]> Git Repo - linux.git/blob - arch/x86/kernel/cpu/common.c
Merge tag 'x86_microcode_for_v6.7_rc1' of git://git.kernel.org/pub/scm/linux/kernel...
[linux.git] / arch / x86 / kernel / cpu / common.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* cpu_feature_enabled() cannot be used this early */
3 #define USE_EARLY_PGTABLE_L5
4
5 #include <linux/memblock.h>
6 #include <linux/linkage.h>
7 #include <linux/bitops.h>
8 #include <linux/kernel.h>
9 #include <linux/export.h>
10 #include <linux/percpu.h>
11 #include <linux/string.h>
12 #include <linux/ctype.h>
13 #include <linux/delay.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/clock.h>
16 #include <linux/sched/task.h>
17 #include <linux/sched/smt.h>
18 #include <linux/init.h>
19 #include <linux/kprobes.h>
20 #include <linux/kgdb.h>
21 #include <linux/mem_encrypt.h>
22 #include <linux/smp.h>
23 #include <linux/cpu.h>
24 #include <linux/io.h>
25 #include <linux/syscore_ops.h>
26 #include <linux/pgtable.h>
27 #include <linux/stackprotector.h>
28 #include <linux/utsname.h>
29
30 #include <asm/alternative.h>
31 #include <asm/cmdline.h>
32 #include <asm/perf_event.h>
33 #include <asm/mmu_context.h>
34 #include <asm/doublefault.h>
35 #include <asm/archrandom.h>
36 #include <asm/hypervisor.h>
37 #include <asm/processor.h>
38 #include <asm/tlbflush.h>
39 #include <asm/debugreg.h>
40 #include <asm/sections.h>
41 #include <asm/vsyscall.h>
42 #include <linux/topology.h>
43 #include <linux/cpumask.h>
44 #include <linux/atomic.h>
45 #include <asm/proto.h>
46 #include <asm/setup.h>
47 #include <asm/apic.h>
48 #include <asm/desc.h>
49 #include <asm/fpu/api.h>
50 #include <asm/mtrr.h>
51 #include <asm/hwcap2.h>
52 #include <linux/numa.h>
53 #include <asm/numa.h>
54 #include <asm/asm.h>
55 #include <asm/bugs.h>
56 #include <asm/cpu.h>
57 #include <asm/mce.h>
58 #include <asm/msr.h>
59 #include <asm/cacheinfo.h>
60 #include <asm/memtype.h>
61 #include <asm/microcode.h>
62 #include <asm/intel-family.h>
63 #include <asm/cpu_device_id.h>
64 #include <asm/uv/uv.h>
65 #include <asm/ia32.h>
66 #include <asm/set_memory.h>
67 #include <asm/traps.h>
68 #include <asm/sev.h>
69
70 #include "cpu.h"
71
72 u32 elf_hwcap2 __read_mostly;
73
74 /* Number of siblings per CPU package */
75 int smp_num_siblings = 1;
76 EXPORT_SYMBOL(smp_num_siblings);
77
78 static struct ppin_info {
79         int     feature;
80         int     msr_ppin_ctl;
81         int     msr_ppin;
82 } ppin_info[] = {
83         [X86_VENDOR_INTEL] = {
84                 .feature = X86_FEATURE_INTEL_PPIN,
85                 .msr_ppin_ctl = MSR_PPIN_CTL,
86                 .msr_ppin = MSR_PPIN
87         },
88         [X86_VENDOR_AMD] = {
89                 .feature = X86_FEATURE_AMD_PPIN,
90                 .msr_ppin_ctl = MSR_AMD_PPIN_CTL,
91                 .msr_ppin = MSR_AMD_PPIN
92         },
93 };
94
95 static const struct x86_cpu_id ppin_cpuids[] = {
96         X86_MATCH_FEATURE(X86_FEATURE_AMD_PPIN, &ppin_info[X86_VENDOR_AMD]),
97         X86_MATCH_FEATURE(X86_FEATURE_INTEL_PPIN, &ppin_info[X86_VENDOR_INTEL]),
98
99         /* Legacy models without CPUID enumeration */
100         X86_MATCH_INTEL_FAM6_MODEL(IVYBRIDGE_X, &ppin_info[X86_VENDOR_INTEL]),
101         X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X, &ppin_info[X86_VENDOR_INTEL]),
102         X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_D, &ppin_info[X86_VENDOR_INTEL]),
103         X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X, &ppin_info[X86_VENDOR_INTEL]),
104         X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_X, &ppin_info[X86_VENDOR_INTEL]),
105         X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X, &ppin_info[X86_VENDOR_INTEL]),
106         X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_D, &ppin_info[X86_VENDOR_INTEL]),
107         X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X, &ppin_info[X86_VENDOR_INTEL]),
108         X86_MATCH_INTEL_FAM6_MODEL(EMERALDRAPIDS_X, &ppin_info[X86_VENDOR_INTEL]),
109         X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNL, &ppin_info[X86_VENDOR_INTEL]),
110         X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNM, &ppin_info[X86_VENDOR_INTEL]),
111
112         {}
113 };
114
115 static void ppin_init(struct cpuinfo_x86 *c)
116 {
117         const struct x86_cpu_id *id;
118         unsigned long long val;
119         struct ppin_info *info;
120
121         id = x86_match_cpu(ppin_cpuids);
122         if (!id)
123                 return;
124
125         /*
126          * Testing the presence of the MSR is not enough. Need to check
127          * that the PPIN_CTL allows reading of the PPIN.
128          */
129         info = (struct ppin_info *)id->driver_data;
130
131         if (rdmsrl_safe(info->msr_ppin_ctl, &val))
132                 goto clear_ppin;
133
134         if ((val & 3UL) == 1UL) {
135                 /* PPIN locked in disabled mode */
136                 goto clear_ppin;
137         }
138
139         /* If PPIN is disabled, try to enable */
140         if (!(val & 2UL)) {
141                 wrmsrl_safe(info->msr_ppin_ctl,  val | 2UL);
142                 rdmsrl_safe(info->msr_ppin_ctl, &val);
143         }
144
145         /* Is the enable bit set? */
146         if (val & 2UL) {
147                 c->ppin = __rdmsr(info->msr_ppin);
148                 set_cpu_cap(c, info->feature);
149                 return;
150         }
151
152 clear_ppin:
153         clear_cpu_cap(c, info->feature);
154 }
155
156 static void default_init(struct cpuinfo_x86 *c)
157 {
158 #ifdef CONFIG_X86_64
159         cpu_detect_cache_sizes(c);
160 #else
161         /* Not much we can do here... */
162         /* Check if at least it has cpuid */
163         if (c->cpuid_level == -1) {
164                 /* No cpuid. It must be an ancient CPU */
165                 if (c->x86 == 4)
166                         strcpy(c->x86_model_id, "486");
167                 else if (c->x86 == 3)
168                         strcpy(c->x86_model_id, "386");
169         }
170 #endif
171 }
172
173 static const struct cpu_dev default_cpu = {
174         .c_init         = default_init,
175         .c_vendor       = "Unknown",
176         .c_x86_vendor   = X86_VENDOR_UNKNOWN,
177 };
178
179 static const struct cpu_dev *this_cpu = &default_cpu;
180
181 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
182 #ifdef CONFIG_X86_64
183         /*
184          * We need valid kernel segments for data and code in long mode too
185          * IRET will check the segment types  kkeil 2000/10/28
186          * Also sysret mandates a special GDT layout
187          *
188          * TLS descriptors are currently at a different place compared to i386.
189          * Hopefully nobody expects them at a fixed place (Wine?)
190          */
191         [GDT_ENTRY_KERNEL32_CS]         = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
192         [GDT_ENTRY_KERNEL_CS]           = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
193         [GDT_ENTRY_KERNEL_DS]           = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
194         [GDT_ENTRY_DEFAULT_USER32_CS]   = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
195         [GDT_ENTRY_DEFAULT_USER_DS]     = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
196         [GDT_ENTRY_DEFAULT_USER_CS]     = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
197 #else
198         [GDT_ENTRY_KERNEL_CS]           = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
199         [GDT_ENTRY_KERNEL_DS]           = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
200         [GDT_ENTRY_DEFAULT_USER_CS]     = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
201         [GDT_ENTRY_DEFAULT_USER_DS]     = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
202         /*
203          * Segments used for calling PnP BIOS have byte granularity.
204          * They code segments and data segments have fixed 64k limits,
205          * the transfer segment sizes are set at run time.
206          */
207         /* 32-bit code */
208         [GDT_ENTRY_PNPBIOS_CS32]        = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
209         /* 16-bit code */
210         [GDT_ENTRY_PNPBIOS_CS16]        = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
211         /* 16-bit data */
212         [GDT_ENTRY_PNPBIOS_DS]          = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
213         /* 16-bit data */
214         [GDT_ENTRY_PNPBIOS_TS1]         = GDT_ENTRY_INIT(0x0092, 0, 0),
215         /* 16-bit data */
216         [GDT_ENTRY_PNPBIOS_TS2]         = GDT_ENTRY_INIT(0x0092, 0, 0),
217         /*
218          * The APM segments have byte granularity and their bases
219          * are set at run time.  All have 64k limits.
220          */
221         /* 32-bit code */
222         [GDT_ENTRY_APMBIOS_BASE]        = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
223         /* 16-bit code */
224         [GDT_ENTRY_APMBIOS_BASE+1]      = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
225         /* data */
226         [GDT_ENTRY_APMBIOS_BASE+2]      = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
227
228         [GDT_ENTRY_ESPFIX_SS]           = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
229         [GDT_ENTRY_PERCPU]              = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
230 #endif
231 } };
232 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
233
234 #ifdef CONFIG_X86_64
235 static int __init x86_nopcid_setup(char *s)
236 {
237         /* nopcid doesn't accept parameters */
238         if (s)
239                 return -EINVAL;
240
241         /* do not emit a message if the feature is not present */
242         if (!boot_cpu_has(X86_FEATURE_PCID))
243                 return 0;
244
245         setup_clear_cpu_cap(X86_FEATURE_PCID);
246         pr_info("nopcid: PCID feature disabled\n");
247         return 0;
248 }
249 early_param("nopcid", x86_nopcid_setup);
250 #endif
251
252 static int __init x86_noinvpcid_setup(char *s)
253 {
254         /* noinvpcid doesn't accept parameters */
255         if (s)
256                 return -EINVAL;
257
258         /* do not emit a message if the feature is not present */
259         if (!boot_cpu_has(X86_FEATURE_INVPCID))
260                 return 0;
261
262         setup_clear_cpu_cap(X86_FEATURE_INVPCID);
263         pr_info("noinvpcid: INVPCID feature disabled\n");
264         return 0;
265 }
266 early_param("noinvpcid", x86_noinvpcid_setup);
267
268 #ifdef CONFIG_X86_32
269 static int cachesize_override = -1;
270 static int disable_x86_serial_nr = 1;
271
272 static int __init cachesize_setup(char *str)
273 {
274         get_option(&str, &cachesize_override);
275         return 1;
276 }
277 __setup("cachesize=", cachesize_setup);
278
279 /* Standard macro to see if a specific flag is changeable */
280 static inline int flag_is_changeable_p(u32 flag)
281 {
282         u32 f1, f2;
283
284         /*
285          * Cyrix and IDT cpus allow disabling of CPUID
286          * so the code below may return different results
287          * when it is executed before and after enabling
288          * the CPUID. Add "volatile" to not allow gcc to
289          * optimize the subsequent calls to this function.
290          */
291         asm volatile ("pushfl           \n\t"
292                       "pushfl           \n\t"
293                       "popl %0          \n\t"
294                       "movl %0, %1      \n\t"
295                       "xorl %2, %0      \n\t"
296                       "pushl %0         \n\t"
297                       "popfl            \n\t"
298                       "pushfl           \n\t"
299                       "popl %0          \n\t"
300                       "popfl            \n\t"
301
302                       : "=&r" (f1), "=&r" (f2)
303                       : "ir" (flag));
304
305         return ((f1^f2) & flag) != 0;
306 }
307
308 /* Probe for the CPUID instruction */
309 int have_cpuid_p(void)
310 {
311         return flag_is_changeable_p(X86_EFLAGS_ID);
312 }
313
314 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
315 {
316         unsigned long lo, hi;
317
318         if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
319                 return;
320
321         /* Disable processor serial number: */
322
323         rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
324         lo |= 0x200000;
325         wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
326
327         pr_notice("CPU serial number disabled.\n");
328         clear_cpu_cap(c, X86_FEATURE_PN);
329
330         /* Disabling the serial number may affect the cpuid level */
331         c->cpuid_level = cpuid_eax(0);
332 }
333
334 static int __init x86_serial_nr_setup(char *s)
335 {
336         disable_x86_serial_nr = 0;
337         return 1;
338 }
339 __setup("serialnumber", x86_serial_nr_setup);
340 #else
341 static inline int flag_is_changeable_p(u32 flag)
342 {
343         return 1;
344 }
345 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
346 {
347 }
348 #endif
349
350 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
351 {
352         if (cpu_has(c, X86_FEATURE_SMEP))
353                 cr4_set_bits(X86_CR4_SMEP);
354 }
355
356 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
357 {
358         unsigned long eflags = native_save_fl();
359
360         /* This should have been cleared long ago */
361         BUG_ON(eflags & X86_EFLAGS_AC);
362
363         if (cpu_has(c, X86_FEATURE_SMAP))
364                 cr4_set_bits(X86_CR4_SMAP);
365 }
366
367 static __always_inline void setup_umip(struct cpuinfo_x86 *c)
368 {
369         /* Check the boot processor, plus build option for UMIP. */
370         if (!cpu_feature_enabled(X86_FEATURE_UMIP))
371                 goto out;
372
373         /* Check the current processor's cpuid bits. */
374         if (!cpu_has(c, X86_FEATURE_UMIP))
375                 goto out;
376
377         cr4_set_bits(X86_CR4_UMIP);
378
379         pr_info_once("x86/cpu: User Mode Instruction Prevention (UMIP) activated\n");
380
381         return;
382
383 out:
384         /*
385          * Make sure UMIP is disabled in case it was enabled in a
386          * previous boot (e.g., via kexec).
387          */
388         cr4_clear_bits(X86_CR4_UMIP);
389 }
390
391 /* These bits should not change their value after CPU init is finished. */
392 static const unsigned long cr4_pinned_mask =
393         X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_UMIP |
394         X86_CR4_FSGSBASE | X86_CR4_CET;
395 static DEFINE_STATIC_KEY_FALSE_RO(cr_pinning);
396 static unsigned long cr4_pinned_bits __ro_after_init;
397
398 void native_write_cr0(unsigned long val)
399 {
400         unsigned long bits_missing = 0;
401
402 set_register:
403         asm volatile("mov %0,%%cr0": "+r" (val) : : "memory");
404
405         if (static_branch_likely(&cr_pinning)) {
406                 if (unlikely((val & X86_CR0_WP) != X86_CR0_WP)) {
407                         bits_missing = X86_CR0_WP;
408                         val |= bits_missing;
409                         goto set_register;
410                 }
411                 /* Warn after we've set the missing bits. */
412                 WARN_ONCE(bits_missing, "CR0 WP bit went missing!?\n");
413         }
414 }
415 EXPORT_SYMBOL(native_write_cr0);
416
417 void __no_profile native_write_cr4(unsigned long val)
418 {
419         unsigned long bits_changed = 0;
420
421 set_register:
422         asm volatile("mov %0,%%cr4": "+r" (val) : : "memory");
423
424         if (static_branch_likely(&cr_pinning)) {
425                 if (unlikely((val & cr4_pinned_mask) != cr4_pinned_bits)) {
426                         bits_changed = (val & cr4_pinned_mask) ^ cr4_pinned_bits;
427                         val = (val & ~cr4_pinned_mask) | cr4_pinned_bits;
428                         goto set_register;
429                 }
430                 /* Warn after we've corrected the changed bits. */
431                 WARN_ONCE(bits_changed, "pinned CR4 bits changed: 0x%lx!?\n",
432                           bits_changed);
433         }
434 }
435 #if IS_MODULE(CONFIG_LKDTM)
436 EXPORT_SYMBOL_GPL(native_write_cr4);
437 #endif
438
439 void cr4_update_irqsoff(unsigned long set, unsigned long clear)
440 {
441         unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
442
443         lockdep_assert_irqs_disabled();
444
445         newval = (cr4 & ~clear) | set;
446         if (newval != cr4) {
447                 this_cpu_write(cpu_tlbstate.cr4, newval);
448                 __write_cr4(newval);
449         }
450 }
451 EXPORT_SYMBOL(cr4_update_irqsoff);
452
453 /* Read the CR4 shadow. */
454 unsigned long cr4_read_shadow(void)
455 {
456         return this_cpu_read(cpu_tlbstate.cr4);
457 }
458 EXPORT_SYMBOL_GPL(cr4_read_shadow);
459
460 void cr4_init(void)
461 {
462         unsigned long cr4 = __read_cr4();
463
464         if (boot_cpu_has(X86_FEATURE_PCID))
465                 cr4 |= X86_CR4_PCIDE;
466         if (static_branch_likely(&cr_pinning))
467                 cr4 = (cr4 & ~cr4_pinned_mask) | cr4_pinned_bits;
468
469         __write_cr4(cr4);
470
471         /* Initialize cr4 shadow for this CPU. */
472         this_cpu_write(cpu_tlbstate.cr4, cr4);
473 }
474
475 /*
476  * Once CPU feature detection is finished (and boot params have been
477  * parsed), record any of the sensitive CR bits that are set, and
478  * enable CR pinning.
479  */
480 static void __init setup_cr_pinning(void)
481 {
482         cr4_pinned_bits = this_cpu_read(cpu_tlbstate.cr4) & cr4_pinned_mask;
483         static_key_enable(&cr_pinning.key);
484 }
485
486 static __init int x86_nofsgsbase_setup(char *arg)
487 {
488         /* Require an exact match without trailing characters. */
489         if (strlen(arg))
490                 return 0;
491
492         /* Do not emit a message if the feature is not present. */
493         if (!boot_cpu_has(X86_FEATURE_FSGSBASE))
494                 return 1;
495
496         setup_clear_cpu_cap(X86_FEATURE_FSGSBASE);
497         pr_info("FSGSBASE disabled via kernel command line\n");
498         return 1;
499 }
500 __setup("nofsgsbase", x86_nofsgsbase_setup);
501
502 /*
503  * Protection Keys are not available in 32-bit mode.
504  */
505 static bool pku_disabled;
506
507 static __always_inline void setup_pku(struct cpuinfo_x86 *c)
508 {
509         if (c == &boot_cpu_data) {
510                 if (pku_disabled || !cpu_feature_enabled(X86_FEATURE_PKU))
511                         return;
512                 /*
513                  * Setting CR4.PKE will cause the X86_FEATURE_OSPKE cpuid
514                  * bit to be set.  Enforce it.
515                  */
516                 setup_force_cpu_cap(X86_FEATURE_OSPKE);
517
518         } else if (!cpu_feature_enabled(X86_FEATURE_OSPKE)) {
519                 return;
520         }
521
522         cr4_set_bits(X86_CR4_PKE);
523         /* Load the default PKRU value */
524         pkru_write_default();
525 }
526
527 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
528 static __init int setup_disable_pku(char *arg)
529 {
530         /*
531          * Do not clear the X86_FEATURE_PKU bit.  All of the
532          * runtime checks are against OSPKE so clearing the
533          * bit does nothing.
534          *
535          * This way, we will see "pku" in cpuinfo, but not
536          * "ospke", which is exactly what we want.  It shows
537          * that the CPU has PKU, but the OS has not enabled it.
538          * This happens to be exactly how a system would look
539          * if we disabled the config option.
540          */
541         pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
542         pku_disabled = true;
543         return 1;
544 }
545 __setup("nopku", setup_disable_pku);
546 #endif
547
548 #ifdef CONFIG_X86_KERNEL_IBT
549
550 __noendbr u64 ibt_save(bool disable)
551 {
552         u64 msr = 0;
553
554         if (cpu_feature_enabled(X86_FEATURE_IBT)) {
555                 rdmsrl(MSR_IA32_S_CET, msr);
556                 if (disable)
557                         wrmsrl(MSR_IA32_S_CET, msr & ~CET_ENDBR_EN);
558         }
559
560         return msr;
561 }
562
563 __noendbr void ibt_restore(u64 save)
564 {
565         u64 msr;
566
567         if (cpu_feature_enabled(X86_FEATURE_IBT)) {
568                 rdmsrl(MSR_IA32_S_CET, msr);
569                 msr &= ~CET_ENDBR_EN;
570                 msr |= (save & CET_ENDBR_EN);
571                 wrmsrl(MSR_IA32_S_CET, msr);
572         }
573 }
574
575 #endif
576
577 static __always_inline void setup_cet(struct cpuinfo_x86 *c)
578 {
579         bool user_shstk, kernel_ibt;
580
581         if (!IS_ENABLED(CONFIG_X86_CET))
582                 return;
583
584         kernel_ibt = HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT);
585         user_shstk = cpu_feature_enabled(X86_FEATURE_SHSTK) &&
586                      IS_ENABLED(CONFIG_X86_USER_SHADOW_STACK);
587
588         if (!kernel_ibt && !user_shstk)
589                 return;
590
591         if (user_shstk)
592                 set_cpu_cap(c, X86_FEATURE_USER_SHSTK);
593
594         if (kernel_ibt)
595                 wrmsrl(MSR_IA32_S_CET, CET_ENDBR_EN);
596         else
597                 wrmsrl(MSR_IA32_S_CET, 0);
598
599         cr4_set_bits(X86_CR4_CET);
600
601         if (kernel_ibt && ibt_selftest()) {
602                 pr_err("IBT selftest: Failed!\n");
603                 wrmsrl(MSR_IA32_S_CET, 0);
604                 setup_clear_cpu_cap(X86_FEATURE_IBT);
605         }
606 }
607
608 __noendbr void cet_disable(void)
609 {
610         if (!(cpu_feature_enabled(X86_FEATURE_IBT) ||
611               cpu_feature_enabled(X86_FEATURE_SHSTK)))
612                 return;
613
614         wrmsrl(MSR_IA32_S_CET, 0);
615         wrmsrl(MSR_IA32_U_CET, 0);
616 }
617
618 /*
619  * Some CPU features depend on higher CPUID levels, which may not always
620  * be available due to CPUID level capping or broken virtualization
621  * software.  Add those features to this table to auto-disable them.
622  */
623 struct cpuid_dependent_feature {
624         u32 feature;
625         u32 level;
626 };
627
628 static const struct cpuid_dependent_feature
629 cpuid_dependent_features[] = {
630         { X86_FEATURE_MWAIT,            0x00000005 },
631         { X86_FEATURE_DCA,              0x00000009 },
632         { X86_FEATURE_XSAVE,            0x0000000d },
633         { 0, 0 }
634 };
635
636 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
637 {
638         const struct cpuid_dependent_feature *df;
639
640         for (df = cpuid_dependent_features; df->feature; df++) {
641
642                 if (!cpu_has(c, df->feature))
643                         continue;
644                 /*
645                  * Note: cpuid_level is set to -1 if unavailable, but
646                  * extended_extended_level is set to 0 if unavailable
647                  * and the legitimate extended levels are all negative
648                  * when signed; hence the weird messing around with
649                  * signs here...
650                  */
651                 if (!((s32)df->level < 0 ?
652                      (u32)df->level > (u32)c->extended_cpuid_level :
653                      (s32)df->level > (s32)c->cpuid_level))
654                         continue;
655
656                 clear_cpu_cap(c, df->feature);
657                 if (!warn)
658                         continue;
659
660                 pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
661                         x86_cap_flag(df->feature), df->level);
662         }
663 }
664
665 /*
666  * Naming convention should be: <Name> [(<Codename>)]
667  * This table only is used unless init_<vendor>() below doesn't set it;
668  * in particular, if CPUID levels 0x80000002..4 are supported, this
669  * isn't used
670  */
671
672 /* Look up CPU names by table lookup. */
673 static const char *table_lookup_model(struct cpuinfo_x86 *c)
674 {
675 #ifdef CONFIG_X86_32
676         const struct legacy_cpu_model_info *info;
677
678         if (c->x86_model >= 16)
679                 return NULL;    /* Range check */
680
681         if (!this_cpu)
682                 return NULL;
683
684         info = this_cpu->legacy_models;
685
686         while (info->family) {
687                 if (info->family == c->x86)
688                         return info->model_names[c->x86_model];
689                 info++;
690         }
691 #endif
692         return NULL;            /* Not found */
693 }
694
695 /* Aligned to unsigned long to avoid split lock in atomic bitmap ops */
696 __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
697 __u32 cpu_caps_set[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
698
699 #ifdef CONFIG_X86_32
700 /* The 32-bit entry code needs to find cpu_entry_area. */
701 DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
702 #endif
703
704 /* Load the original GDT from the per-cpu structure */
705 void load_direct_gdt(int cpu)
706 {
707         struct desc_ptr gdt_descr;
708
709         gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
710         gdt_descr.size = GDT_SIZE - 1;
711         load_gdt(&gdt_descr);
712 }
713 EXPORT_SYMBOL_GPL(load_direct_gdt);
714
715 /* Load a fixmap remapping of the per-cpu GDT */
716 void load_fixmap_gdt(int cpu)
717 {
718         struct desc_ptr gdt_descr;
719
720         gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
721         gdt_descr.size = GDT_SIZE - 1;
722         load_gdt(&gdt_descr);
723 }
724 EXPORT_SYMBOL_GPL(load_fixmap_gdt);
725
726 /**
727  * switch_gdt_and_percpu_base - Switch to direct GDT and runtime per CPU base
728  * @cpu:        The CPU number for which this is invoked
729  *
730  * Invoked during early boot to switch from early GDT and early per CPU to
731  * the direct GDT and the runtime per CPU area. On 32-bit the percpu base
732  * switch is implicit by loading the direct GDT. On 64bit this requires
733  * to update GSBASE.
734  */
735 void __init switch_gdt_and_percpu_base(int cpu)
736 {
737         load_direct_gdt(cpu);
738
739 #ifdef CONFIG_X86_64
740         /*
741          * No need to load %gs. It is already correct.
742          *
743          * Writing %gs on 64bit would zero GSBASE which would make any per
744          * CPU operation up to the point of the wrmsrl() fault.
745          *
746          * Set GSBASE to the new offset. Until the wrmsrl() happens the
747          * early mapping is still valid. That means the GSBASE update will
748          * lose any prior per CPU data which was not copied over in
749          * setup_per_cpu_areas().
750          *
751          * This works even with stackprotector enabled because the
752          * per CPU stack canary is 0 in both per CPU areas.
753          */
754         wrmsrl(MSR_GS_BASE, cpu_kernelmode_gs_base(cpu));
755 #else
756         /*
757          * %fs is already set to __KERNEL_PERCPU, but after switching GDT
758          * it is required to load FS again so that the 'hidden' part is
759          * updated from the new GDT. Up to this point the early per CPU
760          * translation is active. Any content of the early per CPU data
761          * which was not copied over in setup_per_cpu_areas() is lost.
762          */
763         loadsegment(fs, __KERNEL_PERCPU);
764 #endif
765 }
766
767 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
768
769 static void get_model_name(struct cpuinfo_x86 *c)
770 {
771         unsigned int *v;
772         char *p, *q, *s;
773
774         if (c->extended_cpuid_level < 0x80000004)
775                 return;
776
777         v = (unsigned int *)c->x86_model_id;
778         cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
779         cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
780         cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
781         c->x86_model_id[48] = 0;
782
783         /* Trim whitespace */
784         p = q = s = &c->x86_model_id[0];
785
786         while (*p == ' ')
787                 p++;
788
789         while (*p) {
790                 /* Note the last non-whitespace index */
791                 if (!isspace(*p))
792                         s = q;
793
794                 *q++ = *p++;
795         }
796
797         *(s + 1) = '\0';
798 }
799
800 void detect_num_cpu_cores(struct cpuinfo_x86 *c)
801 {
802         unsigned int eax, ebx, ecx, edx;
803
804         c->x86_max_cores = 1;
805         if (!IS_ENABLED(CONFIG_SMP) || c->cpuid_level < 4)
806                 return;
807
808         cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
809         if (eax & 0x1f)
810                 c->x86_max_cores = (eax >> 26) + 1;
811 }
812
813 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
814 {
815         unsigned int n, dummy, ebx, ecx, edx, l2size;
816
817         n = c->extended_cpuid_level;
818
819         if (n >= 0x80000005) {
820                 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
821                 c->x86_cache_size = (ecx>>24) + (edx>>24);
822 #ifdef CONFIG_X86_64
823                 /* On K8 L1 TLB is inclusive, so don't count it */
824                 c->x86_tlbsize = 0;
825 #endif
826         }
827
828         if (n < 0x80000006)     /* Some chips just has a large L1. */
829                 return;
830
831         cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
832         l2size = ecx >> 16;
833
834 #ifdef CONFIG_X86_64
835         c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
836 #else
837         /* do processor-specific cache resizing */
838         if (this_cpu->legacy_cache_size)
839                 l2size = this_cpu->legacy_cache_size(c, l2size);
840
841         /* Allow user to override all this if necessary. */
842         if (cachesize_override != -1)
843                 l2size = cachesize_override;
844
845         if (l2size == 0)
846                 return;         /* Again, no L2 cache is possible */
847 #endif
848
849         c->x86_cache_size = l2size;
850 }
851
852 u16 __read_mostly tlb_lli_4k[NR_INFO];
853 u16 __read_mostly tlb_lli_2m[NR_INFO];
854 u16 __read_mostly tlb_lli_4m[NR_INFO];
855 u16 __read_mostly tlb_lld_4k[NR_INFO];
856 u16 __read_mostly tlb_lld_2m[NR_INFO];
857 u16 __read_mostly tlb_lld_4m[NR_INFO];
858 u16 __read_mostly tlb_lld_1g[NR_INFO];
859
860 static void cpu_detect_tlb(struct cpuinfo_x86 *c)
861 {
862         if (this_cpu->c_detect_tlb)
863                 this_cpu->c_detect_tlb(c);
864
865         pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
866                 tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
867                 tlb_lli_4m[ENTRIES]);
868
869         pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
870                 tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
871                 tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
872 }
873
874 int detect_ht_early(struct cpuinfo_x86 *c)
875 {
876 #ifdef CONFIG_SMP
877         u32 eax, ebx, ecx, edx;
878
879         if (!cpu_has(c, X86_FEATURE_HT))
880                 return -1;
881
882         if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
883                 return -1;
884
885         if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
886                 return -1;
887
888         cpuid(1, &eax, &ebx, &ecx, &edx);
889
890         smp_num_siblings = (ebx & 0xff0000) >> 16;
891         if (smp_num_siblings == 1)
892                 pr_info_once("CPU0: Hyper-Threading is disabled\n");
893 #endif
894         return 0;
895 }
896
897 void detect_ht(struct cpuinfo_x86 *c)
898 {
899 #ifdef CONFIG_SMP
900         int index_msb, core_bits;
901
902         if (detect_ht_early(c) < 0)
903                 return;
904
905         index_msb = get_count_order(smp_num_siblings);
906         c->topo.pkg_id = apic->phys_pkg_id(c->topo.initial_apicid, index_msb);
907
908         smp_num_siblings = smp_num_siblings / c->x86_max_cores;
909
910         index_msb = get_count_order(smp_num_siblings);
911
912         core_bits = get_count_order(c->x86_max_cores);
913
914         c->topo.core_id = apic->phys_pkg_id(c->topo.initial_apicid, index_msb) &
915                 ((1 << core_bits) - 1);
916 #endif
917 }
918
919 static void get_cpu_vendor(struct cpuinfo_x86 *c)
920 {
921         char *v = c->x86_vendor_id;
922         int i;
923
924         for (i = 0; i < X86_VENDOR_NUM; i++) {
925                 if (!cpu_devs[i])
926                         break;
927
928                 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
929                     (cpu_devs[i]->c_ident[1] &&
930                      !strcmp(v, cpu_devs[i]->c_ident[1]))) {
931
932                         this_cpu = cpu_devs[i];
933                         c->x86_vendor = this_cpu->c_x86_vendor;
934                         return;
935                 }
936         }
937
938         pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
939                     "CPU: Your system may be unstable.\n", v);
940
941         c->x86_vendor = X86_VENDOR_UNKNOWN;
942         this_cpu = &default_cpu;
943 }
944
945 void cpu_detect(struct cpuinfo_x86 *c)
946 {
947         /* Get vendor name */
948         cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
949               (unsigned int *)&c->x86_vendor_id[0],
950               (unsigned int *)&c->x86_vendor_id[8],
951               (unsigned int *)&c->x86_vendor_id[4]);
952
953         c->x86 = 4;
954         /* Intel-defined flags: level 0x00000001 */
955         if (c->cpuid_level >= 0x00000001) {
956                 u32 junk, tfms, cap0, misc;
957
958                 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
959                 c->x86          = x86_family(tfms);
960                 c->x86_model    = x86_model(tfms);
961                 c->x86_stepping = x86_stepping(tfms);
962
963                 if (cap0 & (1<<19)) {
964                         c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
965                         c->x86_cache_alignment = c->x86_clflush_size;
966                 }
967         }
968 }
969
970 static void apply_forced_caps(struct cpuinfo_x86 *c)
971 {
972         int i;
973
974         for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
975                 c->x86_capability[i] &= ~cpu_caps_cleared[i];
976                 c->x86_capability[i] |= cpu_caps_set[i];
977         }
978 }
979
980 static void init_speculation_control(struct cpuinfo_x86 *c)
981 {
982         /*
983          * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
984          * and they also have a different bit for STIBP support. Also,
985          * a hypervisor might have set the individual AMD bits even on
986          * Intel CPUs, for finer-grained selection of what's available.
987          */
988         if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) {
989                 set_cpu_cap(c, X86_FEATURE_IBRS);
990                 set_cpu_cap(c, X86_FEATURE_IBPB);
991                 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
992         }
993
994         if (cpu_has(c, X86_FEATURE_INTEL_STIBP))
995                 set_cpu_cap(c, X86_FEATURE_STIBP);
996
997         if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) ||
998             cpu_has(c, X86_FEATURE_VIRT_SSBD))
999                 set_cpu_cap(c, X86_FEATURE_SSBD);
1000
1001         if (cpu_has(c, X86_FEATURE_AMD_IBRS)) {
1002                 set_cpu_cap(c, X86_FEATURE_IBRS);
1003                 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
1004         }
1005
1006         if (cpu_has(c, X86_FEATURE_AMD_IBPB))
1007                 set_cpu_cap(c, X86_FEATURE_IBPB);
1008
1009         if (cpu_has(c, X86_FEATURE_AMD_STIBP)) {
1010                 set_cpu_cap(c, X86_FEATURE_STIBP);
1011                 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
1012         }
1013
1014         if (cpu_has(c, X86_FEATURE_AMD_SSBD)) {
1015                 set_cpu_cap(c, X86_FEATURE_SSBD);
1016                 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
1017                 clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD);
1018         }
1019 }
1020
1021 void get_cpu_cap(struct cpuinfo_x86 *c)
1022 {
1023         u32 eax, ebx, ecx, edx;
1024
1025         /* Intel-defined flags: level 0x00000001 */
1026         if (c->cpuid_level >= 0x00000001) {
1027                 cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
1028
1029                 c->x86_capability[CPUID_1_ECX] = ecx;
1030                 c->x86_capability[CPUID_1_EDX] = edx;
1031         }
1032
1033         /* Thermal and Power Management Leaf: level 0x00000006 (eax) */
1034         if (c->cpuid_level >= 0x00000006)
1035                 c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
1036
1037         /* Additional Intel-defined flags: level 0x00000007 */
1038         if (c->cpuid_level >= 0x00000007) {
1039                 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
1040                 c->x86_capability[CPUID_7_0_EBX] = ebx;
1041                 c->x86_capability[CPUID_7_ECX] = ecx;
1042                 c->x86_capability[CPUID_7_EDX] = edx;
1043
1044                 /* Check valid sub-leaf index before accessing it */
1045                 if (eax >= 1) {
1046                         cpuid_count(0x00000007, 1, &eax, &ebx, &ecx, &edx);
1047                         c->x86_capability[CPUID_7_1_EAX] = eax;
1048                 }
1049         }
1050
1051         /* Extended state features: level 0x0000000d */
1052         if (c->cpuid_level >= 0x0000000d) {
1053                 cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
1054
1055                 c->x86_capability[CPUID_D_1_EAX] = eax;
1056         }
1057
1058         /* AMD-defined flags: level 0x80000001 */
1059         eax = cpuid_eax(0x80000000);
1060         c->extended_cpuid_level = eax;
1061
1062         if ((eax & 0xffff0000) == 0x80000000) {
1063                 if (eax >= 0x80000001) {
1064                         cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
1065
1066                         c->x86_capability[CPUID_8000_0001_ECX] = ecx;
1067                         c->x86_capability[CPUID_8000_0001_EDX] = edx;
1068                 }
1069         }
1070
1071         if (c->extended_cpuid_level >= 0x80000007) {
1072                 cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
1073
1074                 c->x86_capability[CPUID_8000_0007_EBX] = ebx;
1075                 c->x86_power = edx;
1076         }
1077
1078         if (c->extended_cpuid_level >= 0x80000008) {
1079                 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
1080                 c->x86_capability[CPUID_8000_0008_EBX] = ebx;
1081         }
1082
1083         if (c->extended_cpuid_level >= 0x8000000a)
1084                 c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
1085
1086         if (c->extended_cpuid_level >= 0x8000001f)
1087                 c->x86_capability[CPUID_8000_001F_EAX] = cpuid_eax(0x8000001f);
1088
1089         if (c->extended_cpuid_level >= 0x80000021)
1090                 c->x86_capability[CPUID_8000_0021_EAX] = cpuid_eax(0x80000021);
1091
1092         init_scattered_cpuid_features(c);
1093         init_speculation_control(c);
1094
1095         /*
1096          * Clear/Set all flags overridden by options, after probe.
1097          * This needs to happen each time we re-probe, which may happen
1098          * several times during CPU initialization.
1099          */
1100         apply_forced_caps(c);
1101 }
1102
1103 void get_cpu_address_sizes(struct cpuinfo_x86 *c)
1104 {
1105         u32 eax, ebx, ecx, edx;
1106         bool vp_bits_from_cpuid = true;
1107
1108         if (!cpu_has(c, X86_FEATURE_CPUID) ||
1109             (c->extended_cpuid_level < 0x80000008))
1110                 vp_bits_from_cpuid = false;
1111
1112         if (vp_bits_from_cpuid) {
1113                 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
1114
1115                 c->x86_virt_bits = (eax >> 8) & 0xff;
1116                 c->x86_phys_bits = eax & 0xff;
1117         } else {
1118                 if (IS_ENABLED(CONFIG_X86_64)) {
1119                         c->x86_clflush_size = 64;
1120                         c->x86_phys_bits = 36;
1121                         c->x86_virt_bits = 48;
1122                 } else {
1123                         c->x86_clflush_size = 32;
1124                         c->x86_virt_bits = 32;
1125                         c->x86_phys_bits = 32;
1126
1127                         if (cpu_has(c, X86_FEATURE_PAE) ||
1128                             cpu_has(c, X86_FEATURE_PSE36))
1129                                 c->x86_phys_bits = 36;
1130                 }
1131         }
1132         c->x86_cache_bits = c->x86_phys_bits;
1133         c->x86_cache_alignment = c->x86_clflush_size;
1134 }
1135
1136 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
1137 {
1138 #ifdef CONFIG_X86_32
1139         int i;
1140
1141         /*
1142          * First of all, decide if this is a 486 or higher
1143          * It's a 486 if we can modify the AC flag
1144          */
1145         if (flag_is_changeable_p(X86_EFLAGS_AC))
1146                 c->x86 = 4;
1147         else
1148                 c->x86 = 3;
1149
1150         for (i = 0; i < X86_VENDOR_NUM; i++)
1151                 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
1152                         c->x86_vendor_id[0] = 0;
1153                         cpu_devs[i]->c_identify(c);
1154                         if (c->x86_vendor_id[0]) {
1155                                 get_cpu_vendor(c);
1156                                 break;
1157                         }
1158                 }
1159 #endif
1160 }
1161
1162 #define NO_SPECULATION          BIT(0)
1163 #define NO_MELTDOWN             BIT(1)
1164 #define NO_SSB                  BIT(2)
1165 #define NO_L1TF                 BIT(3)
1166 #define NO_MDS                  BIT(4)
1167 #define MSBDS_ONLY              BIT(5)
1168 #define NO_SWAPGS               BIT(6)
1169 #define NO_ITLB_MULTIHIT        BIT(7)
1170 #define NO_SPECTRE_V2           BIT(8)
1171 #define NO_MMIO                 BIT(9)
1172 #define NO_EIBRS_PBRSB          BIT(10)
1173
1174 #define VULNWL(vendor, family, model, whitelist)        \
1175         X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, whitelist)
1176
1177 #define VULNWL_INTEL(model, whitelist)          \
1178         VULNWL(INTEL, 6, INTEL_FAM6_##model, whitelist)
1179
1180 #define VULNWL_AMD(family, whitelist)           \
1181         VULNWL(AMD, family, X86_MODEL_ANY, whitelist)
1182
1183 #define VULNWL_HYGON(family, whitelist)         \
1184         VULNWL(HYGON, family, X86_MODEL_ANY, whitelist)
1185
1186 static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = {
1187         VULNWL(ANY,     4, X86_MODEL_ANY,       NO_SPECULATION),
1188         VULNWL(CENTAUR, 5, X86_MODEL_ANY,       NO_SPECULATION),
1189         VULNWL(INTEL,   5, X86_MODEL_ANY,       NO_SPECULATION),
1190         VULNWL(NSC,     5, X86_MODEL_ANY,       NO_SPECULATION),
1191         VULNWL(VORTEX,  5, X86_MODEL_ANY,       NO_SPECULATION),
1192         VULNWL(VORTEX,  6, X86_MODEL_ANY,       NO_SPECULATION),
1193
1194         /* Intel Family 6 */
1195         VULNWL_INTEL(TIGERLAKE,                 NO_MMIO),
1196         VULNWL_INTEL(TIGERLAKE_L,               NO_MMIO),
1197         VULNWL_INTEL(ALDERLAKE,                 NO_MMIO),
1198         VULNWL_INTEL(ALDERLAKE_L,               NO_MMIO),
1199
1200         VULNWL_INTEL(ATOM_SALTWELL,             NO_SPECULATION | NO_ITLB_MULTIHIT),
1201         VULNWL_INTEL(ATOM_SALTWELL_TABLET,      NO_SPECULATION | NO_ITLB_MULTIHIT),
1202         VULNWL_INTEL(ATOM_SALTWELL_MID,         NO_SPECULATION | NO_ITLB_MULTIHIT),
1203         VULNWL_INTEL(ATOM_BONNELL,              NO_SPECULATION | NO_ITLB_MULTIHIT),
1204         VULNWL_INTEL(ATOM_BONNELL_MID,          NO_SPECULATION | NO_ITLB_MULTIHIT),
1205
1206         VULNWL_INTEL(ATOM_SILVERMONT,           NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1207         VULNWL_INTEL(ATOM_SILVERMONT_D,         NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1208         VULNWL_INTEL(ATOM_SILVERMONT_MID,       NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1209         VULNWL_INTEL(ATOM_AIRMONT,              NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1210         VULNWL_INTEL(XEON_PHI_KNL,              NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1211         VULNWL_INTEL(XEON_PHI_KNM,              NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1212
1213         VULNWL_INTEL(CORE_YONAH,                NO_SSB),
1214
1215         VULNWL_INTEL(ATOM_AIRMONT_MID,          NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1216         VULNWL_INTEL(ATOM_AIRMONT_NP,           NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1217
1218         VULNWL_INTEL(ATOM_GOLDMONT,             NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1219         VULNWL_INTEL(ATOM_GOLDMONT_D,           NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1220         VULNWL_INTEL(ATOM_GOLDMONT_PLUS,        NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB),
1221
1222         /*
1223          * Technically, swapgs isn't serializing on AMD (despite it previously
1224          * being documented as such in the APM).  But according to AMD, %gs is
1225          * updated non-speculatively, and the issuing of %gs-relative memory
1226          * operands will be blocked until the %gs update completes, which is
1227          * good enough for our purposes.
1228          */
1229
1230         VULNWL_INTEL(ATOM_TREMONT,              NO_EIBRS_PBRSB),
1231         VULNWL_INTEL(ATOM_TREMONT_L,            NO_EIBRS_PBRSB),
1232         VULNWL_INTEL(ATOM_TREMONT_D,            NO_ITLB_MULTIHIT | NO_EIBRS_PBRSB),
1233
1234         /* AMD Family 0xf - 0x12 */
1235         VULNWL_AMD(0x0f,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1236         VULNWL_AMD(0x10,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1237         VULNWL_AMD(0x11,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1238         VULNWL_AMD(0x12,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1239
1240         /* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */
1241         VULNWL_AMD(X86_FAMILY_ANY,      NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB),
1242         VULNWL_HYGON(X86_FAMILY_ANY,    NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB),
1243
1244         /* Zhaoxin Family 7 */
1245         VULNWL(CENTAUR, 7, X86_MODEL_ANY,       NO_SPECTRE_V2 | NO_SWAPGS | NO_MMIO),
1246         VULNWL(ZHAOXIN, 7, X86_MODEL_ANY,       NO_SPECTRE_V2 | NO_SWAPGS | NO_MMIO),
1247         {}
1248 };
1249
1250 #define VULNBL(vendor, family, model, blacklist)        \
1251         X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, blacklist)
1252
1253 #define VULNBL_INTEL_STEPPINGS(model, steppings, issues)                   \
1254         X86_MATCH_VENDOR_FAM_MODEL_STEPPINGS_FEATURE(INTEL, 6,             \
1255                                             INTEL_FAM6_##model, steppings, \
1256                                             X86_FEATURE_ANY, issues)
1257
1258 #define VULNBL_AMD(family, blacklist)           \
1259         VULNBL(AMD, family, X86_MODEL_ANY, blacklist)
1260
1261 #define VULNBL_HYGON(family, blacklist)         \
1262         VULNBL(HYGON, family, X86_MODEL_ANY, blacklist)
1263
1264 #define SRBDS           BIT(0)
1265 /* CPU is affected by X86_BUG_MMIO_STALE_DATA */
1266 #define MMIO            BIT(1)
1267 /* CPU is affected by Shared Buffers Data Sampling (SBDS), a variant of X86_BUG_MMIO_STALE_DATA */
1268 #define MMIO_SBDS       BIT(2)
1269 /* CPU is affected by RETbleed, speculating where you would not expect it */
1270 #define RETBLEED        BIT(3)
1271 /* CPU is affected by SMT (cross-thread) return predictions */
1272 #define SMT_RSB         BIT(4)
1273 /* CPU is affected by SRSO */
1274 #define SRSO            BIT(5)
1275 /* CPU is affected by GDS */
1276 #define GDS             BIT(6)
1277
1278 static const struct x86_cpu_id cpu_vuln_blacklist[] __initconst = {
1279         VULNBL_INTEL_STEPPINGS(IVYBRIDGE,       X86_STEPPING_ANY,               SRBDS),
1280         VULNBL_INTEL_STEPPINGS(HASWELL,         X86_STEPPING_ANY,               SRBDS),
1281         VULNBL_INTEL_STEPPINGS(HASWELL_L,       X86_STEPPING_ANY,               SRBDS),
1282         VULNBL_INTEL_STEPPINGS(HASWELL_G,       X86_STEPPING_ANY,               SRBDS),
1283         VULNBL_INTEL_STEPPINGS(HASWELL_X,       X86_STEPPING_ANY,               MMIO),
1284         VULNBL_INTEL_STEPPINGS(BROADWELL_D,     X86_STEPPING_ANY,               MMIO),
1285         VULNBL_INTEL_STEPPINGS(BROADWELL_G,     X86_STEPPING_ANY,               SRBDS),
1286         VULNBL_INTEL_STEPPINGS(BROADWELL_X,     X86_STEPPING_ANY,               MMIO),
1287         VULNBL_INTEL_STEPPINGS(BROADWELL,       X86_STEPPING_ANY,               SRBDS),
1288         VULNBL_INTEL_STEPPINGS(SKYLAKE_X,       X86_STEPPING_ANY,               MMIO | RETBLEED | GDS),
1289         VULNBL_INTEL_STEPPINGS(SKYLAKE_L,       X86_STEPPING_ANY,               MMIO | RETBLEED | GDS | SRBDS),
1290         VULNBL_INTEL_STEPPINGS(SKYLAKE,         X86_STEPPING_ANY,               MMIO | RETBLEED | GDS | SRBDS),
1291         VULNBL_INTEL_STEPPINGS(KABYLAKE_L,      X86_STEPPING_ANY,               MMIO | RETBLEED | GDS | SRBDS),
1292         VULNBL_INTEL_STEPPINGS(KABYLAKE,        X86_STEPPING_ANY,               MMIO | RETBLEED | GDS | SRBDS),
1293         VULNBL_INTEL_STEPPINGS(CANNONLAKE_L,    X86_STEPPING_ANY,               RETBLEED),
1294         VULNBL_INTEL_STEPPINGS(ICELAKE_L,       X86_STEPPING_ANY,               MMIO | MMIO_SBDS | RETBLEED | GDS),
1295         VULNBL_INTEL_STEPPINGS(ICELAKE_D,       X86_STEPPING_ANY,               MMIO | GDS),
1296         VULNBL_INTEL_STEPPINGS(ICELAKE_X,       X86_STEPPING_ANY,               MMIO | GDS),
1297         VULNBL_INTEL_STEPPINGS(COMETLAKE,       X86_STEPPING_ANY,               MMIO | MMIO_SBDS | RETBLEED | GDS),
1298         VULNBL_INTEL_STEPPINGS(COMETLAKE_L,     X86_STEPPINGS(0x0, 0x0),        MMIO | RETBLEED),
1299         VULNBL_INTEL_STEPPINGS(COMETLAKE_L,     X86_STEPPING_ANY,               MMIO | MMIO_SBDS | RETBLEED | GDS),
1300         VULNBL_INTEL_STEPPINGS(TIGERLAKE_L,     X86_STEPPING_ANY,               GDS),
1301         VULNBL_INTEL_STEPPINGS(TIGERLAKE,       X86_STEPPING_ANY,               GDS),
1302         VULNBL_INTEL_STEPPINGS(LAKEFIELD,       X86_STEPPING_ANY,               MMIO | MMIO_SBDS | RETBLEED),
1303         VULNBL_INTEL_STEPPINGS(ROCKETLAKE,      X86_STEPPING_ANY,               MMIO | RETBLEED | GDS),
1304         VULNBL_INTEL_STEPPINGS(ATOM_TREMONT,    X86_STEPPING_ANY,               MMIO | MMIO_SBDS),
1305         VULNBL_INTEL_STEPPINGS(ATOM_TREMONT_D,  X86_STEPPING_ANY,               MMIO),
1306         VULNBL_INTEL_STEPPINGS(ATOM_TREMONT_L,  X86_STEPPING_ANY,               MMIO | MMIO_SBDS),
1307
1308         VULNBL_AMD(0x15, RETBLEED),
1309         VULNBL_AMD(0x16, RETBLEED),
1310         VULNBL_AMD(0x17, RETBLEED | SMT_RSB | SRSO),
1311         VULNBL_HYGON(0x18, RETBLEED | SMT_RSB | SRSO),
1312         VULNBL_AMD(0x19, SRSO),
1313         {}
1314 };
1315
1316 static bool __init cpu_matches(const struct x86_cpu_id *table, unsigned long which)
1317 {
1318         const struct x86_cpu_id *m = x86_match_cpu(table);
1319
1320         return m && !!(m->driver_data & which);
1321 }
1322
1323 u64 x86_read_arch_cap_msr(void)
1324 {
1325         u64 ia32_cap = 0;
1326
1327         if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1328                 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, ia32_cap);
1329
1330         return ia32_cap;
1331 }
1332
1333 static bool arch_cap_mmio_immune(u64 ia32_cap)
1334 {
1335         return (ia32_cap & ARCH_CAP_FBSDP_NO &&
1336                 ia32_cap & ARCH_CAP_PSDP_NO &&
1337                 ia32_cap & ARCH_CAP_SBDR_SSDP_NO);
1338 }
1339
1340 static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
1341 {
1342         u64 ia32_cap = x86_read_arch_cap_msr();
1343
1344         /* Set ITLB_MULTIHIT bug if cpu is not in the whitelist and not mitigated */
1345         if (!cpu_matches(cpu_vuln_whitelist, NO_ITLB_MULTIHIT) &&
1346             !(ia32_cap & ARCH_CAP_PSCHANGE_MC_NO))
1347                 setup_force_cpu_bug(X86_BUG_ITLB_MULTIHIT);
1348
1349         if (cpu_matches(cpu_vuln_whitelist, NO_SPECULATION))
1350                 return;
1351
1352         setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
1353
1354         if (!cpu_matches(cpu_vuln_whitelist, NO_SPECTRE_V2))
1355                 setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
1356
1357         if (!cpu_matches(cpu_vuln_whitelist, NO_SSB) &&
1358             !(ia32_cap & ARCH_CAP_SSB_NO) &&
1359            !cpu_has(c, X86_FEATURE_AMD_SSB_NO))
1360                 setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
1361
1362         /*
1363          * AMD's AutoIBRS is equivalent to Intel's eIBRS - use the Intel feature
1364          * flag and protect from vendor-specific bugs via the whitelist.
1365          */
1366         if ((ia32_cap & ARCH_CAP_IBRS_ALL) || cpu_has(c, X86_FEATURE_AUTOIBRS)) {
1367                 setup_force_cpu_cap(X86_FEATURE_IBRS_ENHANCED);
1368                 if (!cpu_matches(cpu_vuln_whitelist, NO_EIBRS_PBRSB) &&
1369                     !(ia32_cap & ARCH_CAP_PBRSB_NO))
1370                         setup_force_cpu_bug(X86_BUG_EIBRS_PBRSB);
1371         }
1372
1373         if (!cpu_matches(cpu_vuln_whitelist, NO_MDS) &&
1374             !(ia32_cap & ARCH_CAP_MDS_NO)) {
1375                 setup_force_cpu_bug(X86_BUG_MDS);
1376                 if (cpu_matches(cpu_vuln_whitelist, MSBDS_ONLY))
1377                         setup_force_cpu_bug(X86_BUG_MSBDS_ONLY);
1378         }
1379
1380         if (!cpu_matches(cpu_vuln_whitelist, NO_SWAPGS))
1381                 setup_force_cpu_bug(X86_BUG_SWAPGS);
1382
1383         /*
1384          * When the CPU is not mitigated for TAA (TAA_NO=0) set TAA bug when:
1385          *      - TSX is supported or
1386          *      - TSX_CTRL is present
1387          *
1388          * TSX_CTRL check is needed for cases when TSX could be disabled before
1389          * the kernel boot e.g. kexec.
1390          * TSX_CTRL check alone is not sufficient for cases when the microcode
1391          * update is not present or running as guest that don't get TSX_CTRL.
1392          */
1393         if (!(ia32_cap & ARCH_CAP_TAA_NO) &&
1394             (cpu_has(c, X86_FEATURE_RTM) ||
1395              (ia32_cap & ARCH_CAP_TSX_CTRL_MSR)))
1396                 setup_force_cpu_bug(X86_BUG_TAA);
1397
1398         /*
1399          * SRBDS affects CPUs which support RDRAND or RDSEED and are listed
1400          * in the vulnerability blacklist.
1401          *
1402          * Some of the implications and mitigation of Shared Buffers Data
1403          * Sampling (SBDS) are similar to SRBDS. Give SBDS same treatment as
1404          * SRBDS.
1405          */
1406         if ((cpu_has(c, X86_FEATURE_RDRAND) ||
1407              cpu_has(c, X86_FEATURE_RDSEED)) &&
1408             cpu_matches(cpu_vuln_blacklist, SRBDS | MMIO_SBDS))
1409                     setup_force_cpu_bug(X86_BUG_SRBDS);
1410
1411         /*
1412          * Processor MMIO Stale Data bug enumeration
1413          *
1414          * Affected CPU list is generally enough to enumerate the vulnerability,
1415          * but for virtualization case check for ARCH_CAP MSR bits also, VMM may
1416          * not want the guest to enumerate the bug.
1417          *
1418          * Set X86_BUG_MMIO_UNKNOWN for CPUs that are neither in the blacklist,
1419          * nor in the whitelist and also don't enumerate MSR ARCH_CAP MMIO bits.
1420          */
1421         if (!arch_cap_mmio_immune(ia32_cap)) {
1422                 if (cpu_matches(cpu_vuln_blacklist, MMIO))
1423                         setup_force_cpu_bug(X86_BUG_MMIO_STALE_DATA);
1424                 else if (!cpu_matches(cpu_vuln_whitelist, NO_MMIO))
1425                         setup_force_cpu_bug(X86_BUG_MMIO_UNKNOWN);
1426         }
1427
1428         if (!cpu_has(c, X86_FEATURE_BTC_NO)) {
1429                 if (cpu_matches(cpu_vuln_blacklist, RETBLEED) || (ia32_cap & ARCH_CAP_RSBA))
1430                         setup_force_cpu_bug(X86_BUG_RETBLEED);
1431         }
1432
1433         if (cpu_matches(cpu_vuln_blacklist, SMT_RSB))
1434                 setup_force_cpu_bug(X86_BUG_SMT_RSB);
1435
1436         if (!cpu_has(c, X86_FEATURE_SRSO_NO)) {
1437                 if (cpu_matches(cpu_vuln_blacklist, SRSO))
1438                         setup_force_cpu_bug(X86_BUG_SRSO);
1439         }
1440
1441         /*
1442          * Check if CPU is vulnerable to GDS. If running in a virtual machine on
1443          * an affected processor, the VMM may have disabled the use of GATHER by
1444          * disabling AVX2. The only way to do this in HW is to clear XCR0[2],
1445          * which means that AVX will be disabled.
1446          */
1447         if (cpu_matches(cpu_vuln_blacklist, GDS) && !(ia32_cap & ARCH_CAP_GDS_NO) &&
1448             boot_cpu_has(X86_FEATURE_AVX))
1449                 setup_force_cpu_bug(X86_BUG_GDS);
1450
1451         if (cpu_matches(cpu_vuln_whitelist, NO_MELTDOWN))
1452                 return;
1453
1454         /* Rogue Data Cache Load? No! */
1455         if (ia32_cap & ARCH_CAP_RDCL_NO)
1456                 return;
1457
1458         setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
1459
1460         if (cpu_matches(cpu_vuln_whitelist, NO_L1TF))
1461                 return;
1462
1463         setup_force_cpu_bug(X86_BUG_L1TF);
1464 }
1465
1466 /*
1467  * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
1468  * unfortunately, that's not true in practice because of early VIA
1469  * chips and (more importantly) broken virtualizers that are not easy
1470  * to detect. In the latter case it doesn't even *fail* reliably, so
1471  * probing for it doesn't even work. Disable it completely on 32-bit
1472  * unless we can find a reliable way to detect all the broken cases.
1473  * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1474  */
1475 static void detect_nopl(void)
1476 {
1477 #ifdef CONFIG_X86_32
1478         setup_clear_cpu_cap(X86_FEATURE_NOPL);
1479 #else
1480         setup_force_cpu_cap(X86_FEATURE_NOPL);
1481 #endif
1482 }
1483
1484 /*
1485  * We parse cpu parameters early because fpu__init_system() is executed
1486  * before parse_early_param().
1487  */
1488 static void __init cpu_parse_early_param(void)
1489 {
1490         char arg[128];
1491         char *argptr = arg, *opt;
1492         int arglen, taint = 0;
1493
1494 #ifdef CONFIG_X86_32
1495         if (cmdline_find_option_bool(boot_command_line, "no387"))
1496 #ifdef CONFIG_MATH_EMULATION
1497                 setup_clear_cpu_cap(X86_FEATURE_FPU);
1498 #else
1499                 pr_err("Option 'no387' required CONFIG_MATH_EMULATION enabled.\n");
1500 #endif
1501
1502         if (cmdline_find_option_bool(boot_command_line, "nofxsr"))
1503                 setup_clear_cpu_cap(X86_FEATURE_FXSR);
1504 #endif
1505
1506         if (cmdline_find_option_bool(boot_command_line, "noxsave"))
1507                 setup_clear_cpu_cap(X86_FEATURE_XSAVE);
1508
1509         if (cmdline_find_option_bool(boot_command_line, "noxsaveopt"))
1510                 setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
1511
1512         if (cmdline_find_option_bool(boot_command_line, "noxsaves"))
1513                 setup_clear_cpu_cap(X86_FEATURE_XSAVES);
1514
1515         if (cmdline_find_option_bool(boot_command_line, "nousershstk"))
1516                 setup_clear_cpu_cap(X86_FEATURE_USER_SHSTK);
1517
1518         arglen = cmdline_find_option(boot_command_line, "clearcpuid", arg, sizeof(arg));
1519         if (arglen <= 0)
1520                 return;
1521
1522         pr_info("Clearing CPUID bits:");
1523
1524         while (argptr) {
1525                 bool found __maybe_unused = false;
1526                 unsigned int bit;
1527
1528                 opt = strsep(&argptr, ",");
1529
1530                 /*
1531                  * Handle naked numbers first for feature flags which don't
1532                  * have names.
1533                  */
1534                 if (!kstrtouint(opt, 10, &bit)) {
1535                         if (bit < NCAPINTS * 32) {
1536
1537                                 /* empty-string, i.e., ""-defined feature flags */
1538                                 if (!x86_cap_flags[bit])
1539                                         pr_cont(" " X86_CAP_FMT_NUM, x86_cap_flag_num(bit));
1540                                 else
1541                                         pr_cont(" " X86_CAP_FMT, x86_cap_flag(bit));
1542
1543                                 setup_clear_cpu_cap(bit);
1544                                 taint++;
1545                         }
1546                         /*
1547                          * The assumption is that there are no feature names with only
1548                          * numbers in the name thus go to the next argument.
1549                          */
1550                         continue;
1551                 }
1552
1553                 for (bit = 0; bit < 32 * NCAPINTS; bit++) {
1554                         if (!x86_cap_flag(bit))
1555                                 continue;
1556
1557                         if (strcmp(x86_cap_flag(bit), opt))
1558                                 continue;
1559
1560                         pr_cont(" %s", opt);
1561                         setup_clear_cpu_cap(bit);
1562                         taint++;
1563                         found = true;
1564                         break;
1565                 }
1566
1567                 if (!found)
1568                         pr_cont(" (unknown: %s)", opt);
1569         }
1570         pr_cont("\n");
1571
1572         if (taint)
1573                 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1574 }
1575
1576 /*
1577  * Do minimum CPU detection early.
1578  * Fields really needed: vendor, cpuid_level, family, model, mask,
1579  * cache alignment.
1580  * The others are not touched to avoid unwanted side effects.
1581  *
1582  * WARNING: this function is only called on the boot CPU.  Don't add code
1583  * here that is supposed to run on all CPUs.
1584  */
1585 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
1586 {
1587         memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1588         c->extended_cpuid_level = 0;
1589
1590         if (!have_cpuid_p())
1591                 identify_cpu_without_cpuid(c);
1592
1593         /* cyrix could have cpuid enabled via c_identify()*/
1594         if (have_cpuid_p()) {
1595                 cpu_detect(c);
1596                 get_cpu_vendor(c);
1597                 get_cpu_cap(c);
1598                 setup_force_cpu_cap(X86_FEATURE_CPUID);
1599                 cpu_parse_early_param();
1600
1601                 if (this_cpu->c_early_init)
1602                         this_cpu->c_early_init(c);
1603
1604                 c->cpu_index = 0;
1605                 filter_cpuid_features(c, false);
1606
1607                 if (this_cpu->c_bsp_init)
1608                         this_cpu->c_bsp_init(c);
1609         } else {
1610                 setup_clear_cpu_cap(X86_FEATURE_CPUID);
1611         }
1612
1613         get_cpu_address_sizes(c);
1614
1615         setup_force_cpu_cap(X86_FEATURE_ALWAYS);
1616
1617         cpu_set_bug_bits(c);
1618
1619         sld_setup(c);
1620
1621 #ifdef CONFIG_X86_32
1622         /*
1623          * Regardless of whether PCID is enumerated, the SDM says
1624          * that it can't be enabled in 32-bit mode.
1625          */
1626         setup_clear_cpu_cap(X86_FEATURE_PCID);
1627 #endif
1628
1629         /*
1630          * Later in the boot process pgtable_l5_enabled() relies on
1631          * cpu_feature_enabled(X86_FEATURE_LA57). If 5-level paging is not
1632          * enabled by this point we need to clear the feature bit to avoid
1633          * false-positives at the later stage.
1634          *
1635          * pgtable_l5_enabled() can be false here for several reasons:
1636          *  - 5-level paging is disabled compile-time;
1637          *  - it's 32-bit kernel;
1638          *  - machine doesn't support 5-level paging;
1639          *  - user specified 'no5lvl' in kernel command line.
1640          */
1641         if (!pgtable_l5_enabled())
1642                 setup_clear_cpu_cap(X86_FEATURE_LA57);
1643
1644         detect_nopl();
1645 }
1646
1647 void __init early_cpu_init(void)
1648 {
1649         const struct cpu_dev *const *cdev;
1650         int count = 0;
1651
1652 #ifdef CONFIG_PROCESSOR_SELECT
1653         pr_info("KERNEL supported cpus:\n");
1654 #endif
1655
1656         for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
1657                 const struct cpu_dev *cpudev = *cdev;
1658
1659                 if (count >= X86_VENDOR_NUM)
1660                         break;
1661                 cpu_devs[count] = cpudev;
1662                 count++;
1663
1664 #ifdef CONFIG_PROCESSOR_SELECT
1665                 {
1666                         unsigned int j;
1667
1668                         for (j = 0; j < 2; j++) {
1669                                 if (!cpudev->c_ident[j])
1670                                         continue;
1671                                 pr_info("  %s %s\n", cpudev->c_vendor,
1672                                         cpudev->c_ident[j]);
1673                         }
1674                 }
1675 #endif
1676         }
1677         early_identify_cpu(&boot_cpu_data);
1678 }
1679
1680 static bool detect_null_seg_behavior(void)
1681 {
1682         /*
1683          * Empirically, writing zero to a segment selector on AMD does
1684          * not clear the base, whereas writing zero to a segment
1685          * selector on Intel does clear the base.  Intel's behavior
1686          * allows slightly faster context switches in the common case
1687          * where GS is unused by the prev and next threads.
1688          *
1689          * Since neither vendor documents this anywhere that I can see,
1690          * detect it directly instead of hard-coding the choice by
1691          * vendor.
1692          *
1693          * I've designated AMD's behavior as the "bug" because it's
1694          * counterintuitive and less friendly.
1695          */
1696
1697         unsigned long old_base, tmp;
1698         rdmsrl(MSR_FS_BASE, old_base);
1699         wrmsrl(MSR_FS_BASE, 1);
1700         loadsegment(fs, 0);
1701         rdmsrl(MSR_FS_BASE, tmp);
1702         wrmsrl(MSR_FS_BASE, old_base);
1703         return tmp == 0;
1704 }
1705
1706 void check_null_seg_clears_base(struct cpuinfo_x86 *c)
1707 {
1708         /* BUG_NULL_SEG is only relevant with 64bit userspace */
1709         if (!IS_ENABLED(CONFIG_X86_64))
1710                 return;
1711
1712         if (cpu_has(c, X86_FEATURE_NULL_SEL_CLR_BASE))
1713                 return;
1714
1715         /*
1716          * CPUID bit above wasn't set. If this kernel is still running
1717          * as a HV guest, then the HV has decided not to advertize
1718          * that CPUID bit for whatever reason.  For example, one
1719          * member of the migration pool might be vulnerable.  Which
1720          * means, the bug is present: set the BUG flag and return.
1721          */
1722         if (cpu_has(c, X86_FEATURE_HYPERVISOR)) {
1723                 set_cpu_bug(c, X86_BUG_NULL_SEG);
1724                 return;
1725         }
1726
1727         /*
1728          * Zen2 CPUs also have this behaviour, but no CPUID bit.
1729          * 0x18 is the respective family for Hygon.
1730          */
1731         if ((c->x86 == 0x17 || c->x86 == 0x18) &&
1732             detect_null_seg_behavior())
1733                 return;
1734
1735         /* All the remaining ones are affected */
1736         set_cpu_bug(c, X86_BUG_NULL_SEG);
1737 }
1738
1739 static void generic_identify(struct cpuinfo_x86 *c)
1740 {
1741         c->extended_cpuid_level = 0;
1742
1743         if (!have_cpuid_p())
1744                 identify_cpu_without_cpuid(c);
1745
1746         /* cyrix could have cpuid enabled via c_identify()*/
1747         if (!have_cpuid_p())
1748                 return;
1749
1750         cpu_detect(c);
1751
1752         get_cpu_vendor(c);
1753
1754         get_cpu_cap(c);
1755
1756         get_cpu_address_sizes(c);
1757
1758         if (c->cpuid_level >= 0x00000001) {
1759                 c->topo.initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
1760 #ifdef CONFIG_X86_32
1761 # ifdef CONFIG_SMP
1762                 c->topo.apicid = apic->phys_pkg_id(c->topo.initial_apicid, 0);
1763 # else
1764                 c->topo.apicid = c->topo.initial_apicid;
1765 # endif
1766 #endif
1767                 c->topo.pkg_id = c->topo.initial_apicid;
1768         }
1769
1770         get_model_name(c); /* Default name */
1771
1772         /*
1773          * ESPFIX is a strange bug.  All real CPUs have it.  Paravirt
1774          * systems that run Linux at CPL > 0 may or may not have the
1775          * issue, but, even if they have the issue, there's absolutely
1776          * nothing we can do about it because we can't use the real IRET
1777          * instruction.
1778          *
1779          * NB: For the time being, only 32-bit kernels support
1780          * X86_BUG_ESPFIX as such.  64-bit kernels directly choose
1781          * whether to apply espfix using paravirt hooks.  If any
1782          * non-paravirt system ever shows up that does *not* have the
1783          * ESPFIX issue, we can change this.
1784          */
1785 #ifdef CONFIG_X86_32
1786         set_cpu_bug(c, X86_BUG_ESPFIX);
1787 #endif
1788 }
1789
1790 /*
1791  * Validate that ACPI/mptables have the same information about the
1792  * effective APIC id and update the package map.
1793  */
1794 static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
1795 {
1796 #ifdef CONFIG_SMP
1797         unsigned int cpu = smp_processor_id();
1798         u32 apicid;
1799
1800         apicid = apic->cpu_present_to_apicid(cpu);
1801
1802         if (apicid != c->topo.apicid) {
1803                 pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
1804                        cpu, apicid, c->topo.initial_apicid);
1805         }
1806         BUG_ON(topology_update_package_map(c->topo.pkg_id, cpu));
1807         BUG_ON(topology_update_die_map(c->topo.die_id, cpu));
1808 #else
1809         c->topo.logical_pkg_id = 0;
1810 #endif
1811 }
1812
1813 /*
1814  * This does the hard work of actually picking apart the CPU stuff...
1815  */
1816 static void identify_cpu(struct cpuinfo_x86 *c)
1817 {
1818         int i;
1819
1820         c->loops_per_jiffy = loops_per_jiffy;
1821         c->x86_cache_size = 0;
1822         c->x86_vendor = X86_VENDOR_UNKNOWN;
1823         c->x86_model = c->x86_stepping = 0;     /* So far unknown... */
1824         c->x86_vendor_id[0] = '\0'; /* Unset */
1825         c->x86_model_id[0] = '\0';  /* Unset */
1826         c->x86_max_cores = 1;
1827         c->x86_coreid_bits = 0;
1828         c->topo.cu_id = 0xff;
1829         c->topo.llc_id = BAD_APICID;
1830         c->topo.l2c_id = BAD_APICID;
1831 #ifdef CONFIG_X86_64
1832         c->x86_clflush_size = 64;
1833         c->x86_phys_bits = 36;
1834         c->x86_virt_bits = 48;
1835 #else
1836         c->cpuid_level = -1;    /* CPUID not detected */
1837         c->x86_clflush_size = 32;
1838         c->x86_phys_bits = 32;
1839         c->x86_virt_bits = 32;
1840 #endif
1841         c->x86_cache_alignment = c->x86_clflush_size;
1842         memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1843 #ifdef CONFIG_X86_VMX_FEATURE_NAMES
1844         memset(&c->vmx_capability, 0, sizeof(c->vmx_capability));
1845 #endif
1846
1847         generic_identify(c);
1848
1849         if (this_cpu->c_identify)
1850                 this_cpu->c_identify(c);
1851
1852         /* Clear/Set all flags overridden by options, after probe */
1853         apply_forced_caps(c);
1854
1855 #ifdef CONFIG_X86_64
1856         c->topo.apicid = apic->phys_pkg_id(c->topo.initial_apicid, 0);
1857 #endif
1858
1859         /*
1860          * Vendor-specific initialization.  In this section we
1861          * canonicalize the feature flags, meaning if there are
1862          * features a certain CPU supports which CPUID doesn't
1863          * tell us, CPUID claiming incorrect flags, or other bugs,
1864          * we handle them here.
1865          *
1866          * At the end of this section, c->x86_capability better
1867          * indicate the features this CPU genuinely supports!
1868          */
1869         if (this_cpu->c_init)
1870                 this_cpu->c_init(c);
1871
1872         /* Disable the PN if appropriate */
1873         squash_the_stupid_serial_number(c);
1874
1875         /* Set up SMEP/SMAP/UMIP */
1876         setup_smep(c);
1877         setup_smap(c);
1878         setup_umip(c);
1879
1880         /* Enable FSGSBASE instructions if available. */
1881         if (cpu_has(c, X86_FEATURE_FSGSBASE)) {
1882                 cr4_set_bits(X86_CR4_FSGSBASE);
1883                 elf_hwcap2 |= HWCAP2_FSGSBASE;
1884         }
1885
1886         /*
1887          * The vendor-specific functions might have changed features.
1888          * Now we do "generic changes."
1889          */
1890
1891         /* Filter out anything that depends on CPUID levels we don't have */
1892         filter_cpuid_features(c, true);
1893
1894         /* If the model name is still unset, do table lookup. */
1895         if (!c->x86_model_id[0]) {
1896                 const char *p;
1897                 p = table_lookup_model(c);
1898                 if (p)
1899                         strcpy(c->x86_model_id, p);
1900                 else
1901                         /* Last resort... */
1902                         sprintf(c->x86_model_id, "%02x/%02x",
1903                                 c->x86, c->x86_model);
1904         }
1905
1906 #ifdef CONFIG_X86_64
1907         detect_ht(c);
1908 #endif
1909
1910         x86_init_rdrand(c);
1911         setup_pku(c);
1912         setup_cet(c);
1913
1914         /*
1915          * Clear/Set all flags overridden by options, need do it
1916          * before following smp all cpus cap AND.
1917          */
1918         apply_forced_caps(c);
1919
1920         /*
1921          * On SMP, boot_cpu_data holds the common feature set between
1922          * all CPUs; so make sure that we indicate which features are
1923          * common between the CPUs.  The first time this routine gets
1924          * executed, c == &boot_cpu_data.
1925          */
1926         if (c != &boot_cpu_data) {
1927                 /* AND the already accumulated flags with these */
1928                 for (i = 0; i < NCAPINTS; i++)
1929                         boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1930
1931                 /* OR, i.e. replicate the bug flags */
1932                 for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1933                         c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1934         }
1935
1936         ppin_init(c);
1937
1938         /* Init Machine Check Exception if available. */
1939         mcheck_cpu_init(c);
1940
1941         select_idle_routine(c);
1942
1943 #ifdef CONFIG_NUMA
1944         numa_add_cpu(smp_processor_id());
1945 #endif
1946 }
1947
1948 /*
1949  * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1950  * on 32-bit kernels:
1951  */
1952 #ifdef CONFIG_X86_32
1953 void enable_sep_cpu(void)
1954 {
1955         struct tss_struct *tss;
1956         int cpu;
1957
1958         if (!boot_cpu_has(X86_FEATURE_SEP))
1959                 return;
1960
1961         cpu = get_cpu();
1962         tss = &per_cpu(cpu_tss_rw, cpu);
1963
1964         /*
1965          * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1966          * see the big comment in struct x86_hw_tss's definition.
1967          */
1968
1969         tss->x86_tss.ss1 = __KERNEL_CS;
1970         wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1971         wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0);
1972         wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1973
1974         put_cpu();
1975 }
1976 #endif
1977
1978 static __init void identify_boot_cpu(void)
1979 {
1980         identify_cpu(&boot_cpu_data);
1981         if (HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT))
1982                 pr_info("CET detected: Indirect Branch Tracking enabled\n");
1983 #ifdef CONFIG_X86_32
1984         enable_sep_cpu();
1985 #endif
1986         cpu_detect_tlb(&boot_cpu_data);
1987         setup_cr_pinning();
1988
1989         tsx_init();
1990         lkgs_init();
1991 }
1992
1993 void identify_secondary_cpu(struct cpuinfo_x86 *c)
1994 {
1995         BUG_ON(c == &boot_cpu_data);
1996         identify_cpu(c);
1997 #ifdef CONFIG_X86_32
1998         enable_sep_cpu();
1999 #endif
2000         validate_apic_and_package_id(c);
2001         x86_spec_ctrl_setup_ap();
2002         update_srbds_msr();
2003         if (boot_cpu_has_bug(X86_BUG_GDS))
2004                 update_gds_msr();
2005
2006         tsx_ap_init();
2007 }
2008
2009 void print_cpu_info(struct cpuinfo_x86 *c)
2010 {
2011         const char *vendor = NULL;
2012
2013         if (c->x86_vendor < X86_VENDOR_NUM) {
2014                 vendor = this_cpu->c_vendor;
2015         } else {
2016                 if (c->cpuid_level >= 0)
2017                         vendor = c->x86_vendor_id;
2018         }
2019
2020         if (vendor && !strstr(c->x86_model_id, vendor))
2021                 pr_cont("%s ", vendor);
2022
2023         if (c->x86_model_id[0])
2024                 pr_cont("%s", c->x86_model_id);
2025         else
2026                 pr_cont("%d86", c->x86);
2027
2028         pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
2029
2030         if (c->x86_stepping || c->cpuid_level >= 0)
2031                 pr_cont(", stepping: 0x%x)\n", c->x86_stepping);
2032         else
2033                 pr_cont(")\n");
2034 }
2035
2036 /*
2037  * clearcpuid= was already parsed in cpu_parse_early_param().  This dummy
2038  * function prevents it from becoming an environment variable for init.
2039  */
2040 static __init int setup_clearcpuid(char *arg)
2041 {
2042         return 1;
2043 }
2044 __setup("clearcpuid=", setup_clearcpuid);
2045
2046 DEFINE_PER_CPU_ALIGNED(struct pcpu_hot, pcpu_hot) = {
2047         .current_task   = &init_task,
2048         .preempt_count  = INIT_PREEMPT_COUNT,
2049         .top_of_stack   = TOP_OF_INIT_STACK,
2050 };
2051 EXPORT_PER_CPU_SYMBOL(pcpu_hot);
2052
2053 #ifdef CONFIG_X86_64
2054 DEFINE_PER_CPU_FIRST(struct fixed_percpu_data,
2055                      fixed_percpu_data) __aligned(PAGE_SIZE) __visible;
2056 EXPORT_PER_CPU_SYMBOL_GPL(fixed_percpu_data);
2057
2058 static void wrmsrl_cstar(unsigned long val)
2059 {
2060         /*
2061          * Intel CPUs do not support 32-bit SYSCALL. Writing to MSR_CSTAR
2062          * is so far ignored by the CPU, but raises a #VE trap in a TDX
2063          * guest. Avoid the pointless write on all Intel CPUs.
2064          */
2065         if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
2066                 wrmsrl(MSR_CSTAR, val);
2067 }
2068
2069 /* May not be marked __init: used by software suspend */
2070 void syscall_init(void)
2071 {
2072         wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
2073         wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
2074
2075         if (ia32_enabled()) {
2076                 wrmsrl_cstar((unsigned long)entry_SYSCALL_compat);
2077                 /*
2078                  * This only works on Intel CPUs.
2079                  * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
2080                  * This does not cause SYSENTER to jump to the wrong location, because
2081                  * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
2082                  */
2083                 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
2084                 wrmsrl_safe(MSR_IA32_SYSENTER_ESP,
2085                             (unsigned long)(cpu_entry_stack(smp_processor_id()) + 1));
2086                 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
2087         } else {
2088                 wrmsrl_cstar((unsigned long)entry_SYSCALL32_ignore);
2089                 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
2090                 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
2091                 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
2092         }
2093
2094         /*
2095          * Flags to clear on syscall; clear as much as possible
2096          * to minimize user space-kernel interference.
2097          */
2098         wrmsrl(MSR_SYSCALL_MASK,
2099                X86_EFLAGS_CF|X86_EFLAGS_PF|X86_EFLAGS_AF|
2100                X86_EFLAGS_ZF|X86_EFLAGS_SF|X86_EFLAGS_TF|
2101                X86_EFLAGS_IF|X86_EFLAGS_DF|X86_EFLAGS_OF|
2102                X86_EFLAGS_IOPL|X86_EFLAGS_NT|X86_EFLAGS_RF|
2103                X86_EFLAGS_AC|X86_EFLAGS_ID);
2104 }
2105
2106 #else   /* CONFIG_X86_64 */
2107
2108 #ifdef CONFIG_STACKPROTECTOR
2109 DEFINE_PER_CPU(unsigned long, __stack_chk_guard);
2110 EXPORT_PER_CPU_SYMBOL(__stack_chk_guard);
2111 #endif
2112
2113 #endif  /* CONFIG_X86_64 */
2114
2115 /*
2116  * Clear all 6 debug registers:
2117  */
2118 static void clear_all_debug_regs(void)
2119 {
2120         int i;
2121
2122         for (i = 0; i < 8; i++) {
2123                 /* Ignore db4, db5 */
2124                 if ((i == 4) || (i == 5))
2125                         continue;
2126
2127                 set_debugreg(0, i);
2128         }
2129 }
2130
2131 #ifdef CONFIG_KGDB
2132 /*
2133  * Restore debug regs if using kgdbwait and you have a kernel debugger
2134  * connection established.
2135  */
2136 static void dbg_restore_debug_regs(void)
2137 {
2138         if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
2139                 arch_kgdb_ops.correct_hw_break();
2140 }
2141 #else /* ! CONFIG_KGDB */
2142 #define dbg_restore_debug_regs()
2143 #endif /* ! CONFIG_KGDB */
2144
2145 static inline void setup_getcpu(int cpu)
2146 {
2147         unsigned long cpudata = vdso_encode_cpunode(cpu, early_cpu_to_node(cpu));
2148         struct desc_struct d = { };
2149
2150         if (boot_cpu_has(X86_FEATURE_RDTSCP) || boot_cpu_has(X86_FEATURE_RDPID))
2151                 wrmsr(MSR_TSC_AUX, cpudata, 0);
2152
2153         /* Store CPU and node number in limit. */
2154         d.limit0 = cpudata;
2155         d.limit1 = cpudata >> 16;
2156
2157         d.type = 5;             /* RO data, expand down, accessed */
2158         d.dpl = 3;              /* Visible to user code */
2159         d.s = 1;                /* Not a system segment */
2160         d.p = 1;                /* Present */
2161         d.d = 1;                /* 32-bit */
2162
2163         write_gdt_entry(get_cpu_gdt_rw(cpu), GDT_ENTRY_CPUNODE, &d, DESCTYPE_S);
2164 }
2165
2166 #ifdef CONFIG_X86_64
2167 static inline void tss_setup_ist(struct tss_struct *tss)
2168 {
2169         /* Set up the per-CPU TSS IST stacks */
2170         tss->x86_tss.ist[IST_INDEX_DF] = __this_cpu_ist_top_va(DF);
2171         tss->x86_tss.ist[IST_INDEX_NMI] = __this_cpu_ist_top_va(NMI);
2172         tss->x86_tss.ist[IST_INDEX_DB] = __this_cpu_ist_top_va(DB);
2173         tss->x86_tss.ist[IST_INDEX_MCE] = __this_cpu_ist_top_va(MCE);
2174         /* Only mapped when SEV-ES is active */
2175         tss->x86_tss.ist[IST_INDEX_VC] = __this_cpu_ist_top_va(VC);
2176 }
2177 #else /* CONFIG_X86_64 */
2178 static inline void tss_setup_ist(struct tss_struct *tss) { }
2179 #endif /* !CONFIG_X86_64 */
2180
2181 static inline void tss_setup_io_bitmap(struct tss_struct *tss)
2182 {
2183         tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET_INVALID;
2184
2185 #ifdef CONFIG_X86_IOPL_IOPERM
2186         tss->io_bitmap.prev_max = 0;
2187         tss->io_bitmap.prev_sequence = 0;
2188         memset(tss->io_bitmap.bitmap, 0xff, sizeof(tss->io_bitmap.bitmap));
2189         /*
2190          * Invalidate the extra array entry past the end of the all
2191          * permission bitmap as required by the hardware.
2192          */
2193         tss->io_bitmap.mapall[IO_BITMAP_LONGS] = ~0UL;
2194 #endif
2195 }
2196
2197 /*
2198  * Setup everything needed to handle exceptions from the IDT, including the IST
2199  * exceptions which use paranoid_entry().
2200  */
2201 void cpu_init_exception_handling(void)
2202 {
2203         struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
2204         int cpu = raw_smp_processor_id();
2205
2206         /* paranoid_entry() gets the CPU number from the GDT */
2207         setup_getcpu(cpu);
2208
2209         /* IST vectors need TSS to be set up. */
2210         tss_setup_ist(tss);
2211         tss_setup_io_bitmap(tss);
2212         set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
2213
2214         load_TR_desc();
2215
2216         /* GHCB needs to be setup to handle #VC. */
2217         setup_ghcb();
2218
2219         /* Finally load the IDT */
2220         load_current_idt();
2221 }
2222
2223 /*
2224  * cpu_init() initializes state that is per-CPU. Some data is already
2225  * initialized (naturally) in the bootstrap process, such as the GDT.  We
2226  * reload it nevertheless, this function acts as a 'CPU state barrier',
2227  * nothing should get across.
2228  */
2229 void cpu_init(void)
2230 {
2231         struct task_struct *cur = current;
2232         int cpu = raw_smp_processor_id();
2233
2234 #ifdef CONFIG_NUMA
2235         if (this_cpu_read(numa_node) == 0 &&
2236             early_cpu_to_node(cpu) != NUMA_NO_NODE)
2237                 set_numa_node(early_cpu_to_node(cpu));
2238 #endif
2239         pr_debug("Initializing CPU#%d\n", cpu);
2240
2241         if (IS_ENABLED(CONFIG_X86_64) || cpu_feature_enabled(X86_FEATURE_VME) ||
2242             boot_cpu_has(X86_FEATURE_TSC) || boot_cpu_has(X86_FEATURE_DE))
2243                 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
2244
2245         if (IS_ENABLED(CONFIG_X86_64)) {
2246                 loadsegment(fs, 0);
2247                 memset(cur->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
2248                 syscall_init();
2249
2250                 wrmsrl(MSR_FS_BASE, 0);
2251                 wrmsrl(MSR_KERNEL_GS_BASE, 0);
2252                 barrier();
2253
2254                 x2apic_setup();
2255         }
2256
2257         mmgrab(&init_mm);
2258         cur->active_mm = &init_mm;
2259         BUG_ON(cur->mm);
2260         initialize_tlbstate_and_flush();
2261         enter_lazy_tlb(&init_mm, cur);
2262
2263         /*
2264          * sp0 points to the entry trampoline stack regardless of what task
2265          * is running.
2266          */
2267         load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
2268
2269         load_mm_ldt(&init_mm);
2270
2271         clear_all_debug_regs();
2272         dbg_restore_debug_regs();
2273
2274         doublefault_init_cpu_tss();
2275
2276         if (is_uv_system())
2277                 uv_cpu_init();
2278
2279         load_fixmap_gdt(cpu);
2280 }
2281
2282 #ifdef CONFIG_MICROCODE_LATE_LOADING
2283 /**
2284  * store_cpu_caps() - Store a snapshot of CPU capabilities
2285  * @curr_info: Pointer where to store it
2286  *
2287  * Returns: None
2288  */
2289 void store_cpu_caps(struct cpuinfo_x86 *curr_info)
2290 {
2291         /* Reload CPUID max function as it might've changed. */
2292         curr_info->cpuid_level = cpuid_eax(0);
2293
2294         /* Copy all capability leafs and pick up the synthetic ones. */
2295         memcpy(&curr_info->x86_capability, &boot_cpu_data.x86_capability,
2296                sizeof(curr_info->x86_capability));
2297
2298         /* Get the hardware CPUID leafs */
2299         get_cpu_cap(curr_info);
2300 }
2301
2302 /**
2303  * microcode_check() - Check if any CPU capabilities changed after an update.
2304  * @prev_info:  CPU capabilities stored before an update.
2305  *
2306  * The microcode loader calls this upon late microcode load to recheck features,
2307  * only when microcode has been updated. Caller holds and CPU hotplug lock.
2308  *
2309  * Return: None
2310  */
2311 void microcode_check(struct cpuinfo_x86 *prev_info)
2312 {
2313         struct cpuinfo_x86 curr_info;
2314
2315         perf_check_microcode();
2316
2317         amd_check_microcode();
2318
2319         store_cpu_caps(&curr_info);
2320
2321         if (!memcmp(&prev_info->x86_capability, &curr_info.x86_capability,
2322                     sizeof(prev_info->x86_capability)))
2323                 return;
2324
2325         pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n");
2326         pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
2327 }
2328 #endif
2329
2330 /*
2331  * Invoked from core CPU hotplug code after hotplug operations
2332  */
2333 void arch_smt_update(void)
2334 {
2335         /* Handle the speculative execution misfeatures */
2336         cpu_bugs_smt_update();
2337         /* Check whether IPI broadcasting can be enabled */
2338         apic_smt_update();
2339 }
2340
2341 void __init arch_cpu_finalize_init(void)
2342 {
2343         identify_boot_cpu();
2344
2345         /*
2346          * identify_boot_cpu() initialized SMT support information, let the
2347          * core code know.
2348          */
2349         cpu_smt_set_num_threads(smp_num_siblings, smp_num_siblings);
2350
2351         if (!IS_ENABLED(CONFIG_SMP)) {
2352                 pr_info("CPU: ");
2353                 print_cpu_info(&boot_cpu_data);
2354         }
2355
2356         cpu_select_mitigations();
2357
2358         arch_smt_update();
2359
2360         if (IS_ENABLED(CONFIG_X86_32)) {
2361                 /*
2362                  * Check whether this is a real i386 which is not longer
2363                  * supported and fixup the utsname.
2364                  */
2365                 if (boot_cpu_data.x86 < 4)
2366                         panic("Kernel requires i486+ for 'invlpg' and other features");
2367
2368                 init_utsname()->machine[1] =
2369                         '0' + (boot_cpu_data.x86 > 6 ? 6 : boot_cpu_data.x86);
2370         }
2371
2372         /*
2373          * Must be before alternatives because it might set or clear
2374          * feature bits.
2375          */
2376         fpu__init_system();
2377         fpu__init_cpu();
2378
2379         alternative_instructions();
2380
2381         if (IS_ENABLED(CONFIG_X86_64)) {
2382                 /*
2383                  * Make sure the first 2MB area is not mapped by huge pages
2384                  * There are typically fixed size MTRRs in there and overlapping
2385                  * MTRRs into large pages causes slow downs.
2386                  *
2387                  * Right now we don't do that with gbpages because there seems
2388                  * very little benefit for that case.
2389                  */
2390                 if (!direct_gbpages)
2391                         set_memory_4k((unsigned long)__va(0), 1);
2392         } else {
2393                 fpu__init_check_bugs();
2394         }
2395
2396         /*
2397          * This needs to be called before any devices perform DMA
2398          * operations that might use the SWIOTLB bounce buffers. It will
2399          * mark the bounce buffers as decrypted so that their usage will
2400          * not cause "plain-text" data to be decrypted when accessed. It
2401          * must be called after late_time_init() so that Hyper-V x86/x64
2402          * hypercalls work when the SWIOTLB bounce buffers are decrypted.
2403          */
2404         mem_encrypt_init();
2405 }
This page took 0.170609 seconds and 4 git commands to generate.