1 // SPDX-License-Identifier: GPL-2.0-only
5 * (C) Copyright Al Viro 2000, 2001
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/cred.h>
19 #include <linux/idr.h>
20 #include <linux/init.h> /* init_rootfs */
21 #include <linux/fs_struct.h> /* get_fs_root et.al. */
22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23 #include <linux/file.h>
24 #include <linux/uaccess.h>
25 #include <linux/proc_ns.h>
26 #include <linux/magic.h>
27 #include <linux/memblock.h>
28 #include <linux/proc_fs.h>
29 #include <linux/task_work.h>
30 #include <linux/sched/task.h>
31 #include <uapi/linux/mount.h>
32 #include <linux/fs_context.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/mnt_idmapping.h>
35 #include <linux/nospec.h>
40 /* Maximum number of mounts in a mount namespace */
41 static unsigned int sysctl_mount_max __read_mostly = 100000;
43 static unsigned int m_hash_mask __ro_after_init;
44 static unsigned int m_hash_shift __ro_after_init;
45 static unsigned int mp_hash_mask __ro_after_init;
46 static unsigned int mp_hash_shift __ro_after_init;
48 static __initdata unsigned long mhash_entries;
49 static int __init set_mhash_entries(char *str)
53 mhash_entries = simple_strtoul(str, &str, 0);
56 __setup("mhash_entries=", set_mhash_entries);
58 static __initdata unsigned long mphash_entries;
59 static int __init set_mphash_entries(char *str)
63 mphash_entries = simple_strtoul(str, &str, 0);
66 __setup("mphash_entries=", set_mphash_entries);
69 static DEFINE_IDA(mnt_id_ida);
70 static DEFINE_IDA(mnt_group_ida);
72 /* Don't allow confusion with old 32bit mount ID */
73 static atomic64_t mnt_id_ctr = ATOMIC64_INIT(1ULL << 32);
75 static struct hlist_head *mount_hashtable __ro_after_init;
76 static struct hlist_head *mountpoint_hashtable __ro_after_init;
77 static struct kmem_cache *mnt_cache __ro_after_init;
78 static DECLARE_RWSEM(namespace_sem);
79 static HLIST_HEAD(unmounted); /* protected by namespace_sem */
80 static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */
81 static DEFINE_RWLOCK(mnt_ns_tree_lock);
82 static struct rb_root mnt_ns_tree = RB_ROOT; /* protected by mnt_ns_tree_lock */
85 unsigned int attr_set;
86 unsigned int attr_clr;
87 unsigned int propagation;
88 unsigned int lookup_flags;
90 struct user_namespace *mnt_userns;
91 struct mnt_idmap *mnt_idmap;
95 struct kobject *fs_kobj __ro_after_init;
96 EXPORT_SYMBOL_GPL(fs_kobj);
99 * vfsmount lock may be taken for read to prevent changes to the
100 * vfsmount hash, ie. during mountpoint lookups or walking back
103 * It should be taken for write in all cases where the vfsmount
104 * tree or hash is modified or when a vfsmount structure is modified.
106 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
108 static int mnt_ns_cmp(u64 seq, const struct mnt_namespace *ns)
119 static inline struct mnt_namespace *node_to_mnt_ns(const struct rb_node *node)
123 return rb_entry(node, struct mnt_namespace, mnt_ns_tree_node);
126 static bool mnt_ns_less(struct rb_node *a, const struct rb_node *b)
128 struct mnt_namespace *ns_a = node_to_mnt_ns(a);
129 struct mnt_namespace *ns_b = node_to_mnt_ns(b);
130 u64 seq_a = ns_a->seq;
132 return mnt_ns_cmp(seq_a, ns_b) < 0;
135 static void mnt_ns_tree_add(struct mnt_namespace *ns)
137 guard(write_lock)(&mnt_ns_tree_lock);
138 rb_add(&ns->mnt_ns_tree_node, &mnt_ns_tree, mnt_ns_less);
141 static void mnt_ns_release(struct mnt_namespace *ns)
143 lockdep_assert_not_held(&mnt_ns_tree_lock);
145 /* keep alive for {list,stat}mount() */
146 if (refcount_dec_and_test(&ns->passive)) {
147 put_user_ns(ns->user_ns);
151 DEFINE_FREE(mnt_ns_release, struct mnt_namespace *, if (_T) mnt_ns_release(_T))
153 static void mnt_ns_tree_remove(struct mnt_namespace *ns)
155 /* remove from global mount namespace list */
156 if (!is_anon_ns(ns)) {
157 guard(write_lock)(&mnt_ns_tree_lock);
158 rb_erase(&ns->mnt_ns_tree_node, &mnt_ns_tree);
165 * Returns the mount namespace which either has the specified id, or has the
166 * next smallest id afer the specified one.
168 static struct mnt_namespace *mnt_ns_find_id_at(u64 mnt_ns_id)
170 struct rb_node *node = mnt_ns_tree.rb_node;
171 struct mnt_namespace *ret = NULL;
173 lockdep_assert_held(&mnt_ns_tree_lock);
176 struct mnt_namespace *n = node_to_mnt_ns(node);
178 if (mnt_ns_id <= n->seq) {
179 ret = node_to_mnt_ns(node);
180 if (mnt_ns_id == n->seq)
182 node = node->rb_left;
184 node = node->rb_right;
191 * Lookup a mount namespace by id and take a passive reference count. Taking a
192 * passive reference means the mount namespace can be emptied if e.g., the last
193 * task holding an active reference exits. To access the mounts of the
194 * namespace the @namespace_sem must first be acquired. If the namespace has
195 * already shut down before acquiring @namespace_sem, {list,stat}mount() will
196 * see that the mount rbtree of the namespace is empty.
198 static struct mnt_namespace *lookup_mnt_ns(u64 mnt_ns_id)
200 struct mnt_namespace *ns;
202 guard(read_lock)(&mnt_ns_tree_lock);
203 ns = mnt_ns_find_id_at(mnt_ns_id);
204 if (!ns || ns->seq != mnt_ns_id)
207 refcount_inc(&ns->passive);
211 static inline void lock_mount_hash(void)
213 write_seqlock(&mount_lock);
216 static inline void unlock_mount_hash(void)
218 write_sequnlock(&mount_lock);
221 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
223 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
224 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
225 tmp = tmp + (tmp >> m_hash_shift);
226 return &mount_hashtable[tmp & m_hash_mask];
229 static inline struct hlist_head *mp_hash(struct dentry *dentry)
231 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
232 tmp = tmp + (tmp >> mp_hash_shift);
233 return &mountpoint_hashtable[tmp & mp_hash_mask];
236 static int mnt_alloc_id(struct mount *mnt)
238 int res = ida_alloc(&mnt_id_ida, GFP_KERNEL);
243 mnt->mnt_id_unique = atomic64_inc_return(&mnt_id_ctr);
247 static void mnt_free_id(struct mount *mnt)
249 ida_free(&mnt_id_ida, mnt->mnt_id);
253 * Allocate a new peer group ID
255 static int mnt_alloc_group_id(struct mount *mnt)
257 int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
261 mnt->mnt_group_id = res;
266 * Release a peer group ID
268 void mnt_release_group_id(struct mount *mnt)
270 ida_free(&mnt_group_ida, mnt->mnt_group_id);
271 mnt->mnt_group_id = 0;
275 * vfsmount lock must be held for read
277 static inline void mnt_add_count(struct mount *mnt, int n)
280 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
289 * vfsmount lock must be held for write
291 int mnt_get_count(struct mount *mnt)
297 for_each_possible_cpu(cpu) {
298 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
303 return mnt->mnt_count;
307 static struct mount *alloc_vfsmnt(const char *name)
309 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
313 err = mnt_alloc_id(mnt);
318 mnt->mnt_devname = kstrdup_const(name,
320 if (!mnt->mnt_devname)
325 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
327 goto out_free_devname;
329 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
332 mnt->mnt_writers = 0;
335 INIT_HLIST_NODE(&mnt->mnt_hash);
336 INIT_LIST_HEAD(&mnt->mnt_child);
337 INIT_LIST_HEAD(&mnt->mnt_mounts);
338 INIT_LIST_HEAD(&mnt->mnt_list);
339 INIT_LIST_HEAD(&mnt->mnt_expire);
340 INIT_LIST_HEAD(&mnt->mnt_share);
341 INIT_LIST_HEAD(&mnt->mnt_slave_list);
342 INIT_LIST_HEAD(&mnt->mnt_slave);
343 INIT_HLIST_NODE(&mnt->mnt_mp_list);
344 INIT_LIST_HEAD(&mnt->mnt_umounting);
345 INIT_HLIST_HEAD(&mnt->mnt_stuck_children);
346 mnt->mnt.mnt_idmap = &nop_mnt_idmap;
352 kfree_const(mnt->mnt_devname);
357 kmem_cache_free(mnt_cache, mnt);
362 * Most r/o checks on a fs are for operations that take
363 * discrete amounts of time, like a write() or unlink().
364 * We must keep track of when those operations start
365 * (for permission checks) and when they end, so that
366 * we can determine when writes are able to occur to
370 * __mnt_is_readonly: check whether a mount is read-only
371 * @mnt: the mount to check for its write status
373 * This shouldn't be used directly ouside of the VFS.
374 * It does not guarantee that the filesystem will stay
375 * r/w, just that it is right *now*. This can not and
376 * should not be used in place of IS_RDONLY(inode).
377 * mnt_want/drop_write() will _keep_ the filesystem
380 bool __mnt_is_readonly(struct vfsmount *mnt)
382 return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
384 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
386 static inline void mnt_inc_writers(struct mount *mnt)
389 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
395 static inline void mnt_dec_writers(struct mount *mnt)
398 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
404 static unsigned int mnt_get_writers(struct mount *mnt)
407 unsigned int count = 0;
410 for_each_possible_cpu(cpu) {
411 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
416 return mnt->mnt_writers;
420 static int mnt_is_readonly(struct vfsmount *mnt)
422 if (READ_ONCE(mnt->mnt_sb->s_readonly_remount))
425 * The barrier pairs with the barrier in sb_start_ro_state_change()
426 * making sure if we don't see s_readonly_remount set yet, we also will
427 * not see any superblock / mount flag changes done by remount.
428 * It also pairs with the barrier in sb_end_ro_state_change()
429 * assuring that if we see s_readonly_remount already cleared, we will
430 * see the values of superblock / mount flags updated by remount.
433 return __mnt_is_readonly(mnt);
437 * Most r/o & frozen checks on a fs are for operations that take discrete
438 * amounts of time, like a write() or unlink(). We must keep track of when
439 * those operations start (for permission checks) and when they end, so that we
440 * can determine when writes are able to occur to a filesystem.
443 * mnt_get_write_access - get write access to a mount without freeze protection
444 * @m: the mount on which to take a write
446 * This tells the low-level filesystem that a write is about to be performed to
447 * it, and makes sure that writes are allowed (mnt it read-write) before
448 * returning success. This operation does not protect against filesystem being
449 * frozen. When the write operation is finished, mnt_put_write_access() must be
450 * called. This is effectively a refcount.
452 int mnt_get_write_access(struct vfsmount *m)
454 struct mount *mnt = real_mount(m);
458 mnt_inc_writers(mnt);
460 * The store to mnt_inc_writers must be visible before we pass
461 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
462 * incremented count after it has set MNT_WRITE_HOLD.
465 might_lock(&mount_lock.lock);
466 while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) {
467 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
471 * This prevents priority inversion, if the task
472 * setting MNT_WRITE_HOLD got preempted on a remote
473 * CPU, and it prevents life lock if the task setting
474 * MNT_WRITE_HOLD has a lower priority and is bound to
475 * the same CPU as the task that is spinning here.
484 * The barrier pairs with the barrier sb_start_ro_state_change() making
485 * sure that if we see MNT_WRITE_HOLD cleared, we will also see
486 * s_readonly_remount set (or even SB_RDONLY / MNT_READONLY flags) in
487 * mnt_is_readonly() and bail in case we are racing with remount
491 if (mnt_is_readonly(m)) {
492 mnt_dec_writers(mnt);
499 EXPORT_SYMBOL_GPL(mnt_get_write_access);
502 * mnt_want_write - get write access to a mount
503 * @m: the mount on which to take a write
505 * This tells the low-level filesystem that a write is about to be performed to
506 * it, and makes sure that writes are allowed (mount is read-write, filesystem
507 * is not frozen) before returning success. When the write operation is
508 * finished, mnt_drop_write() must be called. This is effectively a refcount.
510 int mnt_want_write(struct vfsmount *m)
514 sb_start_write(m->mnt_sb);
515 ret = mnt_get_write_access(m);
517 sb_end_write(m->mnt_sb);
520 EXPORT_SYMBOL_GPL(mnt_want_write);
523 * mnt_get_write_access_file - get write access to a file's mount
524 * @file: the file who's mount on which to take a write
526 * This is like mnt_get_write_access, but if @file is already open for write it
527 * skips incrementing mnt_writers (since the open file already has a reference)
528 * and instead only does the check for emergency r/o remounts. This must be
529 * paired with mnt_put_write_access_file.
531 int mnt_get_write_access_file(struct file *file)
533 if (file->f_mode & FMODE_WRITER) {
535 * Superblock may have become readonly while there are still
536 * writable fd's, e.g. due to a fs error with errors=remount-ro
538 if (__mnt_is_readonly(file->f_path.mnt))
542 return mnt_get_write_access(file->f_path.mnt);
546 * mnt_want_write_file - get write access to a file's mount
547 * @file: the file who's mount on which to take a write
549 * This is like mnt_want_write, but if the file is already open for writing it
550 * skips incrementing mnt_writers (since the open file already has a reference)
551 * and instead only does the freeze protection and the check for emergency r/o
552 * remounts. This must be paired with mnt_drop_write_file.
554 int mnt_want_write_file(struct file *file)
558 sb_start_write(file_inode(file)->i_sb);
559 ret = mnt_get_write_access_file(file);
561 sb_end_write(file_inode(file)->i_sb);
564 EXPORT_SYMBOL_GPL(mnt_want_write_file);
567 * mnt_put_write_access - give up write access to a mount
568 * @mnt: the mount on which to give up write access
570 * Tells the low-level filesystem that we are done
571 * performing writes to it. Must be matched with
572 * mnt_get_write_access() call above.
574 void mnt_put_write_access(struct vfsmount *mnt)
577 mnt_dec_writers(real_mount(mnt));
580 EXPORT_SYMBOL_GPL(mnt_put_write_access);
583 * mnt_drop_write - give up write access to a mount
584 * @mnt: the mount on which to give up write access
586 * Tells the low-level filesystem that we are done performing writes to it and
587 * also allows filesystem to be frozen again. Must be matched with
588 * mnt_want_write() call above.
590 void mnt_drop_write(struct vfsmount *mnt)
592 mnt_put_write_access(mnt);
593 sb_end_write(mnt->mnt_sb);
595 EXPORT_SYMBOL_GPL(mnt_drop_write);
597 void mnt_put_write_access_file(struct file *file)
599 if (!(file->f_mode & FMODE_WRITER))
600 mnt_put_write_access(file->f_path.mnt);
603 void mnt_drop_write_file(struct file *file)
605 mnt_put_write_access_file(file);
606 sb_end_write(file_inode(file)->i_sb);
608 EXPORT_SYMBOL(mnt_drop_write_file);
611 * mnt_hold_writers - prevent write access to the given mount
612 * @mnt: mnt to prevent write access to
614 * Prevents write access to @mnt if there are no active writers for @mnt.
615 * This function needs to be called and return successfully before changing
616 * properties of @mnt that need to remain stable for callers with write access
619 * After this functions has been called successfully callers must pair it with
620 * a call to mnt_unhold_writers() in order to stop preventing write access to
623 * Context: This function expects lock_mount_hash() to be held serializing
624 * setting MNT_WRITE_HOLD.
625 * Return: On success 0 is returned.
626 * On error, -EBUSY is returned.
628 static inline int mnt_hold_writers(struct mount *mnt)
630 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
632 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
633 * should be visible before we do.
638 * With writers on hold, if this value is zero, then there are
639 * definitely no active writers (although held writers may subsequently
640 * increment the count, they'll have to wait, and decrement it after
641 * seeing MNT_READONLY).
643 * It is OK to have counter incremented on one CPU and decremented on
644 * another: the sum will add up correctly. The danger would be when we
645 * sum up each counter, if we read a counter before it is incremented,
646 * but then read another CPU's count which it has been subsequently
647 * decremented from -- we would see more decrements than we should.
648 * MNT_WRITE_HOLD protects against this scenario, because
649 * mnt_want_write first increments count, then smp_mb, then spins on
650 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
651 * we're counting up here.
653 if (mnt_get_writers(mnt) > 0)
660 * mnt_unhold_writers - stop preventing write access to the given mount
661 * @mnt: mnt to stop preventing write access to
663 * Stop preventing write access to @mnt allowing callers to gain write access
666 * This function can only be called after a successful call to
667 * mnt_hold_writers().
669 * Context: This function expects lock_mount_hash() to be held.
671 static inline void mnt_unhold_writers(struct mount *mnt)
674 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
675 * that become unheld will see MNT_READONLY.
678 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
681 static int mnt_make_readonly(struct mount *mnt)
685 ret = mnt_hold_writers(mnt);
687 mnt->mnt.mnt_flags |= MNT_READONLY;
688 mnt_unhold_writers(mnt);
692 int sb_prepare_remount_readonly(struct super_block *sb)
697 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
698 if (atomic_long_read(&sb->s_remove_count))
702 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
703 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
704 err = mnt_hold_writers(mnt);
709 if (!err && atomic_long_read(&sb->s_remove_count))
713 sb_start_ro_state_change(sb);
714 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
715 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
716 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
723 static void free_vfsmnt(struct mount *mnt)
725 mnt_idmap_put(mnt_idmap(&mnt->mnt));
726 kfree_const(mnt->mnt_devname);
728 free_percpu(mnt->mnt_pcp);
730 kmem_cache_free(mnt_cache, mnt);
733 static void delayed_free_vfsmnt(struct rcu_head *head)
735 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
738 /* call under rcu_read_lock */
739 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
742 if (read_seqretry(&mount_lock, seq))
746 mnt = real_mount(bastard);
747 mnt_add_count(mnt, 1);
748 smp_mb(); // see mntput_no_expire()
749 if (likely(!read_seqretry(&mount_lock, seq)))
751 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
752 mnt_add_count(mnt, -1);
756 if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
757 mnt_add_count(mnt, -1);
762 /* caller will mntput() */
766 /* call under rcu_read_lock */
767 static bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
769 int res = __legitimize_mnt(bastard, seq);
772 if (unlikely(res < 0)) {
781 * __lookup_mnt - find first child mount
783 * @dentry: mountpoint
785 * If @mnt has a child mount @c mounted @dentry find and return it.
787 * Note that the child mount @c need not be unique. There are cases
788 * where shadow mounts are created. For example, during mount
789 * propagation when a source mount @mnt whose root got overmounted by a
790 * mount @o after path lookup but before @namespace_sem could be
791 * acquired gets copied and propagated. So @mnt gets copied including
792 * @o. When @mnt is propagated to a destination mount @d that already
793 * has another mount @n mounted at the same mountpoint then the source
794 * mount @mnt will be tucked beneath @n, i.e., @n will be mounted on
795 * @mnt and @mnt mounted on @d. Now both @n and @o are mounted at @mnt
798 * Return: The first child of @mnt mounted @dentry or NULL.
800 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
802 struct hlist_head *head = m_hash(mnt, dentry);
805 hlist_for_each_entry_rcu(p, head, mnt_hash)
806 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
812 * lookup_mnt - Return the first child mount mounted at path
814 * "First" means first mounted chronologically. If you create the
817 * mount /dev/sda1 /mnt
818 * mount /dev/sda2 /mnt
819 * mount /dev/sda3 /mnt
821 * Then lookup_mnt() on the base /mnt dentry in the root mount will
822 * return successively the root dentry and vfsmount of /dev/sda1, then
823 * /dev/sda2, then /dev/sda3, then NULL.
825 * lookup_mnt takes a reference to the found vfsmount.
827 struct vfsmount *lookup_mnt(const struct path *path)
829 struct mount *child_mnt;
835 seq = read_seqbegin(&mount_lock);
836 child_mnt = __lookup_mnt(path->mnt, path->dentry);
837 m = child_mnt ? &child_mnt->mnt : NULL;
838 } while (!legitimize_mnt(m, seq));
844 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
845 * current mount namespace.
847 * The common case is dentries are not mountpoints at all and that
848 * test is handled inline. For the slow case when we are actually
849 * dealing with a mountpoint of some kind, walk through all of the
850 * mounts in the current mount namespace and test to see if the dentry
853 * The mount_hashtable is not usable in the context because we
854 * need to identify all mounts that may be in the current mount
855 * namespace not just a mount that happens to have some specified
858 bool __is_local_mountpoint(struct dentry *dentry)
860 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
861 struct mount *mnt, *n;
862 bool is_covered = false;
864 down_read(&namespace_sem);
865 rbtree_postorder_for_each_entry_safe(mnt, n, &ns->mounts, mnt_node) {
866 is_covered = (mnt->mnt_mountpoint == dentry);
870 up_read(&namespace_sem);
875 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
877 struct hlist_head *chain = mp_hash(dentry);
878 struct mountpoint *mp;
880 hlist_for_each_entry(mp, chain, m_hash) {
881 if (mp->m_dentry == dentry) {
889 static struct mountpoint *get_mountpoint(struct dentry *dentry)
891 struct mountpoint *mp, *new = NULL;
894 if (d_mountpoint(dentry)) {
895 /* might be worth a WARN_ON() */
896 if (d_unlinked(dentry))
897 return ERR_PTR(-ENOENT);
899 read_seqlock_excl(&mount_lock);
900 mp = lookup_mountpoint(dentry);
901 read_sequnlock_excl(&mount_lock);
907 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
909 return ERR_PTR(-ENOMEM);
912 /* Exactly one processes may set d_mounted */
913 ret = d_set_mounted(dentry);
915 /* Someone else set d_mounted? */
919 /* The dentry is not available as a mountpoint? */
924 /* Add the new mountpoint to the hash table */
925 read_seqlock_excl(&mount_lock);
926 new->m_dentry = dget(dentry);
928 hlist_add_head(&new->m_hash, mp_hash(dentry));
929 INIT_HLIST_HEAD(&new->m_list);
930 read_sequnlock_excl(&mount_lock);
940 * vfsmount lock must be held. Additionally, the caller is responsible
941 * for serializing calls for given disposal list.
943 static void __put_mountpoint(struct mountpoint *mp, struct list_head *list)
945 if (!--mp->m_count) {
946 struct dentry *dentry = mp->m_dentry;
947 BUG_ON(!hlist_empty(&mp->m_list));
948 spin_lock(&dentry->d_lock);
949 dentry->d_flags &= ~DCACHE_MOUNTED;
950 spin_unlock(&dentry->d_lock);
951 dput_to_list(dentry, list);
952 hlist_del(&mp->m_hash);
957 /* called with namespace_lock and vfsmount lock */
958 static void put_mountpoint(struct mountpoint *mp)
960 __put_mountpoint(mp, &ex_mountpoints);
963 static inline int check_mnt(struct mount *mnt)
965 return mnt->mnt_ns == current->nsproxy->mnt_ns;
969 * vfsmount lock must be held for write
971 static void touch_mnt_namespace(struct mnt_namespace *ns)
975 wake_up_interruptible(&ns->poll);
980 * vfsmount lock must be held for write
982 static void __touch_mnt_namespace(struct mnt_namespace *ns)
984 if (ns && ns->event != event) {
986 wake_up_interruptible(&ns->poll);
991 * vfsmount lock must be held for write
993 static struct mountpoint *unhash_mnt(struct mount *mnt)
995 struct mountpoint *mp;
996 mnt->mnt_parent = mnt;
997 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
998 list_del_init(&mnt->mnt_child);
999 hlist_del_init_rcu(&mnt->mnt_hash);
1000 hlist_del_init(&mnt->mnt_mp_list);
1007 * vfsmount lock must be held for write
1009 static void umount_mnt(struct mount *mnt)
1011 put_mountpoint(unhash_mnt(mnt));
1015 * vfsmount lock must be held for write
1017 void mnt_set_mountpoint(struct mount *mnt,
1018 struct mountpoint *mp,
1019 struct mount *child_mnt)
1022 mnt_add_count(mnt, 1); /* essentially, that's mntget */
1023 child_mnt->mnt_mountpoint = mp->m_dentry;
1024 child_mnt->mnt_parent = mnt;
1025 child_mnt->mnt_mp = mp;
1026 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
1030 * mnt_set_mountpoint_beneath - mount a mount beneath another one
1032 * @new_parent: the source mount
1033 * @top_mnt: the mount beneath which @new_parent is mounted
1034 * @new_mp: the new mountpoint of @top_mnt on @new_parent
1036 * Remove @top_mnt from its current mountpoint @top_mnt->mnt_mp and
1037 * parent @top_mnt->mnt_parent and mount it on top of @new_parent at
1038 * @new_mp. And mount @new_parent on the old parent and old
1039 * mountpoint of @top_mnt.
1041 * Context: This function expects namespace_lock() and lock_mount_hash()
1042 * to have been acquired in that order.
1044 static void mnt_set_mountpoint_beneath(struct mount *new_parent,
1045 struct mount *top_mnt,
1046 struct mountpoint *new_mp)
1048 struct mount *old_top_parent = top_mnt->mnt_parent;
1049 struct mountpoint *old_top_mp = top_mnt->mnt_mp;
1051 mnt_set_mountpoint(old_top_parent, old_top_mp, new_parent);
1052 mnt_change_mountpoint(new_parent, new_mp, top_mnt);
1056 static void __attach_mnt(struct mount *mnt, struct mount *parent)
1058 hlist_add_head_rcu(&mnt->mnt_hash,
1059 m_hash(&parent->mnt, mnt->mnt_mountpoint));
1060 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
1064 * attach_mnt - mount a mount, attach to @mount_hashtable and parent's
1065 * list of child mounts
1066 * @parent: the parent
1067 * @mnt: the new mount
1068 * @mp: the new mountpoint
1069 * @beneath: whether to mount @mnt beneath or on top of @parent
1071 * If @beneath is false, mount @mnt at @mp on @parent. Then attach @mnt
1072 * to @parent's child mount list and to @mount_hashtable.
1074 * If @beneath is true, remove @mnt from its current parent and
1075 * mountpoint and mount it on @mp on @parent, and mount @parent on the
1076 * old parent and old mountpoint of @mnt. Finally, attach @parent to
1077 * @mnt_hashtable and @parent->mnt_parent->mnt_mounts.
1079 * Note, when __attach_mnt() is called @mnt->mnt_parent already points
1080 * to the correct parent.
1082 * Context: This function expects namespace_lock() and lock_mount_hash()
1083 * to have been acquired in that order.
1085 static void attach_mnt(struct mount *mnt, struct mount *parent,
1086 struct mountpoint *mp, bool beneath)
1089 mnt_set_mountpoint_beneath(mnt, parent, mp);
1091 mnt_set_mountpoint(parent, mp, mnt);
1093 * Note, @mnt->mnt_parent has to be used. If @mnt was mounted
1094 * beneath @parent then @mnt will need to be attached to
1095 * @parent's old parent, not @parent. IOW, @mnt->mnt_parent
1096 * isn't the same mount as @parent.
1098 __attach_mnt(mnt, mnt->mnt_parent);
1101 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
1103 struct mountpoint *old_mp = mnt->mnt_mp;
1104 struct mount *old_parent = mnt->mnt_parent;
1106 list_del_init(&mnt->mnt_child);
1107 hlist_del_init(&mnt->mnt_mp_list);
1108 hlist_del_init_rcu(&mnt->mnt_hash);
1110 attach_mnt(mnt, parent, mp, false);
1112 put_mountpoint(old_mp);
1113 mnt_add_count(old_parent, -1);
1116 static inline struct mount *node_to_mount(struct rb_node *node)
1118 return node ? rb_entry(node, struct mount, mnt_node) : NULL;
1121 static void mnt_add_to_ns(struct mnt_namespace *ns, struct mount *mnt)
1123 struct rb_node **link = &ns->mounts.rb_node;
1124 struct rb_node *parent = NULL;
1126 WARN_ON(mnt->mnt.mnt_flags & MNT_ONRB);
1130 if (mnt->mnt_id_unique < node_to_mount(parent)->mnt_id_unique)
1131 link = &parent->rb_left;
1133 link = &parent->rb_right;
1135 rb_link_node(&mnt->mnt_node, parent, link);
1136 rb_insert_color(&mnt->mnt_node, &ns->mounts);
1137 mnt->mnt.mnt_flags |= MNT_ONRB;
1141 * vfsmount lock must be held for write
1143 static void commit_tree(struct mount *mnt)
1145 struct mount *parent = mnt->mnt_parent;
1148 struct mnt_namespace *n = parent->mnt_ns;
1150 BUG_ON(parent == mnt);
1152 list_add_tail(&head, &mnt->mnt_list);
1153 while (!list_empty(&head)) {
1154 m = list_first_entry(&head, typeof(*m), mnt_list);
1155 list_del(&m->mnt_list);
1157 mnt_add_to_ns(n, m);
1159 n->nr_mounts += n->pending_mounts;
1160 n->pending_mounts = 0;
1162 __attach_mnt(mnt, parent);
1163 touch_mnt_namespace(n);
1166 static struct mount *next_mnt(struct mount *p, struct mount *root)
1168 struct list_head *next = p->mnt_mounts.next;
1169 if (next == &p->mnt_mounts) {
1173 next = p->mnt_child.next;
1174 if (next != &p->mnt_parent->mnt_mounts)
1179 return list_entry(next, struct mount, mnt_child);
1182 static struct mount *skip_mnt_tree(struct mount *p)
1184 struct list_head *prev = p->mnt_mounts.prev;
1185 while (prev != &p->mnt_mounts) {
1186 p = list_entry(prev, struct mount, mnt_child);
1187 prev = p->mnt_mounts.prev;
1193 * vfs_create_mount - Create a mount for a configured superblock
1194 * @fc: The configuration context with the superblock attached
1196 * Create a mount to an already configured superblock. If necessary, the
1197 * caller should invoke vfs_get_tree() before calling this.
1199 * Note that this does not attach the mount to anything.
1201 struct vfsmount *vfs_create_mount(struct fs_context *fc)
1206 return ERR_PTR(-EINVAL);
1208 mnt = alloc_vfsmnt(fc->source ?: "none");
1210 return ERR_PTR(-ENOMEM);
1212 if (fc->sb_flags & SB_KERNMOUNT)
1213 mnt->mnt.mnt_flags = MNT_INTERNAL;
1215 atomic_inc(&fc->root->d_sb->s_active);
1216 mnt->mnt.mnt_sb = fc->root->d_sb;
1217 mnt->mnt.mnt_root = dget(fc->root);
1218 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1219 mnt->mnt_parent = mnt;
1222 list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts);
1223 unlock_mount_hash();
1226 EXPORT_SYMBOL(vfs_create_mount);
1228 struct vfsmount *fc_mount(struct fs_context *fc)
1230 int err = vfs_get_tree(fc);
1232 up_write(&fc->root->d_sb->s_umount);
1233 return vfs_create_mount(fc);
1235 return ERR_PTR(err);
1237 EXPORT_SYMBOL(fc_mount);
1239 struct vfsmount *vfs_kern_mount(struct file_system_type *type,
1240 int flags, const char *name,
1243 struct fs_context *fc;
1244 struct vfsmount *mnt;
1248 return ERR_PTR(-EINVAL);
1250 fc = fs_context_for_mount(type, flags);
1252 return ERR_CAST(fc);
1255 ret = vfs_parse_fs_string(fc, "source",
1256 name, strlen(name));
1258 ret = parse_monolithic_mount_data(fc, data);
1267 EXPORT_SYMBOL_GPL(vfs_kern_mount);
1270 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1271 const char *name, void *data)
1273 /* Until it is worked out how to pass the user namespace
1274 * through from the parent mount to the submount don't support
1275 * unprivileged mounts with submounts.
1277 if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1278 return ERR_PTR(-EPERM);
1280 return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
1282 EXPORT_SYMBOL_GPL(vfs_submount);
1284 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1287 struct super_block *sb = old->mnt.mnt_sb;
1291 mnt = alloc_vfsmnt(old->mnt_devname);
1293 return ERR_PTR(-ENOMEM);
1295 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1296 mnt->mnt_group_id = 0; /* not a peer of original */
1298 mnt->mnt_group_id = old->mnt_group_id;
1300 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1301 err = mnt_alloc_group_id(mnt);
1306 mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1307 mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL|MNT_ONRB);
1309 atomic_inc(&sb->s_active);
1310 mnt->mnt.mnt_idmap = mnt_idmap_get(mnt_idmap(&old->mnt));
1312 mnt->mnt.mnt_sb = sb;
1313 mnt->mnt.mnt_root = dget(root);
1314 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1315 mnt->mnt_parent = mnt;
1317 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1318 unlock_mount_hash();
1320 if ((flag & CL_SLAVE) ||
1321 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1322 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1323 mnt->mnt_master = old;
1324 CLEAR_MNT_SHARED(mnt);
1325 } else if (!(flag & CL_PRIVATE)) {
1326 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1327 list_add(&mnt->mnt_share, &old->mnt_share);
1328 if (IS_MNT_SLAVE(old))
1329 list_add(&mnt->mnt_slave, &old->mnt_slave);
1330 mnt->mnt_master = old->mnt_master;
1332 CLEAR_MNT_SHARED(mnt);
1334 if (flag & CL_MAKE_SHARED)
1335 set_mnt_shared(mnt);
1337 /* stick the duplicate mount on the same expiry list
1338 * as the original if that was on one */
1339 if (flag & CL_EXPIRE) {
1340 if (!list_empty(&old->mnt_expire))
1341 list_add(&mnt->mnt_expire, &old->mnt_expire);
1349 return ERR_PTR(err);
1352 static void cleanup_mnt(struct mount *mnt)
1354 struct hlist_node *p;
1357 * The warning here probably indicates that somebody messed
1358 * up a mnt_want/drop_write() pair. If this happens, the
1359 * filesystem was probably unable to make r/w->r/o transitions.
1360 * The locking used to deal with mnt_count decrement provides barriers,
1361 * so mnt_get_writers() below is safe.
1363 WARN_ON(mnt_get_writers(mnt));
1364 if (unlikely(mnt->mnt_pins.first))
1366 hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) {
1367 hlist_del(&m->mnt_umount);
1370 fsnotify_vfsmount_delete(&mnt->mnt);
1371 dput(mnt->mnt.mnt_root);
1372 deactivate_super(mnt->mnt.mnt_sb);
1374 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1377 static void __cleanup_mnt(struct rcu_head *head)
1379 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1382 static LLIST_HEAD(delayed_mntput_list);
1383 static void delayed_mntput(struct work_struct *unused)
1385 struct llist_node *node = llist_del_all(&delayed_mntput_list);
1386 struct mount *m, *t;
1388 llist_for_each_entry_safe(m, t, node, mnt_llist)
1391 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1393 static void mntput_no_expire(struct mount *mnt)
1399 if (likely(READ_ONCE(mnt->mnt_ns))) {
1401 * Since we don't do lock_mount_hash() here,
1402 * ->mnt_ns can change under us. However, if it's
1403 * non-NULL, then there's a reference that won't
1404 * be dropped until after an RCU delay done after
1405 * turning ->mnt_ns NULL. So if we observe it
1406 * non-NULL under rcu_read_lock(), the reference
1407 * we are dropping is not the final one.
1409 mnt_add_count(mnt, -1);
1415 * make sure that if __legitimize_mnt() has not seen us grab
1416 * mount_lock, we'll see their refcount increment here.
1419 mnt_add_count(mnt, -1);
1420 count = mnt_get_count(mnt);
1424 unlock_mount_hash();
1427 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1429 unlock_mount_hash();
1432 mnt->mnt.mnt_flags |= MNT_DOOMED;
1435 list_del(&mnt->mnt_instance);
1437 if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1438 struct mount *p, *tmp;
1439 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
1440 __put_mountpoint(unhash_mnt(p), &list);
1441 hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children);
1444 unlock_mount_hash();
1445 shrink_dentry_list(&list);
1447 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1448 struct task_struct *task = current;
1449 if (likely(!(task->flags & PF_KTHREAD))) {
1450 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1451 if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME))
1454 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1455 schedule_delayed_work(&delayed_mntput_work, 1);
1461 void mntput(struct vfsmount *mnt)
1464 struct mount *m = real_mount(mnt);
1465 /* avoid cacheline pingpong */
1466 if (unlikely(m->mnt_expiry_mark))
1467 WRITE_ONCE(m->mnt_expiry_mark, 0);
1468 mntput_no_expire(m);
1471 EXPORT_SYMBOL(mntput);
1473 struct vfsmount *mntget(struct vfsmount *mnt)
1476 mnt_add_count(real_mount(mnt), 1);
1479 EXPORT_SYMBOL(mntget);
1482 * Make a mount point inaccessible to new lookups.
1483 * Because there may still be current users, the caller MUST WAIT
1484 * for an RCU grace period before destroying the mount point.
1486 void mnt_make_shortterm(struct vfsmount *mnt)
1489 real_mount(mnt)->mnt_ns = NULL;
1493 * path_is_mountpoint() - Check if path is a mount in the current namespace.
1494 * @path: path to check
1496 * d_mountpoint() can only be used reliably to establish if a dentry is
1497 * not mounted in any namespace and that common case is handled inline.
1498 * d_mountpoint() isn't aware of the possibility there may be multiple
1499 * mounts using a given dentry in a different namespace. This function
1500 * checks if the passed in path is a mountpoint rather than the dentry
1503 bool path_is_mountpoint(const struct path *path)
1508 if (!d_mountpoint(path->dentry))
1513 seq = read_seqbegin(&mount_lock);
1514 res = __path_is_mountpoint(path);
1515 } while (read_seqretry(&mount_lock, seq));
1520 EXPORT_SYMBOL(path_is_mountpoint);
1522 struct vfsmount *mnt_clone_internal(const struct path *path)
1525 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1528 p->mnt.mnt_flags |= MNT_INTERNAL;
1533 * Returns the mount which either has the specified mnt_id, or has the next
1534 * smallest id afer the specified one.
1536 static struct mount *mnt_find_id_at(struct mnt_namespace *ns, u64 mnt_id)
1538 struct rb_node *node = ns->mounts.rb_node;
1539 struct mount *ret = NULL;
1542 struct mount *m = node_to_mount(node);
1544 if (mnt_id <= m->mnt_id_unique) {
1545 ret = node_to_mount(node);
1546 if (mnt_id == m->mnt_id_unique)
1548 node = node->rb_left;
1550 node = node->rb_right;
1557 * Returns the mount which either has the specified mnt_id, or has the next
1558 * greater id before the specified one.
1560 static struct mount *mnt_find_id_at_reverse(struct mnt_namespace *ns, u64 mnt_id)
1562 struct rb_node *node = ns->mounts.rb_node;
1563 struct mount *ret = NULL;
1566 struct mount *m = node_to_mount(node);
1568 if (mnt_id >= m->mnt_id_unique) {
1569 ret = node_to_mount(node);
1570 if (mnt_id == m->mnt_id_unique)
1572 node = node->rb_right;
1574 node = node->rb_left;
1580 #ifdef CONFIG_PROC_FS
1582 /* iterator; we want it to have access to namespace_sem, thus here... */
1583 static void *m_start(struct seq_file *m, loff_t *pos)
1585 struct proc_mounts *p = m->private;
1587 down_read(&namespace_sem);
1589 return mnt_find_id_at(p->ns, *pos);
1592 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1594 struct mount *next = NULL, *mnt = v;
1595 struct rb_node *node = rb_next(&mnt->mnt_node);
1599 next = node_to_mount(node);
1600 *pos = next->mnt_id_unique;
1605 static void m_stop(struct seq_file *m, void *v)
1607 up_read(&namespace_sem);
1610 static int m_show(struct seq_file *m, void *v)
1612 struct proc_mounts *p = m->private;
1613 struct mount *r = v;
1614 return p->show(m, &r->mnt);
1617 const struct seq_operations mounts_op = {
1624 #endif /* CONFIG_PROC_FS */
1627 * may_umount_tree - check if a mount tree is busy
1628 * @m: root of mount tree
1630 * This is called to check if a tree of mounts has any
1631 * open files, pwds, chroots or sub mounts that are
1634 int may_umount_tree(struct vfsmount *m)
1636 struct mount *mnt = real_mount(m);
1637 int actual_refs = 0;
1638 int minimum_refs = 0;
1642 /* write lock needed for mnt_get_count */
1644 for (p = mnt; p; p = next_mnt(p, mnt)) {
1645 actual_refs += mnt_get_count(p);
1648 unlock_mount_hash();
1650 if (actual_refs > minimum_refs)
1656 EXPORT_SYMBOL(may_umount_tree);
1659 * may_umount - check if a mount point is busy
1660 * @mnt: root of mount
1662 * This is called to check if a mount point has any
1663 * open files, pwds, chroots or sub mounts. If the
1664 * mount has sub mounts this will return busy
1665 * regardless of whether the sub mounts are busy.
1667 * Doesn't take quota and stuff into account. IOW, in some cases it will
1668 * give false negatives. The main reason why it's here is that we need
1669 * a non-destructive way to look for easily umountable filesystems.
1671 int may_umount(struct vfsmount *mnt)
1674 down_read(&namespace_sem);
1676 if (propagate_mount_busy(real_mount(mnt), 2))
1678 unlock_mount_hash();
1679 up_read(&namespace_sem);
1683 EXPORT_SYMBOL(may_umount);
1685 static void namespace_unlock(void)
1687 struct hlist_head head;
1688 struct hlist_node *p;
1692 hlist_move_list(&unmounted, &head);
1693 list_splice_init(&ex_mountpoints, &list);
1695 up_write(&namespace_sem);
1697 shrink_dentry_list(&list);
1699 if (likely(hlist_empty(&head)))
1702 synchronize_rcu_expedited();
1704 hlist_for_each_entry_safe(m, p, &head, mnt_umount) {
1705 hlist_del(&m->mnt_umount);
1710 static inline void namespace_lock(void)
1712 down_write(&namespace_sem);
1715 enum umount_tree_flags {
1717 UMOUNT_PROPAGATE = 2,
1718 UMOUNT_CONNECTED = 4,
1721 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1723 /* Leaving mounts connected is only valid for lazy umounts */
1724 if (how & UMOUNT_SYNC)
1727 /* A mount without a parent has nothing to be connected to */
1728 if (!mnt_has_parent(mnt))
1731 /* Because the reference counting rules change when mounts are
1732 * unmounted and connected, umounted mounts may not be
1733 * connected to mounted mounts.
1735 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1738 /* Has it been requested that the mount remain connected? */
1739 if (how & UMOUNT_CONNECTED)
1742 /* Is the mount locked such that it needs to remain connected? */
1743 if (IS_MNT_LOCKED(mnt))
1746 /* By default disconnect the mount */
1751 * mount_lock must be held
1752 * namespace_sem must be held for write
1754 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1756 LIST_HEAD(tmp_list);
1759 if (how & UMOUNT_PROPAGATE)
1760 propagate_mount_unlock(mnt);
1762 /* Gather the mounts to umount */
1763 for (p = mnt; p; p = next_mnt(p, mnt)) {
1764 p->mnt.mnt_flags |= MNT_UMOUNT;
1765 if (p->mnt.mnt_flags & MNT_ONRB)
1766 move_from_ns(p, &tmp_list);
1768 list_move(&p->mnt_list, &tmp_list);
1771 /* Hide the mounts from mnt_mounts */
1772 list_for_each_entry(p, &tmp_list, mnt_list) {
1773 list_del_init(&p->mnt_child);
1776 /* Add propogated mounts to the tmp_list */
1777 if (how & UMOUNT_PROPAGATE)
1778 propagate_umount(&tmp_list);
1780 while (!list_empty(&tmp_list)) {
1781 struct mnt_namespace *ns;
1783 p = list_first_entry(&tmp_list, struct mount, mnt_list);
1784 list_del_init(&p->mnt_expire);
1785 list_del_init(&p->mnt_list);
1789 __touch_mnt_namespace(ns);
1792 if (how & UMOUNT_SYNC)
1793 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1795 disconnect = disconnect_mount(p, how);
1796 if (mnt_has_parent(p)) {
1797 mnt_add_count(p->mnt_parent, -1);
1799 /* Don't forget about p */
1800 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1805 change_mnt_propagation(p, MS_PRIVATE);
1807 hlist_add_head(&p->mnt_umount, &unmounted);
1811 static void shrink_submounts(struct mount *mnt);
1813 static int do_umount_root(struct super_block *sb)
1817 down_write(&sb->s_umount);
1818 if (!sb_rdonly(sb)) {
1819 struct fs_context *fc;
1821 fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
1826 ret = parse_monolithic_mount_data(fc, NULL);
1828 ret = reconfigure_super(fc);
1832 up_write(&sb->s_umount);
1836 static int do_umount(struct mount *mnt, int flags)
1838 struct super_block *sb = mnt->mnt.mnt_sb;
1841 retval = security_sb_umount(&mnt->mnt, flags);
1846 * Allow userspace to request a mountpoint be expired rather than
1847 * unmounting unconditionally. Unmount only happens if:
1848 * (1) the mark is already set (the mark is cleared by mntput())
1849 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1851 if (flags & MNT_EXPIRE) {
1852 if (&mnt->mnt == current->fs->root.mnt ||
1853 flags & (MNT_FORCE | MNT_DETACH))
1857 * probably don't strictly need the lock here if we examined
1858 * all race cases, but it's a slowpath.
1861 if (mnt_get_count(mnt) != 2) {
1862 unlock_mount_hash();
1865 unlock_mount_hash();
1867 if (!xchg(&mnt->mnt_expiry_mark, 1))
1872 * If we may have to abort operations to get out of this
1873 * mount, and they will themselves hold resources we must
1874 * allow the fs to do things. In the Unix tradition of
1875 * 'Gee thats tricky lets do it in userspace' the umount_begin
1876 * might fail to complete on the first run through as other tasks
1877 * must return, and the like. Thats for the mount program to worry
1878 * about for the moment.
1881 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1882 sb->s_op->umount_begin(sb);
1886 * No sense to grab the lock for this test, but test itself looks
1887 * somewhat bogus. Suggestions for better replacement?
1888 * Ho-hum... In principle, we might treat that as umount + switch
1889 * to rootfs. GC would eventually take care of the old vfsmount.
1890 * Actually it makes sense, especially if rootfs would contain a
1891 * /reboot - static binary that would close all descriptors and
1892 * call reboot(9). Then init(8) could umount root and exec /reboot.
1894 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1896 * Special case for "unmounting" root ...
1897 * we just try to remount it readonly.
1899 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1901 return do_umount_root(sb);
1907 /* Recheck MNT_LOCKED with the locks held */
1909 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1913 if (flags & MNT_DETACH) {
1914 if (mnt->mnt.mnt_flags & MNT_ONRB ||
1915 !list_empty(&mnt->mnt_list))
1916 umount_tree(mnt, UMOUNT_PROPAGATE);
1919 shrink_submounts(mnt);
1921 if (!propagate_mount_busy(mnt, 2)) {
1922 if (mnt->mnt.mnt_flags & MNT_ONRB ||
1923 !list_empty(&mnt->mnt_list))
1924 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1929 unlock_mount_hash();
1935 * __detach_mounts - lazily unmount all mounts on the specified dentry
1937 * During unlink, rmdir, and d_drop it is possible to loose the path
1938 * to an existing mountpoint, and wind up leaking the mount.
1939 * detach_mounts allows lazily unmounting those mounts instead of
1942 * The caller may hold dentry->d_inode->i_mutex.
1944 void __detach_mounts(struct dentry *dentry)
1946 struct mountpoint *mp;
1951 mp = lookup_mountpoint(dentry);
1956 while (!hlist_empty(&mp->m_list)) {
1957 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1958 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1960 hlist_add_head(&mnt->mnt_umount, &unmounted);
1962 else umount_tree(mnt, UMOUNT_CONNECTED);
1966 unlock_mount_hash();
1971 * Is the caller allowed to modify his namespace?
1973 bool may_mount(void)
1975 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1979 * path_mounted - check whether path is mounted
1980 * @path: path to check
1982 * Determine whether @path refers to the root of a mount.
1984 * Return: true if @path is the root of a mount, false if not.
1986 static inline bool path_mounted(const struct path *path)
1988 return path->mnt->mnt_root == path->dentry;
1991 static void warn_mandlock(void)
1993 pr_warn_once("=======================================================\n"
1994 "WARNING: The mand mount option has been deprecated and\n"
1995 " and is ignored by this kernel. Remove the mand\n"
1996 " option from the mount to silence this warning.\n"
1997 "=======================================================\n");
2000 static int can_umount(const struct path *path, int flags)
2002 struct mount *mnt = real_mount(path->mnt);
2006 if (!path_mounted(path))
2008 if (!check_mnt(mnt))
2010 if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
2012 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
2017 // caller is responsible for flags being sane
2018 int path_umount(struct path *path, int flags)
2020 struct mount *mnt = real_mount(path->mnt);
2023 ret = can_umount(path, flags);
2025 ret = do_umount(mnt, flags);
2027 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
2029 mntput_no_expire(mnt);
2033 static int ksys_umount(char __user *name, int flags)
2035 int lookup_flags = LOOKUP_MOUNTPOINT;
2039 // basic validity checks done first
2040 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
2043 if (!(flags & UMOUNT_NOFOLLOW))
2044 lookup_flags |= LOOKUP_FOLLOW;
2045 ret = user_path_at(AT_FDCWD, name, lookup_flags, &path);
2048 return path_umount(&path, flags);
2051 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
2053 return ksys_umount(name, flags);
2056 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
2059 * The 2.0 compatible umount. No flags.
2061 SYSCALL_DEFINE1(oldumount, char __user *, name)
2063 return ksys_umount(name, 0);
2068 static bool is_mnt_ns_file(struct dentry *dentry)
2070 /* Is this a proxy for a mount namespace? */
2071 return dentry->d_op == &ns_dentry_operations &&
2072 dentry->d_fsdata == &mntns_operations;
2075 static struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
2077 return container_of(ns, struct mnt_namespace, ns);
2080 struct ns_common *from_mnt_ns(struct mnt_namespace *mnt)
2085 static bool mnt_ns_loop(struct dentry *dentry)
2087 /* Could bind mounting the mount namespace inode cause a
2088 * mount namespace loop?
2090 struct mnt_namespace *mnt_ns;
2091 if (!is_mnt_ns_file(dentry))
2094 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
2095 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
2098 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
2101 struct mount *res, *p, *q, *r, *parent;
2103 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
2104 return ERR_PTR(-EINVAL);
2106 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
2107 return ERR_PTR(-EINVAL);
2109 res = q = clone_mnt(mnt, dentry, flag);
2113 q->mnt_mountpoint = mnt->mnt_mountpoint;
2116 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
2118 if (!is_subdir(r->mnt_mountpoint, dentry))
2121 for (s = r; s; s = next_mnt(s, r)) {
2122 if (!(flag & CL_COPY_UNBINDABLE) &&
2123 IS_MNT_UNBINDABLE(s)) {
2124 if (s->mnt.mnt_flags & MNT_LOCKED) {
2125 /* Both unbindable and locked. */
2126 q = ERR_PTR(-EPERM);
2129 s = skip_mnt_tree(s);
2133 if (!(flag & CL_COPY_MNT_NS_FILE) &&
2134 is_mnt_ns_file(s->mnt.mnt_root)) {
2135 s = skip_mnt_tree(s);
2138 while (p != s->mnt_parent) {
2144 q = clone_mnt(p, p->mnt.mnt_root, flag);
2148 list_add_tail(&q->mnt_list, &res->mnt_list);
2149 attach_mnt(q, parent, p->mnt_mp, false);
2150 unlock_mount_hash();
2157 umount_tree(res, UMOUNT_SYNC);
2158 unlock_mount_hash();
2163 /* Caller should check returned pointer for errors */
2165 struct vfsmount *collect_mounts(const struct path *path)
2169 if (!check_mnt(real_mount(path->mnt)))
2170 tree = ERR_PTR(-EINVAL);
2172 tree = copy_tree(real_mount(path->mnt), path->dentry,
2173 CL_COPY_ALL | CL_PRIVATE);
2176 return ERR_CAST(tree);
2180 static void free_mnt_ns(struct mnt_namespace *);
2181 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool);
2183 void dissolve_on_fput(struct vfsmount *mnt)
2185 struct mnt_namespace *ns;
2188 ns = real_mount(mnt)->mnt_ns;
2191 umount_tree(real_mount(mnt), UMOUNT_CONNECTED);
2195 unlock_mount_hash();
2201 void drop_collected_mounts(struct vfsmount *mnt)
2205 umount_tree(real_mount(mnt), 0);
2206 unlock_mount_hash();
2210 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2212 struct mount *child;
2214 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2215 if (!is_subdir(child->mnt_mountpoint, dentry))
2218 if (child->mnt.mnt_flags & MNT_LOCKED)
2225 * clone_private_mount - create a private clone of a path
2226 * @path: path to clone
2228 * This creates a new vfsmount, which will be the clone of @path. The new mount
2229 * will not be attached anywhere in the namespace and will be private (i.e.
2230 * changes to the originating mount won't be propagated into this).
2232 * Release with mntput().
2234 struct vfsmount *clone_private_mount(const struct path *path)
2236 struct mount *old_mnt = real_mount(path->mnt);
2237 struct mount *new_mnt;
2239 down_read(&namespace_sem);
2240 if (IS_MNT_UNBINDABLE(old_mnt))
2243 if (!check_mnt(old_mnt))
2246 if (has_locked_children(old_mnt, path->dentry))
2249 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
2250 up_read(&namespace_sem);
2252 if (IS_ERR(new_mnt))
2253 return ERR_CAST(new_mnt);
2255 /* Longterm mount to be removed by kern_unmount*() */
2256 new_mnt->mnt_ns = MNT_NS_INTERNAL;
2258 return &new_mnt->mnt;
2261 up_read(&namespace_sem);
2262 return ERR_PTR(-EINVAL);
2264 EXPORT_SYMBOL_GPL(clone_private_mount);
2266 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
2267 struct vfsmount *root)
2270 int res = f(root, arg);
2273 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
2274 res = f(&mnt->mnt, arg);
2281 static void lock_mnt_tree(struct mount *mnt)
2285 for (p = mnt; p; p = next_mnt(p, mnt)) {
2286 int flags = p->mnt.mnt_flags;
2287 /* Don't allow unprivileged users to change mount flags */
2288 flags |= MNT_LOCK_ATIME;
2290 if (flags & MNT_READONLY)
2291 flags |= MNT_LOCK_READONLY;
2293 if (flags & MNT_NODEV)
2294 flags |= MNT_LOCK_NODEV;
2296 if (flags & MNT_NOSUID)
2297 flags |= MNT_LOCK_NOSUID;
2299 if (flags & MNT_NOEXEC)
2300 flags |= MNT_LOCK_NOEXEC;
2301 /* Don't allow unprivileged users to reveal what is under a mount */
2302 if (list_empty(&p->mnt_expire))
2303 flags |= MNT_LOCKED;
2304 p->mnt.mnt_flags = flags;
2308 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
2312 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
2313 if (p->mnt_group_id && !IS_MNT_SHARED(p))
2314 mnt_release_group_id(p);
2318 static int invent_group_ids(struct mount *mnt, bool recurse)
2322 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
2323 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
2324 int err = mnt_alloc_group_id(p);
2326 cleanup_group_ids(mnt, p);
2335 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
2337 unsigned int max = READ_ONCE(sysctl_mount_max);
2338 unsigned int mounts = 0;
2341 if (ns->nr_mounts >= max)
2343 max -= ns->nr_mounts;
2344 if (ns->pending_mounts >= max)
2346 max -= ns->pending_mounts;
2348 for (p = mnt; p; p = next_mnt(p, mnt))
2354 ns->pending_mounts += mounts;
2358 enum mnt_tree_flags_t {
2359 MNT_TREE_MOVE = BIT(0),
2360 MNT_TREE_BENEATH = BIT(1),
2364 * attach_recursive_mnt - attach a source mount tree
2365 * @source_mnt: mount tree to be attached
2366 * @top_mnt: mount that @source_mnt will be mounted on or mounted beneath
2367 * @dest_mp: the mountpoint @source_mnt will be mounted at
2368 * @flags: modify how @source_mnt is supposed to be attached
2370 * NOTE: in the table below explains the semantics when a source mount
2371 * of a given type is attached to a destination mount of a given type.
2372 * ---------------------------------------------------------------------------
2373 * | BIND MOUNT OPERATION |
2374 * |**************************************************************************
2375 * | source-->| shared | private | slave | unbindable |
2379 * |**************************************************************************
2380 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
2382 * |non-shared| shared (+) | private | slave (*) | invalid |
2383 * ***************************************************************************
2384 * A bind operation clones the source mount and mounts the clone on the
2385 * destination mount.
2387 * (++) the cloned mount is propagated to all the mounts in the propagation
2388 * tree of the destination mount and the cloned mount is added to
2389 * the peer group of the source mount.
2390 * (+) the cloned mount is created under the destination mount and is marked
2391 * as shared. The cloned mount is added to the peer group of the source
2393 * (+++) the mount is propagated to all the mounts in the propagation tree
2394 * of the destination mount and the cloned mount is made slave
2395 * of the same master as that of the source mount. The cloned mount
2396 * is marked as 'shared and slave'.
2397 * (*) the cloned mount is made a slave of the same master as that of the
2400 * ---------------------------------------------------------------------------
2401 * | MOVE MOUNT OPERATION |
2402 * |**************************************************************************
2403 * | source-->| shared | private | slave | unbindable |
2407 * |**************************************************************************
2408 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
2410 * |non-shared| shared (+*) | private | slave (*) | unbindable |
2411 * ***************************************************************************
2413 * (+) the mount is moved to the destination. And is then propagated to
2414 * all the mounts in the propagation tree of the destination mount.
2415 * (+*) the mount is moved to the destination.
2416 * (+++) the mount is moved to the destination and is then propagated to
2417 * all the mounts belonging to the destination mount's propagation tree.
2418 * the mount is marked as 'shared and slave'.
2419 * (*) the mount continues to be a slave at the new location.
2421 * if the source mount is a tree, the operations explained above is
2422 * applied to each mount in the tree.
2423 * Must be called without spinlocks held, since this function can sleep
2426 * Context: The function expects namespace_lock() to be held.
2427 * Return: If @source_mnt was successfully attached 0 is returned.
2428 * Otherwise a negative error code is returned.
2430 static int attach_recursive_mnt(struct mount *source_mnt,
2431 struct mount *top_mnt,
2432 struct mountpoint *dest_mp,
2433 enum mnt_tree_flags_t flags)
2435 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2436 HLIST_HEAD(tree_list);
2437 struct mnt_namespace *ns = top_mnt->mnt_ns;
2438 struct mountpoint *smp;
2439 struct mount *child, *dest_mnt, *p;
2440 struct hlist_node *n;
2442 bool moving = flags & MNT_TREE_MOVE, beneath = flags & MNT_TREE_BENEATH;
2445 * Preallocate a mountpoint in case the new mounts need to be
2446 * mounted beneath mounts on the same mountpoint.
2448 smp = get_mountpoint(source_mnt->mnt.mnt_root);
2450 return PTR_ERR(smp);
2452 /* Is there space to add these mounts to the mount namespace? */
2454 err = count_mounts(ns, source_mnt);
2460 dest_mnt = top_mnt->mnt_parent;
2464 if (IS_MNT_SHARED(dest_mnt)) {
2465 err = invent_group_ids(source_mnt, true);
2468 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2472 goto out_cleanup_ids;
2474 if (IS_MNT_SHARED(dest_mnt)) {
2475 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2482 unhash_mnt(source_mnt);
2483 attach_mnt(source_mnt, top_mnt, dest_mp, beneath);
2484 touch_mnt_namespace(source_mnt->mnt_ns);
2486 if (source_mnt->mnt_ns) {
2489 /* move from anon - the caller will destroy */
2490 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2491 move_from_ns(p, &head);
2492 list_del_init(&head);
2495 mnt_set_mountpoint_beneath(source_mnt, top_mnt, smp);
2497 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2498 commit_tree(source_mnt);
2501 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2503 hlist_del_init(&child->mnt_hash);
2504 q = __lookup_mnt(&child->mnt_parent->mnt,
2505 child->mnt_mountpoint);
2507 mnt_change_mountpoint(child, smp, q);
2508 /* Notice when we are propagating across user namespaces */
2509 if (child->mnt_parent->mnt_ns->user_ns != user_ns)
2510 lock_mnt_tree(child);
2511 child->mnt.mnt_flags &= ~MNT_LOCKED;
2514 put_mountpoint(smp);
2515 unlock_mount_hash();
2520 while (!hlist_empty(&tree_list)) {
2521 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2522 child->mnt_parent->mnt_ns->pending_mounts = 0;
2523 umount_tree(child, UMOUNT_SYNC);
2525 unlock_mount_hash();
2526 cleanup_group_ids(source_mnt, NULL);
2528 ns->pending_mounts = 0;
2530 read_seqlock_excl(&mount_lock);
2531 put_mountpoint(smp);
2532 read_sequnlock_excl(&mount_lock);
2538 * do_lock_mount - lock mount and mountpoint
2539 * @path: target path
2540 * @beneath: whether the intention is to mount beneath @path
2542 * Follow the mount stack on @path until the top mount @mnt is found. If
2543 * the initial @path->{mnt,dentry} is a mountpoint lookup the first
2544 * mount stacked on top of it. Then simply follow @{mnt,mnt->mnt_root}
2545 * until nothing is stacked on top of it anymore.
2547 * Acquire the inode_lock() on the top mount's ->mnt_root to protect
2548 * against concurrent removal of the new mountpoint from another mount
2551 * If @beneath is requested, acquire inode_lock() on @mnt's mountpoint
2552 * @mp on @mnt->mnt_parent must be acquired. This protects against a
2553 * concurrent unlink of @mp->mnt_dentry from another mount namespace
2554 * where @mnt doesn't have a child mount mounted @mp. A concurrent
2555 * removal of @mnt->mnt_root doesn't matter as nothing will be mounted
2556 * on top of it for @beneath.
2558 * In addition, @beneath needs to make sure that @mnt hasn't been
2559 * unmounted or moved from its current mountpoint in between dropping
2560 * @mount_lock and acquiring @namespace_sem. For the !@beneath case @mnt
2561 * being unmounted would be detected later by e.g., calling
2562 * check_mnt(mnt) in the function it's called from. For the @beneath
2563 * case however, it's useful to detect it directly in do_lock_mount().
2564 * If @mnt hasn't been unmounted then @mnt->mnt_mountpoint still points
2565 * to @mnt->mnt_mp->m_dentry. But if @mnt has been unmounted it will
2566 * point to @mnt->mnt_root and @mnt->mnt_mp will be NULL.
2568 * Return: Either the target mountpoint on the top mount or the top
2569 * mount's mountpoint.
2571 static struct mountpoint *do_lock_mount(struct path *path, bool beneath)
2573 struct vfsmount *mnt = path->mnt;
2574 struct dentry *dentry;
2575 struct mountpoint *mp = ERR_PTR(-ENOENT);
2581 m = real_mount(mnt);
2582 read_seqlock_excl(&mount_lock);
2583 dentry = dget(m->mnt_mountpoint);
2584 read_sequnlock_excl(&mount_lock);
2586 dentry = path->dentry;
2589 inode_lock(dentry->d_inode);
2590 if (unlikely(cant_mount(dentry))) {
2591 inode_unlock(dentry->d_inode);
2597 if (beneath && (!is_mounted(mnt) || m->mnt_mountpoint != dentry)) {
2599 inode_unlock(dentry->d_inode);
2603 mnt = lookup_mnt(path);
2608 inode_unlock(dentry->d_inode);
2613 path->dentry = dget(mnt->mnt_root);
2616 mp = get_mountpoint(dentry);
2619 inode_unlock(dentry->d_inode);
2629 static inline struct mountpoint *lock_mount(struct path *path)
2631 return do_lock_mount(path, false);
2634 static void unlock_mount(struct mountpoint *where)
2636 struct dentry *dentry = where->m_dentry;
2638 read_seqlock_excl(&mount_lock);
2639 put_mountpoint(where);
2640 read_sequnlock_excl(&mount_lock);
2643 inode_unlock(dentry->d_inode);
2646 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2648 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2651 if (d_is_dir(mp->m_dentry) !=
2652 d_is_dir(mnt->mnt.mnt_root))
2655 return attach_recursive_mnt(mnt, p, mp, 0);
2659 * Sanity check the flags to change_mnt_propagation.
2662 static int flags_to_propagation_type(int ms_flags)
2664 int type = ms_flags & ~(MS_REC | MS_SILENT);
2666 /* Fail if any non-propagation flags are set */
2667 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2669 /* Only one propagation flag should be set */
2670 if (!is_power_of_2(type))
2676 * recursively change the type of the mountpoint.
2678 static int do_change_type(struct path *path, int ms_flags)
2681 struct mount *mnt = real_mount(path->mnt);
2682 int recurse = ms_flags & MS_REC;
2686 if (!path_mounted(path))
2689 type = flags_to_propagation_type(ms_flags);
2694 if (type == MS_SHARED) {
2695 err = invent_group_ids(mnt, recurse);
2701 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2702 change_mnt_propagation(m, type);
2703 unlock_mount_hash();
2710 static struct mount *__do_loopback(struct path *old_path, int recurse)
2712 struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt);
2714 if (IS_MNT_UNBINDABLE(old))
2717 if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations)
2720 if (!recurse && has_locked_children(old, old_path->dentry))
2724 mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE);
2726 mnt = clone_mnt(old, old_path->dentry, 0);
2729 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2735 * do loopback mount.
2737 static int do_loopback(struct path *path, const char *old_name,
2740 struct path old_path;
2741 struct mount *mnt = NULL, *parent;
2742 struct mountpoint *mp;
2744 if (!old_name || !*old_name)
2746 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2751 if (mnt_ns_loop(old_path.dentry))
2754 mp = lock_mount(path);
2760 parent = real_mount(path->mnt);
2761 if (!check_mnt(parent))
2764 mnt = __do_loopback(&old_path, recurse);
2770 err = graft_tree(mnt, parent, mp);
2773 umount_tree(mnt, UMOUNT_SYNC);
2774 unlock_mount_hash();
2779 path_put(&old_path);
2783 static struct file *open_detached_copy(struct path *path, bool recursive)
2785 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2786 struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true);
2787 struct mount *mnt, *p;
2791 return ERR_CAST(ns);
2794 mnt = __do_loopback(path, recursive);
2798 return ERR_CAST(mnt);
2802 for (p = mnt; p; p = next_mnt(p, mnt)) {
2803 mnt_add_to_ns(ns, p);
2808 unlock_mount_hash();
2812 path->mnt = &mnt->mnt;
2813 file = dentry_open(path, O_PATH, current_cred());
2815 dissolve_on_fput(path->mnt);
2817 file->f_mode |= FMODE_NEED_UNMOUNT;
2821 SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags)
2825 int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
2826 bool detached = flags & OPEN_TREE_CLONE;
2830 BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC);
2832 if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE |
2833 AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE |
2837 if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE)
2840 if (flags & AT_NO_AUTOMOUNT)
2841 lookup_flags &= ~LOOKUP_AUTOMOUNT;
2842 if (flags & AT_SYMLINK_NOFOLLOW)
2843 lookup_flags &= ~LOOKUP_FOLLOW;
2844 if (flags & AT_EMPTY_PATH)
2845 lookup_flags |= LOOKUP_EMPTY;
2847 if (detached && !may_mount())
2850 fd = get_unused_fd_flags(flags & O_CLOEXEC);
2854 error = user_path_at(dfd, filename, lookup_flags, &path);
2855 if (unlikely(error)) {
2856 file = ERR_PTR(error);
2859 file = open_detached_copy(&path, flags & AT_RECURSIVE);
2861 file = dentry_open(&path, O_PATH, current_cred());
2866 return PTR_ERR(file);
2868 fd_install(fd, file);
2873 * Don't allow locked mount flags to be cleared.
2875 * No locks need to be held here while testing the various MNT_LOCK
2876 * flags because those flags can never be cleared once they are set.
2878 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
2880 unsigned int fl = mnt->mnt.mnt_flags;
2882 if ((fl & MNT_LOCK_READONLY) &&
2883 !(mnt_flags & MNT_READONLY))
2886 if ((fl & MNT_LOCK_NODEV) &&
2887 !(mnt_flags & MNT_NODEV))
2890 if ((fl & MNT_LOCK_NOSUID) &&
2891 !(mnt_flags & MNT_NOSUID))
2894 if ((fl & MNT_LOCK_NOEXEC) &&
2895 !(mnt_flags & MNT_NOEXEC))
2898 if ((fl & MNT_LOCK_ATIME) &&
2899 ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
2905 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
2907 bool readonly_request = (mnt_flags & MNT_READONLY);
2909 if (readonly_request == __mnt_is_readonly(&mnt->mnt))
2912 if (readonly_request)
2913 return mnt_make_readonly(mnt);
2915 mnt->mnt.mnt_flags &= ~MNT_READONLY;
2919 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
2921 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2922 mnt->mnt.mnt_flags = mnt_flags;
2923 touch_mnt_namespace(mnt->mnt_ns);
2926 static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt)
2928 struct super_block *sb = mnt->mnt_sb;
2930 if (!__mnt_is_readonly(mnt) &&
2931 (!(sb->s_iflags & SB_I_TS_EXPIRY_WARNED)) &&
2932 (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) {
2933 char *buf = (char *)__get_free_page(GFP_KERNEL);
2934 char *mntpath = buf ? d_path(mountpoint, buf, PAGE_SIZE) : ERR_PTR(-ENOMEM);
2936 pr_warn("%s filesystem being %s at %s supports timestamps until %ptTd (0x%llx)\n",
2938 is_mounted(mnt) ? "remounted" : "mounted",
2939 mntpath, &sb->s_time_max,
2940 (unsigned long long)sb->s_time_max);
2942 free_page((unsigned long)buf);
2943 sb->s_iflags |= SB_I_TS_EXPIRY_WARNED;
2948 * Handle reconfiguration of the mountpoint only without alteration of the
2949 * superblock it refers to. This is triggered by specifying MS_REMOUNT|MS_BIND
2952 static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags)
2954 struct super_block *sb = path->mnt->mnt_sb;
2955 struct mount *mnt = real_mount(path->mnt);
2958 if (!check_mnt(mnt))
2961 if (!path_mounted(path))
2964 if (!can_change_locked_flags(mnt, mnt_flags))
2968 * We're only checking whether the superblock is read-only not
2969 * changing it, so only take down_read(&sb->s_umount).
2971 down_read(&sb->s_umount);
2973 ret = change_mount_ro_state(mnt, mnt_flags);
2975 set_mount_attributes(mnt, mnt_flags);
2976 unlock_mount_hash();
2977 up_read(&sb->s_umount);
2979 mnt_warn_timestamp_expiry(path, &mnt->mnt);
2985 * change filesystem flags. dir should be a physical root of filesystem.
2986 * If you've mounted a non-root directory somewhere and want to do remount
2987 * on it - tough luck.
2989 static int do_remount(struct path *path, int ms_flags, int sb_flags,
2990 int mnt_flags, void *data)
2993 struct super_block *sb = path->mnt->mnt_sb;
2994 struct mount *mnt = real_mount(path->mnt);
2995 struct fs_context *fc;
2997 if (!check_mnt(mnt))
3000 if (!path_mounted(path))
3003 if (!can_change_locked_flags(mnt, mnt_flags))
3006 fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
3011 * Indicate to the filesystem that the remount request is coming
3012 * from the legacy mount system call.
3016 err = parse_monolithic_mount_data(fc, data);
3018 down_write(&sb->s_umount);
3020 if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
3021 err = reconfigure_super(fc);
3024 set_mount_attributes(mnt, mnt_flags);
3025 unlock_mount_hash();
3028 up_write(&sb->s_umount);
3031 mnt_warn_timestamp_expiry(path, &mnt->mnt);
3037 static inline int tree_contains_unbindable(struct mount *mnt)
3040 for (p = mnt; p; p = next_mnt(p, mnt)) {
3041 if (IS_MNT_UNBINDABLE(p))
3048 * Check that there aren't references to earlier/same mount namespaces in the
3049 * specified subtree. Such references can act as pins for mount namespaces
3050 * that aren't checked by the mount-cycle checking code, thereby allowing
3051 * cycles to be made.
3053 static bool check_for_nsfs_mounts(struct mount *subtree)
3059 for (p = subtree; p; p = next_mnt(p, subtree))
3060 if (mnt_ns_loop(p->mnt.mnt_root))
3065 unlock_mount_hash();
3069 static int do_set_group(struct path *from_path, struct path *to_path)
3071 struct mount *from, *to;
3074 from = real_mount(from_path->mnt);
3075 to = real_mount(to_path->mnt);
3080 /* To and From must be mounted */
3081 if (!is_mounted(&from->mnt))
3083 if (!is_mounted(&to->mnt))
3087 /* We should be allowed to modify mount namespaces of both mounts */
3088 if (!ns_capable(from->mnt_ns->user_ns, CAP_SYS_ADMIN))
3090 if (!ns_capable(to->mnt_ns->user_ns, CAP_SYS_ADMIN))
3094 /* To and From paths should be mount roots */
3095 if (!path_mounted(from_path))
3097 if (!path_mounted(to_path))
3100 /* Setting sharing groups is only allowed across same superblock */
3101 if (from->mnt.mnt_sb != to->mnt.mnt_sb)
3104 /* From mount root should be wider than To mount root */
3105 if (!is_subdir(to->mnt.mnt_root, from->mnt.mnt_root))
3108 /* From mount should not have locked children in place of To's root */
3109 if (has_locked_children(from, to->mnt.mnt_root))
3112 /* Setting sharing groups is only allowed on private mounts */
3113 if (IS_MNT_SHARED(to) || IS_MNT_SLAVE(to))
3116 /* From should not be private */
3117 if (!IS_MNT_SHARED(from) && !IS_MNT_SLAVE(from))
3120 if (IS_MNT_SLAVE(from)) {
3121 struct mount *m = from->mnt_master;
3123 list_add(&to->mnt_slave, &m->mnt_slave_list);
3127 if (IS_MNT_SHARED(from)) {
3128 to->mnt_group_id = from->mnt_group_id;
3129 list_add(&to->mnt_share, &from->mnt_share);
3132 unlock_mount_hash();
3142 * path_overmounted - check if path is overmounted
3143 * @path: path to check
3145 * Check if path is overmounted, i.e., if there's a mount on top of
3146 * @path->mnt with @path->dentry as mountpoint.
3148 * Context: This function expects namespace_lock() to be held.
3149 * Return: If path is overmounted true is returned, false if not.
3151 static inline bool path_overmounted(const struct path *path)
3154 if (unlikely(__lookup_mnt(path->mnt, path->dentry))) {
3163 * can_move_mount_beneath - check that we can mount beneath the top mount
3164 * @from: mount to mount beneath
3165 * @to: mount under which to mount
3166 * @mp: mountpoint of @to
3168 * - Make sure that @to->dentry is actually the root of a mount under
3169 * which we can mount another mount.
3170 * - Make sure that nothing can be mounted beneath the caller's current
3171 * root or the rootfs of the namespace.
3172 * - Make sure that the caller can unmount the topmost mount ensuring
3173 * that the caller could reveal the underlying mountpoint.
3174 * - Ensure that nothing has been mounted on top of @from before we
3175 * grabbed @namespace_sem to avoid creating pointless shadow mounts.
3176 * - Prevent mounting beneath a mount if the propagation relationship
3177 * between the source mount, parent mount, and top mount would lead to
3178 * nonsensical mount trees.
3180 * Context: This function expects namespace_lock() to be held.
3181 * Return: On success 0, and on error a negative error code is returned.
3183 static int can_move_mount_beneath(const struct path *from,
3184 const struct path *to,
3185 const struct mountpoint *mp)
3187 struct mount *mnt_from = real_mount(from->mnt),
3188 *mnt_to = real_mount(to->mnt),
3189 *parent_mnt_to = mnt_to->mnt_parent;
3191 if (!mnt_has_parent(mnt_to))
3194 if (!path_mounted(to))
3197 if (IS_MNT_LOCKED(mnt_to))
3200 /* Avoid creating shadow mounts during mount propagation. */
3201 if (path_overmounted(from))
3205 * Mounting beneath the rootfs only makes sense when the
3206 * semantics of pivot_root(".", ".") are used.
3208 if (&mnt_to->mnt == current->fs->root.mnt)
3210 if (parent_mnt_to == current->nsproxy->mnt_ns->root)
3213 for (struct mount *p = mnt_from; mnt_has_parent(p); p = p->mnt_parent)
3218 * If the parent mount propagates to the child mount this would
3219 * mean mounting @mnt_from on @mnt_to->mnt_parent and then
3220 * propagating a copy @c of @mnt_from on top of @mnt_to. This
3221 * defeats the whole purpose of mounting beneath another mount.
3223 if (propagation_would_overmount(parent_mnt_to, mnt_to, mp))
3227 * If @mnt_to->mnt_parent propagates to @mnt_from this would
3228 * mean propagating a copy @c of @mnt_from on top of @mnt_from.
3229 * Afterwards @mnt_from would be mounted on top of
3230 * @mnt_to->mnt_parent and @mnt_to would be unmounted from
3231 * @mnt->mnt_parent and remounted on @mnt_from. But since @c is
3232 * already mounted on @mnt_from, @mnt_to would ultimately be
3233 * remounted on top of @c. Afterwards, @mnt_from would be
3234 * covered by a copy @c of @mnt_from and @c would be covered by
3235 * @mnt_from itself. This defeats the whole purpose of mounting
3236 * @mnt_from beneath @mnt_to.
3238 if (propagation_would_overmount(parent_mnt_to, mnt_from, mp))
3244 static int do_move_mount(struct path *old_path, struct path *new_path,
3247 struct mnt_namespace *ns;
3250 struct mount *parent;
3251 struct mountpoint *mp, *old_mp;
3254 enum mnt_tree_flags_t flags = 0;
3256 mp = do_lock_mount(new_path, beneath);
3260 old = real_mount(old_path->mnt);
3261 p = real_mount(new_path->mnt);
3262 parent = old->mnt_parent;
3263 attached = mnt_has_parent(old);
3265 flags |= MNT_TREE_MOVE;
3266 old_mp = old->mnt_mp;
3270 /* The mountpoint must be in our namespace. */
3274 /* The thing moved must be mounted... */
3275 if (!is_mounted(&old->mnt))
3278 /* ... and either ours or the root of anon namespace */
3279 if (!(attached ? check_mnt(old) : is_anon_ns(ns)))
3282 if (old->mnt.mnt_flags & MNT_LOCKED)
3285 if (!path_mounted(old_path))
3288 if (d_is_dir(new_path->dentry) !=
3289 d_is_dir(old_path->dentry))
3292 * Don't move a mount residing in a shared parent.
3294 if (attached && IS_MNT_SHARED(parent))
3298 err = can_move_mount_beneath(old_path, new_path, mp);
3304 flags |= MNT_TREE_BENEATH;
3308 * Don't move a mount tree containing unbindable mounts to a destination
3309 * mount which is shared.
3311 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
3314 if (!check_for_nsfs_mounts(old))
3316 for (; mnt_has_parent(p); p = p->mnt_parent)
3320 err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp, flags);
3324 /* if the mount is moved, it should no longer be expire
3326 list_del_init(&old->mnt_expire);
3328 put_mountpoint(old_mp);
3333 mntput_no_expire(parent);
3340 static int do_move_mount_old(struct path *path, const char *old_name)
3342 struct path old_path;
3345 if (!old_name || !*old_name)
3348 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
3352 err = do_move_mount(&old_path, path, false);
3353 path_put(&old_path);
3358 * add a mount into a namespace's mount tree
3360 static int do_add_mount(struct mount *newmnt, struct mountpoint *mp,
3361 const struct path *path, int mnt_flags)
3363 struct mount *parent = real_mount(path->mnt);
3365 mnt_flags &= ~MNT_INTERNAL_FLAGS;
3367 if (unlikely(!check_mnt(parent))) {
3368 /* that's acceptable only for automounts done in private ns */
3369 if (!(mnt_flags & MNT_SHRINKABLE))
3371 /* ... and for those we'd better have mountpoint still alive */
3372 if (!parent->mnt_ns)
3376 /* Refuse the same filesystem on the same mount point */
3377 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb && path_mounted(path))
3380 if (d_is_symlink(newmnt->mnt.mnt_root))
3383 newmnt->mnt.mnt_flags = mnt_flags;
3384 return graft_tree(newmnt, parent, mp);
3387 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
3390 * Create a new mount using a superblock configuration and request it
3391 * be added to the namespace tree.
3393 static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint,
3394 unsigned int mnt_flags)
3396 struct vfsmount *mnt;
3397 struct mountpoint *mp;
3398 struct super_block *sb = fc->root->d_sb;
3401 error = security_sb_kern_mount(sb);
3402 if (!error && mount_too_revealing(sb, &mnt_flags))
3405 if (unlikely(error)) {
3410 up_write(&sb->s_umount);
3412 mnt = vfs_create_mount(fc);
3414 return PTR_ERR(mnt);
3416 mnt_warn_timestamp_expiry(mountpoint, mnt);
3418 mp = lock_mount(mountpoint);
3423 error = do_add_mount(real_mount(mnt), mp, mountpoint, mnt_flags);
3431 * create a new mount for userspace and request it to be added into the
3434 static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
3435 int mnt_flags, const char *name, void *data)
3437 struct file_system_type *type;
3438 struct fs_context *fc;
3439 const char *subtype = NULL;
3445 type = get_fs_type(fstype);
3449 if (type->fs_flags & FS_HAS_SUBTYPE) {
3450 subtype = strchr(fstype, '.');
3454 put_filesystem(type);
3460 fc = fs_context_for_mount(type, sb_flags);
3461 put_filesystem(type);
3466 * Indicate to the filesystem that the mount request is coming
3467 * from the legacy mount system call.
3472 err = vfs_parse_fs_string(fc, "subtype",
3473 subtype, strlen(subtype));
3475 err = vfs_parse_fs_string(fc, "source", name, strlen(name));
3477 err = parse_monolithic_mount_data(fc, data);
3478 if (!err && !mount_capable(fc))
3481 err = vfs_get_tree(fc);
3483 err = do_new_mount_fc(fc, path, mnt_flags);
3489 int finish_automount(struct vfsmount *m, const struct path *path)
3491 struct dentry *dentry = path->dentry;
3492 struct mountpoint *mp;
3501 mnt = real_mount(m);
3502 /* The new mount record should have at least 2 refs to prevent it being
3503 * expired before we get a chance to add it
3505 BUG_ON(mnt_get_count(mnt) < 2);
3507 if (m->mnt_sb == path->mnt->mnt_sb &&
3508 m->mnt_root == dentry) {
3514 * we don't want to use lock_mount() - in this case finding something
3515 * that overmounts our mountpoint to be means "quitely drop what we've
3516 * got", not "try to mount it on top".
3518 inode_lock(dentry->d_inode);
3520 if (unlikely(cant_mount(dentry))) {
3522 goto discard_locked;
3524 if (path_overmounted(path)) {
3526 goto discard_locked;
3528 mp = get_mountpoint(dentry);
3531 goto discard_locked;
3534 err = do_add_mount(mnt, mp, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
3543 inode_unlock(dentry->d_inode);
3545 /* remove m from any expiration list it may be on */
3546 if (!list_empty(&mnt->mnt_expire)) {
3548 list_del_init(&mnt->mnt_expire);
3557 * mnt_set_expiry - Put a mount on an expiration list
3558 * @mnt: The mount to list.
3559 * @expiry_list: The list to add the mount to.
3561 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
3565 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
3569 EXPORT_SYMBOL(mnt_set_expiry);
3572 * process a list of expirable mountpoints with the intent of discarding any
3573 * mountpoints that aren't in use and haven't been touched since last we came
3576 void mark_mounts_for_expiry(struct list_head *mounts)
3578 struct mount *mnt, *next;
3579 LIST_HEAD(graveyard);
3581 if (list_empty(mounts))
3587 /* extract from the expiration list every vfsmount that matches the
3588 * following criteria:
3589 * - only referenced by its parent vfsmount
3590 * - still marked for expiry (marked on the last call here; marks are
3591 * cleared by mntput())
3593 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
3594 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
3595 propagate_mount_busy(mnt, 1))
3597 list_move(&mnt->mnt_expire, &graveyard);
3599 while (!list_empty(&graveyard)) {
3600 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
3601 touch_mnt_namespace(mnt->mnt_ns);
3602 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3604 unlock_mount_hash();
3608 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
3611 * Ripoff of 'select_parent()'
3613 * search the list of submounts for a given mountpoint, and move any
3614 * shrinkable submounts to the 'graveyard' list.
3616 static int select_submounts(struct mount *parent, struct list_head *graveyard)
3618 struct mount *this_parent = parent;
3619 struct list_head *next;
3623 next = this_parent->mnt_mounts.next;
3625 while (next != &this_parent->mnt_mounts) {
3626 struct list_head *tmp = next;
3627 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
3630 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
3633 * Descend a level if the d_mounts list is non-empty.
3635 if (!list_empty(&mnt->mnt_mounts)) {
3640 if (!propagate_mount_busy(mnt, 1)) {
3641 list_move_tail(&mnt->mnt_expire, graveyard);
3646 * All done at this level ... ascend and resume the search
3648 if (this_parent != parent) {
3649 next = this_parent->mnt_child.next;
3650 this_parent = this_parent->mnt_parent;
3657 * process a list of expirable mountpoints with the intent of discarding any
3658 * submounts of a specific parent mountpoint
3660 * mount_lock must be held for write
3662 static void shrink_submounts(struct mount *mnt)
3664 LIST_HEAD(graveyard);
3667 /* extract submounts of 'mountpoint' from the expiration list */
3668 while (select_submounts(mnt, &graveyard)) {
3669 while (!list_empty(&graveyard)) {
3670 m = list_first_entry(&graveyard, struct mount,
3672 touch_mnt_namespace(m->mnt_ns);
3673 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3678 static void *copy_mount_options(const void __user * data)
3681 unsigned left, offset;
3686 copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
3688 return ERR_PTR(-ENOMEM);
3690 left = copy_from_user(copy, data, PAGE_SIZE);
3693 * Not all architectures have an exact copy_from_user(). Resort to
3696 offset = PAGE_SIZE - left;
3699 if (get_user(c, (const char __user *)data + offset))
3706 if (left == PAGE_SIZE) {
3708 return ERR_PTR(-EFAULT);
3714 static char *copy_mount_string(const void __user *data)
3716 return data ? strndup_user(data, PATH_MAX) : NULL;
3720 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
3721 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
3723 * data is a (void *) that can point to any structure up to
3724 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
3725 * information (or be NULL).
3727 * Pre-0.97 versions of mount() didn't have a flags word.
3728 * When the flags word was introduced its top half was required
3729 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
3730 * Therefore, if this magic number is present, it carries no information
3731 * and must be discarded.
3733 int path_mount(const char *dev_name, struct path *path,
3734 const char *type_page, unsigned long flags, void *data_page)
3736 unsigned int mnt_flags = 0, sb_flags;
3740 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
3741 flags &= ~MS_MGC_MSK;
3743 /* Basic sanity checks */
3745 ((char *)data_page)[PAGE_SIZE - 1] = 0;
3747 if (flags & MS_NOUSER)
3750 ret = security_sb_mount(dev_name, path, type_page, flags, data_page);
3755 if (flags & SB_MANDLOCK)
3758 /* Default to relatime unless overriden */
3759 if (!(flags & MS_NOATIME))
3760 mnt_flags |= MNT_RELATIME;
3762 /* Separate the per-mountpoint flags */
3763 if (flags & MS_NOSUID)
3764 mnt_flags |= MNT_NOSUID;
3765 if (flags & MS_NODEV)
3766 mnt_flags |= MNT_NODEV;
3767 if (flags & MS_NOEXEC)
3768 mnt_flags |= MNT_NOEXEC;
3769 if (flags & MS_NOATIME)
3770 mnt_flags |= MNT_NOATIME;
3771 if (flags & MS_NODIRATIME)
3772 mnt_flags |= MNT_NODIRATIME;
3773 if (flags & MS_STRICTATIME)
3774 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
3775 if (flags & MS_RDONLY)
3776 mnt_flags |= MNT_READONLY;
3777 if (flags & MS_NOSYMFOLLOW)
3778 mnt_flags |= MNT_NOSYMFOLLOW;
3780 /* The default atime for remount is preservation */
3781 if ((flags & MS_REMOUNT) &&
3782 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
3783 MS_STRICTATIME)) == 0)) {
3784 mnt_flags &= ~MNT_ATIME_MASK;
3785 mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK;
3788 sb_flags = flags & (SB_RDONLY |
3797 if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
3798 return do_reconfigure_mnt(path, mnt_flags);
3799 if (flags & MS_REMOUNT)
3800 return do_remount(path, flags, sb_flags, mnt_flags, data_page);
3801 if (flags & MS_BIND)
3802 return do_loopback(path, dev_name, flags & MS_REC);
3803 if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
3804 return do_change_type(path, flags);
3805 if (flags & MS_MOVE)
3806 return do_move_mount_old(path, dev_name);
3808 return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name,
3812 long do_mount(const char *dev_name, const char __user *dir_name,
3813 const char *type_page, unsigned long flags, void *data_page)
3818 ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path);
3821 ret = path_mount(dev_name, &path, type_page, flags, data_page);
3826 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
3828 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
3831 static void dec_mnt_namespaces(struct ucounts *ucounts)
3833 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
3836 static void free_mnt_ns(struct mnt_namespace *ns)
3838 if (!is_anon_ns(ns))
3839 ns_free_inum(&ns->ns);
3840 dec_mnt_namespaces(ns->ucounts);
3841 mnt_ns_tree_remove(ns);
3845 * Assign a sequence number so we can detect when we attempt to bind
3846 * mount a reference to an older mount namespace into the current
3847 * mount namespace, preventing reference counting loops. A 64bit
3848 * number incrementing at 10Ghz will take 12,427 years to wrap which
3849 * is effectively never, so we can ignore the possibility.
3851 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
3853 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
3855 struct mnt_namespace *new_ns;
3856 struct ucounts *ucounts;
3859 ucounts = inc_mnt_namespaces(user_ns);
3861 return ERR_PTR(-ENOSPC);
3863 new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL_ACCOUNT);
3865 dec_mnt_namespaces(ucounts);
3866 return ERR_PTR(-ENOMEM);
3869 ret = ns_alloc_inum(&new_ns->ns);
3872 dec_mnt_namespaces(ucounts);
3873 return ERR_PTR(ret);
3876 new_ns->ns.ops = &mntns_operations;
3878 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
3879 refcount_set(&new_ns->ns.count, 1);
3880 refcount_set(&new_ns->passive, 1);
3881 new_ns->mounts = RB_ROOT;
3882 RB_CLEAR_NODE(&new_ns->mnt_ns_tree_node);
3883 init_waitqueue_head(&new_ns->poll);
3884 new_ns->user_ns = get_user_ns(user_ns);
3885 new_ns->ucounts = ucounts;
3890 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
3891 struct user_namespace *user_ns, struct fs_struct *new_fs)
3893 struct mnt_namespace *new_ns;
3894 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
3895 struct mount *p, *q;
3902 if (likely(!(flags & CLONE_NEWNS))) {
3909 new_ns = alloc_mnt_ns(user_ns, false);
3914 /* First pass: copy the tree topology */
3915 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
3916 if (user_ns != ns->user_ns)
3917 copy_flags |= CL_SHARED_TO_SLAVE;
3918 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
3921 free_mnt_ns(new_ns);
3922 return ERR_CAST(new);
3924 if (user_ns != ns->user_ns) {
3927 unlock_mount_hash();
3932 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
3933 * as belonging to new namespace. We have already acquired a private
3934 * fs_struct, so tsk->fs->lock is not needed.
3939 mnt_add_to_ns(new_ns, q);
3940 new_ns->nr_mounts++;
3942 if (&p->mnt == new_fs->root.mnt) {
3943 new_fs->root.mnt = mntget(&q->mnt);
3946 if (&p->mnt == new_fs->pwd.mnt) {
3947 new_fs->pwd.mnt = mntget(&q->mnt);
3951 p = next_mnt(p, old);
3952 q = next_mnt(q, new);
3955 // an mntns binding we'd skipped?
3956 while (p->mnt.mnt_root != q->mnt.mnt_root)
3957 p = next_mnt(skip_mnt_tree(p), old);
3959 mnt_ns_tree_add(new_ns);
3970 struct dentry *mount_subtree(struct vfsmount *m, const char *name)
3972 struct mount *mnt = real_mount(m);
3973 struct mnt_namespace *ns;
3974 struct super_block *s;
3978 ns = alloc_mnt_ns(&init_user_ns, true);
3981 return ERR_CAST(ns);
3985 mnt_add_to_ns(ns, mnt);
3987 err = vfs_path_lookup(m->mnt_root, m,
3988 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3993 return ERR_PTR(err);
3995 /* trade a vfsmount reference for active sb one */
3996 s = path.mnt->mnt_sb;
3997 atomic_inc(&s->s_active);
3999 /* lock the sucker */
4000 down_write(&s->s_umount);
4001 /* ... and return the root of (sub)tree on it */
4004 EXPORT_SYMBOL(mount_subtree);
4006 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
4007 char __user *, type, unsigned long, flags, void __user *, data)
4014 kernel_type = copy_mount_string(type);
4015 ret = PTR_ERR(kernel_type);
4016 if (IS_ERR(kernel_type))
4019 kernel_dev = copy_mount_string(dev_name);
4020 ret = PTR_ERR(kernel_dev);
4021 if (IS_ERR(kernel_dev))
4024 options = copy_mount_options(data);
4025 ret = PTR_ERR(options);
4026 if (IS_ERR(options))
4029 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
4040 #define FSMOUNT_VALID_FLAGS \
4041 (MOUNT_ATTR_RDONLY | MOUNT_ATTR_NOSUID | MOUNT_ATTR_NODEV | \
4042 MOUNT_ATTR_NOEXEC | MOUNT_ATTR__ATIME | MOUNT_ATTR_NODIRATIME | \
4043 MOUNT_ATTR_NOSYMFOLLOW)
4045 #define MOUNT_SETATTR_VALID_FLAGS (FSMOUNT_VALID_FLAGS | MOUNT_ATTR_IDMAP)
4047 #define MOUNT_SETATTR_PROPAGATION_FLAGS \
4048 (MS_UNBINDABLE | MS_PRIVATE | MS_SLAVE | MS_SHARED)
4050 static unsigned int attr_flags_to_mnt_flags(u64 attr_flags)
4052 unsigned int mnt_flags = 0;
4054 if (attr_flags & MOUNT_ATTR_RDONLY)
4055 mnt_flags |= MNT_READONLY;
4056 if (attr_flags & MOUNT_ATTR_NOSUID)
4057 mnt_flags |= MNT_NOSUID;
4058 if (attr_flags & MOUNT_ATTR_NODEV)
4059 mnt_flags |= MNT_NODEV;
4060 if (attr_flags & MOUNT_ATTR_NOEXEC)
4061 mnt_flags |= MNT_NOEXEC;
4062 if (attr_flags & MOUNT_ATTR_NODIRATIME)
4063 mnt_flags |= MNT_NODIRATIME;
4064 if (attr_flags & MOUNT_ATTR_NOSYMFOLLOW)
4065 mnt_flags |= MNT_NOSYMFOLLOW;
4071 * Create a kernel mount representation for a new, prepared superblock
4072 * (specified by fs_fd) and attach to an open_tree-like file descriptor.
4074 SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags,
4075 unsigned int, attr_flags)
4077 struct mnt_namespace *ns;
4078 struct fs_context *fc;
4080 struct path newmount;
4083 unsigned int mnt_flags = 0;
4089 if ((flags & ~(FSMOUNT_CLOEXEC)) != 0)
4092 if (attr_flags & ~FSMOUNT_VALID_FLAGS)
4095 mnt_flags = attr_flags_to_mnt_flags(attr_flags);
4097 switch (attr_flags & MOUNT_ATTR__ATIME) {
4098 case MOUNT_ATTR_STRICTATIME:
4100 case MOUNT_ATTR_NOATIME:
4101 mnt_flags |= MNT_NOATIME;
4103 case MOUNT_ATTR_RELATIME:
4104 mnt_flags |= MNT_RELATIME;
4115 if (f.file->f_op != &fscontext_fops)
4118 fc = f.file->private_data;
4120 ret = mutex_lock_interruptible(&fc->uapi_mutex);
4124 /* There must be a valid superblock or we can't mount it */
4130 if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) {
4131 pr_warn("VFS: Mount too revealing\n");
4136 if (fc->phase != FS_CONTEXT_AWAITING_MOUNT)
4139 if (fc->sb_flags & SB_MANDLOCK)
4142 newmount.mnt = vfs_create_mount(fc);
4143 if (IS_ERR(newmount.mnt)) {
4144 ret = PTR_ERR(newmount.mnt);
4147 newmount.dentry = dget(fc->root);
4148 newmount.mnt->mnt_flags = mnt_flags;
4150 /* We've done the mount bit - now move the file context into more or
4151 * less the same state as if we'd done an fspick(). We don't want to
4152 * do any memory allocation or anything like that at this point as we
4153 * don't want to have to handle any errors incurred.
4155 vfs_clean_context(fc);
4157 ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true);
4162 mnt = real_mount(newmount.mnt);
4165 mnt_add_to_ns(ns, mnt);
4166 mntget(newmount.mnt);
4168 /* Attach to an apparent O_PATH fd with a note that we need to unmount
4169 * it, not just simply put it.
4171 file = dentry_open(&newmount, O_PATH, fc->cred);
4173 dissolve_on_fput(newmount.mnt);
4174 ret = PTR_ERR(file);
4177 file->f_mode |= FMODE_NEED_UNMOUNT;
4179 ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0);
4181 fd_install(ret, file);
4186 path_put(&newmount);
4188 mutex_unlock(&fc->uapi_mutex);
4195 * Move a mount from one place to another. In combination with
4196 * fsopen()/fsmount() this is used to install a new mount and in combination
4197 * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
4200 * Note the flags value is a combination of MOVE_MOUNT_* flags.
4202 SYSCALL_DEFINE5(move_mount,
4203 int, from_dfd, const char __user *, from_pathname,
4204 int, to_dfd, const char __user *, to_pathname,
4205 unsigned int, flags)
4207 struct path from_path, to_path;
4208 unsigned int lflags;
4214 if (flags & ~MOVE_MOUNT__MASK)
4217 if ((flags & (MOVE_MOUNT_BENEATH | MOVE_MOUNT_SET_GROUP)) ==
4218 (MOVE_MOUNT_BENEATH | MOVE_MOUNT_SET_GROUP))
4221 /* If someone gives a pathname, they aren't permitted to move
4222 * from an fd that requires unmount as we can't get at the flag
4223 * to clear it afterwards.
4226 if (flags & MOVE_MOUNT_F_SYMLINKS) lflags |= LOOKUP_FOLLOW;
4227 if (flags & MOVE_MOUNT_F_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT;
4228 if (flags & MOVE_MOUNT_F_EMPTY_PATH) lflags |= LOOKUP_EMPTY;
4230 ret = user_path_at(from_dfd, from_pathname, lflags, &from_path);
4235 if (flags & MOVE_MOUNT_T_SYMLINKS) lflags |= LOOKUP_FOLLOW;
4236 if (flags & MOVE_MOUNT_T_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT;
4237 if (flags & MOVE_MOUNT_T_EMPTY_PATH) lflags |= LOOKUP_EMPTY;
4239 ret = user_path_at(to_dfd, to_pathname, lflags, &to_path);
4243 ret = security_move_mount(&from_path, &to_path);
4247 if (flags & MOVE_MOUNT_SET_GROUP)
4248 ret = do_set_group(&from_path, &to_path);
4250 ret = do_move_mount(&from_path, &to_path,
4251 (flags & MOVE_MOUNT_BENEATH));
4256 path_put(&from_path);
4261 * Return true if path is reachable from root
4263 * namespace_sem or mount_lock is held
4265 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
4266 const struct path *root)
4268 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
4269 dentry = mnt->mnt_mountpoint;
4270 mnt = mnt->mnt_parent;
4272 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
4275 bool path_is_under(const struct path *path1, const struct path *path2)
4278 read_seqlock_excl(&mount_lock);
4279 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
4280 read_sequnlock_excl(&mount_lock);
4283 EXPORT_SYMBOL(path_is_under);
4286 * pivot_root Semantics:
4287 * Moves the root file system of the current process to the directory put_old,
4288 * makes new_root as the new root file system of the current process, and sets
4289 * root/cwd of all processes which had them on the current root to new_root.
4292 * The new_root and put_old must be directories, and must not be on the
4293 * same file system as the current process root. The put_old must be
4294 * underneath new_root, i.e. adding a non-zero number of /.. to the string
4295 * pointed to by put_old must yield the same directory as new_root. No other
4296 * file system may be mounted on put_old. After all, new_root is a mountpoint.
4298 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
4299 * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives
4300 * in this situation.
4303 * - we don't move root/cwd if they are not at the root (reason: if something
4304 * cared enough to change them, it's probably wrong to force them elsewhere)
4305 * - it's okay to pick a root that isn't the root of a file system, e.g.
4306 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
4307 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
4310 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
4311 const char __user *, put_old)
4313 struct path new, old, root;
4314 struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent;
4315 struct mountpoint *old_mp, *root_mp;
4321 error = user_path_at(AT_FDCWD, new_root,
4322 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new);
4326 error = user_path_at(AT_FDCWD, put_old,
4327 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old);
4331 error = security_sb_pivotroot(&old, &new);
4335 get_fs_root(current->fs, &root);
4336 old_mp = lock_mount(&old);
4337 error = PTR_ERR(old_mp);
4342 new_mnt = real_mount(new.mnt);
4343 root_mnt = real_mount(root.mnt);
4344 old_mnt = real_mount(old.mnt);
4345 ex_parent = new_mnt->mnt_parent;
4346 root_parent = root_mnt->mnt_parent;
4347 if (IS_MNT_SHARED(old_mnt) ||
4348 IS_MNT_SHARED(ex_parent) ||
4349 IS_MNT_SHARED(root_parent))
4351 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
4353 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
4356 if (d_unlinked(new.dentry))
4359 if (new_mnt == root_mnt || old_mnt == root_mnt)
4360 goto out4; /* loop, on the same file system */
4362 if (!path_mounted(&root))
4363 goto out4; /* not a mountpoint */
4364 if (!mnt_has_parent(root_mnt))
4365 goto out4; /* not attached */
4366 if (!path_mounted(&new))
4367 goto out4; /* not a mountpoint */
4368 if (!mnt_has_parent(new_mnt))
4369 goto out4; /* not attached */
4370 /* make sure we can reach put_old from new_root */
4371 if (!is_path_reachable(old_mnt, old.dentry, &new))
4373 /* make certain new is below the root */
4374 if (!is_path_reachable(new_mnt, new.dentry, &root))
4377 umount_mnt(new_mnt);
4378 root_mp = unhash_mnt(root_mnt); /* we'll need its mountpoint */
4379 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
4380 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
4381 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
4383 /* mount old root on put_old */
4384 attach_mnt(root_mnt, old_mnt, old_mp, false);
4385 /* mount new_root on / */
4386 attach_mnt(new_mnt, root_parent, root_mp, false);
4387 mnt_add_count(root_parent, -1);
4388 touch_mnt_namespace(current->nsproxy->mnt_ns);
4389 /* A moved mount should not expire automatically */
4390 list_del_init(&new_mnt->mnt_expire);
4391 put_mountpoint(root_mp);
4392 unlock_mount_hash();
4393 chroot_fs_refs(&root, &new);
4396 unlock_mount(old_mp);
4398 mntput_no_expire(ex_parent);
4409 static unsigned int recalc_flags(struct mount_kattr *kattr, struct mount *mnt)
4411 unsigned int flags = mnt->mnt.mnt_flags;
4413 /* flags to clear */
4414 flags &= ~kattr->attr_clr;
4415 /* flags to raise */
4416 flags |= kattr->attr_set;
4421 static int can_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
4423 struct vfsmount *m = &mnt->mnt;
4424 struct user_namespace *fs_userns = m->mnt_sb->s_user_ns;
4426 if (!kattr->mnt_idmap)
4430 * Creating an idmapped mount with the filesystem wide idmapping
4431 * doesn't make sense so block that. We don't allow mushy semantics.
4433 if (kattr->mnt_userns == m->mnt_sb->s_user_ns)
4437 * Once a mount has been idmapped we don't allow it to change its
4438 * mapping. It makes things simpler and callers can just create
4439 * another bind-mount they can idmap if they want to.
4441 if (is_idmapped_mnt(m))
4444 /* The underlying filesystem doesn't support idmapped mounts yet. */
4445 if (!(m->mnt_sb->s_type->fs_flags & FS_ALLOW_IDMAP))
4448 /* We're not controlling the superblock. */
4449 if (!ns_capable(fs_userns, CAP_SYS_ADMIN))
4452 /* Mount has already been visible in the filesystem hierarchy. */
4453 if (!is_anon_ns(mnt->mnt_ns))
4460 * mnt_allow_writers() - check whether the attribute change allows writers
4461 * @kattr: the new mount attributes
4462 * @mnt: the mount to which @kattr will be applied
4464 * Check whether thew new mount attributes in @kattr allow concurrent writers.
4466 * Return: true if writers need to be held, false if not
4468 static inline bool mnt_allow_writers(const struct mount_kattr *kattr,
4469 const struct mount *mnt)
4471 return (!(kattr->attr_set & MNT_READONLY) ||
4472 (mnt->mnt.mnt_flags & MNT_READONLY)) &&
4476 static int mount_setattr_prepare(struct mount_kattr *kattr, struct mount *mnt)
4481 for (m = mnt; m; m = next_mnt(m, mnt)) {
4482 if (!can_change_locked_flags(m, recalc_flags(kattr, m))) {
4487 err = can_idmap_mount(kattr, m);
4491 if (!mnt_allow_writers(kattr, m)) {
4492 err = mnt_hold_writers(m);
4497 if (!kattr->recurse)
4505 * If we had to call mnt_hold_writers() MNT_WRITE_HOLD will
4506 * be set in @mnt_flags. The loop unsets MNT_WRITE_HOLD for all
4507 * mounts and needs to take care to include the first mount.
4509 for (p = mnt; p; p = next_mnt(p, mnt)) {
4510 /* If we had to hold writers unblock them. */
4511 if (p->mnt.mnt_flags & MNT_WRITE_HOLD)
4512 mnt_unhold_writers(p);
4515 * We're done once the first mount we changed got
4516 * MNT_WRITE_HOLD unset.
4525 static void do_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
4527 if (!kattr->mnt_idmap)
4531 * Pairs with smp_load_acquire() in mnt_idmap().
4533 * Since we only allow a mount to change the idmapping once and
4534 * verified this in can_idmap_mount() we know that the mount has
4535 * @nop_mnt_idmap attached to it. So there's no need to drop any
4538 smp_store_release(&mnt->mnt.mnt_idmap, mnt_idmap_get(kattr->mnt_idmap));
4541 static void mount_setattr_commit(struct mount_kattr *kattr, struct mount *mnt)
4545 for (m = mnt; m; m = next_mnt(m, mnt)) {
4548 do_idmap_mount(kattr, m);
4549 flags = recalc_flags(kattr, m);
4550 WRITE_ONCE(m->mnt.mnt_flags, flags);
4552 /* If we had to hold writers unblock them. */
4553 if (m->mnt.mnt_flags & MNT_WRITE_HOLD)
4554 mnt_unhold_writers(m);
4556 if (kattr->propagation)
4557 change_mnt_propagation(m, kattr->propagation);
4558 if (!kattr->recurse)
4561 touch_mnt_namespace(mnt->mnt_ns);
4564 static int do_mount_setattr(struct path *path, struct mount_kattr *kattr)
4566 struct mount *mnt = real_mount(path->mnt);
4569 if (!path_mounted(path))
4572 if (kattr->mnt_userns) {
4573 struct mnt_idmap *mnt_idmap;
4575 mnt_idmap = alloc_mnt_idmap(kattr->mnt_userns);
4576 if (IS_ERR(mnt_idmap))
4577 return PTR_ERR(mnt_idmap);
4578 kattr->mnt_idmap = mnt_idmap;
4581 if (kattr->propagation) {
4583 * Only take namespace_lock() if we're actually changing
4587 if (kattr->propagation == MS_SHARED) {
4588 err = invent_group_ids(mnt, kattr->recurse);
4599 /* Ensure that this isn't anything purely vfs internal. */
4600 if (!is_mounted(&mnt->mnt))
4604 * If this is an attached mount make sure it's located in the callers
4605 * mount namespace. If it's not don't let the caller interact with it.
4607 * If this mount doesn't have a parent it's most often simply a
4608 * detached mount with an anonymous mount namespace. IOW, something
4609 * that's simply not attached yet. But there are apparently also users
4610 * that do change mount properties on the rootfs itself. That obviously
4611 * neither has a parent nor is it a detached mount so we cannot
4612 * unconditionally check for detached mounts.
4614 if ((mnt_has_parent(mnt) || !is_anon_ns(mnt->mnt_ns)) && !check_mnt(mnt))
4618 * First, we get the mount tree in a shape where we can change mount
4619 * properties without failure. If we succeeded to do so we commit all
4620 * changes and if we failed we clean up.
4622 err = mount_setattr_prepare(kattr, mnt);
4624 mount_setattr_commit(kattr, mnt);
4627 unlock_mount_hash();
4629 if (kattr->propagation) {
4631 cleanup_group_ids(mnt, NULL);
4638 static int build_mount_idmapped(const struct mount_attr *attr, size_t usize,
4639 struct mount_kattr *kattr, unsigned int flags)
4642 struct ns_common *ns;
4643 struct user_namespace *mnt_userns;
4646 if (!((attr->attr_set | attr->attr_clr) & MOUNT_ATTR_IDMAP))
4650 * We currently do not support clearing an idmapped mount. If this ever
4651 * is a use-case we can revisit this but for now let's keep it simple
4654 if (attr->attr_clr & MOUNT_ATTR_IDMAP)
4657 if (attr->userns_fd > INT_MAX)
4660 f = fdget(attr->userns_fd);
4664 if (!proc_ns_file(f.file)) {
4669 ns = get_proc_ns(file_inode(f.file));
4670 if (ns->ops->type != CLONE_NEWUSER) {
4676 * The initial idmapping cannot be used to create an idmapped
4677 * mount. We use the initial idmapping as an indicator of a mount
4678 * that is not idmapped. It can simply be passed into helpers that
4679 * are aware of idmapped mounts as a convenient shortcut. A user
4680 * can just create a dedicated identity mapping to achieve the same
4683 mnt_userns = container_of(ns, struct user_namespace, ns);
4684 if (mnt_userns == &init_user_ns) {
4689 /* We're not controlling the target namespace. */
4690 if (!ns_capable(mnt_userns, CAP_SYS_ADMIN)) {
4695 kattr->mnt_userns = get_user_ns(mnt_userns);
4702 static int build_mount_kattr(const struct mount_attr *attr, size_t usize,
4703 struct mount_kattr *kattr, unsigned int flags)
4705 unsigned int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
4707 if (flags & AT_NO_AUTOMOUNT)
4708 lookup_flags &= ~LOOKUP_AUTOMOUNT;
4709 if (flags & AT_SYMLINK_NOFOLLOW)
4710 lookup_flags &= ~LOOKUP_FOLLOW;
4711 if (flags & AT_EMPTY_PATH)
4712 lookup_flags |= LOOKUP_EMPTY;
4714 *kattr = (struct mount_kattr) {
4715 .lookup_flags = lookup_flags,
4716 .recurse = !!(flags & AT_RECURSIVE),
4719 if (attr->propagation & ~MOUNT_SETATTR_PROPAGATION_FLAGS)
4721 if (hweight32(attr->propagation & MOUNT_SETATTR_PROPAGATION_FLAGS) > 1)
4723 kattr->propagation = attr->propagation;
4725 if ((attr->attr_set | attr->attr_clr) & ~MOUNT_SETATTR_VALID_FLAGS)
4728 kattr->attr_set = attr_flags_to_mnt_flags(attr->attr_set);
4729 kattr->attr_clr = attr_flags_to_mnt_flags(attr->attr_clr);
4732 * Since the MOUNT_ATTR_<atime> values are an enum, not a bitmap,
4733 * users wanting to transition to a different atime setting cannot
4734 * simply specify the atime setting in @attr_set, but must also
4735 * specify MOUNT_ATTR__ATIME in the @attr_clr field.
4736 * So ensure that MOUNT_ATTR__ATIME can't be partially set in
4737 * @attr_clr and that @attr_set can't have any atime bits set if
4738 * MOUNT_ATTR__ATIME isn't set in @attr_clr.
4740 if (attr->attr_clr & MOUNT_ATTR__ATIME) {
4741 if ((attr->attr_clr & MOUNT_ATTR__ATIME) != MOUNT_ATTR__ATIME)
4745 * Clear all previous time settings as they are mutually
4748 kattr->attr_clr |= MNT_RELATIME | MNT_NOATIME;
4749 switch (attr->attr_set & MOUNT_ATTR__ATIME) {
4750 case MOUNT_ATTR_RELATIME:
4751 kattr->attr_set |= MNT_RELATIME;
4753 case MOUNT_ATTR_NOATIME:
4754 kattr->attr_set |= MNT_NOATIME;
4756 case MOUNT_ATTR_STRICTATIME:
4762 if (attr->attr_set & MOUNT_ATTR__ATIME)
4766 return build_mount_idmapped(attr, usize, kattr, flags);
4769 static void finish_mount_kattr(struct mount_kattr *kattr)
4771 put_user_ns(kattr->mnt_userns);
4772 kattr->mnt_userns = NULL;
4774 if (kattr->mnt_idmap)
4775 mnt_idmap_put(kattr->mnt_idmap);
4778 SYSCALL_DEFINE5(mount_setattr, int, dfd, const char __user *, path,
4779 unsigned int, flags, struct mount_attr __user *, uattr,
4784 struct mount_attr attr;
4785 struct mount_kattr kattr;
4787 BUILD_BUG_ON(sizeof(struct mount_attr) != MOUNT_ATTR_SIZE_VER0);
4789 if (flags & ~(AT_EMPTY_PATH |
4791 AT_SYMLINK_NOFOLLOW |
4795 if (unlikely(usize > PAGE_SIZE))
4797 if (unlikely(usize < MOUNT_ATTR_SIZE_VER0))
4803 err = copy_struct_from_user(&attr, sizeof(attr), uattr, usize);
4807 /* Don't bother walking through the mounts if this is a nop. */
4808 if (attr.attr_set == 0 &&
4809 attr.attr_clr == 0 &&
4810 attr.propagation == 0)
4813 err = build_mount_kattr(&attr, usize, &kattr, flags);
4817 err = user_path_at(dfd, path, kattr.lookup_flags, &target);
4819 err = do_mount_setattr(&target, &kattr);
4822 finish_mount_kattr(&kattr);
4826 int show_path(struct seq_file *m, struct dentry *root)
4828 if (root->d_sb->s_op->show_path)
4829 return root->d_sb->s_op->show_path(m, root);
4831 seq_dentry(m, root, " \t\n\\");
4835 static struct vfsmount *lookup_mnt_in_ns(u64 id, struct mnt_namespace *ns)
4837 struct mount *mnt = mnt_find_id_at(ns, id);
4839 if (!mnt || mnt->mnt_id_unique != id)
4846 struct statmount __user *buf;
4848 struct vfsmount *mnt;
4851 struct statmount sm;
4852 struct seq_file seq;
4855 static u64 mnt_to_attr_flags(struct vfsmount *mnt)
4857 unsigned int mnt_flags = READ_ONCE(mnt->mnt_flags);
4860 if (mnt_flags & MNT_READONLY)
4861 attr_flags |= MOUNT_ATTR_RDONLY;
4862 if (mnt_flags & MNT_NOSUID)
4863 attr_flags |= MOUNT_ATTR_NOSUID;
4864 if (mnt_flags & MNT_NODEV)
4865 attr_flags |= MOUNT_ATTR_NODEV;
4866 if (mnt_flags & MNT_NOEXEC)
4867 attr_flags |= MOUNT_ATTR_NOEXEC;
4868 if (mnt_flags & MNT_NODIRATIME)
4869 attr_flags |= MOUNT_ATTR_NODIRATIME;
4870 if (mnt_flags & MNT_NOSYMFOLLOW)
4871 attr_flags |= MOUNT_ATTR_NOSYMFOLLOW;
4873 if (mnt_flags & MNT_NOATIME)
4874 attr_flags |= MOUNT_ATTR_NOATIME;
4875 else if (mnt_flags & MNT_RELATIME)
4876 attr_flags |= MOUNT_ATTR_RELATIME;
4878 attr_flags |= MOUNT_ATTR_STRICTATIME;
4880 if (is_idmapped_mnt(mnt))
4881 attr_flags |= MOUNT_ATTR_IDMAP;
4886 static u64 mnt_to_propagation_flags(struct mount *m)
4888 u64 propagation = 0;
4890 if (IS_MNT_SHARED(m))
4891 propagation |= MS_SHARED;
4892 if (IS_MNT_SLAVE(m))
4893 propagation |= MS_SLAVE;
4894 if (IS_MNT_UNBINDABLE(m))
4895 propagation |= MS_UNBINDABLE;
4897 propagation |= MS_PRIVATE;
4902 static void statmount_sb_basic(struct kstatmount *s)
4904 struct super_block *sb = s->mnt->mnt_sb;
4906 s->sm.mask |= STATMOUNT_SB_BASIC;
4907 s->sm.sb_dev_major = MAJOR(sb->s_dev);
4908 s->sm.sb_dev_minor = MINOR(sb->s_dev);
4909 s->sm.sb_magic = sb->s_magic;
4910 s->sm.sb_flags = sb->s_flags & (SB_RDONLY|SB_SYNCHRONOUS|SB_DIRSYNC|SB_LAZYTIME);
4913 static void statmount_mnt_basic(struct kstatmount *s)
4915 struct mount *m = real_mount(s->mnt);
4917 s->sm.mask |= STATMOUNT_MNT_BASIC;
4918 s->sm.mnt_id = m->mnt_id_unique;
4919 s->sm.mnt_parent_id = m->mnt_parent->mnt_id_unique;
4920 s->sm.mnt_id_old = m->mnt_id;
4921 s->sm.mnt_parent_id_old = m->mnt_parent->mnt_id;
4922 s->sm.mnt_attr = mnt_to_attr_flags(&m->mnt);
4923 s->sm.mnt_propagation = mnt_to_propagation_flags(m);
4924 s->sm.mnt_peer_group = IS_MNT_SHARED(m) ? m->mnt_group_id : 0;
4925 s->sm.mnt_master = IS_MNT_SLAVE(m) ? m->mnt_master->mnt_group_id : 0;
4928 static void statmount_propagate_from(struct kstatmount *s)
4930 struct mount *m = real_mount(s->mnt);
4932 s->sm.mask |= STATMOUNT_PROPAGATE_FROM;
4933 if (IS_MNT_SLAVE(m))
4934 s->sm.propagate_from = get_dominating_id(m, ¤t->fs->root);
4937 static int statmount_mnt_root(struct kstatmount *s, struct seq_file *seq)
4940 size_t start = seq->count;
4942 ret = show_path(seq, s->mnt->mnt_root);
4946 if (unlikely(seq_has_overflowed(seq)))
4950 * Unescape the result. It would be better if supplied string was not
4951 * escaped in the first place, but that's a pretty invasive change.
4953 seq->buf[seq->count] = '\0';
4955 seq_commit(seq, string_unescape_inplace(seq->buf + start, UNESCAPE_OCTAL));
4959 static int statmount_mnt_point(struct kstatmount *s, struct seq_file *seq)
4961 struct vfsmount *mnt = s->mnt;
4962 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
4965 err = seq_path_root(seq, &mnt_path, &s->root, "");
4966 return err == SEQ_SKIP ? 0 : err;
4969 static int statmount_fs_type(struct kstatmount *s, struct seq_file *seq)
4971 struct super_block *sb = s->mnt->mnt_sb;
4973 seq_puts(seq, sb->s_type->name);
4977 static void statmount_mnt_ns_id(struct kstatmount *s)
4979 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
4981 s->sm.mask |= STATMOUNT_MNT_NS_ID;
4982 s->sm.mnt_ns_id = ns->seq;
4985 static int statmount_string(struct kstatmount *s, u64 flag)
4989 struct seq_file *seq = &s->seq;
4990 struct statmount *sm = &s->sm;
4993 case STATMOUNT_FS_TYPE:
4994 sm->fs_type = seq->count;
4995 ret = statmount_fs_type(s, seq);
4997 case STATMOUNT_MNT_ROOT:
4998 sm->mnt_root = seq->count;
4999 ret = statmount_mnt_root(s, seq);
5001 case STATMOUNT_MNT_POINT:
5002 sm->mnt_point = seq->count;
5003 ret = statmount_mnt_point(s, seq);
5010 if (unlikely(check_add_overflow(sizeof(*sm), seq->count, &kbufsize)))
5012 if (kbufsize >= s->bufsize)
5015 /* signal a retry */
5016 if (unlikely(seq_has_overflowed(seq)))
5022 seq->buf[seq->count++] = '\0';
5027 static int copy_statmount_to_user(struct kstatmount *s)
5029 struct statmount *sm = &s->sm;
5030 struct seq_file *seq = &s->seq;
5031 char __user *str = ((char __user *)s->buf) + sizeof(*sm);
5032 size_t copysize = min_t(size_t, s->bufsize, sizeof(*sm));
5034 if (seq->count && copy_to_user(str, seq->buf, seq->count))
5037 /* Return the number of bytes copied to the buffer */
5038 sm->size = copysize + seq->count;
5039 if (copy_to_user(s->buf, sm, copysize))
5045 static int do_statmount(struct kstatmount *s)
5047 struct mount *m = real_mount(s->mnt);
5048 struct mnt_namespace *ns = m->mnt_ns;
5052 * Don't trigger audit denials. We just want to determine what
5053 * mounts to show users.
5055 if (!is_path_reachable(m, m->mnt.mnt_root, &s->root) &&
5056 !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN))
5059 err = security_sb_statfs(s->mnt->mnt_root);
5063 if (s->mask & STATMOUNT_SB_BASIC)
5064 statmount_sb_basic(s);
5066 if (s->mask & STATMOUNT_MNT_BASIC)
5067 statmount_mnt_basic(s);
5069 if (s->mask & STATMOUNT_PROPAGATE_FROM)
5070 statmount_propagate_from(s);
5072 if (s->mask & STATMOUNT_FS_TYPE)
5073 err = statmount_string(s, STATMOUNT_FS_TYPE);
5075 if (!err && s->mask & STATMOUNT_MNT_ROOT)
5076 err = statmount_string(s, STATMOUNT_MNT_ROOT);
5078 if (!err && s->mask & STATMOUNT_MNT_POINT)
5079 err = statmount_string(s, STATMOUNT_MNT_POINT);
5081 if (!err && s->mask & STATMOUNT_MNT_NS_ID)
5082 statmount_mnt_ns_id(s);
5090 static inline bool retry_statmount(const long ret, size_t *seq_size)
5092 if (likely(ret != -EAGAIN))
5094 if (unlikely(check_mul_overflow(*seq_size, 2, seq_size)))
5096 if (unlikely(*seq_size > MAX_RW_COUNT))
5101 static int prepare_kstatmount(struct kstatmount *ks, struct mnt_id_req *kreq,
5102 struct statmount __user *buf, size_t bufsize,
5105 if (!access_ok(buf, bufsize))
5108 memset(ks, 0, sizeof(*ks));
5109 ks->mask = kreq->param;
5111 ks->bufsize = bufsize;
5112 ks->seq.size = seq_size;
5113 ks->seq.buf = kvmalloc(seq_size, GFP_KERNEL_ACCOUNT);
5119 static int copy_mnt_id_req(const struct mnt_id_req __user *req,
5120 struct mnt_id_req *kreq)
5125 BUILD_BUG_ON(sizeof(struct mnt_id_req) != MNT_ID_REQ_SIZE_VER1);
5127 ret = get_user(usize, &req->size);
5130 if (unlikely(usize > PAGE_SIZE))
5132 if (unlikely(usize < MNT_ID_REQ_SIZE_VER0))
5134 memset(kreq, 0, sizeof(*kreq));
5135 ret = copy_struct_from_user(kreq, sizeof(*kreq), req, usize);
5138 if (kreq->spare != 0)
5143 static struct mount *listmnt_next(struct mount *curr, bool reverse)
5145 struct rb_node *node;
5148 node = rb_prev(&curr->mnt_node);
5150 node = rb_next(&curr->mnt_node);
5152 return node_to_mount(node);
5155 static int grab_requested_root(struct mnt_namespace *ns, struct path *root)
5157 struct mount *first;
5159 rwsem_assert_held(&namespace_sem);
5161 /* We're looking at our own ns, just use get_fs_root. */
5162 if (ns == current->nsproxy->mnt_ns) {
5163 get_fs_root(current->fs, root);
5168 * We have to find the first mount in our ns and use that, however it
5169 * may not exist, so handle that properly.
5171 if (RB_EMPTY_ROOT(&ns->mounts))
5174 first = listmnt_next(ns->root, false);
5177 root->mnt = mntget(&first->mnt);
5178 root->dentry = dget(root->mnt->mnt_root);
5183 * If the user requested a specific mount namespace id, look that up and return
5184 * that, or if not simply grab a passive reference on our mount namespace and
5187 static struct mnt_namespace *grab_requested_mnt_ns(u64 mnt_ns_id)
5190 return lookup_mnt_ns(mnt_ns_id);
5191 refcount_inc(¤t->nsproxy->mnt_ns->passive);
5192 return current->nsproxy->mnt_ns;
5195 SYSCALL_DEFINE4(statmount, const struct mnt_id_req __user *, req,
5196 struct statmount __user *, buf, size_t, bufsize,
5197 unsigned int, flags)
5199 struct vfsmount *mnt;
5200 struct mnt_id_req kreq;
5201 struct kstatmount ks;
5202 /* We currently support retrieval of 3 strings. */
5203 size_t seq_size = 3 * PATH_MAX;
5209 ret = copy_mnt_id_req(req, &kreq);
5214 ret = prepare_kstatmount(&ks, &kreq, buf, bufsize, seq_size);
5218 down_read(&namespace_sem);
5219 mnt = lookup_mnt_in_ns(kreq.mnt_id, current->nsproxy->mnt_ns);
5221 up_read(&namespace_sem);
5227 get_fs_root(current->fs, &ks.root);
5228 ret = do_statmount(&ks);
5230 up_read(&namespace_sem);
5233 ret = copy_statmount_to_user(&ks);
5235 if (retry_statmount(ret, &seq_size))
5240 static ssize_t do_listmount(struct mnt_namespace *ns, u64 mnt_parent_id,
5241 u64 last_mnt_id, u64 *mnt_ids, size_t nr_mnt_ids,
5244 struct path root __free(path_put) = {};
5246 struct mount *r, *first;
5249 rwsem_assert_held(&namespace_sem);
5251 ret = grab_requested_root(ns, &root);
5255 if (mnt_parent_id == LSMT_ROOT) {
5258 orig.mnt = lookup_mnt_in_ns(mnt_parent_id, ns);
5261 orig.dentry = orig.mnt->mnt_root;
5265 * Don't trigger audit denials. We just want to determine what
5266 * mounts to show users.
5268 if (!is_path_reachable(real_mount(orig.mnt), orig.dentry, &root) &&
5269 !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN))
5272 ret = security_sb_statfs(orig.dentry);
5278 first = node_to_mount(rb_last(&ns->mounts));
5280 first = node_to_mount(rb_first(&ns->mounts));
5283 first = mnt_find_id_at_reverse(ns, last_mnt_id - 1);
5285 first = mnt_find_id_at(ns, last_mnt_id + 1);
5288 for (ret = 0, r = first; r && nr_mnt_ids; r = listmnt_next(r, reverse)) {
5289 if (r->mnt_id_unique == mnt_parent_id)
5291 if (!is_path_reachable(r, r->mnt.mnt_root, &orig))
5293 *mnt_ids = r->mnt_id_unique;
5301 SYSCALL_DEFINE4(listmount, const struct mnt_id_req __user *, req,
5302 u64 __user *, mnt_ids, size_t, nr_mnt_ids, unsigned int, flags)
5304 u64 *kmnt_ids __free(kvfree) = NULL;
5305 const size_t maxcount = 1000000;
5306 struct mnt_namespace *ns __free(mnt_ns_release) = NULL;
5307 struct mnt_id_req kreq;
5310 if (flags & ~LISTMOUNT_REVERSE)
5314 * If the mount namespace really has more than 1 million mounts the
5315 * caller must iterate over the mount namespace (and reconsider their
5316 * system design...).
5318 if (unlikely(nr_mnt_ids > maxcount))
5321 if (!access_ok(mnt_ids, nr_mnt_ids * sizeof(*mnt_ids)))
5324 ret = copy_mnt_id_req(req, &kreq);
5328 kmnt_ids = kvmalloc_array(nr_mnt_ids, sizeof(*kmnt_ids),
5329 GFP_KERNEL_ACCOUNT);
5333 ns = grab_requested_mnt_ns(kreq.mnt_ns_id);
5337 if (kreq.mnt_ns_id && (ns != current->nsproxy->mnt_ns) &&
5338 !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN))
5341 scoped_guard(rwsem_read, &namespace_sem)
5342 ret = do_listmount(ns, kreq.mnt_id, kreq.param, kmnt_ids,
5343 nr_mnt_ids, (flags & LISTMOUNT_REVERSE));
5345 if (copy_to_user(mnt_ids, kmnt_ids, ret * sizeof(*mnt_ids)))
5351 static void __init init_mount_tree(void)
5353 struct vfsmount *mnt;
5355 struct mnt_namespace *ns;
5358 mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL);
5360 panic("Can't create rootfs");
5362 ns = alloc_mnt_ns(&init_user_ns, false);
5364 panic("Can't allocate initial namespace");
5365 m = real_mount(mnt);
5368 mnt_add_to_ns(ns, m);
5369 init_task.nsproxy->mnt_ns = ns;
5373 root.dentry = mnt->mnt_root;
5374 mnt->mnt_flags |= MNT_LOCKED;
5376 set_fs_pwd(current->fs, &root);
5377 set_fs_root(current->fs, &root);
5379 mnt_ns_tree_add(ns);
5382 void __init mnt_init(void)
5386 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
5387 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
5389 mount_hashtable = alloc_large_system_hash("Mount-cache",
5390 sizeof(struct hlist_head),
5393 &m_hash_shift, &m_hash_mask, 0, 0);
5394 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
5395 sizeof(struct hlist_head),
5398 &mp_hash_shift, &mp_hash_mask, 0, 0);
5400 if (!mount_hashtable || !mountpoint_hashtable)
5401 panic("Failed to allocate mount hash table\n");
5407 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
5409 fs_kobj = kobject_create_and_add("fs", NULL);
5411 printk(KERN_WARNING "%s: kobj create error\n", __func__);
5417 void put_mnt_ns(struct mnt_namespace *ns)
5419 if (!refcount_dec_and_test(&ns->ns.count))
5421 drop_collected_mounts(&ns->root->mnt);
5425 struct vfsmount *kern_mount(struct file_system_type *type)
5427 struct vfsmount *mnt;
5428 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
5431 * it is a longterm mount, don't release mnt until
5432 * we unmount before file sys is unregistered
5434 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
5438 EXPORT_SYMBOL_GPL(kern_mount);
5440 void kern_unmount(struct vfsmount *mnt)
5442 /* release long term mount so mount point can be released */
5444 mnt_make_shortterm(mnt);
5445 synchronize_rcu(); /* yecchhh... */
5449 EXPORT_SYMBOL(kern_unmount);
5451 void kern_unmount_array(struct vfsmount *mnt[], unsigned int num)
5455 for (i = 0; i < num; i++)
5456 mnt_make_shortterm(mnt[i]);
5457 synchronize_rcu_expedited();
5458 for (i = 0; i < num; i++)
5461 EXPORT_SYMBOL(kern_unmount_array);
5463 bool our_mnt(struct vfsmount *mnt)
5465 return check_mnt(real_mount(mnt));
5468 bool current_chrooted(void)
5470 /* Does the current process have a non-standard root */
5471 struct path ns_root;
5472 struct path fs_root;
5475 /* Find the namespace root */
5476 ns_root.mnt = ¤t->nsproxy->mnt_ns->root->mnt;
5477 ns_root.dentry = ns_root.mnt->mnt_root;
5479 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
5482 get_fs_root(current->fs, &fs_root);
5484 chrooted = !path_equal(&fs_root, &ns_root);
5492 static bool mnt_already_visible(struct mnt_namespace *ns,
5493 const struct super_block *sb,
5496 int new_flags = *new_mnt_flags;
5497 struct mount *mnt, *n;
5498 bool visible = false;
5500 down_read(&namespace_sem);
5501 rbtree_postorder_for_each_entry_safe(mnt, n, &ns->mounts, mnt_node) {
5502 struct mount *child;
5505 if (mnt->mnt.mnt_sb->s_type != sb->s_type)
5508 /* This mount is not fully visible if it's root directory
5509 * is not the root directory of the filesystem.
5511 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
5514 /* A local view of the mount flags */
5515 mnt_flags = mnt->mnt.mnt_flags;
5517 /* Don't miss readonly hidden in the superblock flags */
5518 if (sb_rdonly(mnt->mnt.mnt_sb))
5519 mnt_flags |= MNT_LOCK_READONLY;
5521 /* Verify the mount flags are equal to or more permissive
5522 * than the proposed new mount.
5524 if ((mnt_flags & MNT_LOCK_READONLY) &&
5525 !(new_flags & MNT_READONLY))
5527 if ((mnt_flags & MNT_LOCK_ATIME) &&
5528 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
5531 /* This mount is not fully visible if there are any
5532 * locked child mounts that cover anything except for
5533 * empty directories.
5535 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
5536 struct inode *inode = child->mnt_mountpoint->d_inode;
5537 /* Only worry about locked mounts */
5538 if (!(child->mnt.mnt_flags & MNT_LOCKED))
5540 /* Is the directory permanetly empty? */
5541 if (!is_empty_dir_inode(inode))
5544 /* Preserve the locked attributes */
5545 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
5552 up_read(&namespace_sem);
5556 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
5558 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
5559 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
5560 unsigned long s_iflags;
5562 if (ns->user_ns == &init_user_ns)
5565 /* Can this filesystem be too revealing? */
5566 s_iflags = sb->s_iflags;
5567 if (!(s_iflags & SB_I_USERNS_VISIBLE))
5570 if ((s_iflags & required_iflags) != required_iflags) {
5571 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
5576 return !mnt_already_visible(ns, sb, new_mnt_flags);
5579 bool mnt_may_suid(struct vfsmount *mnt)
5582 * Foreign mounts (accessed via fchdir or through /proc
5583 * symlinks) are always treated as if they are nosuid. This
5584 * prevents namespaces from trusting potentially unsafe
5585 * suid/sgid bits, file caps, or security labels that originate
5586 * in other namespaces.
5588 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
5589 current_in_userns(mnt->mnt_sb->s_user_ns);
5592 static struct ns_common *mntns_get(struct task_struct *task)
5594 struct ns_common *ns = NULL;
5595 struct nsproxy *nsproxy;
5598 nsproxy = task->nsproxy;
5600 ns = &nsproxy->mnt_ns->ns;
5601 get_mnt_ns(to_mnt_ns(ns));
5608 static void mntns_put(struct ns_common *ns)
5610 put_mnt_ns(to_mnt_ns(ns));
5613 static int mntns_install(struct nsset *nsset, struct ns_common *ns)
5615 struct nsproxy *nsproxy = nsset->nsproxy;
5616 struct fs_struct *fs = nsset->fs;
5617 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
5618 struct user_namespace *user_ns = nsset->cred->user_ns;
5622 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
5623 !ns_capable(user_ns, CAP_SYS_CHROOT) ||
5624 !ns_capable(user_ns, CAP_SYS_ADMIN))
5627 if (is_anon_ns(mnt_ns))
5634 old_mnt_ns = nsproxy->mnt_ns;
5635 nsproxy->mnt_ns = mnt_ns;
5638 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
5639 "/", LOOKUP_DOWN, &root);
5641 /* revert to old namespace */
5642 nsproxy->mnt_ns = old_mnt_ns;
5647 put_mnt_ns(old_mnt_ns);
5649 /* Update the pwd and root */
5650 set_fs_pwd(fs, &root);
5651 set_fs_root(fs, &root);
5657 static struct user_namespace *mntns_owner(struct ns_common *ns)
5659 return to_mnt_ns(ns)->user_ns;
5662 const struct proc_ns_operations mntns_operations = {
5664 .type = CLONE_NEWNS,
5667 .install = mntns_install,
5668 .owner = mntns_owner,
5671 #ifdef CONFIG_SYSCTL
5672 static struct ctl_table fs_namespace_sysctls[] = {
5674 .procname = "mount-max",
5675 .data = &sysctl_mount_max,
5676 .maxlen = sizeof(unsigned int),
5678 .proc_handler = proc_dointvec_minmax,
5679 .extra1 = SYSCTL_ONE,
5683 static int __init init_fs_namespace_sysctls(void)
5685 register_sysctl_init("fs", fs_namespace_sysctls);
5688 fs_initcall(init_fs_namespace_sysctls);
5690 #endif /* CONFIG_SYSCTL */