialized.
482 if ((nr_initialised > PAGES_PER_SECTION) &&
483 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
484 NODE_DATA(nid)->first_deferred_pfn = pfn;
490 static inline bool deferred_pages_enabled(void)
495 static inline bool early_page_initialised(unsigned long pfn)
500 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
506 /* Return a pointer to the bitmap storing bits affecting a block of pages */
507 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
510 #ifdef CONFIG_SPARSEMEM
511 return section_to_usemap(__pfn_to_section(pfn));
513 return page_zone(page)->pageblock_flags;
514 #endif /* CONFIG_SPARSEMEM */
517 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
519 #ifdef CONFIG_SPARSEMEM
520 pfn &= (PAGES_PER_SECTION-1);
522 pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
523 #endif /* CONFIG_SPARSEMEM */
524 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
527 static __always_inline
528 unsigned long __get_pfnblock_flags_mask(const struct page *page,
532 unsigned long *bitmap;
533 unsigned long bitidx, word_bitidx;
536 bitmap = get_pageblock_bitmap(page, pfn);
537 bitidx = pfn_to_bitidx(page, pfn);
538 word_bitidx = bitidx / BITS_PER_LONG;
539 bitidx &= (BITS_PER_LONG-1);
541 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
542 * a consistent read of the memory array, so that results, even though
543 * racy, are not corrupted.
545 word = READ_ONCE(bitmap[word_bitidx]);
546 return (word >> bitidx) & mask;
550 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
551 * @page: The page within the block of interest
552 * @pfn: The target page frame number
553 * @mask: mask of bits that the caller is interested in
555 * Return: pageblock_bits flags
557 unsigned long get_pfnblock_flags_mask(const struct page *page,
558 unsigned long pfn, unsigned long mask)
560 return __get_pfnblock_flags_mask(page, pfn, mask);
563 static __always_inline int get_pfnblock_migratetype(const struct page *page,
566 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
570 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
571 * @page: The page within the block of interest
572 * @flags: The flags to set
573 * @pfn: The target page frame number
574 * @mask: mask of bits that the caller is interested in
576 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
580 unsigned long *bitmap;
581 unsigned long bitidx, word_bitidx;
584 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
585 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
587 bitmap = get_pageblock_bitmap(page, pfn);
588 bitidx = pfn_to_bitidx(page, pfn);
589 word_bitidx = bitidx / BITS_PER_LONG;
590 bitidx &= (BITS_PER_LONG-1);
592 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
597 word = READ_ONCE(bitmap[word_bitidx]);
599 } while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
602 void set_pageblock_migratetype(struct page *page, int migratetype)
604 if (unlikely(page_group_by_mobility_disabled &&
605 migratetype < MIGRATE_PCPTYPES))
606 migratetype = MIGRATE_UNMOVABLE;
608 set_pfnblock_flags_mask(page, (unsigned long)migratetype,
609 page_to_pfn(page), MIGRATETYPE_MASK);
612 #ifdef CONFIG_DEBUG_VM
613 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
617 unsigned long pfn = page_to_pfn(page);
618 unsigned long sp, start_pfn;
621 seq = zone_span_seqbegin(zone);
622 start_pfn = zone->zone_start_pfn;
623 sp = zone->spanned_pages;
624 if (!zone_spans_pfn(zone, pfn))
626 } while (zone_span_seqretry(zone, seq));
629 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
630 pfn, zone_to_nid(zone), zone->name,
631 start_pfn, start_pfn + sp);
636 static int page_is_consistent(struct zone *zone, struct page *page)
638 if (zone != page_zone(page))
644 * Temporary debugging check for pages not lying within a given zone.
646 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
648 if (page_outside_zone_boundaries(zone, page))
650 if (!page_is_consistent(zone, page))
656 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
662 static void bad_page(struct page *page, const char *reason)
664 static unsigned long resume;
665 static unsigned long nr_shown;
666 static unsigned long nr_unshown;
669 * Allow a burst of 60 reports, then keep quiet for that minute;
670 * or allow a steady drip of one report per second.
672 if (nr_shown == 60) {
673 if (time_before(jiffies, resume)) {
679 "BUG: Bad page state: %lu messages suppressed\n",
686 resume = jiffies + 60 * HZ;
688 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
689 current->comm, page_to_pfn(page));
690 dump_page(page, reason);
695 /* Leave bad fields for debug, except PageBuddy could make trouble */
696 page_mapcount_reset(page); /* remove PageBuddy */
697 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
700 static inline unsigned int order_to_pindex(int migratetype, int order)
704 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
705 if (order > PAGE_ALLOC_COSTLY_ORDER) {
706 VM_BUG_ON(order != pageblock_order);
707 return NR_LOWORDER_PCP_LISTS;
710 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
713 return (MIGRATE_PCPTYPES * base) + migratetype;
716 static inline int pindex_to_order(unsigned int pindex)
718 int order = pindex / MIGRATE_PCPTYPES;
720 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
721 if (pindex == NR_LOWORDER_PCP_LISTS)
722 order = pageblock_order;
724 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
730 static inline bool pcp_allowed_order(unsigned int order)
732 if (order <= PAGE_ALLOC_COSTLY_ORDER)
734 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
735 if (order == pageblock_order)
741 static inline void free_the_page(struct page *page, unsigned int order)
743 if (pcp_allowed_order(order)) /* Via pcp? */
744 free_unref_page(page, order);
746 __free_pages_ok(page, order, FPI_NONE);
750 * Higher-order pages are called "compound pages". They are structured thusly:
752 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
754 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
755 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
757 * The first tail page's ->compound_dtor holds the offset in array of compound
758 * page destructors. See compound_page_dtors.
760 * The first tail page's ->compound_order holds the order of allocation.
761 * This usage means that zero-order pages may not be compound.
764 void free_compound_page(struct page *page)
766 mem_cgroup_uncharge(page_folio(page));
767 free_the_page(page, compound_order(page));
770 static void prep_compound_head(struct page *page, unsigned int order)
772 struct folio *folio = (struct folio *)page;
774 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
775 set_compound_order(page, order);
776 atomic_set(&folio->_entire_mapcount, -1);
777 atomic_set(&folio->_nr_pages_mapped, 0);
778 atomic_set(&folio->_pincount, 0);
781 static void prep_compound_tail(struct page *head, int tail_idx)
783 struct page *p = head + tail_idx;
785 p->mapping = TAIL_MAPPING;
786 set_compound_head(p, head);
787 set_page_private(p, 0);
790 void prep_compound_page(struct page *page, unsigned int order)
793 int nr_pages = 1 << order;
796 for (i = 1; i < nr_pages; i++)
797 prep_compound_tail(page, i);
799 prep_compound_head(page, order);
802 void destroy_large_folio(struct folio *folio)
804 enum compound_dtor_id dtor = folio->_folio_dtor;
806 VM_BUG_ON_FOLIO(dtor >= NR_COMPOUND_DTORS, folio);
807 compound_page_dtors[dtor](&folio->page);
810 #ifdef CONFIG_DEBUG_PAGEALLOC
811 unsigned int _debug_guardpage_minorder;
813 bool _debug_pagealloc_enabled_early __read_mostly
814 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
815 EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
816 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
817 EXPORT_SYMBOL(_debug_pagealloc_enabled);
819 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
821 static int __init early_debug_pagealloc(char *buf)
823 return kstrtobool(buf, &_debug_pagealloc_enabled_early);
825 early_param("debug_pagealloc", early_debug_pagealloc);
827 static int __init debug_guardpage_minorder_setup(char *buf)
831 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
832 pr_err("Bad debug_guardpage_minorder value\n");
835 _debug_guardpage_minorder = res;
836 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
839 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
841 static inline bool set_page_guard(struct zone *zone, struct page *page,
842 unsigned int order, int migratetype)
844 if (!debug_guardpage_enabled())
847 if (order >= debug_guardpage_minorder())
850 __SetPageGuard(page);
851 INIT_LIST_HEAD(&page->buddy_list);
852 set_page_private(page, order);
853 /* Guard pages are not available for any usage */
854 if (!is_migrate_isolate(migratetype))
855 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
860 static inline void clear_page_guard(struct zone *zone, struct page *page,
861 unsigned int order, int migratetype)
863 if (!debug_guardpage_enabled())
866 __ClearPageGuard(page);
868 set_page_private(page, 0);
869 if (!is_migrate_isolate(migratetype))
870 __mod_zone_freepage_state(zone, (1 << order), migratetype);
873 static inline bool set_page_guard(struct zone *zone, struct page *page,
874 unsigned int order, int migratetype) { return false; }
875 static inline void clear_page_guard(struct zone *zone, struct page *page,
876 unsigned int order, int migratetype) {}
880 * Enable static keys related to various memory debugging and hardening options.
881 * Some override others, and depend on early params that are evaluated in the
882 * order of appearance. So we need to first gather the full picture of what was
883 * enabled, and then make decisions.
885 void __init init_mem_debugging_and_hardening(void)
887 bool page_poisoning_requested = false;
888 bool want_check_pages = false;
890 #ifdef CONFIG_PAGE_POISONING
892 * Page poisoning is debug page alloc for some arches. If
893 * either of those options are enabled, enable poisoning.
895 if (page_poisoning_enabled() ||
896 (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
897 debug_pagealloc_enabled())) {
898 static_branch_enable(&_page_poisoning_enabled);
899 page_poisoning_requested = true;
900 want_check_pages = true;
904 if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) &&
905 page_poisoning_requested) {
906 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
907 "will take precedence over init_on_alloc and init_on_free\n");
908 _init_on_alloc_enabled_early = false;
909 _init_on_free_enabled_early = false;
912 if (_init_on_alloc_enabled_early) {
913 want_check_pages = true;
914 static_branch_enable(&init_on_alloc);
916 static_branch_disable(&init_on_alloc);
919 if (_init_on_free_enabled_early) {
920 want_check_pages = true;
921 static_branch_enable(&init_on_free);
923 static_branch_disable(&init_on_free);
926 if (IS_ENABLED(CONFIG_KMSAN) &&
927 (_init_on_alloc_enabled_early || _init_on_free_enabled_early))
928 pr_info("mem auto-init: please make sure init_on_alloc and init_on_free are disabled when running KMSAN\n");
930 #ifdef CONFIG_DEBUG_PAGEALLOC
931 if (debug_pagealloc_enabled()) {
932 want_check_pages = true;
933 static_branch_enable(&_debug_pagealloc_enabled);
935 if (debug_guardpage_minorder())
936 static_branch_enable(&_debug_guardpage_enabled);
941 * Any page debugging or hardening option also enables sanity checking
942 * of struct pages being allocated or freed. With CONFIG_DEBUG_VM it's
945 if (!IS_ENABLED(CONFIG_DEBUG_VM) && want_check_pages)
946 static_branch_enable(&check_pages_enabled);
949 static inline void set_buddy_order(struct page *page, unsigned int order)
951 set_page_private(page, order);
952 __SetPageBuddy(page);
955 #ifdef CONFIG_COMPACTION
956 static inline struct capture_control *task_capc(struct zone *zone)
958 struct capture_control *capc = current->capture_control;
960 return unlikely(capc) &&
961 !(current->flags & PF_KTHREAD) &&
963 capc->cc->zone == zone ? capc : NULL;
967 compaction_capture(struct capture_control *capc, struct page *page,
968 int order, int migratetype)
970 if (!capc || order != capc->cc->order)
973 /* Do not accidentally pollute CMA or isolated regions*/
974 if (is_migrate_cma(migratetype) ||
975 is_migrate_isolate(migratetype))
979 * Do not let lower order allocations pollute a movable pageblock.
980 * This might let an unmovable request use a reclaimable pageblock
981 * and vice-versa but no more than normal fallback logic which can
982 * have trouble finding a high-order free page.
984 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
992 static inline struct capture_control *task_capc(struct zone *zone)
998 compaction_capture(struct capture_control *capc, struct page *page,
999 int order, int migratetype)
1003 #endif /* CONFIG_COMPACTION */
1005 /* Used for pages not on another list */
1006 static inline void add_to_free_list(struct page *page, struct zone *zone,
1007 unsigned int order, int migratetype)
1009 struct free_area *area = &zone->free_area[order];
1011 list_add(&page->buddy_list, &area->free_list[migratetype]);
1015 /* Used for pages not on another list */
1016 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
1017 unsigned int order, int migratetype)
1019 struct free_area *area = &zone->free_area[order];
1021 list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
1026 * Used for pages which are on another list. Move the pages to the tail
1027 * of the list - so the moved pages won't immediately be considered for
1028 * allocation again (e.g., optimization for memory onlining).
1030 static inline void move_to_free_list(struct page *page, struct zone *zone,
1031 unsigned int order, int migratetype)
1033 struct free_area *area = &zone->free_area[order];
1035 list_move_tail(&page->buddy_list, &area->free_list[migratetype]);
1038 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
1041 /* clear reported state and update reported page count */
1042 if (page_reported(page))
1043 __ClearPageReported(page);
1045 list_del(&page->buddy_list);
1046 __ClearPageBuddy(page);
1047 set_page_private(page, 0);
1048 zone->free_area[order].nr_free--;
1052 * If this is not the largest possible page, check if the buddy
1053 * of the next-highest order is free. If it is, it's possible
1054 * that pages are being freed that will coalesce soon. In case,
1055 * that is happening, add the free page to the tail of the list
1056 * so it's less likely to be used soon and more likely to be merged
1057 * as a higher order page
1060 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
1061 struct page *page, unsigned int order)
1063 unsigned long higher_page_pfn;
1064 struct page *higher_page;
1066 if (order >= MAX_ORDER - 2)
1069 higher_page_pfn = buddy_pfn & pfn;
1070 higher_page = page + (higher_page_pfn - pfn);
1072 return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
1077 * Freeing function for a buddy system allocator.
1079 * The concept of a buddy system is to maintain direct-mapped table
1080 * (containing bit values) for memory blocks of various "orders".
1081 * The bottom level table contains the map for the smallest allocatable
1082 * units of memory (here, pages), and each level above it describes
1083 * pairs of units from the levels below, hence, "buddies".
1084 * At a high level, all that happens here is marking the table entry
1085 * at the bottom level available, and propagating the changes upward
1086 * as necessary, plus some accounting needed to play nicely with other
1087 * parts of the VM system.
1088 * At each level, we keep a list of pages, which are heads of continuous
1089 * free pages of length of (1 << order) and marked with PageBuddy.
1090 * Page's order is recorded in page_private(page) field.
1091 * So when we are allocating or freeing one, we can derive the state of the
1092 * other. That is, if we allocate a small block, and both were
1093 * free, the remainder of the region must be split into blocks.
1094 * If a block is freed, and its buddy is also free, then this
1095 * triggers coalescing into a block of larger size.
1100 static inline void __free_one_page(struct page *page,
1102 struct zone *zone, unsigned int order,
1103 int migratetype, fpi_t fpi_flags)
1105 struct capture_control *capc = task_capc(zone);
1106 unsigned long buddy_pfn = 0;
1107 unsigned long combined_pfn;
1111 VM_BUG_ON(!zone_is_initialized(zone));
1112 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1114 VM_BUG_ON(migratetype == -1);
1115 if (likely(!is_migrate_isolate(migratetype)))
1116 __mod_zone_freepage_state(zone, 1 << order, migratetype);
1118 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
1119 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1121 while (order < MAX_ORDER - 1) {
1122 if (compaction_capture(capc, page, order, migratetype)) {
1123 __mod_zone_freepage_state(zone, -(1 << order),
1128 buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
1132 if (unlikely(order >= pageblock_order)) {
1134 * We want to prevent merge between freepages on pageblock
1135 * without fallbacks and normal pageblock. Without this,
1136 * pageblock isolation could cause incorrect freepage or CMA
1137 * accounting or HIGHATOMIC accounting.
1139 int buddy_mt = get_pageblock_migratetype(buddy);
1141 if (migratetype != buddy_mt
1142 && (!migratetype_is_mergeable(migratetype) ||
1143 !migratetype_is_mergeable(buddy_mt)))
1148 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1149 * merge with it and move up one order.
1151 if (page_is_guard(buddy))
1152 clear_page_guard(zone, buddy, order, migratetype);
1154 del_page_from_free_list(buddy, zone, order);
1155 combined_pfn = buddy_pfn & pfn;
1156 page = page + (combined_pfn - pfn);
1162 set_buddy_order(page, order);
1164 if (fpi_flags & FPI_TO_TAIL)
1166 else if (is_shuffle_order(order))
1167 to_tail = shuffle_pick_tail();
1169 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1172 add_to_free_list_tail(page, zone, order, migratetype);
1174 add_to_free_list(page, zone, order, migratetype);
1176 /* Notify page reporting subsystem of freed page */
1177 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
1178 page_reporting_notify_free(order);
1182 * split_free_page() -- split a free page at split_pfn_offset
1183 * @free_page: the original free page
1184 * @order: the order of the page
1185 * @split_pfn_offset: split offset within the page
1187 * Return -ENOENT if the free page is changed, otherwise 0
1189 * It is used when the free page crosses two pageblocks with different migratetypes
1190 * at split_pfn_offset within the page. The split free page will be put into
1191 * separate migratetype lists afterwards. Otherwise, the function achieves
1194 int split_free_page(struct page *free_page,
1195 unsigned int order, unsigned long split_pfn_offset)
1197 struct zone *zone = page_zone(free_page);
1198 unsigned long free_page_pfn = page_to_pfn(free_page);
1200 unsigned long flags;
1201 int free_page_order;
1205 if (split_pfn_offset == 0)
1208 spin_lock_irqsave(&zone->lock, flags);
1210 if (!PageBuddy(free_page) || buddy_order(free_page) != order) {
1215 mt = get_pageblock_migratetype(free_page);
1216 if (likely(!is_migrate_isolate(mt)))
1217 __mod_zone_freepage_state(zone, -(1UL << order), mt);
1219 del_page_from_free_list(free_page, zone, order);
1220 for (pfn = free_page_pfn;
1221 pfn < free_page_pfn + (1UL << order);) {
1222 int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn);
1224 free_page_order = min_t(unsigned int,
1225 pfn ? __ffs(pfn) : order,
1226 __fls(split_pfn_offset));
1227 __free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order,
1229 pfn += 1UL << free_page_order;
1230 split_pfn_offset -= (1UL << free_page_order);
1231 /* we have done the first part, now switch to second part */
1232 if (split_pfn_offset == 0)
1233 split_pfn_offset = (1UL << order) - (pfn - free_page_pfn);
1236 spin_unlock_irqrestore(&zone->lock, flags);
1240 * A bad page could be due to a number of fields. Instead of multiple branches,
1241 * try and check multiple fields with one check. The caller must do a detailed
1242 * check if necessary.
1244 static inline bool page_expected_state(struct page *page,
1245 unsigned long check_flags)
1247 if (unlikely(atomic_read(&page->_mapcount) != -1))
1250 if (unlikely((unsigned long)page->mapping |
1251 page_ref_count(page) |
1255 (page->flags & check_flags)))
1261 static const char *page_bad_reason(struct page *page, unsigned long flags)
1263 const char *bad_reason = NULL;
1265 if (unlikely(atomic_read(&page->_mapcount) != -1))
1266 bad_reason = "nonzero mapcount";
1267 if (unlikely(page->mapping != NULL))
1268 bad_reason = "non-NULL mapping";
1269 if (unlikely(page_ref_count(page) != 0))
1270 bad_reason = "nonzero _refcount";
1271 if (unlikely(page->flags & flags)) {
1272 if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1273 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1275 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1278 if (unlikely(page->memcg_data))
1279 bad_reason = "page still charged to cgroup";
1284 static void free_page_is_bad_report(struct page *page)
1287 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1290 static inline bool free_page_is_bad(struct page *page)
1292 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1295 /* Something has gone sideways, find it */
1296 free_page_is_bad_report(page);
1300 static int free_tail_pages_check(struct page *head_page, struct page *page)
1302 struct folio *folio = (struct folio *)head_page;
1306 * We rely page->lru.next never has bit 0 set, unless the page
1307 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1309 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1311 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1315 switch (page - head_page) {
1317 /* the first tail page: these may be in place of ->mapping */
1318 if (unlikely(folio_entire_mapcount(folio))) {
1319 bad_page(page, "nonzero entire_mapcount");
1322 if (unlikely(atomic_read(&folio->_nr_pages_mapped))) {
1323 bad_page(page, "nonzero nr_pages_mapped");
1326 if (unlikely(atomic_read(&folio->_pincount))) {
1327 bad_page(page, "nonzero pincount");
1333 * the second tail page: ->mapping is
1334 * deferred_list.next -- ignore value.
1338 if (page->mapping != TAIL_MAPPING) {
1339 bad_page(page, "corrupted mapping in tail page");
1344 if (unlikely(!PageTail(page))) {
1345 bad_page(page, "PageTail not set");
1348 if (unlikely(compound_head(page) != head_page)) {
1349 bad_page(page, "compound_head not consistent");
1354 page->mapping = NULL;
1355 clear_compound_head(page);
1360 * Skip KASAN memory poisoning when either:
1362 * 1. For generic KASAN: deferred memory initialization has not yet completed.
1363 * Tag-based KASAN modes skip pages freed via deferred memory initialization
1364 * using page tags instead (see below).
1365 * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating
1366 * that error detection is disabled for accesses via the page address.
1368 * Pages will have match-all tags in the following circumstances:
1370 * 1. Pages are being initialized for the first time, including during deferred
1371 * memory init; see the call to page_kasan_tag_reset in __init_single_page.
1372 * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the
1373 * exception of pages unpoisoned by kasan_unpoison_vmalloc.
1374 * 3. The allocation was excluded from being checked due to sampling,
1375 * see the call to kasan_unpoison_pages.
1377 * Poisoning pages during deferred memory init will greatly lengthen the
1378 * process and cause problem in large memory systems as the deferred pages
1379 * initialization is done with interrupt disabled.
1381 * Assuming that there will be no reference to those newly initialized
1382 * pages before they are ever allocated, this should have no effect on
1383 * KASAN memory tracking as the poison will be properly inserted at page
1384 * allocation time. The only corner case is when pages are allocated by
1385 * on-demand allocation and then freed again before the deferred pages
1386 * initialization is done, but this is not likely to happen.
1388 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
1390 if (IS_ENABLED(CONFIG_KASAN_GENERIC))
1391 return deferred_pages_enabled();
1393 return page_kasan_tag(page) == 0xff;
1396 static void kernel_init_pages(struct page *page, int numpages)
1400 /* s390's use of memset() could override KASAN redzones. */
1401 kasan_disable_current();
1402 for (i = 0; i < numpages; i++)
1403 clear_highpage_kasan_tagged(page + i);
1404 kasan_enable_current();
1407 static __always_inline bool free_pages_prepare(struct page *page,
1408 unsigned int order, fpi_t fpi_flags)
1411 bool skip_kasan_poison = should_skip_kasan_poison(page, fpi_flags);
1412 bool init = want_init_on_free();
1414 VM_BUG_ON_PAGE(PageTail(page), page);
1416 trace_mm_page_free(page, order);
1417 kmsan_free_page(page, order);
1419 if (unlikely(PageHWPoison(page)) && !order) {
1421 * Do not let hwpoison pages hit pcplists/buddy
1422 * Untie memcg state and reset page's owner
1424 if (memcg_kmem_online() && PageMemcgKmem(page))
1425 __memcg_kmem_uncharge_page(page, order);
1426 reset_page_owner(page, order);
1427 page_table_check_free(page, order);
1432 * Check tail pages before head page information is cleared to
1433 * avoid checking PageCompound for order-0 pages.
1435 if (unlikely(order)) {
1436 bool compound = PageCompound(page);
1439 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1442 ClearPageHasHWPoisoned(page);
1443 for (i = 1; i < (1 << order); i++) {
1445 bad += free_tail_pages_check(page, page + i);
1446 if (static_branch_unlikely(&check_pages_enabled)) {
1447 if (unlikely(free_page_is_bad(page + i))) {
1452 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1455 if (PageMappingFlags(page))
1456 page->mapping = NULL;
1457 if (memcg_kmem_online() && PageMemcgKmem(page))
1458 __memcg_kmem_uncharge_page(page, order);
1459 if (static_branch_unlikely(&check_pages_enabled)) {
1460 if (free_page_is_bad(page))
1466 page_cpupid_reset_last(page);
1467 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1468 reset_page_owner(page, order);
1469 page_table_check_free(page, order);
1471 if (!PageHighMem(page)) {
1472 debug_check_no_locks_freed(page_address(page),
1473 PAGE_SIZE << order);
1474 debug_check_no_obj_freed(page_address(page),
1475 PAGE_SIZE << order);
1478 kernel_poison_pages(page, 1 << order);
1481 * As memory initialization might be integrated into KASAN,
1482 * KASAN poisoning and memory initialization code must be
1483 * kept together to avoid discrepancies in behavior.
1485 * With hardware tag-based KASAN, memory tags must be set before the
1486 * page becomes unavailable via debug_pagealloc or arch_free_page.
1488 if (!skip_kasan_poison) {
1489 kasan_poison_pages(page, order, init);
1491 /* Memory is already initialized if KASAN did it internally. */
1492 if (kasan_has_integrated_init())
1496 kernel_init_pages(page, 1 << order);
1499 * arch_free_page() can make the page's contents inaccessible. s390
1500 * does this. So nothing which can access the page's contents should
1501 * happen after this.
1503 arch_free_page(page, order);
1505 debug_pagealloc_unmap_pages(page, 1 << order);
1511 * Frees a number of pages from the PCP lists
1512 * Assumes all pages on list are in same zone.
1513 * count is the number of pages to free.
1515 static void free_pcppages_bulk(struct zone *zone, int count,
1516 struct per_cpu_pages *pcp,
1519 unsigned long flags;
1521 int max_pindex = NR_PCP_LISTS - 1;
1523 bool isolated_pageblocks;
1527 * Ensure proper count is passed which otherwise would stuck in the
1528 * below while (list_empty(list)) loop.
1530 count = min(pcp->count, count);
1532 /* Ensure requested pindex is drained first. */
1533 pindex = pindex - 1;
1535 spin_lock_irqsave(&zone->lock, flags);
1536 isolated_pageblocks = has_isolate_pageblock(zone);
1539 struct list_head *list;
1542 /* Remove pages from lists in a round-robin fashion. */
1544 if (++pindex > max_pindex)
1545 pindex = min_pindex;
1546 list = &pcp->lists[pindex];
1547 if (!list_empty(list))
1550 if (pindex == max_pindex)
1552 if (pindex == min_pindex)
1556 order = pindex_to_order(pindex);
1557 nr_pages = 1 << order;
1561 page = list_last_entry(list, struct page, pcp_list);
1562 mt = get_pcppage_migratetype(page);
1564 /* must delete to avoid corrupting pcp list */
1565 list_del(&page->pcp_list);
1567 pcp->count -= nr_pages;
1569 /* MIGRATE_ISOLATE page should not go to pcplists */
1570 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1571 /* Pageblock could have been isolated meanwhile */
1572 if (unlikely(isolated_pageblocks))
1573 mt = get_pageblock_migratetype(page);
1575 __free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1576 trace_mm_page_pcpu_drain(page, order, mt);
1577 } while (count > 0 && !list_empty(list));
1580 spin_unlock_irqrestore(&zone->lock, flags);
1583 static void free_one_page(struct zone *zone,
1584 struct page *page, unsigned long pfn,
1586 int migratetype, fpi_t fpi_flags)
1588 unsigned long flags;
1590 spin_lock_irqsave(&zone->lock, flags);
1591 if (unlikely(has_isolate_pageblock(zone) ||
1592 is_migrate_isolate(migratetype))) {
1593 migratetype = get_pfnblock_migratetype(page, pfn);
1595 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1596 spin_unlock_irqrestore(&zone->lock, flags);
1599 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1600 unsigned long zone, int nid)
1602 mm_zero_struct_page(page);
1603 set_page_links(page, zone, nid, pfn);
1604 init_page_count(page);
1605 page_mapcount_reset(page);
1606 page_cpupid_reset_last(page);
1607 page_kasan_tag_reset(page);
1609 INIT_LIST_HEAD(&page->lru);
1610 #ifdef WANT_PAGE_VIRTUAL
1611 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1612 if (!is_highmem_idx(zone))
1613 set_page_address(page, __va(pfn << PAGE_SHIFT));
1617 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1618 static void __meminit init_reserved_page(unsigned long pfn)
1623 if (early_page_initialised(pfn))
1626 nid = early_pfn_to_nid(pfn);
1627 pgdat = NODE_DATA(nid);
1629 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1630 struct zone *zone = &pgdat->node_zones[zid];
1632 if (zone_spans_pfn(zone, pfn))
1635 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1638 static inline void init_reserved_page(unsigned long pfn)
1641 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1644 * Initialised pages do not have PageReserved set. This function is
1645 * called for each range allocated by the bootmem allocator and
1646 * marks the pages PageReserved. The remaining valid pages are later
1647 * sent to the buddy page allocator.
1649 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1651 unsigned long start_pfn = PFN_DOWN(start);
1652 unsigned long end_pfn = PFN_UP(end);
1654 for (; start_pfn < end_pfn; start_pfn++) {
1655 if (pfn_valid(start_pfn)) {
1656 struct page *page = pfn_to_page(start_pfn);
1658 init_reserved_page(start_pfn);
1660 /* Avoid false-positive PageTail() */
1661 INIT_LIST_HEAD(&page->lru);
1664 * no need for atomic set_bit because the struct
1665 * page is not visible yet so nobody should
1668 __SetPageReserved(page);
1673 static void __free_pages_ok(struct page *page, unsigned int order,
1676 unsigned long flags;
1678 unsigned long pfn = page_to_pfn(page);
1679 struct zone *zone = page_zone(page);
1681 if (!free_pages_prepare(page, order, fpi_flags))
1685 * Calling get_pfnblock_migratetype() without spin_lock_irqsave() here
1686 * is used to avoid calling get_pfnblock_migratetype() under the lock.
1687 * This will reduce the lock holding time.
1689 migratetype = get_pfnblock_migratetype(page, pfn);
1691 spin_lock_irqsave(&zone->lock, flags);
1692 if (unlikely(has_isolate_pageblock(zone) ||
1693 is_migrate_isolate(migratetype))) {
1694 migratetype = get_pfnblock_migratetype(page, pfn);
1696 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1697 spin_unlock_irqrestore(&zone->lock, flags);
1699 __count_vm_events(PGFREE, 1 << order);
1702 void __free_pages_core(struct page *page, unsigned int order)
1704 unsigned int nr_pages = 1 << order;
1705 struct page *p = page;
1709 * When initializing the memmap, __init_single_page() sets the refcount
1710 * of all pages to 1 ("allocated"/"not free"). We have to set the
1711 * refcount of all involved pages to 0.
1714 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1716 __ClearPageReserved(p);
1717 set_page_count(p, 0);
1719 __ClearPageReserved(p);
1720 set_page_count(p, 0);
1722 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1725 * Bypass PCP and place fresh pages right to the tail, primarily
1726 * relevant for memory onlining.
1728 __free_pages_ok(page, order, FPI_TO_TAIL);
1734 * During memory init memblocks map pfns to nids. The search is expensive and
1735 * this caches recent lookups. The implementation of __early_pfn_to_nid
1736 * treats start/end as pfns.
1738 struct mminit_pfnnid_cache {
1739 unsigned long last_start;
1740 unsigned long last_end;
1744 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1747 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1749 static int __meminit __early_pfn_to_nid(unsigned long pfn,
1750 struct mminit_pfnnid_cache *state)
1752 unsigned long start_pfn, end_pfn;
1755 if (state->last_start <= pfn && pfn < state->last_end)
1756 return state->last_nid;
1758 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1759 if (nid != NUMA_NO_NODE) {
1760 state->last_start = start_pfn;
1761 state->last_end = end_pfn;
1762 state->last_nid = nid;
1768 int __meminit early_pfn_to_nid(unsigned long pfn)
1770 static DEFINE_SPINLOCK(early_pfn_lock);
1773 spin_lock(&early_pfn_lock);
1774 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1776 nid = first_online_node;
1777 spin_unlock(&early_pfn_lock);
1781 #endif /* CONFIG_NUMA */
1783 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1786 if (!early_page_initialised(pfn))
1788 if (!kmsan_memblock_free_pages(page, order)) {
1789 /* KMSAN will take care of these pages. */
1792 __free_pages_core(page, order);
1796 * Check that the whole (or subset of) a pageblock given by the interval of
1797 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1798 * with the migration of free compaction scanner.
1800 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1802 * It's possible on some configurations to have a setup like node0 node1 node0
1803 * i.e. it's possible that all pages within a zones range of pages do not
1804 * belong to a single zone. We assume that a border between node0 and node1
1805 * can occur within a single pageblock, but not a node0 node1 node0
1806 * interleaving within a single pageblock. It is therefore sufficient to check
1807 * the first and last page of a pageblock and avoid checking each individual
1808 * page in a pageblock.
1810 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1811 unsigned long end_pfn, struct zone *zone)
1813 struct page *start_page;
1814 struct page *end_page;
1816 /* end_pfn is one past the range we are checking */
1819 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1822 start_page = pfn_to_online_page(start_pfn);
1826 if (page_zone(start_page) != zone)
1829 end_page = pfn_to_page(end_pfn);
1831 /* This gives a shorter code than deriving page_zone(end_page) */
1832 if (page_zone_id(start_page) != page_zone_id(end_page))
1838 void set_zone_contiguous(struct zone *zone)
1840 unsigned long block_start_pfn = zone->zone_start_pfn;
1841 unsigned long block_end_pfn;
1843 block_end_pfn = pageblock_end_pfn(block_start_pfn);
1844 for (; block_start_pfn < zone_end_pfn(zone);
1845 block_start_pfn = block_end_pfn,
1846 block_end_pfn += pageblock_nr_pages) {
1848 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1850 if (!__pageblock_pfn_to_page(block_start_pfn,
1851 block_end_pfn, zone))
1856 /* We confirm that there is no hole */
1857 zone->contiguous = true;
1860 void clear_zone_contiguous(struct zone *zone)
1862 zone->contiguous = false;
1865 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1866 static void __init deferred_free_range(unsigned long pfn,
1867 unsigned long nr_pages)
1875 page = pfn_to_page(pfn);
1877 /* Free a large naturally-aligned chunk if possible */
1878 if (nr_pages == pageblock_nr_pages && pageblock_aligned(pfn)) {
1879 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1880 __free_pages_core(page, pageblock_order);
1884 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1885 if (pageblock_aligned(pfn))
1886 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1887 __free_pages_core(page, 0);
1891 /* Completion tracking for deferred_init_memmap() threads */
1892 static atomic_t pgdat_init_n_undone __initdata;
1893 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1895 static inline void __init pgdat_init_report_one_done(void)
1897 if (atomic_dec_and_test(&pgdat_init_n_undone))
1898 complete(&pgdat_init_all_done_comp);
1902 * Returns true if page needs to be initialized or freed to buddy allocator.
1904 * We check if a current large page is valid by only checking the validity
1907 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1909 if (pageblock_aligned(pfn) && !pfn_valid(pfn))
1915 * Free pages to buddy allocator. Try to free aligned pages in
1916 * pageblock_nr_pages sizes.
1918 static void __init deferred_free_pages(unsigned long pfn,
1919 unsigned long end_pfn)
1921 unsigned long nr_free = 0;
1923 for (; pfn < end_pfn; pfn++) {
1924 if (!deferred_pfn_valid(pfn)) {
1925 deferred_free_range(pfn - nr_free, nr_free);
1927 } else if (pageblock_aligned(pfn)) {
1928 deferred_free_range(pfn - nr_free, nr_free);
1934 /* Free the last block of pages to allocator */
1935 deferred_free_range(pfn - nr_free, nr_free);
1939 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1940 * by performing it only once every pageblock_nr_pages.
1941 * Return number of pages initialized.
1943 static unsigned long __init deferred_init_pages(struct zone *zone,
1945 unsigned long end_pfn)
1947 int nid = zone_to_nid(zone);
1948 unsigned long nr_pages = 0;
1949 int zid = zone_idx(zone);
1950 struct page *page = NULL;
1952 for (; pfn < end_pfn; pfn++) {
1953 if (!deferred_pfn_valid(pfn)) {
1956 } else if (!page || pageblock_aligned(pfn)) {
1957 page = pfn_to_page(pfn);
1961 __init_single_page(page, pfn, zid, nid);
1968 * This function is meant to pre-load the iterator for the zone init.
1969 * Specifically it walks through the ranges until we are caught up to the
1970 * first_init_pfn value and exits there. If we never encounter the value we
1971 * return false indicating there are no valid ranges left.
1974 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1975 unsigned long *spfn, unsigned long *epfn,
1976 unsigned long first_init_pfn)
1981 * Start out by walking through the ranges in this zone that have
1982 * already been initialized. We don't need to do anything with them
1983 * so we just need to flush them out of the system.
1985 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1986 if (*epfn <= first_init_pfn)
1988 if (*spfn < first_init_pfn)
1989 *spfn = first_init_pfn;
1998 * Initialize and free pages. We do it in two loops: first we initialize
1999 * struct page, then free to buddy allocator, because while we are
2000 * freeing pages we can access pages that are ahead (computing buddy
2001 * page in __free_one_page()).
2003 * In order to try and keep some memory in the cache we have the loop
2004 * broken along max page order boundaries. This way we will not cause
2005 * any issues with the buddy page computation.
2007 static unsigned long __init
2008 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
2009 unsigned long *end_pfn)
2011 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
2012 unsigned long spfn = *start_pfn, epfn = *end_pfn;
2013 unsigned long nr_pages = 0;
2016 /* First we loop through and initialize the page values */
2017 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
2020 if (mo_pfn <= *start_pfn)
2023 t = min(mo_pfn, *end_pfn);
2024 nr_pages += deferred_init_pages(zone, *start_pfn, t);
2026 if (mo_pfn < *end_pfn) {
2027 *start_pfn = mo_pfn;
2032 /* Reset values and now loop through freeing pages as needed */
2035 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
2041 t = min(mo_pfn, epfn);
2042 deferred_free_pages(spfn, t);
2052 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
2055 unsigned long spfn, epfn;
2056 struct zone *zone = arg;
2059 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
2062 * Initialize and free pages in MAX_ORDER sized increments so that we
2063 * can avoid introducing any issues with the buddy allocator.
2065 while (spfn < end_pfn) {
2066 deferred_init_maxorder(&i, zone, &spfn, &epfn);
2071 /* An arch may override for more concurrency. */
2073 deferred_page_init_max_threads(const struct cpumask *node_cpumask)
2078 /* Initialise remaining memory on a node */
2079 static int __init deferred_init_memmap(void *data)
2081 pg_data_t *pgdat = data;
2082 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2083 unsigned long spfn = 0, epfn = 0;
2084 unsigned long first_init_pfn, flags;
2085 unsigned long start = jiffies;
2087 int zid, max_threads;
2090 /* Bind memory initialisation thread to a local node if possible */
2091 if (!cpumask_empty(cpumask))
2092 set_cpus_allowed_ptr(current, cpumask);
2094 pgdat_resize_lock(pgdat, &flags);
2095 first_init_pfn = pgdat->first_deferred_pfn;
2096 if (first_init_pfn == ULONG_MAX) {
2097 pgdat_resize_unlock(pgdat, &flags);
2098 pgdat_init_report_one_done();
2102 /* Sanity check boundaries */
2103 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
2104 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
2105 pgdat->first_deferred_pfn = ULONG_MAX;
2108 * Once we unlock here, the zone cannot be grown anymore, thus if an
2109 * interrupt thread must allocate this early in boot, zone must be
2110 * pre-grown prior to start of deferred page initialization.
2112 pgdat_resize_unlock(pgdat, &flags);
2114 /* Only the highest zone is deferred so find it */
2115 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2116 zone = pgdat->node_zones + zid;
2117 if (first_init_pfn < zone_end_pfn(zone))
2121 /* If the zone is empty somebody else may have cleared out the zone */
2122 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2126 max_threads = deferred_page_init_max_threads(cpumask);
2128 while (spfn < epfn) {
2129 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
2130 struct padata_mt_job job = {
2131 .thread_fn = deferred_init_memmap_chunk,
2134 .size = epfn_align - spfn,
2135 .align = PAGES_PER_SECTION,
2136 .min_chunk = PAGES_PER_SECTION,
2137 .max_threads = max_threads,
2140 padata_do_multithreaded(&job);
2141 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2145 /* Sanity check that the next zone really is unpopulated */
2146 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
2148 pr_info("node %d deferred pages initialised in %ums\n",
2149 pgdat->node_id, jiffies_to_msecs(jiffies - start));
2151 pgdat_init_report_one_done();
2156 * If this zone has deferred pages, try to grow it by initializing enough
2157 * deferred pages to satisfy the allocation specified by order, rounded up to
2158 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
2159 * of SECTION_SIZE bytes by initializing struct pages in increments of
2160 * PAGES_PER_SECTION * sizeof(struct page) bytes.
2162 * Return true when zone was grown, otherwise return false. We return true even
2163 * when we grow less than requested, to let the caller decide if there are
2164 * enough pages to satisfy the allocation.
2166 * Note: We use noinline because this function is needed only during boot, and
2167 * it is called from a __ref function _deferred_grow_zone. This way we are
2168 * making sure that it is not inlined into permanent text section.
2170 static noinline bool __init
2171 deferred_grow_zone(struct zone *zone, unsigned int order)
2173 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2174 pg_data_t *pgdat = zone->zone_pgdat;
2175 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2176 unsigned long spfn, epfn, flags;
2177 unsigned long nr_pages = 0;
2180 /* Only the last zone may have deferred pages */
2181 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2184 pgdat_resize_lock(pgdat, &flags);
2187 * If someone grew this zone while we were waiting for spinlock, return
2188 * true, as there might be enough pages already.
2190 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2191 pgdat_resize_unlock(pgdat, &flags);
2195 /* If the zone is empty somebody else may have cleared out the zone */
2196 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2197 first_deferred_pfn)) {
2198 pgdat->first_deferred_pfn = ULONG_MAX;
2199 pgdat_resize_unlock(pgdat, &flags);
2200 /* Retry only once. */
2201 return first_deferred_pfn != ULONG_MAX;
2205 * Initialize and free pages in MAX_ORDER sized increments so
2206 * that we can avoid introducing any issues with the buddy
2209 while (spfn < epfn) {
2210 /* update our first deferred PFN for this section */
2211 first_deferred_pfn = spfn;
2213 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2214 touch_nmi_watchdog();
2216 /* We should only stop along section boundaries */
2217 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2220 /* If our quota has been met we can stop here */
2221 if (nr_pages >= nr_pages_needed)
2225 pgdat->first_deferred_pfn = spfn;
2226 pgdat_resize_unlock(pgdat, &flags);
2228 return nr_pages > 0;
2232 * deferred_grow_zone() is __init, but it is called from
2233 * get_page_from_freelist() during early boot until deferred_pages permanently
2234 * disables this call. This is why we have refdata wrapper to avoid warning,
2235 * and to ensure that the function body gets unloaded.
2238 _deferred_grow_zone(struct zone *zone, unsigned int order)
2240 return deferred_grow_zone(zone, order);
2243 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2245 void __init page_alloc_init_late(void)
2250 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2252 /* There will be num_node_state(N_MEMORY) threads */
2253 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2254 for_each_node_state(nid, N_MEMORY) {
2255 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2258 /* Block until all are initialised */
2259 wait_for_completion(&pgdat_init_all_done_comp);
2262 * We initialized the rest of the deferred pages. Permanently disable
2263 * on-demand struct page initialization.
2265 static_branch_disable(&deferred_pages);
2267 /* Reinit limits that are based on free pages after the kernel is up */
2268 files_maxfiles_init();
2273 /* Discard memblock private memory */
2276 for_each_node_state(nid, N_MEMORY)
2277 shuffle_free_memory(NODE_DATA(nid));
2279 for_each_populated_zone(zone)
2280 set_zone_contiguous(zone);
2284 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2285 void __init init_cma_reserved_pageblock(struct page *page)
2287 unsigned i = pageblock_nr_pages;
2288 struct page *p = page;
2291 __ClearPageReserved(p);
2292 set_page_count(p, 0);
2295 set_pageblock_migratetype(page, MIGRATE_CMA);
2296 set_page_refcounted(page);
2297 __free_pages(page, pageblock_order);
2299 adjust_managed_page_count(page, pageblock_nr_pages);
2300 page_zone(page)->cma_pages += pageblock_nr_pages;
2305 * The order of subdivision here is critical for the IO subsystem.
2306 * Please do not alter this order without good reasons and regression
2307 * testing. Specifically, as large blocks of memory are subdivided,
2308 * the order in which smaller blocks are delivered depends on the order
2309 * they're subdivided in this function. This is the primary factor
2310 * influencing the order in which pages are delivered to the IO
2311 * subsystem according to empirical testing, and this is also justified
2312 * by considering the behavior of a buddy system containing a single
2313 * large block of memory acted on by a series of small allocations.
2314 * This behavior is a critical factor in sglist merging's success.
2318 static inline void expand(struct zone *zone, struct page *page,
2319 int low, int high, int migratetype)
2321 unsigned long size = 1 << high;
2323 while (high > low) {
2326 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2329 * Mark as guard pages (or page), that will allow to
2330 * merge back to allocator when buddy will be freed.
2331 * Corresponding page table entries will not be touched,
2332 * pages will stay not present in virtual address space
2334 if (set_page_guard(zone, &page[size], high, migratetype))
2337 add_to_free_list(&page[size], zone, high, migratetype);
2338 set_buddy_order(&page[size], high);
2342 static void check_new_page_bad(struct page *page)
2344 if (unlikely(page->flags & __PG_HWPOISON)) {
2345 /* Don't complain about hwpoisoned pages */
2346 page_mapcount_reset(page); /* remove PageBuddy */
2351 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
2355 * This page is about to be returned from the page allocator
2357 static int check_new_page(struct page *page)
2359 if (likely(page_expected_state(page,
2360 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2363 check_new_page_bad(page);
2367 static inline bool check_new_pages(struct page *page, unsigned int order)
2369 if (static_branch_unlikely(&check_pages_enabled)) {
2370 for (int i = 0; i < (1 << order); i++) {
2371 struct page *p = page + i;
2373 if (unlikely(check_new_page(p)))
2381 static inline bool should_skip_kasan_unpoison(gfp_t flags)
2383 /* Don't skip if a software KASAN mode is enabled. */
2384 if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
2385 IS_ENABLED(CONFIG_KASAN_SW_TAGS))
2388 /* Skip, if hardware tag-based KASAN is not enabled. */
2389 if (!kasan_hw_tags_enabled())
2393 * With hardware tag-based KASAN enabled, skip if this has been
2394 * requested via __GFP_SKIP_KASAN.
2396 return flags & __GFP_SKIP_KASAN;
2399 static inline bool should_skip_init(gfp_t flags)
2401 /* Don't skip, if hardware tag-based KASAN is not enabled. */
2402 if (!kasan_hw_tags_enabled())
2405 /* For hardware tag-based KASAN, skip if requested. */
2406 return (flags & __GFP_SKIP_ZERO);
2409 inline void post_alloc_hook(struct page *page, unsigned int order,
2412 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
2413 !should_skip_init(gfp_flags);
2414 bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS);
2417 set_page_private(page, 0);
2418 set_page_refcounted(page);
2420 arch_alloc_page(page, order);
2421 debug_pagealloc_map_pages(page, 1 << order);
2424 * Page unpoisoning must happen before memory initialization.
2425 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
2426 * allocations and the page unpoisoning code will complain.
2428 kernel_unpoison_pages(page, 1 << order);
2431 * As memory initialization might be integrated into KASAN,
2432 * KASAN unpoisoning and memory initializion code must be
2433 * kept together to avoid discrepancies in behavior.
2437 * If memory tags should be zeroed
2438 * (which happens only when memory should be initialized as well).
2441 /* Initialize both memory and memory tags. */
2442 for (i = 0; i != 1 << order; ++i)
2443 tag_clear_highpage(page + i);
2445 /* Take note that memory was initialized by the loop above. */
2448 if (!should_skip_kasan_unpoison(gfp_flags) &&
2449 kasan_unpoison_pages(page, order, init)) {
2450 /* Take note that memory was initialized by KASAN. */
2451 if (kasan_has_integrated_init())
2455 * If memory tags have not been set by KASAN, reset the page
2456 * tags to ensure page_address() dereferencing does not fault.
2458 for (i = 0; i != 1 << order; ++i)
2459 page_kasan_tag_reset(page + i);
2461 /* If memory is still not initialized, initialize it now. */
2463 kernel_init_pages(page, 1 << order);
2465 set_page_owner(page, order, gfp_flags);
2466 page_table_check_alloc(page, order);
2469 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2470 unsigned int alloc_flags)
2472 post_alloc_hook(page, order, gfp_flags);
2474 if (order && (gfp_flags & __GFP_COMP))
2475 prep_compound_page(page, order);
2478 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2479 * allocate the page. The expectation is that the caller is taking
2480 * steps that will free more memory. The caller should avoid the page
2481 * being used for !PFMEMALLOC purposes.
2483 if (alloc_flags & ALLOC_NO_WATERMARKS)
2484 set_page_pfmemalloc(page);
2486 clear_page_pfmemalloc(page);
2490 * Go through the free lists for the given migratetype and remove
2491 * the smallest available page from the freelists
2493 static __always_inline
2494 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2497 unsigned int current_order;
2498 struct free_area *area;
2501 /* Find a page of the appropriate size in the preferred list */
2502 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2503 area = &(zone->free_area[current_order]);
2504 page = get_page_from_free_area(area, migratetype);
2507 del_page_from_free_list(page, zone, current_order);
2508 expand(zone, page, order, current_order, migratetype);
2509 set_pcppage_migratetype(page, migratetype);
2510 trace_mm_page_alloc_zone_locked(page, order, migratetype,
2511 pcp_allowed_order(order) &&
2512 migratetype < MIGRATE_PCPTYPES);
2521 * This array describes the order lists are fallen back to when
2522 * the free lists for the desirable migrate type are depleted
2524 * The other migratetypes do not have fallbacks.
2526 static int fallbacks[MIGRATE_TYPES][MIGRATE_PCPTYPES - 1] = {
2527 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE },
2528 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE },
2529 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE },
2533 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2536 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2539 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2540 unsigned int order) { return NULL; }
2544 * Move the free pages in a range to the freelist tail of the requested type.
2545 * Note that start_page and end_pages are not aligned on a pageblock
2546 * boundary. If alignment is required, use move_freepages_block()
2548 static int move_freepages(struct zone *zone,
2549 unsigned long start_pfn, unsigned long end_pfn,
2550 int migratetype, int *num_movable)
2555 int pages_moved = 0;
2557 for (pfn = start_pfn; pfn <= end_pfn;) {
2558 page = pfn_to_page(pfn);
2559 if (!PageBuddy(page)) {
2561 * We assume that pages that could be isolated for
2562 * migration are movable. But we don't actually try
2563 * isolating, as that would be expensive.
2566 (PageLRU(page) || __PageMovable(page)))
2572 /* Make sure we are not inadvertently changing nodes */
2573 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2574 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2576 order = buddy_order(page);
2577 move_to_free_list(page, zone, order, migratetype);
2579 pages_moved += 1 << order;
2585 int move_freepages_block(struct zone *zone, struct page *page,
2586 int migratetype, int *num_movable)
2588 unsigned long start_pfn, end_pfn, pfn;
2593 pfn = page_to_pfn(page);
2594 start_pfn = pageblock_start_pfn(pfn);
2595 end_pfn = pageblock_end_pfn(pfn) - 1;
2597 /* Do not cross zone boundaries */
2598 if (!zone_spans_pfn(zone, start_pfn))
2600 if (!zone_spans_pfn(zone, end_pfn))
2603 return move_freepages(zone, start_pfn, end_pfn, migratetype,
2607 static void change_pageblock_range(struct page *pageblock_page,
2608 int start_order, int migratetype)
2610 int nr_pageblocks = 1 << (start_order - pageblock_order);
2612 while (nr_pageblocks--) {
2613 set_pageblock_migratetype(pageblock_page, migratetype);
2614 pageblock_page += pageblock_nr_pages;
2619 * When we are falling back to another migratetype during allocation, try to
2620 * steal extra free pages from the same pageblocks to satisfy further
2621 * allocations, instead of polluting multiple pageblocks.
2623 * If we are stealing a relatively large buddy page, it is likely there will
2624 * be more free pages in the pageblock, so try to steal them all. For
2625 * reclaimable and unmovable allocations, we steal regardless of page size,
2626 * as fragmentation caused by those allocations polluting movable pageblocks
2627 * is worse than movable allocations stealing from unmovable and reclaimable
2630 static bool can_steal_fallback(unsigned int order, int start_mt)
2633 * Leaving this order check is intended, although there is
2634 * relaxed order check in next check. The reason is that
2635 * we can actually steal whole pageblock if this condition met,
2636 * but, below check doesn't guarantee it and that is just heuristic
2637 * so could be changed anytime.
2639 if (order >= pageblock_order)
2642 if (order >= pageblock_order / 2 ||
2643 start_mt == MIGRATE_RECLAIMABLE ||
2644 start_mt == MIGRATE_UNMOVABLE ||
2645 page_group_by_mobility_disabled)
2651 static inline bool boost_watermark(struct zone *zone)
2653 unsigned long max_boost;
2655 if (!watermark_boost_factor)
2658 * Don't bother in zones that are unlikely to produce results.
2659 * On small machines, including kdump capture kernels running
2660 * in a small area, boosting the watermark can cause an out of
2661 * memory situation immediately.
2663 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2666 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2667 watermark_boost_factor, 10000);
2670 * high watermark may be uninitialised if fragmentation occurs
2671 * very early in boot so do not boost. We do not fall
2672 * through and boost by pageblock_nr_pages as failing
2673 * allocations that early means that reclaim is not going
2674 * to help and it may even be impossible to reclaim the
2675 * boosted watermark resulting in a hang.
2680 max_boost = max(pageblock_nr_pages, max_boost);
2682 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2689 * This function implements actual steal behaviour. If order is large enough,
2690 * we can steal whole pageblock. If not, we first move freepages in this
2691 * pageblock to our migratetype and determine how many already-allocated pages
2692 * are there in the pageblock with a compatible migratetype. If at least half
2693 * of pages are free or compatible, we can change migratetype of the pageblock
2694 * itself, so pages freed in the future will be put on the correct free list.
2696 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2697 unsigned int alloc_flags, int start_type, bool whole_block)
2699 unsigned int current_order = buddy_order(page);
2700 int free_pages, movable_pages, alike_pages;
2703 old_block_type = get_pageblock_migratetype(page);
2706 * This can happen due to races and we want to prevent broken
2707 * highatomic accounting.
2709 if (is_migrate_highatomic(old_block_type))
2712 /* Take ownership for orders >= pageblock_order */
2713 if (current_order >= pageblock_order) {
2714 change_pageblock_range(page, current_order, start_type);
2719 * Boost watermarks to increase reclaim pressure to reduce the
2720 * likelihood of future fallbacks. Wake kswapd now as the node
2721 * may be balanced overall and kswapd will not wake naturally.
2723 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
2724 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2726 /* We are not allowed to try stealing from the whole block */
2730 free_pages = move_freepages_block(zone, page, start_type,
2733 * Determine how many pages are compatible with our allocation.
2734 * For movable allocation, it's the number of movable pages which
2735 * we just obtained. For other types it's a bit more tricky.
2737 if (start_type == MIGRATE_MOVABLE) {
2738 alike_pages = movable_pages;
2741 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2742 * to MOVABLE pageblock, consider all non-movable pages as
2743 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2744 * vice versa, be conservative since we can't distinguish the
2745 * exact migratetype of non-movable pages.
2747 if (old_block_type == MIGRATE_MOVABLE)
2748 alike_pages = pageblock_nr_pages
2749 - (free_pages + movable_pages);
2754 /* moving whole block can fail due to zone boundary conditions */
2759 * If a sufficient number of pages in the block are either free or of
2760 * comparable migratability as our allocation, claim the whole block.
2762 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2763 page_group_by_mobility_disabled)
2764 set_pageblock_migratetype(page, start_type);
2769 move_to_free_list(page, zone, current_order, start_type);
2773 * Check whether there is a suitable fallback freepage with requested order.
2774 * If only_stealable is true, this function returns fallback_mt only if
2775 * we can steal other freepages all together. This would help to reduce
2776 * fragmentation due to mixed migratetype pages in one pageblock.
2778 int find_suitable_fallback(struct free_area *area, unsigned int order,
2779 int migratetype, bool only_stealable, bool *can_steal)
2784 if (area->nr_free == 0)
2788 for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) {
2789 fallback_mt = fallbacks[migratetype][i];
2790 if (free_area_empty(area, fallback_mt))
2793 if (can_steal_fallback(order, migratetype))
2796 if (!only_stealable)
2807 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2808 * there are no empty page blocks that contain a page with a suitable order
2810 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2811 unsigned int alloc_order)
2814 unsigned long max_managed, flags;
2817 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2818 * Check is race-prone but harmless.
2820 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2821 if (zone->nr_reserved_highatomic >= max_managed)
2824 spin_lock_irqsave(&zone->lock, flags);
2826 /* Recheck the nr_reserved_highatomic limit under the lock */
2827 if (zone->nr_reserved_highatomic >= max_managed)
2831 mt = get_pageblock_migratetype(page);
2832 /* Only reserve normal pageblocks (i.e., they can merge with others) */
2833 if (migratetype_is_mergeable(mt)) {
2834 zone->nr_reserved_highatomic += pageblock_nr_pages;
2835 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2836 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2840 spin_unlock_irqrestore(&zone->lock, flags);
2844 * Used when an allocation is about to fail under memory pressure. This
2845 * potentially hurts the reliability of high-order allocations when under
2846 * intense memory pressure but failed atomic allocations should be easier
2847 * to recover from than an OOM.
2849 * If @force is true, try to unreserve a pageblock even though highatomic
2850 * pageblock is exhausted.
2852 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2855 struct zonelist *zonelist = ac->zonelist;
2856 unsigned long flags;
2863 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2866 * Preserve at least one pageblock unless memory pressure
2869 if (!force && zone->nr_reserved_highatomic <=
2873 spin_lock_irqsave(&zone->lock, flags);
2874 for (order = 0; order < MAX_ORDER; order++) {
2875 struct free_area *area = &(zone->free_area[order]);
2877 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2882 * In page freeing path, migratetype change is racy so
2883 * we can counter several free pages in a pageblock
2884 * in this loop although we changed the pageblock type
2885 * from highatomic to ac->migratetype. So we should
2886 * adjust the count once.
2888 if (is_migrate_highatomic_page(page)) {
2890 * It should never happen but changes to
2891 * locking could inadvertently allow a per-cpu
2892 * drain to add pages to MIGRATE_HIGHATOMIC
2893 * while unreserving so be safe and watch for
2896 zone->nr_reserved_highatomic -= min(
2898 zone->nr_reserved_highatomic);
2902 * Convert to ac->migratetype and avoid the normal
2903 * pageblock stealing heuristics. Minimally, the caller
2904 * is doing the work and needs the pages. More
2905 * importantly, if the block was always converted to
2906 * MIGRATE_UNMOVABLE or another type then the number
2907 * of pageblocks that cannot be completely freed
2910 set_pageblock_migratetype(page, ac->migratetype);
2911 ret = move_freepages_block(zone, page, ac->migratetype,
2914 spin_unlock_irqrestore(&zone->lock, flags);
2918 spin_unlock_irqrestore(&zone->lock, flags);
2925 * Try finding a free buddy page on the fallback list and put it on the free
2926 * list of requested migratetype, possibly along with other pages from the same
2927 * block, depending on fragmentation avoidance heuristics. Returns true if
2928 * fallback was found so that __rmqueue_smallest() can grab it.
2930 * The use of signed ints for order and current_order is a deliberate
2931 * deviation from the rest of this file, to make the for loop
2932 * condition simpler.
2934 static __always_inline bool
2935 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2936 unsigned int alloc_flags)
2938 struct free_area *area;
2940 int min_order = order;
2946 * Do not steal pages from freelists belonging to other pageblocks
2947 * i.e. orders < pageblock_order. If there are no local zones free,
2948 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2950 if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
2951 min_order = pageblock_order;
2954 * Find the largest available free page in the other list. This roughly
2955 * approximates finding the pageblock with the most free pages, which
2956 * would be too costly to do exactly.
2958 for (current_order = MAX_ORDER - 1; current_order >= min_order;
2960 area = &(zone->free_area[current_order]);
2961 fallback_mt = find_suitable_fallback(area, current_order,
2962 start_migratetype, false, &can_steal);
2963 if (fallback_mt == -1)
2967 * We cannot steal all free pages from the pageblock and the
2968 * requested migratetype is movable. In that case it's better to
2969 * steal and split the smallest available page instead of the
2970 * largest available page, because even if the next movable
2971 * allocation falls back into a different pageblock than this
2972 * one, it won't cause permanent fragmentation.
2974 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2975 && current_order > order)
2984 for (current_order = order; current_order < MAX_ORDER;
2986 area = &(zone->free_area[current_order]);
2987 fallback_mt = find_suitable_fallback(area, current_order,
2988 start_migratetype, false, &can_steal);
2989 if (fallback_mt != -1)
2994 * This should not happen - we already found a suitable fallback
2995 * when looking for the largest page.
2997 VM_BUG_ON(current_order == MAX_ORDER);
3000 page = get_page_from_free_area(area, fallback_mt);
3002 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
3005 trace_mm_page_alloc_extfrag(page, order, current_order,
3006 start_migratetype, fallback_mt);
3013 * Do the hard work of removing an element from the buddy allocator.
3014 * Call me with the zone->lock already held.
3016 static __always_inline struct page *
3017 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
3018 unsigned int alloc_flags)
3022 if (IS_ENABLED(CONFIG_CMA)) {
3024 * Balance movable allocations between regular and CMA areas by
3025 * allocating from CMA when over half of the zone's free memory
3026 * is in the CMA area.
3028 if (alloc_flags & ALLOC_CMA &&
3029 zone_page_state(zone, NR_FREE_CMA_PAGES) >
3030 zone_page_state(zone, NR_FREE_PAGES) / 2) {
3031 page = __rmqueue_cma_fallback(zone, order);
3037 page = __rmqueue_smallest(zone, order, migratetype);
3038 if (unlikely(!page)) {
3039 if (alloc_flags & ALLOC_CMA)
3040 page = __rmqueue_cma_fallback(zone, order);
3042 if (!page && __rmqueue_fallback(zone, order, migratetype,
3050 * Obtain a specified number of elements from the buddy allocator, all under
3051 * a single hold of the lock, for efficiency. Add them to the supplied list.
3052 * Returns the number of new pages which were placed at *list.
3054 static int rmqueue_bulk(struct zone *zone, unsigned int order,
3055 unsigned long count, struct list_head *list,
3056 int migratetype, unsigned int alloc_flags)
3058 unsigned long flags;
3061 spin_lock_irqsave(&zone->lock, flags);
3062 for (i = 0; i < count; ++i) {
3063 struct page *page = __rmqueue(zone, order, migratetype,
3065 if (unlikely(page == NULL))
3069 * Split buddy pages returned by expand() are received here in
3070 * physical page order. The page is added to the tail of
3071 * caller's list. From the callers perspective, the linked list
3072 * is ordered by page number under some conditions. This is
3073 * useful for IO devices that can forward direction from the
3074 * head, thus also in the physical page order. This is useful
3075 * for IO devices that can merge IO requests if the physical
3076 * pages are ordered properly.
3078 list_add_tail(&page->pcp_list, list);
3079 if (is_migrate_cma(get_pcppage_migratetype(page)))
3080 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
3084 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
3085 spin_unlock_irqrestore(&zone->lock, flags);
3092 * Called from the vmstat counter updater to drain pagesets of this
3093 * currently executing processor on remote nodes after they have
3096 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
3098 int to_drain, batch;
3100 batch = READ_ONCE(pcp->batch);
3101 to_drain = min(pcp->count, batch);
3103 spin_lock(&pcp->lock);
3104 free_pcppages_bulk(zone, to_drain, pcp, 0);
3105 spin_unlock(&pcp->lock);
3111 * Drain pcplists of the indicated processor and zone.
3113 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
3115 struct per_cpu_pages *pcp;
3117 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3119 spin_lock(&pcp->lock);
3120 free_pcppages_bulk(zone, pcp->count, pcp, 0);
3121 spin_unlock(&pcp->lock);
3126 * Drain pcplists of all zones on the indicated processor.
3128 static void drain_pages(unsigned int cpu)
3132 for_each_populated_zone(zone) {
3133 drain_pages_zone(cpu, zone);
3138 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
3140 void drain_local_pages(struct zone *zone)
3142 int cpu = smp_processor_id();
3145 drain_pages_zone(cpu, zone);
3151 * The implementation of drain_all_pages(), exposing an extra parameter to
3152 * drain on all cpus.
3154 * drain_all_pages() is optimized to only execute on cpus where pcplists are
3155 * not empty. The check for non-emptiness can however race with a free to
3156 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
3157 * that need the guarantee that every CPU has drained can disable the
3158 * optimizing racy check.
3160 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
3165 * Allocate in the BSS so we won't require allocation in
3166 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3168 static cpumask_t cpus_with_pcps;
3171 * Do not drain if one is already in progress unless it's specific to
3172 * a zone. Such callers are primarily CMA and memory hotplug and need
3173 * the drain to be complete when the call returns.
3175 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3178 mutex_lock(&pcpu_drain_mutex);
3182 * We don't care about racing with CPU hotplug event
3183 * as offline notification will cause the notified
3184 * cpu to drain that CPU pcps and on_each_cpu_mask
3185 * disables preemption as part of its processing
3187 for_each_online_cpu(cpu) {
3188 struct per_cpu_pages *pcp;
3190 bool has_pcps = false;
3192 if (force_all_cpus) {
3194 * The pcp.count check is racy, some callers need a
3195 * guarantee that no cpu is missed.
3199 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3203 for_each_populated_zone(z) {
3204 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
3213 cpumask_set_cpu(cpu, &cpus_with_pcps);
3215 cpumask_clear_cpu(cpu, &cpus_with_pcps);
3218 for_each_cpu(cpu, &cpus_with_pcps) {
3220 drain_pages_zone(cpu, zone);
3225 mutex_unlock(&pcpu_drain_mutex);
3229 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3231 * When zone parameter is non-NULL, spill just the single zone's pages.
3233 void drain_all_pages(struct zone *zone)
3235 __drain_all_pages(zone, false);
3238 #ifdef CONFIG_HIBERNATION
3241 * Touch the watchdog for every WD_PAGE_COUNT pages.
3243 #define WD_PAGE_COUNT (128*1024)
3245 void mark_free_pages(struct zone *zone)
3247 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3248 unsigned long flags;
3249 unsigned int order, t;
3252 if (zone_is_empty(zone))
3255 spin_lock_irqsave(&zone->lock, flags);
3257 max_zone_pfn = zone_end_pfn(zone);
3258 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3259 if (pfn_valid(pfn)) {
3260 page = pfn_to_page(pfn);
3262 if (!--page_count) {
3263 touch_nmi_watchdog();
3264 page_count = WD_PAGE_COUNT;
3267 if (page_zone(page) != zone)
3270 if (!swsusp_page_is_forbidden(page))
3271 swsusp_unset_page_free(page);
3274 for_each_migratetype_order(order, t) {
3275 list_for_each_entry(page,
3276 &zone->free_area[order].free_list[t], buddy_list) {
3279 pfn = page_to_pfn(page);
3280 for (i = 0; i < (1UL << order); i++) {
3281 if (!--page_count) {
3282 touch_nmi_watchdog();
3283 page_count = WD_PAGE_COUNT;
3285 swsusp_set_page_free(pfn_to_page(pfn + i));
3289 spin_unlock_irqrestore(&zone->lock, flags);
3291 #endif /* CONFIG_PM */
3293 static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
3298 if (!free_pages_prepare(page, order, FPI_NONE))
3301 migratetype = get_pfnblock_migratetype(page, pfn);
3302 set_pcppage_migratetype(page, migratetype);
3306 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch,
3309 int min_nr_free, max_nr_free;
3311 /* Free everything if batch freeing high-order pages. */
3312 if (unlikely(free_high))
3315 /* Check for PCP disabled or boot pageset */
3316 if (unlikely(high < batch))
3319 /* Leave at least pcp->batch pages on the list */
3320 min_nr_free = batch;
3321 max_nr_free = high - batch;
3324 * Double the number of pages freed each time there is subsequent
3325 * freeing of pages without any allocation.
3327 batch <<= pcp->free_factor;
3328 if (batch < max_nr_free)
3330 batch = clamp(batch, min_nr_free, max_nr_free);
3335 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
3338 int high = READ_ONCE(pcp->high);
3340 if (unlikely(!high || free_high))
3343 if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
3347 * If reclaim is active, limit the number of pages that can be
3348 * stored on pcp lists
3350 return min(READ_ONCE(pcp->batch) << 2, high);
3353 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp,
3354 struct page *page, int migratetype,
3361 __count_vm_events(PGFREE, 1 << order);
3362 pindex = order_to_pindex(migratetype, order);
3363 list_add(&page->pcp_list, &pcp->lists[pindex]);
3364 pcp->count += 1 << order;
3367 * As high-order pages other than THP's stored on PCP can contribute
3368 * to fragmentation, limit the number stored when PCP is heavily
3369 * freeing without allocation. The remainder after bulk freeing
3370 * stops will be drained from vmstat refresh context.
3372 free_high = (pcp->free_factor && order && order <= PAGE_ALLOC_COSTLY_ORDER);
3374 high = nr_pcp_high(pcp, zone, free_high);
3375 if (pcp->count >= high) {
3376 int batch = READ_ONCE(pcp->batch);
3378 free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch, free_high), pcp, pindex);
3385 void free_unref_page(struct page *page, unsigned int order)
3387 unsigned long __maybe_unused UP_flags;
3388 struct per_cpu_pages *pcp;
3390 unsigned long pfn = page_to_pfn(page);
3393 if (!free_unref_page_prepare(page, pfn, order))
3397 * We only track unmovable, reclaimable and movable on pcp lists.
3398 * Place ISOLATE pages on the isolated list because they are being
3399 * offlined but treat HIGHATOMIC as movable pages so we can get those
3400 * areas back if necessary. Otherwise, we may have to free
3401 * excessively into the page allocator
3403 migratetype = get_pcppage_migratetype(page);
3404 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
3405 if (unlikely(is_migrate_isolate(migratetype))) {
3406 free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
3409 migratetype = MIGRATE_MOVABLE;
3412 zone = page_zone(page);
3413 pcp_trylock_prepare(UP_flags);
3414 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
3416 free_unref_page_commit(zone, pcp, page, migratetype, order);
3417 pcp_spin_unlock(pcp);
3419 free_one_page(zone, page, pfn, order, migratetype, FPI_NONE);
3421 pcp_trylock_finish(UP_flags);
3425 * Free a list of 0-order pages
3427 void free_unref_page_list(struct list_head *list)
3429 unsigned long __maybe_unused UP_flags;
3430 struct page *page, *next;
3431 struct per_cpu_pages *pcp = NULL;
3432 struct zone *locked_zone = NULL;
3433 int batch_count = 0;
3436 /* Prepare pages for freeing */
3437 list_for_each_entry_safe(page, next, list, lru) {
3438 unsigned long pfn = page_to_pfn(page);
3439 if (!free_unref_page_prepare(page, pfn, 0)) {
3440 list_del(&page->lru);
3445 * Free isolated pages directly to the allocator, see
3446 * comment in free_unref_page.
3448 migratetype = get_pcppage_migratetype(page);
3449 if (unlikely(is_migrate_isolate(migratetype))) {
3450 list_del(&page->lru);
3451 free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
3456 list_for_each_entry_safe(page, next, list, lru) {
3457 struct zone *zone = page_zone(page);
3459 list_del(&page->lru);
3460 migratetype = get_pcppage_migratetype(page);
3463 * Either different zone requiring a different pcp lock or
3464 * excessive lock hold times when freeing a large list of
3467 if (zone != locked_zone || batch_count == SWAP_CLUSTER_MAX) {
3469 pcp_spin_unlock(pcp);
3470 pcp_trylock_finish(UP_flags);
3476 * trylock is necessary as pages may be getting freed
3477 * from IRQ or SoftIRQ context after an IO completion.
3479 pcp_trylock_prepare(UP_flags);
3480 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
3481 if (unlikely(!pcp)) {
3482 pcp_trylock_finish(UP_flags);
3483 free_one_page(zone, page, page_to_pfn(page),
3484 0, migratetype, FPI_NONE);
3492 * Non-isolated types over MIGRATE_PCPTYPES get added
3493 * to the MIGRATE_MOVABLE pcp list.
3495 if (unlikely(migratetype >= MIGRATE_PCPTYPES))
3496 migratetype = MIGRATE_MOVABLE;
3498 trace_mm_page_free_batched(page);
3499 free_unref_page_commit(zone, pcp, page, migratetype, 0);
3504 pcp_spin_unlock(pcp);
3505 pcp_trylock_finish(UP_flags);
3510 * split_page takes a non-compound higher-order page, and splits it into
3511 * n (1<<order) sub-pages: page[0..n]
3512 * Each sub-page must be freed individually.
3514 * Note: this is probably too low level an operation for use in drivers.
3515 * Please consult with lkml before using this in your driver.
3517 void split_page(struct page *page, unsigned int order)
3521 VM_BUG_ON_PAGE(PageCompound(page), page);
3522 VM_BUG_ON_PAGE(!page_count(page), page);
3524 for (i = 1; i < (1 << order); i++)
3525 set_page_refcounted(page + i);
3526 split_page_owner(page, 1 << order);
3527 split_page_memcg(page, 1 << order);
3529 EXPORT_SYMBOL_GPL(split_page);
3531 int __isolate_free_page(struct page *page, unsigned int order)
3533 struct zone *zone = page_zone(page);
3534 int mt = get_pageblock_migratetype(page);
3536 if (!is_migrate_isolate(mt)) {
3537 unsigned long watermark;
3539 * Obey watermarks as if the page was being allocated. We can
3540 * emulate a high-order watermark check with a raised order-0
3541 * watermark, because we already know our high-order page
3544 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3545 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3548 __mod_zone_freepage_state(zone, -(1UL << order), mt);
3551 del_page_from_free_list(page, zone, order);
3554 * Set the pageblock if the isolated page is at least half of a
3557 if (order >= pageblock_order - 1) {
3558 struct page *endpage = page + (1 << order) - 1;
3559 for (; page < endpage; page += pageblock_nr_pages) {
3560 int mt = get_pageblock_migratetype(page);
3562 * Only change normal pageblocks (i.e., they can merge
3565 if (migratetype_is_mergeable(mt))
3566 set_pageblock_migratetype(page,
3571 return 1UL << order;
3575 * __putback_isolated_page - Return a now-isolated page back where we got it
3576 * @page: Page that was isolated
3577 * @order: Order of the isolated page
3578 * @mt: The page's pageblock's migratetype
3580 * This function is meant to return a page pulled from the free lists via
3581 * __isolate_free_page back to the free lists they were pulled from.
3583 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3585 struct zone *zone = page_zone(page);
3587 /* zone lock should be held when this function is called */
3588 lockdep_assert_held(&zone->lock);
3590 /* Return isolated page to tail of freelist. */
3591 __free_one_page(page, page_to_pfn(page), zone, order, mt,
3592 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
3596 * Update NUMA hit/miss statistics
3598 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
3602 enum numa_stat_item local_stat = NUMA_LOCAL;
3604 /* skip numa counters update if numa stats is disabled */
3605 if (!static_branch_likely(&vm_numa_stat_key))
3608 if (zone_to_nid(z) != numa_node_id())
3609 local_stat = NUMA_OTHER;
3611 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3612 __count_numa_events(z, NUMA_HIT, nr_account);
3614 __count_numa_events(z, NUMA_MISS, nr_account);
3615 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
3617 __count_numa_events(z, local_stat, nr_account);
3621 static __always_inline
3622 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
3623 unsigned int order, unsigned int alloc_flags,
3627 unsigned long flags;
3631 spin_lock_irqsave(&zone->lock, flags);
3633 * order-0 request can reach here when the pcplist is skipped
3634 * due to non-CMA allocation context. HIGHATOMIC area is
3635 * reserved for high-order atomic allocation, so order-0
3636 * request should skip it.
3638 if (alloc_flags & ALLOC_HIGHATOMIC)
3639 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3641 page = __rmqueue(zone, order, migratetype, alloc_flags);
3644 * If the allocation fails, allow OOM handling access
3645 * to HIGHATOMIC reserves as failing now is worse than
3646 * failing a high-order atomic allocation in the
3649 if (!page && (alloc_flags & ALLOC_OOM))
3650 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3653 spin_unlock_irqrestore(&zone->lock, flags);
3657 __mod_zone_freepage_state(zone, -(1 << order),
3658 get_pcppage_migratetype(page));
3659 spin_unlock_irqrestore(&zone->lock, flags);
3660 } while (check_new_pages(page, order));
3662 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3663 zone_statistics(preferred_zone, zone, 1);
3668 /* Remove page from the per-cpu list, caller must protect the list */
3670 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
3672 unsigned int alloc_flags,
3673 struct per_cpu_pages *pcp,
3674 struct list_head *list)
3679 if (list_empty(list)) {
3680 int batch = READ_ONCE(pcp->batch);
3684 * Scale batch relative to order if batch implies
3685 * free pages can be stored on the PCP. Batch can
3686 * be 1 for small zones or for boot pagesets which
3687 * should never store free pages as the pages may
3688 * belong to arbitrary zones.
3691 batch = max(batch >> order, 2);
3692 alloced = rmqueue_bulk(zone, order,
3694 migratetype, alloc_flags);
3696 pcp->count += alloced << order;
3697 if (unlikely(list_empty(list)))
3701 page = list_first_entry(list, struct page, pcp_list);
3702 list_del(&page->pcp_list);
3703 pcp->count -= 1 << order;
3704 } while (check_new_pages(page, order));
3709 /* Lock and remove page from the per-cpu list */
3710 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3711 struct zone *zone, unsigned int order,
3712 int migratetype, unsigned int alloc_flags)
3714 struct per_cpu_pages *pcp;
3715 struct list_head *list;
3717 unsigned long __maybe_unused UP_flags;
3719 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
3720 pcp_trylock_prepare(UP_flags);
3721 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
3723 pcp_trylock_finish(UP_flags);
3728 * On allocation, reduce the number of pages that are batch freed.
3729 * See nr_pcp_free() where free_factor is increased for subsequent
3732 pcp->free_factor >>= 1;
3733 list = &pcp->lists[order_to_pindex(migratetype, order)];
3734 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
3735 pcp_spin_unlock(pcp);
3736 pcp_trylock_finish(UP_flags);
3738 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3739 zone_statistics(preferred_zone, zone, 1);
3745 * Allocate a page from the given zone.
3746 * Use pcplists for THP or "cheap" high-order allocations.
3750 * Do not instrument rmqueue() with KMSAN. This function may call
3751 * __msan_poison_alloca() through a call to set_pfnblock_flags_mask().
3752 * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
3753 * may call rmqueue() again, which will result in a deadlock.
3755 __no_sanitize_memory
3757 struct page *rmqueue(struct zone *preferred_zone,
3758 struct zone *zone, unsigned int order,
3759 gfp_t gfp_flags, unsigned int alloc_flags,
3765 * We most definitely don't want callers attempting to
3766 * allocate greater than order-1 page units with __GFP_NOFAIL.
3768 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3770 if (likely(pcp_allowed_order(order))) {
3772 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3773 * we need to skip it when CMA area isn't allowed.
3775 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3776 migratetype != MIGRATE_MOVABLE) {
3777 page = rmqueue_pcplist(preferred_zone, zone, order,
3778 migratetype, alloc_flags);
3784 page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
3788 /* Separate test+clear to avoid unnecessary atomics */
3789 if (unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
3790 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3791 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3794 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3798 #ifdef CONFIG_FAIL_PAGE_ALLOC
3801 struct fault_attr attr;
3803 bool ignore_gfp_highmem;
3804 bool ignore_gfp_reclaim;
3806 } fail_page_alloc = {
3807 .attr = FAULT_ATTR_INITIALIZER,
3808 .ignore_gfp_reclaim = true,
3809 .ignore_gfp_highmem = true,
3813 static int __init setup_fail_page_alloc(char *str)
3815 return setup_fault_attr(&fail_page_alloc.attr, str);
3817 __setup("fail_page_alloc=", setup_fail_page_alloc);
3819 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3823 if (order < fail_page_alloc.min_order)
3825 if (gfp_mask & __GFP_NOFAIL)
3827 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3829 if (fail_page_alloc.ignore_gfp_reclaim &&
3830 (gfp_mask & __GFP_DIRECT_RECLAIM))
3833 /* See comment in __should_failslab() */
3834 if (gfp_mask & __GFP_NOWARN)
3835 flags |= FAULT_NOWARN;
3837 return should_fail_ex(&fail_page_alloc.attr, 1 << order, flags);
3840 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3842 static int __init fail_page_alloc_debugfs(void)
3844 umode_t mode = S_IFREG | 0600;
3847 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3848 &fail_page_alloc.attr);
3850 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3851 &fail_page_alloc.ignore_gfp_reclaim);
3852 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3853 &fail_page_alloc.ignore_gfp_highmem);
3854 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3859 late_initcall(fail_page_alloc_debugfs);
3861 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3863 #else /* CONFIG_FAIL_PAGE_ALLOC */
3865 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3870 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3872 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3874 return __should_fail_alloc_page(gfp_mask, order);
3876 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3878 static inline long __zone_watermark_unusable_free(struct zone *z,
3879 unsigned int order, unsigned int alloc_flags)
3881 long unusable_free = (1 << order) - 1;
3884 * If the caller does not have rights to reserves below the min
3885 * watermark then subtract the high-atomic reserves. This will
3886 * over-estimate the size of the atomic reserve but it avoids a search.
3888 if (likely(!(alloc_flags & ALLOC_RESERVES)))
3889 unusable_free += z->nr_reserved_highatomic;
3892 /* If allocation can't use CMA areas don't use free CMA pages */
3893 if (!(alloc_flags & ALLOC_CMA))
3894 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3897 return unusable_free;
3901 * Return true if free base pages are above 'mark'. For high-order checks it
3902 * will return true of the order-0 watermark is reached and there is at least
3903 * one free page of a suitable size. Checking now avoids taking the zone lock
3904 * to check in the allocation paths if no pages are free.
3906 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3907 int highest_zoneidx, unsigned int alloc_flags,
3913 /* free_pages may go negative - that's OK */
3914 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3916 if (unlikely(alloc_flags & ALLOC_RESERVES)) {
3918 * __GFP_HIGH allows access to 50% of the min reserve as well
3921 if (alloc_flags & ALLOC_MIN_RESERVE) {
3925 * Non-blocking allocations (e.g. GFP_ATOMIC) can
3926 * access more reserves than just __GFP_HIGH. Other
3927 * non-blocking allocations requests such as GFP_NOWAIT
3928 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get
3929 * access to the min reserve.
3931 if (alloc_flags & ALLOC_NON_BLOCK)
3936 * OOM victims can try even harder than the normal reserve
3937 * users on the grounds that it's definitely going to be in
3938 * the exit path shortly and free memory. Any allocation it
3939 * makes during the free path will be small and short-lived.
3941 if (alloc_flags & ALLOC_OOM)
3946 * Check watermarks for an order-0 allocation request. If these
3947 * are not met, then a high-order request also cannot go ahead
3948 * even if a suitable page happened to be free.
3950 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3953 /* If this is an order-0 request then the watermark is fine */
3957 /* For a high-order request, check at least one suitable page is free */
3958 for (o = order; o < MAX_ORDER; o++) {
3959 struct free_area *area = &z->free_area[o];
3965 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3966 if (!free_area_empty(area, mt))
3971 if ((alloc_flags & ALLOC_CMA) &&
3972 !free_area_empty(area, MIGRATE_CMA)) {
3976 if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) &&
3977 !free_area_empty(area, MIGRATE_HIGHATOMIC)) {
3984 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3985 int highest_zoneidx, unsigned int alloc_flags)
3987 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3988 zone_page_state(z, NR_FREE_PAGES));
3991 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3992 unsigned long mark, int highest_zoneidx,
3993 unsigned int alloc_flags, gfp_t gfp_mask)
3997 free_pages = zone_page_state(z, NR_FREE_PAGES);
4000 * Fast check for order-0 only. If this fails then the reserves
4001 * need to be calculated.
4007 usable_free = free_pages;
4008 reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
4010 /* reserved may over estimate high-atomic reserves. */
4011 usable_free -= min(usable_free, reserved);
4012 if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
4016 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
4021 * Ignore watermark boosting for __GFP_HIGH order-0 allocations
4022 * when checking the min watermark. The min watermark is the
4023 * point where boosting is ignored so that kswapd is woken up
4024 * when below the low watermark.
4026 if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost
4027 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
4028 mark = z->_watermark[WMARK_MIN];
4029 return __zone_watermark_ok(z, order, mark, highest_zoneidx,
4030 alloc_flags, free_pages);
4036 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
4037 unsigned long mark, int highest_zoneidx)
4039 long free_pages = zone_page_state(z, NR_FREE_PAGES);
4041 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
4042 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
4044 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
4049 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
4051 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
4053 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
4054 node_reclaim_distance;
4056 #else /* CONFIG_NUMA */
4057 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
4061 #endif /* CONFIG_NUMA */
4064 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
4065 * fragmentation is subtle. If the preferred zone was HIGHMEM then
4066 * premature use of a lower zone may cause lowmem pressure problems that
4067 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
4068 * probably too small. It only makes sense to spread allocations to avoid
4069 * fragmentation between the Normal and DMA32 zones.
4071 static inline unsigned int
4072 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
4074 unsigned int alloc_flags;
4077 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4080 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
4082 #ifdef CONFIG_ZONE_DMA32
4086 if (zone_idx(zone) != ZONE_NORMAL)
4090 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
4091 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
4092 * on UMA that if Normal is populated then so is DMA32.
4094 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
4095 if (nr_online_nodes > 1 && !populated_zone(--zone))
4098 alloc_flags |= ALLOC_NOFRAGMENT;
4099 #endif /* CONFIG_ZONE_DMA32 */
4103 /* Must be called after current_gfp_context() which can change gfp_mask */
4104 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
4105 unsigned int alloc_flags)
4108 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4109 alloc_flags |= ALLOC_CMA;
4115 * get_page_from_freelist goes through the zonelist trying to allocate
4118 static struct page *
4119 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
4120 const struct alloc_context *ac)
4124 struct pglist_data *last_pgdat = NULL;
4125 bool last_pgdat_dirty_ok = false;
4130 * Scan zonelist, looking for a zone with enough free.
4131 * See also __cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
4133 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
4134 z = ac->preferred_zoneref;
4135 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
4140 if (cpusets_enabled() &&
4141 (alloc_flags & ALLOC_CPUSET) &&
4142 !__cpuset_zone_allowed(zone, gfp_mask))
4145 * When allocating a page cache page for writing, we
4146 * want to get it from a node that is within its dirty
4147 * limit, such that no single node holds more than its
4148 * proportional share of globally allowed dirty pages.
4149 * The dirty limits take into account the node's
4150 * lowmem reserves and high watermark so that kswapd
4151 * should be able to balance it without having to
4152 * write pages from its LRU list.
4154 * XXX: For now, allow allocations to potentially
4155 * exceed the per-node dirty limit in the slowpath
4156 * (spread_dirty_pages unset) before going into reclaim,
4157 * which is important when on a NUMA setup the allowed
4158 * nodes are together not big enough to reach the
4159 * global limit. The proper fix for these situations
4160 * will require awareness of nodes in the
4161 * dirty-throttling and the flusher threads.
4163 if (ac->spread_dirty_pages) {
4164 if (last_pgdat != zone->zone_pgdat) {
4165 last_pgdat = zone->zone_pgdat;
4166 last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
4169 if (!last_pgdat_dirty_ok)
4173 if (no_fallback && nr_online_nodes > 1 &&
4174 zone != ac->preferred_zoneref->zone) {
4178 * If moving to a remote node, retry but allow
4179 * fragmenting fallbacks. Locality is more important
4180 * than fragmentation avoidance.
4182 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
4183 if (zone_to_nid(zone) != local_nid) {
4184 alloc_flags &= ~ALLOC_NOFRAGMENT;
4189 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
4190 if (!zone_watermark_fast(zone, order, mark,
4191 ac->highest_zoneidx, alloc_flags,
4195 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4197 * Watermark failed for this zone, but see if we can
4198 * grow this zone if it contains deferred pages.
4200 if (deferred_pages_enabled()) {
4201 if (_deferred_grow_zone(zone, order))
4205 /* Checked here to keep the fast path fast */
4206 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
4207 if (alloc_flags & ALLOC_NO_WATERMARKS)
4210 if (!node_reclaim_enabled() ||
4211 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
4214 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
4216 case NODE_RECLAIM_NOSCAN:
4219 case NODE_RECLAIM_FULL:
4220 /* scanned but unreclaimable */
4223 /* did we reclaim enough */
4224 if (zone_watermark_ok(zone, order, mark,
4225 ac->highest_zoneidx, alloc_flags))
4233 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
4234 gfp_mask, alloc_flags, ac->migratetype);
4236 prep_new_page(page, order, gfp_mask, alloc_flags);
4239 * If this is a high-order atomic allocation then check
4240 * if the pageblock should be reserved for the future
4242 if (unlikely(alloc_flags & ALLOC_HIGHATOMIC))
4243 reserve_highatomic_pageblock(page, zone, order);
4247 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4248 /* Try again if zone has deferred pages */
4249 if (deferred_pages_enabled()) {
4250 if (_deferred_grow_zone(zone, order))
4258 * It's possible on a UMA machine to get through all zones that are
4259 * fragmented. If avoiding fragmentation, reset and try again.
4262 alloc_flags &= ~ALLOC_NOFRAGMENT;
4269 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
4271 unsigned int filter = SHOW_MEM_FILTER_NODES;
4274 * This documents exceptions given to allocations in certain
4275 * contexts that are allowed to allocate outside current's set
4278 if (!(gfp_mask & __GFP_NOMEMALLOC))
4279 if (tsk_is_oom_victim(current) ||
4280 (current->flags & (PF_MEMALLOC | PF_EXITING)))
4281 filter &= ~SHOW_MEM_FILTER_NODES;
4282 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
4283 filter &= ~SHOW_MEM_FILTER_NODES;
4285 __show_mem(filter, nodemask, gfp_zone(gfp_mask));
4288 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
4290 struct va_format vaf;
4292 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
4294 if ((gfp_mask & __GFP_NOWARN) ||
4295 !__ratelimit(&nopage_rs) ||
4296 ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
4299 va_start(args, fmt);
4302 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
4303 current->comm, &vaf, gfp_mask, &gfp_mask,
4304 nodemask_pr_args(nodemask));
4307 cpuset_print_current_mems_allowed();
4310 warn_alloc_show_mem(gfp_mask, nodemask);
4313 static inline struct page *
4314 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4315 unsigned int alloc_flags,
4316 const struct alloc_context *ac)
4320 page = get_page_from_freelist(gfp_mask, order,
4321 alloc_flags|ALLOC_CPUSET, ac);
4323 * fallback to ignore cpuset restriction if our nodes
4327 page = get_page_from_freelist(gfp_mask, order,
4333 static inline struct page *
4334 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
4335 const struct alloc_context *ac, unsigned long *did_some_progress)
4337 struct oom_control oc = {
4338 .zonelist = ac->zonelist,
4339 .nodemask = ac->nodemask,
4341 .gfp_mask = gfp_mask,
4346 *did_some_progress = 0;
4349 * Acquire the oom lock. If that fails, somebody else is
4350 * making progress for us.
4352 if (!mutex_trylock(&oom_lock)) {
4353 *did_some_progress = 1;
4354 schedule_timeout_uninterruptible(1);
4359 * Go through the zonelist yet one more time, keep very high watermark
4360 * here, this is only to catch a parallel oom killing, we must fail if
4361 * we're still under heavy pressure. But make sure that this reclaim
4362 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4363 * allocation which will never fail due to oom_lock already held.
4365 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4366 ~__GFP_DIRECT_RECLAIM, order,
4367 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
4371 /* Coredumps can quickly deplete all memory reserves */
4372 if (current->flags & PF_DUMPCORE)
4374 /* The OOM killer will not help higher order allocs */
4375 if (order > PAGE_ALLOC_COSTLY_ORDER)
4378 * We have already exhausted all our reclaim opportunities without any
4379 * success so it is time to admit defeat. We will skip the OOM killer
4380 * because it is very likely that the caller has a more reasonable
4381 * fallback than shooting a random task.
4383 * The OOM killer may not free memory on a specific node.
4385 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
4387 /* The OOM killer does not needlessly kill tasks for lowmem */
4388 if (ac->highest_zoneidx < ZONE_NORMAL)
4390 if (pm_suspended_storage())
4393 * XXX: GFP_NOFS allocations should rather fail than rely on
4394 * other request to make a forward progress.
4395 * We are in an unfortunate situation where out_of_memory cannot
4396 * do much for this context but let's try it to at least get
4397 * access to memory reserved if the current task is killed (see
4398 * out_of_memory). Once filesystems are ready to handle allocation
4399 * failures more gracefully we should just bail out here.
4402 /* Exhausted what can be done so it's blame time */
4403 if (out_of_memory(&oc) ||
4404 WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
4405 *did_some_progress = 1;
4408 * Help non-failing allocations by giving them access to memory
4411 if (gfp_mask & __GFP_NOFAIL)
4412 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4413 ALLOC_NO_WATERMARKS, ac);
4416 mutex_unlock(&oom_lock);
4421 * Maximum number of compaction retries with a progress before OOM
4422 * killer is consider as the only way to move forward.
4424 #define MAX_COMPACT_RETRIES 16
4426 #ifdef CONFIG_COMPACTION
4427 /* Try memory compaction for high-order allocations before reclaim */
4428 static struct page *
4429 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4430 unsigned int alloc_flags, const struct alloc_context *ac,
4431 enum compact_priority prio, enum compact_result *compact_result)
4433 struct page *page = NULL;
4434 unsigned long pflags;
4435 unsigned int noreclaim_flag;
4440 psi_memstall_enter(&pflags);
4441 delayacct_compact_start();
4442 noreclaim_flag = memalloc_noreclaim_save();
4444 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4447 memalloc_noreclaim_restore(noreclaim_flag);
4448 psi_memstall_leave(&pflags);
4449 delayacct_compact_end();
4451 if (*compact_result == COMPACT_SKIPPED)
4454 * At least in one zone compaction wasn't deferred or skipped, so let's
4455 * count a compaction stall
4457 count_vm_event(COMPACTSTALL);
4459 /* Prep a captured page if available */
4461 prep_new_page(page, order, gfp_mask, alloc_flags);
4463 /* Try get a page from the freelist if available */
4465 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4468 struct zone *zone = page_zone(page);
4470 zone->compact_blockskip_flush = false;
4471 compaction_defer_reset(zone, order, true);
4472 count_vm_event(COMPACTSUCCESS);
4477 * It's bad if compaction run occurs and fails. The most likely reason
4478 * is that pages exist, but not enough to satisfy watermarks.
4480 count_vm_event(COMPACTFAIL);
4488 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4489 enum compact_result compact_result,
4490 enum compact_priority *compact_priority,
4491 int *compaction_retries)
4493 int max_retries = MAX_COMPACT_RETRIES;
4496 int retries = *compaction_retries;
4497 enum compact_priority priority = *compact_priority;
4502 if (fatal_signal_pending(current))
4505 if (compaction_made_progress(compact_result))
4506 (*compaction_retries)++;
4509 * compaction considers all the zone as desperately out of memory
4510 * so it doesn't really make much sense to retry except when the
4511 * failure could be caused by insufficient priority
4513 if (compaction_failed(compact_result))
4514 goto check_priority;
4517 * compaction was skipped because there are not enough order-0 pages
4518 * to work with, so we retry only if it looks like reclaim can help.
4520 if (compaction_needs_reclaim(compact_result)) {
4521 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4526 * make sure the compaction wasn't deferred or didn't bail out early
4527 * due to locks contention before we declare that we should give up.
4528 * But the next retry should use a higher priority if allowed, so
4529 * we don't just keep bailing out endlessly.
4531 if (compaction_withdrawn(compact_result)) {
4532 goto check_priority;
4536 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4537 * costly ones because they are de facto nofail and invoke OOM
4538 * killer to move on while costly can fail and users are ready
4539 * to cope with that. 1/4 retries is rather arbitrary but we
4540 * would need much more detailed feedback from compaction to
4541 * make a better decision.
4543 if (order > PAGE_ALLOC_COSTLY_ORDER)
4545 if (*compaction_retries <= max_retries) {
4551 * Make sure there are attempts at the highest priority if we exhausted
4552 * all retries or failed at the lower priorities.
4555 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4556 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4558 if (*compact_priority > min_priority) {
4559 (*compact_priority)--;
4560 *compaction_retries = 0;
4564 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4568 static inline struct page *
4569 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4570 unsigned int alloc_flags, const struct alloc_context *ac,
4571 enum compact_priority prio, enum compact_result *compact_result)
4573 *compact_result = COMPACT_SKIPPED;
4578 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4579 enum compact_result compact_result,
4580 enum compact_priority *compact_priority,
4581 int *compaction_retries)
4586 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4590 * There are setups with compaction disabled which would prefer to loop
4591 * inside the allocator rather than hit the oom killer prematurely.
4592 * Let's give them a good hope and keep retrying while the order-0
4593 * watermarks are OK.
4595 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4596 ac->highest_zoneidx, ac->nodemask) {
4597 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4598 ac->highest_zoneidx, alloc_flags))
4603 #endif /* CONFIG_COMPACTION */
4605 #ifdef CONFIG_LOCKDEP
4606 static struct lockdep_map __fs_reclaim_map =
4607 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4609 static bool __need_reclaim(gfp_t gfp_mask)
4611 /* no reclaim without waiting on it */
4612 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4615 /* this guy won't enter reclaim */
4616 if (current->flags & PF_MEMALLOC)
4619 if (gfp_mask & __GFP_NOLOCKDEP)
4625 void __fs_reclaim_acquire(unsigned long ip)
4627 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
4630 void __fs_reclaim_release(unsigned long ip)
4632 lock_release(&__fs_reclaim_map, ip);
4635 void fs_reclaim_acquire(gfp_t gfp_mask)
4637 gfp_mask = current_gfp_context(gfp_mask);
4639 if (__need_reclaim(gfp_mask)) {
4640 if (gfp_mask & __GFP_FS)
4641 __fs_reclaim_acquire(_RET_IP_);
4643 #ifdef CONFIG_MMU_NOTIFIER
4644 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4645 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4650 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4652 void fs_reclaim_release(gfp_t gfp_mask)
4654 gfp_mask = current_gfp_context(gfp_mask);
4656 if (__need_reclaim(gfp_mask)) {
4657 if (gfp_mask & __GFP_FS)
4658 __fs_reclaim_release(_RET_IP_);
4661 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4665 * Zonelists may change due to hotplug during allocation. Detect when zonelists
4666 * have been rebuilt so allocation retries. Reader side does not lock and
4667 * retries the allocation if zonelist changes. Writer side is protected by the
4668 * embedded spin_lock.
4670 static DEFINE_SEQLOCK(zonelist_update_seq);
4672 static unsigned int zonelist_iter_begin(void)
4674 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
4675 return read_seqbegin(&zonelist_update_seq);
4680 static unsigned int check_retry_zonelist(unsigned int seq)
4682 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
4683 return read_seqretry(&zonelist_update_seq, seq);
4688 /* Perform direct synchronous page reclaim */
4689 static unsigned long
4690 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4691 const struct alloc_context *ac)
4693 unsigned int noreclaim_flag;
4694 unsigned long progress;
4698 /* We now go into synchronous reclaim */
4699 cpuset_memory_pressure_bump();
4700 fs_reclaim_acquire(gfp_mask);
4701 noreclaim_flag = memalloc_noreclaim_save();
4703 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4706 memalloc_noreclaim_restore(noreclaim_flag);
4707 fs_reclaim_release(gfp_mask);
4714 /* The really slow allocator path where we enter direct reclaim */
4715 static inline struct page *
4716 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4717 unsigned int alloc_flags, const struct alloc_context *ac,
4718 unsigned long *did_some_progress)
4720 struct page *page = NULL;
4721 unsigned long pflags;
4722 bool drained = false;
4724 psi_memstall_enter(&pflags);
4725 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4726 if (unlikely(!(*did_some_progress)))
4730 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4733 * If an allocation failed after direct reclaim, it could be because
4734 * pages are pinned on the per-cpu lists or in high alloc reserves.
4735 * Shrink them and try again
4737 if (!page && !drained) {
4738 unreserve_highatomic_pageblock(ac, false);
4739 drain_all_pages(NULL);
4744 psi_memstall_leave(&pflags);
4749 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4750 const struct alloc_context *ac)
4754 pg_data_t *last_pgdat = NULL;
4755 enum zone_type highest_zoneidx = ac->highest_zoneidx;
4757 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4759 if (!managed_zone(zone))
4761 if (last_pgdat != zone->zone_pgdat) {
4762 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4763 last_pgdat = zone->zone_pgdat;
4768 static inline unsigned int
4769 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order)
4771 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4774 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE
4775 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4776 * to save two branches.
4778 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE);
4779 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4782 * The caller may dip into page reserves a bit more if the caller
4783 * cannot run direct reclaim, or if the caller has realtime scheduling
4784 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
4785 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH).
4787 alloc_flags |= (__force int)
4788 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4790 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
4792 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4793 * if it can't schedule.
4795 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
4796 alloc_flags |= ALLOC_NON_BLOCK;
4799 alloc_flags |= ALLOC_HIGHATOMIC;
4803 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably
4804 * GFP_ATOMIC) rather than fail, see the comment for
4805 * __cpuset_node_allowed().
4807 if (alloc_flags & ALLOC_MIN_RESERVE)
4808 alloc_flags &= ~ALLOC_CPUSET;
4809 } else if (unlikely(rt_task(current)) && in_task())
4810 alloc_flags |= ALLOC_MIN_RESERVE;
4812 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
4817 static bool oom_reserves_allowed(struct task_struct *tsk)
4819 if (!tsk_is_oom_victim(tsk))
4823 * !MMU doesn't have oom reaper so give access to memory reserves
4824 * only to the thread with TIF_MEMDIE set
4826 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4833 * Distinguish requests which really need access to full memory
4834 * reserves from oom victims which can live with a portion of it
4836 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4838 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4840 if (gfp_mask & __GFP_MEMALLOC)
4841 return ALLOC_NO_WATERMARKS;
4842 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4843 return ALLOC_NO_WATERMARKS;
4844 if (!in_interrupt()) {
4845 if (current->flags & PF_MEMALLOC)
4846 return ALLOC_NO_WATERMARKS;
4847 else if (oom_reserves_allowed(current))
4854 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4856 return !!__gfp_pfmemalloc_flags(gfp_mask);
4860 * Checks whether it makes sense to retry the reclaim to make a forward progress
4861 * for the given allocation request.
4863 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4864 * without success, or when we couldn't even meet the watermark if we
4865 * reclaimed all remaining pages on the LRU lists.
4867 * Returns true if a retry is viable or false to enter the oom path.
4870 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4871 struct alloc_context *ac, int alloc_flags,
4872 bool did_some_progress, int *no_progress_loops)
4879 * Costly allocations might have made a progress but this doesn't mean
4880 * their order will become available due to high fragmentation so
4881 * always increment the no progress counter for them
4883 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4884 *no_progress_loops = 0;
4886 (*no_progress_loops)++;
4889 * Make sure we converge to OOM if we cannot make any progress
4890 * several times in the row.
4892 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4893 /* Before OOM, exhaust highatomic_reserve */
4894 return unreserve_highatomic_pageblock(ac, true);
4898 * Keep reclaiming pages while there is a chance this will lead
4899 * somewhere. If none of the target zones can satisfy our allocation
4900 * request even if all reclaimable pages are considered then we are
4901 * screwed and have to go OOM.
4903 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4904 ac->highest_zoneidx, ac->nodemask) {
4905 unsigned long available;
4906 unsigned long reclaimable;
4907 unsigned long min_wmark = min_wmark_pages(zone);
4910 available = reclaimable = zone_reclaimable_pages(zone);
4911 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4914 * Would the allocation succeed if we reclaimed all
4915 * reclaimable pages?
4917 wmark = __zone_watermark_ok(zone, order, min_wmark,
4918 ac->highest_zoneidx, alloc_flags, available);
4919 trace_reclaim_retry_zone(z, order, reclaimable,
4920 available, min_wmark, *no_progress_loops, wmark);
4928 * Memory allocation/reclaim might be called from a WQ context and the
4929 * current implementation of the WQ concurrency control doesn't
4930 * recognize that a particular WQ is congested if the worker thread is
4931 * looping without ever sleeping. Therefore we have to do a short sleep
4932 * here rather than calling cond_resched().
4934 if (current->flags & PF_WQ_WORKER)
4935 schedule_timeout_uninterruptible(1);
4942 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4945 * It's possible that cpuset's mems_allowed and the nodemask from
4946 * mempolicy don't intersect. This should be normally dealt with by
4947 * policy_nodemask(), but it's possible to race with cpuset update in
4948 * such a way the check therein was true, and then it became false
4949 * before we got our cpuset_mems_cookie here.
4950 * This assumes that for all allocations, ac->nodemask can come only
4951 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4952 * when it does not intersect with the cpuset restrictions) or the
4953 * caller can deal with a violated nodemask.
4955 if (cpusets_enabled() && ac->nodemask &&
4956 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4957 ac->nodemask = NULL;
4962 * When updating a task's mems_allowed or mempolicy nodemask, it is
4963 * possible to race with parallel threads in such a way that our
4964 * allocation can fail while the mask is being updated. If we are about
4965 * to fail, check if the cpuset changed during allocation and if so,
4968 if (read_mems_allowed_retry(cpuset_mems_cookie))
4974 static inline struct page *
4975 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4976 struct alloc_context *ac)
4978 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4979 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4980 struct page *page = NULL;
4981 unsigned int alloc_flags;
4982 unsigned long did_some_progress;
4983 enum compact_priority compact_priority;
4984 enum compact_result compact_result;
4985 int compaction_retries;
4986 int no_progress_loops;
4987 unsigned int cpuset_mems_cookie;
4988 unsigned int zonelist_iter_cookie;
4992 compaction_retries = 0;
4993 no_progress_loops = 0;
4994 compact_priority = DEF_COMPACT_PRIORITY;
4995 cpuset_mems_cookie = read_mems_allowed_begin();
4996 zonelist_iter_cookie = zonelist_iter_begin();
4999 * The fast path uses conservative alloc_flags to succeed only until
5000 * kswapd needs to be woken up, and to avoid the cost of setting up
5001 * alloc_flags precisely. So we do that now.
5003 alloc_flags = gfp_to_alloc_flags(gfp_mask, order);
5006 * We need to recalculate the starting point for the zonelist iterator
5007 * because we might have used different nodemask in the fast path, or
5008 * there was a cpuset modification and we are retrying - otherwise we
5009 * could end up iterating over non-eligible zones endlessly.
5011 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5012 ac->highest_zoneidx, ac->nodemask);
5013 if (!ac->preferred_zoneref->zone)
5017 * Check for insane configurations where the cpuset doesn't contain
5018 * any suitable zone to satisfy the request - e.g. non-movable
5019 * GFP_HIGHUSER allocations from MOVABLE nodes only.
5021 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
5022 struct zoneref *z = first_zones_zonelist(ac->zonelist,
5023 ac->highest_zoneidx,
5024 &cpuset_current_mems_allowed);
5029 if (alloc_flags & ALLOC_KSWAPD)
5030 wake_all_kswapds(order, gfp_mask, ac);
5033 * The adjusted alloc_flags might result in immediate success, so try
5036 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
5041 * For costly allocations, try direct compaction first, as it's likely
5042 * that we have enough base pages and don't need to reclaim. For non-
5043 * movable high-order allocations, do that as well, as compaction will
5044 * try prevent permanent fragmentation by migrating from blocks of the
5046 * Don't try this for allocations that are allowed to ignore
5047 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
5049 if (can_direct_reclaim &&
5051 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
5052 && !gfp_pfmemalloc_allowed(gfp_mask)) {
5053 page = __alloc_pages_direct_compact(gfp_mask, order,
5055 INIT_COMPACT_PRIORITY,
5061 * Checks for costly allocations with __GFP_NORETRY, which
5062 * includes some THP page fault allocations
5064 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
5066 * If allocating entire pageblock(s) and compaction
5067 * failed because all zones are below low watermarks
5068 * or is prohibited because it recently failed at this
5069 * order, fail immediately unless the allocator has
5070 * requested compaction and reclaim retry.
5073 * - potentially very expensive because zones are far
5074 * below their low watermarks or this is part of very
5075 * bursty high order allocations,
5076 * - not guaranteed to help because isolate_freepages()
5077 * may not iterate over freed pages as part of its
5079 * - unlikely to make entire pageblocks free on its
5082 if (compact_result == COMPACT_SKIPPED ||
5083 compact_result == COMPACT_DEFERRED)
5087 * Looks like reclaim/compaction is worth trying, but
5088 * sync compaction could be very expensive, so keep
5089 * using async compaction.
5091 compact_priority = INIT_COMPACT_PRIORITY;
5096 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
5097 if (alloc_flags & ALLOC_KSWAPD)
5098 wake_all_kswapds(order, gfp_mask, ac);
5100 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
5102 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) |
5103 (alloc_flags & ALLOC_KSWAPD);
5106 * Reset the nodemask and zonelist iterators if memory policies can be
5107 * ignored. These allocations are high priority and system rather than
5110 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
5111 ac->nodemask = NULL;
5112 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5113 ac->highest_zoneidx, ac->nodemask);
5116 /* Attempt with potentially adjusted zonelist and alloc_flags */
5117 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
5121 /* Caller is not willing to reclaim, we can't balance anything */
5122 if (!can_direct_reclaim)
5125 /* Avoid recursion of direct reclaim */
5126 if (current->flags & PF_MEMALLOC)
5129 /* Try direct reclaim and then allocating */
5130 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
5131 &did_some_progress);
5135 /* Try direct compaction and then allocating */
5136 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
5137 compact_priority, &compact_result);
5141 /* Do not loop if specifically requested */
5142 if (gfp_mask & __GFP_NORETRY)
5146 * Do not retry costly high order allocations unless they are
5147 * __GFP_RETRY_MAYFAIL
5149 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
5152 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
5153 did_some_progress > 0, &no_progress_loops))
5157 * It doesn't make any sense to retry for the compaction if the order-0
5158 * reclaim is not able to make any progress because the current
5159 * implementation of the compaction depends on the sufficient amount
5160 * of free memory (see __compaction_suitable)
5162 if (did_some_progress > 0 &&
5163 should_compact_retry(ac, order, alloc_flags,
5164 compact_result, &compact_priority,
5165 &compaction_retries))
5170 * Deal with possible cpuset update races or zonelist updates to avoid
5171 * a unnecessary OOM kill.
5173 if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
5174 check_retry_zonelist(zonelist_iter_cookie))
5177 /* Reclaim has failed us, start killing things */
5178 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
5182 /* Avoid allocations with no watermarks from looping endlessly */
5183 if (tsk_is_oom_victim(current) &&
5184 (alloc_flags & ALLOC_OOM ||
5185 (gfp_mask & __GFP_NOMEMALLOC)))
5188 /* Retry as long as the OOM killer is making progress */
5189 if (did_some_progress) {
5190 no_progress_loops = 0;
5196 * Deal with possible cpuset update races or zonelist updates to avoid
5197 * a unnecessary OOM kill.
5199 if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
5200 check_retry_zonelist(zonelist_iter_cookie))
5204 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
5207 if (gfp_mask & __GFP_NOFAIL) {
5209 * All existing users of the __GFP_NOFAIL are blockable, so warn
5210 * of any new users that actually require GFP_NOWAIT
5212 if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask))
5216 * PF_MEMALLOC request from this context is rather bizarre
5217 * because we cannot reclaim anything and only can loop waiting
5218 * for somebody to do a work for us
5220 WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask);
5223 * non failing costly orders are a hard requirement which we
5224 * are not prepared for much so let's warn about these users
5225 * so that we can identify them and convert them to something
5228 WARN_ON_ONCE_GFP(costly_order, gfp_mask);
5231 * Help non-failing allocations by giving some access to memory
5232 * reserves normally used for high priority non-blocking
5233 * allocations but do not use ALLOC_NO_WATERMARKS because this
5234 * could deplete whole memory reserves which would just make
5235 * the situation worse.
5237 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac);
5245 warn_alloc(gfp_mask, ac->nodemask,
5246 "page allocation failure: order:%u", order);
5251 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
5252 int preferred_nid, nodemask_t *nodemask,
5253 struct alloc_context *ac, gfp_t *alloc_gfp,
5254 unsigned int *alloc_flags)
5256 ac->highest_zoneidx = gfp_zone(gfp_mask);
5257 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
5258 ac->nodemask = nodemask;
5259 ac->migratetype = gfp_migratetype(gfp_mask);
5261 if (cpusets_enabled()) {
5262 *alloc_gfp |= __GFP_HARDWALL;
5264 * When we are in the interrupt context, it is irrelevant
5265 * to the current task context. It means that any node ok.
5267 if (in_task() && !ac->nodemask)
5268 ac->nodemask = &cpuset_current_mems_allowed;
5270 *alloc_flags |= ALLOC_CPUSET;
5273 might_alloc(gfp_mask);
5275 if (should_fail_alloc_page(gfp_mask, order))
5278 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
5280 /* Dirty zone balancing only done in the fast path */
5281 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
5284 * The preferred zone is used for statistics but crucially it is
5285 * also used as the starting point for the zonelist iterator. It
5286 * may get reset for allocations that ignore memory policies.
5288 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5289 ac->highest_zoneidx, ac->nodemask);
5295 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
5296 * @gfp: GFP flags for the allocation
5297 * @preferred_nid: The preferred NUMA node ID to allocate from
5298 * @nodemask: Set of nodes to allocate from, may be NULL
5299 * @nr_pages: The number of pages desired on the list or array
5300 * @page_list: Optional list to store the allocated pages
5301 * @page_array: Optional array to store the pages
5303 * This is a batched version of the page allocator that attempts to
5304 * allocate nr_pages quickly. Pages are added to page_list if page_list
5305 * is not NULL, otherwise it is assumed that the page_array is valid.
5307 * For lists, nr_pages is the number of pages that should be allocated.
5309 * For arrays, only NULL elements are populated with pages and nr_pages
5310 * is the maximum number of pages that will be stored in the array.
5312 * Returns the number of pages on the list or array.
5314 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
5315 nodemask_t *nodemask, int nr_pages,
5316 struct list_head *page_list,
5317 struct page **page_array)
5320 unsigned long __maybe_unused UP_flags;
5323 struct per_cpu_pages *pcp;
5324 struct list_head *pcp_list;
5325 struct alloc_context ac;
5327 unsigned int alloc_flags = ALLOC_WMARK_LOW;
5328 int nr_populated = 0, nr_account = 0;
5331 * Skip populated array elements to determine if any pages need
5332 * to be allocated before disabling IRQs.
5334 while (page_array && nr_populated < nr_pages && page_array[nr_populated])
5337 /* No pages requested? */
5338 if (unlikely(nr_pages <= 0))
5341 /* Already populated array? */
5342 if (unlikely(page_array && nr_pages - nr_populated == 0))
5345 /* Bulk allocator does not support memcg accounting. */
5346 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT))
5349 /* Use the single page allocator for one page. */
5350 if (nr_pages - nr_populated == 1)
5353 #ifdef CONFIG_PAGE_OWNER
5355 * PAGE_OWNER may recurse into the allocator to allocate space to
5356 * save the stack with pagesets.lock held. Releasing/reacquiring
5357 * removes much of the performance benefit of bulk allocation so
5358 * force the caller to allocate one page at a time as it'll have
5359 * similar performance to added complexity to the bulk allocator.
5361 if (static_branch_unlikely(&page_owner_inited))
5365 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
5366 gfp &= gfp_allowed_mask;
5368 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
5372 /* Find an allowed local zone that meets the low watermark. */
5373 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
5376 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
5377 !__cpuset_zone_allowed(zone, gfp)) {
5381 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
5382 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
5386 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
5387 if (zone_watermark_fast(zone, 0, mark,
5388 zonelist_zone_idx(ac.preferred_zoneref),
5389 alloc_flags, gfp)) {
5395 * If there are no allowed local zones that meets the watermarks then
5396 * try to allocate a single page and reclaim if necessary.
5398 if (unlikely(!zone))
5401 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
5402 pcp_trylock_prepare(UP_flags);
5403 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
5407 /* Attempt the batch allocation */
5408 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
5409 while (nr_populated < nr_pages) {
5411 /* Skip existing pages */
5412 if (page_array && page_array[nr_populated]) {
5417 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
5419 if (unlikely(!page)) {
5420 /* Try and allocate at least one page */
5422 pcp_spin_unlock(pcp);
5429 prep_new_page(page, 0, gfp, 0);
5431 list_add(&page->lru, page_list);
5433 page_array[nr_populated] = page;
5437 pcp_spin_unlock(pcp);
5438 pcp_trylock_finish(UP_flags);
5440 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
5441 zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
5444 return nr_populated;
5447 pcp_trylock_finish(UP_flags);
5450 page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
5453 list_add(&page->lru, page_list);
5455 page_array[nr_populated] = page;
5461 EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
5464 * This is the 'heart' of the zoned buddy allocator.
5466 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
5467 nodemask_t *nodemask)
5470 unsigned int alloc_flags = ALLOC_WMARK_LOW;
5471 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
5472 struct alloc_context ac = { };
5475 * There are several places where we assume that the order value is sane
5476 * so bail out early if the request is out of bound.
5478 if (WARN_ON_ONCE_GFP(order >= MAX_ORDER, gfp))
5481 gfp &= gfp_allowed_mask;
5483 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
5484 * resp. GFP_NOIO which has to be inherited for all allocation requests
5485 * from a particular context which has been marked by
5486 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
5487 * movable zones are not used during allocation.
5489 gfp = current_gfp_context(gfp);
5491 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
5492 &alloc_gfp, &alloc_flags))
5496 * Forbid the first pass from falling back to types that fragment
5497 * memory until all local zones are considered.
5499 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
5501 /* First allocation attempt */
5502 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
5507 ac.spread_dirty_pages = false;
5510 * Restore the original nodemask if it was potentially replaced with
5511 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5513 ac.nodemask = nodemask;
5515 page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
5518 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page &&
5519 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
5520 __free_pages(page, order);
5524 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
5525 kmsan_alloc_page(page, order, alloc_gfp);
5529 EXPORT_SYMBOL(__alloc_pages);
5531 struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid,
5532 nodemask_t *nodemask)
5534 struct page *page = __alloc_pages(gfp | __GFP_COMP, order,
5535 preferred_nid, nodemask);
5537 if (page && order > 1)
5538 prep_transhuge_page(page);
5539 return (struct folio *)page;
5541 EXPORT_SYMBOL(__folio_alloc);
5544 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5545 * address cannot represent highmem pages. Use alloc_pages and then kmap if
5546 * you need to access high mem.
5548 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
5552 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
5555 return (unsigned long) page_address(page);
5557 EXPORT_SYMBOL(__get_free_pages);
5559 unsigned long get_zeroed_page(gfp_t gfp_mask)
5561 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
5563 EXPORT_SYMBOL(get_zeroed_page);
5566 * __free_pages - Free pages allocated with alloc_pages().
5567 * @page: The page pointer returned from alloc_pages().
5568 * @order: The order of the allocation.
5570 * This function can free multi-page allocations that are not compound
5571 * pages. It does not check that the @order passed in matches that of
5572 * the allocation, so it is easy to leak memory. Freeing more memory
5573 * than was allocated will probably emit a warning.
5575 * If the last reference to this page is speculative, it will be released
5576 * by put_page() which only frees the first page of a non-compound
5577 * allocation. To prevent the remaining pages from being leaked, we free
5578 * the subsequent pages here. If you want to use the page's reference
5579 * count to decide when to free the allocation, you should allocate a
5580 * compound page, and use put_page() instead of __free_pages().
5582 * Context: May be called in interrupt context or while holding a normal
5583 * spinlock, but not in NMI context or while holding a raw spinlock.
5585 void __free_pages(struct page *page, unsigned int order)
5587 /* get PageHead before we drop reference */
5588 int head = PageHead(page);
5590 if (put_page_testzero(page))
5591 free_the_page(page, order);
5594 free_the_page(page + (1 << order), order);
5596 EXPORT_SYMBOL(__free_pages);
5598 void free_pages(unsigned long addr, unsigned int order)
5601 VM_BUG_ON(!virt_addr_valid((void *)addr));
5602 __free_pages(virt_to_page((void *)addr), order);
5606 EXPORT_SYMBOL(free_pages);
5610 * An arbitrary-length arbitrary-offset area of memory which resides
5611 * within a 0 or higher order page. Multiple fragments within that page
5612 * are individually refcounted, in the page's reference counter.
5614 * The page_frag functions below provide a simple allocation framework for
5615 * page fragments. This is used by the network stack and network device
5616 * drivers to provide a backing region of memory for use as either an
5617 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5619 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5622 struct page *page = NULL;
5623 gfp_t gfp = gfp_mask;
5625 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5626 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5628 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5629 PAGE_FRAG_CACHE_MAX_ORDER);
5630 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5632 if (unlikely(!page))
5633 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5635 nc->va = page ? page_address(page) : NULL;
5640 void __page_frag_cache_drain(struct page *page, unsigned int count)
5642 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5644 if (page_ref_sub_and_test(page, count))
5645 free_the_page(page, compound_order(page));
5647 EXPORT_SYMBOL(__page_frag_cache_drain);
5649 void *page_frag_alloc_align(struct page_frag_cache *nc,
5650 unsigned int fragsz, gfp_t gfp_mask,
5651 unsigned int align_mask)
5653 unsigned int size = PAGE_SIZE;
5657 if (unlikely(!nc->va)) {
5659 page = __page_frag_cache_refill(nc, gfp_mask);
5663 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5664 /* if size can vary use size else just use PAGE_SIZE */
5667 /* Even if we own the page, we do not use atomic_set().
5668 * This would break get_page_unless_zero() users.
5670 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5672 /* reset page count bias and offset to start of new frag */
5673 nc->pfmemalloc = page_is_pfmemalloc(page);
5674 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5678 offset = nc->offset - fragsz;
5679 if (unlikely(offset < 0)) {
5680 page = virt_to_page(nc->va);
5682 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5685 if (unlikely(nc->pfmemalloc)) {
5686 free_the_page(page, compound_order(page));
5690 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5691 /* if size can vary use size else just use PAGE_SIZE */
5694 /* OK, page count is 0, we can safely set it */
5695 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5697 /* reset page count bias and offset to start of new frag */
5698 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5699 offset = size - fragsz;
5700 if (unlikely(offset < 0)) {
5702 * The caller is trying to allocate a fragment
5703 * with fragsz > PAGE_SIZE but the cache isn't big
5704 * enough to satisfy the request, this may
5705 * happen in low memory conditions.
5706 * We don't release the cache page because
5707 * it could make memory pressure worse
5708 * so we simply return NULL here.
5715 offset &= align_mask;
5716 nc->offset = offset;
5718 return nc->va + offset;
5720 EXPORT_SYMBOL(page_frag_alloc_align);
5723 * Frees a page fragment allocated out of either a compound or order 0 page.
5725 void page_frag_free(void *addr)
5727 struct page *page = virt_to_head_page(addr);
5729 if (unlikely(put_page_testzero(page)))
5730 free_the_page(page, compound_order(page));
5732 EXPORT_SYMBOL(page_frag_free);
5734 static void *make_alloc_exact(unsigned long addr, unsigned int order,
5738 unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE);
5739 struct page *page = virt_to_page((void *)addr);
5740 struct page *last = page + nr;
5742 split_page_owner(page, 1 << order);
5743 split_page_memcg(page, 1 << order);
5744 while (page < --last)
5745 set_page_refcounted(last);
5747 last = page + (1UL << order);
5748 for (page += nr; page < last; page++)
5749 __free_pages_ok(page, 0, FPI_TO_TAIL);
5751 return (void *)addr;
5755 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5756 * @size: the number of bytes to allocate
5757 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5759 * This function is similar to alloc_pages(), except that it allocates the
5760 * minimum number of pages to satisfy the request. alloc_pages() can only
5761 * allocate memory in power-of-two pages.
5763 * This function is also limited by MAX_ORDER.
5765 * Memory allocated by this function must be released by free_pages_exact().
5767 * Return: pointer to the allocated area or %NULL in case of error.
5769 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5771 unsigned int order = get_order(size);
5774 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5775 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5777 addr = __get_free_pages(gfp_mask, order);
5778 return make_alloc_exact(addr, order, size);
5780 EXPORT_SYMBOL(alloc_pages_exact);
5783 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5785 * @nid: the preferred node ID where memory should be allocated
5786 * @size: the number of bytes to allocate
5787 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5789 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5792 * Return: pointer to the allocated area or %NULL in case of error.
5794 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5796 unsigned int order = get_order(size);
5799 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5800 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5802 p = alloc_pages_node(nid, gfp_mask, order);
5805 return make_alloc_exact((unsigned long)page_address(p), order, size);
5809 * free_pages_exact - release memory allocated via alloc_pages_exact()
5810 * @virt: the value returned by alloc_pages_exact.
5811 * @size: size of allocation, same value as passed to alloc_pages_exact().
5813 * Release the memory allocated by a previous call to alloc_pages_exact.
5815 void free_pages_exact(void *virt, size_t size)
5817 unsigned long addr = (unsigned long)virt;
5818 unsigned long end = addr + PAGE_ALIGN(size);
5820 while (addr < end) {
5825 EXPORT_SYMBOL(free_pages_exact);
5828 * nr_free_zone_pages - count number of pages beyond high watermark
5829 * @offset: The zone index of the highest zone
5831 * nr_free_zone_pages() counts the number of pages which are beyond the
5832 * high watermark within all zones at or below a given zone index. For each
5833 * zone, the number of pages is calculated as:
5835 * nr_free_zone_pages = managed_pages - high_pages
5837 * Return: number of pages beyond high watermark.
5839 static unsigned long nr_free_zone_pages(int offset)
5844 /* Just pick one node, since fallback list is circular */
5845 unsigned long sum = 0;
5847 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5849 for_each_zone_zonelist(zone, z, zonelist, offset) {
5850 unsigned long size = zone_managed_pages(zone);
5851 unsigned long high = high_wmark_pages(zone);
5860 * nr_free_buffer_pages - count number of pages beyond high watermark
5862 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5863 * watermark within ZONE_DMA and ZONE_NORMAL.
5865 * Return: number of pages beyond high watermark within ZONE_DMA and
5868 unsigned long nr_free_buffer_pages(void)
5870 return nr_free_zone_pages(gfp_zone(GFP_USER));
5872 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5874 static inline void show_node(struct zone *zone)
5876 if (IS_ENABLED(CONFIG_NUMA))
5877 printk("Node %d ", zone_to_nid(zone));
5880 long si_mem_available(void)
5883 unsigned long pagecache;
5884 unsigned long wmark_low = 0;
5885 unsigned long pages[NR_LRU_LISTS];
5886 unsigned long reclaimable;
5890 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5891 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5894 wmark_low += low_wmark_pages(zone);
5897 * Estimate the amount of memory available for userspace allocations,
5898 * without causing swapping or OOM.
5900 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5903 * Not all the page cache can be freed, otherwise the system will
5904 * start swapping or thrashing. Assume at least half of the page
5905 * cache, or the low watermark worth of cache, needs to stay.
5907 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5908 pagecache -= min(pagecache / 2, wmark_low);
5909 available += pagecache;
5912 * Part of the reclaimable slab and other kernel memory consists of
5913 * items that are in use, and cannot be freed. Cap this estimate at the
5916 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5917 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5918 available += reclaimable - min(reclaimable / 2, wmark_low);
5924 EXPORT_SYMBOL_GPL(si_mem_available);
5926 void si_meminfo(struct sysinfo *val)
5928 val->totalram = totalram_pages();
5929 val->sharedram = global_node_page_state(NR_SHMEM);
5930 val->freeram = global_zone_page_state(NR_FREE_PAGES);
5931 val->bufferram = nr_blockdev_pages();
5932 val->totalhigh = totalhigh_pages();
5933 val->freehigh = nr_free_highpages();
5934 val->mem_unit = PAGE_SIZE;
5937 EXPORT_SYMBOL(si_meminfo);
5940 void si_meminfo_node(struct sysinfo *val, int nid)
5942 int zone_type; /* needs to be signed */
5943 unsigned long managed_pages = 0;
5944 unsigned long managed_highpages = 0;
5945 unsigned long free_highpages = 0;
5946 pg_data_t *pgdat = NODE_DATA(nid);
5948 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5949 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5950 val->totalram = managed_pages;
5951 val->sharedram = node_page_state(pgdat, NR_SHMEM);
5952 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5953 #ifdef CONFIG_HIGHMEM
5954 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5955 struct zone *zone = &pgdat->node_zones[zone_type];
5957 if (is_highmem(zone)) {
5958 managed_highpages += zone_managed_pages(zone);
5959 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5962 val->totalhigh = managed_highpages;
5963 val->freehigh = free_highpages;
5965 val->totalhigh = managed_highpages;
5966 val->freehigh = free_highpages;
5968 val->mem_unit = PAGE_SIZE;
5973 * Determine whether the node should be displayed or not, depending on whether
5974 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5976 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5978 if (!(flags & SHOW_MEM_FILTER_NODES))
5982 * no node mask - aka implicit memory numa policy. Do not bother with
5983 * the synchronization - read_mems_allowed_begin - because we do not
5984 * have to be precise here.
5987 nodemask = &cpuset_current_mems_allowed;
5989 return !node_isset(nid, *nodemask);
5992 #define K(x) ((x) << (PAGE_SHIFT-10))
5994 static void show_migration_types(unsigned char type)
5996 static const char types[MIGRATE_TYPES] = {
5997 [MIGRATE_UNMOVABLE] = 'U',
5998 [MIGRATE_MOVABLE] = 'M',
5999 [MIGRATE_RECLAIMABLE] = 'E',
6000 [MIGRATE_HIGHATOMIC] = 'H',
6002 [MIGRATE_CMA] = 'C',
6004 #ifdef CONFIG_MEMORY_ISOLATION
6005 [MIGRATE_ISOLATE] = 'I',
6008 char tmp[MIGRATE_TYPES + 1];
6012 for (i = 0; i < MIGRATE_TYPES; i++) {
6013 if (type & (1 << i))
6018 printk(KERN_CONT "(%s) ", tmp);
6021 static bool node_has_managed_zones(pg_data_t *pgdat, int max_zone_idx)
6024 for (zone_idx = 0; zone_idx <= max_zone_idx; zone_idx++)
6025 if (zone_managed_pages(pgdat->node_zones + zone_idx))
6031 * Show free area list (used inside shift_scroll-lock stuff)
6032 * We also calculate the percentage fragmentation. We do this by counting the
6033 * memory on each free list with the exception of the first item on the list.
6036 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
6039 void __show_free_areas(unsigned int filter, nodemask_t *nodemask, int max_zone_idx)
6041 unsigned long free_pcp = 0;
6046 for_each_populated_zone(zone) {
6047 if (zone_idx(zone) > max_zone_idx)
6049 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6052 for_each_online_cpu(cpu)
6053 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
6056 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
6057 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
6058 " unevictable:%lu dirty:%lu writeback:%lu\n"
6059 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
6060 " mapped:%lu shmem:%lu pagetables:%lu\n"
6061 " sec_pagetables:%lu bounce:%lu\n"
6062 " kernel_misc_reclaimable:%lu\n"
6063 " free:%lu free_pcp:%lu free_cma:%lu\n",
6064 global_node_page_state(NR_ACTIVE_ANON),
6065 global_node_page_state(NR_INACTIVE_ANON),
6066 global_node_page_state(NR_ISOLATED_ANON),
6067 global_node_page_state(NR_ACTIVE_FILE),
6068 global_node_page_state(NR_INACTIVE_FILE),
6069 global_node_page_state(NR_ISOLATED_FILE),
6070 global_node_page_state(NR_UNEVICTABLE),
6071 global_node_page_state(NR_FILE_DIRTY),
6072 global_node_page_state(NR_WRITEBACK),
6073 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
6074 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
6075 global_node_page_state(NR_FILE_MAPPED),
6076 global_node_page_state(NR_SHMEM),
6077 global_node_page_state(NR_PAGETABLE),
6078 global_node_page_state(NR_SECONDARY_PAGETABLE),
6079 global_zone_page_state(NR_BOUNCE),
6080 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE),
6081 global_zone_page_state(NR_FREE_PAGES),
6083 global_zone_page_state(NR_FREE_CMA_PAGES));
6085 for_each_online_pgdat(pgdat) {
6086 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
6088 if (!node_has_managed_zones(pgdat, max_zone_idx))
6092 " active_anon:%lukB"
6093 " inactive_anon:%lukB"
6094 " active_file:%lukB"
6095 " inactive_file:%lukB"
6096 " unevictable:%lukB"
6097 " isolated(anon):%lukB"
6098 " isolated(file):%lukB"
6103 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6105 " shmem_pmdmapped: %lukB"
6108 " writeback_tmp:%lukB"
6109 " kernel_stack:%lukB"
6110 #ifdef CONFIG_SHADOW_CALL_STACK
6111 " shadow_call_stack:%lukB"
6114 " sec_pagetables:%lukB"
6115 " all_unreclaimable? %s"
6118 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
6119 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
6120 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
6121 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
6122 K(node_page_state(pgdat, NR_UNEVICTABLE)),
6123 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
6124 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
6125 K(node_page_state(pgdat, NR_FILE_MAPPED)),
6126 K(node_page_state(pgdat, NR_FILE_DIRTY)),
6127 K(node_page_state(pgdat, NR_WRITEBACK)),
6128 K(node_page_state(pgdat, NR_SHMEM)),
6129 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6130 K(node_page_state(pgdat, NR_SHMEM_THPS)),
6131 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)),
6132 K(node_page_state(pgdat, NR_ANON_THPS)),
6134 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
6135 node_page_state(pgdat, NR_KERNEL_STACK_KB),
6136 #ifdef CONFIG_SHADOW_CALL_STACK
6137 node_page_state(pgdat, NR_KERNEL_SCS_KB),
6139 K(node_page_state(pgdat, NR_PAGETABLE)),
6140 K(node_page_state(pgdat, NR_SECONDARY_PAGETABLE)),
6141 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
6145 for_each_populated_zone(zone) {
6148 if (zone_idx(zone) > max_zone_idx)
6150 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6154 for_each_online_cpu(cpu)
6155 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
6165 " reserved_highatomic:%luKB"
6166 " active_anon:%lukB"
6167 " inactive_anon:%lukB"
6168 " active_file:%lukB"
6169 " inactive_file:%lukB"
6170 " unevictable:%lukB"
6171 " writepending:%lukB"
6181 K(zone_page_state(zone, NR_FREE_PAGES)),
6182 K(zone->watermark_boost),
6183 K(min_wmark_pages(zone)),
6184 K(low_wmark_pages(zone)),
6185 K(high_wmark_pages(zone)),
6186 K(zone->nr_reserved_highatomic),
6187 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
6188 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
6189 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
6190 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
6191 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
6192 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
6193 K(zone->present_pages),
6194 K(zone_managed_pages(zone)),
6195 K(zone_page_state(zone, NR_MLOCK)),
6196 K(zone_page_state(zone, NR_BOUNCE)),
6198 K(this_cpu_read(zone->per_cpu_pageset->count)),
6199 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
6200 printk("lowmem_reserve[]:");
6201 for (i = 0; i < MAX_NR_ZONES; i++)
6202 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
6203 printk(KERN_CONT "\n");
6206 for_each_populated_zone(zone) {
6208 unsigned long nr[MAX_ORDER], flags, total = 0;
6209 unsigned char types[MAX_ORDER];
6211 if (zone_idx(zone) > max_zone_idx)
6213 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6216 printk(KERN_CONT "%s: ", zone->name);
6218 spin_lock_irqsave(&zone->lock, flags);
6219 for (order = 0; order < MAX_ORDER; order++) {
6220 struct free_area *area = &zone->free_area[order];
6223 nr[order] = area->nr_free;
6224 total += nr[order] << order;
6227 for (type = 0; type < MIGRATE_TYPES; type++) {
6228 if (!free_area_empty(area, type))
6229 types[order] |= 1 << type;
6232 spin_unlock_irqrestore(&zone->lock, flags);
6233 for (order = 0; order < MAX_ORDER; order++) {
6234 printk(KERN_CONT "%lu*%lukB ",
6235 nr[order], K(1UL) << order);
6237 show_migration_types(types[order]);
6239 printk(KERN_CONT "= %lukB\n", K(total));
6242 for_each_online_node(nid) {
6243 if (show_mem_node_skip(filter, nid, nodemask))
6245 hugetlb_show_meminfo_node(nid);
6248 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
6250 show_swap_cache_info();
6253 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
6255 zoneref->zone = zone;
6256 zoneref->zone_idx = zone_idx(zone);
6260 * Builds allocation fallback zone lists.
6262 * Add all populated zones of a node to the zonelist.
6264 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
6267 enum zone_type zone_type = MAX_NR_ZONES;
6272 zone = pgdat->node_zones + zone_type;
6273 if (populated_zone(zone)) {
6274 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
6275 check_highest_zone(zone_type);
6277 } while (zone_type);
6284 static int __parse_numa_zonelist_order(char *s)
6287 * We used to support different zonelists modes but they turned
6288 * out to be just not useful. Let's keep the warning in place
6289 * if somebody still use the cmd line parameter so that we do
6290 * not fail it silently
6292 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
6293 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
6299 char numa_zonelist_order[] = "Node";
6302 * sysctl handler for numa_zonelist_order
6304 int numa_zonelist_order_handler(struct ctl_table *table, int write,
6305 void *buffer, size_t *length, loff_t *ppos)
6308 return __parse_numa_zonelist_order(buffer);
6309 return proc_dostring(table, write, buffer, length, ppos);
6313 static int node_load[MAX_NUMNODES];
6316 * find_next_best_node - find the next node that should appear in a given node's fallback list
6317 * @node: node whose fallback list we're appending
6318 * @used_node_mask: nodemask_t of already used nodes
6320 * We use a number of factors to determine which is the next node that should
6321 * appear on a given node's fallback list. The node should not have appeared
6322 * already in @node's fallback list, and it should be the next closest node
6323 * according to the distance array (which contains arbitrary distance values
6324 * from each node to each node in the system), and should also prefer nodes
6325 * with no CPUs, since presumably they'll have very little allocation pressure
6326 * on them otherwise.
6328 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
6330 int find_next_best_node(int node, nodemask_t *used_node_mask)
6333 int min_val = INT_MAX;
6334 int best_node = NUMA_NO_NODE;
6336 /* Use the local node if we haven't already */
6337 if (!node_isset(node, *used_node_mask)) {
6338 node_set(node, *used_node_mask);
6342 for_each_node_state(n, N_MEMORY) {
6344 /* Don't want a node to appear more than once */
6345 if (node_isset(n, *used_node_mask))
6348 /* Use the distance array to find the distance */
6349 val = node_distance(node, n);
6351 /* Penalize nodes under us ("prefer the next node") */
6354 /* Give preference to headless and unused nodes */
6355 if (!cpumask_empty(cpumask_of_node(n)))
6356 val += PENALTY_FOR_NODE_WITH_CPUS;
6358 /* Slight preference for less loaded node */
6359 val *= MAX_NUMNODES;
6360 val += node_load[n];
6362 if (val < min_val) {
6369 node_set(best_node, *used_node_mask);
6376 * Build zonelists ordered by node and zones within node.
6377 * This results in maximum locality--normal zone overflows into local
6378 * DMA zone, if any--but risks exhausting DMA zone.
6380 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
6383 struct zoneref *zonerefs;
6386 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6388 for (i = 0; i < nr_nodes; i++) {
6391 pg_data_t *node = NODE_DATA(node_order[i]);
6393 nr_zones = build_zonerefs_node(node, zonerefs);
6394 zonerefs += nr_zones;
6396 zonerefs->zone = NULL;
6397 zonerefs->zone_idx = 0;
6401 * Build gfp_thisnode zonelists
6403 static void build_thisnode_zonelists(pg_data_t *pgdat)
6405 struct zoneref *zonerefs;
6408 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
6409 nr_zones = build_zonerefs_node(pgdat, zonerefs);
6410 zonerefs += nr_zones;
6411 zonerefs->zone = NULL;
6412 zonerefs->zone_idx = 0;
6416 * Build zonelists ordered by zone and nodes within zones.
6417 * This results in conserving DMA zone[s] until all Normal memory is
6418 * exhausted, but results in overflowing to remote node while memory
6419 * may still exist in local DMA zone.
6422 static void build_zonelists(pg_data_t *pgdat)
6424 static int node_order[MAX_NUMNODES];
6425 int node, nr_nodes = 0;
6426 nodemask_t used_mask = NODE_MASK_NONE;
6427 int local_node, prev_node;
6429 /* NUMA-aware ordering of nodes */
6430 local_node = pgdat->node_id;
6431 prev_node = local_node;
6433 memset(node_order, 0, sizeof(node_order));
6434 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
6436 * We don't want to pressure a particular node.
6437 * So adding penalty to the first node in same
6438 * distance group to make it round-robin.
6440 if (node_distance(local_node, node) !=
6441 node_distance(local_node, prev_node))
6442 node_load[node] += 1;
6444 node_order[nr_nodes++] = node;
6448 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
6449 build_thisnode_zonelists(pgdat);
6450 pr_info("Fallback order for Node %d: ", local_node);
6451 for (node = 0; node < nr_nodes; node++)
6452 pr_cont("%d ", node_order[node]);
6456 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6458 * Return node id of node used for "local" allocations.
6459 * I.e., first node id of first zone in arg node's generic zonelist.
6460 * Used for initializing percpu 'numa_mem', which is used primarily
6461 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
6463 int local_memory_node(int node)
6467 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
6468 gfp_zone(GFP_KERNEL),
6470 return zone_to_nid(z->zone);
6474 static void setup_min_unmapped_ratio(void);
6475 static void setup_min_slab_ratio(void);
6476 #else /* CONFIG_NUMA */
6478 static void build_zonelists(pg_data_t *pgdat)
6480 int node, local_node;
6481 struct zoneref *zonerefs;
6484 local_node = pgdat->node_id;
6486 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6487 nr_zones = build_zonerefs_node(pgdat, zonerefs);
6488 zonerefs += nr_zones;
6491 * Now we build the zonelist so that it contains the zones
6492 * of all the other nodes.
6493 * We don't want to pressure a particular node, so when
6494 * building the zones for node N, we make sure that the
6495 * zones coming right after the local ones are those from
6496 * node N+1 (modulo N)
6498 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
6499 if (!node_online(node))
6501 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6502 zonerefs += nr_zones;
6504 for (node = 0; node < local_node; node++) {
6505 if (!node_online(node))
6507 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6508 zonerefs += nr_zones;
6511 zonerefs->zone = NULL;
6512 zonerefs->zone_idx = 0;
6515 #endif /* CONFIG_NUMA */
6518 * Boot pageset table. One per cpu which is going to be used for all
6519 * zones and all nodes. The parameters will be set in such a way
6520 * that an item put on a list will immediately be handed over to
6521 * the buddy list. This is safe since pageset manipulation is done
6522 * with interrupts disabled.
6524 * The boot_pagesets must be kept even after bootup is complete for
6525 * unused processors and/or zones. They do play a role for bootstrapping
6526 * hotplugged processors.
6528 * zoneinfo_show() and maybe other functions do
6529 * not check if the processor is online before following the pageset pointer.
6530 * Other parts of the kernel may not check if the zone is available.
6532 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
6533 /* These effectively disable the pcplists in the boot pageset completely */
6534 #define BOOT_PAGESET_HIGH 0
6535 #define BOOT_PAGESET_BATCH 1
6536 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
6537 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
6538 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
6540 static void __build_all_zonelists(void *data)
6543 int __maybe_unused cpu;
6544 pg_data_t *self = data;
6546 write_seqlock(&zonelist_update_seq);
6549 memset(node_load, 0, sizeof(node_load));
6553 * This node is hotadded and no memory is yet present. So just
6554 * building zonelists is fine - no need to touch other nodes.
6556 if (self && !node_online(self->node_id)) {
6557 build_zonelists(self);
6560 * All possible nodes have pgdat preallocated
6563 for_each_node(nid) {
6564 pg_data_t *pgdat = NODE_DATA(nid);
6566 build_zonelists(pgdat);
6569 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6571 * We now know the "local memory node" for each node--
6572 * i.e., the node of the first zone in the generic zonelist.
6573 * Set up numa_mem percpu variable for on-line cpus. During
6574 * boot, only the boot cpu should be on-line; we'll init the
6575 * secondary cpus' numa_mem as they come on-line. During
6576 * node/memory hotplug, we'll fixup all on-line cpus.
6578 for_each_online_cpu(cpu)
6579 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
6583 write_sequnlock(&zonelist_update_seq);
6586 static noinline void __init
6587 build_all_zonelists_init(void)
6591 __build_all_zonelists(NULL);
6594 * Initialize the boot_pagesets that are going to be used
6595 * for bootstrapping processors. The real pagesets for
6596 * each zone will be allocated later when the per cpu
6597 * allocator is available.
6599 * boot_pagesets are used also for bootstrapping offline
6600 * cpus if the system is already booted because the pagesets
6601 * are needed to initialize allocators on a specific cpu too.
6602 * F.e. the percpu allocator needs the page allocator which
6603 * needs the percpu allocator in order to allocate its pagesets
6604 * (a chicken-egg dilemma).
6606 for_each_possible_cpu(cpu)
6607 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
6609 mminit_verify_zonelist();
6610 cpuset_init_current_mems_allowed();
6614 * unless system_state == SYSTEM_BOOTING.
6616 * __ref due to call of __init annotated helper build_all_zonelists_init
6617 * [protected by SYSTEM_BOOTING].
6619 void __ref build_all_zonelists(pg_data_t *pgdat)
6621 unsigned long vm_total_pages;
6623 if (system_state == SYSTEM_BOOTING) {
6624 build_all_zonelists_init();
6626 __build_all_zonelists(pgdat);
6627 /* cpuset refresh routine should be here */
6629 /* Get the number of free pages beyond high watermark in all zones. */
6630 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
6632 * Disable grouping by mobility if the number of pages in the
6633 * system is too low to allow the mechanism to work. It would be
6634 * more accurate, but expensive to check per-zone. This check is
6635 * made on memory-hotadd so a system can start with mobility
6636 * disabled and enable it later
6638 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
6639 page_group_by_mobility_disabled = 1;
6641 page_group_by_mobility_disabled = 0;
6643 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
6645 page_group_by_mobility_disabled ? "off" : "on",
6648 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
6652 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6653 static bool __meminit
6654 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6656 static struct memblock_region *r;
6658 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6659 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
6660 for_each_mem_region(r) {
6661 if (*pfn < memblock_region_memory_end_pfn(r))
6665 if (*pfn >= memblock_region_memory_base_pfn(r) &&
6666 memblock_is_mirror(r)) {
6667 *pfn = memblock_region_memory_end_pfn(r);
6675 * Initially all pages are reserved - free ones are freed
6676 * up by memblock_free_all() once the early boot process is
6677 * done. Non-atomic initialization, single-pass.
6679 * All aligned pageblocks are initialized to the specified migratetype
6680 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6681 * zone stats (e.g., nr_isolate_pageblock) are touched.
6683 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
6684 unsigned long start_pfn, unsigned long zone_end_pfn,
6685 enum meminit_context context,
6686 struct vmem_altmap *altmap, int migratetype)
6688 unsigned long pfn, end_pfn = start_pfn + size;
6691 if (highest_memmap_pfn < end_pfn - 1)
6692 highest_memmap_pfn = end_pfn - 1;
6694 #ifdef CONFIG_ZONE_DEVICE
6696 * Honor reservation requested by the driver for this ZONE_DEVICE
6697 * memory. We limit the total number of pages to initialize to just
6698 * those that might contain the memory mapping. We will defer the
6699 * ZONE_DEVICE page initialization until after we have released
6702 if (zone == ZONE_DEVICE) {
6706 if (start_pfn == altmap->base_pfn)
6707 start_pfn += altmap->reserve;
6708 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6712 for (pfn = start_pfn; pfn < end_pfn; ) {
6714 * There can be holes in boot-time mem_map[]s handed to this
6715 * function. They do not exist on hotplugged memory.
6717 if (context == MEMINIT_EARLY) {
6718 if (overlap_memmap_init(zone, &pfn))
6720 if (defer_init(nid, pfn, zone_end_pfn)) {
6721 deferred_struct_pages = true;
6726 page = pfn_to_page(pfn);
6727 __init_single_page(page, pfn, zone, nid);
6728 if (context == MEMINIT_HOTPLUG)
6729 __SetPageReserved(page);
6732 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6733 * such that unmovable allocations won't be scattered all
6734 * over the place during system boot.
6736 if (pageblock_aligned(pfn)) {
6737 set_pageblock_migratetype(page, migratetype);
6744 #ifdef CONFIG_ZONE_DEVICE
6745 static void __ref __init_zone_device_page(struct page *page, unsigned long pfn,
6746 unsigned long zone_idx, int nid,
6747 struct dev_pagemap *pgmap)
6750 __init_single_page(page, pfn, zone_idx, nid);
6753 * Mark page reserved as it will need to wait for onlining
6754 * phase for it to be fully associated with a zone.
6756 * We can use the non-atomic __set_bit operation for setting
6757 * the flag as we are still initializing the pages.
6759 __SetPageReserved(page);
6762 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6763 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
6764 * ever freed or placed on a driver-private list.
6766 page->pgmap = pgmap;
6767 page->zone_device_data = NULL;
6770 * Mark the block movable so that blocks are reserved for
6771 * movable at startup. This will force kernel allocations
6772 * to reserve their blocks rather than leaking throughout
6773 * the address space during boot when many long-lived
6774 * kernel allocations are made.
6776 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6777 * because this is done early in section_activate()
6779 if (pageblock_aligned(pfn)) {
6780 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6785 * ZONE_DEVICE pages are released directly to the driver page allocator
6786 * which will set the page count to 1 when allocating the page.
6788 if (pgmap->type == MEMORY_DEVICE_PRIVATE ||
6789 pgmap->type == MEMORY_DEVICE_COHERENT)
6790 set_page_count(page, 0);
6794 * With compound page geometry and when struct pages are stored in ram most
6795 * tail pages are reused. Consequently, the amount of unique struct pages to
6796 * initialize is a lot smaller that the total amount of struct pages being
6797 * mapped. This is a paired / mild layering violation with explicit knowledge
6798 * of how the sparse_vmemmap internals handle compound pages in the lack
6799 * of an altmap. See vmemmap_populate_compound_pages().
6801 static inline unsigned long compound_nr_pages(struct vmem_altmap *altmap,
6802 unsigned long nr_pages)
6804 return is_power_of_2(sizeof(struct page)) &&
6805 !altmap ? 2 * (PAGE_SIZE / sizeof(struct page)) : nr_pages;
6808 static void __ref memmap_init_compound(struct page *head,
6809 unsigned long head_pfn,
6810 unsigned long zone_idx, int nid,
6811 struct dev_pagemap *pgmap,
6812 unsigned long nr_pages)
6814 unsigned long pfn, end_pfn = head_pfn + nr_pages;
6815 unsigned int order = pgmap->vmemmap_shift;
6817 __SetPageHead(head);
6818 for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) {
6819 struct page *page = pfn_to_page(pfn);
6821 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
6822 prep_compound_tail(head, pfn - head_pfn);
6823 set_page_count(page, 0);
6826 * The first tail page stores important compound page info.
6827 * Call prep_compound_head() after the first tail page has
6828 * been initialized, to not have the data overwritten.
6830 if (pfn == head_pfn + 1)
6831 prep_compound_head(head, order);
6835 void __ref memmap_init_zone_device(struct zone *zone,
6836 unsigned long start_pfn,
6837 unsigned long nr_pages,
6838 struct dev_pagemap *pgmap)
6840 unsigned long pfn, end_pfn = start_pfn + nr_pages;
6841 struct pglist_data *pgdat = zone->zone_pgdat;
6842 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6843 unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap);
6844 unsigned long zone_idx = zone_idx(zone);
6845 unsigned long start = jiffies;
6846 int nid = pgdat->node_id;
6848 if (WARN_ON_ONCE(!pgmap || zone_idx != ZONE_DEVICE))
6852 * The call to memmap_init should have already taken care
6853 * of the pages reserved for the memmap, so we can just jump to
6854 * the end of that region and start processing the device pages.
6857 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6858 nr_pages = end_pfn - start_pfn;
6861 for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) {
6862 struct page *page = pfn_to_page(pfn);
6864 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
6866 if (pfns_per_compound == 1)
6869 memmap_init_compound(page, pfn, zone_idx, nid, pgmap,
6870 compound_nr_pages(altmap, pfns_per_compound));
6873 pr_info("%s initialised %lu pages in %ums\n", __func__,
6874 nr_pages, jiffies_to_msecs(jiffies - start));
6878 static void __meminit zone_init_free_lists(struct zone *zone)
6880 unsigned int order, t;
6881 for_each_migratetype_order(order, t) {
6882 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6883 zone->free_area[order].nr_free = 0;
6888 * Only struct pages that correspond to ranges defined by memblock.memory
6889 * are zeroed and initialized by going through __init_single_page() during
6890 * memmap_init_zone_range().
6892 * But, there could be struct pages that correspond to holes in
6893 * memblock.memory. This can happen because of the following reasons:
6894 * - physical memory bank size is not necessarily the exact multiple of the
6895 * arbitrary section size
6896 * - early reserved memory may not be listed in memblock.memory
6897 * - memory layouts defined with memmap= kernel parameter may not align
6898 * nicely with memmap sections
6900 * Explicitly initialize those struct pages so that:
6901 * - PG_Reserved is set
6902 * - zone and node links point to zone and node that span the page if the
6903 * hole is in the middle of a zone
6904 * - zone and node links point to adjacent zone/node if the hole falls on
6905 * the zone boundary; the pages in such holes will be prepended to the
6906 * zone/node above the hole except for the trailing pages in the last
6907 * section that will be appended to the zone/node below.
6909 static void __init init_unavailable_range(unsigned long spfn,
6916 for (pfn = spfn; pfn < epfn; pfn++) {
6917 if (!pfn_valid(pageblock_start_pfn(pfn))) {
6918 pfn = pageblock_end_pfn(pfn) - 1;
6921 __init_single_page(pfn_to_page(pfn), pfn, zone, node);
6922 __SetPageReserved(pfn_to_page(pfn));
6927 pr_info("On node %d, zone %s: %lld pages in unavailable ranges",
6928 node, zone_names[zone], pgcnt);
6931 static void __init memmap_init_zone_range(struct zone *zone,
6932 unsigned long start_pfn,
6933 unsigned long end_pfn,
6934 unsigned long *hole_pfn)
6936 unsigned long zone_start_pfn = zone->zone_start_pfn;
6937 unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
6938 int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
6940 start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
6941 end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
6943 if (start_pfn >= end_pfn)
6946 memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
6947 zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
6949 if (*hole_pfn < start_pfn)
6950 init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
6952 *hole_pfn = end_pfn;
6955 static void __init memmap_init(void)
6957 unsigned long start_pfn, end_pfn;
6958 unsigned long hole_pfn = 0;
6959 int i, j, zone_id = 0, nid;
6961 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6962 struct pglist_data *node = NODE_DATA(nid);
6964 for (j = 0; j < MAX_NR_ZONES; j++) {
6965 struct zone *zone = node->node_zones + j;
6967 if (!populated_zone(zone))
6970 memmap_init_zone_range(zone, start_pfn, end_pfn,
6976 #ifdef CONFIG_SPARSEMEM
6978 * Initialize the memory map for hole in the range [memory_end,
6980 * Append the pages in this hole to the highest zone in the last
6982 * The call to init_unavailable_range() is outside the ifdef to
6983 * silence the compiler warining about zone_id set but not used;
6984 * for FLATMEM it is a nop anyway
6986 end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
6987 if (hole_pfn < end_pfn)
6989 init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
6992 void __init *memmap_alloc(phys_addr_t size, phys_addr_t align,
6993 phys_addr_t min_addr, int nid, bool exact_nid)
6998 ptr = memblock_alloc_exact_nid_raw(size, align, min_addr,
6999 MEMBLOCK_ALLOC_ACCESSIBLE,
7002 ptr = memblock_alloc_try_nid_raw(size, align, min_addr,
7003 MEMBLOCK_ALLOC_ACCESSIBLE,
7006 if (ptr && size > 0)
7007 page_init_poison(ptr, size);
7012 static int zone_batchsize(struct zone *zone)
7018 * The number of pages to batch allocate is either ~0.1%
7019 * of the zone or 1MB, whichever is smaller. The batch
7020 * size is striking a balance between allocation latency
7021 * and zone lock contention.
7023 batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE);
7024 batch /= 4; /* We effectively *= 4 below */
7029 * Clamp the batch to a 2^n - 1 value. Having a power
7030 * of 2 value was found to be more likely to have
7031 * suboptimal cache aliasing properties in some cases.
7033 * For example if 2 tasks are alternately allocating
7034 * batches of pages, one task can end up with a lot
7035 * of pages of one half of the possible page colors
7036 * and the other with pages of the other colors.
7038 batch = rounddown_pow_of_two(batch + batch/2) - 1;
7043 /* The deferral and batching of frees should be suppressed under NOMMU
7046 * The problem is that NOMMU needs to be able to allocate large chunks
7047 * of contiguous memory as there's no hardware page translation to
7048 * assemble apparent contiguous memory from discontiguous pages.
7050 * Queueing large contiguous runs of pages for batching, however,
7051 * causes the pages to actually be freed in smaller chunks. As there
7052 * can be a significant delay between the individual batches being
7053 * recycled, this leads to the once large chunks of space being
7054 * fragmented and becoming unavailable for high-order allocations.
7060 static int zone_highsize(struct zone *zone, int batch, int cpu_online)
7065 unsigned long total_pages;
7067 if (!percpu_pagelist_high_fraction) {
7069 * By default, the high value of the pcp is based on the zone
7070 * low watermark so that if they are full then background
7071 * reclaim will not be started prematurely.
7073 total_pages = low_wmark_pages(zone);
7076 * If percpu_pagelist_high_fraction is configured, the high
7077 * value is based on a fraction of the managed pages in the
7080 total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
7084 * Split the high value across all online CPUs local to the zone. Note
7085 * that early in boot that CPUs may not be online yet and that during
7086 * CPU hotplug that the cpumask is not yet updated when a CPU is being
7087 * onlined. For memory nodes that have no CPUs, split pcp->high across
7088 * all online CPUs to mitigate the risk that reclaim is triggered
7089 * prematurely due to pages stored on pcp lists.
7091 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
7093 nr_split_cpus = num_online_cpus();
7094 high = total_pages / nr_split_cpus;
7097 * Ensure high is at least batch*4. The multiple is based on the
7098 * historical relationship between high and batch.
7100 high = max(high, batch << 2);
7109 * pcp->high and pcp->batch values are related and generally batch is lower
7110 * than high. They are also related to pcp->count such that count is lower
7111 * than high, and as soon as it reaches high, the pcplist is flushed.
7113 * However, guaranteeing these relations at all times would require e.g. write
7114 * barriers here but also careful usage of read barriers at the read side, and
7115 * thus be prone to error and bad for performance. Thus the update only prevents
7116 * store tearing. Any new users of pcp->batch and pcp->high should ensure they
7117 * can cope with those fields changing asynchronously, and fully trust only the
7118 * pcp->count field on the local CPU with interrupts disabled.
7120 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
7121 * outside of boot time (or some other assurance that no concurrent updaters
7124 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
7125 unsigned long batch)
7127 WRITE_ONCE(pcp->batch, batch);
7128 WRITE_ONCE(pcp->high, high);
7131 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
7135 memset(pcp, 0, sizeof(*pcp));
7136 memset(pzstats, 0, sizeof(*pzstats));
7138 spin_lock_init(&pcp->lock);
7139 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
7140 INIT_LIST_HEAD(&pcp->lists[pindex]);
7143 * Set batch and high values safe for a boot pageset. A true percpu
7144 * pageset's initialization will update them subsequently. Here we don't
7145 * need to be as careful as pageset_update() as nobody can access the
7148 pcp->high = BOOT_PAGESET_HIGH;
7149 pcp->batch = BOOT_PAGESET_BATCH;
7150 pcp->free_factor = 0;
7153 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
7154 unsigned long batch)
7156 struct per_cpu_pages *pcp;
7159 for_each_possible_cpu(cpu) {
7160 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
7161 pageset_update(pcp, high, batch);
7166 * Calculate and set new high and batch values for all per-cpu pagesets of a
7167 * zone based on the zone's size.
7169 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
7171 int new_high, new_batch;
7173 new_batch = max(1, zone_batchsize(zone));
7174 new_high = zone_highsize(zone, new_batch, cpu_online);
7176 if (zone->pageset_high == new_high &&
7177 zone->pageset_batch == new_batch)
7180 zone->pageset_high = new_high;
7181 zone->pageset_batch = new_batch;
7183 __zone_set_pageset_high_and_batch(zone, new_high, new_batch);
7186 void __meminit setup_zone_pageset(struct zone *zone)
7190 /* Size may be 0 on !SMP && !NUMA */
7191 if (sizeof(struct per_cpu_zonestat) > 0)
7192 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
7194 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
7195 for_each_possible_cpu(cpu) {
7196 struct per_cpu_pages *pcp;
7197 struct per_cpu_zonestat *pzstats;
7199 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
7200 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
7201 per_cpu_pages_init(pcp, pzstats);
7204 zone_set_pageset_high_and_batch(zone, 0);
7208 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7209 * page high values need to be recalculated.
7211 static void zone_pcp_update(struct zone *zone, int cpu_online)
7213 mutex_lock(&pcp_batch_high_lock);
7214 zone_set_pageset_high_and_batch(zone, cpu_online);
7215 mutex_unlock(&pcp_batch_high_lock);
7219 * Allocate per cpu pagesets and initialize them.
7220 * Before this call only boot pagesets were available.
7222 void __init setup_per_cpu_pageset(void)
7224 struct pglist_data *pgdat;
7226 int __maybe_unused cpu;
7228 for_each_populated_zone(zone)
7229 setup_zone_pageset(zone);
7233 * Unpopulated zones continue using the boot pagesets.
7234 * The numa stats for these pagesets need to be reset.
7235 * Otherwise, they will end up skewing the stats of
7236 * the nodes these zones are associated with.
7238 for_each_possible_cpu(cpu) {
7239 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
7240 memset(pzstats->vm_numa_event, 0,
7241 sizeof(pzstats->vm_numa_event));
7245 for_each_online_pgdat(pgdat)
7246 pgdat->per_cpu_nodestats =
7247 alloc_percpu(struct per_cpu_nodestat);
7250 static __meminit void zone_pcp_init(struct zone *zone)
7253 * per cpu subsystem is not up at this point. The following code
7254 * relies on the ability of the linker to provide the
7255 * offset of a (static) per cpu variable into the per cpu area.
7257 zone->per_cpu_pageset = &boot_pageset;
7258 zone->per_cpu_zonestats = &boot_zonestats;
7259 zone->pageset_high = BOOT_PAGESET_HIGH;
7260 zone->pageset_batch = BOOT_PAGESET_BATCH;
7262 if (populated_zone(zone))
7263 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name,
7264 zone->present_pages, zone_batchsize(zone));
7267 void __meminit init_currently_empty_zone(struct zone *zone,
7268 unsigned long zone_start_pfn,
7271 struct pglist_data *pgdat = zone->zone_pgdat;
7272 int zone_idx = zone_idx(zone) + 1;
7274 if (zone_idx > pgdat->nr_zones)
7275 pgdat->nr_zones = zone_idx;
7277 zone->zone_start_pfn = zone_start_pfn;
7279 mminit_dprintk(MMINIT_TRACE, "memmap_init",
7280 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
7282 (unsigned long)zone_idx(zone),
7283 zone_start_pfn, (zone_start_pfn + size));
7285 zone_init_free_lists(zone);
7286 zone->initialized = 1;
7290 * get_pfn_range_for_nid - Return the start and end page frames for a node
7291 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
7292 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
7293 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
7295 * It returns the start and end page frame of a node based on information
7296 * provided by memblock_set_node(). If called for a node
7297 * with no available memory, a warning is printed and the start and end
7300 void __init get_pfn_range_for_nid(unsigned int nid,
7301 unsigned long *start_pfn, unsigned long *end_pfn)
7303 unsigned long this_start_pfn, this_end_pfn;
7309 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
7310 *start_pfn = min(*start_pfn, this_start_pfn);
7311 *end_pfn = max(*end_pfn, this_end_pfn);
7314 if (*start_pfn == -1UL)
7319 * This finds a zone that can be used for ZONE_MOVABLE pages. The
7320 * assumption is made that zones within a node are ordered in monotonic
7321 * increasing memory addresses so that the "highest" populated zone is used
7323 static void __init find_usable_zone_for_movable(void)
7326 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
7327 if (zone_index == ZONE_MOVABLE)
7330 if (arch_zone_highest_possible_pfn[zone_index] >
7331 arch_zone_lowest_possible_pfn[zone_index])
7335 VM_BUG_ON(zone_index == -1);
7336 movable_zone = zone_index;
7340 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
7341 * because it is sized independent of architecture. Unlike the other zones,
7342 * the starting point for ZONE_MOVABLE is not fixed. It may be different
7343 * in each node depending on the size of each node and how evenly kernelcore
7344 * is distributed. This helper function adjusts the zone ranges
7345 * provided by the architecture for a given node by using the end of the
7346 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
7347 * zones within a node are in order of monotonic increases memory addresses
7349 static void __init adjust_zone_range_for_zone_movable(int nid,
7350 unsigned long zone_type,
7351 unsigned long node_start_pfn,
7352 unsigned long node_end_pfn,
7353 unsigned long *zone_start_pfn,
7354 unsigned long *zone_end_pfn)
7356 /* Only adjust if ZONE_MOVABLE is on this node */
7357 if (zone_movable_pfn[nid]) {
7358 /* Size ZONE_MOVABLE */
7359 if (zone_type == ZONE_MOVABLE) {
7360 *zone_start_pfn = zone_movable_pfn[nid];
7361 *zone_end_pfn = min(node_end_pfn,
7362 arch_zone_highest_possible_pfn[movable_zone]);
7364 /* Adjust for ZONE_MOVABLE starting within this range */
7365 } else if (!mirrored_kernelcore &&
7366 *zone_start_pfn < zone_movable_pfn[nid] &&
7367 *zone_end_pfn > zone_movable_pfn[nid]) {
7368 *zone_end_pfn = zone_movable_pfn[nid];
7370 /* Check if this whole range is within ZONE_MOVABLE */
7371 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
7372 *zone_start_pfn = *zone_end_pfn;
7377 * Return the number of pages a zone spans in a node, including holes
7378 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
7380 static unsigned long __init zone_spanned_pages_in_node(int nid,
7381 unsigned long zone_type,
7382 unsigned long node_start_pfn,
7383 unsigned long node_end_pfn,
7384 unsigned long *zone_start_pfn,
7385 unsigned long *zone_end_pfn)
7387 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7388 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7389 /* When hotadd a new node from cpu_up(), the node should be empty */
7390 if (!node_start_pfn && !node_end_pfn)
7393 /* Get the start and end of the zone */
7394 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7395 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7396 adjust_zone_range_for_zone_movable(nid, zone_type,
7397 node_start_pfn, node_end_pfn,
7398 zone_start_pfn, zone_end_pfn);
7400 /* Check that this node has pages within the zone's required range */
7401 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
7404 /* Move the zone boundaries inside the node if necessary */
7405 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
7406 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
7408 /* Return the spanned pages */
7409 return *zone_end_pfn - *zone_start_pfn;
7413 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
7414 * then all holes in the requested range will be accounted for.
7416 unsigned long __init __absent_pages_in_range(int nid,
7417 unsigned long range_start_pfn,
7418 unsigned long range_end_pfn)
7420 unsigned long nr_absent = range_end_pfn - range_start_pfn;
7421 unsigned long start_pfn, end_pfn;
7424 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7425 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
7426 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
7427 nr_absent -= end_pfn - start_pfn;
7433 * absent_pages_in_range - Return number of page frames in holes within a range
7434 * @start_pfn: The start PFN to start searching for holes
7435 * @end_pfn: The end PFN to stop searching for holes
7437 * Return: the number of pages frames in memory holes within a range.
7439 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
7440 unsigned long end_pfn)
7442 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
7445 /* Return the number of page frames in holes in a zone on a node */
7446 static unsigned long __init zone_absent_pages_in_node(int nid,
7447 unsigned long zone_type,
7448 unsigned long node_start_pfn,
7449 unsigned long node_end_pfn)
7451 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7452 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7453 unsigned long zone_start_pfn, zone_end_pfn;
7454 unsigned long nr_absent;
7456 /* When hotadd a new node from cpu_up(), the node should be empty */
7457 if (!node_start_pfn && !node_end_pfn)
7460 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7461 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7463 adjust_zone_range_for_zone_movable(nid, zone_type,
7464 node_start_pfn, node_end_pfn,
7465 &zone_start_pfn, &zone_end_pfn);
7466 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
7469 * ZONE_MOVABLE handling.
7470 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
7473 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
7474 unsigned long start_pfn, end_pfn;
7475 struct memblock_region *r;
7477 for_each_mem_region(r) {
7478 start_pfn = clamp(memblock_region_memory_base_pfn(r),
7479 zone_start_pfn, zone_end_pfn);
7480 end_pfn = clamp(memblock_region_memory_end_pfn(r),
7481 zone_start_pfn, zone_end_pfn);
7483 if (zone_type == ZONE_MOVABLE &&
7484 memblock_is_mirror(r))
7485 nr_absent += end_pfn - start_pfn;
7487 if (zone_type == ZONE_NORMAL &&
7488 !memblock_is_mirror(r))
7489 nr_absent += end_pfn - start_pfn;
7496 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7497 unsigned long node_start_pfn,
7498 unsigned long node_end_pfn)
7500 unsigned long realtotalpages = 0, totalpages = 0;
7503 for (i = 0; i < MAX_NR_ZONES; i++) {
7504 struct zone *zone = pgdat->node_zones + i;
7505 unsigned long zone_start_pfn, zone_end_pfn;
7506 unsigned long spanned, absent;
7507 unsigned long size, real_size;
7509 spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
7514 absent = zone_absent_pages_in_node(pgdat->node_id, i,
7519 real_size = size - absent;
7522 zone->zone_start_pfn = zone_start_pfn;
7524 zone->zone_start_pfn = 0;
7525 zone->spanned_pages = size;
7526 zone->present_pages = real_size;
7527 #if defined(CONFIG_MEMORY_HOTPLUG)
7528 zone->present_early_pages = real_size;
7532 realtotalpages += real_size;
7535 pgdat->node_spanned_pages = totalpages;
7536 pgdat->node_present_pages = realtotalpages;
7537 pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
7540 #ifndef CONFIG_SPARSEMEM
7542 * Calculate the size of the zone->blockflags rounded to an unsigned long
7543 * Start by making sure zonesize is a multiple of pageblock_order by rounding
7544 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
7545 * round what is now in bits to nearest long in bits, then return it in
7548 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
7550 unsigned long usemapsize;
7552 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
7553 usemapsize = roundup(zonesize, pageblock_nr_pages);
7554 usemapsize = usemapsize >> pageblock_order;
7555 usemapsize *= NR_PAGEBLOCK_BITS;
7556 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
7558 return usemapsize / 8;
7561 static void __ref setup_usemap(struct zone *zone)
7563 unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
7564 zone->spanned_pages);
7565 zone->pageblock_flags = NULL;
7567 zone->pageblock_flags =
7568 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
7570 if (!zone->pageblock_flags)
7571 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
7572 usemapsize, zone->name, zone_to_nid(zone));
7576 static inline void setup_usemap(struct zone *zone) {}
7577 #endif /* CONFIG_SPARSEMEM */
7579 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
7581 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
7582 void __init set_pageblock_order(void)
7584 unsigned int order = MAX_ORDER - 1;
7586 /* Check that pageblock_nr_pages has not already been setup */
7587 if (pageblock_order)
7590 /* Don't let pageblocks exceed the maximum allocation granularity. */
7591 if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order)
7592 order = HUGETLB_PAGE_ORDER;
7595 * Assume the largest contiguous order of interest is a huge page.
7596 * This value may be variable depending on boot parameters on IA64 and
7599 pageblock_order = order;
7601 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7604 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
7605 * is unused as pageblock_order is set at compile-time. See
7606 * include/linux/pageblock-flags.h for the values of pageblock_order based on
7609 void __init set_pageblock_order(void)
7613 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7615 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7616 unsigned long present_pages)
7618 unsigned long pages = spanned_pages;
7621 * Provide a more accurate estimation if there are holes within
7622 * the zone and SPARSEMEM is in use. If there are holes within the
7623 * zone, each populated memory region may cost us one or two extra
7624 * memmap pages due to alignment because memmap pages for each
7625 * populated regions may not be naturally aligned on page boundary.
7626 * So the (present_pages >> 4) heuristic is a tradeoff for that.
7628 if (spanned_pages > present_pages + (present_pages >> 4) &&
7629 IS_ENABLED(CONFIG_SPARSEMEM))
7630 pages = present_pages;
7632 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
7635 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
7636 static void pgdat_init_split_queue(struct pglist_data *pgdat)
7638 struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
7640 spin_lock_init(&ds_queue->split_queue_lock);
7641 INIT_LIST_HEAD(&ds_queue->split_queue);
7642 ds_queue->split_queue_len = 0;
7645 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
7648 #ifdef CONFIG_COMPACTION
7649 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
7651 init_waitqueue_head(&pgdat->kcompactd_wait);
7654 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
7657 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
7661 pgdat_resize_init(pgdat);
7662 pgdat_kswapd_lock_init(pgdat);
7664 pgdat_init_split_queue(pgdat);
7665 pgdat_init_kcompactd(pgdat);
7667 init_waitqueue_head(&pgdat->kswapd_wait);
7668 init_waitqueue_head(&pgdat->pfmemalloc_wait);
7670 for (i = 0; i < NR_VMSCAN_THROTTLE; i++)
7671 init_waitqueue_head(&pgdat->reclaim_wait[i]);
7673 pgdat_page_ext_init(pgdat);
7674 lruvec_init(&pgdat->__lruvec);
7677 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
7678 unsigned long remaining_pages)
7680 atomic_long_set(&zone->managed_pages, remaining_pages);
7681 zone_set_nid(zone, nid);
7682 zone->name = zone_names[idx];
7683 zone->zone_pgdat = NODE_DATA(nid);
7684 spin_lock_init(&zone->lock);
7685 zone_seqlock_init(zone);
7686 zone_pcp_init(zone);
7690 * Set up the zone data structures
7691 * - init pgdat internals
7692 * - init all zones belonging to this node
7694 * NOTE: this function is only called during memory hotplug
7696 #ifdef CONFIG_MEMORY_HOTPLUG
7697 void __ref free_area_init_core_hotplug(struct pglist_data *pgdat)
7699 int nid = pgdat->node_id;
7703 pgdat_init_internals(pgdat);
7705 if (pgdat->per_cpu_nodestats == &boot_nodestats)
7706 pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
7709 * Reset the nr_zones, order and highest_zoneidx before reuse.
7710 * Note that kswapd will init kswapd_highest_zoneidx properly
7711 * when it starts in the near future.
7713 pgdat->nr_zones = 0;
7714 pgdat->kswapd_order = 0;
7715 pgdat->kswapd_highest_zoneidx = 0;
7716 pgdat->node_start_pfn = 0;
7717 for_each_online_cpu(cpu) {
7718 struct per_cpu_nodestat *p;
7720 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
7721 memset(p, 0, sizeof(*p));
7724 for (z = 0; z < MAX_NR_ZONES; z++)
7725 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
7730 * Set up the zone data structures:
7731 * - mark all pages reserved
7732 * - mark all memory queues empty
7733 * - clear the memory bitmaps
7735 * NOTE: pgdat should get zeroed by caller.
7736 * NOTE: this function is only called during early init.
7738 static void __init free_area_init_core(struct pglist_data *pgdat)
7741 int nid = pgdat->node_id;
7743 pgdat_init_internals(pgdat);
7744 pgdat->per_cpu_nodestats = &boot_nodestats;
7746 for (j = 0; j < MAX_NR_ZONES; j++) {
7747 struct zone *zone = pgdat->node_zones + j;
7748 unsigned long size, freesize, memmap_pages;
7750 size = zone->spanned_pages;
7751 freesize = zone->present_pages;
7754 * Adjust freesize so that it accounts for how much memory
7755 * is used by this zone for memmap. This affects the watermark
7756 * and per-cpu initialisations
7758 memmap_pages = calc_memmap_size(size, freesize);
7759 if (!is_highmem_idx(j)) {
7760 if (freesize >= memmap_pages) {
7761 freesize -= memmap_pages;
7763 pr_debug(" %s zone: %lu pages used for memmap\n",
7764 zone_names[j], memmap_pages);
7766 pr_warn(" %s zone: %lu memmap pages exceeds freesize %lu\n",
7767 zone_names[j], memmap_pages, freesize);
7770 /* Account for reserved pages */
7771 if (j == 0 && freesize > dma_reserve) {
7772 freesize -= dma_reserve;
7773 pr_debug(" %s zone: %lu pages reserved\n", zone_names[0], dma_reserve);
7776 if (!is_highmem_idx(j))
7777 nr_kernel_pages += freesize;
7778 /* Charge for highmem memmap if there are enough kernel pages */
7779 else if (nr_kernel_pages > memmap_pages * 2)
7780 nr_kernel_pages -= memmap_pages;
7781 nr_all_pages += freesize;
7784 * Set an approximate value for lowmem here, it will be adjusted
7785 * when the bootmem allocator frees pages into the buddy system.
7786 * And all highmem pages will be managed by the buddy system.
7788 zone_init_internals(zone, j, nid, freesize);
7793 set_pageblock_order();
7795 init_currently_empty_zone(zone, zone->zone_start_pfn, size);
7799 #ifdef CONFIG_FLATMEM
7800 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
7802 unsigned long __maybe_unused start = 0;
7803 unsigned long __maybe_unused offset = 0;
7805 /* Skip empty nodes */
7806 if (!pgdat->node_spanned_pages)
7809 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
7810 offset = pgdat->node_start_pfn - start;
7811 /* ia64 gets its own node_mem_map, before this, without bootmem */
7812 if (!pgdat->node_mem_map) {
7813 unsigned long size, end;
7817 * The zone's endpoints aren't required to be MAX_ORDER
7818 * aligned but the node_mem_map endpoints must be in order
7819 * for the buddy allocator to function correctly.
7821 end = pgdat_end_pfn(pgdat);
7822 end = ALIGN(end, MAX_ORDER_NR_PAGES);
7823 size = (end - start) * sizeof(struct page);
7824 map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT,
7825 pgdat->node_id, false);
7827 panic("Failed to allocate %ld bytes for node %d memory map\n",
7828 size, pgdat->node_id);
7829 pgdat->node_mem_map = map + offset;
7831 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7832 __func__, pgdat->node_id, (unsigned long)pgdat,
7833 (unsigned long)pgdat->node_mem_map);
7836 * With no DISCONTIG, the global mem_map is just set as node 0's
7838 if (pgdat == NODE_DATA(0)) {
7839 mem_map = NODE_DATA(0)->node_mem_map;
7840 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
7846 static inline void alloc_node_mem_map(struct pglist_data *pgdat) { }
7847 #endif /* CONFIG_FLATMEM */
7849 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
7850 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7852 pgdat->first_deferred_pfn = ULONG_MAX;
7855 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7858 static void __init free_area_init_node(int nid)
7860 pg_data_t *pgdat = NODE_DATA(nid);
7861 unsigned long start_pfn = 0;
7862 unsigned long end_pfn = 0;
7864 /* pg_data_t should be reset to zero when it's allocated */
7865 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
7867 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
7869 pgdat->node_id = nid;
7870 pgdat->node_start_pfn = start_pfn;
7871 pgdat->per_cpu_nodestats = NULL;
7873 if (start_pfn != end_pfn) {
7874 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
7875 (u64)start_pfn << PAGE_SHIFT,
7876 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
7878 pr_info("Initmem setup node %d as memoryless\n", nid);
7881 calculate_node_totalpages(pgdat, start_pfn, end_pfn);
7883 alloc_node_mem_map(pgdat);
7884 pgdat_set_deferred_range(pgdat);
7886 free_area_init_core(pgdat);
7887 lru_gen_init_pgdat(pgdat);
7890 static void __init free_area_init_memoryless_node(int nid)
7892 free_area_init_node(nid);
7895 #if MAX_NUMNODES > 1
7897 * Figure out the number of possible node ids.
7899 void __init setup_nr_node_ids(void)
7901 unsigned int highest;
7903 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7904 nr_node_ids = highest + 1;
7909 * node_map_pfn_alignment - determine the maximum internode alignment
7911 * This function should be called after node map is populated and sorted.
7912 * It calculates the maximum power of two alignment which can distinguish
7915 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7916 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
7917 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
7918 * shifted, 1GiB is enough and this function will indicate so.
7920 * This is used to test whether pfn -> nid mapping of the chosen memory
7921 * model has fine enough granularity to avoid incorrect mapping for the
7922 * populated node map.
7924 * Return: the determined alignment in pfn's. 0 if there is no alignment
7925 * requirement (single node).
7927 unsigned long __init node_map_pfn_alignment(void)
7929 unsigned long accl_mask = 0, last_end = 0;
7930 unsigned long start, end, mask;
7931 int last_nid = NUMA_NO_NODE;
7934 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7935 if (!start || last_nid < 0 || last_nid == nid) {
7942 * Start with a mask granular enough to pin-point to the
7943 * start pfn and tick off bits one-by-one until it becomes
7944 * too coarse to separate the current node from the last.
7946 mask = ~((1 << __ffs(start)) - 1);
7947 while (mask && last_end <= (start & (mask << 1)))
7950 /* accumulate all internode masks */
7954 /* convert mask to number of pages */
7955 return ~accl_mask + 1;
7959 * early_calculate_totalpages()
7960 * Sum pages in active regions for movable zone.
7961 * Populate N_MEMORY for calculating usable_nodes.
7963 static unsigned long __init early_calculate_totalpages(void)
7965 unsigned long totalpages = 0;
7966 unsigned long start_pfn, end_pfn;
7969 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7970 unsigned long pages = end_pfn - start_pfn;
7972 totalpages += pages;
7974 node_set_state(nid, N_MEMORY);
7980 * Find the PFN the Movable zone begins in each node. Kernel memory
7981 * is spread evenly between nodes as long as the nodes have enough
7982 * memory. When they don't, some nodes will have more kernelcore than
7985 static void __init find_zone_movable_pfns_for_nodes(void)
7988 unsigned long usable_startpfn;
7989 unsigned long kernelcore_node, kernelcore_remaining;
7990 /* save the state before borrow the nodemask */
7991 nodemask_t saved_node_state = node_states[N_MEMORY];
7992 unsigned long totalpages = early_calculate_totalpages();
7993 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7994 struct memblock_region *r;
7996 /* Need to find movable_zone earlier when movable_node is specified. */
7997 find_usable_zone_for_movable();
8000 * If movable_node is specified, ignore kernelcore and movablecore
8003 if (movable_node_is_enabled()) {
8004 for_each_mem_region(r) {
8005 if (!memblock_is_hotpluggable(r))
8008 nid = memblock_get_region_node(r);
8010 usable_startpfn = PFN_DOWN(r->base);
8011 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
8012 min(usable_startpfn, zone_movable_pfn[nid]) :
8020 * If kernelcore=mirror is specified, ignore movablecore option
8022 if (mirrored_kernelcore) {
8023 bool mem_below_4gb_not_mirrored = false;
8025 for_each_mem_region(r) {
8026 if (memblock_is_mirror(r))
8029 nid = memblock_get_region_node(r);
8031 usable_startpfn = memblock_region_memory_base_pfn(r);
8033 if (usable_startpfn < PHYS_PFN(SZ_4G)) {
8034 mem_below_4gb_not_mirrored = true;
8038 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
8039 min(usable_startpfn, zone_movable_pfn[nid]) :
8043 if (mem_below_4gb_not_mirrored)
8044 pr_warn("This configuration results in unmirrored kernel memory.\n");
8050 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
8051 * amount of necessary memory.
8053 if (required_kernelcore_percent)
8054 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
8056 if (required_movablecore_percent)
8057 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
8061 * If movablecore= was specified, calculate what size of
8062 * kernelcore that corresponds so that memory usable for
8063 * any allocation type is evenly spread. If both kernelcore
8064 * and movablecore are specified, then the value of kernelcore
8065 * will be used for required_kernelcore if it's greater than
8066 * what movablecore would have allowed.
8068 if (required_movablecore) {
8069 unsigned long corepages;
8072 * Round-up so that ZONE_MOVABLE is at least as large as what
8073 * was requested by the user
8075 required_movablecore =
8076 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
8077 required_movablecore = min(totalpages, required_movablecore);
8078 corepages = totalpages - required_movablecore;
8080 required_kernelcore = max(required_kernelcore, corepages);
8084 * If kernelcore was not specified or kernelcore size is larger
8085 * than totalpages, there is no ZONE_MOVABLE.
8087 if (!required_kernelcore || required_kernelcore >= totalpages)
8090 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
8091 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
8094 /* Spread kernelcore memory as evenly as possible throughout nodes */
8095 kernelcore_node = required_kernelcore / usable_nodes;
8096 for_each_node_state(nid, N_MEMORY) {
8097 unsigned long start_pfn, end_pfn;
8100 * Recalculate kernelcore_node if the division per node
8101 * now exceeds what is necessary to satisfy the requested
8102 * amount of memory for the kernel
8104 if (required_kernelcore < kernelcore_node)
8105 kernelcore_node = required_kernelcore / usable_nodes;
8108 * As the map is walked, we track how much memory is usable
8109 * by the kernel using kernelcore_remaining. When it is
8110 * 0, the rest of the node is usable by ZONE_MOVABLE
8112 kernelcore_remaining = kernelcore_node;
8114 /* Go through each range of PFNs within this node */
8115 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
8116 unsigned long size_pages;
8118 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
8119 if (start_pfn >= end_pfn)
8122 /* Account for what is only usable for kernelcore */
8123 if (start_pfn < usable_startpfn) {
8124 unsigned long kernel_pages;
8125 kernel_pages = min(end_pfn, usable_startpfn)
8128 kernelcore_remaining -= min(kernel_pages,
8129 kernelcore_remaining);
8130 required_kernelcore -= min(kernel_pages,
8131 required_kernelcore);
8133 /* Continue if range is now fully accounted */
8134 if (end_pfn <= usable_startpfn) {
8137 * Push zone_movable_pfn to the end so
8138 * that if we have to rebalance
8139 * kernelcore across nodes, we will
8140 * not double account here
8142 zone_movable_pfn[nid] = end_pfn;
8145 start_pfn = usable_startpfn;
8149 * The usable PFN range for ZONE_MOVABLE is from
8150 * start_pfn->end_pfn. Calculate size_pages as the
8151 * number of pages used as kernelcore
8153 size_pages = end_pfn - start_pfn;
8154 if (size_pages > kernelcore_remaining)
8155 size_pages = kernelcore_remaining;
8156 zone_movable_pfn[nid] = start_pfn + size_pages;
8159 * Some kernelcore has been met, update counts and
8160 * break if the kernelcore for this node has been
8163 required_kernelcore -= min(required_kernelcore,
8165 kernelcore_remaining -= size_pages;
8166 if (!kernelcore_remaining)
8172 * If there is still required_kernelcore, we do another pass with one
8173 * less node in the count. This will push zone_movable_pfn[nid] further
8174 * along on the nodes that still have memory until kernelcore is
8178 if (usable_nodes && required_kernelcore > usable_nodes)
8182 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
8183 for (nid = 0; nid < MAX_NUMNODES; nid++) {
8184 unsigned long start_pfn, end_pfn;
8186 zone_movable_pfn[nid] =
8187 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
8189 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8190 if (zone_movable_pfn[nid] >= end_pfn)
8191 zone_movable_pfn[nid] = 0;
8195 /* restore the node_state */
8196 node_states[N_MEMORY] = saved_node_state;
8199 /* Any regular or high memory on that node ? */
8200 static void check_for_memory(pg_data_t *pgdat, int nid)
8202 enum zone_type zone_type;
8204 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
8205 struct zone *zone = &pgdat->node_zones[zone_type];
8206 if (populated_zone(zone)) {
8207 if (IS_ENABLED(CONFIG_HIGHMEM))
8208 node_set_state(nid, N_HIGH_MEMORY);
8209 if (zone_type <= ZONE_NORMAL)
8210 node_set_state(nid, N_NORMAL_MEMORY);
8217 * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
8218 * such cases we allow max_zone_pfn sorted in the descending order
8220 bool __weak arch_has_descending_max_zone_pfns(void)
8226 * free_area_init - Initialise all pg_data_t and zone data
8227 * @max_zone_pfn: an array of max PFNs for each zone
8229 * This will call free_area_init_node() for each active node in the system.
8230 * Using the page ranges provided by memblock_set_node(), the size of each
8231 * zone in each node and their holes is calculated. If the maximum PFN
8232 * between two adjacent zones match, it is assumed that the zone is empty.
8233 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
8234 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
8235 * starts where the previous one ended. For example, ZONE_DMA32 starts
8236 * at arch_max_dma_pfn.
8238 void __init free_area_init(unsigned long *max_zone_pfn)
8240 unsigned long start_pfn, end_pfn;
8244 /* Record where the zone boundaries are */
8245 memset(arch_zone_lowest_possible_pfn, 0,
8246 sizeof(arch_zone_lowest_possible_pfn));
8247 memset(arch_zone_highest_possible_pfn, 0,
8248 sizeof(arch_zone_highest_possible_pfn));
8250 start_pfn = PHYS_PFN(memblock_start_of_DRAM());
8251 descending = arch_has_descending_max_zone_pfns();
8253 for (i = 0; i < MAX_NR_ZONES; i++) {
8255 zone = MAX_NR_ZONES - i - 1;
8259 if (zone == ZONE_MOVABLE)
8262 end_pfn = max(max_zone_pfn[zone], start_pfn);
8263 arch_zone_lowest_possible_pfn[zone] = start_pfn;
8264 arch_zone_highest_possible_pfn[zone] = end_pfn;
8266 start_pfn = end_pfn;
8269 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
8270 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
8271 find_zone_movable_pfns_for_nodes();
8273 /* Print out the zone ranges */
8274 pr_info("Zone ranges:\n");
8275 for (i = 0; i < MAX_NR_ZONES; i++) {
8276 if (i == ZONE_MOVABLE)
8278 pr_info(" %-8s ", zone_names[i]);
8279 if (arch_zone_lowest_possible_pfn[i] ==
8280 arch_zone_highest_possible_pfn[i])
8283 pr_cont("[mem %#018Lx-%#018Lx]\n",
8284 (u64)arch_zone_lowest_possible_pfn[i]
8286 ((u64)arch_zone_highest_possible_pfn[i]
8287 << PAGE_SHIFT) - 1);
8290 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
8291 pr_info("Movable zone start for each node\n");
8292 for (i = 0; i < MAX_NUMNODES; i++) {
8293 if (zone_movable_pfn[i])
8294 pr_info(" Node %d: %#018Lx\n", i,
8295 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
8299 * Print out the early node map, and initialize the
8300 * subsection-map relative to active online memory ranges to
8301 * enable future "sub-section" extensions of the memory map.
8303 pr_info("Early memory node ranges\n");
8304 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8305 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
8306 (u64)start_pfn << PAGE_SHIFT,
8307 ((u64)end_pfn << PAGE_SHIFT) - 1);
8308 subsection_map_init(start_pfn, end_pfn - start_pfn);
8311 /* Initialise every node */
8312 mminit_verify_pageflags_layout();
8313 setup_nr_node_ids();
8314 for_each_node(nid) {
8317 if (!node_online(nid)) {
8318 pr_info("Initializing node %d as memoryless\n", nid);
8320 /* Allocator not initialized yet */
8321 pgdat = arch_alloc_nodedata(nid);
8323 panic("Cannot allocate %zuB for node %d.\n",
8324 sizeof(*pgdat), nid);
8325 arch_refresh_nodedata(nid, pgdat);
8326 free_area_init_memoryless_node(nid);
8329 * We do not want to confuse userspace by sysfs
8330 * files/directories for node without any memory
8331 * attached to it, so this node is not marked as
8332 * N_MEMORY and not marked online so that no sysfs
8333 * hierarchy will be created via register_one_node for
8334 * it. The pgdat will get fully initialized by
8335 * hotadd_init_pgdat() when memory is hotplugged into
8341 pgdat = NODE_DATA(nid);
8342 free_area_init_node(nid);
8344 /* Any memory on that node */
8345 if (pgdat->node_present_pages)
8346 node_set_state(nid, N_MEMORY);
8347 check_for_memory(pgdat, nid);
8353 static int __init cmdline_parse_core(char *p, unsigned long *core,
8354 unsigned long *percent)
8356 unsigned long long coremem;
8362 /* Value may be a percentage of total memory, otherwise bytes */
8363 coremem = simple_strtoull(p, &endptr, 0);
8364 if (*endptr == '%') {
8365 /* Paranoid check for percent values greater than 100 */
8366 WARN_ON(coremem > 100);
8370 coremem = memparse(p, &p);
8371 /* Paranoid check that UL is enough for the coremem value */
8372 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
8374 *core = coremem >> PAGE_SHIFT;
8381 * kernelcore=size sets the amount of memory for use for allocations that
8382 * cannot be reclaimed or migrated.
8384 static int __init cmdline_parse_kernelcore(char *p)
8386 /* parse kernelcore=mirror */
8387 if (parse_option_str(p, "mirror")) {
8388 mirrored_kernelcore = true;
8392 return cmdline_parse_core(p, &required_kernelcore,
8393 &required_kernelcore_percent);
8397 * movablecore=size sets the amount of memory for use for allocations that
8398 * can be reclaimed or migrated.
8400 static int __init cmdline_parse_movablecore(char *p)
8402 return cmdline_parse_core(p, &required_movablecore,
8403 &required_movablecore_percent);
8406 early_param("kernelcore", cmdline_parse_kernelcore);
8407 early_param("movablecore", cmdline_parse_movablecore);
8409 void adjust_managed_page_count(struct page *page, long count)
8411 atomic_long_add(count, &page_zone(page)->managed_pages);
8412 totalram_pages_add(count);
8413 #ifdef CONFIG_HIGHMEM
8414 if (PageHighMem(page))
8415 totalhigh_pages_add(count);
8418 EXPORT_SYMBOL(adjust_managed_page_count);
8420 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
8423 unsigned long pages = 0;
8425 start = (void *)PAGE_ALIGN((unsigned long)start);
8426 end = (void *)((unsigned long)end & PAGE_MASK);
8427 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
8428 struct page *page = virt_to_page(pos);
8429 void *direct_map_addr;
8432 * 'direct_map_addr' might be different from 'pos'
8433 * because some architectures' virt_to_page()
8434 * work with aliases. Getting the direct map
8435 * address ensures that we get a _writeable_
8436 * alias for the memset().
8438 direct_map_addr = page_address(page);
8440 * Perform a kasan-unchecked memset() since this memory
8441 * has not been initialized.
8443 direct_map_addr = kasan_reset_tag(direct_map_addr);
8444 if ((unsigned int)poison <= 0xFF)
8445 memset(direct_map_addr, poison, PAGE_SIZE);
8447 free_reserved_page(page);
8451 pr_info("Freeing %s memory: %ldK\n", s, K(pages));
8456 void __init mem_init_print_info(void)
8458 unsigned long physpages, codesize, datasize, rosize, bss_size;
8459 unsigned long init_code_size, init_data_size;
8461 physpages = get_num_physpages();
8462 codesize = _etext - _stext;
8463 datasize = _edata - _sdata;
8464 rosize = __end_rodata - __start_rodata;
8465 bss_size = __bss_stop - __bss_start;
8466 init_data_size = __init_end - __init_begin;
8467 init_code_size = _einittext - _sinittext;
8470 * Detect special cases and adjust section sizes accordingly:
8471 * 1) .init.* may be embedded into .data sections
8472 * 2) .init.text.* may be out of [__init_begin, __init_end],
8473 * please refer to arch/tile/kernel/vmlinux.lds.S.
8474 * 3) .rodata.* may be embedded into .text or .data sections.
8476 #define adj_init_size(start, end, size, pos, adj) \
8478 if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \
8482 adj_init_size(__init_begin, __init_end, init_data_size,
8483 _sinittext, init_code_size);
8484 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
8485 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
8486 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
8487 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
8489 #undef adj_init_size
8491 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
8492 #ifdef CONFIG_HIGHMEM
8496 K(nr_free_pages()), K(physpages),
8497 codesize / SZ_1K, datasize / SZ_1K, rosize / SZ_1K,
8498 (init_data_size + init_code_size) / SZ_1K, bss_size / SZ_1K,
8499 K(physpages - totalram_pages() - totalcma_pages),
8501 #ifdef CONFIG_HIGHMEM
8502 , K(totalhigh_pages())
8508 * set_dma_reserve - set the specified number of pages reserved in the first zone
8509 * @new_dma_reserve: The number of pages to mark reserved
8511 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
8512 * In the DMA zone, a significant percentage may be consumed by kernel image
8513 * and other unfreeable allocations which can skew the watermarks badly. This
8514 * function may optionally be used to account for unfreeable pages in the
8515 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
8516 * smaller per-cpu batchsize.
8518 void __init set_dma_reserve(unsigned long new_dma_reserve)
8520 dma_reserve = new_dma_reserve;
8523 static int page_alloc_cpu_dead(unsigned int cpu)
8527 lru_add_drain_cpu(cpu);
8528 mlock_drain_remote(cpu);
8532 * Spill the event counters of the dead processor
8533 * into the current processors event counters.
8534 * This artificially elevates the count of the current
8537 vm_events_fold_cpu(cpu);
8540 * Zero the differential counters of the dead processor
8541 * so that the vm statistics are consistent.
8543 * This is only okay since the processor is dead and cannot
8544 * race with what we are doing.
8546 cpu_vm_stats_fold(cpu);
8548 for_each_populated_zone(zone)
8549 zone_pcp_update(zone, 0);
8554 static int page_alloc_cpu_online(unsigned int cpu)
8558 for_each_populated_zone(zone)
8559 zone_pcp_update(zone, 1);
8564 int hashdist = HASHDIST_DEFAULT;
8566 static int __init set_hashdist(char *str)
8570 hashdist = simple_strtoul(str, &str, 0);
8573 __setup("hashdist=", set_hashdist);
8576 void __init page_alloc_init(void)
8581 if (num_node_state(N_MEMORY) == 1)
8585 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
8586 "mm/page_alloc:pcp",
8587 page_alloc_cpu_online,
8588 page_alloc_cpu_dead);
8593 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
8594 * or min_free_kbytes changes.
8596 static void calculate_totalreserve_pages(void)
8598 struct pglist_data *pgdat;
8599 unsigned long reserve_pages = 0;
8600 enum zone_type i, j;
8602 for_each_online_pgdat(pgdat) {
8604 pgdat->totalreserve_pages = 0;
8606 for (i = 0; i < MAX_NR_ZONES; i++) {
8607 struct zone *zone = pgdat->node_zones + i;
8609 unsigned long managed_pages = zone_managed_pages(zone);
8611 /* Find valid and maximum lowmem_reserve in the zone */
8612 for (j = i; j < MAX_NR_ZONES; j++) {
8613 if (zone->lowmem_reserve[j] > max)
8614 max = zone->lowmem_reserve[j];
8617 /* we treat the high watermark as reserved pages. */
8618 max += high_wmark_pages(zone);
8620 if (max > managed_pages)
8621 max = managed_pages;
8623 pgdat->totalreserve_pages += max;
8625 reserve_pages += max;
8628 totalreserve_pages = reserve_pages;
8632 * setup_per_zone_lowmem_reserve - called whenever
8633 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
8634 * has a correct pages reserved value, so an adequate number of
8635 * pages are left in the zone after a successful __alloc_pages().
8637 static void setup_per_zone_lowmem_reserve(void)
8639 struct pglist_data *pgdat;
8640 enum zone_type i, j;
8642 for_each_online_pgdat(pgdat) {
8643 for (i = 0; i < MAX_NR_ZONES - 1; i++) {
8644 struct zone *zone = &pgdat->node_zones[i];
8645 int ratio = sysctl_lowmem_reserve_ratio[i];
8646 bool clear = !ratio || !zone_managed_pages(zone);
8647 unsigned long managed_pages = 0;
8649 for (j = i + 1; j < MAX_NR_ZONES; j++) {
8650 struct zone *upper_zone = &pgdat->node_zones[j];
8652 managed_pages += zone_managed_pages(upper_zone);
8655 zone->lowmem_reserve[j] = 0;
8657 zone->lowmem_reserve[j] = managed_pages / ratio;
8662 /* update totalreserve_pages */
8663 calculate_totalreserve_pages();
8666 static void __setup_per_zone_wmarks(void)
8668 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
8669 unsigned long lowmem_pages = 0;
8671 unsigned long flags;
8673 /* Calculate total number of !ZONE_HIGHMEM pages */
8674 for_each_zone(zone) {
8675 if (!is_highmem(zone))
8676 lowmem_pages += zone_managed_pages(zone);
8679 for_each_zone(zone) {
8682 spin_lock_irqsave(&zone->lock, flags);
8683 tmp = (u64)pages_min * zone_managed_pages(zone);
8684 do_div(tmp, lowmem_pages);
8685 if (is_highmem(zone)) {
8687 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
8688 * need highmem pages, so cap pages_min to a small
8691 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8692 * deltas control async page reclaim, and so should
8693 * not be capped for highmem.
8695 unsigned long min_pages;
8697 min_pages = zone_managed_pages(zone) / 1024;
8698 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
8699 zone->_watermark[WMARK_MIN] = min_pages;
8702 * If it's a lowmem zone, reserve a number of pages
8703 * proportionate to the zone's size.
8705 zone->_watermark[WMARK_MIN] = tmp;
8709 * Set the kswapd watermarks distance according to the
8710 * scale factor in proportion to available memory, but
8711 * ensure a minimum size on small systems.
8713 tmp = max_t(u64, tmp >> 2,
8714 mult_frac(zone_managed_pages(zone),
8715 watermark_scale_factor, 10000));
8717 zone->watermark_boost = 0;
8718 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
8719 zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
8720 zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
8722 spin_unlock_irqrestore(&zone->lock, flags);
8725 /* update totalreserve_pages */
8726 calculate_totalreserve_pages();
8730 * setup_per_zone_wmarks - called when min_free_kbytes changes
8731 * or when memory is hot-{added|removed}
8733 * Ensures that the watermark[min,low,high] values for each zone are set
8734 * correctly with respect to min_free_kbytes.
8736 void setup_per_zone_wmarks(void)
8739 static DEFINE_SPINLOCK(lock);
8742 __setup_per_zone_wmarks();
8746 * The watermark size have changed so update the pcpu batch
8747 * and high limits or the limits may be inappropriate.
8750 zone_pcp_update(zone, 0);
8754 * Initialise min_free_kbytes.
8756 * For small machines we want it small (128k min). For large machines
8757 * we want it large (256MB max). But it is not linear, because network
8758 * bandwidth does not increase linearly with machine size. We use
8760 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
8761 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
8777 void calculate_min_free_kbytes(void)
8779 unsigned long lowmem_kbytes;
8780 int new_min_free_kbytes;
8782 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
8783 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
8785 if (new_min_free_kbytes > user_min_free_kbytes)
8786 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
8788 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8789 new_min_free_kbytes, user_min_free_kbytes);
8793 int __meminit init_per_zone_wmark_min(void)
8795 calculate_min_free_kbytes();
8796 setup_per_zone_wmarks();
8797 refresh_zone_stat_thresholds();
8798 setup_per_zone_lowmem_reserve();
8801 setup_min_unmapped_ratio();
8802 setup_min_slab_ratio();
8805 khugepaged_min_free_kbytes_update();
8809 postcore_initcall(init_per_zone_wmark_min)
8812 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
8813 * that we can call two helper functions whenever min_free_kbytes
8816 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8817 void *buffer, size_t *length, loff_t *ppos)
8821 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8826 user_min_free_kbytes = min_free_kbytes;
8827 setup_per_zone_wmarks();
8832 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
8833 void *buffer, size_t *length, loff_t *ppos)
8837 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8842 setup_per_zone_wmarks();
8848 static void setup_min_unmapped_ratio(void)
8853 for_each_online_pgdat(pgdat)
8854 pgdat->min_unmapped_pages = 0;
8857 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8858 sysctl_min_unmapped_ratio) / 100;
8862 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8863 void *buffer, size_t *length, loff_t *ppos)
8867 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8871 setup_min_unmapped_ratio();
8876 static void setup_min_slab_ratio(void)
8881 for_each_online_pgdat(pgdat)
8882 pgdat->min_slab_pages = 0;
8885 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8886 sysctl_min_slab_ratio) / 100;
8889 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8890 void *buffer, size_t *length, loff_t *ppos)
8894 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8898 setup_min_slab_ratio();
8905 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8906 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8907 * whenever sysctl_lowmem_reserve_ratio changes.
8909 * The reserve ratio obviously has absolutely no relation with the
8910 * minimum watermarks. The lowmem reserve ratio can only make sense
8911 * if in function of the boot time zone sizes.
8913 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8914 void *buffer, size_t *length, loff_t *ppos)
8918 proc_dointvec_minmax(table, write, buffer, length, ppos);
8920 for (i = 0; i < MAX_NR_ZONES; i++) {
8921 if (sysctl_lowmem_reserve_ratio[i] < 1)
8922 sysctl_lowmem_reserve_ratio[i] = 0;
8925 setup_per_zone_lowmem_reserve();
8930 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
8931 * cpu. It is the fraction of total pages in each zone that a hot per cpu
8932 * pagelist can have before it gets flushed back to buddy allocator.
8934 int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
8935 int write, void *buffer, size_t *length, loff_t *ppos)
8938 int old_percpu_pagelist_high_fraction;
8941 mutex_lock(&pcp_batch_high_lock);
8942 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
8944 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8945 if (!write || ret < 0)
8948 /* Sanity checking to avoid pcp imbalance */
8949 if (percpu_pagelist_high_fraction &&
8950 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
8951 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
8957 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
8960 for_each_populated_zone(zone)
8961 zone_set_pageset_high_and_batch(zone, 0);
8963 mutex_unlock(&pcp_batch_high_lock);
8967 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8969 * Returns the number of pages that arch has reserved but
8970 * is not known to alloc_large_system_hash().
8972 static unsigned long __init arch_reserved_kernel_pages(void)
8979 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8980 * machines. As memory size is increased the scale is also increased but at
8981 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
8982 * quadruples the scale is increased by one, which means the size of hash table
8983 * only doubles, instead of quadrupling as well.
8984 * Because 32-bit systems cannot have large physical memory, where this scaling
8985 * makes sense, it is disabled on such platforms.
8987 #if __BITS_PER_LONG > 32
8988 #define ADAPT_SCALE_BASE (64ul << 30)
8989 #define ADAPT_SCALE_SHIFT 2
8990 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
8994 * allocate a large system hash table from bootmem
8995 * - it is assumed that the hash table must contain an exact power-of-2
8996 * quantity of entries
8997 * - limit is the number of hash buckets, not the total allocation size
8999 void *__init alloc_large_system_hash(const char *tablename,
9000 unsigned long bucketsize,
9001 unsigned long numentries,
9004 unsigned int *_hash_shift,
9005 unsigned int *_hash_mask,
9006 unsigned long low_limit,
9007 unsigned long high_limit)
9009 unsigned long long max = high_limit;
9010 unsigned long log2qty, size;
9016 /* allow the kernel cmdline to have a say */
9018 /* round applicable memory size up to nearest megabyte */
9019 numentries = nr_kernel_pages;
9020 numentries -= arch_reserved_kernel_pages();
9022 /* It isn't necessary when PAGE_SIZE >= 1MB */
9023 if (PAGE_SIZE < SZ_1M)
9024 numentries = round_up(numentries, SZ_1M / PAGE_SIZE);
9026 #if __BITS_PER_LONG > 32
9028 unsigned long adapt;
9030 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
9031 adapt <<= ADAPT_SCALE_SHIFT)
9036 /* limit to 1 bucket per 2^scale bytes of low memory */
9037 if (scale > PAGE_SHIFT)
9038 numentries >>= (scale - PAGE_SHIFT);
9040 numentries <<= (PAGE_SHIFT - scale);
9042 /* Make sure we've got at least a 0-order allocation.. */
9043 if (unlikely(flags & HASH_SMALL)) {
9044 /* Makes no sense without HASH_EARLY */
9045 WARN_ON(!(flags & HASH_EARLY));
9046 if (!(numentries >> *_hash_shift)) {
9047 numentries = 1UL << *_hash_shift;
9048 BUG_ON(!numentries);
9050 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9051 numentries = PAGE_SIZE / bucketsize;
9053 numentries = roundup_pow_of_two(numentries);
9055 /* limit allocation size to 1/16 total memory by default */
9057 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
9058 do_div(max, bucketsize);
9060 max = min(max, 0x80000000ULL);
9062 if (numentries < low_limit)
9063 numentries = low_limit;
9064 if (numentries > max)
9067 log2qty = ilog2(numentries);
9069 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
9072 size = bucketsize << log2qty;
9073 if (flags & HASH_EARLY) {
9074 if (flags & HASH_ZERO)
9075 table = memblock_alloc(size, SMP_CACHE_BYTES);
9077 table = memblock_alloc_raw(size,
9079 } else if (get_order(size) >= MAX_ORDER || hashdist) {
9080 table = vmalloc_huge(size, gfp_flags);
9083 huge = is_vm_area_hugepages(table);
9086 * If bucketsize is not a power-of-two, we may free
9087 * some pages at the end of hash table which
9088 * alloc_pages_exact() automatically does
9090 table = alloc_pages_exact(size, gfp_flags);
9091 kmemleak_alloc(table, size, 1, gfp_flags);
9093 } while (!table && size > PAGE_SIZE && --log2qty);
9096 panic("Failed to allocate %s hash table\n", tablename);
9098 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
9099 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
9100 virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
9103 *_hash_shift = log2qty;
9105 *_hash_mask = (1 << log2qty) - 1;
9110 #ifdef CONFIG_CONTIG_ALLOC
9111 #if defined(CONFIG_DYNAMIC_DEBUG) || \
9112 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
9113 /* Usage: See admin-guide/dynamic-debug-howto.rst */
9114 static void alloc_contig_dump_pages(struct list_head *page_list)
9116 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
9118 if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
9122 list_for_each_entry(page, page_list, lru)
9123 dump_page(page, "migration failure");
9127 static inline void alloc_contig_dump_pages(struct list_head *page_list)
9132 /* [start, end) must belong to a single zone. */
9133 int __alloc_contig_migrate_range(struct compact_control *cc,
9134 unsigned long start, unsigned long end)
9136 /* This function is based on compact_zone() from compaction.c. */
9137 unsigned int nr_reclaimed;
9138 unsigned long pfn = start;
9139 unsigned int tries = 0;
9141 struct migration_target_control mtc = {
9142 .nid = zone_to_nid(cc->zone),
9143 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
9146 lru_cache_disable();
9148 while (pfn < end || !list_empty(&cc->migratepages)) {
9149 if (fatal_signal_pending(current)) {
9154 if (list_empty(&cc->migratepages)) {
9155 cc->nr_migratepages = 0;
9156 ret = isolate_migratepages_range(cc, pfn, end);
9157 if (ret && ret != -EAGAIN)
9159 pfn = cc->migrate_pfn;
9161 } else if (++tries == 5) {
9166 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
9168 cc->nr_migratepages -= nr_reclaimed;
9170 ret = migrate_pages(&cc->migratepages, alloc_migration_target,
9171 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
9174 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
9175 * to retry again over this error, so do the same here.
9183 if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
9184 alloc_contig_dump_pages(&cc->migratepages);
9185 putback_movable_pages(&cc->migratepages);
9192 * alloc_contig_range() -- tries to allocate given range of pages
9193 * @start: start PFN to allocate
9194 * @end: one-past-the-last PFN to allocate
9195 * @migratetype: migratetype of the underlying pageblocks (either
9196 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
9197 * in range must have the same migratetype and it must
9198 * be either of the two.
9199 * @gfp_mask: GFP mask to use during compaction
9201 * The PFN range does not have to be pageblock aligned. The PFN range must
9202 * belong to a single zone.
9204 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
9205 * pageblocks in the range. Once isolated, the pageblocks should not
9206 * be modified by others.
9208 * Return: zero on success or negative error code. On success all
9209 * pages which PFN is in [start, end) are allocated for the caller and
9210 * need to be freed with free_contig_range().
9212 int alloc_contig_range(unsigned long start, unsigned long end,
9213 unsigned migratetype, gfp_t gfp_mask)
9215 unsigned long outer_start, outer_end;
9219 struct compact_control cc = {
9220 .nr_migratepages = 0,
9222 .zone = page_zone(pfn_to_page(start)),
9223 .mode = MIGRATE_SYNC,
9224 .ignore_skip_hint = true,
9225 .no_set_skip_hint = true,
9226 .gfp_mask = current_gfp_context(gfp_mask),
9227 .alloc_contig = true,
9229 INIT_LIST_HEAD(&cc.migratepages);
9232 * What we do here is we mark all pageblocks in range as
9233 * MIGRATE_ISOLATE. Because pageblock and max order pages may
9234 * have different sizes, and due to the way page allocator
9235 * work, start_isolate_page_range() has special handlings for this.
9237 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
9238 * migrate the pages from an unaligned range (ie. pages that
9239 * we are interested in). This will put all the pages in
9240 * range back to page allocator as MIGRATE_ISOLATE.
9242 * When this is done, we take the pages in range from page
9243 * allocator removing them from the buddy system. This way
9244 * page allocator will never consider using them.
9246 * This lets us mark the pageblocks back as
9247 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
9248 * aligned range but not in the unaligned, original range are
9249 * put back to page allocator so that buddy can use them.
9252 ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
9256 drain_all_pages(cc.zone);
9259 * In case of -EBUSY, we'd like to know which page causes problem.
9260 * So, just fall through. test_pages_isolated() has a tracepoint
9261 * which will report the busy page.
9263 * It is possible that busy pages could become available before
9264 * the call to test_pages_isolated, and the range will actually be
9265 * allocated. So, if we fall through be sure to clear ret so that
9266 * -EBUSY is not accidentally used or returned to caller.
9268 ret = __alloc_contig_migrate_range(&cc, start, end);
9269 if (ret && ret != -EBUSY)
9274 * Pages from [start, end) are within a pageblock_nr_pages
9275 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
9276 * more, all pages in [start, end) are free in page allocator.
9277 * What we are going to do is to allocate all pages from
9278 * [start, end) (that is remove them from page allocator).
9280 * The only problem is that pages at the beginning and at the
9281 * end of interesting range may be not aligned with pages that
9282 * page allocator holds, ie. they can be part of higher order
9283 * pages. Because of this, we reserve the bigger range and
9284 * once this is done free the pages we are not interested in.
9286 * We don't have to hold zone->lock here because the pages are
9287 * isolated thus they won't get removed from buddy.
9291 outer_start = start;
9292 while (!PageBuddy(pfn_to_page(outer_start))) {
9293 if (++order >= MAX_ORDER) {
9294 outer_start = start;
9297 outer_start &= ~0UL << order;
9300 if (outer_start != start) {
9301 order = buddy_order(pfn_to_page(outer_start));
9304 * outer_start page could be small order buddy page and
9305 * it doesn't include start page. Adjust outer_start
9306 * in this case to report failed page properly
9307 * on tracepoint in test_pages_isolated()
9309 if (outer_start + (1UL << order) <= start)
9310 outer_start = start;
9313 /* Make sure the range is really isolated. */
9314 if (test_pages_isolated(outer_start, end, 0)) {
9319 /* Grab isolated pages from freelists. */
9320 outer_end = isolate_freepages_range(&cc, outer_start, end);
9326 /* Free head and tail (if any) */
9327 if (start != outer_start)
9328 free_contig_range(outer_start, start - outer_start);
9329 if (end != outer_end)
9330 free_contig_range(end, outer_end - end);
9333 undo_isolate_page_range(start, end, migratetype);
9336 EXPORT_SYMBOL(alloc_contig_range);
9338 static int __alloc_contig_pages(unsigned long start_pfn,
9339 unsigned long nr_pages, gfp_t gfp_mask)
9341 unsigned long end_pfn = start_pfn + nr_pages;
9343 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
9347 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
9348 unsigned long nr_pages)
9350 unsigned long i, end_pfn = start_pfn + nr_pages;
9353 for (i = start_pfn; i < end_pfn; i++) {
9354 page = pfn_to_online_page(i);
9358 if (page_zone(page) != z)
9361 if (PageReserved(page))
9367 static bool zone_spans_last_pfn(const struct zone *zone,
9368 unsigned long start_pfn, unsigned long nr_pages)
9370 unsigned long last_pfn = start_pfn + nr_pages - 1;
9372 return zone_spans_pfn(zone, last_pfn);
9376 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
9377 * @nr_pages: Number of contiguous pages to allocate
9378 * @gfp_mask: GFP mask to limit search and used during compaction
9380 * @nodemask: Mask for other possible nodes
9382 * This routine is a wrapper around alloc_contig_range(). It scans over zones
9383 * on an applicable zonelist to find a contiguous pfn range which can then be
9384 * tried for allocation with alloc_contig_range(). This routine is intended
9385 * for allocation requests which can not be fulfilled with the buddy allocator.
9387 * The allocated memory is always aligned to a page boundary. If nr_pages is a
9388 * power of two, then allocated range is also guaranteed to be aligned to same
9389 * nr_pages (e.g. 1GB request would be aligned to 1GB).
9391 * Allocated pages can be freed with free_contig_range() or by manually calling
9392 * __free_page() on each allocated page.
9394 * Return: pointer to contiguous pages on success, or NULL if not successful.
9396 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
9397 int nid, nodemask_t *nodemask)
9399 unsigned long ret, pfn, flags;
9400 struct zonelist *zonelist;
9404 zonelist = node_zonelist(nid, gfp_mask);
9405 for_each_zone_zonelist_nodemask(zone, z, zonelist,
9406 gfp_zone(gfp_mask), nodemask) {
9407 spin_lock_irqsave(&zone->lock, flags);
9409 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
9410 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
9411 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
9413 * We release the zone lock here because
9414 * alloc_contig_range() will also lock the zone
9415 * at some point. If there's an allocation
9416 * spinning on this lock, it may win the race
9417 * and cause alloc_contig_range() to fail...
9419 spin_unlock_irqrestore(&zone->lock, flags);
9420 ret = __alloc_contig_pages(pfn, nr_pages,
9423 return pfn_to_page(pfn);
9424 spin_lock_irqsave(&zone->lock, flags);
9428 spin_unlock_irqrestore(&zone->lock, flags);
9432 #endif /* CONFIG_CONTIG_ALLOC */
9434 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
9436 unsigned long count = 0;
9438 for (; nr_pages--; pfn++) {
9439 struct page *page = pfn_to_page(pfn);
9441 count += page_count(page) != 1;
9444 WARN(count != 0, "%lu pages are still in use!\n", count);
9446 EXPORT_SYMBOL(free_contig_range);
9449 * Effectively disable pcplists for the zone by setting the high limit to 0
9450 * and draining all cpus. A concurrent page freeing on another CPU that's about
9451 * to put the page on pcplist will either finish before the drain and the page
9452 * will be drained, or observe the new high limit and skip the pcplist.
9454 * Must be paired with a call to zone_pcp_enable().
9456 void zone_pcp_disable(struct zone *zone)
9458 mutex_lock(&pcp_batch_high_lock);
9459 __zone_set_pageset_high_and_batch(zone, 0, 1);
9460 __drain_all_pages(zone, true);
9463 void zone_pcp_enable(struct zone *zone)
9465 __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
9466 mutex_unlock(&pcp_batch_high_lock);
9469 void zone_pcp_reset(struct zone *zone)
9472 struct per_cpu_zonestat *pzstats;
9474 if (zone->per_cpu_pageset != &boot_pageset) {
9475 for_each_online_cpu(cpu) {
9476 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
9477 drain_zonestat(zone, pzstats);
9479 free_percpu(zone->per_cpu_pageset);
9480 zone->per_cpu_pageset = &boot_pageset;
9481 if (zone->per_cpu_zonestats != &boot_zonestats) {
9482 free_percpu(zone->per_cpu_zonestats);
9483 zone->per_cpu_zonestats = &boot_zonestats;
9488 #ifdef CONFIG_MEMORY_HOTREMOVE
9490 * All pages in the range must be in a single zone, must not contain holes,
9491 * must span full sections, and must be isolated before calling this function.
9493 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
9495 unsigned long pfn = start_pfn;
9499 unsigned long flags;
9501 offline_mem_sections(pfn, end_pfn);
9502 zone = page_zone(pfn_to_page(pfn));
9503 spin_lock_irqsave(&zone->lock, flags);
9504 while (pfn < end_pfn) {
9505 page = pfn_to_page(pfn);
9507 * The HWPoisoned page may be not in buddy system, and
9508 * page_count() is not 0.
9510 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
9515 * At this point all remaining PageOffline() pages have a
9516 * reference count of 0 and can simply be skipped.
9518 if (PageOffline(page)) {
9519 BUG_ON(page_count(page));
9520 BUG_ON(PageBuddy(page));
9525 BUG_ON(page_count(page));
9526 BUG_ON(!PageBuddy(page));
9527 order = buddy_order(page);
9528 del_page_from_free_list(page, zone, order);
9529 pfn += (1 << order);
9531 spin_unlock_irqrestore(&zone->lock, flags);
9536 * This function returns a stable result only if called under zone lock.
9538 bool is_free_buddy_page(struct page *page)
9540 unsigned long pfn = page_to_pfn(page);
9543 for (order = 0; order < MAX_ORDER; order++) {
9544 struct page *page_head = page - (pfn & ((1 << order) - 1));
9546 if (PageBuddy(page_head) &&
9547 buddy_order_unsafe(page_head) >= order)
9551 return order < MAX_ORDER;
9553 EXPORT_SYMBOL(is_free_buddy_page);
9555 #ifdef CONFIG_MEMORY_FAILURE
9557 * Break down a higher-order page in sub-pages, and keep our target out of
9560 static void break_down_buddy_pages(struct zone *zone, struct page *page,
9561 struct page *target, int low, int high,
9564 unsigned long size = 1 << high;
9565 struct page *current_buddy, *next_page;
9567 while (high > low) {
9571 if (target >= &page[size]) {
9572 next_page = page + size;
9573 current_buddy = page;
9576 current_buddy = page + size;
9579 if (set_page_guard(zone, current_buddy, high, migratetype))
9582 if (current_buddy != target) {
9583 add_to_free_list(current_buddy, zone, high, migratetype);
9584 set_buddy_order(current_buddy, high);
9591 * Take a page that will be marked as poisoned off the buddy allocator.
9593 bool take_page_off_buddy(struct page *page)
9595 struct zone *zone = page_zone(page);
9596 unsigned long pfn = page_to_pfn(page);
9597 unsigned long flags;
9601 spin_lock_irqsave(&zone->lock, flags);
9602 for (order = 0; order < MAX_ORDER; order++) {
9603 struct page *page_head = page - (pfn & ((1 << order) - 1));
9604 int page_order = buddy_order(page_head);
9606 if (PageBuddy(page_head) && page_order >= order) {
9607 unsigned long pfn_head = page_to_pfn(page_head);
9608 int migratetype = get_pfnblock_migratetype(page_head,
9611 del_page_from_free_list(page_head, zone, page_order);
9612 break_down_buddy_pages(zone, page_head, page, 0,
9613 page_order, migratetype);
9614 SetPageHWPoisonTakenOff(page);
9615 if (!is_migrate_isolate(migratetype))
9616 __mod_zone_freepage_state(zone, -1, migratetype);
9620 if (page_count(page_head) > 0)
9623 spin_unlock_irqrestore(&zone->lock, flags);
9628 * Cancel takeoff done by take_page_off_buddy().
9630 bool put_page_back_buddy(struct page *page)
9632 struct zone *zone = page_zone(page);
9633 unsigned long pfn = page_to_pfn(page);
9634 unsigned long flags;
9635 int migratetype = get_pfnblock_migratetype(page, pfn);
9638 spin_lock_irqsave(&zone->lock, flags);
9639 if (put_page_testzero(page)) {
9640 ClearPageHWPoisonTakenOff(page);
9641 __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
9642 if (TestClearPageHWPoison(page)) {
9646 spin_unlock_irqrestore(&zone->lock, flags);
9652 #ifdef CONFIG_ZONE_DMA
9653 bool has_managed_dma(void)
9655 struct pglist_data *pgdat;
9657 for_each_online_pgdat(pgdat) {
9658 struct zone *zone = &pgdat->node_zones[ZONE_DMA];
9660 if (managed_zone(zone))
9665 #endif /* CONFIG_ZONE_DMA */