1 // SPDX-License-Identifier: GPL-2.0-only
2 /* cpu_feature_enabled() cannot be used this early */
3 #define USE_EARLY_PGTABLE_L5
5 #include <linux/memblock.h>
6 #include <linux/linkage.h>
7 #include <linux/bitops.h>
8 #include <linux/kernel.h>
9 #include <linux/export.h>
10 #include <linux/percpu.h>
11 #include <linux/string.h>
12 #include <linux/ctype.h>
13 #include <linux/delay.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/clock.h>
16 #include <linux/sched/task.h>
17 #include <linux/sched/smt.h>
18 #include <linux/init.h>
19 #include <linux/kprobes.h>
20 #include <linux/kgdb.h>
21 #include <linux/mem_encrypt.h>
22 #include <linux/smp.h>
23 #include <linux/cpu.h>
25 #include <linux/syscore_ops.h>
26 #include <linux/pgtable.h>
27 #include <linux/stackprotector.h>
28 #include <linux/utsname.h>
30 #include <asm/alternative.h>
31 #include <asm/cmdline.h>
32 #include <asm/perf_event.h>
33 #include <asm/mmu_context.h>
34 #include <asm/doublefault.h>
35 #include <asm/archrandom.h>
36 #include <asm/hypervisor.h>
37 #include <asm/processor.h>
38 #include <asm/tlbflush.h>
39 #include <asm/debugreg.h>
40 #include <asm/sections.h>
41 #include <asm/vsyscall.h>
42 #include <linux/topology.h>
43 #include <linux/cpumask.h>
44 #include <linux/atomic.h>
45 #include <asm/proto.h>
46 #include <asm/setup.h>
49 #include <asm/fpu/api.h>
51 #include <asm/hwcap2.h>
52 #include <linux/numa.h>
59 #include <asm/cacheinfo.h>
60 #include <asm/memtype.h>
61 #include <asm/microcode.h>
62 #include <asm/intel-family.h>
63 #include <asm/cpu_device_id.h>
64 #include <asm/uv/uv.h>
66 #include <asm/set_memory.h>
67 #include <asm/traps.h>
72 u32 elf_hwcap2 __read_mostly;
74 /* Number of siblings per CPU package */
75 int smp_num_siblings = 1;
76 EXPORT_SYMBOL(smp_num_siblings);
78 static struct ppin_info {
83 [X86_VENDOR_INTEL] = {
84 .feature = X86_FEATURE_INTEL_PPIN,
85 .msr_ppin_ctl = MSR_PPIN_CTL,
89 .feature = X86_FEATURE_AMD_PPIN,
90 .msr_ppin_ctl = MSR_AMD_PPIN_CTL,
91 .msr_ppin = MSR_AMD_PPIN
95 static const struct x86_cpu_id ppin_cpuids[] = {
96 X86_MATCH_FEATURE(X86_FEATURE_AMD_PPIN, &ppin_info[X86_VENDOR_AMD]),
97 X86_MATCH_FEATURE(X86_FEATURE_INTEL_PPIN, &ppin_info[X86_VENDOR_INTEL]),
99 /* Legacy models without CPUID enumeration */
100 X86_MATCH_INTEL_FAM6_MODEL(IVYBRIDGE_X, &ppin_info[X86_VENDOR_INTEL]),
101 X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X, &ppin_info[X86_VENDOR_INTEL]),
102 X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_D, &ppin_info[X86_VENDOR_INTEL]),
103 X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X, &ppin_info[X86_VENDOR_INTEL]),
104 X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_X, &ppin_info[X86_VENDOR_INTEL]),
105 X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X, &ppin_info[X86_VENDOR_INTEL]),
106 X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_D, &ppin_info[X86_VENDOR_INTEL]),
107 X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X, &ppin_info[X86_VENDOR_INTEL]),
108 X86_MATCH_INTEL_FAM6_MODEL(EMERALDRAPIDS_X, &ppin_info[X86_VENDOR_INTEL]),
109 X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNL, &ppin_info[X86_VENDOR_INTEL]),
110 X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNM, &ppin_info[X86_VENDOR_INTEL]),
115 static void ppin_init(struct cpuinfo_x86 *c)
117 const struct x86_cpu_id *id;
118 unsigned long long val;
119 struct ppin_info *info;
121 id = x86_match_cpu(ppin_cpuids);
126 * Testing the presence of the MSR is not enough. Need to check
127 * that the PPIN_CTL allows reading of the PPIN.
129 info = (struct ppin_info *)id->driver_data;
131 if (rdmsrl_safe(info->msr_ppin_ctl, &val))
134 if ((val & 3UL) == 1UL) {
135 /* PPIN locked in disabled mode */
139 /* If PPIN is disabled, try to enable */
141 wrmsrl_safe(info->msr_ppin_ctl, val | 2UL);
142 rdmsrl_safe(info->msr_ppin_ctl, &val);
145 /* Is the enable bit set? */
147 c->ppin = __rdmsr(info->msr_ppin);
148 set_cpu_cap(c, info->feature);
153 clear_cpu_cap(c, info->feature);
156 static void default_init(struct cpuinfo_x86 *c)
159 cpu_detect_cache_sizes(c);
161 /* Not much we can do here... */
162 /* Check if at least it has cpuid */
163 if (c->cpuid_level == -1) {
164 /* No cpuid. It must be an ancient CPU */
166 strcpy(c->x86_model_id, "486");
167 else if (c->x86 == 3)
168 strcpy(c->x86_model_id, "386");
173 static const struct cpu_dev default_cpu = {
174 .c_init = default_init,
175 .c_vendor = "Unknown",
176 .c_x86_vendor = X86_VENDOR_UNKNOWN,
179 static const struct cpu_dev *this_cpu = &default_cpu;
181 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
184 * We need valid kernel segments for data and code in long mode too
185 * IRET will check the segment types kkeil 2000/10/28
186 * Also sysret mandates a special GDT layout
188 * TLS descriptors are currently at a different place compared to i386.
189 * Hopefully nobody expects them at a fixed place (Wine?)
191 [GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
192 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
193 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
194 [GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
195 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
196 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
198 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
199 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
200 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
201 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
203 * Segments used for calling PnP BIOS have byte granularity.
204 * They code segments and data segments have fixed 64k limits,
205 * the transfer segment sizes are set at run time.
208 [GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
210 [GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
212 [GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
214 [GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(0x0092, 0, 0),
216 [GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(0x0092, 0, 0),
218 * The APM segments have byte granularity and their bases
219 * are set at run time. All have 64k limits.
222 [GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
224 [GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
226 [GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
228 [GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
229 [GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
232 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
235 static int __init x86_nopcid_setup(char *s)
237 /* nopcid doesn't accept parameters */
241 /* do not emit a message if the feature is not present */
242 if (!boot_cpu_has(X86_FEATURE_PCID))
245 setup_clear_cpu_cap(X86_FEATURE_PCID);
246 pr_info("nopcid: PCID feature disabled\n");
249 early_param("nopcid", x86_nopcid_setup);
252 static int __init x86_noinvpcid_setup(char *s)
254 /* noinvpcid doesn't accept parameters */
258 /* do not emit a message if the feature is not present */
259 if (!boot_cpu_has(X86_FEATURE_INVPCID))
262 setup_clear_cpu_cap(X86_FEATURE_INVPCID);
263 pr_info("noinvpcid: INVPCID feature disabled\n");
266 early_param("noinvpcid", x86_noinvpcid_setup);
269 static int cachesize_override = -1;
270 static int disable_x86_serial_nr = 1;
272 static int __init cachesize_setup(char *str)
274 get_option(&str, &cachesize_override);
277 __setup("cachesize=", cachesize_setup);
279 /* Standard macro to see if a specific flag is changeable */
280 static inline int flag_is_changeable_p(u32 flag)
285 * Cyrix and IDT cpus allow disabling of CPUID
286 * so the code below may return different results
287 * when it is executed before and after enabling
288 * the CPUID. Add "volatile" to not allow gcc to
289 * optimize the subsequent calls to this function.
291 asm volatile ("pushfl \n\t"
302 : "=&r" (f1), "=&r" (f2)
305 return ((f1^f2) & flag) != 0;
308 /* Probe for the CPUID instruction */
309 int have_cpuid_p(void)
311 return flag_is_changeable_p(X86_EFLAGS_ID);
314 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
316 unsigned long lo, hi;
318 if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
321 /* Disable processor serial number: */
323 rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
325 wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
327 pr_notice("CPU serial number disabled.\n");
328 clear_cpu_cap(c, X86_FEATURE_PN);
330 /* Disabling the serial number may affect the cpuid level */
331 c->cpuid_level = cpuid_eax(0);
334 static int __init x86_serial_nr_setup(char *s)
336 disable_x86_serial_nr = 0;
339 __setup("serialnumber", x86_serial_nr_setup);
341 static inline int flag_is_changeable_p(u32 flag)
345 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
350 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
352 if (cpu_has(c, X86_FEATURE_SMEP))
353 cr4_set_bits(X86_CR4_SMEP);
356 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
358 unsigned long eflags = native_save_fl();
360 /* This should have been cleared long ago */
361 BUG_ON(eflags & X86_EFLAGS_AC);
363 if (cpu_has(c, X86_FEATURE_SMAP))
364 cr4_set_bits(X86_CR4_SMAP);
367 static __always_inline void setup_umip(struct cpuinfo_x86 *c)
369 /* Check the boot processor, plus build option for UMIP. */
370 if (!cpu_feature_enabled(X86_FEATURE_UMIP))
373 /* Check the current processor's cpuid bits. */
374 if (!cpu_has(c, X86_FEATURE_UMIP))
377 cr4_set_bits(X86_CR4_UMIP);
379 pr_info_once("x86/cpu: User Mode Instruction Prevention (UMIP) activated\n");
385 * Make sure UMIP is disabled in case it was enabled in a
386 * previous boot (e.g., via kexec).
388 cr4_clear_bits(X86_CR4_UMIP);
391 /* These bits should not change their value after CPU init is finished. */
392 static const unsigned long cr4_pinned_mask =
393 X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_UMIP |
394 X86_CR4_FSGSBASE | X86_CR4_CET;
395 static DEFINE_STATIC_KEY_FALSE_RO(cr_pinning);
396 static unsigned long cr4_pinned_bits __ro_after_init;
398 void native_write_cr0(unsigned long val)
400 unsigned long bits_missing = 0;
403 asm volatile("mov %0,%%cr0": "+r" (val) : : "memory");
405 if (static_branch_likely(&cr_pinning)) {
406 if (unlikely((val & X86_CR0_WP) != X86_CR0_WP)) {
407 bits_missing = X86_CR0_WP;
411 /* Warn after we've set the missing bits. */
412 WARN_ONCE(bits_missing, "CR0 WP bit went missing!?\n");
415 EXPORT_SYMBOL(native_write_cr0);
417 void __no_profile native_write_cr4(unsigned long val)
419 unsigned long bits_changed = 0;
422 asm volatile("mov %0,%%cr4": "+r" (val) : : "memory");
424 if (static_branch_likely(&cr_pinning)) {
425 if (unlikely((val & cr4_pinned_mask) != cr4_pinned_bits)) {
426 bits_changed = (val & cr4_pinned_mask) ^ cr4_pinned_bits;
427 val = (val & ~cr4_pinned_mask) | cr4_pinned_bits;
430 /* Warn after we've corrected the changed bits. */
431 WARN_ONCE(bits_changed, "pinned CR4 bits changed: 0x%lx!?\n",
435 #if IS_MODULE(CONFIG_LKDTM)
436 EXPORT_SYMBOL_GPL(native_write_cr4);
439 void cr4_update_irqsoff(unsigned long set, unsigned long clear)
441 unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
443 lockdep_assert_irqs_disabled();
445 newval = (cr4 & ~clear) | set;
447 this_cpu_write(cpu_tlbstate.cr4, newval);
451 EXPORT_SYMBOL(cr4_update_irqsoff);
453 /* Read the CR4 shadow. */
454 unsigned long cr4_read_shadow(void)
456 return this_cpu_read(cpu_tlbstate.cr4);
458 EXPORT_SYMBOL_GPL(cr4_read_shadow);
462 unsigned long cr4 = __read_cr4();
464 if (boot_cpu_has(X86_FEATURE_PCID))
465 cr4 |= X86_CR4_PCIDE;
466 if (static_branch_likely(&cr_pinning))
467 cr4 = (cr4 & ~cr4_pinned_mask) | cr4_pinned_bits;
471 /* Initialize cr4 shadow for this CPU. */
472 this_cpu_write(cpu_tlbstate.cr4, cr4);
476 * Once CPU feature detection is finished (and boot params have been
477 * parsed), record any of the sensitive CR bits that are set, and
480 static void __init setup_cr_pinning(void)
482 cr4_pinned_bits = this_cpu_read(cpu_tlbstate.cr4) & cr4_pinned_mask;
483 static_key_enable(&cr_pinning.key);
486 static __init int x86_nofsgsbase_setup(char *arg)
488 /* Require an exact match without trailing characters. */
492 /* Do not emit a message if the feature is not present. */
493 if (!boot_cpu_has(X86_FEATURE_FSGSBASE))
496 setup_clear_cpu_cap(X86_FEATURE_FSGSBASE);
497 pr_info("FSGSBASE disabled via kernel command line\n");
500 __setup("nofsgsbase", x86_nofsgsbase_setup);
503 * Protection Keys are not available in 32-bit mode.
505 static bool pku_disabled;
507 static __always_inline void setup_pku(struct cpuinfo_x86 *c)
509 if (c == &boot_cpu_data) {
510 if (pku_disabled || !cpu_feature_enabled(X86_FEATURE_PKU))
513 * Setting CR4.PKE will cause the X86_FEATURE_OSPKE cpuid
514 * bit to be set. Enforce it.
516 setup_force_cpu_cap(X86_FEATURE_OSPKE);
518 } else if (!cpu_feature_enabled(X86_FEATURE_OSPKE)) {
522 cr4_set_bits(X86_CR4_PKE);
523 /* Load the default PKRU value */
524 pkru_write_default();
527 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
528 static __init int setup_disable_pku(char *arg)
531 * Do not clear the X86_FEATURE_PKU bit. All of the
532 * runtime checks are against OSPKE so clearing the
535 * This way, we will see "pku" in cpuinfo, but not
536 * "ospke", which is exactly what we want. It shows
537 * that the CPU has PKU, but the OS has not enabled it.
538 * This happens to be exactly how a system would look
539 * if we disabled the config option.
541 pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
545 __setup("nopku", setup_disable_pku);
548 #ifdef CONFIG_X86_KERNEL_IBT
550 __noendbr u64 ibt_save(bool disable)
554 if (cpu_feature_enabled(X86_FEATURE_IBT)) {
555 rdmsrl(MSR_IA32_S_CET, msr);
557 wrmsrl(MSR_IA32_S_CET, msr & ~CET_ENDBR_EN);
563 __noendbr void ibt_restore(u64 save)
567 if (cpu_feature_enabled(X86_FEATURE_IBT)) {
568 rdmsrl(MSR_IA32_S_CET, msr);
569 msr &= ~CET_ENDBR_EN;
570 msr |= (save & CET_ENDBR_EN);
571 wrmsrl(MSR_IA32_S_CET, msr);
577 static __always_inline void setup_cet(struct cpuinfo_x86 *c)
579 bool user_shstk, kernel_ibt;
581 if (!IS_ENABLED(CONFIG_X86_CET))
584 kernel_ibt = HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT);
585 user_shstk = cpu_feature_enabled(X86_FEATURE_SHSTK) &&
586 IS_ENABLED(CONFIG_X86_USER_SHADOW_STACK);
588 if (!kernel_ibt && !user_shstk)
592 set_cpu_cap(c, X86_FEATURE_USER_SHSTK);
595 wrmsrl(MSR_IA32_S_CET, CET_ENDBR_EN);
597 wrmsrl(MSR_IA32_S_CET, 0);
599 cr4_set_bits(X86_CR4_CET);
601 if (kernel_ibt && ibt_selftest()) {
602 pr_err("IBT selftest: Failed!\n");
603 wrmsrl(MSR_IA32_S_CET, 0);
604 setup_clear_cpu_cap(X86_FEATURE_IBT);
608 __noendbr void cet_disable(void)
610 if (!(cpu_feature_enabled(X86_FEATURE_IBT) ||
611 cpu_feature_enabled(X86_FEATURE_SHSTK)))
614 wrmsrl(MSR_IA32_S_CET, 0);
615 wrmsrl(MSR_IA32_U_CET, 0);
619 * Some CPU features depend on higher CPUID levels, which may not always
620 * be available due to CPUID level capping or broken virtualization
621 * software. Add those features to this table to auto-disable them.
623 struct cpuid_dependent_feature {
628 static const struct cpuid_dependent_feature
629 cpuid_dependent_features[] = {
630 { X86_FEATURE_MWAIT, 0x00000005 },
631 { X86_FEATURE_DCA, 0x00000009 },
632 { X86_FEATURE_XSAVE, 0x0000000d },
636 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
638 const struct cpuid_dependent_feature *df;
640 for (df = cpuid_dependent_features; df->feature; df++) {
642 if (!cpu_has(c, df->feature))
645 * Note: cpuid_level is set to -1 if unavailable, but
646 * extended_extended_level is set to 0 if unavailable
647 * and the legitimate extended levels are all negative
648 * when signed; hence the weird messing around with
651 if (!((s32)df->level < 0 ?
652 (u32)df->level > (u32)c->extended_cpuid_level :
653 (s32)df->level > (s32)c->cpuid_level))
656 clear_cpu_cap(c, df->feature);
660 pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
661 x86_cap_flag(df->feature), df->level);
666 * Naming convention should be: <Name> [(<Codename>)]
667 * This table only is used unless init_<vendor>() below doesn't set it;
668 * in particular, if CPUID levels 0x80000002..4 are supported, this
672 /* Look up CPU names by table lookup. */
673 static const char *table_lookup_model(struct cpuinfo_x86 *c)
676 const struct legacy_cpu_model_info *info;
678 if (c->x86_model >= 16)
679 return NULL; /* Range check */
684 info = this_cpu->legacy_models;
686 while (info->family) {
687 if (info->family == c->x86)
688 return info->model_names[c->x86_model];
692 return NULL; /* Not found */
695 /* Aligned to unsigned long to avoid split lock in atomic bitmap ops */
696 __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
697 __u32 cpu_caps_set[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
700 /* The 32-bit entry code needs to find cpu_entry_area. */
701 DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
704 /* Load the original GDT from the per-cpu structure */
705 void load_direct_gdt(int cpu)
707 struct desc_ptr gdt_descr;
709 gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
710 gdt_descr.size = GDT_SIZE - 1;
711 load_gdt(&gdt_descr);
713 EXPORT_SYMBOL_GPL(load_direct_gdt);
715 /* Load a fixmap remapping of the per-cpu GDT */
716 void load_fixmap_gdt(int cpu)
718 struct desc_ptr gdt_descr;
720 gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
721 gdt_descr.size = GDT_SIZE - 1;
722 load_gdt(&gdt_descr);
724 EXPORT_SYMBOL_GPL(load_fixmap_gdt);
727 * switch_gdt_and_percpu_base - Switch to direct GDT and runtime per CPU base
728 * @cpu: The CPU number for which this is invoked
730 * Invoked during early boot to switch from early GDT and early per CPU to
731 * the direct GDT and the runtime per CPU area. On 32-bit the percpu base
732 * switch is implicit by loading the direct GDT. On 64bit this requires
735 void __init switch_gdt_and_percpu_base(int cpu)
737 load_direct_gdt(cpu);
741 * No need to load %gs. It is already correct.
743 * Writing %gs on 64bit would zero GSBASE which would make any per
744 * CPU operation up to the point of the wrmsrl() fault.
746 * Set GSBASE to the new offset. Until the wrmsrl() happens the
747 * early mapping is still valid. That means the GSBASE update will
748 * lose any prior per CPU data which was not copied over in
749 * setup_per_cpu_areas().
751 * This works even with stackprotector enabled because the
752 * per CPU stack canary is 0 in both per CPU areas.
754 wrmsrl(MSR_GS_BASE, cpu_kernelmode_gs_base(cpu));
757 * %fs is already set to __KERNEL_PERCPU, but after switching GDT
758 * it is required to load FS again so that the 'hidden' part is
759 * updated from the new GDT. Up to this point the early per CPU
760 * translation is active. Any content of the early per CPU data
761 * which was not copied over in setup_per_cpu_areas() is lost.
763 loadsegment(fs, __KERNEL_PERCPU);
767 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
769 static void get_model_name(struct cpuinfo_x86 *c)
774 if (c->extended_cpuid_level < 0x80000004)
777 v = (unsigned int *)c->x86_model_id;
778 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
779 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
780 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
781 c->x86_model_id[48] = 0;
783 /* Trim whitespace */
784 p = q = s = &c->x86_model_id[0];
790 /* Note the last non-whitespace index */
800 void detect_num_cpu_cores(struct cpuinfo_x86 *c)
802 unsigned int eax, ebx, ecx, edx;
804 c->x86_max_cores = 1;
805 if (!IS_ENABLED(CONFIG_SMP) || c->cpuid_level < 4)
808 cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
810 c->x86_max_cores = (eax >> 26) + 1;
813 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
815 unsigned int n, dummy, ebx, ecx, edx, l2size;
817 n = c->extended_cpuid_level;
819 if (n >= 0x80000005) {
820 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
821 c->x86_cache_size = (ecx>>24) + (edx>>24);
823 /* On K8 L1 TLB is inclusive, so don't count it */
828 if (n < 0x80000006) /* Some chips just has a large L1. */
831 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
835 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
837 /* do processor-specific cache resizing */
838 if (this_cpu->legacy_cache_size)
839 l2size = this_cpu->legacy_cache_size(c, l2size);
841 /* Allow user to override all this if necessary. */
842 if (cachesize_override != -1)
843 l2size = cachesize_override;
846 return; /* Again, no L2 cache is possible */
849 c->x86_cache_size = l2size;
852 u16 __read_mostly tlb_lli_4k[NR_INFO];
853 u16 __read_mostly tlb_lli_2m[NR_INFO];
854 u16 __read_mostly tlb_lli_4m[NR_INFO];
855 u16 __read_mostly tlb_lld_4k[NR_INFO];
856 u16 __read_mostly tlb_lld_2m[NR_INFO];
857 u16 __read_mostly tlb_lld_4m[NR_INFO];
858 u16 __read_mostly tlb_lld_1g[NR_INFO];
860 static void cpu_detect_tlb(struct cpuinfo_x86 *c)
862 if (this_cpu->c_detect_tlb)
863 this_cpu->c_detect_tlb(c);
865 pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
866 tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
867 tlb_lli_4m[ENTRIES]);
869 pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
870 tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
871 tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
874 int detect_ht_early(struct cpuinfo_x86 *c)
877 u32 eax, ebx, ecx, edx;
879 if (!cpu_has(c, X86_FEATURE_HT))
882 if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
885 if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
888 cpuid(1, &eax, &ebx, &ecx, &edx);
890 smp_num_siblings = (ebx & 0xff0000) >> 16;
891 if (smp_num_siblings == 1)
892 pr_info_once("CPU0: Hyper-Threading is disabled\n");
897 void detect_ht(struct cpuinfo_x86 *c)
900 int index_msb, core_bits;
902 if (detect_ht_early(c) < 0)
905 index_msb = get_count_order(smp_num_siblings);
906 c->topo.pkg_id = apic->phys_pkg_id(c->topo.initial_apicid, index_msb);
908 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
910 index_msb = get_count_order(smp_num_siblings);
912 core_bits = get_count_order(c->x86_max_cores);
914 c->topo.core_id = apic->phys_pkg_id(c->topo.initial_apicid, index_msb) &
915 ((1 << core_bits) - 1);
919 static void get_cpu_vendor(struct cpuinfo_x86 *c)
921 char *v = c->x86_vendor_id;
924 for (i = 0; i < X86_VENDOR_NUM; i++) {
928 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
929 (cpu_devs[i]->c_ident[1] &&
930 !strcmp(v, cpu_devs[i]->c_ident[1]))) {
932 this_cpu = cpu_devs[i];
933 c->x86_vendor = this_cpu->c_x86_vendor;
938 pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
939 "CPU: Your system may be unstable.\n", v);
941 c->x86_vendor = X86_VENDOR_UNKNOWN;
942 this_cpu = &default_cpu;
945 void cpu_detect(struct cpuinfo_x86 *c)
947 /* Get vendor name */
948 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
949 (unsigned int *)&c->x86_vendor_id[0],
950 (unsigned int *)&c->x86_vendor_id[8],
951 (unsigned int *)&c->x86_vendor_id[4]);
954 /* Intel-defined flags: level 0x00000001 */
955 if (c->cpuid_level >= 0x00000001) {
956 u32 junk, tfms, cap0, misc;
958 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
959 c->x86 = x86_family(tfms);
960 c->x86_model = x86_model(tfms);
961 c->x86_stepping = x86_stepping(tfms);
963 if (cap0 & (1<<19)) {
964 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
965 c->x86_cache_alignment = c->x86_clflush_size;
970 static void apply_forced_caps(struct cpuinfo_x86 *c)
974 for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
975 c->x86_capability[i] &= ~cpu_caps_cleared[i];
976 c->x86_capability[i] |= cpu_caps_set[i];
980 static void init_speculation_control(struct cpuinfo_x86 *c)
983 * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
984 * and they also have a different bit for STIBP support. Also,
985 * a hypervisor might have set the individual AMD bits even on
986 * Intel CPUs, for finer-grained selection of what's available.
988 if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) {
989 set_cpu_cap(c, X86_FEATURE_IBRS);
990 set_cpu_cap(c, X86_FEATURE_IBPB);
991 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
994 if (cpu_has(c, X86_FEATURE_INTEL_STIBP))
995 set_cpu_cap(c, X86_FEATURE_STIBP);
997 if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) ||
998 cpu_has(c, X86_FEATURE_VIRT_SSBD))
999 set_cpu_cap(c, X86_FEATURE_SSBD);
1001 if (cpu_has(c, X86_FEATURE_AMD_IBRS)) {
1002 set_cpu_cap(c, X86_FEATURE_IBRS);
1003 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
1006 if (cpu_has(c, X86_FEATURE_AMD_IBPB))
1007 set_cpu_cap(c, X86_FEATURE_IBPB);
1009 if (cpu_has(c, X86_FEATURE_AMD_STIBP)) {
1010 set_cpu_cap(c, X86_FEATURE_STIBP);
1011 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
1014 if (cpu_has(c, X86_FEATURE_AMD_SSBD)) {
1015 set_cpu_cap(c, X86_FEATURE_SSBD);
1016 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
1017 clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD);
1021 void get_cpu_cap(struct cpuinfo_x86 *c)
1023 u32 eax, ebx, ecx, edx;
1025 /* Intel-defined flags: level 0x00000001 */
1026 if (c->cpuid_level >= 0x00000001) {
1027 cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
1029 c->x86_capability[CPUID_1_ECX] = ecx;
1030 c->x86_capability[CPUID_1_EDX] = edx;
1033 /* Thermal and Power Management Leaf: level 0x00000006 (eax) */
1034 if (c->cpuid_level >= 0x00000006)
1035 c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
1037 /* Additional Intel-defined flags: level 0x00000007 */
1038 if (c->cpuid_level >= 0x00000007) {
1039 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
1040 c->x86_capability[CPUID_7_0_EBX] = ebx;
1041 c->x86_capability[CPUID_7_ECX] = ecx;
1042 c->x86_capability[CPUID_7_EDX] = edx;
1044 /* Check valid sub-leaf index before accessing it */
1046 cpuid_count(0x00000007, 1, &eax, &ebx, &ecx, &edx);
1047 c->x86_capability[CPUID_7_1_EAX] = eax;
1051 /* Extended state features: level 0x0000000d */
1052 if (c->cpuid_level >= 0x0000000d) {
1053 cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
1055 c->x86_capability[CPUID_D_1_EAX] = eax;
1058 /* AMD-defined flags: level 0x80000001 */
1059 eax = cpuid_eax(0x80000000);
1060 c->extended_cpuid_level = eax;
1062 if ((eax & 0xffff0000) == 0x80000000) {
1063 if (eax >= 0x80000001) {
1064 cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
1066 c->x86_capability[CPUID_8000_0001_ECX] = ecx;
1067 c->x86_capability[CPUID_8000_0001_EDX] = edx;
1071 if (c->extended_cpuid_level >= 0x80000007) {
1072 cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
1074 c->x86_capability[CPUID_8000_0007_EBX] = ebx;
1078 if (c->extended_cpuid_level >= 0x80000008) {
1079 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
1080 c->x86_capability[CPUID_8000_0008_EBX] = ebx;
1083 if (c->extended_cpuid_level >= 0x8000000a)
1084 c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
1086 if (c->extended_cpuid_level >= 0x8000001f)
1087 c->x86_capability[CPUID_8000_001F_EAX] = cpuid_eax(0x8000001f);
1089 if (c->extended_cpuid_level >= 0x80000021)
1090 c->x86_capability[CPUID_8000_0021_EAX] = cpuid_eax(0x80000021);
1092 init_scattered_cpuid_features(c);
1093 init_speculation_control(c);
1096 * Clear/Set all flags overridden by options, after probe.
1097 * This needs to happen each time we re-probe, which may happen
1098 * several times during CPU initialization.
1100 apply_forced_caps(c);
1103 void get_cpu_address_sizes(struct cpuinfo_x86 *c)
1105 u32 eax, ebx, ecx, edx;
1106 bool vp_bits_from_cpuid = true;
1108 if (!cpu_has(c, X86_FEATURE_CPUID) ||
1109 (c->extended_cpuid_level < 0x80000008))
1110 vp_bits_from_cpuid = false;
1112 if (vp_bits_from_cpuid) {
1113 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
1115 c->x86_virt_bits = (eax >> 8) & 0xff;
1116 c->x86_phys_bits = eax & 0xff;
1118 if (IS_ENABLED(CONFIG_X86_64)) {
1119 c->x86_clflush_size = 64;
1120 c->x86_phys_bits = 36;
1121 c->x86_virt_bits = 48;
1123 c->x86_clflush_size = 32;
1124 c->x86_virt_bits = 32;
1125 c->x86_phys_bits = 32;
1127 if (cpu_has(c, X86_FEATURE_PAE) ||
1128 cpu_has(c, X86_FEATURE_PSE36))
1129 c->x86_phys_bits = 36;
1132 c->x86_cache_bits = c->x86_phys_bits;
1133 c->x86_cache_alignment = c->x86_clflush_size;
1136 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
1138 #ifdef CONFIG_X86_32
1142 * First of all, decide if this is a 486 or higher
1143 * It's a 486 if we can modify the AC flag
1145 if (flag_is_changeable_p(X86_EFLAGS_AC))
1150 for (i = 0; i < X86_VENDOR_NUM; i++)
1151 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
1152 c->x86_vendor_id[0] = 0;
1153 cpu_devs[i]->c_identify(c);
1154 if (c->x86_vendor_id[0]) {
1162 #define NO_SPECULATION BIT(0)
1163 #define NO_MELTDOWN BIT(1)
1164 #define NO_SSB BIT(2)
1165 #define NO_L1TF BIT(3)
1166 #define NO_MDS BIT(4)
1167 #define MSBDS_ONLY BIT(5)
1168 #define NO_SWAPGS BIT(6)
1169 #define NO_ITLB_MULTIHIT BIT(7)
1170 #define NO_SPECTRE_V2 BIT(8)
1171 #define NO_MMIO BIT(9)
1172 #define NO_EIBRS_PBRSB BIT(10)
1174 #define VULNWL(vendor, family, model, whitelist) \
1175 X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, whitelist)
1177 #define VULNWL_INTEL(model, whitelist) \
1178 VULNWL(INTEL, 6, INTEL_FAM6_##model, whitelist)
1180 #define VULNWL_AMD(family, whitelist) \
1181 VULNWL(AMD, family, X86_MODEL_ANY, whitelist)
1183 #define VULNWL_HYGON(family, whitelist) \
1184 VULNWL(HYGON, family, X86_MODEL_ANY, whitelist)
1186 static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = {
1187 VULNWL(ANY, 4, X86_MODEL_ANY, NO_SPECULATION),
1188 VULNWL(CENTAUR, 5, X86_MODEL_ANY, NO_SPECULATION),
1189 VULNWL(INTEL, 5, X86_MODEL_ANY, NO_SPECULATION),
1190 VULNWL(NSC, 5, X86_MODEL_ANY, NO_SPECULATION),
1191 VULNWL(VORTEX, 5, X86_MODEL_ANY, NO_SPECULATION),
1192 VULNWL(VORTEX, 6, X86_MODEL_ANY, NO_SPECULATION),
1194 /* Intel Family 6 */
1195 VULNWL_INTEL(TIGERLAKE, NO_MMIO),
1196 VULNWL_INTEL(TIGERLAKE_L, NO_MMIO),
1197 VULNWL_INTEL(ALDERLAKE, NO_MMIO),
1198 VULNWL_INTEL(ALDERLAKE_L, NO_MMIO),
1200 VULNWL_INTEL(ATOM_SALTWELL, NO_SPECULATION | NO_ITLB_MULTIHIT),
1201 VULNWL_INTEL(ATOM_SALTWELL_TABLET, NO_SPECULATION | NO_ITLB_MULTIHIT),
1202 VULNWL_INTEL(ATOM_SALTWELL_MID, NO_SPECULATION | NO_ITLB_MULTIHIT),
1203 VULNWL_INTEL(ATOM_BONNELL, NO_SPECULATION | NO_ITLB_MULTIHIT),
1204 VULNWL_INTEL(ATOM_BONNELL_MID, NO_SPECULATION | NO_ITLB_MULTIHIT),
1206 VULNWL_INTEL(ATOM_SILVERMONT, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1207 VULNWL_INTEL(ATOM_SILVERMONT_D, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1208 VULNWL_INTEL(ATOM_SILVERMONT_MID, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1209 VULNWL_INTEL(ATOM_AIRMONT, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1210 VULNWL_INTEL(XEON_PHI_KNL, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1211 VULNWL_INTEL(XEON_PHI_KNM, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1213 VULNWL_INTEL(CORE_YONAH, NO_SSB),
1215 VULNWL_INTEL(ATOM_AIRMONT_MID, NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1216 VULNWL_INTEL(ATOM_AIRMONT_NP, NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1218 VULNWL_INTEL(ATOM_GOLDMONT, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1219 VULNWL_INTEL(ATOM_GOLDMONT_D, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1220 VULNWL_INTEL(ATOM_GOLDMONT_PLUS, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB),
1223 * Technically, swapgs isn't serializing on AMD (despite it previously
1224 * being documented as such in the APM). But according to AMD, %gs is
1225 * updated non-speculatively, and the issuing of %gs-relative memory
1226 * operands will be blocked until the %gs update completes, which is
1227 * good enough for our purposes.
1230 VULNWL_INTEL(ATOM_TREMONT, NO_EIBRS_PBRSB),
1231 VULNWL_INTEL(ATOM_TREMONT_L, NO_EIBRS_PBRSB),
1232 VULNWL_INTEL(ATOM_TREMONT_D, NO_ITLB_MULTIHIT | NO_EIBRS_PBRSB),
1234 /* AMD Family 0xf - 0x12 */
1235 VULNWL_AMD(0x0f, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1236 VULNWL_AMD(0x10, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1237 VULNWL_AMD(0x11, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1238 VULNWL_AMD(0x12, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1240 /* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */
1241 VULNWL_AMD(X86_FAMILY_ANY, NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB),
1242 VULNWL_HYGON(X86_FAMILY_ANY, NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB),
1244 /* Zhaoxin Family 7 */
1245 VULNWL(CENTAUR, 7, X86_MODEL_ANY, NO_SPECTRE_V2 | NO_SWAPGS | NO_MMIO),
1246 VULNWL(ZHAOXIN, 7, X86_MODEL_ANY, NO_SPECTRE_V2 | NO_SWAPGS | NO_MMIO),
1250 #define VULNBL(vendor, family, model, blacklist) \
1251 X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, blacklist)
1253 #define VULNBL_INTEL_STEPPINGS(model, steppings, issues) \
1254 X86_MATCH_VENDOR_FAM_MODEL_STEPPINGS_FEATURE(INTEL, 6, \
1255 INTEL_FAM6_##model, steppings, \
1256 X86_FEATURE_ANY, issues)
1258 #define VULNBL_AMD(family, blacklist) \
1259 VULNBL(AMD, family, X86_MODEL_ANY, blacklist)
1261 #define VULNBL_HYGON(family, blacklist) \
1262 VULNBL(HYGON, family, X86_MODEL_ANY, blacklist)
1264 #define SRBDS BIT(0)
1265 /* CPU is affected by X86_BUG_MMIO_STALE_DATA */
1267 /* CPU is affected by Shared Buffers Data Sampling (SBDS), a variant of X86_BUG_MMIO_STALE_DATA */
1268 #define MMIO_SBDS BIT(2)
1269 /* CPU is affected by RETbleed, speculating where you would not expect it */
1270 #define RETBLEED BIT(3)
1271 /* CPU is affected by SMT (cross-thread) return predictions */
1272 #define SMT_RSB BIT(4)
1273 /* CPU is affected by SRSO */
1275 /* CPU is affected by GDS */
1278 static const struct x86_cpu_id cpu_vuln_blacklist[] __initconst = {
1279 VULNBL_INTEL_STEPPINGS(IVYBRIDGE, X86_STEPPING_ANY, SRBDS),
1280 VULNBL_INTEL_STEPPINGS(HASWELL, X86_STEPPING_ANY, SRBDS),
1281 VULNBL_INTEL_STEPPINGS(HASWELL_L, X86_STEPPING_ANY, SRBDS),
1282 VULNBL_INTEL_STEPPINGS(HASWELL_G, X86_STEPPING_ANY, SRBDS),
1283 VULNBL_INTEL_STEPPINGS(HASWELL_X, X86_STEPPING_ANY, MMIO),
1284 VULNBL_INTEL_STEPPINGS(BROADWELL_D, X86_STEPPING_ANY, MMIO),
1285 VULNBL_INTEL_STEPPINGS(BROADWELL_G, X86_STEPPING_ANY, SRBDS),
1286 VULNBL_INTEL_STEPPINGS(BROADWELL_X, X86_STEPPING_ANY, MMIO),
1287 VULNBL_INTEL_STEPPINGS(BROADWELL, X86_STEPPING_ANY, SRBDS),
1288 VULNBL_INTEL_STEPPINGS(SKYLAKE_X, X86_STEPPING_ANY, MMIO | RETBLEED | GDS),
1289 VULNBL_INTEL_STEPPINGS(SKYLAKE_L, X86_STEPPING_ANY, MMIO | RETBLEED | GDS | SRBDS),
1290 VULNBL_INTEL_STEPPINGS(SKYLAKE, X86_STEPPING_ANY, MMIO | RETBLEED | GDS | SRBDS),
1291 VULNBL_INTEL_STEPPINGS(KABYLAKE_L, X86_STEPPING_ANY, MMIO | RETBLEED | GDS | SRBDS),
1292 VULNBL_INTEL_STEPPINGS(KABYLAKE, X86_STEPPING_ANY, MMIO | RETBLEED | GDS | SRBDS),
1293 VULNBL_INTEL_STEPPINGS(CANNONLAKE_L, X86_STEPPING_ANY, RETBLEED),
1294 VULNBL_INTEL_STEPPINGS(ICELAKE_L, X86_STEPPING_ANY, MMIO | MMIO_SBDS | RETBLEED | GDS),
1295 VULNBL_INTEL_STEPPINGS(ICELAKE_D, X86_STEPPING_ANY, MMIO | GDS),
1296 VULNBL_INTEL_STEPPINGS(ICELAKE_X, X86_STEPPING_ANY, MMIO | GDS),
1297 VULNBL_INTEL_STEPPINGS(COMETLAKE, X86_STEPPING_ANY, MMIO | MMIO_SBDS | RETBLEED | GDS),
1298 VULNBL_INTEL_STEPPINGS(COMETLAKE_L, X86_STEPPINGS(0x0, 0x0), MMIO | RETBLEED),
1299 VULNBL_INTEL_STEPPINGS(COMETLAKE_L, X86_STEPPING_ANY, MMIO | MMIO_SBDS | RETBLEED | GDS),
1300 VULNBL_INTEL_STEPPINGS(TIGERLAKE_L, X86_STEPPING_ANY, GDS),
1301 VULNBL_INTEL_STEPPINGS(TIGERLAKE, X86_STEPPING_ANY, GDS),
1302 VULNBL_INTEL_STEPPINGS(LAKEFIELD, X86_STEPPING_ANY, MMIO | MMIO_SBDS | RETBLEED),
1303 VULNBL_INTEL_STEPPINGS(ROCKETLAKE, X86_STEPPING_ANY, MMIO | RETBLEED | GDS),
1304 VULNBL_INTEL_STEPPINGS(ATOM_TREMONT, X86_STEPPING_ANY, MMIO | MMIO_SBDS),
1305 VULNBL_INTEL_STEPPINGS(ATOM_TREMONT_D, X86_STEPPING_ANY, MMIO),
1306 VULNBL_INTEL_STEPPINGS(ATOM_TREMONT_L, X86_STEPPING_ANY, MMIO | MMIO_SBDS),
1308 VULNBL_AMD(0x15, RETBLEED),
1309 VULNBL_AMD(0x16, RETBLEED),
1310 VULNBL_AMD(0x17, RETBLEED | SMT_RSB | SRSO),
1311 VULNBL_HYGON(0x18, RETBLEED | SMT_RSB | SRSO),
1312 VULNBL_AMD(0x19, SRSO),
1316 static bool __init cpu_matches(const struct x86_cpu_id *table, unsigned long which)
1318 const struct x86_cpu_id *m = x86_match_cpu(table);
1320 return m && !!(m->driver_data & which);
1323 u64 x86_read_arch_cap_msr(void)
1327 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1328 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, ia32_cap);
1333 static bool arch_cap_mmio_immune(u64 ia32_cap)
1335 return (ia32_cap & ARCH_CAP_FBSDP_NO &&
1336 ia32_cap & ARCH_CAP_PSDP_NO &&
1337 ia32_cap & ARCH_CAP_SBDR_SSDP_NO);
1340 static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
1342 u64 ia32_cap = x86_read_arch_cap_msr();
1344 /* Set ITLB_MULTIHIT bug if cpu is not in the whitelist and not mitigated */
1345 if (!cpu_matches(cpu_vuln_whitelist, NO_ITLB_MULTIHIT) &&
1346 !(ia32_cap & ARCH_CAP_PSCHANGE_MC_NO))
1347 setup_force_cpu_bug(X86_BUG_ITLB_MULTIHIT);
1349 if (cpu_matches(cpu_vuln_whitelist, NO_SPECULATION))
1352 setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
1354 if (!cpu_matches(cpu_vuln_whitelist, NO_SPECTRE_V2))
1355 setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
1357 if (!cpu_matches(cpu_vuln_whitelist, NO_SSB) &&
1358 !(ia32_cap & ARCH_CAP_SSB_NO) &&
1359 !cpu_has(c, X86_FEATURE_AMD_SSB_NO))
1360 setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
1363 * AMD's AutoIBRS is equivalent to Intel's eIBRS - use the Intel feature
1364 * flag and protect from vendor-specific bugs via the whitelist.
1366 if ((ia32_cap & ARCH_CAP_IBRS_ALL) || cpu_has(c, X86_FEATURE_AUTOIBRS)) {
1367 setup_force_cpu_cap(X86_FEATURE_IBRS_ENHANCED);
1368 if (!cpu_matches(cpu_vuln_whitelist, NO_EIBRS_PBRSB) &&
1369 !(ia32_cap & ARCH_CAP_PBRSB_NO))
1370 setup_force_cpu_bug(X86_BUG_EIBRS_PBRSB);
1373 if (!cpu_matches(cpu_vuln_whitelist, NO_MDS) &&
1374 !(ia32_cap & ARCH_CAP_MDS_NO)) {
1375 setup_force_cpu_bug(X86_BUG_MDS);
1376 if (cpu_matches(cpu_vuln_whitelist, MSBDS_ONLY))
1377 setup_force_cpu_bug(X86_BUG_MSBDS_ONLY);
1380 if (!cpu_matches(cpu_vuln_whitelist, NO_SWAPGS))
1381 setup_force_cpu_bug(X86_BUG_SWAPGS);
1384 * When the CPU is not mitigated for TAA (TAA_NO=0) set TAA bug when:
1385 * - TSX is supported or
1386 * - TSX_CTRL is present
1388 * TSX_CTRL check is needed for cases when TSX could be disabled before
1389 * the kernel boot e.g. kexec.
1390 * TSX_CTRL check alone is not sufficient for cases when the microcode
1391 * update is not present or running as guest that don't get TSX_CTRL.
1393 if (!(ia32_cap & ARCH_CAP_TAA_NO) &&
1394 (cpu_has(c, X86_FEATURE_RTM) ||
1395 (ia32_cap & ARCH_CAP_TSX_CTRL_MSR)))
1396 setup_force_cpu_bug(X86_BUG_TAA);
1399 * SRBDS affects CPUs which support RDRAND or RDSEED and are listed
1400 * in the vulnerability blacklist.
1402 * Some of the implications and mitigation of Shared Buffers Data
1403 * Sampling (SBDS) are similar to SRBDS. Give SBDS same treatment as
1406 if ((cpu_has(c, X86_FEATURE_RDRAND) ||
1407 cpu_has(c, X86_FEATURE_RDSEED)) &&
1408 cpu_matches(cpu_vuln_blacklist, SRBDS | MMIO_SBDS))
1409 setup_force_cpu_bug(X86_BUG_SRBDS);
1412 * Processor MMIO Stale Data bug enumeration
1414 * Affected CPU list is generally enough to enumerate the vulnerability,
1415 * but for virtualization case check for ARCH_CAP MSR bits also, VMM may
1416 * not want the guest to enumerate the bug.
1418 * Set X86_BUG_MMIO_UNKNOWN for CPUs that are neither in the blacklist,
1419 * nor in the whitelist and also don't enumerate MSR ARCH_CAP MMIO bits.
1421 if (!arch_cap_mmio_immune(ia32_cap)) {
1422 if (cpu_matches(cpu_vuln_blacklist, MMIO))
1423 setup_force_cpu_bug(X86_BUG_MMIO_STALE_DATA);
1424 else if (!cpu_matches(cpu_vuln_whitelist, NO_MMIO))
1425 setup_force_cpu_bug(X86_BUG_MMIO_UNKNOWN);
1428 if (!cpu_has(c, X86_FEATURE_BTC_NO)) {
1429 if (cpu_matches(cpu_vuln_blacklist, RETBLEED) || (ia32_cap & ARCH_CAP_RSBA))
1430 setup_force_cpu_bug(X86_BUG_RETBLEED);
1433 if (cpu_matches(cpu_vuln_blacklist, SMT_RSB))
1434 setup_force_cpu_bug(X86_BUG_SMT_RSB);
1436 if (!cpu_has(c, X86_FEATURE_SRSO_NO)) {
1437 if (cpu_matches(cpu_vuln_blacklist, SRSO))
1438 setup_force_cpu_bug(X86_BUG_SRSO);
1442 * Check if CPU is vulnerable to GDS. If running in a virtual machine on
1443 * an affected processor, the VMM may have disabled the use of GATHER by
1444 * disabling AVX2. The only way to do this in HW is to clear XCR0[2],
1445 * which means that AVX will be disabled.
1447 if (cpu_matches(cpu_vuln_blacklist, GDS) && !(ia32_cap & ARCH_CAP_GDS_NO) &&
1448 boot_cpu_has(X86_FEATURE_AVX))
1449 setup_force_cpu_bug(X86_BUG_GDS);
1451 if (cpu_matches(cpu_vuln_whitelist, NO_MELTDOWN))
1454 /* Rogue Data Cache Load? No! */
1455 if (ia32_cap & ARCH_CAP_RDCL_NO)
1458 setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
1460 if (cpu_matches(cpu_vuln_whitelist, NO_L1TF))
1463 setup_force_cpu_bug(X86_BUG_L1TF);
1467 * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
1468 * unfortunately, that's not true in practice because of early VIA
1469 * chips and (more importantly) broken virtualizers that are not easy
1470 * to detect. In the latter case it doesn't even *fail* reliably, so
1471 * probing for it doesn't even work. Disable it completely on 32-bit
1472 * unless we can find a reliable way to detect all the broken cases.
1473 * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1475 static void detect_nopl(void)
1477 #ifdef CONFIG_X86_32
1478 setup_clear_cpu_cap(X86_FEATURE_NOPL);
1480 setup_force_cpu_cap(X86_FEATURE_NOPL);
1485 * We parse cpu parameters early because fpu__init_system() is executed
1486 * before parse_early_param().
1488 static void __init cpu_parse_early_param(void)
1491 char *argptr = arg, *opt;
1492 int arglen, taint = 0;
1494 #ifdef CONFIG_X86_32
1495 if (cmdline_find_option_bool(boot_command_line, "no387"))
1496 #ifdef CONFIG_MATH_EMULATION
1497 setup_clear_cpu_cap(X86_FEATURE_FPU);
1499 pr_err("Option 'no387' required CONFIG_MATH_EMULATION enabled.\n");
1502 if (cmdline_find_option_bool(boot_command_line, "nofxsr"))
1503 setup_clear_cpu_cap(X86_FEATURE_FXSR);
1506 if (cmdline_find_option_bool(boot_command_line, "noxsave"))
1507 setup_clear_cpu_cap(X86_FEATURE_XSAVE);
1509 if (cmdline_find_option_bool(boot_command_line, "noxsaveopt"))
1510 setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
1512 if (cmdline_find_option_bool(boot_command_line, "noxsaves"))
1513 setup_clear_cpu_cap(X86_FEATURE_XSAVES);
1515 if (cmdline_find_option_bool(boot_command_line, "nousershstk"))
1516 setup_clear_cpu_cap(X86_FEATURE_USER_SHSTK);
1518 arglen = cmdline_find_option(boot_command_line, "clearcpuid", arg, sizeof(arg));
1522 pr_info("Clearing CPUID bits:");
1525 bool found __maybe_unused = false;
1528 opt = strsep(&argptr, ",");
1531 * Handle naked numbers first for feature flags which don't
1534 if (!kstrtouint(opt, 10, &bit)) {
1535 if (bit < NCAPINTS * 32) {
1537 /* empty-string, i.e., ""-defined feature flags */
1538 if (!x86_cap_flags[bit])
1539 pr_cont(" " X86_CAP_FMT_NUM, x86_cap_flag_num(bit));
1541 pr_cont(" " X86_CAP_FMT, x86_cap_flag(bit));
1543 setup_clear_cpu_cap(bit);
1547 * The assumption is that there are no feature names with only
1548 * numbers in the name thus go to the next argument.
1553 for (bit = 0; bit < 32 * NCAPINTS; bit++) {
1554 if (!x86_cap_flag(bit))
1557 if (strcmp(x86_cap_flag(bit), opt))
1560 pr_cont(" %s", opt);
1561 setup_clear_cpu_cap(bit);
1568 pr_cont(" (unknown: %s)", opt);
1573 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1577 * Do minimum CPU detection early.
1578 * Fields really needed: vendor, cpuid_level, family, model, mask,
1580 * The others are not touched to avoid unwanted side effects.
1582 * WARNING: this function is only called on the boot CPU. Don't add code
1583 * here that is supposed to run on all CPUs.
1585 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
1587 memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1588 c->extended_cpuid_level = 0;
1590 if (!have_cpuid_p())
1591 identify_cpu_without_cpuid(c);
1593 /* cyrix could have cpuid enabled via c_identify()*/
1594 if (have_cpuid_p()) {
1598 setup_force_cpu_cap(X86_FEATURE_CPUID);
1599 cpu_parse_early_param();
1601 if (this_cpu->c_early_init)
1602 this_cpu->c_early_init(c);
1605 filter_cpuid_features(c, false);
1607 if (this_cpu->c_bsp_init)
1608 this_cpu->c_bsp_init(c);
1610 setup_clear_cpu_cap(X86_FEATURE_CPUID);
1613 get_cpu_address_sizes(c);
1615 setup_force_cpu_cap(X86_FEATURE_ALWAYS);
1617 cpu_set_bug_bits(c);
1621 #ifdef CONFIG_X86_32
1623 * Regardless of whether PCID is enumerated, the SDM says
1624 * that it can't be enabled in 32-bit mode.
1626 setup_clear_cpu_cap(X86_FEATURE_PCID);
1630 * Later in the boot process pgtable_l5_enabled() relies on
1631 * cpu_feature_enabled(X86_FEATURE_LA57). If 5-level paging is not
1632 * enabled by this point we need to clear the feature bit to avoid
1633 * false-positives at the later stage.
1635 * pgtable_l5_enabled() can be false here for several reasons:
1636 * - 5-level paging is disabled compile-time;
1637 * - it's 32-bit kernel;
1638 * - machine doesn't support 5-level paging;
1639 * - user specified 'no5lvl' in kernel command line.
1641 if (!pgtable_l5_enabled())
1642 setup_clear_cpu_cap(X86_FEATURE_LA57);
1647 void __init early_cpu_init(void)
1649 const struct cpu_dev *const *cdev;
1652 #ifdef CONFIG_PROCESSOR_SELECT
1653 pr_info("KERNEL supported cpus:\n");
1656 for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
1657 const struct cpu_dev *cpudev = *cdev;
1659 if (count >= X86_VENDOR_NUM)
1661 cpu_devs[count] = cpudev;
1664 #ifdef CONFIG_PROCESSOR_SELECT
1668 for (j = 0; j < 2; j++) {
1669 if (!cpudev->c_ident[j])
1671 pr_info(" %s %s\n", cpudev->c_vendor,
1672 cpudev->c_ident[j]);
1677 early_identify_cpu(&boot_cpu_data);
1680 static bool detect_null_seg_behavior(void)
1683 * Empirically, writing zero to a segment selector on AMD does
1684 * not clear the base, whereas writing zero to a segment
1685 * selector on Intel does clear the base. Intel's behavior
1686 * allows slightly faster context switches in the common case
1687 * where GS is unused by the prev and next threads.
1689 * Since neither vendor documents this anywhere that I can see,
1690 * detect it directly instead of hard-coding the choice by
1693 * I've designated AMD's behavior as the "bug" because it's
1694 * counterintuitive and less friendly.
1697 unsigned long old_base, tmp;
1698 rdmsrl(MSR_FS_BASE, old_base);
1699 wrmsrl(MSR_FS_BASE, 1);
1701 rdmsrl(MSR_FS_BASE, tmp);
1702 wrmsrl(MSR_FS_BASE, old_base);
1706 void check_null_seg_clears_base(struct cpuinfo_x86 *c)
1708 /* BUG_NULL_SEG is only relevant with 64bit userspace */
1709 if (!IS_ENABLED(CONFIG_X86_64))
1712 if (cpu_has(c, X86_FEATURE_NULL_SEL_CLR_BASE))
1716 * CPUID bit above wasn't set. If this kernel is still running
1717 * as a HV guest, then the HV has decided not to advertize
1718 * that CPUID bit for whatever reason. For example, one
1719 * member of the migration pool might be vulnerable. Which
1720 * means, the bug is present: set the BUG flag and return.
1722 if (cpu_has(c, X86_FEATURE_HYPERVISOR)) {
1723 set_cpu_bug(c, X86_BUG_NULL_SEG);
1728 * Zen2 CPUs also have this behaviour, but no CPUID bit.
1729 * 0x18 is the respective family for Hygon.
1731 if ((c->x86 == 0x17 || c->x86 == 0x18) &&
1732 detect_null_seg_behavior())
1735 /* All the remaining ones are affected */
1736 set_cpu_bug(c, X86_BUG_NULL_SEG);
1739 static void generic_identify(struct cpuinfo_x86 *c)
1741 c->extended_cpuid_level = 0;
1743 if (!have_cpuid_p())
1744 identify_cpu_without_cpuid(c);
1746 /* cyrix could have cpuid enabled via c_identify()*/
1747 if (!have_cpuid_p())
1756 get_cpu_address_sizes(c);
1758 if (c->cpuid_level >= 0x00000001) {
1759 c->topo.initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
1760 #ifdef CONFIG_X86_32
1762 c->topo.apicid = apic->phys_pkg_id(c->topo.initial_apicid, 0);
1764 c->topo.apicid = c->topo.initial_apicid;
1767 c->topo.pkg_id = c->topo.initial_apicid;
1770 get_model_name(c); /* Default name */
1773 * ESPFIX is a strange bug. All real CPUs have it. Paravirt
1774 * systems that run Linux at CPL > 0 may or may not have the
1775 * issue, but, even if they have the issue, there's absolutely
1776 * nothing we can do about it because we can't use the real IRET
1779 * NB: For the time being, only 32-bit kernels support
1780 * X86_BUG_ESPFIX as such. 64-bit kernels directly choose
1781 * whether to apply espfix using paravirt hooks. If any
1782 * non-paravirt system ever shows up that does *not* have the
1783 * ESPFIX issue, we can change this.
1785 #ifdef CONFIG_X86_32
1786 set_cpu_bug(c, X86_BUG_ESPFIX);
1791 * Validate that ACPI/mptables have the same information about the
1792 * effective APIC id and update the package map.
1794 static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
1797 unsigned int cpu = smp_processor_id();
1800 apicid = apic->cpu_present_to_apicid(cpu);
1802 if (apicid != c->topo.apicid) {
1803 pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
1804 cpu, apicid, c->topo.initial_apicid);
1806 BUG_ON(topology_update_package_map(c->topo.pkg_id, cpu));
1807 BUG_ON(topology_update_die_map(c->topo.die_id, cpu));
1809 c->topo.logical_pkg_id = 0;
1814 * This does the hard work of actually picking apart the CPU stuff...
1816 static void identify_cpu(struct cpuinfo_x86 *c)
1820 c->loops_per_jiffy = loops_per_jiffy;
1821 c->x86_cache_size = 0;
1822 c->x86_vendor = X86_VENDOR_UNKNOWN;
1823 c->x86_model = c->x86_stepping = 0; /* So far unknown... */
1824 c->x86_vendor_id[0] = '\0'; /* Unset */
1825 c->x86_model_id[0] = '\0'; /* Unset */
1826 c->x86_max_cores = 1;
1827 c->x86_coreid_bits = 0;
1828 c->topo.cu_id = 0xff;
1829 c->topo.llc_id = BAD_APICID;
1830 c->topo.l2c_id = BAD_APICID;
1831 #ifdef CONFIG_X86_64
1832 c->x86_clflush_size = 64;
1833 c->x86_phys_bits = 36;
1834 c->x86_virt_bits = 48;
1836 c->cpuid_level = -1; /* CPUID not detected */
1837 c->x86_clflush_size = 32;
1838 c->x86_phys_bits = 32;
1839 c->x86_virt_bits = 32;
1841 c->x86_cache_alignment = c->x86_clflush_size;
1842 memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1843 #ifdef CONFIG_X86_VMX_FEATURE_NAMES
1844 memset(&c->vmx_capability, 0, sizeof(c->vmx_capability));
1847 generic_identify(c);
1849 if (this_cpu->c_identify)
1850 this_cpu->c_identify(c);
1852 /* Clear/Set all flags overridden by options, after probe */
1853 apply_forced_caps(c);
1855 #ifdef CONFIG_X86_64
1856 c->topo.apicid = apic->phys_pkg_id(c->topo.initial_apicid, 0);
1860 * Vendor-specific initialization. In this section we
1861 * canonicalize the feature flags, meaning if there are
1862 * features a certain CPU supports which CPUID doesn't
1863 * tell us, CPUID claiming incorrect flags, or other bugs,
1864 * we handle them here.
1866 * At the end of this section, c->x86_capability better
1867 * indicate the features this CPU genuinely supports!
1869 if (this_cpu->c_init)
1870 this_cpu->c_init(c);
1872 /* Disable the PN if appropriate */
1873 squash_the_stupid_serial_number(c);
1875 /* Set up SMEP/SMAP/UMIP */
1880 /* Enable FSGSBASE instructions if available. */
1881 if (cpu_has(c, X86_FEATURE_FSGSBASE)) {
1882 cr4_set_bits(X86_CR4_FSGSBASE);
1883 elf_hwcap2 |= HWCAP2_FSGSBASE;
1887 * The vendor-specific functions might have changed features.
1888 * Now we do "generic changes."
1891 /* Filter out anything that depends on CPUID levels we don't have */
1892 filter_cpuid_features(c, true);
1894 /* If the model name is still unset, do table lookup. */
1895 if (!c->x86_model_id[0]) {
1897 p = table_lookup_model(c);
1899 strcpy(c->x86_model_id, p);
1901 /* Last resort... */
1902 sprintf(c->x86_model_id, "%02x/%02x",
1903 c->x86, c->x86_model);
1906 #ifdef CONFIG_X86_64
1915 * Clear/Set all flags overridden by options, need do it
1916 * before following smp all cpus cap AND.
1918 apply_forced_caps(c);
1921 * On SMP, boot_cpu_data holds the common feature set between
1922 * all CPUs; so make sure that we indicate which features are
1923 * common between the CPUs. The first time this routine gets
1924 * executed, c == &boot_cpu_data.
1926 if (c != &boot_cpu_data) {
1927 /* AND the already accumulated flags with these */
1928 for (i = 0; i < NCAPINTS; i++)
1929 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1931 /* OR, i.e. replicate the bug flags */
1932 for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1933 c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1938 /* Init Machine Check Exception if available. */
1941 select_idle_routine(c);
1944 numa_add_cpu(smp_processor_id());
1949 * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1950 * on 32-bit kernels:
1952 #ifdef CONFIG_X86_32
1953 void enable_sep_cpu(void)
1955 struct tss_struct *tss;
1958 if (!boot_cpu_has(X86_FEATURE_SEP))
1962 tss = &per_cpu(cpu_tss_rw, cpu);
1965 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1966 * see the big comment in struct x86_hw_tss's definition.
1969 tss->x86_tss.ss1 = __KERNEL_CS;
1970 wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1971 wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0);
1972 wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1978 static __init void identify_boot_cpu(void)
1980 identify_cpu(&boot_cpu_data);
1981 if (HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT))
1982 pr_info("CET detected: Indirect Branch Tracking enabled\n");
1983 #ifdef CONFIG_X86_32
1986 cpu_detect_tlb(&boot_cpu_data);
1993 void identify_secondary_cpu(struct cpuinfo_x86 *c)
1995 BUG_ON(c == &boot_cpu_data);
1997 #ifdef CONFIG_X86_32
2000 validate_apic_and_package_id(c);
2001 x86_spec_ctrl_setup_ap();
2003 if (boot_cpu_has_bug(X86_BUG_GDS))
2009 void print_cpu_info(struct cpuinfo_x86 *c)
2011 const char *vendor = NULL;
2013 if (c->x86_vendor < X86_VENDOR_NUM) {
2014 vendor = this_cpu->c_vendor;
2016 if (c->cpuid_level >= 0)
2017 vendor = c->x86_vendor_id;
2020 if (vendor && !strstr(c->x86_model_id, vendor))
2021 pr_cont("%s ", vendor);
2023 if (c->x86_model_id[0])
2024 pr_cont("%s", c->x86_model_id);
2026 pr_cont("%d86", c->x86);
2028 pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
2030 if (c->x86_stepping || c->cpuid_level >= 0)
2031 pr_cont(", stepping: 0x%x)\n", c->x86_stepping);
2037 * clearcpuid= was already parsed in cpu_parse_early_param(). This dummy
2038 * function prevents it from becoming an environment variable for init.
2040 static __init int setup_clearcpuid(char *arg)
2044 __setup("clearcpuid=", setup_clearcpuid);
2046 DEFINE_PER_CPU_ALIGNED(struct pcpu_hot, pcpu_hot) = {
2047 .current_task = &init_task,
2048 .preempt_count = INIT_PREEMPT_COUNT,
2049 .top_of_stack = TOP_OF_INIT_STACK,
2051 EXPORT_PER_CPU_SYMBOL(pcpu_hot);
2053 #ifdef CONFIG_X86_64
2054 DEFINE_PER_CPU_FIRST(struct fixed_percpu_data,
2055 fixed_percpu_data) __aligned(PAGE_SIZE) __visible;
2056 EXPORT_PER_CPU_SYMBOL_GPL(fixed_percpu_data);
2058 static void wrmsrl_cstar(unsigned long val)
2061 * Intel CPUs do not support 32-bit SYSCALL. Writing to MSR_CSTAR
2062 * is so far ignored by the CPU, but raises a #VE trap in a TDX
2063 * guest. Avoid the pointless write on all Intel CPUs.
2065 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
2066 wrmsrl(MSR_CSTAR, val);
2069 /* May not be marked __init: used by software suspend */
2070 void syscall_init(void)
2072 wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
2073 wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
2075 if (ia32_enabled()) {
2076 wrmsrl_cstar((unsigned long)entry_SYSCALL_compat);
2078 * This only works on Intel CPUs.
2079 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
2080 * This does not cause SYSENTER to jump to the wrong location, because
2081 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
2083 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
2084 wrmsrl_safe(MSR_IA32_SYSENTER_ESP,
2085 (unsigned long)(cpu_entry_stack(smp_processor_id()) + 1));
2086 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
2088 wrmsrl_cstar((unsigned long)entry_SYSCALL32_ignore);
2089 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
2090 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
2091 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
2095 * Flags to clear on syscall; clear as much as possible
2096 * to minimize user space-kernel interference.
2098 wrmsrl(MSR_SYSCALL_MASK,
2099 X86_EFLAGS_CF|X86_EFLAGS_PF|X86_EFLAGS_AF|
2100 X86_EFLAGS_ZF|X86_EFLAGS_SF|X86_EFLAGS_TF|
2101 X86_EFLAGS_IF|X86_EFLAGS_DF|X86_EFLAGS_OF|
2102 X86_EFLAGS_IOPL|X86_EFLAGS_NT|X86_EFLAGS_RF|
2103 X86_EFLAGS_AC|X86_EFLAGS_ID);
2106 #else /* CONFIG_X86_64 */
2108 #ifdef CONFIG_STACKPROTECTOR
2109 DEFINE_PER_CPU(unsigned long, __stack_chk_guard);
2110 EXPORT_PER_CPU_SYMBOL(__stack_chk_guard);
2113 #endif /* CONFIG_X86_64 */
2116 * Clear all 6 debug registers:
2118 static void clear_all_debug_regs(void)
2122 for (i = 0; i < 8; i++) {
2123 /* Ignore db4, db5 */
2124 if ((i == 4) || (i == 5))
2133 * Restore debug regs if using kgdbwait and you have a kernel debugger
2134 * connection established.
2136 static void dbg_restore_debug_regs(void)
2138 if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
2139 arch_kgdb_ops.correct_hw_break();
2141 #else /* ! CONFIG_KGDB */
2142 #define dbg_restore_debug_regs()
2143 #endif /* ! CONFIG_KGDB */
2145 static inline void setup_getcpu(int cpu)
2147 unsigned long cpudata = vdso_encode_cpunode(cpu, early_cpu_to_node(cpu));
2148 struct desc_struct d = { };
2150 if (boot_cpu_has(X86_FEATURE_RDTSCP) || boot_cpu_has(X86_FEATURE_RDPID))
2151 wrmsr(MSR_TSC_AUX, cpudata, 0);
2153 /* Store CPU and node number in limit. */
2155 d.limit1 = cpudata >> 16;
2157 d.type = 5; /* RO data, expand down, accessed */
2158 d.dpl = 3; /* Visible to user code */
2159 d.s = 1; /* Not a system segment */
2160 d.p = 1; /* Present */
2161 d.d = 1; /* 32-bit */
2163 write_gdt_entry(get_cpu_gdt_rw(cpu), GDT_ENTRY_CPUNODE, &d, DESCTYPE_S);
2166 #ifdef CONFIG_X86_64
2167 static inline void tss_setup_ist(struct tss_struct *tss)
2169 /* Set up the per-CPU TSS IST stacks */
2170 tss->x86_tss.ist[IST_INDEX_DF] = __this_cpu_ist_top_va(DF);
2171 tss->x86_tss.ist[IST_INDEX_NMI] = __this_cpu_ist_top_va(NMI);
2172 tss->x86_tss.ist[IST_INDEX_DB] = __this_cpu_ist_top_va(DB);
2173 tss->x86_tss.ist[IST_INDEX_MCE] = __this_cpu_ist_top_va(MCE);
2174 /* Only mapped when SEV-ES is active */
2175 tss->x86_tss.ist[IST_INDEX_VC] = __this_cpu_ist_top_va(VC);
2177 #else /* CONFIG_X86_64 */
2178 static inline void tss_setup_ist(struct tss_struct *tss) { }
2179 #endif /* !CONFIG_X86_64 */
2181 static inline void tss_setup_io_bitmap(struct tss_struct *tss)
2183 tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET_INVALID;
2185 #ifdef CONFIG_X86_IOPL_IOPERM
2186 tss->io_bitmap.prev_max = 0;
2187 tss->io_bitmap.prev_sequence = 0;
2188 memset(tss->io_bitmap.bitmap, 0xff, sizeof(tss->io_bitmap.bitmap));
2190 * Invalidate the extra array entry past the end of the all
2191 * permission bitmap as required by the hardware.
2193 tss->io_bitmap.mapall[IO_BITMAP_LONGS] = ~0UL;
2198 * Setup everything needed to handle exceptions from the IDT, including the IST
2199 * exceptions which use paranoid_entry().
2201 void cpu_init_exception_handling(void)
2203 struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
2204 int cpu = raw_smp_processor_id();
2206 /* paranoid_entry() gets the CPU number from the GDT */
2209 /* IST vectors need TSS to be set up. */
2211 tss_setup_io_bitmap(tss);
2212 set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
2216 /* GHCB needs to be setup to handle #VC. */
2219 /* Finally load the IDT */
2224 * cpu_init() initializes state that is per-CPU. Some data is already
2225 * initialized (naturally) in the bootstrap process, such as the GDT. We
2226 * reload it nevertheless, this function acts as a 'CPU state barrier',
2227 * nothing should get across.
2231 struct task_struct *cur = current;
2232 int cpu = raw_smp_processor_id();
2235 if (this_cpu_read(numa_node) == 0 &&
2236 early_cpu_to_node(cpu) != NUMA_NO_NODE)
2237 set_numa_node(early_cpu_to_node(cpu));
2239 pr_debug("Initializing CPU#%d\n", cpu);
2241 if (IS_ENABLED(CONFIG_X86_64) || cpu_feature_enabled(X86_FEATURE_VME) ||
2242 boot_cpu_has(X86_FEATURE_TSC) || boot_cpu_has(X86_FEATURE_DE))
2243 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
2245 if (IS_ENABLED(CONFIG_X86_64)) {
2247 memset(cur->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
2250 wrmsrl(MSR_FS_BASE, 0);
2251 wrmsrl(MSR_KERNEL_GS_BASE, 0);
2258 cur->active_mm = &init_mm;
2260 initialize_tlbstate_and_flush();
2261 enter_lazy_tlb(&init_mm, cur);
2264 * sp0 points to the entry trampoline stack regardless of what task
2267 load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
2269 load_mm_ldt(&init_mm);
2271 clear_all_debug_regs();
2272 dbg_restore_debug_regs();
2274 doublefault_init_cpu_tss();
2279 load_fixmap_gdt(cpu);
2282 #ifdef CONFIG_MICROCODE_LATE_LOADING
2284 * store_cpu_caps() - Store a snapshot of CPU capabilities
2285 * @curr_info: Pointer where to store it
2289 void store_cpu_caps(struct cpuinfo_x86 *curr_info)
2291 /* Reload CPUID max function as it might've changed. */
2292 curr_info->cpuid_level = cpuid_eax(0);
2294 /* Copy all capability leafs and pick up the synthetic ones. */
2295 memcpy(&curr_info->x86_capability, &boot_cpu_data.x86_capability,
2296 sizeof(curr_info->x86_capability));
2298 /* Get the hardware CPUID leafs */
2299 get_cpu_cap(curr_info);
2303 * microcode_check() - Check if any CPU capabilities changed after an update.
2304 * @prev_info: CPU capabilities stored before an update.
2306 * The microcode loader calls this upon late microcode load to recheck features,
2307 * only when microcode has been updated. Caller holds and CPU hotplug lock.
2311 void microcode_check(struct cpuinfo_x86 *prev_info)
2313 struct cpuinfo_x86 curr_info;
2315 perf_check_microcode();
2317 amd_check_microcode();
2319 store_cpu_caps(&curr_info);
2321 if (!memcmp(&prev_info->x86_capability, &curr_info.x86_capability,
2322 sizeof(prev_info->x86_capability)))
2325 pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n");
2326 pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
2331 * Invoked from core CPU hotplug code after hotplug operations
2333 void arch_smt_update(void)
2335 /* Handle the speculative execution misfeatures */
2336 cpu_bugs_smt_update();
2337 /* Check whether IPI broadcasting can be enabled */
2341 void __init arch_cpu_finalize_init(void)
2343 identify_boot_cpu();
2346 * identify_boot_cpu() initialized SMT support information, let the
2349 cpu_smt_set_num_threads(smp_num_siblings, smp_num_siblings);
2351 if (!IS_ENABLED(CONFIG_SMP)) {
2353 print_cpu_info(&boot_cpu_data);
2356 cpu_select_mitigations();
2360 if (IS_ENABLED(CONFIG_X86_32)) {
2362 * Check whether this is a real i386 which is not longer
2363 * supported and fixup the utsname.
2365 if (boot_cpu_data.x86 < 4)
2366 panic("Kernel requires i486+ for 'invlpg' and other features");
2368 init_utsname()->machine[1] =
2369 '0' + (boot_cpu_data.x86 > 6 ? 6 : boot_cpu_data.x86);
2373 * Must be before alternatives because it might set or clear
2379 alternative_instructions();
2381 if (IS_ENABLED(CONFIG_X86_64)) {
2383 * Make sure the first 2MB area is not mapped by huge pages
2384 * There are typically fixed size MTRRs in there and overlapping
2385 * MTRRs into large pages causes slow downs.
2387 * Right now we don't do that with gbpages because there seems
2388 * very little benefit for that case.
2390 if (!direct_gbpages)
2391 set_memory_4k((unsigned long)__va(0), 1);
2393 fpu__init_check_bugs();
2397 * This needs to be called before any devices perform DMA
2398 * operations that might use the SWIOTLB bounce buffers. It will
2399 * mark the bounce buffers as decrypted so that their usage will
2400 * not cause "plain-text" data to be decrypted when accessed. It
2401 * must be called after late_time_init() so that Hyper-V x86/x64
2402 * hypercalls work when the SWIOTLB bounce buffers are decrypted.