4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
11 * Multiqueue VM started 5.8.00, Rik van Riel.
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h> /* for try_to_release_page(),
30 buffer_heads_over_limit */
31 #include <linux/mm_inline.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rmap.h>
34 #include <linux/topology.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/compaction.h>
38 #include <linux/notifier.h>
39 #include <linux/rwsem.h>
40 #include <linux/delay.h>
41 #include <linux/kthread.h>
42 #include <linux/freezer.h>
43 #include <linux/memcontrol.h>
44 #include <linux/delayacct.h>
45 #include <linux/sysctl.h>
46 #include <linux/oom.h>
47 #include <linux/prefetch.h>
48 #include <linux/printk.h>
50 #include <asm/tlbflush.h>
51 #include <asm/div64.h>
53 #include <linux/swapops.h>
54 #include <linux/balloon_compaction.h>
58 #define CREATE_TRACE_POINTS
59 #include <trace/events/vmscan.h>
62 /* How many pages shrink_list() should reclaim */
63 unsigned long nr_to_reclaim;
65 /* This context's GFP mask */
68 /* Allocation order */
72 * Nodemask of nodes allowed by the caller. If NULL, all nodes
78 * The memory cgroup that hit its limit and as a result is the
79 * primary target of this reclaim invocation.
81 struct mem_cgroup *target_mem_cgroup;
83 /* Scan (total_size >> priority) pages at once */
86 unsigned int may_writepage:1;
88 /* Can mapped pages be reclaimed? */
89 unsigned int may_unmap:1;
91 /* Can pages be swapped as part of reclaim? */
92 unsigned int may_swap:1;
94 unsigned int hibernation_mode:1;
96 /* One of the zones is ready for compaction */
97 unsigned int compaction_ready:1;
99 /* Incremented by the number of inactive pages that were scanned */
100 unsigned long nr_scanned;
102 /* Number of pages freed so far during a call to shrink_zones() */
103 unsigned long nr_reclaimed;
106 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
108 #ifdef ARCH_HAS_PREFETCH
109 #define prefetch_prev_lru_page(_page, _base, _field) \
111 if ((_page)->lru.prev != _base) { \
114 prev = lru_to_page(&(_page->lru)); \
115 prefetch(&prev->_field); \
119 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
122 #ifdef ARCH_HAS_PREFETCHW
123 #define prefetchw_prev_lru_page(_page, _base, _field) \
125 if ((_page)->lru.prev != _base) { \
128 prev = lru_to_page(&(_page->lru)); \
129 prefetchw(&prev->_field); \
133 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
137 * From 0 .. 100. Higher means more swappy.
139 int vm_swappiness = 60;
141 * The total number of pages which are beyond the high watermark within all
144 unsigned long vm_total_pages;
146 static LIST_HEAD(shrinker_list);
147 static DECLARE_RWSEM(shrinker_rwsem);
150 static bool global_reclaim(struct scan_control *sc)
152 return !sc->target_mem_cgroup;
155 static bool global_reclaim(struct scan_control *sc)
161 static unsigned long zone_reclaimable_pages(struct zone *zone)
165 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
166 zone_page_state(zone, NR_INACTIVE_FILE);
168 if (get_nr_swap_pages() > 0)
169 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
170 zone_page_state(zone, NR_INACTIVE_ANON);
175 bool zone_reclaimable(struct zone *zone)
177 return zone_page_state(zone, NR_PAGES_SCANNED) <
178 zone_reclaimable_pages(zone) * 6;
181 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
183 if (!mem_cgroup_disabled())
184 return mem_cgroup_get_lru_size(lruvec, lru);
186 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
190 * Add a shrinker callback to be called from the vm.
192 int register_shrinker(struct shrinker *shrinker)
194 size_t size = sizeof(*shrinker->nr_deferred);
197 * If we only have one possible node in the system anyway, save
198 * ourselves the trouble and disable NUMA aware behavior. This way we
199 * will save memory and some small loop time later.
201 if (nr_node_ids == 1)
202 shrinker->flags &= ~SHRINKER_NUMA_AWARE;
204 if (shrinker->flags & SHRINKER_NUMA_AWARE)
207 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
208 if (!shrinker->nr_deferred)
211 down_write(&shrinker_rwsem);
212 list_add_tail(&shrinker->list, &shrinker_list);
213 up_write(&shrinker_rwsem);
216 EXPORT_SYMBOL(register_shrinker);
221 void unregister_shrinker(struct shrinker *shrinker)
223 down_write(&shrinker_rwsem);
224 list_del(&shrinker->list);
225 up_write(&shrinker_rwsem);
226 kfree(shrinker->nr_deferred);
228 EXPORT_SYMBOL(unregister_shrinker);
230 #define SHRINK_BATCH 128
233 shrink_slab_node(struct shrink_control *shrinkctl, struct shrinker *shrinker,
234 unsigned long nr_pages_scanned, unsigned long lru_pages)
236 unsigned long freed = 0;
237 unsigned long long delta;
242 int nid = shrinkctl->nid;
243 long batch_size = shrinker->batch ? shrinker->batch
246 freeable = shrinker->count_objects(shrinker, shrinkctl);
251 * copy the current shrinker scan count into a local variable
252 * and zero it so that other concurrent shrinker invocations
253 * don't also do this scanning work.
255 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
258 delta = (4 * nr_pages_scanned) / shrinker->seeks;
260 do_div(delta, lru_pages + 1);
262 if (total_scan < 0) {
264 "shrink_slab: %pF negative objects to delete nr=%ld\n",
265 shrinker->scan_objects, total_scan);
266 total_scan = freeable;
270 * We need to avoid excessive windup on filesystem shrinkers
271 * due to large numbers of GFP_NOFS allocations causing the
272 * shrinkers to return -1 all the time. This results in a large
273 * nr being built up so when a shrink that can do some work
274 * comes along it empties the entire cache due to nr >>>
275 * freeable. This is bad for sustaining a working set in
278 * Hence only allow the shrinker to scan the entire cache when
279 * a large delta change is calculated directly.
281 if (delta < freeable / 4)
282 total_scan = min(total_scan, freeable / 2);
285 * Avoid risking looping forever due to too large nr value:
286 * never try to free more than twice the estimate number of
289 if (total_scan > freeable * 2)
290 total_scan = freeable * 2;
292 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
293 nr_pages_scanned, lru_pages,
294 freeable, delta, total_scan);
297 * Normally, we should not scan less than batch_size objects in one
298 * pass to avoid too frequent shrinker calls, but if the slab has less
299 * than batch_size objects in total and we are really tight on memory,
300 * we will try to reclaim all available objects, otherwise we can end
301 * up failing allocations although there are plenty of reclaimable
302 * objects spread over several slabs with usage less than the
305 * We detect the "tight on memory" situations by looking at the total
306 * number of objects we want to scan (total_scan). If it is greater
307 * than the total number of objects on slab (freeable), we must be
308 * scanning at high prio and therefore should try to reclaim as much as
311 while (total_scan >= batch_size ||
312 total_scan >= freeable) {
314 unsigned long nr_to_scan = min(batch_size, total_scan);
316 shrinkctl->nr_to_scan = nr_to_scan;
317 ret = shrinker->scan_objects(shrinker, shrinkctl);
318 if (ret == SHRINK_STOP)
322 count_vm_events(SLABS_SCANNED, nr_to_scan);
323 total_scan -= nr_to_scan;
329 * move the unused scan count back into the shrinker in a
330 * manner that handles concurrent updates. If we exhausted the
331 * scan, there is no need to do an update.
334 new_nr = atomic_long_add_return(total_scan,
335 &shrinker->nr_deferred[nid]);
337 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
339 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
344 * Call the shrink functions to age shrinkable caches
346 * Here we assume it costs one seek to replace a lru page and that it also
347 * takes a seek to recreate a cache object. With this in mind we age equal
348 * percentages of the lru and ageable caches. This should balance the seeks
349 * generated by these structures.
351 * If the vm encountered mapped pages on the LRU it increase the pressure on
352 * slab to avoid swapping.
354 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
356 * `lru_pages' represents the number of on-LRU pages in all the zones which
357 * are eligible for the caller's allocation attempt. It is used for balancing
358 * slab reclaim versus page reclaim.
360 * Returns the number of slab objects which we shrunk.
362 unsigned long shrink_slab(struct shrink_control *shrinkctl,
363 unsigned long nr_pages_scanned,
364 unsigned long lru_pages)
366 struct shrinker *shrinker;
367 unsigned long freed = 0;
369 if (nr_pages_scanned == 0)
370 nr_pages_scanned = SWAP_CLUSTER_MAX;
372 if (!down_read_trylock(&shrinker_rwsem)) {
374 * If we would return 0, our callers would understand that we
375 * have nothing else to shrink and give up trying. By returning
376 * 1 we keep it going and assume we'll be able to shrink next
383 list_for_each_entry(shrinker, &shrinker_list, list) {
384 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) {
386 freed += shrink_slab_node(shrinkctl, shrinker,
387 nr_pages_scanned, lru_pages);
391 for_each_node_mask(shrinkctl->nid, shrinkctl->nodes_to_scan) {
392 if (node_online(shrinkctl->nid))
393 freed += shrink_slab_node(shrinkctl, shrinker,
394 nr_pages_scanned, lru_pages);
398 up_read(&shrinker_rwsem);
404 static inline int is_page_cache_freeable(struct page *page)
407 * A freeable page cache page is referenced only by the caller
408 * that isolated the page, the page cache radix tree and
409 * optional buffer heads at page->private.
411 return page_count(page) - page_has_private(page) == 2;
414 static int may_write_to_queue(struct backing_dev_info *bdi,
415 struct scan_control *sc)
417 if (current->flags & PF_SWAPWRITE)
419 if (!bdi_write_congested(bdi))
421 if (bdi == current->backing_dev_info)
427 * We detected a synchronous write error writing a page out. Probably
428 * -ENOSPC. We need to propagate that into the address_space for a subsequent
429 * fsync(), msync() or close().
431 * The tricky part is that after writepage we cannot touch the mapping: nothing
432 * prevents it from being freed up. But we have a ref on the page and once
433 * that page is locked, the mapping is pinned.
435 * We're allowed to run sleeping lock_page() here because we know the caller has
438 static void handle_write_error(struct address_space *mapping,
439 struct page *page, int error)
442 if (page_mapping(page) == mapping)
443 mapping_set_error(mapping, error);
447 /* possible outcome of pageout() */
449 /* failed to write page out, page is locked */
451 /* move page to the active list, page is locked */
453 /* page has been sent to the disk successfully, page is unlocked */
455 /* page is clean and locked */
460 * pageout is called by shrink_page_list() for each dirty page.
461 * Calls ->writepage().
463 static pageout_t pageout(struct page *page, struct address_space *mapping,
464 struct scan_control *sc)
467 * If the page is dirty, only perform writeback if that write
468 * will be non-blocking. To prevent this allocation from being
469 * stalled by pagecache activity. But note that there may be
470 * stalls if we need to run get_block(). We could test
471 * PagePrivate for that.
473 * If this process is currently in __generic_file_write_iter() against
474 * this page's queue, we can perform writeback even if that
477 * If the page is swapcache, write it back even if that would
478 * block, for some throttling. This happens by accident, because
479 * swap_backing_dev_info is bust: it doesn't reflect the
480 * congestion state of the swapdevs. Easy to fix, if needed.
482 if (!is_page_cache_freeable(page))
486 * Some data journaling orphaned pages can have
487 * page->mapping == NULL while being dirty with clean buffers.
489 if (page_has_private(page)) {
490 if (try_to_free_buffers(page)) {
491 ClearPageDirty(page);
492 pr_info("%s: orphaned page\n", __func__);
498 if (mapping->a_ops->writepage == NULL)
499 return PAGE_ACTIVATE;
500 if (!may_write_to_queue(mapping->backing_dev_info, sc))
503 if (clear_page_dirty_for_io(page)) {
505 struct writeback_control wbc = {
506 .sync_mode = WB_SYNC_NONE,
507 .nr_to_write = SWAP_CLUSTER_MAX,
509 .range_end = LLONG_MAX,
513 SetPageReclaim(page);
514 res = mapping->a_ops->writepage(page, &wbc);
516 handle_write_error(mapping, page, res);
517 if (res == AOP_WRITEPAGE_ACTIVATE) {
518 ClearPageReclaim(page);
519 return PAGE_ACTIVATE;
522 if (!PageWriteback(page)) {
523 /* synchronous write or broken a_ops? */
524 ClearPageReclaim(page);
526 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
527 inc_zone_page_state(page, NR_VMSCAN_WRITE);
535 * Same as remove_mapping, but if the page is removed from the mapping, it
536 * gets returned with a refcount of 0.
538 static int __remove_mapping(struct address_space *mapping, struct page *page,
541 BUG_ON(!PageLocked(page));
542 BUG_ON(mapping != page_mapping(page));
544 spin_lock_irq(&mapping->tree_lock);
546 * The non racy check for a busy page.
548 * Must be careful with the order of the tests. When someone has
549 * a ref to the page, it may be possible that they dirty it then
550 * drop the reference. So if PageDirty is tested before page_count
551 * here, then the following race may occur:
553 * get_user_pages(&page);
554 * [user mapping goes away]
556 * !PageDirty(page) [good]
557 * SetPageDirty(page);
559 * !page_count(page) [good, discard it]
561 * [oops, our write_to data is lost]
563 * Reversing the order of the tests ensures such a situation cannot
564 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
565 * load is not satisfied before that of page->_count.
567 * Note that if SetPageDirty is always performed via set_page_dirty,
568 * and thus under tree_lock, then this ordering is not required.
570 if (!page_freeze_refs(page, 2))
572 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
573 if (unlikely(PageDirty(page))) {
574 page_unfreeze_refs(page, 2);
578 if (PageSwapCache(page)) {
579 swp_entry_t swap = { .val = page_private(page) };
580 mem_cgroup_swapout(page, swap);
581 __delete_from_swap_cache(page);
582 spin_unlock_irq(&mapping->tree_lock);
583 swapcache_free(swap);
585 void (*freepage)(struct page *);
588 freepage = mapping->a_ops->freepage;
590 * Remember a shadow entry for reclaimed file cache in
591 * order to detect refaults, thus thrashing, later on.
593 * But don't store shadows in an address space that is
594 * already exiting. This is not just an optizimation,
595 * inode reclaim needs to empty out the radix tree or
596 * the nodes are lost. Don't plant shadows behind its
599 if (reclaimed && page_is_file_cache(page) &&
600 !mapping_exiting(mapping))
601 shadow = workingset_eviction(mapping, page);
602 __delete_from_page_cache(page, shadow);
603 spin_unlock_irq(&mapping->tree_lock);
605 if (freepage != NULL)
612 spin_unlock_irq(&mapping->tree_lock);
617 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
618 * someone else has a ref on the page, abort and return 0. If it was
619 * successfully detached, return 1. Assumes the caller has a single ref on
622 int remove_mapping(struct address_space *mapping, struct page *page)
624 if (__remove_mapping(mapping, page, false)) {
626 * Unfreezing the refcount with 1 rather than 2 effectively
627 * drops the pagecache ref for us without requiring another
630 page_unfreeze_refs(page, 1);
637 * putback_lru_page - put previously isolated page onto appropriate LRU list
638 * @page: page to be put back to appropriate lru list
640 * Add previously isolated @page to appropriate LRU list.
641 * Page may still be unevictable for other reasons.
643 * lru_lock must not be held, interrupts must be enabled.
645 void putback_lru_page(struct page *page)
648 int was_unevictable = PageUnevictable(page);
650 VM_BUG_ON_PAGE(PageLRU(page), page);
653 ClearPageUnevictable(page);
655 if (page_evictable(page)) {
657 * For evictable pages, we can use the cache.
658 * In event of a race, worst case is we end up with an
659 * unevictable page on [in]active list.
660 * We know how to handle that.
662 is_unevictable = false;
666 * Put unevictable pages directly on zone's unevictable
669 is_unevictable = true;
670 add_page_to_unevictable_list(page);
672 * When racing with an mlock or AS_UNEVICTABLE clearing
673 * (page is unlocked) make sure that if the other thread
674 * does not observe our setting of PG_lru and fails
675 * isolation/check_move_unevictable_pages,
676 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
677 * the page back to the evictable list.
679 * The other side is TestClearPageMlocked() or shmem_lock().
685 * page's status can change while we move it among lru. If an evictable
686 * page is on unevictable list, it never be freed. To avoid that,
687 * check after we added it to the list, again.
689 if (is_unevictable && page_evictable(page)) {
690 if (!isolate_lru_page(page)) {
694 /* This means someone else dropped this page from LRU
695 * So, it will be freed or putback to LRU again. There is
696 * nothing to do here.
700 if (was_unevictable && !is_unevictable)
701 count_vm_event(UNEVICTABLE_PGRESCUED);
702 else if (!was_unevictable && is_unevictable)
703 count_vm_event(UNEVICTABLE_PGCULLED);
705 put_page(page); /* drop ref from isolate */
708 enum page_references {
710 PAGEREF_RECLAIM_CLEAN,
715 static enum page_references page_check_references(struct page *page,
716 struct scan_control *sc)
718 int referenced_ptes, referenced_page;
719 unsigned long vm_flags;
721 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
723 referenced_page = TestClearPageReferenced(page);
726 * Mlock lost the isolation race with us. Let try_to_unmap()
727 * move the page to the unevictable list.
729 if (vm_flags & VM_LOCKED)
730 return PAGEREF_RECLAIM;
732 if (referenced_ptes) {
733 if (PageSwapBacked(page))
734 return PAGEREF_ACTIVATE;
736 * All mapped pages start out with page table
737 * references from the instantiating fault, so we need
738 * to look twice if a mapped file page is used more
741 * Mark it and spare it for another trip around the
742 * inactive list. Another page table reference will
743 * lead to its activation.
745 * Note: the mark is set for activated pages as well
746 * so that recently deactivated but used pages are
749 SetPageReferenced(page);
751 if (referenced_page || referenced_ptes > 1)
752 return PAGEREF_ACTIVATE;
755 * Activate file-backed executable pages after first usage.
757 if (vm_flags & VM_EXEC)
758 return PAGEREF_ACTIVATE;
763 /* Reclaim if clean, defer dirty pages to writeback */
764 if (referenced_page && !PageSwapBacked(page))
765 return PAGEREF_RECLAIM_CLEAN;
767 return PAGEREF_RECLAIM;
770 /* Check if a page is dirty or under writeback */
771 static void page_check_dirty_writeback(struct page *page,
772 bool *dirty, bool *writeback)
774 struct address_space *mapping;
777 * Anonymous pages are not handled by flushers and must be written
778 * from reclaim context. Do not stall reclaim based on them
780 if (!page_is_file_cache(page)) {
786 /* By default assume that the page flags are accurate */
787 *dirty = PageDirty(page);
788 *writeback = PageWriteback(page);
790 /* Verify dirty/writeback state if the filesystem supports it */
791 if (!page_has_private(page))
794 mapping = page_mapping(page);
795 if (mapping && mapping->a_ops->is_dirty_writeback)
796 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
800 * shrink_page_list() returns the number of reclaimed pages
802 static unsigned long shrink_page_list(struct list_head *page_list,
804 struct scan_control *sc,
805 enum ttu_flags ttu_flags,
806 unsigned long *ret_nr_dirty,
807 unsigned long *ret_nr_unqueued_dirty,
808 unsigned long *ret_nr_congested,
809 unsigned long *ret_nr_writeback,
810 unsigned long *ret_nr_immediate,
813 LIST_HEAD(ret_pages);
814 LIST_HEAD(free_pages);
816 unsigned long nr_unqueued_dirty = 0;
817 unsigned long nr_dirty = 0;
818 unsigned long nr_congested = 0;
819 unsigned long nr_reclaimed = 0;
820 unsigned long nr_writeback = 0;
821 unsigned long nr_immediate = 0;
825 mem_cgroup_uncharge_start();
826 while (!list_empty(page_list)) {
827 struct address_space *mapping;
830 enum page_references references = PAGEREF_RECLAIM_CLEAN;
831 bool dirty, writeback;
835 page = lru_to_page(page_list);
836 list_del(&page->lru);
838 if (!trylock_page(page))
841 VM_BUG_ON_PAGE(PageActive(page), page);
842 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
846 if (unlikely(!page_evictable(page)))
849 if (!sc->may_unmap && page_mapped(page))
852 /* Double the slab pressure for mapped and swapcache pages */
853 if (page_mapped(page) || PageSwapCache(page))
856 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
857 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
860 * The number of dirty pages determines if a zone is marked
861 * reclaim_congested which affects wait_iff_congested. kswapd
862 * will stall and start writing pages if the tail of the LRU
863 * is all dirty unqueued pages.
865 page_check_dirty_writeback(page, &dirty, &writeback);
866 if (dirty || writeback)
869 if (dirty && !writeback)
873 * Treat this page as congested if the underlying BDI is or if
874 * pages are cycling through the LRU so quickly that the
875 * pages marked for immediate reclaim are making it to the
876 * end of the LRU a second time.
878 mapping = page_mapping(page);
879 if ((mapping && bdi_write_congested(mapping->backing_dev_info)) ||
880 (writeback && PageReclaim(page)))
884 * If a page at the tail of the LRU is under writeback, there
885 * are three cases to consider.
887 * 1) If reclaim is encountering an excessive number of pages
888 * under writeback and this page is both under writeback and
889 * PageReclaim then it indicates that pages are being queued
890 * for IO but are being recycled through the LRU before the
891 * IO can complete. Waiting on the page itself risks an
892 * indefinite stall if it is impossible to writeback the
893 * page due to IO error or disconnected storage so instead
894 * note that the LRU is being scanned too quickly and the
895 * caller can stall after page list has been processed.
897 * 2) Global reclaim encounters a page, memcg encounters a
898 * page that is not marked for immediate reclaim or
899 * the caller does not have __GFP_IO. In this case mark
900 * the page for immediate reclaim and continue scanning.
902 * __GFP_IO is checked because a loop driver thread might
903 * enter reclaim, and deadlock if it waits on a page for
904 * which it is needed to do the write (loop masks off
905 * __GFP_IO|__GFP_FS for this reason); but more thought
906 * would probably show more reasons.
908 * Don't require __GFP_FS, since we're not going into the
909 * FS, just waiting on its writeback completion. Worryingly,
910 * ext4 gfs2 and xfs allocate pages with
911 * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing
912 * may_enter_fs here is liable to OOM on them.
914 * 3) memcg encounters a page that is not already marked
915 * PageReclaim. memcg does not have any dirty pages
916 * throttling so we could easily OOM just because too many
917 * pages are in writeback and there is nothing else to
918 * reclaim. Wait for the writeback to complete.
920 if (PageWriteback(page)) {
922 if (current_is_kswapd() &&
924 zone_is_reclaim_writeback(zone)) {
929 } else if (global_reclaim(sc) ||
930 !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
932 * This is slightly racy - end_page_writeback()
933 * might have just cleared PageReclaim, then
934 * setting PageReclaim here end up interpreted
935 * as PageReadahead - but that does not matter
936 * enough to care. What we do want is for this
937 * page to have PageReclaim set next time memcg
938 * reclaim reaches the tests above, so it will
939 * then wait_on_page_writeback() to avoid OOM;
940 * and it's also appropriate in global reclaim.
942 SetPageReclaim(page);
949 wait_on_page_writeback(page);
954 references = page_check_references(page, sc);
956 switch (references) {
957 case PAGEREF_ACTIVATE:
958 goto activate_locked;
961 case PAGEREF_RECLAIM:
962 case PAGEREF_RECLAIM_CLEAN:
963 ; /* try to reclaim the page below */
967 * Anonymous process memory has backing store?
968 * Try to allocate it some swap space here.
970 if (PageAnon(page) && !PageSwapCache(page)) {
971 if (!(sc->gfp_mask & __GFP_IO))
973 if (!add_to_swap(page, page_list))
974 goto activate_locked;
977 /* Adding to swap updated mapping */
978 mapping = page_mapping(page);
982 * The page is mapped into the page tables of one or more
983 * processes. Try to unmap it here.
985 if (page_mapped(page) && mapping) {
986 switch (try_to_unmap(page, ttu_flags)) {
988 goto activate_locked;
994 ; /* try to free the page below */
998 if (PageDirty(page)) {
1000 * Only kswapd can writeback filesystem pages to
1001 * avoid risk of stack overflow but only writeback
1002 * if many dirty pages have been encountered.
1004 if (page_is_file_cache(page) &&
1005 (!current_is_kswapd() ||
1006 !zone_is_reclaim_dirty(zone))) {
1008 * Immediately reclaim when written back.
1009 * Similar in principal to deactivate_page()
1010 * except we already have the page isolated
1011 * and know it's dirty
1013 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
1014 SetPageReclaim(page);
1019 if (references == PAGEREF_RECLAIM_CLEAN)
1023 if (!sc->may_writepage)
1026 /* Page is dirty, try to write it out here */
1027 switch (pageout(page, mapping, sc)) {
1031 goto activate_locked;
1033 if (PageWriteback(page))
1035 if (PageDirty(page))
1039 * A synchronous write - probably a ramdisk. Go
1040 * ahead and try to reclaim the page.
1042 if (!trylock_page(page))
1044 if (PageDirty(page) || PageWriteback(page))
1046 mapping = page_mapping(page);
1048 ; /* try to free the page below */
1053 * If the page has buffers, try to free the buffer mappings
1054 * associated with this page. If we succeed we try to free
1057 * We do this even if the page is PageDirty().
1058 * try_to_release_page() does not perform I/O, but it is
1059 * possible for a page to have PageDirty set, but it is actually
1060 * clean (all its buffers are clean). This happens if the
1061 * buffers were written out directly, with submit_bh(). ext3
1062 * will do this, as well as the blockdev mapping.
1063 * try_to_release_page() will discover that cleanness and will
1064 * drop the buffers and mark the page clean - it can be freed.
1066 * Rarely, pages can have buffers and no ->mapping. These are
1067 * the pages which were not successfully invalidated in
1068 * truncate_complete_page(). We try to drop those buffers here
1069 * and if that worked, and the page is no longer mapped into
1070 * process address space (page_count == 1) it can be freed.
1071 * Otherwise, leave the page on the LRU so it is swappable.
1073 if (page_has_private(page)) {
1074 if (!try_to_release_page(page, sc->gfp_mask))
1075 goto activate_locked;
1076 if (!mapping && page_count(page) == 1) {
1078 if (put_page_testzero(page))
1082 * rare race with speculative reference.
1083 * the speculative reference will free
1084 * this page shortly, so we may
1085 * increment nr_reclaimed here (and
1086 * leave it off the LRU).
1094 if (!mapping || !__remove_mapping(mapping, page, true))
1098 * At this point, we have no other references and there is
1099 * no way to pick any more up (removed from LRU, removed
1100 * from pagecache). Can use non-atomic bitops now (and
1101 * we obviously don't have to worry about waking up a process
1102 * waiting on the page lock, because there are no references.
1104 __clear_page_locked(page);
1106 mem_cgroup_uncharge(page);
1110 * Is there need to periodically free_page_list? It would
1111 * appear not as the counts should be low
1113 list_add(&page->lru, &free_pages);
1117 if (PageSwapCache(page))
1118 try_to_free_swap(page);
1120 putback_lru_page(page);
1124 /* Not a candidate for swapping, so reclaim swap space. */
1125 if (PageSwapCache(page) && vm_swap_full())
1126 try_to_free_swap(page);
1127 VM_BUG_ON_PAGE(PageActive(page), page);
1128 SetPageActive(page);
1133 list_add(&page->lru, &ret_pages);
1134 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1136 mem_cgroup_uncharge_end();
1138 free_hot_cold_page_list(&free_pages, true);
1140 list_splice(&ret_pages, page_list);
1141 count_vm_events(PGACTIVATE, pgactivate);
1143 *ret_nr_dirty += nr_dirty;
1144 *ret_nr_congested += nr_congested;
1145 *ret_nr_unqueued_dirty += nr_unqueued_dirty;
1146 *ret_nr_writeback += nr_writeback;
1147 *ret_nr_immediate += nr_immediate;
1148 return nr_reclaimed;
1151 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1152 struct list_head *page_list)
1154 struct scan_control sc = {
1155 .gfp_mask = GFP_KERNEL,
1156 .priority = DEF_PRIORITY,
1159 unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
1160 struct page *page, *next;
1161 LIST_HEAD(clean_pages);
1163 list_for_each_entry_safe(page, next, page_list, lru) {
1164 if (page_is_file_cache(page) && !PageDirty(page) &&
1165 !isolated_balloon_page(page)) {
1166 ClearPageActive(page);
1167 list_move(&page->lru, &clean_pages);
1171 ret = shrink_page_list(&clean_pages, zone, &sc,
1172 TTU_UNMAP|TTU_IGNORE_ACCESS,
1173 &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
1174 list_splice(&clean_pages, page_list);
1175 mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
1180 * Attempt to remove the specified page from its LRU. Only take this page
1181 * if it is of the appropriate PageActive status. Pages which are being
1182 * freed elsewhere are also ignored.
1184 * page: page to consider
1185 * mode: one of the LRU isolation modes defined above
1187 * returns 0 on success, -ve errno on failure.
1189 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1193 /* Only take pages on the LRU. */
1197 /* Compaction should not handle unevictable pages but CMA can do so */
1198 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1204 * To minimise LRU disruption, the caller can indicate that it only
1205 * wants to isolate pages it will be able to operate on without
1206 * blocking - clean pages for the most part.
1208 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1209 * is used by reclaim when it is cannot write to backing storage
1211 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1212 * that it is possible to migrate without blocking
1214 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1215 /* All the caller can do on PageWriteback is block */
1216 if (PageWriteback(page))
1219 if (PageDirty(page)) {
1220 struct address_space *mapping;
1222 /* ISOLATE_CLEAN means only clean pages */
1223 if (mode & ISOLATE_CLEAN)
1227 * Only pages without mappings or that have a
1228 * ->migratepage callback are possible to migrate
1231 mapping = page_mapping(page);
1232 if (mapping && !mapping->a_ops->migratepage)
1237 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1240 if (likely(get_page_unless_zero(page))) {
1242 * Be careful not to clear PageLRU until after we're
1243 * sure the page is not being freed elsewhere -- the
1244 * page release code relies on it.
1254 * zone->lru_lock is heavily contended. Some of the functions that
1255 * shrink the lists perform better by taking out a batch of pages
1256 * and working on them outside the LRU lock.
1258 * For pagecache intensive workloads, this function is the hottest
1259 * spot in the kernel (apart from copy_*_user functions).
1261 * Appropriate locks must be held before calling this function.
1263 * @nr_to_scan: The number of pages to look through on the list.
1264 * @lruvec: The LRU vector to pull pages from.
1265 * @dst: The temp list to put pages on to.
1266 * @nr_scanned: The number of pages that were scanned.
1267 * @sc: The scan_control struct for this reclaim session
1268 * @mode: One of the LRU isolation modes
1269 * @lru: LRU list id for isolating
1271 * returns how many pages were moved onto *@dst.
1273 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1274 struct lruvec *lruvec, struct list_head *dst,
1275 unsigned long *nr_scanned, struct scan_control *sc,
1276 isolate_mode_t mode, enum lru_list lru)
1278 struct list_head *src = &lruvec->lists[lru];
1279 unsigned long nr_taken = 0;
1282 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1286 page = lru_to_page(src);
1287 prefetchw_prev_lru_page(page, src, flags);
1289 VM_BUG_ON_PAGE(!PageLRU(page), page);
1291 switch (__isolate_lru_page(page, mode)) {
1293 nr_pages = hpage_nr_pages(page);
1294 mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
1295 list_move(&page->lru, dst);
1296 nr_taken += nr_pages;
1300 /* else it is being freed elsewhere */
1301 list_move(&page->lru, src);
1310 trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1311 nr_taken, mode, is_file_lru(lru));
1316 * isolate_lru_page - tries to isolate a page from its LRU list
1317 * @page: page to isolate from its LRU list
1319 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1320 * vmstat statistic corresponding to whatever LRU list the page was on.
1322 * Returns 0 if the page was removed from an LRU list.
1323 * Returns -EBUSY if the page was not on an LRU list.
1325 * The returned page will have PageLRU() cleared. If it was found on
1326 * the active list, it will have PageActive set. If it was found on
1327 * the unevictable list, it will have the PageUnevictable bit set. That flag
1328 * may need to be cleared by the caller before letting the page go.
1330 * The vmstat statistic corresponding to the list on which the page was
1331 * found will be decremented.
1334 * (1) Must be called with an elevated refcount on the page. This is a
1335 * fundamentnal difference from isolate_lru_pages (which is called
1336 * without a stable reference).
1337 * (2) the lru_lock must not be held.
1338 * (3) interrupts must be enabled.
1340 int isolate_lru_page(struct page *page)
1344 VM_BUG_ON_PAGE(!page_count(page), page);
1346 if (PageLRU(page)) {
1347 struct zone *zone = page_zone(page);
1348 struct lruvec *lruvec;
1350 spin_lock_irq(&zone->lru_lock);
1351 lruvec = mem_cgroup_page_lruvec(page, zone);
1352 if (PageLRU(page)) {
1353 int lru = page_lru(page);
1356 del_page_from_lru_list(page, lruvec, lru);
1359 spin_unlock_irq(&zone->lru_lock);
1365 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1366 * then get resheduled. When there are massive number of tasks doing page
1367 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1368 * the LRU list will go small and be scanned faster than necessary, leading to
1369 * unnecessary swapping, thrashing and OOM.
1371 static int too_many_isolated(struct zone *zone, int file,
1372 struct scan_control *sc)
1374 unsigned long inactive, isolated;
1376 if (current_is_kswapd())
1379 if (!global_reclaim(sc))
1383 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1384 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1386 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1387 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1391 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1392 * won't get blocked by normal direct-reclaimers, forming a circular
1395 if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
1398 return isolated > inactive;
1401 static noinline_for_stack void
1402 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1404 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1405 struct zone *zone = lruvec_zone(lruvec);
1406 LIST_HEAD(pages_to_free);
1409 * Put back any unfreeable pages.
1411 while (!list_empty(page_list)) {
1412 struct page *page = lru_to_page(page_list);
1415 VM_BUG_ON_PAGE(PageLRU(page), page);
1416 list_del(&page->lru);
1417 if (unlikely(!page_evictable(page))) {
1418 spin_unlock_irq(&zone->lru_lock);
1419 putback_lru_page(page);
1420 spin_lock_irq(&zone->lru_lock);
1424 lruvec = mem_cgroup_page_lruvec(page, zone);
1427 lru = page_lru(page);
1428 add_page_to_lru_list(page, lruvec, lru);
1430 if (is_active_lru(lru)) {
1431 int file = is_file_lru(lru);
1432 int numpages = hpage_nr_pages(page);
1433 reclaim_stat->recent_rotated[file] += numpages;
1435 if (put_page_testzero(page)) {
1436 __ClearPageLRU(page);
1437 __ClearPageActive(page);
1438 del_page_from_lru_list(page, lruvec, lru);
1440 mem_cgroup_uncharge(page);
1442 if (unlikely(PageCompound(page))) {
1443 spin_unlock_irq(&zone->lru_lock);
1444 (*get_compound_page_dtor(page))(page);
1445 spin_lock_irq(&zone->lru_lock);
1447 list_add(&page->lru, &pages_to_free);
1452 * To save our caller's stack, now use input list for pages to free.
1454 list_splice(&pages_to_free, page_list);
1458 * If a kernel thread (such as nfsd for loop-back mounts) services
1459 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1460 * In that case we should only throttle if the backing device it is
1461 * writing to is congested. In other cases it is safe to throttle.
1463 static int current_may_throttle(void)
1465 return !(current->flags & PF_LESS_THROTTLE) ||
1466 current->backing_dev_info == NULL ||
1467 bdi_write_congested(current->backing_dev_info);
1471 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1472 * of reclaimed pages
1474 static noinline_for_stack unsigned long
1475 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1476 struct scan_control *sc, enum lru_list lru)
1478 LIST_HEAD(page_list);
1479 unsigned long nr_scanned;
1480 unsigned long nr_reclaimed = 0;
1481 unsigned long nr_taken;
1482 unsigned long nr_dirty = 0;
1483 unsigned long nr_congested = 0;
1484 unsigned long nr_unqueued_dirty = 0;
1485 unsigned long nr_writeback = 0;
1486 unsigned long nr_immediate = 0;
1487 isolate_mode_t isolate_mode = 0;
1488 int file = is_file_lru(lru);
1489 struct zone *zone = lruvec_zone(lruvec);
1490 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1492 while (unlikely(too_many_isolated(zone, file, sc))) {
1493 congestion_wait(BLK_RW_ASYNC, HZ/10);
1495 /* We are about to die and free our memory. Return now. */
1496 if (fatal_signal_pending(current))
1497 return SWAP_CLUSTER_MAX;
1503 isolate_mode |= ISOLATE_UNMAPPED;
1504 if (!sc->may_writepage)
1505 isolate_mode |= ISOLATE_CLEAN;
1507 spin_lock_irq(&zone->lru_lock);
1509 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1510 &nr_scanned, sc, isolate_mode, lru);
1512 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1513 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1515 if (global_reclaim(sc)) {
1516 __mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
1517 if (current_is_kswapd())
1518 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1520 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1522 spin_unlock_irq(&zone->lru_lock);
1527 nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1528 &nr_dirty, &nr_unqueued_dirty, &nr_congested,
1529 &nr_writeback, &nr_immediate,
1532 spin_lock_irq(&zone->lru_lock);
1534 reclaim_stat->recent_scanned[file] += nr_taken;
1536 if (global_reclaim(sc)) {
1537 if (current_is_kswapd())
1538 __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1541 __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1545 putback_inactive_pages(lruvec, &page_list);
1547 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1549 spin_unlock_irq(&zone->lru_lock);
1551 free_hot_cold_page_list(&page_list, true);
1554 * If reclaim is isolating dirty pages under writeback, it implies
1555 * that the long-lived page allocation rate is exceeding the page
1556 * laundering rate. Either the global limits are not being effective
1557 * at throttling processes due to the page distribution throughout
1558 * zones or there is heavy usage of a slow backing device. The
1559 * only option is to throttle from reclaim context which is not ideal
1560 * as there is no guarantee the dirtying process is throttled in the
1561 * same way balance_dirty_pages() manages.
1563 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1564 * of pages under pages flagged for immediate reclaim and stall if any
1565 * are encountered in the nr_immediate check below.
1567 if (nr_writeback && nr_writeback == nr_taken)
1568 zone_set_flag(zone, ZONE_WRITEBACK);
1571 * memcg will stall in page writeback so only consider forcibly
1572 * stalling for global reclaim
1574 if (global_reclaim(sc)) {
1576 * Tag a zone as congested if all the dirty pages scanned were
1577 * backed by a congested BDI and wait_iff_congested will stall.
1579 if (nr_dirty && nr_dirty == nr_congested)
1580 zone_set_flag(zone, ZONE_CONGESTED);
1583 * If dirty pages are scanned that are not queued for IO, it
1584 * implies that flushers are not keeping up. In this case, flag
1585 * the zone ZONE_TAIL_LRU_DIRTY and kswapd will start writing
1586 * pages from reclaim context.
1588 if (nr_unqueued_dirty == nr_taken)
1589 zone_set_flag(zone, ZONE_TAIL_LRU_DIRTY);
1592 * If kswapd scans pages marked marked for immediate
1593 * reclaim and under writeback (nr_immediate), it implies
1594 * that pages are cycling through the LRU faster than
1595 * they are written so also forcibly stall.
1597 if (nr_immediate && current_may_throttle())
1598 congestion_wait(BLK_RW_ASYNC, HZ/10);
1602 * Stall direct reclaim for IO completions if underlying BDIs or zone
1603 * is congested. Allow kswapd to continue until it starts encountering
1604 * unqueued dirty pages or cycling through the LRU too quickly.
1606 if (!sc->hibernation_mode && !current_is_kswapd() &&
1607 current_may_throttle())
1608 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1610 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1612 nr_scanned, nr_reclaimed,
1614 trace_shrink_flags(file));
1615 return nr_reclaimed;
1619 * This moves pages from the active list to the inactive list.
1621 * We move them the other way if the page is referenced by one or more
1622 * processes, from rmap.
1624 * If the pages are mostly unmapped, the processing is fast and it is
1625 * appropriate to hold zone->lru_lock across the whole operation. But if
1626 * the pages are mapped, the processing is slow (page_referenced()) so we
1627 * should drop zone->lru_lock around each page. It's impossible to balance
1628 * this, so instead we remove the pages from the LRU while processing them.
1629 * It is safe to rely on PG_active against the non-LRU pages in here because
1630 * nobody will play with that bit on a non-LRU page.
1632 * The downside is that we have to touch page->_count against each page.
1633 * But we had to alter page->flags anyway.
1636 static void move_active_pages_to_lru(struct lruvec *lruvec,
1637 struct list_head *list,
1638 struct list_head *pages_to_free,
1641 struct zone *zone = lruvec_zone(lruvec);
1642 unsigned long pgmoved = 0;
1646 while (!list_empty(list)) {
1647 page = lru_to_page(list);
1648 lruvec = mem_cgroup_page_lruvec(page, zone);
1650 VM_BUG_ON_PAGE(PageLRU(page), page);
1653 nr_pages = hpage_nr_pages(page);
1654 mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1655 list_move(&page->lru, &lruvec->lists[lru]);
1656 pgmoved += nr_pages;
1658 if (put_page_testzero(page)) {
1659 __ClearPageLRU(page);
1660 __ClearPageActive(page);
1661 del_page_from_lru_list(page, lruvec, lru);
1663 mem_cgroup_uncharge(page);
1665 if (unlikely(PageCompound(page))) {
1666 spin_unlock_irq(&zone->lru_lock);
1667 (*get_compound_page_dtor(page))(page);
1668 spin_lock_irq(&zone->lru_lock);
1670 list_add(&page->lru, pages_to_free);
1673 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1674 if (!is_active_lru(lru))
1675 __count_vm_events(PGDEACTIVATE, pgmoved);
1678 static void shrink_active_list(unsigned long nr_to_scan,
1679 struct lruvec *lruvec,
1680 struct scan_control *sc,
1683 unsigned long nr_taken;
1684 unsigned long nr_scanned;
1685 unsigned long vm_flags;
1686 LIST_HEAD(l_hold); /* The pages which were snipped off */
1687 LIST_HEAD(l_active);
1688 LIST_HEAD(l_inactive);
1690 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1691 unsigned long nr_rotated = 0;
1692 isolate_mode_t isolate_mode = 0;
1693 int file = is_file_lru(lru);
1694 struct zone *zone = lruvec_zone(lruvec);
1699 isolate_mode |= ISOLATE_UNMAPPED;
1700 if (!sc->may_writepage)
1701 isolate_mode |= ISOLATE_CLEAN;
1703 spin_lock_irq(&zone->lru_lock);
1705 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1706 &nr_scanned, sc, isolate_mode, lru);
1707 if (global_reclaim(sc))
1708 __mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
1710 reclaim_stat->recent_scanned[file] += nr_taken;
1712 __count_zone_vm_events(PGREFILL, zone, nr_scanned);
1713 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1714 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1715 spin_unlock_irq(&zone->lru_lock);
1717 while (!list_empty(&l_hold)) {
1719 page = lru_to_page(&l_hold);
1720 list_del(&page->lru);
1722 if (unlikely(!page_evictable(page))) {
1723 putback_lru_page(page);
1727 if (unlikely(buffer_heads_over_limit)) {
1728 if (page_has_private(page) && trylock_page(page)) {
1729 if (page_has_private(page))
1730 try_to_release_page(page, 0);
1735 if (page_referenced(page, 0, sc->target_mem_cgroup,
1737 nr_rotated += hpage_nr_pages(page);
1739 * Identify referenced, file-backed active pages and
1740 * give them one more trip around the active list. So
1741 * that executable code get better chances to stay in
1742 * memory under moderate memory pressure. Anon pages
1743 * are not likely to be evicted by use-once streaming
1744 * IO, plus JVM can create lots of anon VM_EXEC pages,
1745 * so we ignore them here.
1747 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1748 list_add(&page->lru, &l_active);
1753 ClearPageActive(page); /* we are de-activating */
1754 list_add(&page->lru, &l_inactive);
1758 * Move pages back to the lru list.
1760 spin_lock_irq(&zone->lru_lock);
1762 * Count referenced pages from currently used mappings as rotated,
1763 * even though only some of them are actually re-activated. This
1764 * helps balance scan pressure between file and anonymous pages in
1767 reclaim_stat->recent_rotated[file] += nr_rotated;
1769 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1770 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1771 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1772 spin_unlock_irq(&zone->lru_lock);
1774 free_hot_cold_page_list(&l_hold, true);
1778 static int inactive_anon_is_low_global(struct zone *zone)
1780 unsigned long active, inactive;
1782 active = zone_page_state(zone, NR_ACTIVE_ANON);
1783 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1785 if (inactive * zone->inactive_ratio < active)
1792 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1793 * @lruvec: LRU vector to check
1795 * Returns true if the zone does not have enough inactive anon pages,
1796 * meaning some active anon pages need to be deactivated.
1798 static int inactive_anon_is_low(struct lruvec *lruvec)
1801 * If we don't have swap space, anonymous page deactivation
1804 if (!total_swap_pages)
1807 if (!mem_cgroup_disabled())
1808 return mem_cgroup_inactive_anon_is_low(lruvec);
1810 return inactive_anon_is_low_global(lruvec_zone(lruvec));
1813 static inline int inactive_anon_is_low(struct lruvec *lruvec)
1820 * inactive_file_is_low - check if file pages need to be deactivated
1821 * @lruvec: LRU vector to check
1823 * When the system is doing streaming IO, memory pressure here
1824 * ensures that active file pages get deactivated, until more
1825 * than half of the file pages are on the inactive list.
1827 * Once we get to that situation, protect the system's working
1828 * set from being evicted by disabling active file page aging.
1830 * This uses a different ratio than the anonymous pages, because
1831 * the page cache uses a use-once replacement algorithm.
1833 static int inactive_file_is_low(struct lruvec *lruvec)
1835 unsigned long inactive;
1836 unsigned long active;
1838 inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1839 active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
1841 return active > inactive;
1844 static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1846 if (is_file_lru(lru))
1847 return inactive_file_is_low(lruvec);
1849 return inactive_anon_is_low(lruvec);
1852 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1853 struct lruvec *lruvec, struct scan_control *sc)
1855 if (is_active_lru(lru)) {
1856 if (inactive_list_is_low(lruvec, lru))
1857 shrink_active_list(nr_to_scan, lruvec, sc, lru);
1861 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1872 * Determine how aggressively the anon and file LRU lists should be
1873 * scanned. The relative value of each set of LRU lists is determined
1874 * by looking at the fraction of the pages scanned we did rotate back
1875 * onto the active list instead of evict.
1877 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1878 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1880 static void get_scan_count(struct lruvec *lruvec, int swappiness,
1881 struct scan_control *sc, unsigned long *nr)
1883 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1885 u64 denominator = 0; /* gcc */
1886 struct zone *zone = lruvec_zone(lruvec);
1887 unsigned long anon_prio, file_prio;
1888 enum scan_balance scan_balance;
1889 unsigned long anon, file;
1890 bool force_scan = false;
1891 unsigned long ap, fp;
1897 * If the zone or memcg is small, nr[l] can be 0. This
1898 * results in no scanning on this priority and a potential
1899 * priority drop. Global direct reclaim can go to the next
1900 * zone and tends to have no problems. Global kswapd is for
1901 * zone balancing and it needs to scan a minimum amount. When
1902 * reclaiming for a memcg, a priority drop can cause high
1903 * latencies, so it's better to scan a minimum amount there as
1906 if (current_is_kswapd() && !zone_reclaimable(zone))
1908 if (!global_reclaim(sc))
1911 /* If we have no swap space, do not bother scanning anon pages. */
1912 if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
1913 scan_balance = SCAN_FILE;
1918 * Global reclaim will swap to prevent OOM even with no
1919 * swappiness, but memcg users want to use this knob to
1920 * disable swapping for individual groups completely when
1921 * using the memory controller's swap limit feature would be
1924 if (!global_reclaim(sc) && !swappiness) {
1925 scan_balance = SCAN_FILE;
1930 * Do not apply any pressure balancing cleverness when the
1931 * system is close to OOM, scan both anon and file equally
1932 * (unless the swappiness setting disagrees with swapping).
1934 if (!sc->priority && swappiness) {
1935 scan_balance = SCAN_EQUAL;
1940 * Prevent the reclaimer from falling into the cache trap: as
1941 * cache pages start out inactive, every cache fault will tip
1942 * the scan balance towards the file LRU. And as the file LRU
1943 * shrinks, so does the window for rotation from references.
1944 * This means we have a runaway feedback loop where a tiny
1945 * thrashing file LRU becomes infinitely more attractive than
1946 * anon pages. Try to detect this based on file LRU size.
1948 if (global_reclaim(sc)) {
1949 unsigned long zonefile;
1950 unsigned long zonefree;
1952 zonefree = zone_page_state(zone, NR_FREE_PAGES);
1953 zonefile = zone_page_state(zone, NR_ACTIVE_FILE) +
1954 zone_page_state(zone, NR_INACTIVE_FILE);
1956 if (unlikely(zonefile + zonefree <= high_wmark_pages(zone))) {
1957 scan_balance = SCAN_ANON;
1963 * There is enough inactive page cache, do not reclaim
1964 * anything from the anonymous working set right now.
1966 if (!inactive_file_is_low(lruvec)) {
1967 scan_balance = SCAN_FILE;
1971 scan_balance = SCAN_FRACT;
1974 * With swappiness at 100, anonymous and file have the same priority.
1975 * This scanning priority is essentially the inverse of IO cost.
1977 anon_prio = swappiness;
1978 file_prio = 200 - anon_prio;
1981 * OK, so we have swap space and a fair amount of page cache
1982 * pages. We use the recently rotated / recently scanned
1983 * ratios to determine how valuable each cache is.
1985 * Because workloads change over time (and to avoid overflow)
1986 * we keep these statistics as a floating average, which ends
1987 * up weighing recent references more than old ones.
1989 * anon in [0], file in [1]
1992 anon = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
1993 get_lru_size(lruvec, LRU_INACTIVE_ANON);
1994 file = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
1995 get_lru_size(lruvec, LRU_INACTIVE_FILE);
1997 spin_lock_irq(&zone->lru_lock);
1998 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1999 reclaim_stat->recent_scanned[0] /= 2;
2000 reclaim_stat->recent_rotated[0] /= 2;
2003 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2004 reclaim_stat->recent_scanned[1] /= 2;
2005 reclaim_stat->recent_rotated[1] /= 2;
2009 * The amount of pressure on anon vs file pages is inversely
2010 * proportional to the fraction of recently scanned pages on
2011 * each list that were recently referenced and in active use.
2013 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2014 ap /= reclaim_stat->recent_rotated[0] + 1;
2016 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2017 fp /= reclaim_stat->recent_rotated[1] + 1;
2018 spin_unlock_irq(&zone->lru_lock);
2022 denominator = ap + fp + 1;
2024 some_scanned = false;
2025 /* Only use force_scan on second pass. */
2026 for (pass = 0; !some_scanned && pass < 2; pass++) {
2027 for_each_evictable_lru(lru) {
2028 int file = is_file_lru(lru);
2032 size = get_lru_size(lruvec, lru);
2033 scan = size >> sc->priority;
2035 if (!scan && pass && force_scan)
2036 scan = min(size, SWAP_CLUSTER_MAX);
2038 switch (scan_balance) {
2040 /* Scan lists relative to size */
2044 * Scan types proportional to swappiness and
2045 * their relative recent reclaim efficiency.
2047 scan = div64_u64(scan * fraction[file],
2052 /* Scan one type exclusively */
2053 if ((scan_balance == SCAN_FILE) != file)
2057 /* Look ma, no brain */
2062 * Skip the second pass and don't force_scan,
2063 * if we found something to scan.
2065 some_scanned |= !!scan;
2071 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
2073 static void shrink_lruvec(struct lruvec *lruvec, int swappiness,
2074 struct scan_control *sc)
2076 unsigned long nr[NR_LRU_LISTS];
2077 unsigned long targets[NR_LRU_LISTS];
2078 unsigned long nr_to_scan;
2080 unsigned long nr_reclaimed = 0;
2081 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2082 struct blk_plug plug;
2085 get_scan_count(lruvec, swappiness, sc, nr);
2087 /* Record the original scan target for proportional adjustments later */
2088 memcpy(targets, nr, sizeof(nr));
2091 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2092 * event that can occur when there is little memory pressure e.g.
2093 * multiple streaming readers/writers. Hence, we do not abort scanning
2094 * when the requested number of pages are reclaimed when scanning at
2095 * DEF_PRIORITY on the assumption that the fact we are direct
2096 * reclaiming implies that kswapd is not keeping up and it is best to
2097 * do a batch of work at once. For memcg reclaim one check is made to
2098 * abort proportional reclaim if either the file or anon lru has already
2099 * dropped to zero at the first pass.
2101 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2102 sc->priority == DEF_PRIORITY);
2104 blk_start_plug(&plug);
2105 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2106 nr[LRU_INACTIVE_FILE]) {
2107 unsigned long nr_anon, nr_file, percentage;
2108 unsigned long nr_scanned;
2110 for_each_evictable_lru(lru) {
2112 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2113 nr[lru] -= nr_to_scan;
2115 nr_reclaimed += shrink_list(lru, nr_to_scan,
2120 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2124 * For kswapd and memcg, reclaim at least the number of pages
2125 * requested. Ensure that the anon and file LRUs are scanned
2126 * proportionally what was requested by get_scan_count(). We
2127 * stop reclaiming one LRU and reduce the amount scanning
2128 * proportional to the original scan target.
2130 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2131 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2134 * It's just vindictive to attack the larger once the smaller
2135 * has gone to zero. And given the way we stop scanning the
2136 * smaller below, this makes sure that we only make one nudge
2137 * towards proportionality once we've got nr_to_reclaim.
2139 if (!nr_file || !nr_anon)
2142 if (nr_file > nr_anon) {
2143 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2144 targets[LRU_ACTIVE_ANON] + 1;
2146 percentage = nr_anon * 100 / scan_target;
2148 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2149 targets[LRU_ACTIVE_FILE] + 1;
2151 percentage = nr_file * 100 / scan_target;
2154 /* Stop scanning the smaller of the LRU */
2156 nr[lru + LRU_ACTIVE] = 0;
2159 * Recalculate the other LRU scan count based on its original
2160 * scan target and the percentage scanning already complete
2162 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2163 nr_scanned = targets[lru] - nr[lru];
2164 nr[lru] = targets[lru] * (100 - percentage) / 100;
2165 nr[lru] -= min(nr[lru], nr_scanned);
2168 nr_scanned = targets[lru] - nr[lru];
2169 nr[lru] = targets[lru] * (100 - percentage) / 100;
2170 nr[lru] -= min(nr[lru], nr_scanned);
2172 scan_adjusted = true;
2174 blk_finish_plug(&plug);
2175 sc->nr_reclaimed += nr_reclaimed;
2178 * Even if we did not try to evict anon pages at all, we want to
2179 * rebalance the anon lru active/inactive ratio.
2181 if (inactive_anon_is_low(lruvec))
2182 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2183 sc, LRU_ACTIVE_ANON);
2185 throttle_vm_writeout(sc->gfp_mask);
2188 /* Use reclaim/compaction for costly allocs or under memory pressure */
2189 static bool in_reclaim_compaction(struct scan_control *sc)
2191 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2192 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2193 sc->priority < DEF_PRIORITY - 2))
2200 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2201 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2202 * true if more pages should be reclaimed such that when the page allocator
2203 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2204 * It will give up earlier than that if there is difficulty reclaiming pages.
2206 static inline bool should_continue_reclaim(struct zone *zone,
2207 unsigned long nr_reclaimed,
2208 unsigned long nr_scanned,
2209 struct scan_control *sc)
2211 unsigned long pages_for_compaction;
2212 unsigned long inactive_lru_pages;
2214 /* If not in reclaim/compaction mode, stop */
2215 if (!in_reclaim_compaction(sc))
2218 /* Consider stopping depending on scan and reclaim activity */
2219 if (sc->gfp_mask & __GFP_REPEAT) {
2221 * For __GFP_REPEAT allocations, stop reclaiming if the
2222 * full LRU list has been scanned and we are still failing
2223 * to reclaim pages. This full LRU scan is potentially
2224 * expensive but a __GFP_REPEAT caller really wants to succeed
2226 if (!nr_reclaimed && !nr_scanned)
2230 * For non-__GFP_REPEAT allocations which can presumably
2231 * fail without consequence, stop if we failed to reclaim
2232 * any pages from the last SWAP_CLUSTER_MAX number of
2233 * pages that were scanned. This will return to the
2234 * caller faster at the risk reclaim/compaction and
2235 * the resulting allocation attempt fails
2242 * If we have not reclaimed enough pages for compaction and the
2243 * inactive lists are large enough, continue reclaiming
2245 pages_for_compaction = (2UL << sc->order);
2246 inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
2247 if (get_nr_swap_pages() > 0)
2248 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
2249 if (sc->nr_reclaimed < pages_for_compaction &&
2250 inactive_lru_pages > pages_for_compaction)
2253 /* If compaction would go ahead or the allocation would succeed, stop */
2254 switch (compaction_suitable(zone, sc->order)) {
2255 case COMPACT_PARTIAL:
2256 case COMPACT_CONTINUE:
2263 static bool shrink_zone(struct zone *zone, struct scan_control *sc)
2265 unsigned long nr_reclaimed, nr_scanned;
2266 bool reclaimable = false;
2269 struct mem_cgroup *root = sc->target_mem_cgroup;
2270 struct mem_cgroup_reclaim_cookie reclaim = {
2272 .priority = sc->priority,
2274 struct mem_cgroup *memcg;
2276 nr_reclaimed = sc->nr_reclaimed;
2277 nr_scanned = sc->nr_scanned;
2279 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2281 struct lruvec *lruvec;
2284 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2285 swappiness = mem_cgroup_swappiness(memcg);
2287 shrink_lruvec(lruvec, swappiness, sc);
2290 * Direct reclaim and kswapd have to scan all memory
2291 * cgroups to fulfill the overall scan target for the
2294 * Limit reclaim, on the other hand, only cares about
2295 * nr_to_reclaim pages to be reclaimed and it will
2296 * retry with decreasing priority if one round over the
2297 * whole hierarchy is not sufficient.
2299 if (!global_reclaim(sc) &&
2300 sc->nr_reclaimed >= sc->nr_to_reclaim) {
2301 mem_cgroup_iter_break(root, memcg);
2304 memcg = mem_cgroup_iter(root, memcg, &reclaim);
2307 vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
2308 sc->nr_scanned - nr_scanned,
2309 sc->nr_reclaimed - nr_reclaimed);
2311 if (sc->nr_reclaimed - nr_reclaimed)
2314 } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2315 sc->nr_scanned - nr_scanned, sc));
2320 /* Returns true if compaction should go ahead for a high-order request */
2321 static inline bool compaction_ready(struct zone *zone, int order)
2323 unsigned long balance_gap, watermark;
2327 * Compaction takes time to run and there are potentially other
2328 * callers using the pages just freed. Continue reclaiming until
2329 * there is a buffer of free pages available to give compaction
2330 * a reasonable chance of completing and allocating the page
2332 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
2333 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
2334 watermark = high_wmark_pages(zone) + balance_gap + (2UL << order);
2335 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2338 * If compaction is deferred, reclaim up to a point where
2339 * compaction will have a chance of success when re-enabled
2341 if (compaction_deferred(zone, order))
2342 return watermark_ok;
2344 /* If compaction is not ready to start, keep reclaiming */
2345 if (!compaction_suitable(zone, order))
2348 return watermark_ok;
2352 * This is the direct reclaim path, for page-allocating processes. We only
2353 * try to reclaim pages from zones which will satisfy the caller's allocation
2356 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2358 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2360 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2361 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2362 * zone defense algorithm.
2364 * If a zone is deemed to be full of pinned pages then just give it a light
2365 * scan then give up on it.
2367 * Returns true if a zone was reclaimable.
2369 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2373 unsigned long nr_soft_reclaimed;
2374 unsigned long nr_soft_scanned;
2375 unsigned long lru_pages = 0;
2376 struct reclaim_state *reclaim_state = current->reclaim_state;
2378 struct shrink_control shrink = {
2379 .gfp_mask = sc->gfp_mask,
2381 enum zone_type requested_highidx = gfp_zone(sc->gfp_mask);
2382 bool reclaimable = false;
2385 * If the number of buffer_heads in the machine exceeds the maximum
2386 * allowed level, force direct reclaim to scan the highmem zone as
2387 * highmem pages could be pinning lowmem pages storing buffer_heads
2389 orig_mask = sc->gfp_mask;
2390 if (buffer_heads_over_limit)
2391 sc->gfp_mask |= __GFP_HIGHMEM;
2393 nodes_clear(shrink.nodes_to_scan);
2395 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2396 gfp_zone(sc->gfp_mask), sc->nodemask) {
2397 if (!populated_zone(zone))
2400 * Take care memory controller reclaiming has small influence
2403 if (global_reclaim(sc)) {
2404 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2407 lru_pages += zone_reclaimable_pages(zone);
2408 node_set(zone_to_nid(zone), shrink.nodes_to_scan);
2410 if (sc->priority != DEF_PRIORITY &&
2411 !zone_reclaimable(zone))
2412 continue; /* Let kswapd poll it */
2415 * If we already have plenty of memory free for
2416 * compaction in this zone, don't free any more.
2417 * Even though compaction is invoked for any
2418 * non-zero order, only frequent costly order
2419 * reclamation is disruptive enough to become a
2420 * noticeable problem, like transparent huge
2423 if (IS_ENABLED(CONFIG_COMPACTION) &&
2424 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2425 zonelist_zone_idx(z) <= requested_highidx &&
2426 compaction_ready(zone, sc->order)) {
2427 sc->compaction_ready = true;
2432 * This steals pages from memory cgroups over softlimit
2433 * and returns the number of reclaimed pages and
2434 * scanned pages. This works for global memory pressure
2435 * and balancing, not for a memcg's limit.
2437 nr_soft_scanned = 0;
2438 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2439 sc->order, sc->gfp_mask,
2441 sc->nr_reclaimed += nr_soft_reclaimed;
2442 sc->nr_scanned += nr_soft_scanned;
2443 if (nr_soft_reclaimed)
2445 /* need some check for avoid more shrink_zone() */
2448 if (shrink_zone(zone, sc))
2451 if (global_reclaim(sc) &&
2452 !reclaimable && zone_reclaimable(zone))
2457 * Don't shrink slabs when reclaiming memory from over limit cgroups
2458 * but do shrink slab at least once when aborting reclaim for
2459 * compaction to avoid unevenly scanning file/anon LRU pages over slab
2462 if (global_reclaim(sc)) {
2463 shrink_slab(&shrink, sc->nr_scanned, lru_pages);
2464 if (reclaim_state) {
2465 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2466 reclaim_state->reclaimed_slab = 0;
2471 * Restore to original mask to avoid the impact on the caller if we
2472 * promoted it to __GFP_HIGHMEM.
2474 sc->gfp_mask = orig_mask;
2480 * This is the main entry point to direct page reclaim.
2482 * If a full scan of the inactive list fails to free enough memory then we
2483 * are "out of memory" and something needs to be killed.
2485 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2486 * high - the zone may be full of dirty or under-writeback pages, which this
2487 * caller can't do much about. We kick the writeback threads and take explicit
2488 * naps in the hope that some of these pages can be written. But if the
2489 * allocating task holds filesystem locks which prevent writeout this might not
2490 * work, and the allocation attempt will fail.
2492 * returns: 0, if no pages reclaimed
2493 * else, the number of pages reclaimed
2495 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2496 struct scan_control *sc)
2498 unsigned long total_scanned = 0;
2499 unsigned long writeback_threshold;
2500 bool zones_reclaimable;
2502 delayacct_freepages_start();
2504 if (global_reclaim(sc))
2505 count_vm_event(ALLOCSTALL);
2508 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2511 zones_reclaimable = shrink_zones(zonelist, sc);
2513 total_scanned += sc->nr_scanned;
2514 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2517 if (sc->compaction_ready)
2521 * If we're getting trouble reclaiming, start doing
2522 * writepage even in laptop mode.
2524 if (sc->priority < DEF_PRIORITY - 2)
2525 sc->may_writepage = 1;
2528 * Try to write back as many pages as we just scanned. This
2529 * tends to cause slow streaming writers to write data to the
2530 * disk smoothly, at the dirtying rate, which is nice. But
2531 * that's undesirable in laptop mode, where we *want* lumpy
2532 * writeout. So in laptop mode, write out the whole world.
2534 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2535 if (total_scanned > writeback_threshold) {
2536 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2537 WB_REASON_TRY_TO_FREE_PAGES);
2538 sc->may_writepage = 1;
2540 } while (--sc->priority >= 0);
2542 delayacct_freepages_end();
2544 if (sc->nr_reclaimed)
2545 return sc->nr_reclaimed;
2547 /* Aborted reclaim to try compaction? don't OOM, then */
2548 if (sc->compaction_ready)
2551 /* Any of the zones still reclaimable? Don't OOM. */
2552 if (zones_reclaimable)
2558 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2561 unsigned long pfmemalloc_reserve = 0;
2562 unsigned long free_pages = 0;
2566 for (i = 0; i <= ZONE_NORMAL; i++) {
2567 zone = &pgdat->node_zones[i];
2568 if (!populated_zone(zone))
2571 pfmemalloc_reserve += min_wmark_pages(zone);
2572 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2575 /* If there are no reserves (unexpected config) then do not throttle */
2576 if (!pfmemalloc_reserve)
2579 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2581 /* kswapd must be awake if processes are being throttled */
2582 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2583 pgdat->classzone_idx = min(pgdat->classzone_idx,
2584 (enum zone_type)ZONE_NORMAL);
2585 wake_up_interruptible(&pgdat->kswapd_wait);
2592 * Throttle direct reclaimers if backing storage is backed by the network
2593 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2594 * depleted. kswapd will continue to make progress and wake the processes
2595 * when the low watermark is reached.
2597 * Returns true if a fatal signal was delivered during throttling. If this
2598 * happens, the page allocator should not consider triggering the OOM killer.
2600 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2601 nodemask_t *nodemask)
2605 pg_data_t *pgdat = NULL;
2608 * Kernel threads should not be throttled as they may be indirectly
2609 * responsible for cleaning pages necessary for reclaim to make forward
2610 * progress. kjournald for example may enter direct reclaim while
2611 * committing a transaction where throttling it could forcing other
2612 * processes to block on log_wait_commit().
2614 if (current->flags & PF_KTHREAD)
2618 * If a fatal signal is pending, this process should not throttle.
2619 * It should return quickly so it can exit and free its memory
2621 if (fatal_signal_pending(current))
2625 * Check if the pfmemalloc reserves are ok by finding the first node
2626 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2627 * GFP_KERNEL will be required for allocating network buffers when
2628 * swapping over the network so ZONE_HIGHMEM is unusable.
2630 * Throttling is based on the first usable node and throttled processes
2631 * wait on a queue until kswapd makes progress and wakes them. There
2632 * is an affinity then between processes waking up and where reclaim
2633 * progress has been made assuming the process wakes on the same node.
2634 * More importantly, processes running on remote nodes will not compete
2635 * for remote pfmemalloc reserves and processes on different nodes
2636 * should make reasonable progress.
2638 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2639 gfp_mask, nodemask) {
2640 if (zone_idx(zone) > ZONE_NORMAL)
2643 /* Throttle based on the first usable node */
2644 pgdat = zone->zone_pgdat;
2645 if (pfmemalloc_watermark_ok(pgdat))
2650 /* If no zone was usable by the allocation flags then do not throttle */
2654 /* Account for the throttling */
2655 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2658 * If the caller cannot enter the filesystem, it's possible that it
2659 * is due to the caller holding an FS lock or performing a journal
2660 * transaction in the case of a filesystem like ext[3|4]. In this case,
2661 * it is not safe to block on pfmemalloc_wait as kswapd could be
2662 * blocked waiting on the same lock. Instead, throttle for up to a
2663 * second before continuing.
2665 if (!(gfp_mask & __GFP_FS)) {
2666 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2667 pfmemalloc_watermark_ok(pgdat), HZ);
2672 /* Throttle until kswapd wakes the process */
2673 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2674 pfmemalloc_watermark_ok(pgdat));
2677 if (fatal_signal_pending(current))
2684 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2685 gfp_t gfp_mask, nodemask_t *nodemask)
2687 unsigned long nr_reclaimed;
2688 struct scan_control sc = {
2689 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2690 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2692 .nodemask = nodemask,
2693 .priority = DEF_PRIORITY,
2694 .may_writepage = !laptop_mode,
2700 * Do not enter reclaim if fatal signal was delivered while throttled.
2701 * 1 is returned so that the page allocator does not OOM kill at this
2704 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2707 trace_mm_vmscan_direct_reclaim_begin(order,
2711 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2713 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2715 return nr_reclaimed;
2720 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2721 gfp_t gfp_mask, bool noswap,
2723 unsigned long *nr_scanned)
2725 struct scan_control sc = {
2726 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2727 .target_mem_cgroup = memcg,
2728 .may_writepage = !laptop_mode,
2730 .may_swap = !noswap,
2732 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2733 int swappiness = mem_cgroup_swappiness(memcg);
2735 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2736 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2738 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2743 * NOTE: Although we can get the priority field, using it
2744 * here is not a good idea, since it limits the pages we can scan.
2745 * if we don't reclaim here, the shrink_zone from balance_pgdat
2746 * will pick up pages from other mem cgroup's as well. We hack
2747 * the priority and make it zero.
2749 shrink_lruvec(lruvec, swappiness, &sc);
2751 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2753 *nr_scanned = sc.nr_scanned;
2754 return sc.nr_reclaimed;
2757 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2761 struct zonelist *zonelist;
2762 unsigned long nr_reclaimed;
2764 struct scan_control sc = {
2765 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2766 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2767 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2768 .target_mem_cgroup = memcg,
2769 .priority = DEF_PRIORITY,
2770 .may_writepage = !laptop_mode,
2772 .may_swap = !noswap,
2776 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2777 * take care of from where we get pages. So the node where we start the
2778 * scan does not need to be the current node.
2780 nid = mem_cgroup_select_victim_node(memcg);
2782 zonelist = NODE_DATA(nid)->node_zonelists;
2784 trace_mm_vmscan_memcg_reclaim_begin(0,
2788 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2790 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2792 return nr_reclaimed;
2796 static void age_active_anon(struct zone *zone, struct scan_control *sc)
2798 struct mem_cgroup *memcg;
2800 if (!total_swap_pages)
2803 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2805 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2807 if (inactive_anon_is_low(lruvec))
2808 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2809 sc, LRU_ACTIVE_ANON);
2811 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2815 static bool zone_balanced(struct zone *zone, int order,
2816 unsigned long balance_gap, int classzone_idx)
2818 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2819 balance_gap, classzone_idx, 0))
2822 if (IS_ENABLED(CONFIG_COMPACTION) && order &&
2823 !compaction_suitable(zone, order))
2830 * pgdat_balanced() is used when checking if a node is balanced.
2832 * For order-0, all zones must be balanced!
2834 * For high-order allocations only zones that meet watermarks and are in a
2835 * zone allowed by the callers classzone_idx are added to balanced_pages. The
2836 * total of balanced pages must be at least 25% of the zones allowed by
2837 * classzone_idx for the node to be considered balanced. Forcing all zones to
2838 * be balanced for high orders can cause excessive reclaim when there are
2840 * The choice of 25% is due to
2841 * o a 16M DMA zone that is balanced will not balance a zone on any
2842 * reasonable sized machine
2843 * o On all other machines, the top zone must be at least a reasonable
2844 * percentage of the middle zones. For example, on 32-bit x86, highmem
2845 * would need to be at least 256M for it to be balance a whole node.
2846 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2847 * to balance a node on its own. These seemed like reasonable ratios.
2849 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
2851 unsigned long managed_pages = 0;
2852 unsigned long balanced_pages = 0;
2855 /* Check the watermark levels */
2856 for (i = 0; i <= classzone_idx; i++) {
2857 struct zone *zone = pgdat->node_zones + i;
2859 if (!populated_zone(zone))
2862 managed_pages += zone->managed_pages;
2865 * A special case here:
2867 * balance_pgdat() skips over all_unreclaimable after
2868 * DEF_PRIORITY. Effectively, it considers them balanced so
2869 * they must be considered balanced here as well!
2871 if (!zone_reclaimable(zone)) {
2872 balanced_pages += zone->managed_pages;
2876 if (zone_balanced(zone, order, 0, i))
2877 balanced_pages += zone->managed_pages;
2883 return balanced_pages >= (managed_pages >> 2);
2889 * Prepare kswapd for sleeping. This verifies that there are no processes
2890 * waiting in throttle_direct_reclaim() and that watermarks have been met.
2892 * Returns true if kswapd is ready to sleep
2894 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
2897 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2902 * There is a potential race between when kswapd checks its watermarks
2903 * and a process gets throttled. There is also a potential race if
2904 * processes get throttled, kswapd wakes, a large process exits therby
2905 * balancing the zones that causes kswapd to miss a wakeup. If kswapd
2906 * is going to sleep, no process should be sleeping on pfmemalloc_wait
2907 * so wake them now if necessary. If necessary, processes will wake
2908 * kswapd and get throttled again
2910 if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
2911 wake_up(&pgdat->pfmemalloc_wait);
2915 return pgdat_balanced(pgdat, order, classzone_idx);
2919 * kswapd shrinks the zone by the number of pages required to reach
2920 * the high watermark.
2922 * Returns true if kswapd scanned at least the requested number of pages to
2923 * reclaim or if the lack of progress was due to pages under writeback.
2924 * This is used to determine if the scanning priority needs to be raised.
2926 static bool kswapd_shrink_zone(struct zone *zone,
2928 struct scan_control *sc,
2929 unsigned long lru_pages,
2930 unsigned long *nr_attempted)
2932 int testorder = sc->order;
2933 unsigned long balance_gap;
2934 struct reclaim_state *reclaim_state = current->reclaim_state;
2935 struct shrink_control shrink = {
2936 .gfp_mask = sc->gfp_mask,
2938 bool lowmem_pressure;
2940 /* Reclaim above the high watermark. */
2941 sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
2944 * Kswapd reclaims only single pages with compaction enabled. Trying
2945 * too hard to reclaim until contiguous free pages have become
2946 * available can hurt performance by evicting too much useful data
2947 * from memory. Do not reclaim more than needed for compaction.
2949 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2950 compaction_suitable(zone, sc->order) !=
2955 * We put equal pressure on every zone, unless one zone has way too
2956 * many pages free already. The "too many pages" is defined as the
2957 * high wmark plus a "gap" where the gap is either the low
2958 * watermark or 1% of the zone, whichever is smaller.
2960 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
2961 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
2964 * If there is no low memory pressure or the zone is balanced then no
2965 * reclaim is necessary
2967 lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
2968 if (!lowmem_pressure && zone_balanced(zone, testorder,
2969 balance_gap, classzone_idx))
2972 shrink_zone(zone, sc);
2973 nodes_clear(shrink.nodes_to_scan);
2974 node_set(zone_to_nid(zone), shrink.nodes_to_scan);
2976 reclaim_state->reclaimed_slab = 0;
2977 shrink_slab(&shrink, sc->nr_scanned, lru_pages);
2978 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2980 /* Account for the number of pages attempted to reclaim */
2981 *nr_attempted += sc->nr_to_reclaim;
2983 zone_clear_flag(zone, ZONE_WRITEBACK);
2986 * If a zone reaches its high watermark, consider it to be no longer
2987 * congested. It's possible there are dirty pages backed by congested
2988 * BDIs but as pressure is relieved, speculatively avoid congestion
2991 if (zone_reclaimable(zone) &&
2992 zone_balanced(zone, testorder, 0, classzone_idx)) {
2993 zone_clear_flag(zone, ZONE_CONGESTED);
2994 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
2997 return sc->nr_scanned >= sc->nr_to_reclaim;
3001 * For kswapd, balance_pgdat() will work across all this node's zones until
3002 * they are all at high_wmark_pages(zone).
3004 * Returns the final order kswapd was reclaiming at
3006 * There is special handling here for zones which are full of pinned pages.
3007 * This can happen if the pages are all mlocked, or if they are all used by
3008 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
3009 * What we do is to detect the case where all pages in the zone have been
3010 * scanned twice and there has been zero successful reclaim. Mark the zone as
3011 * dead and from now on, only perform a short scan. Basically we're polling
3012 * the zone for when the problem goes away.
3014 * kswapd scans the zones in the highmem->normal->dma direction. It skips
3015 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3016 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
3017 * lower zones regardless of the number of free pages in the lower zones. This
3018 * interoperates with the page allocator fallback scheme to ensure that aging
3019 * of pages is balanced across the zones.
3021 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
3025 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
3026 unsigned long nr_soft_reclaimed;
3027 unsigned long nr_soft_scanned;
3028 struct scan_control sc = {
3029 .gfp_mask = GFP_KERNEL,
3031 .priority = DEF_PRIORITY,
3032 .may_writepage = !laptop_mode,
3036 count_vm_event(PAGEOUTRUN);
3039 unsigned long lru_pages = 0;
3040 unsigned long nr_attempted = 0;
3041 bool raise_priority = true;
3042 bool pgdat_needs_compaction = (order > 0);
3044 sc.nr_reclaimed = 0;
3047 * Scan in the highmem->dma direction for the highest
3048 * zone which needs scanning
3050 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
3051 struct zone *zone = pgdat->node_zones + i;
3053 if (!populated_zone(zone))
3056 if (sc.priority != DEF_PRIORITY &&
3057 !zone_reclaimable(zone))
3061 * Do some background aging of the anon list, to give
3062 * pages a chance to be referenced before reclaiming.
3064 age_active_anon(zone, &sc);
3067 * If the number of buffer_heads in the machine
3068 * exceeds the maximum allowed level and this node
3069 * has a highmem zone, force kswapd to reclaim from
3070 * it to relieve lowmem pressure.
3072 if (buffer_heads_over_limit && is_highmem_idx(i)) {
3077 if (!zone_balanced(zone, order, 0, 0)) {
3082 * If balanced, clear the dirty and congested
3085 zone_clear_flag(zone, ZONE_CONGESTED);
3086 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
3093 for (i = 0; i <= end_zone; i++) {
3094 struct zone *zone = pgdat->node_zones + i;
3096 if (!populated_zone(zone))
3099 lru_pages += zone_reclaimable_pages(zone);
3102 * If any zone is currently balanced then kswapd will
3103 * not call compaction as it is expected that the
3104 * necessary pages are already available.
3106 if (pgdat_needs_compaction &&
3107 zone_watermark_ok(zone, order,
3108 low_wmark_pages(zone),
3110 pgdat_needs_compaction = false;
3114 * If we're getting trouble reclaiming, start doing writepage
3115 * even in laptop mode.
3117 if (sc.priority < DEF_PRIORITY - 2)
3118 sc.may_writepage = 1;
3121 * Now scan the zone in the dma->highmem direction, stopping
3122 * at the last zone which needs scanning.
3124 * We do this because the page allocator works in the opposite
3125 * direction. This prevents the page allocator from allocating
3126 * pages behind kswapd's direction of progress, which would
3127 * cause too much scanning of the lower zones.
3129 for (i = 0; i <= end_zone; i++) {
3130 struct zone *zone = pgdat->node_zones + i;
3132 if (!populated_zone(zone))
3135 if (sc.priority != DEF_PRIORITY &&
3136 !zone_reclaimable(zone))
3141 nr_soft_scanned = 0;
3143 * Call soft limit reclaim before calling shrink_zone.
3145 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
3148 sc.nr_reclaimed += nr_soft_reclaimed;
3151 * There should be no need to raise the scanning
3152 * priority if enough pages are already being scanned
3153 * that that high watermark would be met at 100%
3156 if (kswapd_shrink_zone(zone, end_zone, &sc,
3157 lru_pages, &nr_attempted))
3158 raise_priority = false;
3162 * If the low watermark is met there is no need for processes
3163 * to be throttled on pfmemalloc_wait as they should not be
3164 * able to safely make forward progress. Wake them
3166 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3167 pfmemalloc_watermark_ok(pgdat))
3168 wake_up(&pgdat->pfmemalloc_wait);
3171 * Fragmentation may mean that the system cannot be rebalanced
3172 * for high-order allocations in all zones. If twice the
3173 * allocation size has been reclaimed and the zones are still
3174 * not balanced then recheck the watermarks at order-0 to
3175 * prevent kswapd reclaiming excessively. Assume that a
3176 * process requested a high-order can direct reclaim/compact.
3178 if (order && sc.nr_reclaimed >= 2UL << order)
3179 order = sc.order = 0;
3181 /* Check if kswapd should be suspending */
3182 if (try_to_freeze() || kthread_should_stop())
3186 * Compact if necessary and kswapd is reclaiming at least the
3187 * high watermark number of pages as requsted
3189 if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
3190 compact_pgdat(pgdat, order);
3193 * Raise priority if scanning rate is too low or there was no
3194 * progress in reclaiming pages
3196 if (raise_priority || !sc.nr_reclaimed)
3198 } while (sc.priority >= 1 &&
3199 !pgdat_balanced(pgdat, order, *classzone_idx));
3203 * Return the order we were reclaiming at so prepare_kswapd_sleep()
3204 * makes a decision on the order we were last reclaiming at. However,
3205 * if another caller entered the allocator slow path while kswapd
3206 * was awake, order will remain at the higher level
3208 *classzone_idx = end_zone;
3212 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3217 if (freezing(current) || kthread_should_stop())
3220 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3222 /* Try to sleep for a short interval */
3223 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3224 remaining = schedule_timeout(HZ/10);
3225 finish_wait(&pgdat->kswapd_wait, &wait);
3226 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3230 * After a short sleep, check if it was a premature sleep. If not, then
3231 * go fully to sleep until explicitly woken up.
3233 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3234 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3237 * vmstat counters are not perfectly accurate and the estimated
3238 * value for counters such as NR_FREE_PAGES can deviate from the
3239 * true value by nr_online_cpus * threshold. To avoid the zone
3240 * watermarks being breached while under pressure, we reduce the
3241 * per-cpu vmstat threshold while kswapd is awake and restore
3242 * them before going back to sleep.
3244 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3247 * Compaction records what page blocks it recently failed to
3248 * isolate pages from and skips them in the future scanning.
3249 * When kswapd is going to sleep, it is reasonable to assume
3250 * that pages and compaction may succeed so reset the cache.
3252 reset_isolation_suitable(pgdat);
3254 if (!kthread_should_stop())
3257 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3260 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3262 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3264 finish_wait(&pgdat->kswapd_wait, &wait);
3268 * The background pageout daemon, started as a kernel thread
3269 * from the init process.
3271 * This basically trickles out pages so that we have _some_
3272 * free memory available even if there is no other activity
3273 * that frees anything up. This is needed for things like routing
3274 * etc, where we otherwise might have all activity going on in
3275 * asynchronous contexts that cannot page things out.
3277 * If there are applications that are active memory-allocators
3278 * (most normal use), this basically shouldn't matter.
3280 static int kswapd(void *p)
3282 unsigned long order, new_order;
3283 unsigned balanced_order;
3284 int classzone_idx, new_classzone_idx;
3285 int balanced_classzone_idx;
3286 pg_data_t *pgdat = (pg_data_t*)p;
3287 struct task_struct *tsk = current;
3289 struct reclaim_state reclaim_state = {
3290 .reclaimed_slab = 0,
3292 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3294 lockdep_set_current_reclaim_state(GFP_KERNEL);
3296 if (!cpumask_empty(cpumask))
3297 set_cpus_allowed_ptr(tsk, cpumask);
3298 current->reclaim_state = &reclaim_state;
3301 * Tell the memory management that we're a "memory allocator",
3302 * and that if we need more memory we should get access to it
3303 * regardless (see "__alloc_pages()"). "kswapd" should
3304 * never get caught in the normal page freeing logic.
3306 * (Kswapd normally doesn't need memory anyway, but sometimes
3307 * you need a small amount of memory in order to be able to
3308 * page out something else, and this flag essentially protects
3309 * us from recursively trying to free more memory as we're
3310 * trying to free the first piece of memory in the first place).
3312 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3315 order = new_order = 0;
3317 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3318 balanced_classzone_idx = classzone_idx;
3323 * If the last balance_pgdat was unsuccessful it's unlikely a
3324 * new request of a similar or harder type will succeed soon
3325 * so consider going to sleep on the basis we reclaimed at
3327 if (balanced_classzone_idx >= new_classzone_idx &&
3328 balanced_order == new_order) {
3329 new_order = pgdat->kswapd_max_order;
3330 new_classzone_idx = pgdat->classzone_idx;
3331 pgdat->kswapd_max_order = 0;
3332 pgdat->classzone_idx = pgdat->nr_zones - 1;
3335 if (order < new_order || classzone_idx > new_classzone_idx) {
3337 * Don't sleep if someone wants a larger 'order'
3338 * allocation or has tigher zone constraints
3341 classzone_idx = new_classzone_idx;
3343 kswapd_try_to_sleep(pgdat, balanced_order,
3344 balanced_classzone_idx);
3345 order = pgdat->kswapd_max_order;
3346 classzone_idx = pgdat->classzone_idx;
3348 new_classzone_idx = classzone_idx;
3349 pgdat->kswapd_max_order = 0;
3350 pgdat->classzone_idx = pgdat->nr_zones - 1;
3353 ret = try_to_freeze();
3354 if (kthread_should_stop())
3358 * We can speed up thawing tasks if we don't call balance_pgdat
3359 * after returning from the refrigerator
3362 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3363 balanced_classzone_idx = classzone_idx;
3364 balanced_order = balance_pgdat(pgdat, order,
3365 &balanced_classzone_idx);
3369 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3370 current->reclaim_state = NULL;
3371 lockdep_clear_current_reclaim_state();
3377 * A zone is low on free memory, so wake its kswapd task to service it.
3379 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3383 if (!populated_zone(zone))
3386 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
3388 pgdat = zone->zone_pgdat;
3389 if (pgdat->kswapd_max_order < order) {
3390 pgdat->kswapd_max_order = order;
3391 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3393 if (!waitqueue_active(&pgdat->kswapd_wait))
3395 if (zone_balanced(zone, order, 0, 0))
3398 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3399 wake_up_interruptible(&pgdat->kswapd_wait);
3402 #ifdef CONFIG_HIBERNATION
3404 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3407 * Rather than trying to age LRUs the aim is to preserve the overall
3408 * LRU order by reclaiming preferentially
3409 * inactive > active > active referenced > active mapped
3411 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3413 struct reclaim_state reclaim_state;
3414 struct scan_control sc = {
3415 .nr_to_reclaim = nr_to_reclaim,
3416 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3417 .priority = DEF_PRIORITY,
3421 .hibernation_mode = 1,
3423 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3424 struct task_struct *p = current;
3425 unsigned long nr_reclaimed;
3427 p->flags |= PF_MEMALLOC;
3428 lockdep_set_current_reclaim_state(sc.gfp_mask);
3429 reclaim_state.reclaimed_slab = 0;
3430 p->reclaim_state = &reclaim_state;
3432 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3434 p->reclaim_state = NULL;
3435 lockdep_clear_current_reclaim_state();
3436 p->flags &= ~PF_MEMALLOC;
3438 return nr_reclaimed;
3440 #endif /* CONFIG_HIBERNATION */
3442 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3443 not required for correctness. So if the last cpu in a node goes
3444 away, we get changed to run anywhere: as the first one comes back,
3445 restore their cpu bindings. */
3446 static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3451 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3452 for_each_node_state(nid, N_MEMORY) {
3453 pg_data_t *pgdat = NODE_DATA(nid);
3454 const struct cpumask *mask;
3456 mask = cpumask_of_node(pgdat->node_id);
3458 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3459 /* One of our CPUs online: restore mask */
3460 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3467 * This kswapd start function will be called by init and node-hot-add.
3468 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3470 int kswapd_run(int nid)
3472 pg_data_t *pgdat = NODE_DATA(nid);
3478 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3479 if (IS_ERR(pgdat->kswapd)) {
3480 /* failure at boot is fatal */
3481 BUG_ON(system_state == SYSTEM_BOOTING);
3482 pr_err("Failed to start kswapd on node %d\n", nid);
3483 ret = PTR_ERR(pgdat->kswapd);
3484 pgdat->kswapd = NULL;
3490 * Called by memory hotplug when all memory in a node is offlined. Caller must
3491 * hold mem_hotplug_begin/end().
3493 void kswapd_stop(int nid)
3495 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3498 kthread_stop(kswapd);
3499 NODE_DATA(nid)->kswapd = NULL;
3503 static int __init kswapd_init(void)
3508 for_each_node_state(nid, N_MEMORY)
3510 hotcpu_notifier(cpu_callback, 0);
3514 module_init(kswapd_init)
3520 * If non-zero call zone_reclaim when the number of free pages falls below
3523 int zone_reclaim_mode __read_mostly;
3525 #define RECLAIM_OFF 0
3526 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3527 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3528 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
3531 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3532 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3535 #define ZONE_RECLAIM_PRIORITY 4
3538 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3541 int sysctl_min_unmapped_ratio = 1;
3544 * If the number of slab pages in a zone grows beyond this percentage then
3545 * slab reclaim needs to occur.
3547 int sysctl_min_slab_ratio = 5;
3549 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3551 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3552 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3553 zone_page_state(zone, NR_ACTIVE_FILE);
3556 * It's possible for there to be more file mapped pages than
3557 * accounted for by the pages on the file LRU lists because
3558 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3560 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3563 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3564 static long zone_pagecache_reclaimable(struct zone *zone)
3566 long nr_pagecache_reclaimable;
3570 * If RECLAIM_SWAP is set, then all file pages are considered
3571 * potentially reclaimable. Otherwise, we have to worry about
3572 * pages like swapcache and zone_unmapped_file_pages() provides
3575 if (zone_reclaim_mode & RECLAIM_SWAP)
3576 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3578 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3580 /* If we can't clean pages, remove dirty pages from consideration */
3581 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3582 delta += zone_page_state(zone, NR_FILE_DIRTY);
3584 /* Watch for any possible underflows due to delta */
3585 if (unlikely(delta > nr_pagecache_reclaimable))
3586 delta = nr_pagecache_reclaimable;
3588 return nr_pagecache_reclaimable - delta;
3592 * Try to free up some pages from this zone through reclaim.
3594 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3596 /* Minimum pages needed in order to stay on node */
3597 const unsigned long nr_pages = 1 << order;
3598 struct task_struct *p = current;
3599 struct reclaim_state reclaim_state;
3600 struct scan_control sc = {
3601 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3602 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3604 .priority = ZONE_RECLAIM_PRIORITY,
3605 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3606 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3609 struct shrink_control shrink = {
3610 .gfp_mask = sc.gfp_mask,
3612 unsigned long nr_slab_pages0, nr_slab_pages1;
3616 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3617 * and we also need to be able to write out pages for RECLAIM_WRITE
3620 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3621 lockdep_set_current_reclaim_state(gfp_mask);
3622 reclaim_state.reclaimed_slab = 0;
3623 p->reclaim_state = &reclaim_state;
3625 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3627 * Free memory by calling shrink zone with increasing
3628 * priorities until we have enough memory freed.
3631 shrink_zone(zone, &sc);
3632 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3635 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3636 if (nr_slab_pages0 > zone->min_slab_pages) {
3638 * shrink_slab() does not currently allow us to determine how
3639 * many pages were freed in this zone. So we take the current
3640 * number of slab pages and shake the slab until it is reduced
3641 * by the same nr_pages that we used for reclaiming unmapped
3644 nodes_clear(shrink.nodes_to_scan);
3645 node_set(zone_to_nid(zone), shrink.nodes_to_scan);
3647 unsigned long lru_pages = zone_reclaimable_pages(zone);
3649 /* No reclaimable slab or very low memory pressure */
3650 if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3653 /* Freed enough memory */
3654 nr_slab_pages1 = zone_page_state(zone,
3655 NR_SLAB_RECLAIMABLE);
3656 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3661 * Update nr_reclaimed by the number of slab pages we
3662 * reclaimed from this zone.
3664 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3665 if (nr_slab_pages1 < nr_slab_pages0)
3666 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3669 p->reclaim_state = NULL;
3670 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3671 lockdep_clear_current_reclaim_state();
3672 return sc.nr_reclaimed >= nr_pages;
3675 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3681 * Zone reclaim reclaims unmapped file backed pages and
3682 * slab pages if we are over the defined limits.
3684 * A small portion of unmapped file backed pages is needed for
3685 * file I/O otherwise pages read by file I/O will be immediately
3686 * thrown out if the zone is overallocated. So we do not reclaim
3687 * if less than a specified percentage of the zone is used by
3688 * unmapped file backed pages.
3690 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3691 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3692 return ZONE_RECLAIM_FULL;
3694 if (!zone_reclaimable(zone))
3695 return ZONE_RECLAIM_FULL;
3698 * Do not scan if the allocation should not be delayed.
3700 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3701 return ZONE_RECLAIM_NOSCAN;
3704 * Only run zone reclaim on the local zone or on zones that do not
3705 * have associated processors. This will favor the local processor
3706 * over remote processors and spread off node memory allocations
3707 * as wide as possible.
3709 node_id = zone_to_nid(zone);
3710 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3711 return ZONE_RECLAIM_NOSCAN;
3713 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3714 return ZONE_RECLAIM_NOSCAN;
3716 ret = __zone_reclaim(zone, gfp_mask, order);
3717 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3720 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3727 * page_evictable - test whether a page is evictable
3728 * @page: the page to test
3730 * Test whether page is evictable--i.e., should be placed on active/inactive
3731 * lists vs unevictable list.
3733 * Reasons page might not be evictable:
3734 * (1) page's mapping marked unevictable
3735 * (2) page is part of an mlocked VMA
3738 int page_evictable(struct page *page)
3740 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3745 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3746 * @pages: array of pages to check
3747 * @nr_pages: number of pages to check
3749 * Checks pages for evictability and moves them to the appropriate lru list.
3751 * This function is only used for SysV IPC SHM_UNLOCK.
3753 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3755 struct lruvec *lruvec;
3756 struct zone *zone = NULL;
3761 for (i = 0; i < nr_pages; i++) {
3762 struct page *page = pages[i];
3763 struct zone *pagezone;
3766 pagezone = page_zone(page);
3767 if (pagezone != zone) {
3769 spin_unlock_irq(&zone->lru_lock);
3771 spin_lock_irq(&zone->lru_lock);
3773 lruvec = mem_cgroup_page_lruvec(page, zone);
3775 if (!PageLRU(page) || !PageUnevictable(page))
3778 if (page_evictable(page)) {
3779 enum lru_list lru = page_lru_base_type(page);
3781 VM_BUG_ON_PAGE(PageActive(page), page);
3782 ClearPageUnevictable(page);
3783 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3784 add_page_to_lru_list(page, lruvec, lru);
3790 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3791 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3792 spin_unlock_irq(&zone->lru_lock);
3795 #endif /* CONFIG_SHMEM */
3797 static void warn_scan_unevictable_pages(void)
3799 printk_once(KERN_WARNING
3800 "%s: The scan_unevictable_pages sysctl/node-interface has been "
3801 "disabled for lack of a legitimate use case. If you have "
3807 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
3808 * all nodes' unevictable lists for evictable pages
3810 unsigned long scan_unevictable_pages;
3812 int scan_unevictable_handler(struct ctl_table *table, int write,
3813 void __user *buffer,
3814 size_t *length, loff_t *ppos)
3816 warn_scan_unevictable_pages();
3817 proc_doulongvec_minmax(table, write, buffer, length, ppos);
3818 scan_unevictable_pages = 0;
3824 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3825 * a specified node's per zone unevictable lists for evictable pages.
3828 static ssize_t read_scan_unevictable_node(struct device *dev,
3829 struct device_attribute *attr,
3832 warn_scan_unevictable_pages();
3833 return sprintf(buf, "0\n"); /* always zero; should fit... */
3836 static ssize_t write_scan_unevictable_node(struct device *dev,
3837 struct device_attribute *attr,
3838 const char *buf, size_t count)
3840 warn_scan_unevictable_pages();
3845 static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3846 read_scan_unevictable_node,
3847 write_scan_unevictable_node);
3849 int scan_unevictable_register_node(struct node *node)
3851 return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3854 void scan_unevictable_unregister_node(struct node *node)
3856 device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);