]> Git Repo - linux.git/blob - drivers/net/ethernet/intel/igc/igc_main.c
Merge tag 'irq-core-2025-01-21' into loongarch-next
[linux.git] / drivers / net / ethernet / intel / igc / igc_main.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c)  2018 Intel Corporation */
3
4 #include <linux/module.h>
5 #include <linux/types.h>
6 #include <linux/if_vlan.h>
7 #include <linux/tcp.h>
8 #include <linux/udp.h>
9 #include <linux/ip.h>
10 #include <linux/pm_runtime.h>
11 #include <net/pkt_sched.h>
12 #include <linux/bpf_trace.h>
13 #include <net/xdp_sock_drv.h>
14 #include <linux/pci.h>
15 #include <linux/mdio.h>
16
17 #include <net/ipv6.h>
18
19 #include "igc.h"
20 #include "igc_hw.h"
21 #include "igc_tsn.h"
22 #include "igc_xdp.h"
23
24 #define DRV_SUMMARY     "Intel(R) 2.5G Ethernet Linux Driver"
25
26 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
27
28 #define IGC_XDP_PASS            0
29 #define IGC_XDP_CONSUMED        BIT(0)
30 #define IGC_XDP_TX              BIT(1)
31 #define IGC_XDP_REDIRECT        BIT(2)
32
33 static int debug = -1;
34
35 MODULE_DESCRIPTION(DRV_SUMMARY);
36 MODULE_LICENSE("GPL v2");
37 module_param(debug, int, 0);
38 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
39
40 char igc_driver_name[] = "igc";
41 static const char igc_driver_string[] = DRV_SUMMARY;
42 static const char igc_copyright[] =
43         "Copyright(c) 2018 Intel Corporation.";
44
45 static const struct igc_info *igc_info_tbl[] = {
46         [board_base] = &igc_base_info,
47 };
48
49 static const struct pci_device_id igc_pci_tbl[] = {
50         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LM), board_base },
51         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_V), board_base },
52         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_I), board_base },
53         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I220_V), board_base },
54         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K), board_base },
55         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K2), board_base },
56         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_K), board_base },
57         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LMVP), board_base },
58         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LMVP), board_base },
59         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_IT), board_base },
60         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LM), board_base },
61         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_V), board_base },
62         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_IT), board_base },
63         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I221_V), board_base },
64         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_BLANK_NVM), board_base },
65         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_BLANK_NVM), board_base },
66         /* required last entry */
67         {0, }
68 };
69
70 MODULE_DEVICE_TABLE(pci, igc_pci_tbl);
71
72 enum latency_range {
73         lowest_latency = 0,
74         low_latency = 1,
75         bulk_latency = 2,
76         latency_invalid = 255
77 };
78
79 void igc_reset(struct igc_adapter *adapter)
80 {
81         struct net_device *dev = adapter->netdev;
82         struct igc_hw *hw = &adapter->hw;
83         struct igc_fc_info *fc = &hw->fc;
84         u32 pba, hwm;
85
86         /* Repartition PBA for greater than 9k MTU if required */
87         pba = IGC_PBA_34K;
88
89         /* flow control settings
90          * The high water mark must be low enough to fit one full frame
91          * after transmitting the pause frame.  As such we must have enough
92          * space to allow for us to complete our current transmit and then
93          * receive the frame that is in progress from the link partner.
94          * Set it to:
95          * - the full Rx FIFO size minus one full Tx plus one full Rx frame
96          */
97         hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
98
99         fc->high_water = hwm & 0xFFFFFFF0;      /* 16-byte granularity */
100         fc->low_water = fc->high_water - 16;
101         fc->pause_time = 0xFFFF;
102         fc->send_xon = 1;
103         fc->current_mode = fc->requested_mode;
104
105         hw->mac.ops.reset_hw(hw);
106
107         if (hw->mac.ops.init_hw(hw))
108                 netdev_err(dev, "Error on hardware initialization\n");
109
110         /* Re-establish EEE setting */
111         igc_set_eee_i225(hw, true, true, true);
112
113         if (!netif_running(adapter->netdev))
114                 igc_power_down_phy_copper_base(&adapter->hw);
115
116         /* Enable HW to recognize an 802.1Q VLAN Ethernet packet */
117         wr32(IGC_VET, ETH_P_8021Q);
118
119         /* Re-enable PTP, where applicable. */
120         igc_ptp_reset(adapter);
121
122         /* Re-enable TSN offloading, where applicable. */
123         igc_tsn_reset(adapter);
124
125         igc_get_phy_info(hw);
126 }
127
128 /**
129  * igc_power_up_link - Power up the phy link
130  * @adapter: address of board private structure
131  */
132 static void igc_power_up_link(struct igc_adapter *adapter)
133 {
134         igc_reset_phy(&adapter->hw);
135
136         igc_power_up_phy_copper(&adapter->hw);
137
138         igc_setup_link(&adapter->hw);
139 }
140
141 /**
142  * igc_release_hw_control - release control of the h/w to f/w
143  * @adapter: address of board private structure
144  *
145  * igc_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
146  * For ASF and Pass Through versions of f/w this means that the
147  * driver is no longer loaded.
148  */
149 static void igc_release_hw_control(struct igc_adapter *adapter)
150 {
151         struct igc_hw *hw = &adapter->hw;
152         u32 ctrl_ext;
153
154         if (!pci_device_is_present(adapter->pdev))
155                 return;
156
157         /* Let firmware take over control of h/w */
158         ctrl_ext = rd32(IGC_CTRL_EXT);
159         wr32(IGC_CTRL_EXT,
160              ctrl_ext & ~IGC_CTRL_EXT_DRV_LOAD);
161 }
162
163 /**
164  * igc_get_hw_control - get control of the h/w from f/w
165  * @adapter: address of board private structure
166  *
167  * igc_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
168  * For ASF and Pass Through versions of f/w this means that
169  * the driver is loaded.
170  */
171 static void igc_get_hw_control(struct igc_adapter *adapter)
172 {
173         struct igc_hw *hw = &adapter->hw;
174         u32 ctrl_ext;
175
176         /* Let firmware know the driver has taken over */
177         ctrl_ext = rd32(IGC_CTRL_EXT);
178         wr32(IGC_CTRL_EXT,
179              ctrl_ext | IGC_CTRL_EXT_DRV_LOAD);
180 }
181
182 static void igc_unmap_tx_buffer(struct device *dev, struct igc_tx_buffer *buf)
183 {
184         dma_unmap_single(dev, dma_unmap_addr(buf, dma),
185                          dma_unmap_len(buf, len), DMA_TO_DEVICE);
186
187         dma_unmap_len_set(buf, len, 0);
188 }
189
190 /**
191  * igc_clean_tx_ring - Free Tx Buffers
192  * @tx_ring: ring to be cleaned
193  */
194 static void igc_clean_tx_ring(struct igc_ring *tx_ring)
195 {
196         u16 i = tx_ring->next_to_clean;
197         struct igc_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
198         u32 xsk_frames = 0;
199
200         while (i != tx_ring->next_to_use) {
201                 union igc_adv_tx_desc *eop_desc, *tx_desc;
202
203                 switch (tx_buffer->type) {
204                 case IGC_TX_BUFFER_TYPE_XSK:
205                         xsk_frames++;
206                         break;
207                 case IGC_TX_BUFFER_TYPE_XDP:
208                         xdp_return_frame(tx_buffer->xdpf);
209                         igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
210                         break;
211                 case IGC_TX_BUFFER_TYPE_SKB:
212                         dev_kfree_skb_any(tx_buffer->skb);
213                         igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
214                         break;
215                 default:
216                         netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n");
217                         break;
218                 }
219
220                 /* check for eop_desc to determine the end of the packet */
221                 eop_desc = tx_buffer->next_to_watch;
222                 tx_desc = IGC_TX_DESC(tx_ring, i);
223
224                 /* unmap remaining buffers */
225                 while (tx_desc != eop_desc) {
226                         tx_buffer++;
227                         tx_desc++;
228                         i++;
229                         if (unlikely(i == tx_ring->count)) {
230                                 i = 0;
231                                 tx_buffer = tx_ring->tx_buffer_info;
232                                 tx_desc = IGC_TX_DESC(tx_ring, 0);
233                         }
234
235                         /* unmap any remaining paged data */
236                         if (dma_unmap_len(tx_buffer, len))
237                                 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
238                 }
239
240                 tx_buffer->next_to_watch = NULL;
241
242                 /* move us one more past the eop_desc for start of next pkt */
243                 tx_buffer++;
244                 i++;
245                 if (unlikely(i == tx_ring->count)) {
246                         i = 0;
247                         tx_buffer = tx_ring->tx_buffer_info;
248                 }
249         }
250
251         if (tx_ring->xsk_pool && xsk_frames)
252                 xsk_tx_completed(tx_ring->xsk_pool, xsk_frames);
253
254         /* reset BQL for queue */
255         netdev_tx_reset_queue(txring_txq(tx_ring));
256
257         /* Zero out the buffer ring */
258         memset(tx_ring->tx_buffer_info, 0,
259                sizeof(*tx_ring->tx_buffer_info) * tx_ring->count);
260
261         /* Zero out the descriptor ring */
262         memset(tx_ring->desc, 0, tx_ring->size);
263
264         /* reset next_to_use and next_to_clean */
265         tx_ring->next_to_use = 0;
266         tx_ring->next_to_clean = 0;
267 }
268
269 /**
270  * igc_free_tx_resources - Free Tx Resources per Queue
271  * @tx_ring: Tx descriptor ring for a specific queue
272  *
273  * Free all transmit software resources
274  */
275 void igc_free_tx_resources(struct igc_ring *tx_ring)
276 {
277         igc_disable_tx_ring(tx_ring);
278
279         vfree(tx_ring->tx_buffer_info);
280         tx_ring->tx_buffer_info = NULL;
281
282         /* if not set, then don't free */
283         if (!tx_ring->desc)
284                 return;
285
286         dma_free_coherent(tx_ring->dev, tx_ring->size,
287                           tx_ring->desc, tx_ring->dma);
288
289         tx_ring->desc = NULL;
290 }
291
292 /**
293  * igc_free_all_tx_resources - Free Tx Resources for All Queues
294  * @adapter: board private structure
295  *
296  * Free all transmit software resources
297  */
298 static void igc_free_all_tx_resources(struct igc_adapter *adapter)
299 {
300         int i;
301
302         for (i = 0; i < adapter->num_tx_queues; i++)
303                 igc_free_tx_resources(adapter->tx_ring[i]);
304 }
305
306 /**
307  * igc_clean_all_tx_rings - Free Tx Buffers for all queues
308  * @adapter: board private structure
309  */
310 static void igc_clean_all_tx_rings(struct igc_adapter *adapter)
311 {
312         int i;
313
314         for (i = 0; i < adapter->num_tx_queues; i++)
315                 if (adapter->tx_ring[i])
316                         igc_clean_tx_ring(adapter->tx_ring[i]);
317 }
318
319 static void igc_disable_tx_ring_hw(struct igc_ring *ring)
320 {
321         struct igc_hw *hw = &ring->q_vector->adapter->hw;
322         u8 idx = ring->reg_idx;
323         u32 txdctl;
324
325         txdctl = rd32(IGC_TXDCTL(idx));
326         txdctl &= ~IGC_TXDCTL_QUEUE_ENABLE;
327         txdctl |= IGC_TXDCTL_SWFLUSH;
328         wr32(IGC_TXDCTL(idx), txdctl);
329 }
330
331 /**
332  * igc_disable_all_tx_rings_hw - Disable all transmit queue operation
333  * @adapter: board private structure
334  */
335 static void igc_disable_all_tx_rings_hw(struct igc_adapter *adapter)
336 {
337         int i;
338
339         for (i = 0; i < adapter->num_tx_queues; i++) {
340                 struct igc_ring *tx_ring = adapter->tx_ring[i];
341
342                 igc_disable_tx_ring_hw(tx_ring);
343         }
344 }
345
346 /**
347  * igc_setup_tx_resources - allocate Tx resources (Descriptors)
348  * @tx_ring: tx descriptor ring (for a specific queue) to setup
349  *
350  * Return 0 on success, negative on failure
351  */
352 int igc_setup_tx_resources(struct igc_ring *tx_ring)
353 {
354         struct net_device *ndev = tx_ring->netdev;
355         struct device *dev = tx_ring->dev;
356         int size = 0;
357
358         size = sizeof(struct igc_tx_buffer) * tx_ring->count;
359         tx_ring->tx_buffer_info = vzalloc(size);
360         if (!tx_ring->tx_buffer_info)
361                 goto err;
362
363         /* round up to nearest 4K */
364         tx_ring->size = tx_ring->count * sizeof(union igc_adv_tx_desc);
365         tx_ring->size = ALIGN(tx_ring->size, 4096);
366
367         tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
368                                            &tx_ring->dma, GFP_KERNEL);
369
370         if (!tx_ring->desc)
371                 goto err;
372
373         tx_ring->next_to_use = 0;
374         tx_ring->next_to_clean = 0;
375
376         return 0;
377
378 err:
379         vfree(tx_ring->tx_buffer_info);
380         netdev_err(ndev, "Unable to allocate memory for Tx descriptor ring\n");
381         return -ENOMEM;
382 }
383
384 /**
385  * igc_setup_all_tx_resources - wrapper to allocate Tx resources for all queues
386  * @adapter: board private structure
387  *
388  * Return 0 on success, negative on failure
389  */
390 static int igc_setup_all_tx_resources(struct igc_adapter *adapter)
391 {
392         struct net_device *dev = adapter->netdev;
393         int i, err = 0;
394
395         for (i = 0; i < adapter->num_tx_queues; i++) {
396                 err = igc_setup_tx_resources(adapter->tx_ring[i]);
397                 if (err) {
398                         netdev_err(dev, "Error on Tx queue %u setup\n", i);
399                         for (i--; i >= 0; i--)
400                                 igc_free_tx_resources(adapter->tx_ring[i]);
401                         break;
402                 }
403         }
404
405         return err;
406 }
407
408 static void igc_clean_rx_ring_page_shared(struct igc_ring *rx_ring)
409 {
410         u16 i = rx_ring->next_to_clean;
411
412         dev_kfree_skb(rx_ring->skb);
413         rx_ring->skb = NULL;
414
415         /* Free all the Rx ring sk_buffs */
416         while (i != rx_ring->next_to_alloc) {
417                 struct igc_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
418
419                 /* Invalidate cache lines that may have been written to by
420                  * device so that we avoid corrupting memory.
421                  */
422                 dma_sync_single_range_for_cpu(rx_ring->dev,
423                                               buffer_info->dma,
424                                               buffer_info->page_offset,
425                                               igc_rx_bufsz(rx_ring),
426                                               DMA_FROM_DEVICE);
427
428                 /* free resources associated with mapping */
429                 dma_unmap_page_attrs(rx_ring->dev,
430                                      buffer_info->dma,
431                                      igc_rx_pg_size(rx_ring),
432                                      DMA_FROM_DEVICE,
433                                      IGC_RX_DMA_ATTR);
434                 __page_frag_cache_drain(buffer_info->page,
435                                         buffer_info->pagecnt_bias);
436
437                 i++;
438                 if (i == rx_ring->count)
439                         i = 0;
440         }
441 }
442
443 static void igc_clean_rx_ring_xsk_pool(struct igc_ring *ring)
444 {
445         struct igc_rx_buffer *bi;
446         u16 i;
447
448         for (i = 0; i < ring->count; i++) {
449                 bi = &ring->rx_buffer_info[i];
450                 if (!bi->xdp)
451                         continue;
452
453                 xsk_buff_free(bi->xdp);
454                 bi->xdp = NULL;
455         }
456 }
457
458 /**
459  * igc_clean_rx_ring - Free Rx Buffers per Queue
460  * @ring: ring to free buffers from
461  */
462 static void igc_clean_rx_ring(struct igc_ring *ring)
463 {
464         if (ring->xsk_pool)
465                 igc_clean_rx_ring_xsk_pool(ring);
466         else
467                 igc_clean_rx_ring_page_shared(ring);
468
469         clear_ring_uses_large_buffer(ring);
470
471         ring->next_to_alloc = 0;
472         ring->next_to_clean = 0;
473         ring->next_to_use = 0;
474 }
475
476 /**
477  * igc_clean_all_rx_rings - Free Rx Buffers for all queues
478  * @adapter: board private structure
479  */
480 static void igc_clean_all_rx_rings(struct igc_adapter *adapter)
481 {
482         int i;
483
484         for (i = 0; i < adapter->num_rx_queues; i++)
485                 if (adapter->rx_ring[i])
486                         igc_clean_rx_ring(adapter->rx_ring[i]);
487 }
488
489 /**
490  * igc_free_rx_resources - Free Rx Resources
491  * @rx_ring: ring to clean the resources from
492  *
493  * Free all receive software resources
494  */
495 void igc_free_rx_resources(struct igc_ring *rx_ring)
496 {
497         igc_clean_rx_ring(rx_ring);
498
499         xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
500
501         vfree(rx_ring->rx_buffer_info);
502         rx_ring->rx_buffer_info = NULL;
503
504         /* if not set, then don't free */
505         if (!rx_ring->desc)
506                 return;
507
508         dma_free_coherent(rx_ring->dev, rx_ring->size,
509                           rx_ring->desc, rx_ring->dma);
510
511         rx_ring->desc = NULL;
512 }
513
514 /**
515  * igc_free_all_rx_resources - Free Rx Resources for All Queues
516  * @adapter: board private structure
517  *
518  * Free all receive software resources
519  */
520 static void igc_free_all_rx_resources(struct igc_adapter *adapter)
521 {
522         int i;
523
524         for (i = 0; i < adapter->num_rx_queues; i++)
525                 igc_free_rx_resources(adapter->rx_ring[i]);
526 }
527
528 /**
529  * igc_setup_rx_resources - allocate Rx resources (Descriptors)
530  * @rx_ring:    rx descriptor ring (for a specific queue) to setup
531  *
532  * Returns 0 on success, negative on failure
533  */
534 int igc_setup_rx_resources(struct igc_ring *rx_ring)
535 {
536         struct net_device *ndev = rx_ring->netdev;
537         struct device *dev = rx_ring->dev;
538         u8 index = rx_ring->queue_index;
539         int size, desc_len, res;
540
541         /* XDP RX-queue info */
542         if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
543                 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
544         res = xdp_rxq_info_reg(&rx_ring->xdp_rxq, ndev, index,
545                                rx_ring->q_vector->napi.napi_id);
546         if (res < 0) {
547                 netdev_err(ndev, "Failed to register xdp_rxq index %u\n",
548                            index);
549                 return res;
550         }
551
552         size = sizeof(struct igc_rx_buffer) * rx_ring->count;
553         rx_ring->rx_buffer_info = vzalloc(size);
554         if (!rx_ring->rx_buffer_info)
555                 goto err;
556
557         desc_len = sizeof(union igc_adv_rx_desc);
558
559         /* Round up to nearest 4K */
560         rx_ring->size = rx_ring->count * desc_len;
561         rx_ring->size = ALIGN(rx_ring->size, 4096);
562
563         rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
564                                            &rx_ring->dma, GFP_KERNEL);
565
566         if (!rx_ring->desc)
567                 goto err;
568
569         rx_ring->next_to_alloc = 0;
570         rx_ring->next_to_clean = 0;
571         rx_ring->next_to_use = 0;
572
573         return 0;
574
575 err:
576         xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
577         vfree(rx_ring->rx_buffer_info);
578         rx_ring->rx_buffer_info = NULL;
579         netdev_err(ndev, "Unable to allocate memory for Rx descriptor ring\n");
580         return -ENOMEM;
581 }
582
583 /**
584  * igc_setup_all_rx_resources - wrapper to allocate Rx resources
585  *                                (Descriptors) for all queues
586  * @adapter: board private structure
587  *
588  * Return 0 on success, negative on failure
589  */
590 static int igc_setup_all_rx_resources(struct igc_adapter *adapter)
591 {
592         struct net_device *dev = adapter->netdev;
593         int i, err = 0;
594
595         for (i = 0; i < adapter->num_rx_queues; i++) {
596                 err = igc_setup_rx_resources(adapter->rx_ring[i]);
597                 if (err) {
598                         netdev_err(dev, "Error on Rx queue %u setup\n", i);
599                         for (i--; i >= 0; i--)
600                                 igc_free_rx_resources(adapter->rx_ring[i]);
601                         break;
602                 }
603         }
604
605         return err;
606 }
607
608 static struct xsk_buff_pool *igc_get_xsk_pool(struct igc_adapter *adapter,
609                                               struct igc_ring *ring)
610 {
611         if (!igc_xdp_is_enabled(adapter) ||
612             !test_bit(IGC_RING_FLAG_AF_XDP_ZC, &ring->flags))
613                 return NULL;
614
615         return xsk_get_pool_from_qid(ring->netdev, ring->queue_index);
616 }
617
618 /**
619  * igc_configure_rx_ring - Configure a receive ring after Reset
620  * @adapter: board private structure
621  * @ring: receive ring to be configured
622  *
623  * Configure the Rx unit of the MAC after a reset.
624  */
625 static void igc_configure_rx_ring(struct igc_adapter *adapter,
626                                   struct igc_ring *ring)
627 {
628         struct igc_hw *hw = &adapter->hw;
629         union igc_adv_rx_desc *rx_desc;
630         int reg_idx = ring->reg_idx;
631         u32 srrctl = 0, rxdctl = 0;
632         u64 rdba = ring->dma;
633         u32 buf_size;
634
635         xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
636         ring->xsk_pool = igc_get_xsk_pool(adapter, ring);
637         if (ring->xsk_pool) {
638                 WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
639                                                    MEM_TYPE_XSK_BUFF_POOL,
640                                                    NULL));
641                 xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq);
642         } else {
643                 WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
644                                                    MEM_TYPE_PAGE_SHARED,
645                                                    NULL));
646         }
647
648         if (igc_xdp_is_enabled(adapter))
649                 set_ring_uses_large_buffer(ring);
650
651         /* disable the queue */
652         wr32(IGC_RXDCTL(reg_idx), 0);
653
654         /* Set DMA base address registers */
655         wr32(IGC_RDBAL(reg_idx),
656              rdba & 0x00000000ffffffffULL);
657         wr32(IGC_RDBAH(reg_idx), rdba >> 32);
658         wr32(IGC_RDLEN(reg_idx),
659              ring->count * sizeof(union igc_adv_rx_desc));
660
661         /* initialize head and tail */
662         ring->tail = adapter->io_addr + IGC_RDT(reg_idx);
663         wr32(IGC_RDH(reg_idx), 0);
664         writel(0, ring->tail);
665
666         /* reset next-to- use/clean to place SW in sync with hardware */
667         ring->next_to_clean = 0;
668         ring->next_to_use = 0;
669
670         if (ring->xsk_pool)
671                 buf_size = xsk_pool_get_rx_frame_size(ring->xsk_pool);
672         else if (ring_uses_large_buffer(ring))
673                 buf_size = IGC_RXBUFFER_3072;
674         else
675                 buf_size = IGC_RXBUFFER_2048;
676
677         srrctl = rd32(IGC_SRRCTL(reg_idx));
678         srrctl &= ~(IGC_SRRCTL_BSIZEPKT_MASK | IGC_SRRCTL_BSIZEHDR_MASK |
679                     IGC_SRRCTL_DESCTYPE_MASK);
680         srrctl |= IGC_SRRCTL_BSIZEHDR(IGC_RX_HDR_LEN);
681         srrctl |= IGC_SRRCTL_BSIZEPKT(buf_size);
682         srrctl |= IGC_SRRCTL_DESCTYPE_ADV_ONEBUF;
683
684         wr32(IGC_SRRCTL(reg_idx), srrctl);
685
686         rxdctl |= IGC_RX_PTHRESH;
687         rxdctl |= IGC_RX_HTHRESH << 8;
688         rxdctl |= IGC_RX_WTHRESH << 16;
689
690         /* initialize rx_buffer_info */
691         memset(ring->rx_buffer_info, 0,
692                sizeof(struct igc_rx_buffer) * ring->count);
693
694         /* initialize Rx descriptor 0 */
695         rx_desc = IGC_RX_DESC(ring, 0);
696         rx_desc->wb.upper.length = 0;
697
698         /* enable receive descriptor fetching */
699         rxdctl |= IGC_RXDCTL_QUEUE_ENABLE;
700
701         wr32(IGC_RXDCTL(reg_idx), rxdctl);
702 }
703
704 /**
705  * igc_configure_rx - Configure receive Unit after Reset
706  * @adapter: board private structure
707  *
708  * Configure the Rx unit of the MAC after a reset.
709  */
710 static void igc_configure_rx(struct igc_adapter *adapter)
711 {
712         int i;
713
714         /* Setup the HW Rx Head and Tail Descriptor Pointers and
715          * the Base and Length of the Rx Descriptor Ring
716          */
717         for (i = 0; i < adapter->num_rx_queues; i++)
718                 igc_configure_rx_ring(adapter, adapter->rx_ring[i]);
719 }
720
721 /**
722  * igc_configure_tx_ring - Configure transmit ring after Reset
723  * @adapter: board private structure
724  * @ring: tx ring to configure
725  *
726  * Configure a transmit ring after a reset.
727  */
728 static void igc_configure_tx_ring(struct igc_adapter *adapter,
729                                   struct igc_ring *ring)
730 {
731         struct igc_hw *hw = &adapter->hw;
732         int reg_idx = ring->reg_idx;
733         u64 tdba = ring->dma;
734         u32 txdctl = 0;
735
736         ring->xsk_pool = igc_get_xsk_pool(adapter, ring);
737
738         /* disable the queue */
739         wr32(IGC_TXDCTL(reg_idx), 0);
740         wrfl();
741
742         wr32(IGC_TDLEN(reg_idx),
743              ring->count * sizeof(union igc_adv_tx_desc));
744         wr32(IGC_TDBAL(reg_idx),
745              tdba & 0x00000000ffffffffULL);
746         wr32(IGC_TDBAH(reg_idx), tdba >> 32);
747
748         ring->tail = adapter->io_addr + IGC_TDT(reg_idx);
749         wr32(IGC_TDH(reg_idx), 0);
750         writel(0, ring->tail);
751
752         txdctl |= IGC_TX_PTHRESH;
753         txdctl |= IGC_TX_HTHRESH << 8;
754         txdctl |= IGC_TX_WTHRESH << 16;
755
756         txdctl |= IGC_TXDCTL_QUEUE_ENABLE;
757         wr32(IGC_TXDCTL(reg_idx), txdctl);
758 }
759
760 /**
761  * igc_configure_tx - Configure transmit Unit after Reset
762  * @adapter: board private structure
763  *
764  * Configure the Tx unit of the MAC after a reset.
765  */
766 static void igc_configure_tx(struct igc_adapter *adapter)
767 {
768         int i;
769
770         for (i = 0; i < adapter->num_tx_queues; i++)
771                 igc_configure_tx_ring(adapter, adapter->tx_ring[i]);
772 }
773
774 /**
775  * igc_setup_mrqc - configure the multiple receive queue control registers
776  * @adapter: Board private structure
777  */
778 static void igc_setup_mrqc(struct igc_adapter *adapter)
779 {
780         struct igc_hw *hw = &adapter->hw;
781         u32 j, num_rx_queues;
782         u32 mrqc, rxcsum;
783         u32 rss_key[10];
784
785         netdev_rss_key_fill(rss_key, sizeof(rss_key));
786         for (j = 0; j < 10; j++)
787                 wr32(IGC_RSSRK(j), rss_key[j]);
788
789         num_rx_queues = adapter->rss_queues;
790
791         if (adapter->rss_indir_tbl_init != num_rx_queues) {
792                 for (j = 0; j < IGC_RETA_SIZE; j++)
793                         adapter->rss_indir_tbl[j] =
794                         (j * num_rx_queues) / IGC_RETA_SIZE;
795                 adapter->rss_indir_tbl_init = num_rx_queues;
796         }
797         igc_write_rss_indir_tbl(adapter);
798
799         /* Disable raw packet checksumming so that RSS hash is placed in
800          * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
801          * offloads as they are enabled by default
802          */
803         rxcsum = rd32(IGC_RXCSUM);
804         rxcsum |= IGC_RXCSUM_PCSD;
805
806         /* Enable Receive Checksum Offload for SCTP */
807         rxcsum |= IGC_RXCSUM_CRCOFL;
808
809         /* Don't need to set TUOFL or IPOFL, they default to 1 */
810         wr32(IGC_RXCSUM, rxcsum);
811
812         /* Generate RSS hash based on packet types, TCP/UDP
813          * port numbers and/or IPv4/v6 src and dst addresses
814          */
815         mrqc = IGC_MRQC_RSS_FIELD_IPV4 |
816                IGC_MRQC_RSS_FIELD_IPV4_TCP |
817                IGC_MRQC_RSS_FIELD_IPV6 |
818                IGC_MRQC_RSS_FIELD_IPV6_TCP |
819                IGC_MRQC_RSS_FIELD_IPV6_TCP_EX;
820
821         if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV4_UDP)
822                 mrqc |= IGC_MRQC_RSS_FIELD_IPV4_UDP;
823         if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV6_UDP)
824                 mrqc |= IGC_MRQC_RSS_FIELD_IPV6_UDP;
825
826         mrqc |= IGC_MRQC_ENABLE_RSS_MQ;
827
828         wr32(IGC_MRQC, mrqc);
829 }
830
831 /**
832  * igc_setup_rctl - configure the receive control registers
833  * @adapter: Board private structure
834  */
835 static void igc_setup_rctl(struct igc_adapter *adapter)
836 {
837         struct igc_hw *hw = &adapter->hw;
838         u32 rctl;
839
840         rctl = rd32(IGC_RCTL);
841
842         rctl &= ~(3 << IGC_RCTL_MO_SHIFT);
843         rctl &= ~(IGC_RCTL_LBM_TCVR | IGC_RCTL_LBM_MAC);
844
845         rctl |= IGC_RCTL_EN | IGC_RCTL_BAM | IGC_RCTL_RDMTS_HALF |
846                 (hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT);
847
848         /* enable stripping of CRC. Newer features require
849          * that the HW strips the CRC.
850          */
851         rctl |= IGC_RCTL_SECRC;
852
853         /* disable store bad packets and clear size bits. */
854         rctl &= ~(IGC_RCTL_SBP | IGC_RCTL_SZ_256);
855
856         /* enable LPE to allow for reception of jumbo frames */
857         rctl |= IGC_RCTL_LPE;
858
859         /* disable queue 0 to prevent tail write w/o re-config */
860         wr32(IGC_RXDCTL(0), 0);
861
862         /* This is useful for sniffing bad packets. */
863         if (adapter->netdev->features & NETIF_F_RXALL) {
864                 /* UPE and MPE will be handled by normal PROMISC logic
865                  * in set_rx_mode
866                  */
867                 rctl |= (IGC_RCTL_SBP | /* Receive bad packets */
868                          IGC_RCTL_BAM | /* RX All Bcast Pkts */
869                          IGC_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
870
871                 rctl &= ~(IGC_RCTL_DPF | /* Allow filtered pause */
872                           IGC_RCTL_CFIEN); /* Disable VLAN CFIEN Filter */
873         }
874
875         wr32(IGC_RCTL, rctl);
876 }
877
878 /**
879  * igc_setup_tctl - configure the transmit control registers
880  * @adapter: Board private structure
881  */
882 static void igc_setup_tctl(struct igc_adapter *adapter)
883 {
884         struct igc_hw *hw = &adapter->hw;
885         u32 tctl;
886
887         /* disable queue 0 which icould be enabled by default */
888         wr32(IGC_TXDCTL(0), 0);
889
890         /* Program the Transmit Control Register */
891         tctl = rd32(IGC_TCTL);
892         tctl &= ~IGC_TCTL_CT;
893         tctl |= IGC_TCTL_PSP | IGC_TCTL_RTLC |
894                 (IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT);
895
896         /* Enable transmits */
897         tctl |= IGC_TCTL_EN;
898
899         wr32(IGC_TCTL, tctl);
900 }
901
902 /**
903  * igc_set_mac_filter_hw() - Set MAC address filter in hardware
904  * @adapter: Pointer to adapter where the filter should be set
905  * @index: Filter index
906  * @type: MAC address filter type (source or destination)
907  * @addr: MAC address
908  * @queue: If non-negative, queue assignment feature is enabled and frames
909  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
910  *         assignment is disabled.
911  */
912 static void igc_set_mac_filter_hw(struct igc_adapter *adapter, int index,
913                                   enum igc_mac_filter_type type,
914                                   const u8 *addr, int queue)
915 {
916         struct net_device *dev = adapter->netdev;
917         struct igc_hw *hw = &adapter->hw;
918         u32 ral, rah;
919
920         if (WARN_ON(index >= hw->mac.rar_entry_count))
921                 return;
922
923         ral = le32_to_cpup((__le32 *)(addr));
924         rah = le16_to_cpup((__le16 *)(addr + 4));
925
926         if (type == IGC_MAC_FILTER_TYPE_SRC) {
927                 rah &= ~IGC_RAH_ASEL_MASK;
928                 rah |= IGC_RAH_ASEL_SRC_ADDR;
929         }
930
931         if (queue >= 0) {
932                 rah &= ~IGC_RAH_QSEL_MASK;
933                 rah |= (queue << IGC_RAH_QSEL_SHIFT);
934                 rah |= IGC_RAH_QSEL_ENABLE;
935         }
936
937         rah |= IGC_RAH_AV;
938
939         wr32(IGC_RAL(index), ral);
940         wr32(IGC_RAH(index), rah);
941
942         netdev_dbg(dev, "MAC address filter set in HW: index %d", index);
943 }
944
945 /**
946  * igc_clear_mac_filter_hw() - Clear MAC address filter in hardware
947  * @adapter: Pointer to adapter where the filter should be cleared
948  * @index: Filter index
949  */
950 static void igc_clear_mac_filter_hw(struct igc_adapter *adapter, int index)
951 {
952         struct net_device *dev = adapter->netdev;
953         struct igc_hw *hw = &adapter->hw;
954
955         if (WARN_ON(index >= hw->mac.rar_entry_count))
956                 return;
957
958         wr32(IGC_RAL(index), 0);
959         wr32(IGC_RAH(index), 0);
960
961         netdev_dbg(dev, "MAC address filter cleared in HW: index %d", index);
962 }
963
964 /* Set default MAC address for the PF in the first RAR entry */
965 static void igc_set_default_mac_filter(struct igc_adapter *adapter)
966 {
967         struct net_device *dev = adapter->netdev;
968         u8 *addr = adapter->hw.mac.addr;
969
970         netdev_dbg(dev, "Set default MAC address filter: address %pM", addr);
971
972         igc_set_mac_filter_hw(adapter, 0, IGC_MAC_FILTER_TYPE_DST, addr, -1);
973 }
974
975 /**
976  * igc_set_mac - Change the Ethernet Address of the NIC
977  * @netdev: network interface device structure
978  * @p: pointer to an address structure
979  *
980  * Returns 0 on success, negative on failure
981  */
982 static int igc_set_mac(struct net_device *netdev, void *p)
983 {
984         struct igc_adapter *adapter = netdev_priv(netdev);
985         struct igc_hw *hw = &adapter->hw;
986         struct sockaddr *addr = p;
987
988         if (!is_valid_ether_addr(addr->sa_data))
989                 return -EADDRNOTAVAIL;
990
991         eth_hw_addr_set(netdev, addr->sa_data);
992         memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
993
994         /* set the correct pool for the new PF MAC address in entry 0 */
995         igc_set_default_mac_filter(adapter);
996
997         return 0;
998 }
999
1000 /**
1001  *  igc_write_mc_addr_list - write multicast addresses to MTA
1002  *  @netdev: network interface device structure
1003  *
1004  *  Writes multicast address list to the MTA hash table.
1005  *  Returns: -ENOMEM on failure
1006  *           0 on no addresses written
1007  *           X on writing X addresses to MTA
1008  **/
1009 static int igc_write_mc_addr_list(struct net_device *netdev)
1010 {
1011         struct igc_adapter *adapter = netdev_priv(netdev);
1012         struct igc_hw *hw = &adapter->hw;
1013         struct netdev_hw_addr *ha;
1014         u8  *mta_list;
1015         int i;
1016
1017         if (netdev_mc_empty(netdev)) {
1018                 /* nothing to program, so clear mc list */
1019                 igc_update_mc_addr_list(hw, NULL, 0);
1020                 return 0;
1021         }
1022
1023         mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
1024         if (!mta_list)
1025                 return -ENOMEM;
1026
1027         /* The shared function expects a packed array of only addresses. */
1028         i = 0;
1029         netdev_for_each_mc_addr(ha, netdev)
1030                 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
1031
1032         igc_update_mc_addr_list(hw, mta_list, i);
1033         kfree(mta_list);
1034
1035         return netdev_mc_count(netdev);
1036 }
1037
1038 static __le32 igc_tx_launchtime(struct igc_ring *ring, ktime_t txtime,
1039                                 bool *first_flag, bool *insert_empty)
1040 {
1041         struct igc_adapter *adapter = netdev_priv(ring->netdev);
1042         ktime_t cycle_time = adapter->cycle_time;
1043         ktime_t base_time = adapter->base_time;
1044         ktime_t now = ktime_get_clocktai();
1045         ktime_t baset_est, end_of_cycle;
1046         s32 launchtime;
1047         s64 n;
1048
1049         n = div64_s64(ktime_sub_ns(now, base_time), cycle_time);
1050
1051         baset_est = ktime_add_ns(base_time, cycle_time * (n));
1052         end_of_cycle = ktime_add_ns(baset_est, cycle_time);
1053
1054         if (ktime_compare(txtime, end_of_cycle) >= 0) {
1055                 if (baset_est != ring->last_ff_cycle) {
1056                         *first_flag = true;
1057                         ring->last_ff_cycle = baset_est;
1058
1059                         if (ktime_compare(end_of_cycle, ring->last_tx_cycle) > 0)
1060                                 *insert_empty = true;
1061                 }
1062         }
1063
1064         /* Introducing a window at end of cycle on which packets
1065          * potentially not honor launchtime. Window of 5us chosen
1066          * considering software update the tail pointer and packets
1067          * are dma'ed to packet buffer.
1068          */
1069         if ((ktime_sub_ns(end_of_cycle, now) < 5 * NSEC_PER_USEC))
1070                 netdev_warn(ring->netdev, "Packet with txtime=%llu may not be honoured\n",
1071                             txtime);
1072
1073         ring->last_tx_cycle = end_of_cycle;
1074
1075         launchtime = ktime_sub_ns(txtime, baset_est);
1076         if (launchtime > 0)
1077                 div_s64_rem(launchtime, cycle_time, &launchtime);
1078         else
1079                 launchtime = 0;
1080
1081         return cpu_to_le32(launchtime);
1082 }
1083
1084 static int igc_init_empty_frame(struct igc_ring *ring,
1085                                 struct igc_tx_buffer *buffer,
1086                                 struct sk_buff *skb)
1087 {
1088         unsigned int size;
1089         dma_addr_t dma;
1090
1091         size = skb_headlen(skb);
1092
1093         dma = dma_map_single(ring->dev, skb->data, size, DMA_TO_DEVICE);
1094         if (dma_mapping_error(ring->dev, dma)) {
1095                 netdev_err_once(ring->netdev, "Failed to map DMA for TX\n");
1096                 return -ENOMEM;
1097         }
1098
1099         buffer->skb = skb;
1100         buffer->protocol = 0;
1101         buffer->bytecount = skb->len;
1102         buffer->gso_segs = 1;
1103         buffer->time_stamp = jiffies;
1104         dma_unmap_len_set(buffer, len, skb->len);
1105         dma_unmap_addr_set(buffer, dma, dma);
1106
1107         return 0;
1108 }
1109
1110 static int igc_init_tx_empty_descriptor(struct igc_ring *ring,
1111                                         struct sk_buff *skb,
1112                                         struct igc_tx_buffer *first)
1113 {
1114         union igc_adv_tx_desc *desc;
1115         u32 cmd_type, olinfo_status;
1116         int err;
1117
1118         if (!igc_desc_unused(ring))
1119                 return -EBUSY;
1120
1121         err = igc_init_empty_frame(ring, first, skb);
1122         if (err)
1123                 return err;
1124
1125         cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT |
1126                    IGC_ADVTXD_DCMD_IFCS | IGC_TXD_DCMD |
1127                    first->bytecount;
1128         olinfo_status = first->bytecount << IGC_ADVTXD_PAYLEN_SHIFT;
1129
1130         desc = IGC_TX_DESC(ring, ring->next_to_use);
1131         desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1132         desc->read.olinfo_status = cpu_to_le32(olinfo_status);
1133         desc->read.buffer_addr = cpu_to_le64(dma_unmap_addr(first, dma));
1134
1135         netdev_tx_sent_queue(txring_txq(ring), skb->len);
1136
1137         first->next_to_watch = desc;
1138
1139         ring->next_to_use++;
1140         if (ring->next_to_use == ring->count)
1141                 ring->next_to_use = 0;
1142
1143         return 0;
1144 }
1145
1146 #define IGC_EMPTY_FRAME_SIZE 60
1147
1148 static void igc_tx_ctxtdesc(struct igc_ring *tx_ring,
1149                             __le32 launch_time, bool first_flag,
1150                             u32 vlan_macip_lens, u32 type_tucmd,
1151                             u32 mss_l4len_idx)
1152 {
1153         struct igc_adv_tx_context_desc *context_desc;
1154         u16 i = tx_ring->next_to_use;
1155
1156         context_desc = IGC_TX_CTXTDESC(tx_ring, i);
1157
1158         i++;
1159         tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1160
1161         /* set bits to identify this as an advanced context descriptor */
1162         type_tucmd |= IGC_TXD_CMD_DEXT | IGC_ADVTXD_DTYP_CTXT;
1163
1164         /* For i225, context index must be unique per ring. */
1165         if (test_bit(IGC_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
1166                 mss_l4len_idx |= tx_ring->reg_idx << 4;
1167
1168         if (first_flag)
1169                 mss_l4len_idx |= IGC_ADVTXD_TSN_CNTX_FIRST;
1170
1171         context_desc->vlan_macip_lens   = cpu_to_le32(vlan_macip_lens);
1172         context_desc->type_tucmd_mlhl   = cpu_to_le32(type_tucmd);
1173         context_desc->mss_l4len_idx     = cpu_to_le32(mss_l4len_idx);
1174         context_desc->launch_time       = launch_time;
1175 }
1176
1177 static void igc_tx_csum(struct igc_ring *tx_ring, struct igc_tx_buffer *first,
1178                         __le32 launch_time, bool first_flag)
1179 {
1180         struct sk_buff *skb = first->skb;
1181         u32 vlan_macip_lens = 0;
1182         u32 type_tucmd = 0;
1183
1184         if (skb->ip_summed != CHECKSUM_PARTIAL) {
1185 csum_failed:
1186                 if (!(first->tx_flags & IGC_TX_FLAGS_VLAN) &&
1187                     !tx_ring->launchtime_enable)
1188                         return;
1189                 goto no_csum;
1190         }
1191
1192         switch (skb->csum_offset) {
1193         case offsetof(struct tcphdr, check):
1194                 type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
1195                 fallthrough;
1196         case offsetof(struct udphdr, check):
1197                 break;
1198         case offsetof(struct sctphdr, checksum):
1199                 /* validate that this is actually an SCTP request */
1200                 if (skb_csum_is_sctp(skb)) {
1201                         type_tucmd = IGC_ADVTXD_TUCMD_L4T_SCTP;
1202                         break;
1203                 }
1204                 fallthrough;
1205         default:
1206                 skb_checksum_help(skb);
1207                 goto csum_failed;
1208         }
1209
1210         /* update TX checksum flag */
1211         first->tx_flags |= IGC_TX_FLAGS_CSUM;
1212         vlan_macip_lens = skb_checksum_start_offset(skb) -
1213                           skb_network_offset(skb);
1214 no_csum:
1215         vlan_macip_lens |= skb_network_offset(skb) << IGC_ADVTXD_MACLEN_SHIFT;
1216         vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1217
1218         igc_tx_ctxtdesc(tx_ring, launch_time, first_flag,
1219                         vlan_macip_lens, type_tucmd, 0);
1220 }
1221
1222 static int __igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1223 {
1224         struct net_device *netdev = tx_ring->netdev;
1225
1226         netif_stop_subqueue(netdev, tx_ring->queue_index);
1227
1228         /* memory barriier comment */
1229         smp_mb();
1230
1231         /* We need to check again in a case another CPU has just
1232          * made room available.
1233          */
1234         if (igc_desc_unused(tx_ring) < size)
1235                 return -EBUSY;
1236
1237         /* A reprieve! */
1238         netif_wake_subqueue(netdev, tx_ring->queue_index);
1239
1240         u64_stats_update_begin(&tx_ring->tx_syncp2);
1241         tx_ring->tx_stats.restart_queue2++;
1242         u64_stats_update_end(&tx_ring->tx_syncp2);
1243
1244         return 0;
1245 }
1246
1247 static inline int igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1248 {
1249         if (igc_desc_unused(tx_ring) >= size)
1250                 return 0;
1251         return __igc_maybe_stop_tx(tx_ring, size);
1252 }
1253
1254 #define IGC_SET_FLAG(_input, _flag, _result) \
1255         (((_flag) <= (_result)) ?                               \
1256          ((u32)((_input) & (_flag)) * ((_result) / (_flag))) :  \
1257          ((u32)((_input) & (_flag)) / ((_flag) / (_result))))
1258
1259 static u32 igc_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
1260 {
1261         /* set type for advanced descriptor with frame checksum insertion */
1262         u32 cmd_type = IGC_ADVTXD_DTYP_DATA |
1263                        IGC_ADVTXD_DCMD_DEXT |
1264                        IGC_ADVTXD_DCMD_IFCS;
1265
1266         /* set HW vlan bit if vlan is present */
1267         cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_VLAN,
1268                                  IGC_ADVTXD_DCMD_VLE);
1269
1270         /* set segmentation bits for TSO */
1271         cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSO,
1272                                  (IGC_ADVTXD_DCMD_TSE));
1273
1274         /* set timestamp bit if present, will select the register set
1275          * based on the _TSTAMP(_X) bit.
1276          */
1277         cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP,
1278                                  (IGC_ADVTXD_MAC_TSTAMP));
1279
1280         cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP_1,
1281                                  (IGC_ADVTXD_TSTAMP_REG_1));
1282
1283         cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP_2,
1284                                  (IGC_ADVTXD_TSTAMP_REG_2));
1285
1286         cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP_3,
1287                                  (IGC_ADVTXD_TSTAMP_REG_3));
1288
1289         /* insert frame checksum */
1290         cmd_type ^= IGC_SET_FLAG(skb->no_fcs, 1, IGC_ADVTXD_DCMD_IFCS);
1291
1292         return cmd_type;
1293 }
1294
1295 static void igc_tx_olinfo_status(struct igc_ring *tx_ring,
1296                                  union igc_adv_tx_desc *tx_desc,
1297                                  u32 tx_flags, unsigned int paylen)
1298 {
1299         u32 olinfo_status = paylen << IGC_ADVTXD_PAYLEN_SHIFT;
1300
1301         /* insert L4 checksum */
1302         olinfo_status |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_CSUM,
1303                                       (IGC_TXD_POPTS_TXSM << 8));
1304
1305         /* insert IPv4 checksum */
1306         olinfo_status |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_IPV4,
1307                                       (IGC_TXD_POPTS_IXSM << 8));
1308
1309         /* Use the second timer (free running, in general) for the timestamp */
1310         olinfo_status |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP_TIMER_1,
1311                                       IGC_TXD_PTP2_TIMER_1);
1312
1313         tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
1314 }
1315
1316 static int igc_tx_map(struct igc_ring *tx_ring,
1317                       struct igc_tx_buffer *first,
1318                       const u8 hdr_len)
1319 {
1320         struct sk_buff *skb = first->skb;
1321         struct igc_tx_buffer *tx_buffer;
1322         union igc_adv_tx_desc *tx_desc;
1323         u32 tx_flags = first->tx_flags;
1324         skb_frag_t *frag;
1325         u16 i = tx_ring->next_to_use;
1326         unsigned int data_len, size;
1327         dma_addr_t dma;
1328         u32 cmd_type;
1329
1330         cmd_type = igc_tx_cmd_type(skb, tx_flags);
1331         tx_desc = IGC_TX_DESC(tx_ring, i);
1332
1333         igc_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
1334
1335         size = skb_headlen(skb);
1336         data_len = skb->data_len;
1337
1338         dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1339
1340         tx_buffer = first;
1341
1342         for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1343                 if (dma_mapping_error(tx_ring->dev, dma))
1344                         goto dma_error;
1345
1346                 /* record length, and DMA address */
1347                 dma_unmap_len_set(tx_buffer, len, size);
1348                 dma_unmap_addr_set(tx_buffer, dma, dma);
1349
1350                 tx_desc->read.buffer_addr = cpu_to_le64(dma);
1351
1352                 while (unlikely(size > IGC_MAX_DATA_PER_TXD)) {
1353                         tx_desc->read.cmd_type_len =
1354                                 cpu_to_le32(cmd_type ^ IGC_MAX_DATA_PER_TXD);
1355
1356                         i++;
1357                         tx_desc++;
1358                         if (i == tx_ring->count) {
1359                                 tx_desc = IGC_TX_DESC(tx_ring, 0);
1360                                 i = 0;
1361                         }
1362                         tx_desc->read.olinfo_status = 0;
1363
1364                         dma += IGC_MAX_DATA_PER_TXD;
1365                         size -= IGC_MAX_DATA_PER_TXD;
1366
1367                         tx_desc->read.buffer_addr = cpu_to_le64(dma);
1368                 }
1369
1370                 if (likely(!data_len))
1371                         break;
1372
1373                 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
1374
1375                 i++;
1376                 tx_desc++;
1377                 if (i == tx_ring->count) {
1378                         tx_desc = IGC_TX_DESC(tx_ring, 0);
1379                         i = 0;
1380                 }
1381                 tx_desc->read.olinfo_status = 0;
1382
1383                 size = skb_frag_size(frag);
1384                 data_len -= size;
1385
1386                 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
1387                                        size, DMA_TO_DEVICE);
1388
1389                 tx_buffer = &tx_ring->tx_buffer_info[i];
1390         }
1391
1392         /* write last descriptor with RS and EOP bits */
1393         cmd_type |= size | IGC_TXD_DCMD;
1394         tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1395
1396         netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1397
1398         /* set the timestamp */
1399         first->time_stamp = jiffies;
1400
1401         skb_tx_timestamp(skb);
1402
1403         /* Force memory writes to complete before letting h/w know there
1404          * are new descriptors to fetch.  (Only applicable for weak-ordered
1405          * memory model archs, such as IA-64).
1406          *
1407          * We also need this memory barrier to make certain all of the
1408          * status bits have been updated before next_to_watch is written.
1409          */
1410         wmb();
1411
1412         /* set next_to_watch value indicating a packet is present */
1413         first->next_to_watch = tx_desc;
1414
1415         i++;
1416         if (i == tx_ring->count)
1417                 i = 0;
1418
1419         tx_ring->next_to_use = i;
1420
1421         /* Make sure there is space in the ring for the next send. */
1422         igc_maybe_stop_tx(tx_ring, DESC_NEEDED);
1423
1424         if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
1425                 writel(i, tx_ring->tail);
1426         }
1427
1428         return 0;
1429 dma_error:
1430         netdev_err(tx_ring->netdev, "TX DMA map failed\n");
1431         tx_buffer = &tx_ring->tx_buffer_info[i];
1432
1433         /* clear dma mappings for failed tx_buffer_info map */
1434         while (tx_buffer != first) {
1435                 if (dma_unmap_len(tx_buffer, len))
1436                         igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
1437
1438                 if (i-- == 0)
1439                         i += tx_ring->count;
1440                 tx_buffer = &tx_ring->tx_buffer_info[i];
1441         }
1442
1443         if (dma_unmap_len(tx_buffer, len))
1444                 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
1445
1446         dev_kfree_skb_any(tx_buffer->skb);
1447         tx_buffer->skb = NULL;
1448
1449         tx_ring->next_to_use = i;
1450
1451         return -1;
1452 }
1453
1454 static int igc_tso(struct igc_ring *tx_ring,
1455                    struct igc_tx_buffer *first,
1456                    __le32 launch_time, bool first_flag,
1457                    u8 *hdr_len)
1458 {
1459         u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
1460         struct sk_buff *skb = first->skb;
1461         union {
1462                 struct iphdr *v4;
1463                 struct ipv6hdr *v6;
1464                 unsigned char *hdr;
1465         } ip;
1466         union {
1467                 struct tcphdr *tcp;
1468                 struct udphdr *udp;
1469                 unsigned char *hdr;
1470         } l4;
1471         u32 paylen, l4_offset;
1472         int err;
1473
1474         if (skb->ip_summed != CHECKSUM_PARTIAL)
1475                 return 0;
1476
1477         if (!skb_is_gso(skb))
1478                 return 0;
1479
1480         err = skb_cow_head(skb, 0);
1481         if (err < 0)
1482                 return err;
1483
1484         ip.hdr = skb_network_header(skb);
1485         l4.hdr = skb_checksum_start(skb);
1486
1487         /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1488         type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
1489
1490         /* initialize outer IP header fields */
1491         if (ip.v4->version == 4) {
1492                 unsigned char *csum_start = skb_checksum_start(skb);
1493                 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
1494
1495                 /* IP header will have to cancel out any data that
1496                  * is not a part of the outer IP header
1497                  */
1498                 ip.v4->check = csum_fold(csum_partial(trans_start,
1499                                                       csum_start - trans_start,
1500                                                       0));
1501                 type_tucmd |= IGC_ADVTXD_TUCMD_IPV4;
1502
1503                 ip.v4->tot_len = 0;
1504                 first->tx_flags |= IGC_TX_FLAGS_TSO |
1505                                    IGC_TX_FLAGS_CSUM |
1506                                    IGC_TX_FLAGS_IPV4;
1507         } else {
1508                 ip.v6->payload_len = 0;
1509                 first->tx_flags |= IGC_TX_FLAGS_TSO |
1510                                    IGC_TX_FLAGS_CSUM;
1511         }
1512
1513         /* determine offset of inner transport header */
1514         l4_offset = l4.hdr - skb->data;
1515
1516         /* remove payload length from inner checksum */
1517         paylen = skb->len - l4_offset;
1518         if (type_tucmd & IGC_ADVTXD_TUCMD_L4T_TCP) {
1519                 /* compute length of segmentation header */
1520                 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
1521                 csum_replace_by_diff(&l4.tcp->check,
1522                                      (__force __wsum)htonl(paylen));
1523         } else {
1524                 /* compute length of segmentation header */
1525                 *hdr_len = sizeof(*l4.udp) + l4_offset;
1526                 csum_replace_by_diff(&l4.udp->check,
1527                                      (__force __wsum)htonl(paylen));
1528         }
1529
1530         /* update gso size and bytecount with header size */
1531         first->gso_segs = skb_shinfo(skb)->gso_segs;
1532         first->bytecount += (first->gso_segs - 1) * *hdr_len;
1533
1534         /* MSS L4LEN IDX */
1535         mss_l4len_idx = (*hdr_len - l4_offset) << IGC_ADVTXD_L4LEN_SHIFT;
1536         mss_l4len_idx |= skb_shinfo(skb)->gso_size << IGC_ADVTXD_MSS_SHIFT;
1537
1538         /* VLAN MACLEN IPLEN */
1539         vlan_macip_lens = l4.hdr - ip.hdr;
1540         vlan_macip_lens |= (ip.hdr - skb->data) << IGC_ADVTXD_MACLEN_SHIFT;
1541         vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1542
1543         igc_tx_ctxtdesc(tx_ring, launch_time, first_flag,
1544                         vlan_macip_lens, type_tucmd, mss_l4len_idx);
1545
1546         return 1;
1547 }
1548
1549 static bool igc_request_tx_tstamp(struct igc_adapter *adapter, struct sk_buff *skb, u32 *flags)
1550 {
1551         int i;
1552
1553         for (i = 0; i < IGC_MAX_TX_TSTAMP_REGS; i++) {
1554                 struct igc_tx_timestamp_request *tstamp = &adapter->tx_tstamp[i];
1555
1556                 if (tstamp->skb)
1557                         continue;
1558
1559                 tstamp->skb = skb_get(skb);
1560                 tstamp->start = jiffies;
1561                 *flags = tstamp->flags;
1562
1563                 return true;
1564         }
1565
1566         return false;
1567 }
1568
1569 static netdev_tx_t igc_xmit_frame_ring(struct sk_buff *skb,
1570                                        struct igc_ring *tx_ring)
1571 {
1572         struct igc_adapter *adapter = netdev_priv(tx_ring->netdev);
1573         bool first_flag = false, insert_empty = false;
1574         u16 count = TXD_USE_COUNT(skb_headlen(skb));
1575         __be16 protocol = vlan_get_protocol(skb);
1576         struct igc_tx_buffer *first;
1577         __le32 launch_time = 0;
1578         u32 tx_flags = 0;
1579         unsigned short f;
1580         ktime_t txtime;
1581         u8 hdr_len = 0;
1582         int tso = 0;
1583
1584         /* need: 1 descriptor per page * PAGE_SIZE/IGC_MAX_DATA_PER_TXD,
1585          *      + 1 desc for skb_headlen/IGC_MAX_DATA_PER_TXD,
1586          *      + 2 desc gap to keep tail from touching head,
1587          *      + 1 desc for context descriptor,
1588          * otherwise try next time
1589          */
1590         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1591                 count += TXD_USE_COUNT(skb_frag_size(
1592                                                 &skb_shinfo(skb)->frags[f]));
1593
1594         if (igc_maybe_stop_tx(tx_ring, count + 5)) {
1595                 /* this is a hard error */
1596                 return NETDEV_TX_BUSY;
1597         }
1598
1599         if (!tx_ring->launchtime_enable)
1600                 goto done;
1601
1602         txtime = skb->tstamp;
1603         skb->tstamp = ktime_set(0, 0);
1604         launch_time = igc_tx_launchtime(tx_ring, txtime, &first_flag, &insert_empty);
1605
1606         if (insert_empty) {
1607                 struct igc_tx_buffer *empty_info;
1608                 struct sk_buff *empty;
1609                 void *data;
1610
1611                 empty_info = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1612                 empty = alloc_skb(IGC_EMPTY_FRAME_SIZE, GFP_ATOMIC);
1613                 if (!empty)
1614                         goto done;
1615
1616                 data = skb_put(empty, IGC_EMPTY_FRAME_SIZE);
1617                 memset(data, 0, IGC_EMPTY_FRAME_SIZE);
1618
1619                 igc_tx_ctxtdesc(tx_ring, 0, false, 0, 0, 0);
1620
1621                 if (igc_init_tx_empty_descriptor(tx_ring,
1622                                                  empty,
1623                                                  empty_info) < 0)
1624                         dev_kfree_skb_any(empty);
1625         }
1626
1627 done:
1628         /* record the location of the first descriptor for this packet */
1629         first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1630         first->type = IGC_TX_BUFFER_TYPE_SKB;
1631         first->skb = skb;
1632         first->bytecount = skb->len;
1633         first->gso_segs = 1;
1634
1635         if (adapter->qbv_transition || tx_ring->oper_gate_closed)
1636                 goto out_drop;
1637
1638         if (tx_ring->max_sdu > 0 && first->bytecount > tx_ring->max_sdu) {
1639                 adapter->stats.txdrop++;
1640                 goto out_drop;
1641         }
1642
1643         if (unlikely(test_bit(IGC_RING_FLAG_TX_HWTSTAMP, &tx_ring->flags) &&
1644                      skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
1645                 unsigned long flags;
1646                 u32 tstamp_flags;
1647
1648                 spin_lock_irqsave(&adapter->ptp_tx_lock, flags);
1649                 if (igc_request_tx_tstamp(adapter, skb, &tstamp_flags)) {
1650                         skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1651                         tx_flags |= IGC_TX_FLAGS_TSTAMP | tstamp_flags;
1652                         if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_USE_CYCLES)
1653                                 tx_flags |= IGC_TX_FLAGS_TSTAMP_TIMER_1;
1654                 } else {
1655                         adapter->tx_hwtstamp_skipped++;
1656                 }
1657
1658                 spin_unlock_irqrestore(&adapter->ptp_tx_lock, flags);
1659         }
1660
1661         if (skb_vlan_tag_present(skb)) {
1662                 tx_flags |= IGC_TX_FLAGS_VLAN;
1663                 tx_flags |= (skb_vlan_tag_get(skb) << IGC_TX_FLAGS_VLAN_SHIFT);
1664         }
1665
1666         /* record initial flags and protocol */
1667         first->tx_flags = tx_flags;
1668         first->protocol = protocol;
1669
1670         tso = igc_tso(tx_ring, first, launch_time, first_flag, &hdr_len);
1671         if (tso < 0)
1672                 goto out_drop;
1673         else if (!tso)
1674                 igc_tx_csum(tx_ring, first, launch_time, first_flag);
1675
1676         igc_tx_map(tx_ring, first, hdr_len);
1677
1678         return NETDEV_TX_OK;
1679
1680 out_drop:
1681         dev_kfree_skb_any(first->skb);
1682         first->skb = NULL;
1683
1684         return NETDEV_TX_OK;
1685 }
1686
1687 static inline struct igc_ring *igc_tx_queue_mapping(struct igc_adapter *adapter,
1688                                                     struct sk_buff *skb)
1689 {
1690         unsigned int r_idx = skb->queue_mapping;
1691
1692         if (r_idx >= adapter->num_tx_queues)
1693                 r_idx = r_idx % adapter->num_tx_queues;
1694
1695         return adapter->tx_ring[r_idx];
1696 }
1697
1698 static netdev_tx_t igc_xmit_frame(struct sk_buff *skb,
1699                                   struct net_device *netdev)
1700 {
1701         struct igc_adapter *adapter = netdev_priv(netdev);
1702
1703         /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
1704          * in order to meet this minimum size requirement.
1705          */
1706         if (skb->len < 17) {
1707                 if (skb_padto(skb, 17))
1708                         return NETDEV_TX_OK;
1709                 skb->len = 17;
1710         }
1711
1712         return igc_xmit_frame_ring(skb, igc_tx_queue_mapping(adapter, skb));
1713 }
1714
1715 static void igc_rx_checksum(struct igc_ring *ring,
1716                             union igc_adv_rx_desc *rx_desc,
1717                             struct sk_buff *skb)
1718 {
1719         skb_checksum_none_assert(skb);
1720
1721         /* Ignore Checksum bit is set */
1722         if (igc_test_staterr(rx_desc, IGC_RXD_STAT_IXSM))
1723                 return;
1724
1725         /* Rx checksum disabled via ethtool */
1726         if (!(ring->netdev->features & NETIF_F_RXCSUM))
1727                 return;
1728
1729         /* TCP/UDP checksum error bit is set */
1730         if (igc_test_staterr(rx_desc,
1731                              IGC_RXDEXT_STATERR_L4E |
1732                              IGC_RXDEXT_STATERR_IPE)) {
1733                 /* work around errata with sctp packets where the TCPE aka
1734                  * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
1735                  * packets (aka let the stack check the crc32c)
1736                  */
1737                 if (!(skb->len == 60 &&
1738                       test_bit(IGC_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
1739                         u64_stats_update_begin(&ring->rx_syncp);
1740                         ring->rx_stats.csum_err++;
1741                         u64_stats_update_end(&ring->rx_syncp);
1742                 }
1743                 /* let the stack verify checksum errors */
1744                 return;
1745         }
1746         /* It must be a TCP or UDP packet with a valid checksum */
1747         if (igc_test_staterr(rx_desc, IGC_RXD_STAT_TCPCS |
1748                                       IGC_RXD_STAT_UDPCS))
1749                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1750
1751         netdev_dbg(ring->netdev, "cksum success: bits %08X\n",
1752                    le32_to_cpu(rx_desc->wb.upper.status_error));
1753 }
1754
1755 /* Mapping HW RSS Type to enum pkt_hash_types */
1756 static const enum pkt_hash_types igc_rss_type_table[IGC_RSS_TYPE_MAX_TABLE] = {
1757         [IGC_RSS_TYPE_NO_HASH]          = PKT_HASH_TYPE_L2,
1758         [IGC_RSS_TYPE_HASH_TCP_IPV4]    = PKT_HASH_TYPE_L4,
1759         [IGC_RSS_TYPE_HASH_IPV4]        = PKT_HASH_TYPE_L3,
1760         [IGC_RSS_TYPE_HASH_TCP_IPV6]    = PKT_HASH_TYPE_L4,
1761         [IGC_RSS_TYPE_HASH_IPV6_EX]     = PKT_HASH_TYPE_L3,
1762         [IGC_RSS_TYPE_HASH_IPV6]        = PKT_HASH_TYPE_L3,
1763         [IGC_RSS_TYPE_HASH_TCP_IPV6_EX] = PKT_HASH_TYPE_L4,
1764         [IGC_RSS_TYPE_HASH_UDP_IPV4]    = PKT_HASH_TYPE_L4,
1765         [IGC_RSS_TYPE_HASH_UDP_IPV6]    = PKT_HASH_TYPE_L4,
1766         [IGC_RSS_TYPE_HASH_UDP_IPV6_EX] = PKT_HASH_TYPE_L4,
1767         [10] = PKT_HASH_TYPE_NONE, /* RSS Type above 9 "Reserved" by HW  */
1768         [11] = PKT_HASH_TYPE_NONE, /* keep array sized for SW bit-mask   */
1769         [12] = PKT_HASH_TYPE_NONE, /* to handle future HW revisons       */
1770         [13] = PKT_HASH_TYPE_NONE,
1771         [14] = PKT_HASH_TYPE_NONE,
1772         [15] = PKT_HASH_TYPE_NONE,
1773 };
1774
1775 static inline void igc_rx_hash(struct igc_ring *ring,
1776                                union igc_adv_rx_desc *rx_desc,
1777                                struct sk_buff *skb)
1778 {
1779         if (ring->netdev->features & NETIF_F_RXHASH) {
1780                 u32 rss_hash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss);
1781                 u32 rss_type = igc_rss_type(rx_desc);
1782
1783                 skb_set_hash(skb, rss_hash, igc_rss_type_table[rss_type]);
1784         }
1785 }
1786
1787 static void igc_rx_vlan(struct igc_ring *rx_ring,
1788                         union igc_adv_rx_desc *rx_desc,
1789                         struct sk_buff *skb)
1790 {
1791         struct net_device *dev = rx_ring->netdev;
1792         u16 vid;
1793
1794         if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1795             igc_test_staterr(rx_desc, IGC_RXD_STAT_VP)) {
1796                 if (igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_LB) &&
1797                     test_bit(IGC_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
1798                         vid = be16_to_cpu((__force __be16)rx_desc->wb.upper.vlan);
1799                 else
1800                         vid = le16_to_cpu(rx_desc->wb.upper.vlan);
1801
1802                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
1803         }
1804 }
1805
1806 /**
1807  * igc_process_skb_fields - Populate skb header fields from Rx descriptor
1808  * @rx_ring: rx descriptor ring packet is being transacted on
1809  * @rx_desc: pointer to the EOP Rx descriptor
1810  * @skb: pointer to current skb being populated
1811  *
1812  * This function checks the ring, descriptor, and packet information in order
1813  * to populate the hash, checksum, VLAN, protocol, and other fields within the
1814  * skb.
1815  */
1816 static void igc_process_skb_fields(struct igc_ring *rx_ring,
1817                                    union igc_adv_rx_desc *rx_desc,
1818                                    struct sk_buff *skb)
1819 {
1820         igc_rx_hash(rx_ring, rx_desc, skb);
1821
1822         igc_rx_checksum(rx_ring, rx_desc, skb);
1823
1824         igc_rx_vlan(rx_ring, rx_desc, skb);
1825
1826         skb_record_rx_queue(skb, rx_ring->queue_index);
1827
1828         skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1829 }
1830
1831 static void igc_vlan_mode(struct net_device *netdev, netdev_features_t features)
1832 {
1833         bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
1834         struct igc_adapter *adapter = netdev_priv(netdev);
1835         struct igc_hw *hw = &adapter->hw;
1836         u32 ctrl;
1837
1838         ctrl = rd32(IGC_CTRL);
1839
1840         if (enable) {
1841                 /* enable VLAN tag insert/strip */
1842                 ctrl |= IGC_CTRL_VME;
1843         } else {
1844                 /* disable VLAN tag insert/strip */
1845                 ctrl &= ~IGC_CTRL_VME;
1846         }
1847         wr32(IGC_CTRL, ctrl);
1848 }
1849
1850 static void igc_restore_vlan(struct igc_adapter *adapter)
1851 {
1852         igc_vlan_mode(adapter->netdev, adapter->netdev->features);
1853 }
1854
1855 static struct igc_rx_buffer *igc_get_rx_buffer(struct igc_ring *rx_ring,
1856                                                const unsigned int size,
1857                                                int *rx_buffer_pgcnt)
1858 {
1859         struct igc_rx_buffer *rx_buffer;
1860
1861         rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
1862         *rx_buffer_pgcnt =
1863 #if (PAGE_SIZE < 8192)
1864                 page_count(rx_buffer->page);
1865 #else
1866                 0;
1867 #endif
1868         prefetchw(rx_buffer->page);
1869
1870         /* we are reusing so sync this buffer for CPU use */
1871         dma_sync_single_range_for_cpu(rx_ring->dev,
1872                                       rx_buffer->dma,
1873                                       rx_buffer->page_offset,
1874                                       size,
1875                                       DMA_FROM_DEVICE);
1876
1877         rx_buffer->pagecnt_bias--;
1878
1879         return rx_buffer;
1880 }
1881
1882 static void igc_rx_buffer_flip(struct igc_rx_buffer *buffer,
1883                                unsigned int truesize)
1884 {
1885 #if (PAGE_SIZE < 8192)
1886         buffer->page_offset ^= truesize;
1887 #else
1888         buffer->page_offset += truesize;
1889 #endif
1890 }
1891
1892 static unsigned int igc_get_rx_frame_truesize(struct igc_ring *ring,
1893                                               unsigned int size)
1894 {
1895         unsigned int truesize;
1896
1897 #if (PAGE_SIZE < 8192)
1898         truesize = igc_rx_pg_size(ring) / 2;
1899 #else
1900         truesize = ring_uses_build_skb(ring) ?
1901                    SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1902                    SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1903                    SKB_DATA_ALIGN(size);
1904 #endif
1905         return truesize;
1906 }
1907
1908 /**
1909  * igc_add_rx_frag - Add contents of Rx buffer to sk_buff
1910  * @rx_ring: rx descriptor ring to transact packets on
1911  * @rx_buffer: buffer containing page to add
1912  * @skb: sk_buff to place the data into
1913  * @size: size of buffer to be added
1914  *
1915  * This function will add the data contained in rx_buffer->page to the skb.
1916  */
1917 static void igc_add_rx_frag(struct igc_ring *rx_ring,
1918                             struct igc_rx_buffer *rx_buffer,
1919                             struct sk_buff *skb,
1920                             unsigned int size)
1921 {
1922         unsigned int truesize;
1923
1924 #if (PAGE_SIZE < 8192)
1925         truesize = igc_rx_pg_size(rx_ring) / 2;
1926 #else
1927         truesize = ring_uses_build_skb(rx_ring) ?
1928                    SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1929                    SKB_DATA_ALIGN(size);
1930 #endif
1931         skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1932                         rx_buffer->page_offset, size, truesize);
1933
1934         igc_rx_buffer_flip(rx_buffer, truesize);
1935 }
1936
1937 static struct sk_buff *igc_build_skb(struct igc_ring *rx_ring,
1938                                      struct igc_rx_buffer *rx_buffer,
1939                                      struct xdp_buff *xdp)
1940 {
1941         unsigned int size = xdp->data_end - xdp->data;
1942         unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size);
1943         unsigned int metasize = xdp->data - xdp->data_meta;
1944         struct sk_buff *skb;
1945
1946         /* prefetch first cache line of first page */
1947         net_prefetch(xdp->data_meta);
1948
1949         /* build an skb around the page buffer */
1950         skb = napi_build_skb(xdp->data_hard_start, truesize);
1951         if (unlikely(!skb))
1952                 return NULL;
1953
1954         /* update pointers within the skb to store the data */
1955         skb_reserve(skb, xdp->data - xdp->data_hard_start);
1956         __skb_put(skb, size);
1957         if (metasize)
1958                 skb_metadata_set(skb, metasize);
1959
1960         igc_rx_buffer_flip(rx_buffer, truesize);
1961         return skb;
1962 }
1963
1964 static struct sk_buff *igc_construct_skb(struct igc_ring *rx_ring,
1965                                          struct igc_rx_buffer *rx_buffer,
1966                                          struct igc_xdp_buff *ctx)
1967 {
1968         struct xdp_buff *xdp = &ctx->xdp;
1969         unsigned int metasize = xdp->data - xdp->data_meta;
1970         unsigned int size = xdp->data_end - xdp->data;
1971         unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size);
1972         void *va = xdp->data;
1973         unsigned int headlen;
1974         struct sk_buff *skb;
1975
1976         /* prefetch first cache line of first page */
1977         net_prefetch(xdp->data_meta);
1978
1979         /* allocate a skb to store the frags */
1980         skb = napi_alloc_skb(&rx_ring->q_vector->napi,
1981                              IGC_RX_HDR_LEN + metasize);
1982         if (unlikely(!skb))
1983                 return NULL;
1984
1985         if (ctx->rx_ts) {
1986                 skb_shinfo(skb)->tx_flags |= SKBTX_HW_TSTAMP_NETDEV;
1987                 skb_hwtstamps(skb)->netdev_data = ctx->rx_ts;
1988         }
1989
1990         /* Determine available headroom for copy */
1991         headlen = size;
1992         if (headlen > IGC_RX_HDR_LEN)
1993                 headlen = eth_get_headlen(skb->dev, va, IGC_RX_HDR_LEN);
1994
1995         /* align pull length to size of long to optimize memcpy performance */
1996         memcpy(__skb_put(skb, headlen + metasize), xdp->data_meta,
1997                ALIGN(headlen + metasize, sizeof(long)));
1998
1999         if (metasize) {
2000                 skb_metadata_set(skb, metasize);
2001                 __skb_pull(skb, metasize);
2002         }
2003
2004         /* update all of the pointers */
2005         size -= headlen;
2006         if (size) {
2007                 skb_add_rx_frag(skb, 0, rx_buffer->page,
2008                                 (va + headlen) - page_address(rx_buffer->page),
2009                                 size, truesize);
2010                 igc_rx_buffer_flip(rx_buffer, truesize);
2011         } else {
2012                 rx_buffer->pagecnt_bias++;
2013         }
2014
2015         return skb;
2016 }
2017
2018 /**
2019  * igc_reuse_rx_page - page flip buffer and store it back on the ring
2020  * @rx_ring: rx descriptor ring to store buffers on
2021  * @old_buff: donor buffer to have page reused
2022  *
2023  * Synchronizes page for reuse by the adapter
2024  */
2025 static void igc_reuse_rx_page(struct igc_ring *rx_ring,
2026                               struct igc_rx_buffer *old_buff)
2027 {
2028         u16 nta = rx_ring->next_to_alloc;
2029         struct igc_rx_buffer *new_buff;
2030
2031         new_buff = &rx_ring->rx_buffer_info[nta];
2032
2033         /* update, and store next to alloc */
2034         nta++;
2035         rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
2036
2037         /* Transfer page from old buffer to new buffer.
2038          * Move each member individually to avoid possible store
2039          * forwarding stalls.
2040          */
2041         new_buff->dma           = old_buff->dma;
2042         new_buff->page          = old_buff->page;
2043         new_buff->page_offset   = old_buff->page_offset;
2044         new_buff->pagecnt_bias  = old_buff->pagecnt_bias;
2045 }
2046
2047 static bool igc_can_reuse_rx_page(struct igc_rx_buffer *rx_buffer,
2048                                   int rx_buffer_pgcnt)
2049 {
2050         unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
2051         struct page *page = rx_buffer->page;
2052
2053         /* avoid re-using remote and pfmemalloc pages */
2054         if (!dev_page_is_reusable(page))
2055                 return false;
2056
2057 #if (PAGE_SIZE < 8192)
2058         /* if we are only owner of page we can reuse it */
2059         if (unlikely((rx_buffer_pgcnt - pagecnt_bias) > 1))
2060                 return false;
2061 #else
2062 #define IGC_LAST_OFFSET \
2063         (SKB_WITH_OVERHEAD(PAGE_SIZE) - IGC_RXBUFFER_2048)
2064
2065         if (rx_buffer->page_offset > IGC_LAST_OFFSET)
2066                 return false;
2067 #endif
2068
2069         /* If we have drained the page fragment pool we need to update
2070          * the pagecnt_bias and page count so that we fully restock the
2071          * number of references the driver holds.
2072          */
2073         if (unlikely(pagecnt_bias == 1)) {
2074                 page_ref_add(page, USHRT_MAX - 1);
2075                 rx_buffer->pagecnt_bias = USHRT_MAX;
2076         }
2077
2078         return true;
2079 }
2080
2081 /**
2082  * igc_is_non_eop - process handling of non-EOP buffers
2083  * @rx_ring: Rx ring being processed
2084  * @rx_desc: Rx descriptor for current buffer
2085  *
2086  * This function updates next to clean.  If the buffer is an EOP buffer
2087  * this function exits returning false, otherwise it will place the
2088  * sk_buff in the next buffer to be chained and return true indicating
2089  * that this is in fact a non-EOP buffer.
2090  */
2091 static bool igc_is_non_eop(struct igc_ring *rx_ring,
2092                            union igc_adv_rx_desc *rx_desc)
2093 {
2094         u32 ntc = rx_ring->next_to_clean + 1;
2095
2096         /* fetch, update, and store next to clean */
2097         ntc = (ntc < rx_ring->count) ? ntc : 0;
2098         rx_ring->next_to_clean = ntc;
2099
2100         prefetch(IGC_RX_DESC(rx_ring, ntc));
2101
2102         if (likely(igc_test_staterr(rx_desc, IGC_RXD_STAT_EOP)))
2103                 return false;
2104
2105         return true;
2106 }
2107
2108 /**
2109  * igc_cleanup_headers - Correct corrupted or empty headers
2110  * @rx_ring: rx descriptor ring packet is being transacted on
2111  * @rx_desc: pointer to the EOP Rx descriptor
2112  * @skb: pointer to current skb being fixed
2113  *
2114  * Address the case where we are pulling data in on pages only
2115  * and as such no data is present in the skb header.
2116  *
2117  * In addition if skb is not at least 60 bytes we need to pad it so that
2118  * it is large enough to qualify as a valid Ethernet frame.
2119  *
2120  * Returns true if an error was encountered and skb was freed.
2121  */
2122 static bool igc_cleanup_headers(struct igc_ring *rx_ring,
2123                                 union igc_adv_rx_desc *rx_desc,
2124                                 struct sk_buff *skb)
2125 {
2126         /* XDP packets use error pointer so abort at this point */
2127         if (IS_ERR(skb))
2128                 return true;
2129
2130         if (unlikely(igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_RXE))) {
2131                 struct net_device *netdev = rx_ring->netdev;
2132
2133                 if (!(netdev->features & NETIF_F_RXALL)) {
2134                         dev_kfree_skb_any(skb);
2135                         return true;
2136                 }
2137         }
2138
2139         /* if eth_skb_pad returns an error the skb was freed */
2140         if (eth_skb_pad(skb))
2141                 return true;
2142
2143         return false;
2144 }
2145
2146 static void igc_put_rx_buffer(struct igc_ring *rx_ring,
2147                               struct igc_rx_buffer *rx_buffer,
2148                               int rx_buffer_pgcnt)
2149 {
2150         if (igc_can_reuse_rx_page(rx_buffer, rx_buffer_pgcnt)) {
2151                 /* hand second half of page back to the ring */
2152                 igc_reuse_rx_page(rx_ring, rx_buffer);
2153         } else {
2154                 /* We are not reusing the buffer so unmap it and free
2155                  * any references we are holding to it
2156                  */
2157                 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
2158                                      igc_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
2159                                      IGC_RX_DMA_ATTR);
2160                 __page_frag_cache_drain(rx_buffer->page,
2161                                         rx_buffer->pagecnt_bias);
2162         }
2163
2164         /* clear contents of rx_buffer */
2165         rx_buffer->page = NULL;
2166 }
2167
2168 static inline unsigned int igc_rx_offset(struct igc_ring *rx_ring)
2169 {
2170         struct igc_adapter *adapter = rx_ring->q_vector->adapter;
2171
2172         if (ring_uses_build_skb(rx_ring))
2173                 return IGC_SKB_PAD;
2174         if (igc_xdp_is_enabled(adapter))
2175                 return XDP_PACKET_HEADROOM;
2176
2177         return 0;
2178 }
2179
2180 static bool igc_alloc_mapped_page(struct igc_ring *rx_ring,
2181                                   struct igc_rx_buffer *bi)
2182 {
2183         struct page *page = bi->page;
2184         dma_addr_t dma;
2185
2186         /* since we are recycling buffers we should seldom need to alloc */
2187         if (likely(page))
2188                 return true;
2189
2190         /* alloc new page for storage */
2191         page = dev_alloc_pages(igc_rx_pg_order(rx_ring));
2192         if (unlikely(!page)) {
2193                 rx_ring->rx_stats.alloc_failed++;
2194                 set_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags);
2195                 return false;
2196         }
2197
2198         /* map page for use */
2199         dma = dma_map_page_attrs(rx_ring->dev, page, 0,
2200                                  igc_rx_pg_size(rx_ring),
2201                                  DMA_FROM_DEVICE,
2202                                  IGC_RX_DMA_ATTR);
2203
2204         /* if mapping failed free memory back to system since
2205          * there isn't much point in holding memory we can't use
2206          */
2207         if (dma_mapping_error(rx_ring->dev, dma)) {
2208                 __free_page(page);
2209
2210                 rx_ring->rx_stats.alloc_failed++;
2211                 set_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags);
2212                 return false;
2213         }
2214
2215         bi->dma = dma;
2216         bi->page = page;
2217         bi->page_offset = igc_rx_offset(rx_ring);
2218         page_ref_add(page, USHRT_MAX - 1);
2219         bi->pagecnt_bias = USHRT_MAX;
2220
2221         return true;
2222 }
2223
2224 /**
2225  * igc_alloc_rx_buffers - Replace used receive buffers; packet split
2226  * @rx_ring: rx descriptor ring
2227  * @cleaned_count: number of buffers to clean
2228  */
2229 static void igc_alloc_rx_buffers(struct igc_ring *rx_ring, u16 cleaned_count)
2230 {
2231         union igc_adv_rx_desc *rx_desc;
2232         u16 i = rx_ring->next_to_use;
2233         struct igc_rx_buffer *bi;
2234         u16 bufsz;
2235
2236         /* nothing to do */
2237         if (!cleaned_count)
2238                 return;
2239
2240         rx_desc = IGC_RX_DESC(rx_ring, i);
2241         bi = &rx_ring->rx_buffer_info[i];
2242         i -= rx_ring->count;
2243
2244         bufsz = igc_rx_bufsz(rx_ring);
2245
2246         do {
2247                 if (!igc_alloc_mapped_page(rx_ring, bi))
2248                         break;
2249
2250                 /* sync the buffer for use by the device */
2251                 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
2252                                                  bi->page_offset, bufsz,
2253                                                  DMA_FROM_DEVICE);
2254
2255                 /* Refresh the desc even if buffer_addrs didn't change
2256                  * because each write-back erases this info.
2257                  */
2258                 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
2259
2260                 rx_desc++;
2261                 bi++;
2262                 i++;
2263                 if (unlikely(!i)) {
2264                         rx_desc = IGC_RX_DESC(rx_ring, 0);
2265                         bi = rx_ring->rx_buffer_info;
2266                         i -= rx_ring->count;
2267                 }
2268
2269                 /* clear the length for the next_to_use descriptor */
2270                 rx_desc->wb.upper.length = 0;
2271
2272                 cleaned_count--;
2273         } while (cleaned_count);
2274
2275         i += rx_ring->count;
2276
2277         if (rx_ring->next_to_use != i) {
2278                 /* record the next descriptor to use */
2279                 rx_ring->next_to_use = i;
2280
2281                 /* update next to alloc since we have filled the ring */
2282                 rx_ring->next_to_alloc = i;
2283
2284                 /* Force memory writes to complete before letting h/w
2285                  * know there are new descriptors to fetch.  (Only
2286                  * applicable for weak-ordered memory model archs,
2287                  * such as IA-64).
2288                  */
2289                 wmb();
2290                 writel(i, rx_ring->tail);
2291         }
2292 }
2293
2294 static bool igc_alloc_rx_buffers_zc(struct igc_ring *ring, u16 count)
2295 {
2296         union igc_adv_rx_desc *desc;
2297         u16 i = ring->next_to_use;
2298         struct igc_rx_buffer *bi;
2299         dma_addr_t dma;
2300         bool ok = true;
2301
2302         if (!count)
2303                 return ok;
2304
2305         XSK_CHECK_PRIV_TYPE(struct igc_xdp_buff);
2306
2307         desc = IGC_RX_DESC(ring, i);
2308         bi = &ring->rx_buffer_info[i];
2309         i -= ring->count;
2310
2311         do {
2312                 bi->xdp = xsk_buff_alloc(ring->xsk_pool);
2313                 if (!bi->xdp) {
2314                         ok = false;
2315                         break;
2316                 }
2317
2318                 dma = xsk_buff_xdp_get_dma(bi->xdp);
2319                 desc->read.pkt_addr = cpu_to_le64(dma);
2320
2321                 desc++;
2322                 bi++;
2323                 i++;
2324                 if (unlikely(!i)) {
2325                         desc = IGC_RX_DESC(ring, 0);
2326                         bi = ring->rx_buffer_info;
2327                         i -= ring->count;
2328                 }
2329
2330                 /* Clear the length for the next_to_use descriptor. */
2331                 desc->wb.upper.length = 0;
2332
2333                 count--;
2334         } while (count);
2335
2336         i += ring->count;
2337
2338         if (ring->next_to_use != i) {
2339                 ring->next_to_use = i;
2340
2341                 /* Force memory writes to complete before letting h/w
2342                  * know there are new descriptors to fetch.  (Only
2343                  * applicable for weak-ordered memory model archs,
2344                  * such as IA-64).
2345                  */
2346                 wmb();
2347                 writel(i, ring->tail);
2348         }
2349
2350         return ok;
2351 }
2352
2353 /* This function requires __netif_tx_lock is held by the caller. */
2354 static int igc_xdp_init_tx_descriptor(struct igc_ring *ring,
2355                                       struct xdp_frame *xdpf)
2356 {
2357         struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf);
2358         u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0;
2359         u16 count, index = ring->next_to_use;
2360         struct igc_tx_buffer *head = &ring->tx_buffer_info[index];
2361         struct igc_tx_buffer *buffer = head;
2362         union igc_adv_tx_desc *desc = IGC_TX_DESC(ring, index);
2363         u32 olinfo_status, len = xdpf->len, cmd_type;
2364         void *data = xdpf->data;
2365         u16 i;
2366
2367         count = TXD_USE_COUNT(len);
2368         for (i = 0; i < nr_frags; i++)
2369                 count += TXD_USE_COUNT(skb_frag_size(&sinfo->frags[i]));
2370
2371         if (igc_maybe_stop_tx(ring, count + 3)) {
2372                 /* this is a hard error */
2373                 return -EBUSY;
2374         }
2375
2376         i = 0;
2377         head->bytecount = xdp_get_frame_len(xdpf);
2378         head->type = IGC_TX_BUFFER_TYPE_XDP;
2379         head->gso_segs = 1;
2380         head->xdpf = xdpf;
2381
2382         olinfo_status = head->bytecount << IGC_ADVTXD_PAYLEN_SHIFT;
2383         desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2384
2385         for (;;) {
2386                 dma_addr_t dma;
2387
2388                 dma = dma_map_single(ring->dev, data, len, DMA_TO_DEVICE);
2389                 if (dma_mapping_error(ring->dev, dma)) {
2390                         netdev_err_once(ring->netdev,
2391                                         "Failed to map DMA for TX\n");
2392                         goto unmap;
2393                 }
2394
2395                 dma_unmap_len_set(buffer, len, len);
2396                 dma_unmap_addr_set(buffer, dma, dma);
2397
2398                 cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT |
2399                            IGC_ADVTXD_DCMD_IFCS | len;
2400
2401                 desc->read.cmd_type_len = cpu_to_le32(cmd_type);
2402                 desc->read.buffer_addr = cpu_to_le64(dma);
2403
2404                 buffer->protocol = 0;
2405
2406                 if (++index == ring->count)
2407                         index = 0;
2408
2409                 if (i == nr_frags)
2410                         break;
2411
2412                 buffer = &ring->tx_buffer_info[index];
2413                 desc = IGC_TX_DESC(ring, index);
2414                 desc->read.olinfo_status = 0;
2415
2416                 data = skb_frag_address(&sinfo->frags[i]);
2417                 len = skb_frag_size(&sinfo->frags[i]);
2418                 i++;
2419         }
2420         desc->read.cmd_type_len |= cpu_to_le32(IGC_TXD_DCMD);
2421
2422         netdev_tx_sent_queue(txring_txq(ring), head->bytecount);
2423         /* set the timestamp */
2424         head->time_stamp = jiffies;
2425         /* set next_to_watch value indicating a packet is present */
2426         head->next_to_watch = desc;
2427         ring->next_to_use = index;
2428
2429         return 0;
2430
2431 unmap:
2432         for (;;) {
2433                 buffer = &ring->tx_buffer_info[index];
2434                 if (dma_unmap_len(buffer, len))
2435                         dma_unmap_page(ring->dev,
2436                                        dma_unmap_addr(buffer, dma),
2437                                        dma_unmap_len(buffer, len),
2438                                        DMA_TO_DEVICE);
2439                 dma_unmap_len_set(buffer, len, 0);
2440                 if (buffer == head)
2441                         break;
2442
2443                 if (!index)
2444                         index += ring->count;
2445                 index--;
2446         }
2447
2448         return -ENOMEM;
2449 }
2450
2451 static struct igc_ring *igc_xdp_get_tx_ring(struct igc_adapter *adapter,
2452                                             int cpu)
2453 {
2454         int index = cpu;
2455
2456         if (unlikely(index < 0))
2457                 index = 0;
2458
2459         while (index >= adapter->num_tx_queues)
2460                 index -= adapter->num_tx_queues;
2461
2462         return adapter->tx_ring[index];
2463 }
2464
2465 static int igc_xdp_xmit_back(struct igc_adapter *adapter, struct xdp_buff *xdp)
2466 {
2467         struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2468         int cpu = smp_processor_id();
2469         struct netdev_queue *nq;
2470         struct igc_ring *ring;
2471         int res;
2472
2473         if (unlikely(!xdpf))
2474                 return -EFAULT;
2475
2476         ring = igc_xdp_get_tx_ring(adapter, cpu);
2477         nq = txring_txq(ring);
2478
2479         __netif_tx_lock(nq, cpu);
2480         /* Avoid transmit queue timeout since we share it with the slow path */
2481         txq_trans_cond_update(nq);
2482         res = igc_xdp_init_tx_descriptor(ring, xdpf);
2483         __netif_tx_unlock(nq);
2484         return res;
2485 }
2486
2487 /* This function assumes rcu_read_lock() is held by the caller. */
2488 static int __igc_xdp_run_prog(struct igc_adapter *adapter,
2489                               struct bpf_prog *prog,
2490                               struct xdp_buff *xdp)
2491 {
2492         u32 act = bpf_prog_run_xdp(prog, xdp);
2493
2494         switch (act) {
2495         case XDP_PASS:
2496                 return IGC_XDP_PASS;
2497         case XDP_TX:
2498                 if (igc_xdp_xmit_back(adapter, xdp) < 0)
2499                         goto out_failure;
2500                 return IGC_XDP_TX;
2501         case XDP_REDIRECT:
2502                 if (xdp_do_redirect(adapter->netdev, xdp, prog) < 0)
2503                         goto out_failure;
2504                 return IGC_XDP_REDIRECT;
2505                 break;
2506         default:
2507                 bpf_warn_invalid_xdp_action(adapter->netdev, prog, act);
2508                 fallthrough;
2509         case XDP_ABORTED:
2510 out_failure:
2511                 trace_xdp_exception(adapter->netdev, prog, act);
2512                 fallthrough;
2513         case XDP_DROP:
2514                 return IGC_XDP_CONSUMED;
2515         }
2516 }
2517
2518 static struct sk_buff *igc_xdp_run_prog(struct igc_adapter *adapter,
2519                                         struct xdp_buff *xdp)
2520 {
2521         struct bpf_prog *prog;
2522         int res;
2523
2524         prog = READ_ONCE(adapter->xdp_prog);
2525         if (!prog) {
2526                 res = IGC_XDP_PASS;
2527                 goto out;
2528         }
2529
2530         res = __igc_xdp_run_prog(adapter, prog, xdp);
2531
2532 out:
2533         return ERR_PTR(-res);
2534 }
2535
2536 /* This function assumes __netif_tx_lock is held by the caller. */
2537 static void igc_flush_tx_descriptors(struct igc_ring *ring)
2538 {
2539         /* Once tail pointer is updated, hardware can fetch the descriptors
2540          * any time so we issue a write membar here to ensure all memory
2541          * writes are complete before the tail pointer is updated.
2542          */
2543         wmb();
2544         writel(ring->next_to_use, ring->tail);
2545 }
2546
2547 static void igc_finalize_xdp(struct igc_adapter *adapter, int status)
2548 {
2549         int cpu = smp_processor_id();
2550         struct netdev_queue *nq;
2551         struct igc_ring *ring;
2552
2553         if (status & IGC_XDP_TX) {
2554                 ring = igc_xdp_get_tx_ring(adapter, cpu);
2555                 nq = txring_txq(ring);
2556
2557                 __netif_tx_lock(nq, cpu);
2558                 igc_flush_tx_descriptors(ring);
2559                 __netif_tx_unlock(nq);
2560         }
2561
2562         if (status & IGC_XDP_REDIRECT)
2563                 xdp_do_flush();
2564 }
2565
2566 static void igc_update_rx_stats(struct igc_q_vector *q_vector,
2567                                 unsigned int packets, unsigned int bytes)
2568 {
2569         struct igc_ring *ring = q_vector->rx.ring;
2570
2571         u64_stats_update_begin(&ring->rx_syncp);
2572         ring->rx_stats.packets += packets;
2573         ring->rx_stats.bytes += bytes;
2574         u64_stats_update_end(&ring->rx_syncp);
2575
2576         q_vector->rx.total_packets += packets;
2577         q_vector->rx.total_bytes += bytes;
2578 }
2579
2580 static int igc_clean_rx_irq(struct igc_q_vector *q_vector, const int budget)
2581 {
2582         unsigned int total_bytes = 0, total_packets = 0;
2583         struct igc_adapter *adapter = q_vector->adapter;
2584         struct igc_ring *rx_ring = q_vector->rx.ring;
2585         struct sk_buff *skb = rx_ring->skb;
2586         u16 cleaned_count = igc_desc_unused(rx_ring);
2587         int xdp_status = 0, rx_buffer_pgcnt;
2588
2589         while (likely(total_packets < budget)) {
2590                 struct igc_xdp_buff ctx = { .rx_ts = NULL };
2591                 struct igc_rx_buffer *rx_buffer;
2592                 union igc_adv_rx_desc *rx_desc;
2593                 unsigned int size, truesize;
2594                 int pkt_offset = 0;
2595                 void *pktbuf;
2596
2597                 /* return some buffers to hardware, one at a time is too slow */
2598                 if (cleaned_count >= IGC_RX_BUFFER_WRITE) {
2599                         igc_alloc_rx_buffers(rx_ring, cleaned_count);
2600                         cleaned_count = 0;
2601                 }
2602
2603                 rx_desc = IGC_RX_DESC(rx_ring, rx_ring->next_to_clean);
2604                 size = le16_to_cpu(rx_desc->wb.upper.length);
2605                 if (!size)
2606                         break;
2607
2608                 /* This memory barrier is needed to keep us from reading
2609                  * any other fields out of the rx_desc until we know the
2610                  * descriptor has been written back
2611                  */
2612                 dma_rmb();
2613
2614                 rx_buffer = igc_get_rx_buffer(rx_ring, size, &rx_buffer_pgcnt);
2615                 truesize = igc_get_rx_frame_truesize(rx_ring, size);
2616
2617                 pktbuf = page_address(rx_buffer->page) + rx_buffer->page_offset;
2618
2619                 if (igc_test_staterr(rx_desc, IGC_RXDADV_STAT_TSIP)) {
2620                         ctx.rx_ts = pktbuf;
2621                         pkt_offset = IGC_TS_HDR_LEN;
2622                         size -= IGC_TS_HDR_LEN;
2623                 }
2624
2625                 if (!skb) {
2626                         xdp_init_buff(&ctx.xdp, truesize, &rx_ring->xdp_rxq);
2627                         xdp_prepare_buff(&ctx.xdp, pktbuf - igc_rx_offset(rx_ring),
2628                                          igc_rx_offset(rx_ring) + pkt_offset,
2629                                          size, true);
2630                         xdp_buff_clear_frags_flag(&ctx.xdp);
2631                         ctx.rx_desc = rx_desc;
2632
2633                         skb = igc_xdp_run_prog(adapter, &ctx.xdp);
2634                 }
2635
2636                 if (IS_ERR(skb)) {
2637                         unsigned int xdp_res = -PTR_ERR(skb);
2638
2639                         switch (xdp_res) {
2640                         case IGC_XDP_CONSUMED:
2641                                 rx_buffer->pagecnt_bias++;
2642                                 break;
2643                         case IGC_XDP_TX:
2644                         case IGC_XDP_REDIRECT:
2645                                 igc_rx_buffer_flip(rx_buffer, truesize);
2646                                 xdp_status |= xdp_res;
2647                                 break;
2648                         }
2649
2650                         total_packets++;
2651                         total_bytes += size;
2652                 } else if (skb)
2653                         igc_add_rx_frag(rx_ring, rx_buffer, skb, size);
2654                 else if (ring_uses_build_skb(rx_ring))
2655                         skb = igc_build_skb(rx_ring, rx_buffer, &ctx.xdp);
2656                 else
2657                         skb = igc_construct_skb(rx_ring, rx_buffer, &ctx);
2658
2659                 /* exit if we failed to retrieve a buffer */
2660                 if (!skb) {
2661                         rx_ring->rx_stats.alloc_failed++;
2662                         rx_buffer->pagecnt_bias++;
2663                         set_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags);
2664                         break;
2665                 }
2666
2667                 igc_put_rx_buffer(rx_ring, rx_buffer, rx_buffer_pgcnt);
2668                 cleaned_count++;
2669
2670                 /* fetch next buffer in frame if non-eop */
2671                 if (igc_is_non_eop(rx_ring, rx_desc))
2672                         continue;
2673
2674                 /* verify the packet layout is correct */
2675                 if (igc_cleanup_headers(rx_ring, rx_desc, skb)) {
2676                         skb = NULL;
2677                         continue;
2678                 }
2679
2680                 /* probably a little skewed due to removing CRC */
2681                 total_bytes += skb->len;
2682
2683                 /* populate checksum, VLAN, and protocol */
2684                 igc_process_skb_fields(rx_ring, rx_desc, skb);
2685
2686                 napi_gro_receive(&q_vector->napi, skb);
2687
2688                 /* reset skb pointer */
2689                 skb = NULL;
2690
2691                 /* update budget accounting */
2692                 total_packets++;
2693         }
2694
2695         if (xdp_status)
2696                 igc_finalize_xdp(adapter, xdp_status);
2697
2698         /* place incomplete frames back on ring for completion */
2699         rx_ring->skb = skb;
2700
2701         igc_update_rx_stats(q_vector, total_packets, total_bytes);
2702
2703         if (cleaned_count)
2704                 igc_alloc_rx_buffers(rx_ring, cleaned_count);
2705
2706         return total_packets;
2707 }
2708
2709 static struct sk_buff *igc_construct_skb_zc(struct igc_ring *ring,
2710                                             struct xdp_buff *xdp)
2711 {
2712         unsigned int totalsize = xdp->data_end - xdp->data_meta;
2713         unsigned int metasize = xdp->data - xdp->data_meta;
2714         struct sk_buff *skb;
2715
2716         net_prefetch(xdp->data_meta);
2717
2718         skb = napi_alloc_skb(&ring->q_vector->napi, totalsize);
2719         if (unlikely(!skb))
2720                 return NULL;
2721
2722         memcpy(__skb_put(skb, totalsize), xdp->data_meta,
2723                ALIGN(totalsize, sizeof(long)));
2724
2725         if (metasize) {
2726                 skb_metadata_set(skb, metasize);
2727                 __skb_pull(skb, metasize);
2728         }
2729
2730         return skb;
2731 }
2732
2733 static void igc_dispatch_skb_zc(struct igc_q_vector *q_vector,
2734                                 union igc_adv_rx_desc *desc,
2735                                 struct xdp_buff *xdp,
2736                                 ktime_t timestamp)
2737 {
2738         struct igc_ring *ring = q_vector->rx.ring;
2739         struct sk_buff *skb;
2740
2741         skb = igc_construct_skb_zc(ring, xdp);
2742         if (!skb) {
2743                 ring->rx_stats.alloc_failed++;
2744                 set_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &ring->flags);
2745                 return;
2746         }
2747
2748         if (timestamp)
2749                 skb_hwtstamps(skb)->hwtstamp = timestamp;
2750
2751         if (igc_cleanup_headers(ring, desc, skb))
2752                 return;
2753
2754         igc_process_skb_fields(ring, desc, skb);
2755         napi_gro_receive(&q_vector->napi, skb);
2756 }
2757
2758 static struct igc_xdp_buff *xsk_buff_to_igc_ctx(struct xdp_buff *xdp)
2759 {
2760         /* xdp_buff pointer used by ZC code path is alloc as xdp_buff_xsk. The
2761          * igc_xdp_buff shares its layout with xdp_buff_xsk and private
2762          * igc_xdp_buff fields fall into xdp_buff_xsk->cb
2763          */
2764        return (struct igc_xdp_buff *)xdp;
2765 }
2766
2767 static int igc_clean_rx_irq_zc(struct igc_q_vector *q_vector, const int budget)
2768 {
2769         struct igc_adapter *adapter = q_vector->adapter;
2770         struct igc_ring *ring = q_vector->rx.ring;
2771         u16 cleaned_count = igc_desc_unused(ring);
2772         int total_bytes = 0, total_packets = 0;
2773         u16 ntc = ring->next_to_clean;
2774         struct bpf_prog *prog;
2775         bool failure = false;
2776         int xdp_status = 0;
2777
2778         rcu_read_lock();
2779
2780         prog = READ_ONCE(adapter->xdp_prog);
2781
2782         while (likely(total_packets < budget)) {
2783                 union igc_adv_rx_desc *desc;
2784                 struct igc_rx_buffer *bi;
2785                 struct igc_xdp_buff *ctx;
2786                 ktime_t timestamp = 0;
2787                 unsigned int size;
2788                 int res;
2789
2790                 desc = IGC_RX_DESC(ring, ntc);
2791                 size = le16_to_cpu(desc->wb.upper.length);
2792                 if (!size)
2793                         break;
2794
2795                 /* This memory barrier is needed to keep us from reading
2796                  * any other fields out of the rx_desc until we know the
2797                  * descriptor has been written back
2798                  */
2799                 dma_rmb();
2800
2801                 bi = &ring->rx_buffer_info[ntc];
2802
2803                 ctx = xsk_buff_to_igc_ctx(bi->xdp);
2804                 ctx->rx_desc = desc;
2805
2806                 if (igc_test_staterr(desc, IGC_RXDADV_STAT_TSIP)) {
2807                         ctx->rx_ts = bi->xdp->data;
2808
2809                         bi->xdp->data += IGC_TS_HDR_LEN;
2810
2811                         /* HW timestamp has been copied into local variable. Metadata
2812                          * length when XDP program is called should be 0.
2813                          */
2814                         bi->xdp->data_meta += IGC_TS_HDR_LEN;
2815                         size -= IGC_TS_HDR_LEN;
2816                 }
2817
2818                 bi->xdp->data_end = bi->xdp->data + size;
2819                 xsk_buff_dma_sync_for_cpu(bi->xdp);
2820
2821                 res = __igc_xdp_run_prog(adapter, prog, bi->xdp);
2822                 switch (res) {
2823                 case IGC_XDP_PASS:
2824                         igc_dispatch_skb_zc(q_vector, desc, bi->xdp, timestamp);
2825                         fallthrough;
2826                 case IGC_XDP_CONSUMED:
2827                         xsk_buff_free(bi->xdp);
2828                         break;
2829                 case IGC_XDP_TX:
2830                 case IGC_XDP_REDIRECT:
2831                         xdp_status |= res;
2832                         break;
2833                 }
2834
2835                 bi->xdp = NULL;
2836                 total_bytes += size;
2837                 total_packets++;
2838                 cleaned_count++;
2839                 ntc++;
2840                 if (ntc == ring->count)
2841                         ntc = 0;
2842         }
2843
2844         ring->next_to_clean = ntc;
2845         rcu_read_unlock();
2846
2847         if (cleaned_count >= IGC_RX_BUFFER_WRITE)
2848                 failure = !igc_alloc_rx_buffers_zc(ring, cleaned_count);
2849
2850         if (xdp_status)
2851                 igc_finalize_xdp(adapter, xdp_status);
2852
2853         igc_update_rx_stats(q_vector, total_packets, total_bytes);
2854
2855         if (xsk_uses_need_wakeup(ring->xsk_pool)) {
2856                 if (failure || ring->next_to_clean == ring->next_to_use)
2857                         xsk_set_rx_need_wakeup(ring->xsk_pool);
2858                 else
2859                         xsk_clear_rx_need_wakeup(ring->xsk_pool);
2860                 return total_packets;
2861         }
2862
2863         return failure ? budget : total_packets;
2864 }
2865
2866 static void igc_update_tx_stats(struct igc_q_vector *q_vector,
2867                                 unsigned int packets, unsigned int bytes)
2868 {
2869         struct igc_ring *ring = q_vector->tx.ring;
2870
2871         u64_stats_update_begin(&ring->tx_syncp);
2872         ring->tx_stats.bytes += bytes;
2873         ring->tx_stats.packets += packets;
2874         u64_stats_update_end(&ring->tx_syncp);
2875
2876         q_vector->tx.total_bytes += bytes;
2877         q_vector->tx.total_packets += packets;
2878 }
2879
2880 static void igc_xsk_request_timestamp(void *_priv)
2881 {
2882         struct igc_metadata_request *meta_req = _priv;
2883         struct igc_ring *tx_ring = meta_req->tx_ring;
2884         struct igc_tx_timestamp_request *tstamp;
2885         u32 tx_flags = IGC_TX_FLAGS_TSTAMP;
2886         struct igc_adapter *adapter;
2887         unsigned long lock_flags;
2888         bool found = false;
2889         int i;
2890
2891         if (test_bit(IGC_RING_FLAG_TX_HWTSTAMP, &tx_ring->flags)) {
2892                 adapter = netdev_priv(tx_ring->netdev);
2893
2894                 spin_lock_irqsave(&adapter->ptp_tx_lock, lock_flags);
2895
2896                 /* Search for available tstamp regs */
2897                 for (i = 0; i < IGC_MAX_TX_TSTAMP_REGS; i++) {
2898                         tstamp = &adapter->tx_tstamp[i];
2899
2900                         /* tstamp->skb and tstamp->xsk_tx_buffer are in union.
2901                          * When tstamp->skb is equal to NULL,
2902                          * tstamp->xsk_tx_buffer is equal to NULL as well.
2903                          * This condition means that the particular tstamp reg
2904                          * is not occupied by other packet.
2905                          */
2906                         if (!tstamp->skb) {
2907                                 found = true;
2908                                 break;
2909                         }
2910                 }
2911
2912                 /* Return if no available tstamp regs */
2913                 if (!found) {
2914                         adapter->tx_hwtstamp_skipped++;
2915                         spin_unlock_irqrestore(&adapter->ptp_tx_lock,
2916                                                lock_flags);
2917                         return;
2918                 }
2919
2920                 tstamp->start = jiffies;
2921                 tstamp->xsk_queue_index = tx_ring->queue_index;
2922                 tstamp->xsk_tx_buffer = meta_req->tx_buffer;
2923                 tstamp->buffer_type = IGC_TX_BUFFER_TYPE_XSK;
2924
2925                 /* Hold the transmit completion until timestamp is ready */
2926                 meta_req->tx_buffer->xsk_pending_ts = true;
2927
2928                 /* Keep the pointer to tx_timestamp, which is located in XDP
2929                  * metadata area. It is the location to store the value of
2930                  * tx hardware timestamp.
2931                  */
2932                 xsk_tx_metadata_to_compl(meta_req->meta, &tstamp->xsk_meta);
2933
2934                 /* Set timestamp bit based on the _TSTAMP(_X) bit. */
2935                 tx_flags |= tstamp->flags;
2936                 meta_req->cmd_type |= IGC_SET_FLAG(tx_flags,
2937                                                    IGC_TX_FLAGS_TSTAMP,
2938                                                    (IGC_ADVTXD_MAC_TSTAMP));
2939                 meta_req->cmd_type |= IGC_SET_FLAG(tx_flags,
2940                                                    IGC_TX_FLAGS_TSTAMP_1,
2941                                                    (IGC_ADVTXD_TSTAMP_REG_1));
2942                 meta_req->cmd_type |= IGC_SET_FLAG(tx_flags,
2943                                                    IGC_TX_FLAGS_TSTAMP_2,
2944                                                    (IGC_ADVTXD_TSTAMP_REG_2));
2945                 meta_req->cmd_type |= IGC_SET_FLAG(tx_flags,
2946                                                    IGC_TX_FLAGS_TSTAMP_3,
2947                                                    (IGC_ADVTXD_TSTAMP_REG_3));
2948
2949                 spin_unlock_irqrestore(&adapter->ptp_tx_lock, lock_flags);
2950         }
2951 }
2952
2953 static u64 igc_xsk_fill_timestamp(void *_priv)
2954 {
2955         return *(u64 *)_priv;
2956 }
2957
2958 const struct xsk_tx_metadata_ops igc_xsk_tx_metadata_ops = {
2959         .tmo_request_timestamp          = igc_xsk_request_timestamp,
2960         .tmo_fill_timestamp             = igc_xsk_fill_timestamp,
2961 };
2962
2963 static void igc_xdp_xmit_zc(struct igc_ring *ring)
2964 {
2965         struct xsk_buff_pool *pool = ring->xsk_pool;
2966         struct netdev_queue *nq = txring_txq(ring);
2967         union igc_adv_tx_desc *tx_desc = NULL;
2968         int cpu = smp_processor_id();
2969         struct xdp_desc xdp_desc;
2970         u16 budget, ntu;
2971
2972         if (!netif_carrier_ok(ring->netdev))
2973                 return;
2974
2975         __netif_tx_lock(nq, cpu);
2976
2977         /* Avoid transmit queue timeout since we share it with the slow path */
2978         txq_trans_cond_update(nq);
2979
2980         ntu = ring->next_to_use;
2981         budget = igc_desc_unused(ring);
2982
2983         while (xsk_tx_peek_desc(pool, &xdp_desc) && budget--) {
2984                 struct igc_metadata_request meta_req;
2985                 struct xsk_tx_metadata *meta = NULL;
2986                 struct igc_tx_buffer *bi;
2987                 u32 olinfo_status;
2988                 dma_addr_t dma;
2989
2990                 meta_req.cmd_type = IGC_ADVTXD_DTYP_DATA |
2991                                     IGC_ADVTXD_DCMD_DEXT |
2992                                     IGC_ADVTXD_DCMD_IFCS |
2993                                     IGC_TXD_DCMD | xdp_desc.len;
2994                 olinfo_status = xdp_desc.len << IGC_ADVTXD_PAYLEN_SHIFT;
2995
2996                 dma = xsk_buff_raw_get_dma(pool, xdp_desc.addr);
2997                 meta = xsk_buff_get_metadata(pool, xdp_desc.addr);
2998                 xsk_buff_raw_dma_sync_for_device(pool, dma, xdp_desc.len);
2999                 bi = &ring->tx_buffer_info[ntu];
3000
3001                 meta_req.tx_ring = ring;
3002                 meta_req.tx_buffer = bi;
3003                 meta_req.meta = meta;
3004                 xsk_tx_metadata_request(meta, &igc_xsk_tx_metadata_ops,
3005                                         &meta_req);
3006
3007                 tx_desc = IGC_TX_DESC(ring, ntu);
3008                 tx_desc->read.cmd_type_len = cpu_to_le32(meta_req.cmd_type);
3009                 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
3010                 tx_desc->read.buffer_addr = cpu_to_le64(dma);
3011
3012                 bi->type = IGC_TX_BUFFER_TYPE_XSK;
3013                 bi->protocol = 0;
3014                 bi->bytecount = xdp_desc.len;
3015                 bi->gso_segs = 1;
3016                 bi->time_stamp = jiffies;
3017                 bi->next_to_watch = tx_desc;
3018
3019                 netdev_tx_sent_queue(txring_txq(ring), xdp_desc.len);
3020
3021                 ntu++;
3022                 if (ntu == ring->count)
3023                         ntu = 0;
3024         }
3025
3026         ring->next_to_use = ntu;
3027         if (tx_desc) {
3028                 igc_flush_tx_descriptors(ring);
3029                 xsk_tx_release(pool);
3030         }
3031
3032         __netif_tx_unlock(nq);
3033 }
3034
3035 /**
3036  * igc_clean_tx_irq - Reclaim resources after transmit completes
3037  * @q_vector: pointer to q_vector containing needed info
3038  * @napi_budget: Used to determine if we are in netpoll
3039  *
3040  * returns true if ring is completely cleaned
3041  */
3042 static bool igc_clean_tx_irq(struct igc_q_vector *q_vector, int napi_budget)
3043 {
3044         struct igc_adapter *adapter = q_vector->adapter;
3045         unsigned int total_bytes = 0, total_packets = 0;
3046         unsigned int budget = q_vector->tx.work_limit;
3047         struct igc_ring *tx_ring = q_vector->tx.ring;
3048         unsigned int i = tx_ring->next_to_clean;
3049         struct igc_tx_buffer *tx_buffer;
3050         union igc_adv_tx_desc *tx_desc;
3051         u32 xsk_frames = 0;
3052
3053         if (test_bit(__IGC_DOWN, &adapter->state))
3054                 return true;
3055
3056         tx_buffer = &tx_ring->tx_buffer_info[i];
3057         tx_desc = IGC_TX_DESC(tx_ring, i);
3058         i -= tx_ring->count;
3059
3060         do {
3061                 union igc_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
3062
3063                 /* if next_to_watch is not set then there is no work pending */
3064                 if (!eop_desc)
3065                         break;
3066
3067                 /* prevent any other reads prior to eop_desc */
3068                 smp_rmb();
3069
3070                 /* if DD is not set pending work has not been completed */
3071                 if (!(eop_desc->wb.status & cpu_to_le32(IGC_TXD_STAT_DD)))
3072                         break;
3073
3074                 /* Hold the completions while there's a pending tx hardware
3075                  * timestamp request from XDP Tx metadata.
3076                  */
3077                 if (tx_buffer->type == IGC_TX_BUFFER_TYPE_XSK &&
3078                     tx_buffer->xsk_pending_ts)
3079                         break;
3080
3081                 /* clear next_to_watch to prevent false hangs */
3082                 tx_buffer->next_to_watch = NULL;
3083
3084                 /* update the statistics for this packet */
3085                 total_bytes += tx_buffer->bytecount;
3086                 total_packets += tx_buffer->gso_segs;
3087
3088                 switch (tx_buffer->type) {
3089                 case IGC_TX_BUFFER_TYPE_XSK:
3090                         xsk_frames++;
3091                         break;
3092                 case IGC_TX_BUFFER_TYPE_XDP:
3093                         xdp_return_frame(tx_buffer->xdpf);
3094                         igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
3095                         break;
3096                 case IGC_TX_BUFFER_TYPE_SKB:
3097                         napi_consume_skb(tx_buffer->skb, napi_budget);
3098                         igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
3099                         break;
3100                 default:
3101                         netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n");
3102                         break;
3103                 }
3104
3105                 /* clear last DMA location and unmap remaining buffers */
3106                 while (tx_desc != eop_desc) {
3107                         tx_buffer++;
3108                         tx_desc++;
3109                         i++;
3110                         if (unlikely(!i)) {
3111                                 i -= tx_ring->count;
3112                                 tx_buffer = tx_ring->tx_buffer_info;
3113                                 tx_desc = IGC_TX_DESC(tx_ring, 0);
3114                         }
3115
3116                         /* unmap any remaining paged data */
3117                         if (dma_unmap_len(tx_buffer, len))
3118                                 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
3119                 }
3120
3121                 /* move us one more past the eop_desc for start of next pkt */
3122                 tx_buffer++;
3123                 tx_desc++;
3124                 i++;
3125                 if (unlikely(!i)) {
3126                         i -= tx_ring->count;
3127                         tx_buffer = tx_ring->tx_buffer_info;
3128                         tx_desc = IGC_TX_DESC(tx_ring, 0);
3129                 }
3130
3131                 /* issue prefetch for next Tx descriptor */
3132                 prefetch(tx_desc);
3133
3134                 /* update budget accounting */
3135                 budget--;
3136         } while (likely(budget));
3137
3138         netdev_tx_completed_queue(txring_txq(tx_ring),
3139                                   total_packets, total_bytes);
3140
3141         i += tx_ring->count;
3142         tx_ring->next_to_clean = i;
3143
3144         igc_update_tx_stats(q_vector, total_packets, total_bytes);
3145
3146         if (tx_ring->xsk_pool) {
3147                 if (xsk_frames)
3148                         xsk_tx_completed(tx_ring->xsk_pool, xsk_frames);
3149                 if (xsk_uses_need_wakeup(tx_ring->xsk_pool))
3150                         xsk_set_tx_need_wakeup(tx_ring->xsk_pool);
3151                 igc_xdp_xmit_zc(tx_ring);
3152         }
3153
3154         if (test_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
3155                 struct igc_hw *hw = &adapter->hw;
3156
3157                 /* Detect a transmit hang in hardware, this serializes the
3158                  * check with the clearing of time_stamp and movement of i
3159                  */
3160                 clear_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
3161                 if (tx_buffer->next_to_watch &&
3162                     time_after(jiffies, tx_buffer->time_stamp +
3163                     (adapter->tx_timeout_factor * HZ)) &&
3164                     !(rd32(IGC_STATUS) & IGC_STATUS_TXOFF) &&
3165                     (rd32(IGC_TDH(tx_ring->reg_idx)) != readl(tx_ring->tail)) &&
3166                     !tx_ring->oper_gate_closed) {
3167                         /* detected Tx unit hang */
3168                         netdev_err(tx_ring->netdev,
3169                                    "Detected Tx Unit Hang\n"
3170                                    "  Tx Queue             <%d>\n"
3171                                    "  TDH                  <%x>\n"
3172                                    "  TDT                  <%x>\n"
3173                                    "  next_to_use          <%x>\n"
3174                                    "  next_to_clean        <%x>\n"
3175                                    "buffer_info[next_to_clean]\n"
3176                                    "  time_stamp           <%lx>\n"
3177                                    "  next_to_watch        <%p>\n"
3178                                    "  jiffies              <%lx>\n"
3179                                    "  desc.status          <%x>\n",
3180                                    tx_ring->queue_index,
3181                                    rd32(IGC_TDH(tx_ring->reg_idx)),
3182                                    readl(tx_ring->tail),
3183                                    tx_ring->next_to_use,
3184                                    tx_ring->next_to_clean,
3185                                    tx_buffer->time_stamp,
3186                                    tx_buffer->next_to_watch,
3187                                    jiffies,
3188                                    tx_buffer->next_to_watch->wb.status);
3189                         netif_stop_subqueue(tx_ring->netdev,
3190                                             tx_ring->queue_index);
3191
3192                         /* we are about to reset, no point in enabling stuff */
3193                         return true;
3194                 }
3195         }
3196
3197 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
3198         if (unlikely(total_packets &&
3199                      netif_carrier_ok(tx_ring->netdev) &&
3200                      igc_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
3201                 /* Make sure that anybody stopping the queue after this
3202                  * sees the new next_to_clean.
3203                  */
3204                 smp_mb();
3205                 if (__netif_subqueue_stopped(tx_ring->netdev,
3206                                              tx_ring->queue_index) &&
3207                     !(test_bit(__IGC_DOWN, &adapter->state))) {
3208                         netif_wake_subqueue(tx_ring->netdev,
3209                                             tx_ring->queue_index);
3210
3211                         u64_stats_update_begin(&tx_ring->tx_syncp);
3212                         tx_ring->tx_stats.restart_queue++;
3213                         u64_stats_update_end(&tx_ring->tx_syncp);
3214                 }
3215         }
3216
3217         return !!budget;
3218 }
3219
3220 static int igc_find_mac_filter(struct igc_adapter *adapter,
3221                                enum igc_mac_filter_type type, const u8 *addr)
3222 {
3223         struct igc_hw *hw = &adapter->hw;
3224         int max_entries = hw->mac.rar_entry_count;
3225         u32 ral, rah;
3226         int i;
3227
3228         for (i = 0; i < max_entries; i++) {
3229                 ral = rd32(IGC_RAL(i));
3230                 rah = rd32(IGC_RAH(i));
3231
3232                 if (!(rah & IGC_RAH_AV))
3233                         continue;
3234                 if (!!(rah & IGC_RAH_ASEL_SRC_ADDR) != type)
3235                         continue;
3236                 if ((rah & IGC_RAH_RAH_MASK) !=
3237                     le16_to_cpup((__le16 *)(addr + 4)))
3238                         continue;
3239                 if (ral != le32_to_cpup((__le32 *)(addr)))
3240                         continue;
3241
3242                 return i;
3243         }
3244
3245         return -1;
3246 }
3247
3248 static int igc_get_avail_mac_filter_slot(struct igc_adapter *adapter)
3249 {
3250         struct igc_hw *hw = &adapter->hw;
3251         int max_entries = hw->mac.rar_entry_count;
3252         u32 rah;
3253         int i;
3254
3255         for (i = 0; i < max_entries; i++) {
3256                 rah = rd32(IGC_RAH(i));
3257
3258                 if (!(rah & IGC_RAH_AV))
3259                         return i;
3260         }
3261
3262         return -1;
3263 }
3264
3265 /**
3266  * igc_add_mac_filter() - Add MAC address filter
3267  * @adapter: Pointer to adapter where the filter should be added
3268  * @type: MAC address filter type (source or destination)
3269  * @addr: MAC address
3270  * @queue: If non-negative, queue assignment feature is enabled and frames
3271  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
3272  *         assignment is disabled.
3273  *
3274  * Return: 0 in case of success, negative errno code otherwise.
3275  */
3276 static int igc_add_mac_filter(struct igc_adapter *adapter,
3277                               enum igc_mac_filter_type type, const u8 *addr,
3278                               int queue)
3279 {
3280         struct net_device *dev = adapter->netdev;
3281         int index;
3282
3283         index = igc_find_mac_filter(adapter, type, addr);
3284         if (index >= 0)
3285                 goto update_filter;
3286
3287         index = igc_get_avail_mac_filter_slot(adapter);
3288         if (index < 0)
3289                 return -ENOSPC;
3290
3291         netdev_dbg(dev, "Add MAC address filter: index %d type %s address %pM queue %d\n",
3292                    index, type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
3293                    addr, queue);
3294
3295 update_filter:
3296         igc_set_mac_filter_hw(adapter, index, type, addr, queue);
3297         return 0;
3298 }
3299
3300 /**
3301  * igc_del_mac_filter() - Delete MAC address filter
3302  * @adapter: Pointer to adapter where the filter should be deleted from
3303  * @type: MAC address filter type (source or destination)
3304  * @addr: MAC address
3305  */
3306 static void igc_del_mac_filter(struct igc_adapter *adapter,
3307                                enum igc_mac_filter_type type, const u8 *addr)
3308 {
3309         struct net_device *dev = adapter->netdev;
3310         int index;
3311
3312         index = igc_find_mac_filter(adapter, type, addr);
3313         if (index < 0)
3314                 return;
3315
3316         if (index == 0) {
3317                 /* If this is the default filter, we don't actually delete it.
3318                  * We just reset to its default value i.e. disable queue
3319                  * assignment.
3320                  */
3321                 netdev_dbg(dev, "Disable default MAC filter queue assignment");
3322
3323                 igc_set_mac_filter_hw(adapter, 0, type, addr, -1);
3324         } else {
3325                 netdev_dbg(dev, "Delete MAC address filter: index %d type %s address %pM\n",
3326                            index,
3327                            type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
3328                            addr);
3329
3330                 igc_clear_mac_filter_hw(adapter, index);
3331         }
3332 }
3333
3334 /**
3335  * igc_add_vlan_prio_filter() - Add VLAN priority filter
3336  * @adapter: Pointer to adapter where the filter should be added
3337  * @prio: VLAN priority value
3338  * @queue: Queue number which matching frames are assigned to
3339  *
3340  * Return: 0 in case of success, negative errno code otherwise.
3341  */
3342 static int igc_add_vlan_prio_filter(struct igc_adapter *adapter, int prio,
3343                                     int queue)
3344 {
3345         struct net_device *dev = adapter->netdev;
3346         struct igc_hw *hw = &adapter->hw;
3347         u32 vlanpqf;
3348
3349         vlanpqf = rd32(IGC_VLANPQF);
3350
3351         if (vlanpqf & IGC_VLANPQF_VALID(prio)) {
3352                 netdev_dbg(dev, "VLAN priority filter already in use\n");
3353                 return -EEXIST;
3354         }
3355
3356         vlanpqf |= IGC_VLANPQF_QSEL(prio, queue);
3357         vlanpqf |= IGC_VLANPQF_VALID(prio);
3358
3359         wr32(IGC_VLANPQF, vlanpqf);
3360
3361         netdev_dbg(dev, "Add VLAN priority filter: prio %d queue %d\n",
3362                    prio, queue);
3363         return 0;
3364 }
3365
3366 /**
3367  * igc_del_vlan_prio_filter() - Delete VLAN priority filter
3368  * @adapter: Pointer to adapter where the filter should be deleted from
3369  * @prio: VLAN priority value
3370  */
3371 static void igc_del_vlan_prio_filter(struct igc_adapter *adapter, int prio)
3372 {
3373         struct igc_hw *hw = &adapter->hw;
3374         u32 vlanpqf;
3375
3376         vlanpqf = rd32(IGC_VLANPQF);
3377
3378         vlanpqf &= ~IGC_VLANPQF_VALID(prio);
3379         vlanpqf &= ~IGC_VLANPQF_QSEL(prio, IGC_VLANPQF_QUEUE_MASK);
3380
3381         wr32(IGC_VLANPQF, vlanpqf);
3382
3383         netdev_dbg(adapter->netdev, "Delete VLAN priority filter: prio %d\n",
3384                    prio);
3385 }
3386
3387 static int igc_get_avail_etype_filter_slot(struct igc_adapter *adapter)
3388 {
3389         struct igc_hw *hw = &adapter->hw;
3390         int i;
3391
3392         for (i = 0; i < MAX_ETYPE_FILTER; i++) {
3393                 u32 etqf = rd32(IGC_ETQF(i));
3394
3395                 if (!(etqf & IGC_ETQF_FILTER_ENABLE))
3396                         return i;
3397         }
3398
3399         return -1;
3400 }
3401
3402 /**
3403  * igc_add_etype_filter() - Add ethertype filter
3404  * @adapter: Pointer to adapter where the filter should be added
3405  * @etype: Ethertype value
3406  * @queue: If non-negative, queue assignment feature is enabled and frames
3407  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
3408  *         assignment is disabled.
3409  *
3410  * Return: 0 in case of success, negative errno code otherwise.
3411  */
3412 static int igc_add_etype_filter(struct igc_adapter *adapter, u16 etype,
3413                                 int queue)
3414 {
3415         struct igc_hw *hw = &adapter->hw;
3416         int index;
3417         u32 etqf;
3418
3419         index = igc_get_avail_etype_filter_slot(adapter);
3420         if (index < 0)
3421                 return -ENOSPC;
3422
3423         etqf = rd32(IGC_ETQF(index));
3424
3425         etqf &= ~IGC_ETQF_ETYPE_MASK;
3426         etqf |= etype;
3427
3428         if (queue >= 0) {
3429                 etqf &= ~IGC_ETQF_QUEUE_MASK;
3430                 etqf |= (queue << IGC_ETQF_QUEUE_SHIFT);
3431                 etqf |= IGC_ETQF_QUEUE_ENABLE;
3432         }
3433
3434         etqf |= IGC_ETQF_FILTER_ENABLE;
3435
3436         wr32(IGC_ETQF(index), etqf);
3437
3438         netdev_dbg(adapter->netdev, "Add ethertype filter: etype %04x queue %d\n",
3439                    etype, queue);
3440         return 0;
3441 }
3442
3443 static int igc_find_etype_filter(struct igc_adapter *adapter, u16 etype)
3444 {
3445         struct igc_hw *hw = &adapter->hw;
3446         int i;
3447
3448         for (i = 0; i < MAX_ETYPE_FILTER; i++) {
3449                 u32 etqf = rd32(IGC_ETQF(i));
3450
3451                 if ((etqf & IGC_ETQF_ETYPE_MASK) == etype)
3452                         return i;
3453         }
3454
3455         return -1;
3456 }
3457
3458 /**
3459  * igc_del_etype_filter() - Delete ethertype filter
3460  * @adapter: Pointer to adapter where the filter should be deleted from
3461  * @etype: Ethertype value
3462  */
3463 static void igc_del_etype_filter(struct igc_adapter *adapter, u16 etype)
3464 {
3465         struct igc_hw *hw = &adapter->hw;
3466         int index;
3467
3468         index = igc_find_etype_filter(adapter, etype);
3469         if (index < 0)
3470                 return;
3471
3472         wr32(IGC_ETQF(index), 0);
3473
3474         netdev_dbg(adapter->netdev, "Delete ethertype filter: etype %04x\n",
3475                    etype);
3476 }
3477
3478 static int igc_flex_filter_select(struct igc_adapter *adapter,
3479                                   struct igc_flex_filter *input,
3480                                   u32 *fhft)
3481 {
3482         struct igc_hw *hw = &adapter->hw;
3483         u8 fhft_index;
3484         u32 fhftsl;
3485
3486         if (input->index >= MAX_FLEX_FILTER) {
3487                 netdev_err(adapter->netdev, "Wrong Flex Filter index selected!\n");
3488                 return -EINVAL;
3489         }
3490
3491         /* Indirect table select register */
3492         fhftsl = rd32(IGC_FHFTSL);
3493         fhftsl &= ~IGC_FHFTSL_FTSL_MASK;
3494         switch (input->index) {
3495         case 0 ... 7:
3496                 fhftsl |= 0x00;
3497                 break;
3498         case 8 ... 15:
3499                 fhftsl |= 0x01;
3500                 break;
3501         case 16 ... 23:
3502                 fhftsl |= 0x02;
3503                 break;
3504         case 24 ... 31:
3505                 fhftsl |= 0x03;
3506                 break;
3507         }
3508         wr32(IGC_FHFTSL, fhftsl);
3509
3510         /* Normalize index down to host table register */
3511         fhft_index = input->index % 8;
3512
3513         *fhft = (fhft_index < 4) ? IGC_FHFT(fhft_index) :
3514                 IGC_FHFT_EXT(fhft_index - 4);
3515
3516         return 0;
3517 }
3518
3519 static int igc_write_flex_filter_ll(struct igc_adapter *adapter,
3520                                     struct igc_flex_filter *input)
3521 {
3522         struct igc_hw *hw = &adapter->hw;
3523         u8 *data = input->data;
3524         u8 *mask = input->mask;
3525         u32 queuing;
3526         u32 fhft;
3527         u32 wufc;
3528         int ret;
3529         int i;
3530
3531         /* Length has to be aligned to 8. Otherwise the filter will fail. Bail
3532          * out early to avoid surprises later.
3533          */
3534         if (input->length % 8 != 0) {
3535                 netdev_err(adapter->netdev, "The length of a flex filter has to be 8 byte aligned!\n");
3536                 return -EINVAL;
3537         }
3538
3539         /* Select corresponding flex filter register and get base for host table. */
3540         ret = igc_flex_filter_select(adapter, input, &fhft);
3541         if (ret)
3542                 return ret;
3543
3544         /* When adding a filter globally disable flex filter feature. That is
3545          * recommended within the datasheet.
3546          */
3547         wufc = rd32(IGC_WUFC);
3548         wufc &= ~IGC_WUFC_FLEX_HQ;
3549         wr32(IGC_WUFC, wufc);
3550
3551         /* Configure filter */
3552         queuing = input->length & IGC_FHFT_LENGTH_MASK;
3553         queuing |= FIELD_PREP(IGC_FHFT_QUEUE_MASK, input->rx_queue);
3554         queuing |= FIELD_PREP(IGC_FHFT_PRIO_MASK, input->prio);
3555
3556         if (input->immediate_irq)
3557                 queuing |= IGC_FHFT_IMM_INT;
3558
3559         if (input->drop)
3560                 queuing |= IGC_FHFT_DROP;
3561
3562         wr32(fhft + 0xFC, queuing);
3563
3564         /* Write data (128 byte) and mask (128 bit) */
3565         for (i = 0; i < 16; ++i) {
3566                 const size_t data_idx = i * 8;
3567                 const size_t row_idx = i * 16;
3568                 u32 dw0 =
3569                         (data[data_idx + 0] << 0) |
3570                         (data[data_idx + 1] << 8) |
3571                         (data[data_idx + 2] << 16) |
3572                         (data[data_idx + 3] << 24);
3573                 u32 dw1 =
3574                         (data[data_idx + 4] << 0) |
3575                         (data[data_idx + 5] << 8) |
3576                         (data[data_idx + 6] << 16) |
3577                         (data[data_idx + 7] << 24);
3578                 u32 tmp;
3579
3580                 /* Write row: dw0, dw1 and mask */
3581                 wr32(fhft + row_idx, dw0);
3582                 wr32(fhft + row_idx + 4, dw1);
3583
3584                 /* mask is only valid for MASK(7, 0) */
3585                 tmp = rd32(fhft + row_idx + 8);
3586                 tmp &= ~GENMASK(7, 0);
3587                 tmp |= mask[i];
3588                 wr32(fhft + row_idx + 8, tmp);
3589         }
3590
3591         /* Enable filter. */
3592         wufc |= IGC_WUFC_FLEX_HQ;
3593         if (input->index > 8) {
3594                 /* Filter 0-7 are enabled via WUFC. The other 24 filters are not. */
3595                 u32 wufc_ext = rd32(IGC_WUFC_EXT);
3596
3597                 wufc_ext |= (IGC_WUFC_EXT_FLX8 << (input->index - 8));
3598
3599                 wr32(IGC_WUFC_EXT, wufc_ext);
3600         } else {
3601                 wufc |= (IGC_WUFC_FLX0 << input->index);
3602         }
3603         wr32(IGC_WUFC, wufc);
3604
3605         netdev_dbg(adapter->netdev, "Added flex filter %u to HW.\n",
3606                    input->index);
3607
3608         return 0;
3609 }
3610
3611 static void igc_flex_filter_add_field(struct igc_flex_filter *flex,
3612                                       const void *src, unsigned int offset,
3613                                       size_t len, const void *mask)
3614 {
3615         int i;
3616
3617         /* data */
3618         memcpy(&flex->data[offset], src, len);
3619
3620         /* mask */
3621         for (i = 0; i < len; ++i) {
3622                 const unsigned int idx = i + offset;
3623                 const u8 *ptr = mask;
3624
3625                 if (mask) {
3626                         if (ptr[i] & 0xff)
3627                                 flex->mask[idx / 8] |= BIT(idx % 8);
3628
3629                         continue;
3630                 }
3631
3632                 flex->mask[idx / 8] |= BIT(idx % 8);
3633         }
3634 }
3635
3636 static int igc_find_avail_flex_filter_slot(struct igc_adapter *adapter)
3637 {
3638         struct igc_hw *hw = &adapter->hw;
3639         u32 wufc, wufc_ext;
3640         int i;
3641
3642         wufc = rd32(IGC_WUFC);
3643         wufc_ext = rd32(IGC_WUFC_EXT);
3644
3645         for (i = 0; i < MAX_FLEX_FILTER; i++) {
3646                 if (i < 8) {
3647                         if (!(wufc & (IGC_WUFC_FLX0 << i)))
3648                                 return i;
3649                 } else {
3650                         if (!(wufc_ext & (IGC_WUFC_EXT_FLX8 << (i - 8))))
3651                                 return i;
3652                 }
3653         }
3654
3655         return -ENOSPC;
3656 }
3657
3658 static bool igc_flex_filter_in_use(struct igc_adapter *adapter)
3659 {
3660         struct igc_hw *hw = &adapter->hw;
3661         u32 wufc, wufc_ext;
3662
3663         wufc = rd32(IGC_WUFC);
3664         wufc_ext = rd32(IGC_WUFC_EXT);
3665
3666         if (wufc & IGC_WUFC_FILTER_MASK)
3667                 return true;
3668
3669         if (wufc_ext & IGC_WUFC_EXT_FILTER_MASK)
3670                 return true;
3671
3672         return false;
3673 }
3674
3675 static int igc_add_flex_filter(struct igc_adapter *adapter,
3676                                struct igc_nfc_rule *rule)
3677 {
3678         struct igc_nfc_filter *filter = &rule->filter;
3679         unsigned int eth_offset, user_offset;
3680         struct igc_flex_filter flex = { };
3681         int ret, index;
3682         bool vlan;
3683
3684         index = igc_find_avail_flex_filter_slot(adapter);
3685         if (index < 0)
3686                 return -ENOSPC;
3687
3688         /* Construct the flex filter:
3689          *  -> dest_mac [6]
3690          *  -> src_mac [6]
3691          *  -> tpid [2]
3692          *  -> vlan tci [2]
3693          *  -> ether type [2]
3694          *  -> user data [8]
3695          *  -> = 26 bytes => 32 length
3696          */
3697         flex.index    = index;
3698         flex.length   = 32;
3699         flex.rx_queue = rule->action;
3700
3701         vlan = rule->filter.vlan_tci || rule->filter.vlan_etype;
3702         eth_offset = vlan ? 16 : 12;
3703         user_offset = vlan ? 18 : 14;
3704
3705         /* Add destination MAC  */
3706         if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR)
3707                 igc_flex_filter_add_field(&flex, &filter->dst_addr, 0,
3708                                           ETH_ALEN, NULL);
3709
3710         /* Add source MAC */
3711         if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR)
3712                 igc_flex_filter_add_field(&flex, &filter->src_addr, 6,
3713                                           ETH_ALEN, NULL);
3714
3715         /* Add VLAN etype */
3716         if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_ETYPE) {
3717                 __be16 vlan_etype = cpu_to_be16(filter->vlan_etype);
3718
3719                 igc_flex_filter_add_field(&flex, &vlan_etype, 12,
3720                                           sizeof(vlan_etype), NULL);
3721         }
3722
3723         /* Add VLAN TCI */
3724         if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI)
3725                 igc_flex_filter_add_field(&flex, &filter->vlan_tci, 14,
3726                                           sizeof(filter->vlan_tci), NULL);
3727
3728         /* Add Ether type */
3729         if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) {
3730                 __be16 etype = cpu_to_be16(filter->etype);
3731
3732                 igc_flex_filter_add_field(&flex, &etype, eth_offset,
3733                                           sizeof(etype), NULL);
3734         }
3735
3736         /* Add user data */
3737         if (rule->filter.match_flags & IGC_FILTER_FLAG_USER_DATA)
3738                 igc_flex_filter_add_field(&flex, &filter->user_data,
3739                                           user_offset,
3740                                           sizeof(filter->user_data),
3741                                           filter->user_mask);
3742
3743         /* Add it down to the hardware and enable it. */
3744         ret = igc_write_flex_filter_ll(adapter, &flex);
3745         if (ret)
3746                 return ret;
3747
3748         filter->flex_index = index;
3749
3750         return 0;
3751 }
3752
3753 static void igc_del_flex_filter(struct igc_adapter *adapter,
3754                                 u16 reg_index)
3755 {
3756         struct igc_hw *hw = &adapter->hw;
3757         u32 wufc;
3758
3759         /* Just disable the filter. The filter table itself is kept
3760          * intact. Another flex_filter_add() should override the "old" data
3761          * then.
3762          */
3763         if (reg_index > 8) {
3764                 u32 wufc_ext = rd32(IGC_WUFC_EXT);
3765
3766                 wufc_ext &= ~(IGC_WUFC_EXT_FLX8 << (reg_index - 8));
3767                 wr32(IGC_WUFC_EXT, wufc_ext);
3768         } else {
3769                 wufc = rd32(IGC_WUFC);
3770
3771                 wufc &= ~(IGC_WUFC_FLX0 << reg_index);
3772                 wr32(IGC_WUFC, wufc);
3773         }
3774
3775         if (igc_flex_filter_in_use(adapter))
3776                 return;
3777
3778         /* No filters are in use, we may disable flex filters */
3779         wufc = rd32(IGC_WUFC);
3780         wufc &= ~IGC_WUFC_FLEX_HQ;
3781         wr32(IGC_WUFC, wufc);
3782 }
3783
3784 static int igc_enable_nfc_rule(struct igc_adapter *adapter,
3785                                struct igc_nfc_rule *rule)
3786 {
3787         int err;
3788
3789         if (rule->flex) {
3790                 return igc_add_flex_filter(adapter, rule);
3791         }
3792
3793         if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) {
3794                 err = igc_add_etype_filter(adapter, rule->filter.etype,
3795                                            rule->action);
3796                 if (err)
3797                         return err;
3798         }
3799
3800         if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR) {
3801                 err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
3802                                          rule->filter.src_addr, rule->action);
3803                 if (err)
3804                         return err;
3805         }
3806
3807         if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR) {
3808                 err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
3809                                          rule->filter.dst_addr, rule->action);
3810                 if (err)
3811                         return err;
3812         }
3813
3814         if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
3815                 int prio = FIELD_GET(VLAN_PRIO_MASK, rule->filter.vlan_tci);
3816
3817                 err = igc_add_vlan_prio_filter(adapter, prio, rule->action);
3818                 if (err)
3819                         return err;
3820         }
3821
3822         return 0;
3823 }
3824
3825 static void igc_disable_nfc_rule(struct igc_adapter *adapter,
3826                                  const struct igc_nfc_rule *rule)
3827 {
3828         if (rule->flex) {
3829                 igc_del_flex_filter(adapter, rule->filter.flex_index);
3830                 return;
3831         }
3832
3833         if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE)
3834                 igc_del_etype_filter(adapter, rule->filter.etype);
3835
3836         if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
3837                 int prio = FIELD_GET(VLAN_PRIO_MASK, rule->filter.vlan_tci);
3838
3839                 igc_del_vlan_prio_filter(adapter, prio);
3840         }
3841
3842         if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR)
3843                 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
3844                                    rule->filter.src_addr);
3845
3846         if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR)
3847                 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
3848                                    rule->filter.dst_addr);
3849 }
3850
3851 /**
3852  * igc_get_nfc_rule() - Get NFC rule
3853  * @adapter: Pointer to adapter
3854  * @location: Rule location
3855  *
3856  * Context: Expects adapter->nfc_rule_lock to be held by caller.
3857  *
3858  * Return: Pointer to NFC rule at @location. If not found, NULL.
3859  */
3860 struct igc_nfc_rule *igc_get_nfc_rule(struct igc_adapter *adapter,
3861                                       u32 location)
3862 {
3863         struct igc_nfc_rule *rule;
3864
3865         list_for_each_entry(rule, &adapter->nfc_rule_list, list) {
3866                 if (rule->location == location)
3867                         return rule;
3868                 if (rule->location > location)
3869                         break;
3870         }
3871
3872         return NULL;
3873 }
3874
3875 /**
3876  * igc_del_nfc_rule() - Delete NFC rule
3877  * @adapter: Pointer to adapter
3878  * @rule: Pointer to rule to be deleted
3879  *
3880  * Disable NFC rule in hardware and delete it from adapter.
3881  *
3882  * Context: Expects adapter->nfc_rule_lock to be held by caller.
3883  */
3884 void igc_del_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
3885 {
3886         igc_disable_nfc_rule(adapter, rule);
3887
3888         list_del(&rule->list);
3889         adapter->nfc_rule_count--;
3890
3891         kfree(rule);
3892 }
3893
3894 static void igc_flush_nfc_rules(struct igc_adapter *adapter)
3895 {
3896         struct igc_nfc_rule *rule, *tmp;
3897
3898         mutex_lock(&adapter->nfc_rule_lock);
3899
3900         list_for_each_entry_safe(rule, tmp, &adapter->nfc_rule_list, list)
3901                 igc_del_nfc_rule(adapter, rule);
3902
3903         mutex_unlock(&adapter->nfc_rule_lock);
3904 }
3905
3906 /**
3907  * igc_add_nfc_rule() - Add NFC rule
3908  * @adapter: Pointer to adapter
3909  * @rule: Pointer to rule to be added
3910  *
3911  * Enable NFC rule in hardware and add it to adapter.
3912  *
3913  * Context: Expects adapter->nfc_rule_lock to be held by caller.
3914  *
3915  * Return: 0 on success, negative errno on failure.
3916  */
3917 int igc_add_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
3918 {
3919         struct igc_nfc_rule *pred, *cur;
3920         int err;
3921
3922         err = igc_enable_nfc_rule(adapter, rule);
3923         if (err)
3924                 return err;
3925
3926         pred = NULL;
3927         list_for_each_entry(cur, &adapter->nfc_rule_list, list) {
3928                 if (cur->location >= rule->location)
3929                         break;
3930                 pred = cur;
3931         }
3932
3933         list_add(&rule->list, pred ? &pred->list : &adapter->nfc_rule_list);
3934         adapter->nfc_rule_count++;
3935         return 0;
3936 }
3937
3938 static void igc_restore_nfc_rules(struct igc_adapter *adapter)
3939 {
3940         struct igc_nfc_rule *rule;
3941
3942         mutex_lock(&adapter->nfc_rule_lock);
3943
3944         list_for_each_entry_reverse(rule, &adapter->nfc_rule_list, list)
3945                 igc_enable_nfc_rule(adapter, rule);
3946
3947         mutex_unlock(&adapter->nfc_rule_lock);
3948 }
3949
3950 static int igc_uc_sync(struct net_device *netdev, const unsigned char *addr)
3951 {
3952         struct igc_adapter *adapter = netdev_priv(netdev);
3953
3954         return igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr, -1);
3955 }
3956
3957 static int igc_uc_unsync(struct net_device *netdev, const unsigned char *addr)
3958 {
3959         struct igc_adapter *adapter = netdev_priv(netdev);
3960
3961         igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr);
3962         return 0;
3963 }
3964
3965 /**
3966  * igc_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3967  * @netdev: network interface device structure
3968  *
3969  * The set_rx_mode entry point is called whenever the unicast or multicast
3970  * address lists or the network interface flags are updated.  This routine is
3971  * responsible for configuring the hardware for proper unicast, multicast,
3972  * promiscuous mode, and all-multi behavior.
3973  */
3974 static void igc_set_rx_mode(struct net_device *netdev)
3975 {
3976         struct igc_adapter *adapter = netdev_priv(netdev);
3977         struct igc_hw *hw = &adapter->hw;
3978         u32 rctl = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
3979         int count;
3980
3981         /* Check for Promiscuous and All Multicast modes */
3982         if (netdev->flags & IFF_PROMISC) {
3983                 rctl |= IGC_RCTL_UPE | IGC_RCTL_MPE;
3984         } else {
3985                 if (netdev->flags & IFF_ALLMULTI) {
3986                         rctl |= IGC_RCTL_MPE;
3987                 } else {
3988                         /* Write addresses to the MTA, if the attempt fails
3989                          * then we should just turn on promiscuous mode so
3990                          * that we can at least receive multicast traffic
3991                          */
3992                         count = igc_write_mc_addr_list(netdev);
3993                         if (count < 0)
3994                                 rctl |= IGC_RCTL_MPE;
3995                 }
3996         }
3997
3998         /* Write addresses to available RAR registers, if there is not
3999          * sufficient space to store all the addresses then enable
4000          * unicast promiscuous mode
4001          */
4002         if (__dev_uc_sync(netdev, igc_uc_sync, igc_uc_unsync))
4003                 rctl |= IGC_RCTL_UPE;
4004
4005         /* update state of unicast and multicast */
4006         rctl |= rd32(IGC_RCTL) & ~(IGC_RCTL_UPE | IGC_RCTL_MPE);
4007         wr32(IGC_RCTL, rctl);
4008
4009 #if (PAGE_SIZE < 8192)
4010         if (adapter->max_frame_size <= IGC_MAX_FRAME_BUILD_SKB)
4011                 rlpml = IGC_MAX_FRAME_BUILD_SKB;
4012 #endif
4013         wr32(IGC_RLPML, rlpml);
4014 }
4015
4016 /**
4017  * igc_configure - configure the hardware for RX and TX
4018  * @adapter: private board structure
4019  */
4020 static void igc_configure(struct igc_adapter *adapter)
4021 {
4022         struct net_device *netdev = adapter->netdev;
4023         int i = 0;
4024
4025         igc_get_hw_control(adapter);
4026         igc_set_rx_mode(netdev);
4027
4028         igc_restore_vlan(adapter);
4029
4030         igc_setup_tctl(adapter);
4031         igc_setup_mrqc(adapter);
4032         igc_setup_rctl(adapter);
4033
4034         igc_set_default_mac_filter(adapter);
4035         igc_restore_nfc_rules(adapter);
4036
4037         igc_configure_tx(adapter);
4038         igc_configure_rx(adapter);
4039
4040         igc_rx_fifo_flush_base(&adapter->hw);
4041
4042         /* call igc_desc_unused which always leaves
4043          * at least 1 descriptor unused to make sure
4044          * next_to_use != next_to_clean
4045          */
4046         for (i = 0; i < adapter->num_rx_queues; i++) {
4047                 struct igc_ring *ring = adapter->rx_ring[i];
4048
4049                 if (ring->xsk_pool)
4050                         igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring));
4051                 else
4052                         igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
4053         }
4054 }
4055
4056 /**
4057  * igc_write_ivar - configure ivar for given MSI-X vector
4058  * @hw: pointer to the HW structure
4059  * @msix_vector: vector number we are allocating to a given ring
4060  * @index: row index of IVAR register to write within IVAR table
4061  * @offset: column offset of in IVAR, should be multiple of 8
4062  *
4063  * The IVAR table consists of 2 columns,
4064  * each containing an cause allocation for an Rx and Tx ring, and a
4065  * variable number of rows depending on the number of queues supported.
4066  */
4067 static void igc_write_ivar(struct igc_hw *hw, int msix_vector,
4068                            int index, int offset)
4069 {
4070         u32 ivar = array_rd32(IGC_IVAR0, index);
4071
4072         /* clear any bits that are currently set */
4073         ivar &= ~((u32)0xFF << offset);
4074
4075         /* write vector and valid bit */
4076         ivar |= (msix_vector | IGC_IVAR_VALID) << offset;
4077
4078         array_wr32(IGC_IVAR0, index, ivar);
4079 }
4080
4081 static void igc_assign_vector(struct igc_q_vector *q_vector, int msix_vector)
4082 {
4083         struct igc_adapter *adapter = q_vector->adapter;
4084         struct igc_hw *hw = &adapter->hw;
4085         int rx_queue = IGC_N0_QUEUE;
4086         int tx_queue = IGC_N0_QUEUE;
4087
4088         if (q_vector->rx.ring)
4089                 rx_queue = q_vector->rx.ring->reg_idx;
4090         if (q_vector->tx.ring)
4091                 tx_queue = q_vector->tx.ring->reg_idx;
4092
4093         switch (hw->mac.type) {
4094         case igc_i225:
4095                 if (rx_queue > IGC_N0_QUEUE)
4096                         igc_write_ivar(hw, msix_vector,
4097                                        rx_queue >> 1,
4098                                        (rx_queue & 0x1) << 4);
4099                 if (tx_queue > IGC_N0_QUEUE)
4100                         igc_write_ivar(hw, msix_vector,
4101                                        tx_queue >> 1,
4102                                        ((tx_queue & 0x1) << 4) + 8);
4103                 q_vector->eims_value = BIT(msix_vector);
4104                 break;
4105         default:
4106                 WARN_ONCE(hw->mac.type != igc_i225, "Wrong MAC type\n");
4107                 break;
4108         }
4109
4110         /* add q_vector eims value to global eims_enable_mask */
4111         adapter->eims_enable_mask |= q_vector->eims_value;
4112
4113         /* configure q_vector to set itr on first interrupt */
4114         q_vector->set_itr = 1;
4115 }
4116
4117 /**
4118  * igc_configure_msix - Configure MSI-X hardware
4119  * @adapter: Pointer to adapter structure
4120  *
4121  * igc_configure_msix sets up the hardware to properly
4122  * generate MSI-X interrupts.
4123  */
4124 static void igc_configure_msix(struct igc_adapter *adapter)
4125 {
4126         struct igc_hw *hw = &adapter->hw;
4127         int i, vector = 0;
4128         u32 tmp;
4129
4130         adapter->eims_enable_mask = 0;
4131
4132         /* set vector for other causes, i.e. link changes */
4133         switch (hw->mac.type) {
4134         case igc_i225:
4135                 /* Turn on MSI-X capability first, or our settings
4136                  * won't stick.  And it will take days to debug.
4137                  */
4138                 wr32(IGC_GPIE, IGC_GPIE_MSIX_MODE |
4139                      IGC_GPIE_PBA | IGC_GPIE_EIAME |
4140                      IGC_GPIE_NSICR);
4141
4142                 /* enable msix_other interrupt */
4143                 adapter->eims_other = BIT(vector);
4144                 tmp = (vector++ | IGC_IVAR_VALID) << 8;
4145
4146                 wr32(IGC_IVAR_MISC, tmp);
4147                 break;
4148         default:
4149                 /* do nothing, since nothing else supports MSI-X */
4150                 break;
4151         } /* switch (hw->mac.type) */
4152
4153         adapter->eims_enable_mask |= adapter->eims_other;
4154
4155         for (i = 0; i < adapter->num_q_vectors; i++)
4156                 igc_assign_vector(adapter->q_vector[i], vector++);
4157
4158         wrfl();
4159 }
4160
4161 /**
4162  * igc_irq_enable - Enable default interrupt generation settings
4163  * @adapter: board private structure
4164  */
4165 static void igc_irq_enable(struct igc_adapter *adapter)
4166 {
4167         struct igc_hw *hw = &adapter->hw;
4168
4169         if (adapter->msix_entries) {
4170                 u32 ims = IGC_IMS_LSC | IGC_IMS_DOUTSYNC | IGC_IMS_DRSTA;
4171                 u32 regval = rd32(IGC_EIAC);
4172
4173                 wr32(IGC_EIAC, regval | adapter->eims_enable_mask);
4174                 regval = rd32(IGC_EIAM);
4175                 wr32(IGC_EIAM, regval | adapter->eims_enable_mask);
4176                 wr32(IGC_EIMS, adapter->eims_enable_mask);
4177                 wr32(IGC_IMS, ims);
4178         } else {
4179                 wr32(IGC_IMS, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
4180                 wr32(IGC_IAM, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
4181         }
4182 }
4183
4184 /**
4185  * igc_irq_disable - Mask off interrupt generation on the NIC
4186  * @adapter: board private structure
4187  */
4188 static void igc_irq_disable(struct igc_adapter *adapter)
4189 {
4190         struct igc_hw *hw = &adapter->hw;
4191
4192         if (adapter->msix_entries) {
4193                 u32 regval = rd32(IGC_EIAM);
4194
4195                 wr32(IGC_EIAM, regval & ~adapter->eims_enable_mask);
4196                 wr32(IGC_EIMC, adapter->eims_enable_mask);
4197                 regval = rd32(IGC_EIAC);
4198                 wr32(IGC_EIAC, regval & ~adapter->eims_enable_mask);
4199         }
4200
4201         wr32(IGC_IAM, 0);
4202         wr32(IGC_IMC, ~0);
4203         wrfl();
4204
4205         if (adapter->msix_entries) {
4206                 int vector = 0, i;
4207
4208                 synchronize_irq(adapter->msix_entries[vector++].vector);
4209
4210                 for (i = 0; i < adapter->num_q_vectors; i++)
4211                         synchronize_irq(adapter->msix_entries[vector++].vector);
4212         } else {
4213                 synchronize_irq(adapter->pdev->irq);
4214         }
4215 }
4216
4217 void igc_set_flag_queue_pairs(struct igc_adapter *adapter,
4218                               const u32 max_rss_queues)
4219 {
4220         /* Determine if we need to pair queues. */
4221         /* If rss_queues > half of max_rss_queues, pair the queues in
4222          * order to conserve interrupts due to limited supply.
4223          */
4224         if (adapter->rss_queues > (max_rss_queues / 2))
4225                 adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
4226         else
4227                 adapter->flags &= ~IGC_FLAG_QUEUE_PAIRS;
4228 }
4229
4230 unsigned int igc_get_max_rss_queues(struct igc_adapter *adapter)
4231 {
4232         return IGC_MAX_RX_QUEUES;
4233 }
4234
4235 static void igc_init_queue_configuration(struct igc_adapter *adapter)
4236 {
4237         u32 max_rss_queues;
4238
4239         max_rss_queues = igc_get_max_rss_queues(adapter);
4240         adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
4241
4242         igc_set_flag_queue_pairs(adapter, max_rss_queues);
4243 }
4244
4245 /**
4246  * igc_reset_q_vector - Reset config for interrupt vector
4247  * @adapter: board private structure to initialize
4248  * @v_idx: Index of vector to be reset
4249  *
4250  * If NAPI is enabled it will delete any references to the
4251  * NAPI struct. This is preparation for igc_free_q_vector.
4252  */
4253 static void igc_reset_q_vector(struct igc_adapter *adapter, int v_idx)
4254 {
4255         struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
4256
4257         /* if we're coming from igc_set_interrupt_capability, the vectors are
4258          * not yet allocated
4259          */
4260         if (!q_vector)
4261                 return;
4262
4263         if (q_vector->tx.ring)
4264                 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
4265
4266         if (q_vector->rx.ring)
4267                 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
4268
4269         netif_napi_del(&q_vector->napi);
4270 }
4271
4272 /**
4273  * igc_free_q_vector - Free memory allocated for specific interrupt vector
4274  * @adapter: board private structure to initialize
4275  * @v_idx: Index of vector to be freed
4276  *
4277  * This function frees the memory allocated to the q_vector.
4278  */
4279 static void igc_free_q_vector(struct igc_adapter *adapter, int v_idx)
4280 {
4281         struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
4282
4283         adapter->q_vector[v_idx] = NULL;
4284
4285         /* igc_get_stats64() might access the rings on this vector,
4286          * we must wait a grace period before freeing it.
4287          */
4288         if (q_vector)
4289                 kfree_rcu(q_vector, rcu);
4290 }
4291
4292 /**
4293  * igc_free_q_vectors - Free memory allocated for interrupt vectors
4294  * @adapter: board private structure to initialize
4295  *
4296  * This function frees the memory allocated to the q_vectors.  In addition if
4297  * NAPI is enabled it will delete any references to the NAPI struct prior
4298  * to freeing the q_vector.
4299  */
4300 static void igc_free_q_vectors(struct igc_adapter *adapter)
4301 {
4302         int v_idx = adapter->num_q_vectors;
4303
4304         adapter->num_tx_queues = 0;
4305         adapter->num_rx_queues = 0;
4306         adapter->num_q_vectors = 0;
4307
4308         while (v_idx--) {
4309                 igc_reset_q_vector(adapter, v_idx);
4310                 igc_free_q_vector(adapter, v_idx);
4311         }
4312 }
4313
4314 /**
4315  * igc_update_itr - update the dynamic ITR value based on statistics
4316  * @q_vector: pointer to q_vector
4317  * @ring_container: ring info to update the itr for
4318  *
4319  * Stores a new ITR value based on packets and byte
4320  * counts during the last interrupt.  The advantage of per interrupt
4321  * computation is faster updates and more accurate ITR for the current
4322  * traffic pattern.  Constants in this function were computed
4323  * based on theoretical maximum wire speed and thresholds were set based
4324  * on testing data as well as attempting to minimize response time
4325  * while increasing bulk throughput.
4326  * NOTE: These calculations are only valid when operating in a single-
4327  * queue environment.
4328  */
4329 static void igc_update_itr(struct igc_q_vector *q_vector,
4330                            struct igc_ring_container *ring_container)
4331 {
4332         unsigned int packets = ring_container->total_packets;
4333         unsigned int bytes = ring_container->total_bytes;
4334         u8 itrval = ring_container->itr;
4335
4336         /* no packets, exit with status unchanged */
4337         if (packets == 0)
4338                 return;
4339
4340         switch (itrval) {
4341         case lowest_latency:
4342                 /* handle TSO and jumbo frames */
4343                 if (bytes / packets > 8000)
4344                         itrval = bulk_latency;
4345                 else if ((packets < 5) && (bytes > 512))
4346                         itrval = low_latency;
4347                 break;
4348         case low_latency:  /* 50 usec aka 20000 ints/s */
4349                 if (bytes > 10000) {
4350                         /* this if handles the TSO accounting */
4351                         if (bytes / packets > 8000)
4352                                 itrval = bulk_latency;
4353                         else if ((packets < 10) || ((bytes / packets) > 1200))
4354                                 itrval = bulk_latency;
4355                         else if ((packets > 35))
4356                                 itrval = lowest_latency;
4357                 } else if (bytes / packets > 2000) {
4358                         itrval = bulk_latency;
4359                 } else if (packets <= 2 && bytes < 512) {
4360                         itrval = lowest_latency;
4361                 }
4362                 break;
4363         case bulk_latency: /* 250 usec aka 4000 ints/s */
4364                 if (bytes > 25000) {
4365                         if (packets > 35)
4366                                 itrval = low_latency;
4367                 } else if (bytes < 1500) {
4368                         itrval = low_latency;
4369                 }
4370                 break;
4371         }
4372
4373         /* clear work counters since we have the values we need */
4374         ring_container->total_bytes = 0;
4375         ring_container->total_packets = 0;
4376
4377         /* write updated itr to ring container */
4378         ring_container->itr = itrval;
4379 }
4380
4381 static void igc_set_itr(struct igc_q_vector *q_vector)
4382 {
4383         struct igc_adapter *adapter = q_vector->adapter;
4384         u32 new_itr = q_vector->itr_val;
4385         u8 current_itr = 0;
4386
4387         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4388         switch (adapter->link_speed) {
4389         case SPEED_10:
4390         case SPEED_100:
4391                 current_itr = 0;
4392                 new_itr = IGC_4K_ITR;
4393                 goto set_itr_now;
4394         default:
4395                 break;
4396         }
4397
4398         igc_update_itr(q_vector, &q_vector->tx);
4399         igc_update_itr(q_vector, &q_vector->rx);
4400
4401         current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4402
4403         /* conservative mode (itr 3) eliminates the lowest_latency setting */
4404         if (current_itr == lowest_latency &&
4405             ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4406             (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4407                 current_itr = low_latency;
4408
4409         switch (current_itr) {
4410         /* counts and packets in update_itr are dependent on these numbers */
4411         case lowest_latency:
4412                 new_itr = IGC_70K_ITR; /* 70,000 ints/sec */
4413                 break;
4414         case low_latency:
4415                 new_itr = IGC_20K_ITR; /* 20,000 ints/sec */
4416                 break;
4417         case bulk_latency:
4418                 new_itr = IGC_4K_ITR;  /* 4,000 ints/sec */
4419                 break;
4420         default:
4421                 break;
4422         }
4423
4424 set_itr_now:
4425         if (new_itr != q_vector->itr_val) {
4426                 /* this attempts to bias the interrupt rate towards Bulk
4427                  * by adding intermediate steps when interrupt rate is
4428                  * increasing
4429                  */
4430                 new_itr = new_itr > q_vector->itr_val ?
4431                           max((new_itr * q_vector->itr_val) /
4432                           (new_itr + (q_vector->itr_val >> 2)),
4433                           new_itr) : new_itr;
4434                 /* Don't write the value here; it resets the adapter's
4435                  * internal timer, and causes us to delay far longer than
4436                  * we should between interrupts.  Instead, we write the ITR
4437                  * value at the beginning of the next interrupt so the timing
4438                  * ends up being correct.
4439                  */
4440                 q_vector->itr_val = new_itr;
4441                 q_vector->set_itr = 1;
4442         }
4443 }
4444
4445 static void igc_reset_interrupt_capability(struct igc_adapter *adapter)
4446 {
4447         int v_idx = adapter->num_q_vectors;
4448
4449         if (adapter->msix_entries) {
4450                 pci_disable_msix(adapter->pdev);
4451                 kfree(adapter->msix_entries);
4452                 adapter->msix_entries = NULL;
4453         } else if (adapter->flags & IGC_FLAG_HAS_MSI) {
4454                 pci_disable_msi(adapter->pdev);
4455         }
4456
4457         while (v_idx--)
4458                 igc_reset_q_vector(adapter, v_idx);
4459 }
4460
4461 /**
4462  * igc_set_interrupt_capability - set MSI or MSI-X if supported
4463  * @adapter: Pointer to adapter structure
4464  * @msix: boolean value for MSI-X capability
4465  *
4466  * Attempt to configure interrupts using the best available
4467  * capabilities of the hardware and kernel.
4468  */
4469 static void igc_set_interrupt_capability(struct igc_adapter *adapter,
4470                                          bool msix)
4471 {
4472         int numvecs, i;
4473         int err;
4474
4475         if (!msix)
4476                 goto msi_only;
4477         adapter->flags |= IGC_FLAG_HAS_MSIX;
4478
4479         /* Number of supported queues. */
4480         adapter->num_rx_queues = adapter->rss_queues;
4481
4482         adapter->num_tx_queues = adapter->rss_queues;
4483
4484         /* start with one vector for every Rx queue */
4485         numvecs = adapter->num_rx_queues;
4486
4487         /* if Tx handler is separate add 1 for every Tx queue */
4488         if (!(adapter->flags & IGC_FLAG_QUEUE_PAIRS))
4489                 numvecs += adapter->num_tx_queues;
4490
4491         /* store the number of vectors reserved for queues */
4492         adapter->num_q_vectors = numvecs;
4493
4494         /* add 1 vector for link status interrupts */
4495         numvecs++;
4496
4497         adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
4498                                         GFP_KERNEL);
4499
4500         if (!adapter->msix_entries)
4501                 return;
4502
4503         /* populate entry values */
4504         for (i = 0; i < numvecs; i++)
4505                 adapter->msix_entries[i].entry = i;
4506
4507         err = pci_enable_msix_range(adapter->pdev,
4508                                     adapter->msix_entries,
4509                                     numvecs,
4510                                     numvecs);
4511         if (err > 0)
4512                 return;
4513
4514         kfree(adapter->msix_entries);
4515         adapter->msix_entries = NULL;
4516
4517         igc_reset_interrupt_capability(adapter);
4518
4519 msi_only:
4520         adapter->flags &= ~IGC_FLAG_HAS_MSIX;
4521
4522         adapter->rss_queues = 1;
4523         adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
4524         adapter->num_rx_queues = 1;
4525         adapter->num_tx_queues = 1;
4526         adapter->num_q_vectors = 1;
4527         if (!pci_enable_msi(adapter->pdev))
4528                 adapter->flags |= IGC_FLAG_HAS_MSI;
4529 }
4530
4531 /**
4532  * igc_update_ring_itr - update the dynamic ITR value based on packet size
4533  * @q_vector: pointer to q_vector
4534  *
4535  * Stores a new ITR value based on strictly on packet size.  This
4536  * algorithm is less sophisticated than that used in igc_update_itr,
4537  * due to the difficulty of synchronizing statistics across multiple
4538  * receive rings.  The divisors and thresholds used by this function
4539  * were determined based on theoretical maximum wire speed and testing
4540  * data, in order to minimize response time while increasing bulk
4541  * throughput.
4542  * NOTE: This function is called only when operating in a multiqueue
4543  * receive environment.
4544  */
4545 static void igc_update_ring_itr(struct igc_q_vector *q_vector)
4546 {
4547         struct igc_adapter *adapter = q_vector->adapter;
4548         int new_val = q_vector->itr_val;
4549         int avg_wire_size = 0;
4550         unsigned int packets;
4551
4552         /* For non-gigabit speeds, just fix the interrupt rate at 4000
4553          * ints/sec - ITR timer value of 120 ticks.
4554          */
4555         switch (adapter->link_speed) {
4556         case SPEED_10:
4557         case SPEED_100:
4558                 new_val = IGC_4K_ITR;
4559                 goto set_itr_val;
4560         default:
4561                 break;
4562         }
4563
4564         packets = q_vector->rx.total_packets;
4565         if (packets)
4566                 avg_wire_size = q_vector->rx.total_bytes / packets;
4567
4568         packets = q_vector->tx.total_packets;
4569         if (packets)
4570                 avg_wire_size = max_t(u32, avg_wire_size,
4571                                       q_vector->tx.total_bytes / packets);
4572
4573         /* if avg_wire_size isn't set no work was done */
4574         if (!avg_wire_size)
4575                 goto clear_counts;
4576
4577         /* Add 24 bytes to size to account for CRC, preamble, and gap */
4578         avg_wire_size += 24;
4579
4580         /* Don't starve jumbo frames */
4581         avg_wire_size = min(avg_wire_size, 3000);
4582
4583         /* Give a little boost to mid-size frames */
4584         if (avg_wire_size > 300 && avg_wire_size < 1200)
4585                 new_val = avg_wire_size / 3;
4586         else
4587                 new_val = avg_wire_size / 2;
4588
4589         /* conservative mode (itr 3) eliminates the lowest_latency setting */
4590         if (new_val < IGC_20K_ITR &&
4591             ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4592             (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4593                 new_val = IGC_20K_ITR;
4594
4595 set_itr_val:
4596         if (new_val != q_vector->itr_val) {
4597                 q_vector->itr_val = new_val;
4598                 q_vector->set_itr = 1;
4599         }
4600 clear_counts:
4601         q_vector->rx.total_bytes = 0;
4602         q_vector->rx.total_packets = 0;
4603         q_vector->tx.total_bytes = 0;
4604         q_vector->tx.total_packets = 0;
4605 }
4606
4607 static void igc_ring_irq_enable(struct igc_q_vector *q_vector)
4608 {
4609         struct igc_adapter *adapter = q_vector->adapter;
4610         struct igc_hw *hw = &adapter->hw;
4611
4612         if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
4613             (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
4614                 if (adapter->num_q_vectors == 1)
4615                         igc_set_itr(q_vector);
4616                 else
4617                         igc_update_ring_itr(q_vector);
4618         }
4619
4620         if (!test_bit(__IGC_DOWN, &adapter->state)) {
4621                 if (adapter->msix_entries)
4622                         wr32(IGC_EIMS, q_vector->eims_value);
4623                 else
4624                         igc_irq_enable(adapter);
4625         }
4626 }
4627
4628 static void igc_add_ring(struct igc_ring *ring,
4629                          struct igc_ring_container *head)
4630 {
4631         head->ring = ring;
4632         head->count++;
4633 }
4634
4635 /**
4636  * igc_cache_ring_register - Descriptor ring to register mapping
4637  * @adapter: board private structure to initialize
4638  *
4639  * Once we know the feature-set enabled for the device, we'll cache
4640  * the register offset the descriptor ring is assigned to.
4641  */
4642 static void igc_cache_ring_register(struct igc_adapter *adapter)
4643 {
4644         int i = 0, j = 0;
4645
4646         switch (adapter->hw.mac.type) {
4647         case igc_i225:
4648         default:
4649                 for (; i < adapter->num_rx_queues; i++)
4650                         adapter->rx_ring[i]->reg_idx = i;
4651                 for (; j < adapter->num_tx_queues; j++)
4652                         adapter->tx_ring[j]->reg_idx = j;
4653                 break;
4654         }
4655 }
4656
4657 /**
4658  * igc_poll - NAPI Rx polling callback
4659  * @napi: napi polling structure
4660  * @budget: count of how many packets we should handle
4661  */
4662 static int igc_poll(struct napi_struct *napi, int budget)
4663 {
4664         struct igc_q_vector *q_vector = container_of(napi,
4665                                                      struct igc_q_vector,
4666                                                      napi);
4667         struct igc_ring *rx_ring = q_vector->rx.ring;
4668         bool clean_complete = true;
4669         int work_done = 0;
4670
4671         if (q_vector->tx.ring)
4672                 clean_complete = igc_clean_tx_irq(q_vector, budget);
4673
4674         if (rx_ring) {
4675                 int cleaned = rx_ring->xsk_pool ?
4676                               igc_clean_rx_irq_zc(q_vector, budget) :
4677                               igc_clean_rx_irq(q_vector, budget);
4678
4679                 work_done += cleaned;
4680                 if (cleaned >= budget)
4681                         clean_complete = false;
4682         }
4683
4684         /* If all work not completed, return budget and keep polling */
4685         if (!clean_complete)
4686                 return budget;
4687
4688         /* Exit the polling mode, but don't re-enable interrupts if stack might
4689          * poll us due to busy-polling
4690          */
4691         if (likely(napi_complete_done(napi, work_done)))
4692                 igc_ring_irq_enable(q_vector);
4693
4694         return min(work_done, budget - 1);
4695 }
4696
4697 /**
4698  * igc_alloc_q_vector - Allocate memory for a single interrupt vector
4699  * @adapter: board private structure to initialize
4700  * @v_count: q_vectors allocated on adapter, used for ring interleaving
4701  * @v_idx: index of vector in adapter struct
4702  * @txr_count: total number of Tx rings to allocate
4703  * @txr_idx: index of first Tx ring to allocate
4704  * @rxr_count: total number of Rx rings to allocate
4705  * @rxr_idx: index of first Rx ring to allocate
4706  *
4707  * We allocate one q_vector.  If allocation fails we return -ENOMEM.
4708  */
4709 static int igc_alloc_q_vector(struct igc_adapter *adapter,
4710                               unsigned int v_count, unsigned int v_idx,
4711                               unsigned int txr_count, unsigned int txr_idx,
4712                               unsigned int rxr_count, unsigned int rxr_idx)
4713 {
4714         struct igc_q_vector *q_vector;
4715         struct igc_ring *ring;
4716         int ring_count;
4717
4718         /* igc only supports 1 Tx and/or 1 Rx queue per vector */
4719         if (txr_count > 1 || rxr_count > 1)
4720                 return -ENOMEM;
4721
4722         ring_count = txr_count + rxr_count;
4723
4724         /* allocate q_vector and rings */
4725         q_vector = adapter->q_vector[v_idx];
4726         if (!q_vector)
4727                 q_vector = kzalloc(struct_size(q_vector, ring, ring_count),
4728                                    GFP_KERNEL);
4729         else
4730                 memset(q_vector, 0, struct_size(q_vector, ring, ring_count));
4731         if (!q_vector)
4732                 return -ENOMEM;
4733
4734         /* initialize NAPI */
4735         netif_napi_add(adapter->netdev, &q_vector->napi, igc_poll);
4736
4737         /* tie q_vector and adapter together */
4738         adapter->q_vector[v_idx] = q_vector;
4739         q_vector->adapter = adapter;
4740
4741         /* initialize work limits */
4742         q_vector->tx.work_limit = adapter->tx_work_limit;
4743
4744         /* initialize ITR configuration */
4745         q_vector->itr_register = adapter->io_addr + IGC_EITR(0);
4746         q_vector->itr_val = IGC_START_ITR;
4747
4748         /* initialize pointer to rings */
4749         ring = q_vector->ring;
4750
4751         /* initialize ITR */
4752         if (rxr_count) {
4753                 /* rx or rx/tx vector */
4754                 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
4755                         q_vector->itr_val = adapter->rx_itr_setting;
4756         } else {
4757                 /* tx only vector */
4758                 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
4759                         q_vector->itr_val = adapter->tx_itr_setting;
4760         }
4761
4762         if (txr_count) {
4763                 /* assign generic ring traits */
4764                 ring->dev = &adapter->pdev->dev;
4765                 ring->netdev = adapter->netdev;
4766
4767                 /* configure backlink on ring */
4768                 ring->q_vector = q_vector;
4769
4770                 /* update q_vector Tx values */
4771                 igc_add_ring(ring, &q_vector->tx);
4772
4773                 /* apply Tx specific ring traits */
4774                 ring->count = adapter->tx_ring_count;
4775                 ring->queue_index = txr_idx;
4776
4777                 /* assign ring to adapter */
4778                 adapter->tx_ring[txr_idx] = ring;
4779
4780                 /* push pointer to next ring */
4781                 ring++;
4782         }
4783
4784         if (rxr_count) {
4785                 /* assign generic ring traits */
4786                 ring->dev = &adapter->pdev->dev;
4787                 ring->netdev = adapter->netdev;
4788
4789                 /* configure backlink on ring */
4790                 ring->q_vector = q_vector;
4791
4792                 /* update q_vector Rx values */
4793                 igc_add_ring(ring, &q_vector->rx);
4794
4795                 /* apply Rx specific ring traits */
4796                 ring->count = adapter->rx_ring_count;
4797                 ring->queue_index = rxr_idx;
4798
4799                 /* assign ring to adapter */
4800                 adapter->rx_ring[rxr_idx] = ring;
4801         }
4802
4803         return 0;
4804 }
4805
4806 /**
4807  * igc_alloc_q_vectors - Allocate memory for interrupt vectors
4808  * @adapter: board private structure to initialize
4809  *
4810  * We allocate one q_vector per queue interrupt.  If allocation fails we
4811  * return -ENOMEM.
4812  */
4813 static int igc_alloc_q_vectors(struct igc_adapter *adapter)
4814 {
4815         int rxr_remaining = adapter->num_rx_queues;
4816         int txr_remaining = adapter->num_tx_queues;
4817         int rxr_idx = 0, txr_idx = 0, v_idx = 0;
4818         int q_vectors = adapter->num_q_vectors;
4819         int err;
4820
4821         if (q_vectors >= (rxr_remaining + txr_remaining)) {
4822                 for (; rxr_remaining; v_idx++) {
4823                         err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
4824                                                  0, 0, 1, rxr_idx);
4825
4826                         if (err)
4827                                 goto err_out;
4828
4829                         /* update counts and index */
4830                         rxr_remaining--;
4831                         rxr_idx++;
4832                 }
4833         }
4834
4835         for (; v_idx < q_vectors; v_idx++) {
4836                 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
4837                 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
4838
4839                 err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
4840                                          tqpv, txr_idx, rqpv, rxr_idx);
4841
4842                 if (err)
4843                         goto err_out;
4844
4845                 /* update counts and index */
4846                 rxr_remaining -= rqpv;
4847                 txr_remaining -= tqpv;
4848                 rxr_idx++;
4849                 txr_idx++;
4850         }
4851
4852         return 0;
4853
4854 err_out:
4855         adapter->num_tx_queues = 0;
4856         adapter->num_rx_queues = 0;
4857         adapter->num_q_vectors = 0;
4858
4859         while (v_idx--)
4860                 igc_free_q_vector(adapter, v_idx);
4861
4862         return -ENOMEM;
4863 }
4864
4865 /**
4866  * igc_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
4867  * @adapter: Pointer to adapter structure
4868  * @msix: boolean for MSI-X capability
4869  *
4870  * This function initializes the interrupts and allocates all of the queues.
4871  */
4872 static int igc_init_interrupt_scheme(struct igc_adapter *adapter, bool msix)
4873 {
4874         struct net_device *dev = adapter->netdev;
4875         int err = 0;
4876
4877         igc_set_interrupt_capability(adapter, msix);
4878
4879         err = igc_alloc_q_vectors(adapter);
4880         if (err) {
4881                 netdev_err(dev, "Unable to allocate memory for vectors\n");
4882                 goto err_alloc_q_vectors;
4883         }
4884
4885         igc_cache_ring_register(adapter);
4886
4887         return 0;
4888
4889 err_alloc_q_vectors:
4890         igc_reset_interrupt_capability(adapter);
4891         return err;
4892 }
4893
4894 /**
4895  * igc_sw_init - Initialize general software structures (struct igc_adapter)
4896  * @adapter: board private structure to initialize
4897  *
4898  * igc_sw_init initializes the Adapter private data structure.
4899  * Fields are initialized based on PCI device information and
4900  * OS network device settings (MTU size).
4901  */
4902 static int igc_sw_init(struct igc_adapter *adapter)
4903 {
4904         struct net_device *netdev = adapter->netdev;
4905         struct pci_dev *pdev = adapter->pdev;
4906         struct igc_hw *hw = &adapter->hw;
4907
4908         pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
4909
4910         /* set default ring sizes */
4911         adapter->tx_ring_count = IGC_DEFAULT_TXD;
4912         adapter->rx_ring_count = IGC_DEFAULT_RXD;
4913
4914         /* set default ITR values */
4915         adapter->rx_itr_setting = IGC_DEFAULT_ITR;
4916         adapter->tx_itr_setting = IGC_DEFAULT_ITR;
4917
4918         /* set default work limits */
4919         adapter->tx_work_limit = IGC_DEFAULT_TX_WORK;
4920
4921         /* adjust max frame to be at least the size of a standard frame */
4922         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
4923                                 VLAN_HLEN;
4924         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4925
4926         mutex_init(&adapter->nfc_rule_lock);
4927         INIT_LIST_HEAD(&adapter->nfc_rule_list);
4928         adapter->nfc_rule_count = 0;
4929
4930         spin_lock_init(&adapter->stats64_lock);
4931         spin_lock_init(&adapter->qbv_tx_lock);
4932         /* Assume MSI-X interrupts, will be checked during IRQ allocation */
4933         adapter->flags |= IGC_FLAG_HAS_MSIX;
4934
4935         igc_init_queue_configuration(adapter);
4936
4937         /* This call may decrease the number of queues */
4938         if (igc_init_interrupt_scheme(adapter, true)) {
4939                 netdev_err(netdev, "Unable to allocate memory for queues\n");
4940                 return -ENOMEM;
4941         }
4942
4943         /* Explicitly disable IRQ since the NIC can be in any state. */
4944         igc_irq_disable(adapter);
4945
4946         set_bit(__IGC_DOWN, &adapter->state);
4947
4948         return 0;
4949 }
4950
4951 /**
4952  * igc_up - Open the interface and prepare it to handle traffic
4953  * @adapter: board private structure
4954  */
4955 void igc_up(struct igc_adapter *adapter)
4956 {
4957         struct igc_hw *hw = &adapter->hw;
4958         int i = 0;
4959
4960         /* hardware has been reset, we need to reload some things */
4961         igc_configure(adapter);
4962
4963         clear_bit(__IGC_DOWN, &adapter->state);
4964
4965         for (i = 0; i < adapter->num_q_vectors; i++)
4966                 napi_enable(&adapter->q_vector[i]->napi);
4967
4968         if (adapter->msix_entries)
4969                 igc_configure_msix(adapter);
4970         else
4971                 igc_assign_vector(adapter->q_vector[0], 0);
4972
4973         /* Clear any pending interrupts. */
4974         rd32(IGC_ICR);
4975         igc_irq_enable(adapter);
4976
4977         netif_tx_start_all_queues(adapter->netdev);
4978
4979         /* start the watchdog. */
4980         hw->mac.get_link_status = true;
4981         schedule_work(&adapter->watchdog_task);
4982 }
4983
4984 /**
4985  * igc_update_stats - Update the board statistics counters
4986  * @adapter: board private structure
4987  */
4988 void igc_update_stats(struct igc_adapter *adapter)
4989 {
4990         struct rtnl_link_stats64 *net_stats = &adapter->stats64;
4991         struct pci_dev *pdev = adapter->pdev;
4992         struct igc_hw *hw = &adapter->hw;
4993         u64 _bytes, _packets;
4994         u64 bytes, packets;
4995         unsigned int start;
4996         u32 mpc;
4997         int i;
4998
4999         /* Prevent stats update while adapter is being reset, or if the pci
5000          * connection is down.
5001          */
5002         if (adapter->link_speed == 0)
5003                 return;
5004         if (pci_channel_offline(pdev))
5005                 return;
5006
5007         packets = 0;
5008         bytes = 0;
5009
5010         rcu_read_lock();
5011         for (i = 0; i < adapter->num_rx_queues; i++) {
5012                 struct igc_ring *ring = adapter->rx_ring[i];
5013                 u32 rqdpc = rd32(IGC_RQDPC(i));
5014
5015                 if (hw->mac.type >= igc_i225)
5016                         wr32(IGC_RQDPC(i), 0);
5017
5018                 if (rqdpc) {
5019                         ring->rx_stats.drops += rqdpc;
5020                         net_stats->rx_fifo_errors += rqdpc;
5021                 }
5022
5023                 do {
5024                         start = u64_stats_fetch_begin(&ring->rx_syncp);
5025                         _bytes = ring->rx_stats.bytes;
5026                         _packets = ring->rx_stats.packets;
5027                 } while (u64_stats_fetch_retry(&ring->rx_syncp, start));
5028                 bytes += _bytes;
5029                 packets += _packets;
5030         }
5031
5032         net_stats->rx_bytes = bytes;
5033         net_stats->rx_packets = packets;
5034
5035         packets = 0;
5036         bytes = 0;
5037         for (i = 0; i < adapter->num_tx_queues; i++) {
5038                 struct igc_ring *ring = adapter->tx_ring[i];
5039
5040                 do {
5041                         start = u64_stats_fetch_begin(&ring->tx_syncp);
5042                         _bytes = ring->tx_stats.bytes;
5043                         _packets = ring->tx_stats.packets;
5044                 } while (u64_stats_fetch_retry(&ring->tx_syncp, start));
5045                 bytes += _bytes;
5046                 packets += _packets;
5047         }
5048         net_stats->tx_bytes = bytes;
5049         net_stats->tx_packets = packets;
5050         rcu_read_unlock();
5051
5052         /* read stats registers */
5053         adapter->stats.crcerrs += rd32(IGC_CRCERRS);
5054         adapter->stats.gprc += rd32(IGC_GPRC);
5055         adapter->stats.gorc += rd32(IGC_GORCL);
5056         rd32(IGC_GORCH); /* clear GORCL */
5057         adapter->stats.bprc += rd32(IGC_BPRC);
5058         adapter->stats.mprc += rd32(IGC_MPRC);
5059         adapter->stats.roc += rd32(IGC_ROC);
5060
5061         adapter->stats.prc64 += rd32(IGC_PRC64);
5062         adapter->stats.prc127 += rd32(IGC_PRC127);
5063         adapter->stats.prc255 += rd32(IGC_PRC255);
5064         adapter->stats.prc511 += rd32(IGC_PRC511);
5065         adapter->stats.prc1023 += rd32(IGC_PRC1023);
5066         adapter->stats.prc1522 += rd32(IGC_PRC1522);
5067         adapter->stats.tlpic += rd32(IGC_TLPIC);
5068         adapter->stats.rlpic += rd32(IGC_RLPIC);
5069         adapter->stats.hgptc += rd32(IGC_HGPTC);
5070
5071         mpc = rd32(IGC_MPC);
5072         adapter->stats.mpc += mpc;
5073         net_stats->rx_fifo_errors += mpc;
5074         adapter->stats.scc += rd32(IGC_SCC);
5075         adapter->stats.ecol += rd32(IGC_ECOL);
5076         adapter->stats.mcc += rd32(IGC_MCC);
5077         adapter->stats.latecol += rd32(IGC_LATECOL);
5078         adapter->stats.dc += rd32(IGC_DC);
5079         adapter->stats.rlec += rd32(IGC_RLEC);
5080         adapter->stats.xonrxc += rd32(IGC_XONRXC);
5081         adapter->stats.xontxc += rd32(IGC_XONTXC);
5082         adapter->stats.xoffrxc += rd32(IGC_XOFFRXC);
5083         adapter->stats.xofftxc += rd32(IGC_XOFFTXC);
5084         adapter->stats.fcruc += rd32(IGC_FCRUC);
5085         adapter->stats.gptc += rd32(IGC_GPTC);
5086         adapter->stats.gotc += rd32(IGC_GOTCL);
5087         rd32(IGC_GOTCH); /* clear GOTCL */
5088         adapter->stats.rnbc += rd32(IGC_RNBC);
5089         adapter->stats.ruc += rd32(IGC_RUC);
5090         adapter->stats.rfc += rd32(IGC_RFC);
5091         adapter->stats.rjc += rd32(IGC_RJC);
5092         adapter->stats.tor += rd32(IGC_TORH);
5093         adapter->stats.tot += rd32(IGC_TOTH);
5094         adapter->stats.tpr += rd32(IGC_TPR);
5095
5096         adapter->stats.ptc64 += rd32(IGC_PTC64);
5097         adapter->stats.ptc127 += rd32(IGC_PTC127);
5098         adapter->stats.ptc255 += rd32(IGC_PTC255);
5099         adapter->stats.ptc511 += rd32(IGC_PTC511);
5100         adapter->stats.ptc1023 += rd32(IGC_PTC1023);
5101         adapter->stats.ptc1522 += rd32(IGC_PTC1522);
5102
5103         adapter->stats.mptc += rd32(IGC_MPTC);
5104         adapter->stats.bptc += rd32(IGC_BPTC);
5105
5106         adapter->stats.tpt += rd32(IGC_TPT);
5107         adapter->stats.colc += rd32(IGC_COLC);
5108         adapter->stats.colc += rd32(IGC_RERC);
5109
5110         adapter->stats.algnerrc += rd32(IGC_ALGNERRC);
5111
5112         adapter->stats.tsctc += rd32(IGC_TSCTC);
5113
5114         adapter->stats.iac += rd32(IGC_IAC);
5115
5116         /* Fill out the OS statistics structure */
5117         net_stats->multicast = adapter->stats.mprc;
5118         net_stats->collisions = adapter->stats.colc;
5119
5120         /* Rx Errors */
5121
5122         /* RLEC on some newer hardware can be incorrect so build
5123          * our own version based on RUC and ROC
5124          */
5125         net_stats->rx_errors = adapter->stats.rxerrc +
5126                 adapter->stats.crcerrs + adapter->stats.algnerrc +
5127                 adapter->stats.ruc + adapter->stats.roc +
5128                 adapter->stats.cexterr;
5129         net_stats->rx_length_errors = adapter->stats.ruc +
5130                                       adapter->stats.roc;
5131         net_stats->rx_crc_errors = adapter->stats.crcerrs;
5132         net_stats->rx_frame_errors = adapter->stats.algnerrc;
5133         net_stats->rx_missed_errors = adapter->stats.mpc;
5134
5135         /* Tx Errors */
5136         net_stats->tx_errors = adapter->stats.ecol +
5137                                adapter->stats.latecol;
5138         net_stats->tx_aborted_errors = adapter->stats.ecol;
5139         net_stats->tx_window_errors = adapter->stats.latecol;
5140         net_stats->tx_carrier_errors = adapter->stats.tncrs;
5141
5142         /* Tx Dropped */
5143         net_stats->tx_dropped = adapter->stats.txdrop;
5144
5145         /* Management Stats */
5146         adapter->stats.mgptc += rd32(IGC_MGTPTC);
5147         adapter->stats.mgprc += rd32(IGC_MGTPRC);
5148         adapter->stats.mgpdc += rd32(IGC_MGTPDC);
5149 }
5150
5151 /**
5152  * igc_down - Close the interface
5153  * @adapter: board private structure
5154  */
5155 void igc_down(struct igc_adapter *adapter)
5156 {
5157         struct net_device *netdev = adapter->netdev;
5158         struct igc_hw *hw = &adapter->hw;
5159         u32 tctl, rctl;
5160         int i = 0;
5161
5162         set_bit(__IGC_DOWN, &adapter->state);
5163
5164         igc_ptp_suspend(adapter);
5165
5166         if (pci_device_is_present(adapter->pdev)) {
5167                 /* disable receives in the hardware */
5168                 rctl = rd32(IGC_RCTL);
5169                 wr32(IGC_RCTL, rctl & ~IGC_RCTL_EN);
5170                 /* flush and sleep below */
5171         }
5172         /* set trans_start so we don't get spurious watchdogs during reset */
5173         netif_trans_update(netdev);
5174
5175         netif_carrier_off(netdev);
5176         netif_tx_stop_all_queues(netdev);
5177
5178         if (pci_device_is_present(adapter->pdev)) {
5179                 /* disable transmits in the hardware */
5180                 tctl = rd32(IGC_TCTL);
5181                 tctl &= ~IGC_TCTL_EN;
5182                 wr32(IGC_TCTL, tctl);
5183                 /* flush both disables and wait for them to finish */
5184                 wrfl();
5185                 usleep_range(10000, 20000);
5186
5187                 igc_irq_disable(adapter);
5188         }
5189
5190         adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
5191
5192         for (i = 0; i < adapter->num_q_vectors; i++) {
5193                 if (adapter->q_vector[i]) {
5194                         napi_synchronize(&adapter->q_vector[i]->napi);
5195                         napi_disable(&adapter->q_vector[i]->napi);
5196                 }
5197         }
5198
5199         del_timer_sync(&adapter->watchdog_timer);
5200         del_timer_sync(&adapter->phy_info_timer);
5201
5202         /* record the stats before reset*/
5203         spin_lock(&adapter->stats64_lock);
5204         igc_update_stats(adapter);
5205         spin_unlock(&adapter->stats64_lock);
5206
5207         adapter->link_speed = 0;
5208         adapter->link_duplex = 0;
5209
5210         if (!pci_channel_offline(adapter->pdev))
5211                 igc_reset(adapter);
5212
5213         /* clear VLAN promisc flag so VFTA will be updated if necessary */
5214         adapter->flags &= ~IGC_FLAG_VLAN_PROMISC;
5215
5216         igc_disable_all_tx_rings_hw(adapter);
5217         igc_clean_all_tx_rings(adapter);
5218         igc_clean_all_rx_rings(adapter);
5219 }
5220
5221 void igc_reinit_locked(struct igc_adapter *adapter)
5222 {
5223         while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
5224                 usleep_range(1000, 2000);
5225         igc_down(adapter);
5226         igc_up(adapter);
5227         clear_bit(__IGC_RESETTING, &adapter->state);
5228 }
5229
5230 static void igc_reset_task(struct work_struct *work)
5231 {
5232         struct igc_adapter *adapter;
5233
5234         adapter = container_of(work, struct igc_adapter, reset_task);
5235
5236         rtnl_lock();
5237         /* If we're already down or resetting, just bail */
5238         if (test_bit(__IGC_DOWN, &adapter->state) ||
5239             test_bit(__IGC_RESETTING, &adapter->state)) {
5240                 rtnl_unlock();
5241                 return;
5242         }
5243
5244         igc_rings_dump(adapter);
5245         igc_regs_dump(adapter);
5246         netdev_err(adapter->netdev, "Reset adapter\n");
5247         igc_reinit_locked(adapter);
5248         rtnl_unlock();
5249 }
5250
5251 /**
5252  * igc_change_mtu - Change the Maximum Transfer Unit
5253  * @netdev: network interface device structure
5254  * @new_mtu: new value for maximum frame size
5255  *
5256  * Returns 0 on success, negative on failure
5257  */
5258 static int igc_change_mtu(struct net_device *netdev, int new_mtu)
5259 {
5260         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
5261         struct igc_adapter *adapter = netdev_priv(netdev);
5262
5263         if (igc_xdp_is_enabled(adapter) && new_mtu > ETH_DATA_LEN) {
5264                 netdev_dbg(netdev, "Jumbo frames not supported with XDP");
5265                 return -EINVAL;
5266         }
5267
5268         /* adjust max frame to be at least the size of a standard frame */
5269         if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
5270                 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
5271
5272         while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
5273                 usleep_range(1000, 2000);
5274
5275         /* igc_down has a dependency on max_frame_size */
5276         adapter->max_frame_size = max_frame;
5277
5278         if (netif_running(netdev))
5279                 igc_down(adapter);
5280
5281         netdev_dbg(netdev, "changing MTU from %d to %d\n", netdev->mtu, new_mtu);
5282         WRITE_ONCE(netdev->mtu, new_mtu);
5283
5284         if (netif_running(netdev))
5285                 igc_up(adapter);
5286         else
5287                 igc_reset(adapter);
5288
5289         clear_bit(__IGC_RESETTING, &adapter->state);
5290
5291         return 0;
5292 }
5293
5294 /**
5295  * igc_tx_timeout - Respond to a Tx Hang
5296  * @netdev: network interface device structure
5297  * @txqueue: queue number that timed out
5298  **/
5299 static void igc_tx_timeout(struct net_device *netdev,
5300                            unsigned int __always_unused txqueue)
5301 {
5302         struct igc_adapter *adapter = netdev_priv(netdev);
5303         struct igc_hw *hw = &adapter->hw;
5304
5305         /* Do the reset outside of interrupt context */
5306         adapter->tx_timeout_count++;
5307         schedule_work(&adapter->reset_task);
5308         wr32(IGC_EICS,
5309              (adapter->eims_enable_mask & ~adapter->eims_other));
5310 }
5311
5312 /**
5313  * igc_get_stats64 - Get System Network Statistics
5314  * @netdev: network interface device structure
5315  * @stats: rtnl_link_stats64 pointer
5316  *
5317  * Returns the address of the device statistics structure.
5318  * The statistics are updated here and also from the timer callback.
5319  */
5320 static void igc_get_stats64(struct net_device *netdev,
5321                             struct rtnl_link_stats64 *stats)
5322 {
5323         struct igc_adapter *adapter = netdev_priv(netdev);
5324
5325         spin_lock(&adapter->stats64_lock);
5326         if (!test_bit(__IGC_RESETTING, &adapter->state))
5327                 igc_update_stats(adapter);
5328         memcpy(stats, &adapter->stats64, sizeof(*stats));
5329         spin_unlock(&adapter->stats64_lock);
5330 }
5331
5332 static netdev_features_t igc_fix_features(struct net_device *netdev,
5333                                           netdev_features_t features)
5334 {
5335         /* Since there is no support for separate Rx/Tx vlan accel
5336          * enable/disable make sure Tx flag is always in same state as Rx.
5337          */
5338         if (features & NETIF_F_HW_VLAN_CTAG_RX)
5339                 features |= NETIF_F_HW_VLAN_CTAG_TX;
5340         else
5341                 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
5342
5343         return features;
5344 }
5345
5346 static int igc_set_features(struct net_device *netdev,
5347                             netdev_features_t features)
5348 {
5349         netdev_features_t changed = netdev->features ^ features;
5350         struct igc_adapter *adapter = netdev_priv(netdev);
5351
5352         if (changed & NETIF_F_HW_VLAN_CTAG_RX)
5353                 igc_vlan_mode(netdev, features);
5354
5355         /* Add VLAN support */
5356         if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
5357                 return 0;
5358
5359         if (!(features & NETIF_F_NTUPLE))
5360                 igc_flush_nfc_rules(adapter);
5361
5362         netdev->features = features;
5363
5364         if (netif_running(netdev))
5365                 igc_reinit_locked(adapter);
5366         else
5367                 igc_reset(adapter);
5368
5369         return 1;
5370 }
5371
5372 static netdev_features_t
5373 igc_features_check(struct sk_buff *skb, struct net_device *dev,
5374                    netdev_features_t features)
5375 {
5376         unsigned int network_hdr_len, mac_hdr_len;
5377
5378         /* Make certain the headers can be described by a context descriptor */
5379         mac_hdr_len = skb_network_offset(skb);
5380         if (unlikely(mac_hdr_len > IGC_MAX_MAC_HDR_LEN))
5381                 return features & ~(NETIF_F_HW_CSUM |
5382                                     NETIF_F_SCTP_CRC |
5383                                     NETIF_F_HW_VLAN_CTAG_TX |
5384                                     NETIF_F_TSO |
5385                                     NETIF_F_TSO6);
5386
5387         network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
5388         if (unlikely(network_hdr_len >  IGC_MAX_NETWORK_HDR_LEN))
5389                 return features & ~(NETIF_F_HW_CSUM |
5390                                     NETIF_F_SCTP_CRC |
5391                                     NETIF_F_TSO |
5392                                     NETIF_F_TSO6);
5393
5394         /* We can only support IPv4 TSO in tunnels if we can mangle the
5395          * inner IP ID field, so strip TSO if MANGLEID is not supported.
5396          */
5397         if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
5398                 features &= ~NETIF_F_TSO;
5399
5400         return features;
5401 }
5402
5403 static void igc_tsync_interrupt(struct igc_adapter *adapter)
5404 {
5405         struct igc_hw *hw = &adapter->hw;
5406         u32 tsauxc, sec, nsec, tsicr;
5407         struct ptp_clock_event event;
5408         struct timespec64 ts;
5409
5410         tsicr = rd32(IGC_TSICR);
5411
5412         if (tsicr & IGC_TSICR_SYS_WRAP) {
5413                 event.type = PTP_CLOCK_PPS;
5414                 if (adapter->ptp_caps.pps)
5415                         ptp_clock_event(adapter->ptp_clock, &event);
5416         }
5417
5418         if (tsicr & IGC_TSICR_TXTS) {
5419                 /* retrieve hardware timestamp */
5420                 igc_ptp_tx_tstamp_event(adapter);
5421         }
5422
5423         if (tsicr & IGC_TSICR_TT0) {
5424                 spin_lock(&adapter->tmreg_lock);
5425                 ts = timespec64_add(adapter->perout[0].start,
5426                                     adapter->perout[0].period);
5427                 wr32(IGC_TRGTTIML0, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0);
5428                 wr32(IGC_TRGTTIMH0, (u32)ts.tv_sec);
5429                 tsauxc = rd32(IGC_TSAUXC);
5430                 tsauxc |= IGC_TSAUXC_EN_TT0;
5431                 wr32(IGC_TSAUXC, tsauxc);
5432                 adapter->perout[0].start = ts;
5433                 spin_unlock(&adapter->tmreg_lock);
5434         }
5435
5436         if (tsicr & IGC_TSICR_TT1) {
5437                 spin_lock(&adapter->tmreg_lock);
5438                 ts = timespec64_add(adapter->perout[1].start,
5439                                     adapter->perout[1].period);
5440                 wr32(IGC_TRGTTIML1, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0);
5441                 wr32(IGC_TRGTTIMH1, (u32)ts.tv_sec);
5442                 tsauxc = rd32(IGC_TSAUXC);
5443                 tsauxc |= IGC_TSAUXC_EN_TT1;
5444                 wr32(IGC_TSAUXC, tsauxc);
5445                 adapter->perout[1].start = ts;
5446                 spin_unlock(&adapter->tmreg_lock);
5447         }
5448
5449         if (tsicr & IGC_TSICR_AUTT0) {
5450                 nsec = rd32(IGC_AUXSTMPL0);
5451                 sec  = rd32(IGC_AUXSTMPH0);
5452                 event.type = PTP_CLOCK_EXTTS;
5453                 event.index = 0;
5454                 event.timestamp = sec * NSEC_PER_SEC + nsec;
5455                 ptp_clock_event(adapter->ptp_clock, &event);
5456         }
5457
5458         if (tsicr & IGC_TSICR_AUTT1) {
5459                 nsec = rd32(IGC_AUXSTMPL1);
5460                 sec  = rd32(IGC_AUXSTMPH1);
5461                 event.type = PTP_CLOCK_EXTTS;
5462                 event.index = 1;
5463                 event.timestamp = sec * NSEC_PER_SEC + nsec;
5464                 ptp_clock_event(adapter->ptp_clock, &event);
5465         }
5466 }
5467
5468 /**
5469  * igc_msix_other - msix other interrupt handler
5470  * @irq: interrupt number
5471  * @data: pointer to a q_vector
5472  */
5473 static irqreturn_t igc_msix_other(int irq, void *data)
5474 {
5475         struct igc_adapter *adapter = data;
5476         struct igc_hw *hw = &adapter->hw;
5477         u32 icr = rd32(IGC_ICR);
5478
5479         /* reading ICR causes bit 31 of EICR to be cleared */
5480         if (icr & IGC_ICR_DRSTA)
5481                 schedule_work(&adapter->reset_task);
5482
5483         if (icr & IGC_ICR_DOUTSYNC) {
5484                 /* HW is reporting DMA is out of sync */
5485                 adapter->stats.doosync++;
5486         }
5487
5488         if (icr & IGC_ICR_LSC) {
5489                 hw->mac.get_link_status = true;
5490                 /* guard against interrupt when we're going down */
5491                 if (!test_bit(__IGC_DOWN, &adapter->state))
5492                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
5493         }
5494
5495         if (icr & IGC_ICR_TS)
5496                 igc_tsync_interrupt(adapter);
5497
5498         wr32(IGC_EIMS, adapter->eims_other);
5499
5500         return IRQ_HANDLED;
5501 }
5502
5503 static void igc_write_itr(struct igc_q_vector *q_vector)
5504 {
5505         u32 itr_val = q_vector->itr_val & IGC_QVECTOR_MASK;
5506
5507         if (!q_vector->set_itr)
5508                 return;
5509
5510         if (!itr_val)
5511                 itr_val = IGC_ITR_VAL_MASK;
5512
5513         itr_val |= IGC_EITR_CNT_IGNR;
5514
5515         writel(itr_val, q_vector->itr_register);
5516         q_vector->set_itr = 0;
5517 }
5518
5519 static irqreturn_t igc_msix_ring(int irq, void *data)
5520 {
5521         struct igc_q_vector *q_vector = data;
5522
5523         /* Write the ITR value calculated from the previous interrupt. */
5524         igc_write_itr(q_vector);
5525
5526         napi_schedule(&q_vector->napi);
5527
5528         return IRQ_HANDLED;
5529 }
5530
5531 /**
5532  * igc_request_msix - Initialize MSI-X interrupts
5533  * @adapter: Pointer to adapter structure
5534  *
5535  * igc_request_msix allocates MSI-X vectors and requests interrupts from the
5536  * kernel.
5537  */
5538 static int igc_request_msix(struct igc_adapter *adapter)
5539 {
5540         unsigned int num_q_vectors = adapter->num_q_vectors;
5541         int i = 0, err = 0, vector = 0, free_vector = 0;
5542         struct net_device *netdev = adapter->netdev;
5543
5544         err = request_irq(adapter->msix_entries[vector].vector,
5545                           &igc_msix_other, 0, netdev->name, adapter);
5546         if (err)
5547                 goto err_out;
5548
5549         if (num_q_vectors > MAX_Q_VECTORS) {
5550                 num_q_vectors = MAX_Q_VECTORS;
5551                 dev_warn(&adapter->pdev->dev,
5552                          "The number of queue vectors (%d) is higher than max allowed (%d)\n",
5553                          adapter->num_q_vectors, MAX_Q_VECTORS);
5554         }
5555         for (i = 0; i < num_q_vectors; i++) {
5556                 struct igc_q_vector *q_vector = adapter->q_vector[i];
5557
5558                 vector++;
5559
5560                 q_vector->itr_register = adapter->io_addr + IGC_EITR(vector);
5561
5562                 if (q_vector->rx.ring && q_vector->tx.ring)
5563                         sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
5564                                 q_vector->rx.ring->queue_index);
5565                 else if (q_vector->tx.ring)
5566                         sprintf(q_vector->name, "%s-tx-%u", netdev->name,
5567                                 q_vector->tx.ring->queue_index);
5568                 else if (q_vector->rx.ring)
5569                         sprintf(q_vector->name, "%s-rx-%u", netdev->name,
5570                                 q_vector->rx.ring->queue_index);
5571                 else
5572                         sprintf(q_vector->name, "%s-unused", netdev->name);
5573
5574                 err = request_irq(adapter->msix_entries[vector].vector,
5575                                   igc_msix_ring, 0, q_vector->name,
5576                                   q_vector);
5577                 if (err)
5578                         goto err_free;
5579         }
5580
5581         igc_configure_msix(adapter);
5582         return 0;
5583
5584 err_free:
5585         /* free already assigned IRQs */
5586         free_irq(adapter->msix_entries[free_vector++].vector, adapter);
5587
5588         vector--;
5589         for (i = 0; i < vector; i++) {
5590                 free_irq(adapter->msix_entries[free_vector++].vector,
5591                          adapter->q_vector[i]);
5592         }
5593 err_out:
5594         return err;
5595 }
5596
5597 /**
5598  * igc_clear_interrupt_scheme - reset the device to a state of no interrupts
5599  * @adapter: Pointer to adapter structure
5600  *
5601  * This function resets the device so that it has 0 rx queues, tx queues, and
5602  * MSI-X interrupts allocated.
5603  */
5604 static void igc_clear_interrupt_scheme(struct igc_adapter *adapter)
5605 {
5606         igc_free_q_vectors(adapter);
5607         igc_reset_interrupt_capability(adapter);
5608 }
5609
5610 /* Need to wait a few seconds after link up to get diagnostic information from
5611  * the phy
5612  */
5613 static void igc_update_phy_info(struct timer_list *t)
5614 {
5615         struct igc_adapter *adapter = from_timer(adapter, t, phy_info_timer);
5616
5617         igc_get_phy_info(&adapter->hw);
5618 }
5619
5620 /**
5621  * igc_has_link - check shared code for link and determine up/down
5622  * @adapter: pointer to driver private info
5623  */
5624 bool igc_has_link(struct igc_adapter *adapter)
5625 {
5626         struct igc_hw *hw = &adapter->hw;
5627         bool link_active = false;
5628
5629         /* get_link_status is set on LSC (link status) interrupt or
5630          * rx sequence error interrupt.  get_link_status will stay
5631          * false until the igc_check_for_link establishes link
5632          * for copper adapters ONLY
5633          */
5634         if (!hw->mac.get_link_status)
5635                 return true;
5636         hw->mac.ops.check_for_link(hw);
5637         link_active = !hw->mac.get_link_status;
5638
5639         if (hw->mac.type == igc_i225) {
5640                 if (!netif_carrier_ok(adapter->netdev)) {
5641                         adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
5642                 } else if (!(adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)) {
5643                         adapter->flags |= IGC_FLAG_NEED_LINK_UPDATE;
5644                         adapter->link_check_timeout = jiffies;
5645                 }
5646         }
5647
5648         return link_active;
5649 }
5650
5651 /**
5652  * igc_watchdog - Timer Call-back
5653  * @t: timer for the watchdog
5654  */
5655 static void igc_watchdog(struct timer_list *t)
5656 {
5657         struct igc_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5658         /* Do the rest outside of interrupt context */
5659         schedule_work(&adapter->watchdog_task);
5660 }
5661
5662 static void igc_watchdog_task(struct work_struct *work)
5663 {
5664         struct igc_adapter *adapter = container_of(work,
5665                                                    struct igc_adapter,
5666                                                    watchdog_task);
5667         struct net_device *netdev = adapter->netdev;
5668         struct igc_hw *hw = &adapter->hw;
5669         struct igc_phy_info *phy = &hw->phy;
5670         u16 phy_data, retry_count = 20;
5671         u32 link;
5672         int i;
5673
5674         link = igc_has_link(adapter);
5675
5676         if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE) {
5677                 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
5678                         adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
5679                 else
5680                         link = false;
5681         }
5682
5683         if (link) {
5684                 /* Cancel scheduled suspend requests. */
5685                 pm_runtime_resume(netdev->dev.parent);
5686
5687                 if (!netif_carrier_ok(netdev)) {
5688                         u32 ctrl;
5689
5690                         hw->mac.ops.get_speed_and_duplex(hw,
5691                                                          &adapter->link_speed,
5692                                                          &adapter->link_duplex);
5693
5694                         ctrl = rd32(IGC_CTRL);
5695                         /* Link status message must follow this format */
5696                         netdev_info(netdev,
5697                                     "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5698                                     adapter->link_speed,
5699                                     adapter->link_duplex == FULL_DUPLEX ?
5700                                     "Full" : "Half",
5701                                     (ctrl & IGC_CTRL_TFCE) &&
5702                                     (ctrl & IGC_CTRL_RFCE) ? "RX/TX" :
5703                                     (ctrl & IGC_CTRL_RFCE) ?  "RX" :
5704                                     (ctrl & IGC_CTRL_TFCE) ?  "TX" : "None");
5705
5706                         /* disable EEE if enabled */
5707                         if ((adapter->flags & IGC_FLAG_EEE) &&
5708                             adapter->link_duplex == HALF_DUPLEX) {
5709                                 netdev_info(netdev,
5710                                             "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex\n");
5711                                 adapter->hw.dev_spec._base.eee_enable = false;
5712                                 adapter->flags &= ~IGC_FLAG_EEE;
5713                         }
5714
5715                         /* check if SmartSpeed worked */
5716                         igc_check_downshift(hw);
5717                         if (phy->speed_downgraded)
5718                                 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
5719
5720                         /* adjust timeout factor according to speed/duplex */
5721                         adapter->tx_timeout_factor = 1;
5722                         switch (adapter->link_speed) {
5723                         case SPEED_10:
5724                                 adapter->tx_timeout_factor = 14;
5725                                 break;
5726                         case SPEED_100:
5727                         case SPEED_1000:
5728                         case SPEED_2500:
5729                                 adapter->tx_timeout_factor = 1;
5730                                 break;
5731                         }
5732
5733                         /* Once the launch time has been set on the wire, there
5734                          * is a delay before the link speed can be determined
5735                          * based on link-up activity. Write into the register
5736                          * as soon as we know the correct link speed.
5737                          */
5738                         igc_tsn_adjust_txtime_offset(adapter);
5739
5740                         if (adapter->link_speed != SPEED_1000)
5741                                 goto no_wait;
5742
5743                         /* wait for Remote receiver status OK */
5744 retry_read_status:
5745                         if (!igc_read_phy_reg(hw, PHY_1000T_STATUS,
5746                                               &phy_data)) {
5747                                 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5748                                     retry_count) {
5749                                         msleep(100);
5750                                         retry_count--;
5751                                         goto retry_read_status;
5752                                 } else if (!retry_count) {
5753                                         netdev_err(netdev, "exceed max 2 second\n");
5754                                 }
5755                         } else {
5756                                 netdev_err(netdev, "read 1000Base-T Status Reg\n");
5757                         }
5758 no_wait:
5759                         netif_carrier_on(netdev);
5760
5761                         /* link state has changed, schedule phy info update */
5762                         if (!test_bit(__IGC_DOWN, &adapter->state))
5763                                 mod_timer(&adapter->phy_info_timer,
5764                                           round_jiffies(jiffies + 2 * HZ));
5765                 }
5766         } else {
5767                 if (netif_carrier_ok(netdev)) {
5768                         adapter->link_speed = 0;
5769                         adapter->link_duplex = 0;
5770
5771                         /* Links status message must follow this format */
5772                         netdev_info(netdev, "NIC Link is Down\n");
5773                         netif_carrier_off(netdev);
5774
5775                         /* link state has changed, schedule phy info update */
5776                         if (!test_bit(__IGC_DOWN, &adapter->state))
5777                                 mod_timer(&adapter->phy_info_timer,
5778                                           round_jiffies(jiffies + 2 * HZ));
5779
5780                         pm_schedule_suspend(netdev->dev.parent,
5781                                             MSEC_PER_SEC * 5);
5782                 }
5783         }
5784
5785         spin_lock(&adapter->stats64_lock);
5786         igc_update_stats(adapter);
5787         spin_unlock(&adapter->stats64_lock);
5788
5789         for (i = 0; i < adapter->num_tx_queues; i++) {
5790                 struct igc_ring *tx_ring = adapter->tx_ring[i];
5791
5792                 if (!netif_carrier_ok(netdev)) {
5793                         /* We've lost link, so the controller stops DMA,
5794                          * but we've got queued Tx work that's never going
5795                          * to get done, so reset controller to flush Tx.
5796                          * (Do the reset outside of interrupt context).
5797                          */
5798                         if (igc_desc_unused(tx_ring) + 1 < tx_ring->count) {
5799                                 adapter->tx_timeout_count++;
5800                                 schedule_work(&adapter->reset_task);
5801                                 /* return immediately since reset is imminent */
5802                                 return;
5803                         }
5804                 }
5805
5806                 /* Force detection of hung controller every watchdog period */
5807                 set_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5808         }
5809
5810         /* Cause software interrupt to ensure Rx ring is cleaned */
5811         if (adapter->flags & IGC_FLAG_HAS_MSIX) {
5812                 u32 eics = 0;
5813
5814                 for (i = 0; i < adapter->num_q_vectors; i++) {
5815                         struct igc_q_vector *q_vector = adapter->q_vector[i];
5816                         struct igc_ring *rx_ring;
5817
5818                         if (!q_vector->rx.ring)
5819                                 continue;
5820
5821                         rx_ring = adapter->rx_ring[q_vector->rx.ring->queue_index];
5822
5823                         if (test_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags)) {
5824                                 eics |= q_vector->eims_value;
5825                                 clear_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags);
5826                         }
5827                 }
5828                 if (eics)
5829                         wr32(IGC_EICS, eics);
5830         } else {
5831                 struct igc_ring *rx_ring = adapter->rx_ring[0];
5832
5833                 if (test_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags)) {
5834                         clear_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags);
5835                         wr32(IGC_ICS, IGC_ICS_RXDMT0);
5836                 }
5837         }
5838
5839         igc_ptp_tx_hang(adapter);
5840
5841         /* Reset the timer */
5842         if (!test_bit(__IGC_DOWN, &adapter->state)) {
5843                 if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)
5844                         mod_timer(&adapter->watchdog_timer,
5845                                   round_jiffies(jiffies +  HZ));
5846                 else
5847                         mod_timer(&adapter->watchdog_timer,
5848                                   round_jiffies(jiffies + 2 * HZ));
5849         }
5850 }
5851
5852 /**
5853  * igc_intr_msi - Interrupt Handler
5854  * @irq: interrupt number
5855  * @data: pointer to a network interface device structure
5856  */
5857 static irqreturn_t igc_intr_msi(int irq, void *data)
5858 {
5859         struct igc_adapter *adapter = data;
5860         struct igc_q_vector *q_vector = adapter->q_vector[0];
5861         struct igc_hw *hw = &adapter->hw;
5862         /* read ICR disables interrupts using IAM */
5863         u32 icr = rd32(IGC_ICR);
5864
5865         igc_write_itr(q_vector);
5866
5867         if (icr & IGC_ICR_DRSTA)
5868                 schedule_work(&adapter->reset_task);
5869
5870         if (icr & IGC_ICR_DOUTSYNC) {
5871                 /* HW is reporting DMA is out of sync */
5872                 adapter->stats.doosync++;
5873         }
5874
5875         if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
5876                 hw->mac.get_link_status = true;
5877                 if (!test_bit(__IGC_DOWN, &adapter->state))
5878                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
5879         }
5880
5881         if (icr & IGC_ICR_TS)
5882                 igc_tsync_interrupt(adapter);
5883
5884         napi_schedule(&q_vector->napi);
5885
5886         return IRQ_HANDLED;
5887 }
5888
5889 /**
5890  * igc_intr - Legacy Interrupt Handler
5891  * @irq: interrupt number
5892  * @data: pointer to a network interface device structure
5893  */
5894 static irqreturn_t igc_intr(int irq, void *data)
5895 {
5896         struct igc_adapter *adapter = data;
5897         struct igc_q_vector *q_vector = adapter->q_vector[0];
5898         struct igc_hw *hw = &adapter->hw;
5899         /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
5900          * need for the IMC write
5901          */
5902         u32 icr = rd32(IGC_ICR);
5903
5904         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5905          * not set, then the adapter didn't send an interrupt
5906          */
5907         if (!(icr & IGC_ICR_INT_ASSERTED))
5908                 return IRQ_NONE;
5909
5910         igc_write_itr(q_vector);
5911
5912         if (icr & IGC_ICR_DRSTA)
5913                 schedule_work(&adapter->reset_task);
5914
5915         if (icr & IGC_ICR_DOUTSYNC) {
5916                 /* HW is reporting DMA is out of sync */
5917                 adapter->stats.doosync++;
5918         }
5919
5920         if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
5921                 hw->mac.get_link_status = true;
5922                 /* guard against interrupt when we're going down */
5923                 if (!test_bit(__IGC_DOWN, &adapter->state))
5924                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
5925         }
5926
5927         if (icr & IGC_ICR_TS)
5928                 igc_tsync_interrupt(adapter);
5929
5930         napi_schedule(&q_vector->napi);
5931
5932         return IRQ_HANDLED;
5933 }
5934
5935 static void igc_free_irq(struct igc_adapter *adapter)
5936 {
5937         if (adapter->msix_entries) {
5938                 int vector = 0, i;
5939
5940                 free_irq(adapter->msix_entries[vector++].vector, adapter);
5941
5942                 for (i = 0; i < adapter->num_q_vectors; i++)
5943                         free_irq(adapter->msix_entries[vector++].vector,
5944                                  adapter->q_vector[i]);
5945         } else {
5946                 free_irq(adapter->pdev->irq, adapter);
5947         }
5948 }
5949
5950 /**
5951  * igc_request_irq - initialize interrupts
5952  * @adapter: Pointer to adapter structure
5953  *
5954  * Attempts to configure interrupts using the best available
5955  * capabilities of the hardware and kernel.
5956  */
5957 static int igc_request_irq(struct igc_adapter *adapter)
5958 {
5959         struct net_device *netdev = adapter->netdev;
5960         struct pci_dev *pdev = adapter->pdev;
5961         int err = 0;
5962
5963         if (adapter->flags & IGC_FLAG_HAS_MSIX) {
5964                 err = igc_request_msix(adapter);
5965                 if (!err)
5966                         goto request_done;
5967                 /* fall back to MSI */
5968                 igc_free_all_tx_resources(adapter);
5969                 igc_free_all_rx_resources(adapter);
5970
5971                 igc_clear_interrupt_scheme(adapter);
5972                 err = igc_init_interrupt_scheme(adapter, false);
5973                 if (err)
5974                         goto request_done;
5975                 igc_setup_all_tx_resources(adapter);
5976                 igc_setup_all_rx_resources(adapter);
5977                 igc_configure(adapter);
5978         }
5979
5980         igc_assign_vector(adapter->q_vector[0], 0);
5981
5982         if (adapter->flags & IGC_FLAG_HAS_MSI) {
5983                 err = request_irq(pdev->irq, &igc_intr_msi, 0,
5984                                   netdev->name, adapter);
5985                 if (!err)
5986                         goto request_done;
5987
5988                 /* fall back to legacy interrupts */
5989                 igc_reset_interrupt_capability(adapter);
5990                 adapter->flags &= ~IGC_FLAG_HAS_MSI;
5991         }
5992
5993         err = request_irq(pdev->irq, &igc_intr, IRQF_SHARED,
5994                           netdev->name, adapter);
5995
5996         if (err)
5997                 netdev_err(netdev, "Error %d getting interrupt\n", err);
5998
5999 request_done:
6000         return err;
6001 }
6002
6003 /**
6004  * __igc_open - Called when a network interface is made active
6005  * @netdev: network interface device structure
6006  * @resuming: boolean indicating if the device is resuming
6007  *
6008  * Returns 0 on success, negative value on failure
6009  *
6010  * The open entry point is called when a network interface is made
6011  * active by the system (IFF_UP).  At this point all resources needed
6012  * for transmit and receive operations are allocated, the interrupt
6013  * handler is registered with the OS, the watchdog timer is started,
6014  * and the stack is notified that the interface is ready.
6015  */
6016 static int __igc_open(struct net_device *netdev, bool resuming)
6017 {
6018         struct igc_adapter *adapter = netdev_priv(netdev);
6019         struct pci_dev *pdev = adapter->pdev;
6020         struct igc_hw *hw = &adapter->hw;
6021         int err = 0;
6022         int i = 0;
6023
6024         /* disallow open during test */
6025
6026         if (test_bit(__IGC_TESTING, &adapter->state)) {
6027                 WARN_ON(resuming);
6028                 return -EBUSY;
6029         }
6030
6031         if (!resuming)
6032                 pm_runtime_get_sync(&pdev->dev);
6033
6034         netif_carrier_off(netdev);
6035
6036         /* allocate transmit descriptors */
6037         err = igc_setup_all_tx_resources(adapter);
6038         if (err)
6039                 goto err_setup_tx;
6040
6041         /* allocate receive descriptors */
6042         err = igc_setup_all_rx_resources(adapter);
6043         if (err)
6044                 goto err_setup_rx;
6045
6046         igc_power_up_link(adapter);
6047
6048         igc_configure(adapter);
6049
6050         err = igc_request_irq(adapter);
6051         if (err)
6052                 goto err_req_irq;
6053
6054         clear_bit(__IGC_DOWN, &adapter->state);
6055
6056         for (i = 0; i < adapter->num_q_vectors; i++)
6057                 napi_enable(&adapter->q_vector[i]->napi);
6058
6059         /* Clear any pending interrupts. */
6060         rd32(IGC_ICR);
6061         igc_irq_enable(adapter);
6062
6063         if (!resuming)
6064                 pm_runtime_put(&pdev->dev);
6065
6066         netif_tx_start_all_queues(netdev);
6067
6068         /* start the watchdog. */
6069         hw->mac.get_link_status = true;
6070         schedule_work(&adapter->watchdog_task);
6071
6072         return IGC_SUCCESS;
6073
6074 err_req_irq:
6075         igc_release_hw_control(adapter);
6076         igc_power_down_phy_copper_base(&adapter->hw);
6077         igc_free_all_rx_resources(adapter);
6078 err_setup_rx:
6079         igc_free_all_tx_resources(adapter);
6080 err_setup_tx:
6081         igc_reset(adapter);
6082         if (!resuming)
6083                 pm_runtime_put(&pdev->dev);
6084
6085         return err;
6086 }
6087
6088 int igc_open(struct net_device *netdev)
6089 {
6090         struct igc_adapter *adapter = netdev_priv(netdev);
6091         int err;
6092
6093         /* Notify the stack of the actual queue counts. */
6094         err = netif_set_real_num_queues(netdev, adapter->num_tx_queues,
6095                                         adapter->num_rx_queues);
6096         if (err) {
6097                 netdev_err(netdev, "error setting real queue count\n");
6098                 return err;
6099         }
6100
6101         return __igc_open(netdev, false);
6102 }
6103
6104 /**
6105  * __igc_close - Disables a network interface
6106  * @netdev: network interface device structure
6107  * @suspending: boolean indicating the device is suspending
6108  *
6109  * Returns 0, this is not allowed to fail
6110  *
6111  * The close entry point is called when an interface is de-activated
6112  * by the OS.  The hardware is still under the driver's control, but
6113  * needs to be disabled.  A global MAC reset is issued to stop the
6114  * hardware, and all transmit and receive resources are freed.
6115  */
6116 static int __igc_close(struct net_device *netdev, bool suspending)
6117 {
6118         struct igc_adapter *adapter = netdev_priv(netdev);
6119         struct pci_dev *pdev = adapter->pdev;
6120
6121         WARN_ON(test_bit(__IGC_RESETTING, &adapter->state));
6122
6123         if (!suspending)
6124                 pm_runtime_get_sync(&pdev->dev);
6125
6126         igc_down(adapter);
6127
6128         igc_release_hw_control(adapter);
6129
6130         igc_free_irq(adapter);
6131
6132         igc_free_all_tx_resources(adapter);
6133         igc_free_all_rx_resources(adapter);
6134
6135         if (!suspending)
6136                 pm_runtime_put_sync(&pdev->dev);
6137
6138         return 0;
6139 }
6140
6141 int igc_close(struct net_device *netdev)
6142 {
6143         if (netif_device_present(netdev) || netdev->dismantle)
6144                 return __igc_close(netdev, false);
6145         return 0;
6146 }
6147
6148 /**
6149  * igc_ioctl - Access the hwtstamp interface
6150  * @netdev: network interface device structure
6151  * @ifr: interface request data
6152  * @cmd: ioctl command
6153  **/
6154 static int igc_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6155 {
6156         switch (cmd) {
6157         case SIOCGHWTSTAMP:
6158                 return igc_ptp_get_ts_config(netdev, ifr);
6159         case SIOCSHWTSTAMP:
6160                 return igc_ptp_set_ts_config(netdev, ifr);
6161         default:
6162                 return -EOPNOTSUPP;
6163         }
6164 }
6165
6166 static int igc_save_launchtime_params(struct igc_adapter *adapter, int queue,
6167                                       bool enable)
6168 {
6169         struct igc_ring *ring;
6170
6171         if (queue < 0 || queue >= adapter->num_tx_queues)
6172                 return -EINVAL;
6173
6174         ring = adapter->tx_ring[queue];
6175         ring->launchtime_enable = enable;
6176
6177         return 0;
6178 }
6179
6180 static bool is_base_time_past(ktime_t base_time, const struct timespec64 *now)
6181 {
6182         struct timespec64 b;
6183
6184         b = ktime_to_timespec64(base_time);
6185
6186         return timespec64_compare(now, &b) > 0;
6187 }
6188
6189 static bool validate_schedule(struct igc_adapter *adapter,
6190                               const struct tc_taprio_qopt_offload *qopt)
6191 {
6192         int queue_uses[IGC_MAX_TX_QUEUES] = { };
6193         struct igc_hw *hw = &adapter->hw;
6194         struct timespec64 now;
6195         size_t n;
6196
6197         if (qopt->cycle_time_extension)
6198                 return false;
6199
6200         igc_ptp_read(adapter, &now);
6201
6202         /* If we program the controller's BASET registers with a time
6203          * in the future, it will hold all the packets until that
6204          * time, causing a lot of TX Hangs, so to avoid that, we
6205          * reject schedules that would start in the future.
6206          * Note: Limitation above is no longer in i226.
6207          */
6208         if (!is_base_time_past(qopt->base_time, &now) &&
6209             igc_is_device_id_i225(hw))
6210                 return false;
6211
6212         for (n = 0; n < qopt->num_entries; n++) {
6213                 const struct tc_taprio_sched_entry *e, *prev;
6214                 int i;
6215
6216                 prev = n ? &qopt->entries[n - 1] : NULL;
6217                 e = &qopt->entries[n];
6218
6219                 /* i225 only supports "global" frame preemption
6220                  * settings.
6221                  */
6222                 if (e->command != TC_TAPRIO_CMD_SET_GATES)
6223                         return false;
6224
6225                 for (i = 0; i < adapter->num_tx_queues; i++)
6226                         if (e->gate_mask & BIT(i)) {
6227                                 queue_uses[i]++;
6228
6229                                 /* There are limitations: A single queue cannot
6230                                  * be opened and closed multiple times per cycle
6231                                  * unless the gate stays open. Check for it.
6232                                  */
6233                                 if (queue_uses[i] > 1 &&
6234                                     !(prev->gate_mask & BIT(i)))
6235                                         return false;
6236                         }
6237         }
6238
6239         return true;
6240 }
6241
6242 static int igc_tsn_enable_launchtime(struct igc_adapter *adapter,
6243                                      struct tc_etf_qopt_offload *qopt)
6244 {
6245         struct igc_hw *hw = &adapter->hw;
6246         int err;
6247
6248         if (hw->mac.type != igc_i225)
6249                 return -EOPNOTSUPP;
6250
6251         err = igc_save_launchtime_params(adapter, qopt->queue, qopt->enable);
6252         if (err)
6253                 return err;
6254
6255         return igc_tsn_offload_apply(adapter);
6256 }
6257
6258 static int igc_qbv_clear_schedule(struct igc_adapter *adapter)
6259 {
6260         unsigned long flags;
6261         int i;
6262
6263         adapter->base_time = 0;
6264         adapter->cycle_time = NSEC_PER_SEC;
6265         adapter->taprio_offload_enable = false;
6266         adapter->qbv_config_change_errors = 0;
6267         adapter->qbv_count = 0;
6268
6269         for (i = 0; i < adapter->num_tx_queues; i++) {
6270                 struct igc_ring *ring = adapter->tx_ring[i];
6271
6272                 ring->start_time = 0;
6273                 ring->end_time = NSEC_PER_SEC;
6274                 ring->max_sdu = 0;
6275         }
6276
6277         spin_lock_irqsave(&adapter->qbv_tx_lock, flags);
6278
6279         adapter->qbv_transition = false;
6280
6281         for (i = 0; i < adapter->num_tx_queues; i++) {
6282                 struct igc_ring *ring = adapter->tx_ring[i];
6283
6284                 ring->oper_gate_closed = false;
6285                 ring->admin_gate_closed = false;
6286         }
6287
6288         spin_unlock_irqrestore(&adapter->qbv_tx_lock, flags);
6289
6290         return 0;
6291 }
6292
6293 static int igc_tsn_clear_schedule(struct igc_adapter *adapter)
6294 {
6295         igc_qbv_clear_schedule(adapter);
6296
6297         return 0;
6298 }
6299
6300 static void igc_taprio_stats(struct net_device *dev,
6301                              struct tc_taprio_qopt_stats *stats)
6302 {
6303         /* When Strict_End is enabled, the tx_overruns counter
6304          * will always be zero.
6305          */
6306         stats->tx_overruns = 0;
6307 }
6308
6309 static void igc_taprio_queue_stats(struct net_device *dev,
6310                                    struct tc_taprio_qopt_queue_stats *queue_stats)
6311 {
6312         struct tc_taprio_qopt_stats *stats = &queue_stats->stats;
6313
6314         /* When Strict_End is enabled, the tx_overruns counter
6315          * will always be zero.
6316          */
6317         stats->tx_overruns = 0;
6318 }
6319
6320 static int igc_save_qbv_schedule(struct igc_adapter *adapter,
6321                                  struct tc_taprio_qopt_offload *qopt)
6322 {
6323         bool queue_configured[IGC_MAX_TX_QUEUES] = { };
6324         struct igc_hw *hw = &adapter->hw;
6325         u32 start_time = 0, end_time = 0;
6326         struct timespec64 now;
6327         unsigned long flags;
6328         size_t n;
6329         int i;
6330
6331         if (qopt->base_time < 0)
6332                 return -ERANGE;
6333
6334         if (igc_is_device_id_i225(hw) && adapter->taprio_offload_enable)
6335                 return -EALREADY;
6336
6337         if (!validate_schedule(adapter, qopt))
6338                 return -EINVAL;
6339
6340         igc_ptp_read(adapter, &now);
6341
6342         if (igc_tsn_is_taprio_activated_by_user(adapter) &&
6343             is_base_time_past(qopt->base_time, &now))
6344                 adapter->qbv_config_change_errors++;
6345
6346         adapter->cycle_time = qopt->cycle_time;
6347         adapter->base_time = qopt->base_time;
6348         adapter->taprio_offload_enable = true;
6349
6350         for (n = 0; n < qopt->num_entries; n++) {
6351                 struct tc_taprio_sched_entry *e = &qopt->entries[n];
6352
6353                 end_time += e->interval;
6354
6355                 /* If any of the conditions below are true, we need to manually
6356                  * control the end time of the cycle.
6357                  * 1. Qbv users can specify a cycle time that is not equal
6358                  * to the total GCL intervals. Hence, recalculation is
6359                  * necessary here to exclude the time interval that
6360                  * exceeds the cycle time.
6361                  * 2. According to IEEE Std. 802.1Q-2018 section 8.6.9.2,
6362                  * once the end of the list is reached, it will switch
6363                  * to the END_OF_CYCLE state and leave the gates in the
6364                  * same state until the next cycle is started.
6365                  */
6366                 if (end_time > adapter->cycle_time ||
6367                     n + 1 == qopt->num_entries)
6368                         end_time = adapter->cycle_time;
6369
6370                 for (i = 0; i < adapter->num_tx_queues; i++) {
6371                         struct igc_ring *ring = adapter->tx_ring[i];
6372
6373                         if (!(e->gate_mask & BIT(i)))
6374                                 continue;
6375
6376                         /* Check whether a queue stays open for more than one
6377                          * entry. If so, keep the start and advance the end
6378                          * time.
6379                          */
6380                         if (!queue_configured[i])
6381                                 ring->start_time = start_time;
6382                         ring->end_time = end_time;
6383
6384                         if (ring->start_time >= adapter->cycle_time)
6385                                 queue_configured[i] = false;
6386                         else
6387                                 queue_configured[i] = true;
6388                 }
6389
6390                 start_time += e->interval;
6391         }
6392
6393         spin_lock_irqsave(&adapter->qbv_tx_lock, flags);
6394
6395         /* Check whether a queue gets configured.
6396          * If not, set the start and end time to be end time.
6397          */
6398         for (i = 0; i < adapter->num_tx_queues; i++) {
6399                 struct igc_ring *ring = adapter->tx_ring[i];
6400
6401                 if (!is_base_time_past(qopt->base_time, &now)) {
6402                         ring->admin_gate_closed = false;
6403                 } else {
6404                         ring->oper_gate_closed = false;
6405                         ring->admin_gate_closed = false;
6406                 }
6407
6408                 if (!queue_configured[i]) {
6409                         if (!is_base_time_past(qopt->base_time, &now))
6410                                 ring->admin_gate_closed = true;
6411                         else
6412                                 ring->oper_gate_closed = true;
6413
6414                         ring->start_time = end_time;
6415                         ring->end_time = end_time;
6416                 }
6417         }
6418
6419         spin_unlock_irqrestore(&adapter->qbv_tx_lock, flags);
6420
6421         for (i = 0; i < adapter->num_tx_queues; i++) {
6422                 struct igc_ring *ring = adapter->tx_ring[i];
6423                 struct net_device *dev = adapter->netdev;
6424
6425                 if (qopt->max_sdu[i])
6426                         ring->max_sdu = qopt->max_sdu[i] + dev->hard_header_len - ETH_TLEN;
6427                 else
6428                         ring->max_sdu = 0;
6429         }
6430
6431         return 0;
6432 }
6433
6434 static int igc_tsn_enable_qbv_scheduling(struct igc_adapter *adapter,
6435                                          struct tc_taprio_qopt_offload *qopt)
6436 {
6437         struct igc_hw *hw = &adapter->hw;
6438         int err;
6439
6440         if (hw->mac.type != igc_i225)
6441                 return -EOPNOTSUPP;
6442
6443         switch (qopt->cmd) {
6444         case TAPRIO_CMD_REPLACE:
6445                 err = igc_save_qbv_schedule(adapter, qopt);
6446                 break;
6447         case TAPRIO_CMD_DESTROY:
6448                 err = igc_tsn_clear_schedule(adapter);
6449                 break;
6450         case TAPRIO_CMD_STATS:
6451                 igc_taprio_stats(adapter->netdev, &qopt->stats);
6452                 return 0;
6453         case TAPRIO_CMD_QUEUE_STATS:
6454                 igc_taprio_queue_stats(adapter->netdev, &qopt->queue_stats);
6455                 return 0;
6456         default:
6457                 return -EOPNOTSUPP;
6458         }
6459
6460         if (err)
6461                 return err;
6462
6463         return igc_tsn_offload_apply(adapter);
6464 }
6465
6466 static int igc_save_cbs_params(struct igc_adapter *adapter, int queue,
6467                                bool enable, int idleslope, int sendslope,
6468                                int hicredit, int locredit)
6469 {
6470         bool cbs_status[IGC_MAX_SR_QUEUES] = { false };
6471         struct net_device *netdev = adapter->netdev;
6472         struct igc_ring *ring;
6473         int i;
6474
6475         /* i225 has two sets of credit-based shaper logic.
6476          * Supporting it only on the top two priority queues
6477          */
6478         if (queue < 0 || queue > 1)
6479                 return -EINVAL;
6480
6481         ring = adapter->tx_ring[queue];
6482
6483         for (i = 0; i < IGC_MAX_SR_QUEUES; i++)
6484                 if (adapter->tx_ring[i])
6485                         cbs_status[i] = adapter->tx_ring[i]->cbs_enable;
6486
6487         /* CBS should be enabled on the highest priority queue first in order
6488          * for the CBS algorithm to operate as intended.
6489          */
6490         if (enable) {
6491                 if (queue == 1 && !cbs_status[0]) {
6492                         netdev_err(netdev,
6493                                    "Enabling CBS on queue1 before queue0\n");
6494                         return -EINVAL;
6495                 }
6496         } else {
6497                 if (queue == 0 && cbs_status[1]) {
6498                         netdev_err(netdev,
6499                                    "Disabling CBS on queue0 before queue1\n");
6500                         return -EINVAL;
6501                 }
6502         }
6503
6504         ring->cbs_enable = enable;
6505         ring->idleslope = idleslope;
6506         ring->sendslope = sendslope;
6507         ring->hicredit = hicredit;
6508         ring->locredit = locredit;
6509
6510         return 0;
6511 }
6512
6513 static int igc_tsn_enable_cbs(struct igc_adapter *adapter,
6514                               struct tc_cbs_qopt_offload *qopt)
6515 {
6516         struct igc_hw *hw = &adapter->hw;
6517         int err;
6518
6519         if (hw->mac.type != igc_i225)
6520                 return -EOPNOTSUPP;
6521
6522         if (qopt->queue < 0 || qopt->queue > 1)
6523                 return -EINVAL;
6524
6525         err = igc_save_cbs_params(adapter, qopt->queue, qopt->enable,
6526                                   qopt->idleslope, qopt->sendslope,
6527                                   qopt->hicredit, qopt->locredit);
6528         if (err)
6529                 return err;
6530
6531         return igc_tsn_offload_apply(adapter);
6532 }
6533
6534 static int igc_tc_query_caps(struct igc_adapter *adapter,
6535                              struct tc_query_caps_base *base)
6536 {
6537         struct igc_hw *hw = &adapter->hw;
6538
6539         switch (base->type) {
6540         case TC_SETUP_QDISC_MQPRIO: {
6541                 struct tc_mqprio_caps *caps = base->caps;
6542
6543                 caps->validate_queue_counts = true;
6544
6545                 return 0;
6546         }
6547         case TC_SETUP_QDISC_TAPRIO: {
6548                 struct tc_taprio_caps *caps = base->caps;
6549
6550                 caps->broken_mqprio = true;
6551
6552                 if (hw->mac.type == igc_i225) {
6553                         caps->supports_queue_max_sdu = true;
6554                         caps->gate_mask_per_txq = true;
6555                 }
6556
6557                 return 0;
6558         }
6559         default:
6560                 return -EOPNOTSUPP;
6561         }
6562 }
6563
6564 static void igc_save_mqprio_params(struct igc_adapter *adapter, u8 num_tc,
6565                                    u16 *offset)
6566 {
6567         int i;
6568
6569         adapter->strict_priority_enable = true;
6570         adapter->num_tc = num_tc;
6571
6572         for (i = 0; i < num_tc; i++)
6573                 adapter->queue_per_tc[i] = offset[i];
6574 }
6575
6576 static int igc_tsn_enable_mqprio(struct igc_adapter *adapter,
6577                                  struct tc_mqprio_qopt_offload *mqprio)
6578 {
6579         struct igc_hw *hw = &adapter->hw;
6580         int i;
6581
6582         if (hw->mac.type != igc_i225)
6583                 return -EOPNOTSUPP;
6584
6585         if (!mqprio->qopt.num_tc) {
6586                 adapter->strict_priority_enable = false;
6587                 goto apply;
6588         }
6589
6590         /* There are as many TCs as Tx queues. */
6591         if (mqprio->qopt.num_tc != adapter->num_tx_queues) {
6592                 NL_SET_ERR_MSG_FMT_MOD(mqprio->extack,
6593                                        "Only %d traffic classes supported",
6594                                        adapter->num_tx_queues);
6595                 return -EOPNOTSUPP;
6596         }
6597
6598         /* Only one queue per TC is supported. */
6599         for (i = 0; i < mqprio->qopt.num_tc; i++) {
6600                 if (mqprio->qopt.count[i] != 1) {
6601                         NL_SET_ERR_MSG_MOD(mqprio->extack,
6602                                            "Only one queue per TC supported");
6603                         return -EOPNOTSUPP;
6604                 }
6605         }
6606
6607         /* Preemption is not supported yet. */
6608         if (mqprio->preemptible_tcs) {
6609                 NL_SET_ERR_MSG_MOD(mqprio->extack,
6610                                    "Preemption is not supported yet");
6611                 return -EOPNOTSUPP;
6612         }
6613
6614         igc_save_mqprio_params(adapter, mqprio->qopt.num_tc,
6615                                mqprio->qopt.offset);
6616
6617         mqprio->qopt.hw = TC_MQPRIO_HW_OFFLOAD_TCS;
6618
6619 apply:
6620         return igc_tsn_offload_apply(adapter);
6621 }
6622
6623 static int igc_setup_tc(struct net_device *dev, enum tc_setup_type type,
6624                         void *type_data)
6625 {
6626         struct igc_adapter *adapter = netdev_priv(dev);
6627
6628         adapter->tc_setup_type = type;
6629
6630         switch (type) {
6631         case TC_QUERY_CAPS:
6632                 return igc_tc_query_caps(adapter, type_data);
6633         case TC_SETUP_QDISC_TAPRIO:
6634                 return igc_tsn_enable_qbv_scheduling(adapter, type_data);
6635
6636         case TC_SETUP_QDISC_ETF:
6637                 return igc_tsn_enable_launchtime(adapter, type_data);
6638
6639         case TC_SETUP_QDISC_CBS:
6640                 return igc_tsn_enable_cbs(adapter, type_data);
6641
6642         case TC_SETUP_QDISC_MQPRIO:
6643                 return igc_tsn_enable_mqprio(adapter, type_data);
6644
6645         default:
6646                 return -EOPNOTSUPP;
6647         }
6648 }
6649
6650 static int igc_bpf(struct net_device *dev, struct netdev_bpf *bpf)
6651 {
6652         struct igc_adapter *adapter = netdev_priv(dev);
6653
6654         switch (bpf->command) {
6655         case XDP_SETUP_PROG:
6656                 return igc_xdp_set_prog(adapter, bpf->prog, bpf->extack);
6657         case XDP_SETUP_XSK_POOL:
6658                 return igc_xdp_setup_pool(adapter, bpf->xsk.pool,
6659                                           bpf->xsk.queue_id);
6660         default:
6661                 return -EOPNOTSUPP;
6662         }
6663 }
6664
6665 static int igc_xdp_xmit(struct net_device *dev, int num_frames,
6666                         struct xdp_frame **frames, u32 flags)
6667 {
6668         struct igc_adapter *adapter = netdev_priv(dev);
6669         int cpu = smp_processor_id();
6670         struct netdev_queue *nq;
6671         struct igc_ring *ring;
6672         int i, nxmit;
6673
6674         if (unlikely(!netif_carrier_ok(dev)))
6675                 return -ENETDOWN;
6676
6677         if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
6678                 return -EINVAL;
6679
6680         ring = igc_xdp_get_tx_ring(adapter, cpu);
6681         nq = txring_txq(ring);
6682
6683         __netif_tx_lock(nq, cpu);
6684
6685         /* Avoid transmit queue timeout since we share it with the slow path */
6686         txq_trans_cond_update(nq);
6687
6688         nxmit = 0;
6689         for (i = 0; i < num_frames; i++) {
6690                 int err;
6691                 struct xdp_frame *xdpf = frames[i];
6692
6693                 err = igc_xdp_init_tx_descriptor(ring, xdpf);
6694                 if (err)
6695                         break;
6696                 nxmit++;
6697         }
6698
6699         if (flags & XDP_XMIT_FLUSH)
6700                 igc_flush_tx_descriptors(ring);
6701
6702         __netif_tx_unlock(nq);
6703
6704         return nxmit;
6705 }
6706
6707 static void igc_trigger_rxtxq_interrupt(struct igc_adapter *adapter,
6708                                         struct igc_q_vector *q_vector)
6709 {
6710         struct igc_hw *hw = &adapter->hw;
6711         u32 eics = 0;
6712
6713         eics |= q_vector->eims_value;
6714         wr32(IGC_EICS, eics);
6715 }
6716
6717 int igc_xsk_wakeup(struct net_device *dev, u32 queue_id, u32 flags)
6718 {
6719         struct igc_adapter *adapter = netdev_priv(dev);
6720         struct igc_q_vector *q_vector;
6721         struct igc_ring *ring;
6722
6723         if (test_bit(__IGC_DOWN, &adapter->state))
6724                 return -ENETDOWN;
6725
6726         if (!igc_xdp_is_enabled(adapter))
6727                 return -ENXIO;
6728
6729         if (queue_id >= adapter->num_rx_queues)
6730                 return -EINVAL;
6731
6732         ring = adapter->rx_ring[queue_id];
6733
6734         if (!ring->xsk_pool)
6735                 return -ENXIO;
6736
6737         q_vector = adapter->q_vector[queue_id];
6738         if (!napi_if_scheduled_mark_missed(&q_vector->napi))
6739                 igc_trigger_rxtxq_interrupt(adapter, q_vector);
6740
6741         return 0;
6742 }
6743
6744 static ktime_t igc_get_tstamp(struct net_device *dev,
6745                               const struct skb_shared_hwtstamps *hwtstamps,
6746                               bool cycles)
6747 {
6748         struct igc_adapter *adapter = netdev_priv(dev);
6749         struct igc_inline_rx_tstamps *tstamp;
6750         ktime_t timestamp;
6751
6752         tstamp = hwtstamps->netdev_data;
6753
6754         if (cycles)
6755                 timestamp = igc_ptp_rx_pktstamp(adapter, tstamp->timer1);
6756         else
6757                 timestamp = igc_ptp_rx_pktstamp(adapter, tstamp->timer0);
6758
6759         return timestamp;
6760 }
6761
6762 static const struct net_device_ops igc_netdev_ops = {
6763         .ndo_open               = igc_open,
6764         .ndo_stop               = igc_close,
6765         .ndo_start_xmit         = igc_xmit_frame,
6766         .ndo_set_rx_mode        = igc_set_rx_mode,
6767         .ndo_set_mac_address    = igc_set_mac,
6768         .ndo_change_mtu         = igc_change_mtu,
6769         .ndo_tx_timeout         = igc_tx_timeout,
6770         .ndo_get_stats64        = igc_get_stats64,
6771         .ndo_fix_features       = igc_fix_features,
6772         .ndo_set_features       = igc_set_features,
6773         .ndo_features_check     = igc_features_check,
6774         .ndo_eth_ioctl          = igc_ioctl,
6775         .ndo_setup_tc           = igc_setup_tc,
6776         .ndo_bpf                = igc_bpf,
6777         .ndo_xdp_xmit           = igc_xdp_xmit,
6778         .ndo_xsk_wakeup         = igc_xsk_wakeup,
6779         .ndo_get_tstamp         = igc_get_tstamp,
6780 };
6781
6782 /* PCIe configuration access */
6783 void igc_read_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
6784 {
6785         struct igc_adapter *adapter = hw->back;
6786
6787         pci_read_config_word(adapter->pdev, reg, value);
6788 }
6789
6790 void igc_write_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
6791 {
6792         struct igc_adapter *adapter = hw->back;
6793
6794         pci_write_config_word(adapter->pdev, reg, *value);
6795 }
6796
6797 s32 igc_read_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
6798 {
6799         struct igc_adapter *adapter = hw->back;
6800
6801         if (!pci_is_pcie(adapter->pdev))
6802                 return -IGC_ERR_CONFIG;
6803
6804         pcie_capability_read_word(adapter->pdev, reg, value);
6805
6806         return IGC_SUCCESS;
6807 }
6808
6809 s32 igc_write_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
6810 {
6811         struct igc_adapter *adapter = hw->back;
6812
6813         if (!pci_is_pcie(adapter->pdev))
6814                 return -IGC_ERR_CONFIG;
6815
6816         pcie_capability_write_word(adapter->pdev, reg, *value);
6817
6818         return IGC_SUCCESS;
6819 }
6820
6821 u32 igc_rd32(struct igc_hw *hw, u32 reg)
6822 {
6823         struct igc_adapter *igc = container_of(hw, struct igc_adapter, hw);
6824         u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
6825         u32 value = 0;
6826
6827         if (IGC_REMOVED(hw_addr))
6828                 return ~value;
6829
6830         value = readl(&hw_addr[reg]);
6831
6832         /* reads should not return all F's */
6833         if (!(~value) && (!reg || !(~readl(hw_addr)))) {
6834                 struct net_device *netdev = igc->netdev;
6835
6836                 hw->hw_addr = NULL;
6837                 netif_device_detach(netdev);
6838                 netdev_err(netdev, "PCIe link lost, device now detached\n");
6839                 WARN(pci_device_is_present(igc->pdev),
6840                      "igc: Failed to read reg 0x%x!\n", reg);
6841         }
6842
6843         return value;
6844 }
6845
6846 /* Mapping HW RSS Type to enum xdp_rss_hash_type */
6847 static enum xdp_rss_hash_type igc_xdp_rss_type[IGC_RSS_TYPE_MAX_TABLE] = {
6848         [IGC_RSS_TYPE_NO_HASH]          = XDP_RSS_TYPE_L2,
6849         [IGC_RSS_TYPE_HASH_TCP_IPV4]    = XDP_RSS_TYPE_L4_IPV4_TCP,
6850         [IGC_RSS_TYPE_HASH_IPV4]        = XDP_RSS_TYPE_L3_IPV4,
6851         [IGC_RSS_TYPE_HASH_TCP_IPV6]    = XDP_RSS_TYPE_L4_IPV6_TCP,
6852         [IGC_RSS_TYPE_HASH_IPV6_EX]     = XDP_RSS_TYPE_L3_IPV6_EX,
6853         [IGC_RSS_TYPE_HASH_IPV6]        = XDP_RSS_TYPE_L3_IPV6,
6854         [IGC_RSS_TYPE_HASH_TCP_IPV6_EX] = XDP_RSS_TYPE_L4_IPV6_TCP_EX,
6855         [IGC_RSS_TYPE_HASH_UDP_IPV4]    = XDP_RSS_TYPE_L4_IPV4_UDP,
6856         [IGC_RSS_TYPE_HASH_UDP_IPV6]    = XDP_RSS_TYPE_L4_IPV6_UDP,
6857         [IGC_RSS_TYPE_HASH_UDP_IPV6_EX] = XDP_RSS_TYPE_L4_IPV6_UDP_EX,
6858         [10] = XDP_RSS_TYPE_NONE, /* RSS Type above 9 "Reserved" by HW  */
6859         [11] = XDP_RSS_TYPE_NONE, /* keep array sized for SW bit-mask   */
6860         [12] = XDP_RSS_TYPE_NONE, /* to handle future HW revisons       */
6861         [13] = XDP_RSS_TYPE_NONE,
6862         [14] = XDP_RSS_TYPE_NONE,
6863         [15] = XDP_RSS_TYPE_NONE,
6864 };
6865
6866 static int igc_xdp_rx_hash(const struct xdp_md *_ctx, u32 *hash,
6867                            enum xdp_rss_hash_type *rss_type)
6868 {
6869         const struct igc_xdp_buff *ctx = (void *)_ctx;
6870
6871         if (!(ctx->xdp.rxq->dev->features & NETIF_F_RXHASH))
6872                 return -ENODATA;
6873
6874         *hash = le32_to_cpu(ctx->rx_desc->wb.lower.hi_dword.rss);
6875         *rss_type = igc_xdp_rss_type[igc_rss_type(ctx->rx_desc)];
6876
6877         return 0;
6878 }
6879
6880 static int igc_xdp_rx_timestamp(const struct xdp_md *_ctx, u64 *timestamp)
6881 {
6882         const struct igc_xdp_buff *ctx = (void *)_ctx;
6883         struct igc_adapter *adapter = netdev_priv(ctx->xdp.rxq->dev);
6884         struct igc_inline_rx_tstamps *tstamp = ctx->rx_ts;
6885
6886         if (igc_test_staterr(ctx->rx_desc, IGC_RXDADV_STAT_TSIP)) {
6887                 *timestamp = igc_ptp_rx_pktstamp(adapter, tstamp->timer0);
6888
6889                 return 0;
6890         }
6891
6892         return -ENODATA;
6893 }
6894
6895 static const struct xdp_metadata_ops igc_xdp_metadata_ops = {
6896         .xmo_rx_hash                    = igc_xdp_rx_hash,
6897         .xmo_rx_timestamp               = igc_xdp_rx_timestamp,
6898 };
6899
6900 static enum hrtimer_restart igc_qbv_scheduling_timer(struct hrtimer *timer)
6901 {
6902         struct igc_adapter *adapter = container_of(timer, struct igc_adapter,
6903                                                    hrtimer);
6904         unsigned long flags;
6905         unsigned int i;
6906
6907         spin_lock_irqsave(&adapter->qbv_tx_lock, flags);
6908
6909         adapter->qbv_transition = true;
6910         for (i = 0; i < adapter->num_tx_queues; i++) {
6911                 struct igc_ring *tx_ring = adapter->tx_ring[i];
6912
6913                 if (tx_ring->admin_gate_closed) {
6914                         tx_ring->admin_gate_closed = false;
6915                         tx_ring->oper_gate_closed = true;
6916                 } else {
6917                         tx_ring->oper_gate_closed = false;
6918                 }
6919         }
6920         adapter->qbv_transition = false;
6921
6922         spin_unlock_irqrestore(&adapter->qbv_tx_lock, flags);
6923
6924         return HRTIMER_NORESTART;
6925 }
6926
6927 /**
6928  * igc_probe - Device Initialization Routine
6929  * @pdev: PCI device information struct
6930  * @ent: entry in igc_pci_tbl
6931  *
6932  * Returns 0 on success, negative on failure
6933  *
6934  * igc_probe initializes an adapter identified by a pci_dev structure.
6935  * The OS initialization, configuring the adapter private structure,
6936  * and a hardware reset occur.
6937  */
6938 static int igc_probe(struct pci_dev *pdev,
6939                      const struct pci_device_id *ent)
6940 {
6941         struct igc_adapter *adapter;
6942         struct net_device *netdev;
6943         struct igc_hw *hw;
6944         const struct igc_info *ei = igc_info_tbl[ent->driver_data];
6945         int err;
6946
6947         err = pci_enable_device_mem(pdev);
6948         if (err)
6949                 return err;
6950
6951         err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
6952         if (err) {
6953                 dev_err(&pdev->dev,
6954                         "No usable DMA configuration, aborting\n");
6955                 goto err_dma;
6956         }
6957
6958         err = pci_request_mem_regions(pdev, igc_driver_name);
6959         if (err)
6960                 goto err_pci_reg;
6961
6962         err = pci_enable_ptm(pdev, NULL);
6963         if (err < 0)
6964                 dev_info(&pdev->dev, "PCIe PTM not supported by PCIe bus/controller\n");
6965
6966         pci_set_master(pdev);
6967
6968         err = -ENOMEM;
6969         netdev = alloc_etherdev_mq(sizeof(struct igc_adapter),
6970                                    IGC_MAX_TX_QUEUES);
6971
6972         if (!netdev)
6973                 goto err_alloc_etherdev;
6974
6975         SET_NETDEV_DEV(netdev, &pdev->dev);
6976
6977         pci_set_drvdata(pdev, netdev);
6978         adapter = netdev_priv(netdev);
6979         adapter->netdev = netdev;
6980         adapter->pdev = pdev;
6981         hw = &adapter->hw;
6982         hw->back = adapter;
6983         adapter->port_num = hw->bus.func;
6984         adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
6985
6986         err = pci_save_state(pdev);
6987         if (err)
6988                 goto err_ioremap;
6989
6990         err = -EIO;
6991         adapter->io_addr = ioremap(pci_resource_start(pdev, 0),
6992                                    pci_resource_len(pdev, 0));
6993         if (!adapter->io_addr)
6994                 goto err_ioremap;
6995
6996         /* hw->hw_addr can be zeroed, so use adapter->io_addr for unmap */
6997         hw->hw_addr = adapter->io_addr;
6998
6999         netdev->netdev_ops = &igc_netdev_ops;
7000         netdev->xdp_metadata_ops = &igc_xdp_metadata_ops;
7001         netdev->xsk_tx_metadata_ops = &igc_xsk_tx_metadata_ops;
7002         igc_ethtool_set_ops(netdev);
7003         netdev->watchdog_timeo = 5 * HZ;
7004
7005         netdev->mem_start = pci_resource_start(pdev, 0);
7006         netdev->mem_end = pci_resource_end(pdev, 0);
7007
7008         /* PCI config space info */
7009         hw->vendor_id = pdev->vendor;
7010         hw->device_id = pdev->device;
7011         hw->revision_id = pdev->revision;
7012         hw->subsystem_vendor_id = pdev->subsystem_vendor;
7013         hw->subsystem_device_id = pdev->subsystem_device;
7014
7015         /* Copy the default MAC and PHY function pointers */
7016         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
7017         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
7018
7019         /* Initialize skew-specific constants */
7020         err = ei->get_invariants(hw);
7021         if (err)
7022                 goto err_sw_init;
7023
7024         /* Add supported features to the features list*/
7025         netdev->features |= NETIF_F_SG;
7026         netdev->features |= NETIF_F_TSO;
7027         netdev->features |= NETIF_F_TSO6;
7028         netdev->features |= NETIF_F_TSO_ECN;
7029         netdev->features |= NETIF_F_RXHASH;
7030         netdev->features |= NETIF_F_RXCSUM;
7031         netdev->features |= NETIF_F_HW_CSUM;
7032         netdev->features |= NETIF_F_SCTP_CRC;
7033         netdev->features |= NETIF_F_HW_TC;
7034
7035 #define IGC_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
7036                                   NETIF_F_GSO_GRE_CSUM | \
7037                                   NETIF_F_GSO_IPXIP4 | \
7038                                   NETIF_F_GSO_IPXIP6 | \
7039                                   NETIF_F_GSO_UDP_TUNNEL | \
7040                                   NETIF_F_GSO_UDP_TUNNEL_CSUM)
7041
7042         netdev->gso_partial_features = IGC_GSO_PARTIAL_FEATURES;
7043         netdev->features |= NETIF_F_GSO_PARTIAL | IGC_GSO_PARTIAL_FEATURES;
7044
7045         /* setup the private structure */
7046         err = igc_sw_init(adapter);
7047         if (err)
7048                 goto err_sw_init;
7049
7050         /* copy netdev features into list of user selectable features */
7051         netdev->hw_features |= NETIF_F_NTUPLE;
7052         netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
7053         netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
7054         netdev->hw_features |= netdev->features;
7055
7056         netdev->features |= NETIF_F_HIGHDMA;
7057
7058         netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
7059         netdev->mpls_features |= NETIF_F_HW_CSUM;
7060         netdev->hw_enc_features |= netdev->vlan_features;
7061
7062         netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
7063                                NETDEV_XDP_ACT_XSK_ZEROCOPY;
7064
7065         /* MTU range: 68 - 9216 */
7066         netdev->min_mtu = ETH_MIN_MTU;
7067         netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
7068
7069         /* before reading the NVM, reset the controller to put the device in a
7070          * known good starting state
7071          */
7072         hw->mac.ops.reset_hw(hw);
7073
7074         if (igc_get_flash_presence_i225(hw)) {
7075                 if (hw->nvm.ops.validate(hw) < 0) {
7076                         dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
7077                         err = -EIO;
7078                         goto err_eeprom;
7079                 }
7080         }
7081
7082         if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
7083                 /* copy the MAC address out of the NVM */
7084                 if (hw->mac.ops.read_mac_addr(hw))
7085                         dev_err(&pdev->dev, "NVM Read Error\n");
7086         }
7087
7088         eth_hw_addr_set(netdev, hw->mac.addr);
7089
7090         if (!is_valid_ether_addr(netdev->dev_addr)) {
7091                 dev_err(&pdev->dev, "Invalid MAC Address\n");
7092                 err = -EIO;
7093                 goto err_eeprom;
7094         }
7095
7096         /* configure RXPBSIZE and TXPBSIZE */
7097         wr32(IGC_RXPBS, I225_RXPBSIZE_DEFAULT);
7098         wr32(IGC_TXPBS, I225_TXPBSIZE_DEFAULT);
7099
7100         timer_setup(&adapter->watchdog_timer, igc_watchdog, 0);
7101         timer_setup(&adapter->phy_info_timer, igc_update_phy_info, 0);
7102
7103         INIT_WORK(&adapter->reset_task, igc_reset_task);
7104         INIT_WORK(&adapter->watchdog_task, igc_watchdog_task);
7105
7106         hrtimer_init(&adapter->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
7107         adapter->hrtimer.function = &igc_qbv_scheduling_timer;
7108
7109         /* Initialize link properties that are user-changeable */
7110         adapter->fc_autoneg = true;
7111         hw->phy.autoneg_advertised = 0xaf;
7112
7113         hw->fc.requested_mode = igc_fc_default;
7114         hw->fc.current_mode = igc_fc_default;
7115
7116         /* By default, support wake on port A */
7117         adapter->flags |= IGC_FLAG_WOL_SUPPORTED;
7118
7119         /* initialize the wol settings based on the eeprom settings */
7120         if (adapter->flags & IGC_FLAG_WOL_SUPPORTED)
7121                 adapter->wol |= IGC_WUFC_MAG;
7122
7123         device_set_wakeup_enable(&adapter->pdev->dev,
7124                                  adapter->flags & IGC_FLAG_WOL_SUPPORTED);
7125
7126         igc_ptp_init(adapter);
7127
7128         igc_tsn_clear_schedule(adapter);
7129
7130         /* reset the hardware with the new settings */
7131         igc_reset(adapter);
7132
7133         /* let the f/w know that the h/w is now under the control of the
7134          * driver.
7135          */
7136         igc_get_hw_control(adapter);
7137
7138         strscpy(netdev->name, "eth%d", sizeof(netdev->name));
7139         err = register_netdev(netdev);
7140         if (err)
7141                 goto err_register;
7142
7143          /* carrier off reporting is important to ethtool even BEFORE open */
7144         netif_carrier_off(netdev);
7145
7146         /* Check if Media Autosense is enabled */
7147         adapter->ei = *ei;
7148
7149         /* print pcie link status and MAC address */
7150         pcie_print_link_status(pdev);
7151         netdev_info(netdev, "MAC: %pM\n", netdev->dev_addr);
7152
7153         dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
7154         /* Disable EEE for internal PHY devices */
7155         hw->dev_spec._base.eee_enable = false;
7156         adapter->flags &= ~IGC_FLAG_EEE;
7157         igc_set_eee_i225(hw, false, false, false);
7158
7159         pm_runtime_put_noidle(&pdev->dev);
7160
7161         if (IS_ENABLED(CONFIG_IGC_LEDS)) {
7162                 err = igc_led_setup(adapter);
7163                 if (err)
7164                         goto err_register;
7165         }
7166
7167         return 0;
7168
7169 err_register:
7170         igc_release_hw_control(adapter);
7171 err_eeprom:
7172         if (!igc_check_reset_block(hw))
7173                 igc_reset_phy(hw);
7174 err_sw_init:
7175         igc_clear_interrupt_scheme(adapter);
7176         iounmap(adapter->io_addr);
7177 err_ioremap:
7178         free_netdev(netdev);
7179 err_alloc_etherdev:
7180         pci_release_mem_regions(pdev);
7181 err_pci_reg:
7182 err_dma:
7183         pci_disable_device(pdev);
7184         return err;
7185 }
7186
7187 /**
7188  * igc_remove - Device Removal Routine
7189  * @pdev: PCI device information struct
7190  *
7191  * igc_remove is called by the PCI subsystem to alert the driver
7192  * that it should release a PCI device.  This could be caused by a
7193  * Hot-Plug event, or because the driver is going to be removed from
7194  * memory.
7195  */
7196 static void igc_remove(struct pci_dev *pdev)
7197 {
7198         struct net_device *netdev = pci_get_drvdata(pdev);
7199         struct igc_adapter *adapter = netdev_priv(netdev);
7200
7201         pm_runtime_get_noresume(&pdev->dev);
7202
7203         igc_flush_nfc_rules(adapter);
7204
7205         igc_ptp_stop(adapter);
7206
7207         pci_disable_ptm(pdev);
7208         pci_clear_master(pdev);
7209
7210         set_bit(__IGC_DOWN, &adapter->state);
7211
7212         del_timer_sync(&adapter->watchdog_timer);
7213         del_timer_sync(&adapter->phy_info_timer);
7214
7215         cancel_work_sync(&adapter->reset_task);
7216         cancel_work_sync(&adapter->watchdog_task);
7217         hrtimer_cancel(&adapter->hrtimer);
7218
7219         if (IS_ENABLED(CONFIG_IGC_LEDS))
7220                 igc_led_free(adapter);
7221
7222         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
7223          * would have already happened in close and is redundant.
7224          */
7225         igc_release_hw_control(adapter);
7226         unregister_netdev(netdev);
7227
7228         igc_clear_interrupt_scheme(adapter);
7229         pci_iounmap(pdev, adapter->io_addr);
7230         pci_release_mem_regions(pdev);
7231
7232         free_netdev(netdev);
7233
7234         pci_disable_device(pdev);
7235 }
7236
7237 static int __igc_shutdown(struct pci_dev *pdev, bool *enable_wake,
7238                           bool runtime)
7239 {
7240         struct net_device *netdev = pci_get_drvdata(pdev);
7241         struct igc_adapter *adapter = netdev_priv(netdev);
7242         u32 wufc = runtime ? IGC_WUFC_LNKC : adapter->wol;
7243         struct igc_hw *hw = &adapter->hw;
7244         u32 ctrl, rctl, status;
7245         bool wake;
7246
7247         rtnl_lock();
7248         netif_device_detach(netdev);
7249
7250         if (netif_running(netdev))
7251                 __igc_close(netdev, true);
7252
7253         igc_ptp_suspend(adapter);
7254
7255         igc_clear_interrupt_scheme(adapter);
7256         rtnl_unlock();
7257
7258         status = rd32(IGC_STATUS);
7259         if (status & IGC_STATUS_LU)
7260                 wufc &= ~IGC_WUFC_LNKC;
7261
7262         if (wufc) {
7263                 igc_setup_rctl(adapter);
7264                 igc_set_rx_mode(netdev);
7265
7266                 /* turn on all-multi mode if wake on multicast is enabled */
7267                 if (wufc & IGC_WUFC_MC) {
7268                         rctl = rd32(IGC_RCTL);
7269                         rctl |= IGC_RCTL_MPE;
7270                         wr32(IGC_RCTL, rctl);
7271                 }
7272
7273                 ctrl = rd32(IGC_CTRL);
7274                 ctrl |= IGC_CTRL_ADVD3WUC;
7275                 wr32(IGC_CTRL, ctrl);
7276
7277                 /* Allow time for pending master requests to run */
7278                 igc_disable_pcie_master(hw);
7279
7280                 wr32(IGC_WUC, IGC_WUC_PME_EN);
7281                 wr32(IGC_WUFC, wufc);
7282         } else {
7283                 wr32(IGC_WUC, 0);
7284                 wr32(IGC_WUFC, 0);
7285         }
7286
7287         wake = wufc || adapter->en_mng_pt;
7288         if (!wake)
7289                 igc_power_down_phy_copper_base(&adapter->hw);
7290         else
7291                 igc_power_up_link(adapter);
7292
7293         if (enable_wake)
7294                 *enable_wake = wake;
7295
7296         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
7297          * would have already happened in close and is redundant.
7298          */
7299         igc_release_hw_control(adapter);
7300
7301         pci_disable_device(pdev);
7302
7303         return 0;
7304 }
7305
7306 static int igc_runtime_suspend(struct device *dev)
7307 {
7308         return __igc_shutdown(to_pci_dev(dev), NULL, 1);
7309 }
7310
7311 static void igc_deliver_wake_packet(struct net_device *netdev)
7312 {
7313         struct igc_adapter *adapter = netdev_priv(netdev);
7314         struct igc_hw *hw = &adapter->hw;
7315         struct sk_buff *skb;
7316         u32 wupl;
7317
7318         wupl = rd32(IGC_WUPL) & IGC_WUPL_MASK;
7319
7320         /* WUPM stores only the first 128 bytes of the wake packet.
7321          * Read the packet only if we have the whole thing.
7322          */
7323         if (wupl == 0 || wupl > IGC_WUPM_BYTES)
7324                 return;
7325
7326         skb = netdev_alloc_skb_ip_align(netdev, IGC_WUPM_BYTES);
7327         if (!skb)
7328                 return;
7329
7330         skb_put(skb, wupl);
7331
7332         /* Ensure reads are 32-bit aligned */
7333         wupl = roundup(wupl, 4);
7334
7335         memcpy_fromio(skb->data, hw->hw_addr + IGC_WUPM_REG(0), wupl);
7336
7337         skb->protocol = eth_type_trans(skb, netdev);
7338         netif_rx(skb);
7339 }
7340
7341 static int igc_resume(struct device *dev)
7342 {
7343         struct pci_dev *pdev = to_pci_dev(dev);
7344         struct net_device *netdev = pci_get_drvdata(pdev);
7345         struct igc_adapter *adapter = netdev_priv(netdev);
7346         struct igc_hw *hw = &adapter->hw;
7347         u32 err, val;
7348
7349         pci_set_power_state(pdev, PCI_D0);
7350         pci_restore_state(pdev);
7351         pci_save_state(pdev);
7352
7353         if (!pci_device_is_present(pdev))
7354                 return -ENODEV;
7355         err = pci_enable_device_mem(pdev);
7356         if (err) {
7357                 netdev_err(netdev, "Cannot enable PCI device from suspend\n");
7358                 return err;
7359         }
7360         pci_set_master(pdev);
7361
7362         pci_enable_wake(pdev, PCI_D3hot, 0);
7363         pci_enable_wake(pdev, PCI_D3cold, 0);
7364
7365         if (igc_init_interrupt_scheme(adapter, true)) {
7366                 netdev_err(netdev, "Unable to allocate memory for queues\n");
7367                 return -ENOMEM;
7368         }
7369
7370         igc_reset(adapter);
7371
7372         /* let the f/w know that the h/w is now under the control of the
7373          * driver.
7374          */
7375         igc_get_hw_control(adapter);
7376
7377         val = rd32(IGC_WUS);
7378         if (val & WAKE_PKT_WUS)
7379                 igc_deliver_wake_packet(netdev);
7380
7381         wr32(IGC_WUS, ~0);
7382
7383         if (netif_running(netdev)) {
7384                 err = __igc_open(netdev, true);
7385                 if (!err)
7386                         netif_device_attach(netdev);
7387         }
7388
7389         return err;
7390 }
7391
7392 static int igc_runtime_resume(struct device *dev)
7393 {
7394         return igc_resume(dev);
7395 }
7396
7397 static int igc_suspend(struct device *dev)
7398 {
7399         return __igc_shutdown(to_pci_dev(dev), NULL, 0);
7400 }
7401
7402 static int __maybe_unused igc_runtime_idle(struct device *dev)
7403 {
7404         struct net_device *netdev = dev_get_drvdata(dev);
7405         struct igc_adapter *adapter = netdev_priv(netdev);
7406
7407         if (!igc_has_link(adapter))
7408                 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7409
7410         return -EBUSY;
7411 }
7412
7413 static void igc_shutdown(struct pci_dev *pdev)
7414 {
7415         bool wake;
7416
7417         __igc_shutdown(pdev, &wake, 0);
7418
7419         if (system_state == SYSTEM_POWER_OFF) {
7420                 pci_wake_from_d3(pdev, wake);
7421                 pci_set_power_state(pdev, PCI_D3hot);
7422         }
7423 }
7424
7425 /**
7426  *  igc_io_error_detected - called when PCI error is detected
7427  *  @pdev: Pointer to PCI device
7428  *  @state: The current PCI connection state
7429  *
7430  *  This function is called after a PCI bus error affecting
7431  *  this device has been detected.
7432  **/
7433 static pci_ers_result_t igc_io_error_detected(struct pci_dev *pdev,
7434                                               pci_channel_state_t state)
7435 {
7436         struct net_device *netdev = pci_get_drvdata(pdev);
7437         struct igc_adapter *adapter = netdev_priv(netdev);
7438
7439         netif_device_detach(netdev);
7440
7441         if (state == pci_channel_io_perm_failure)
7442                 return PCI_ERS_RESULT_DISCONNECT;
7443
7444         if (netif_running(netdev))
7445                 igc_down(adapter);
7446         pci_disable_device(pdev);
7447
7448         /* Request a slot reset. */
7449         return PCI_ERS_RESULT_NEED_RESET;
7450 }
7451
7452 /**
7453  *  igc_io_slot_reset - called after the PCI bus has been reset.
7454  *  @pdev: Pointer to PCI device
7455  *
7456  *  Restart the card from scratch, as if from a cold-boot. Implementation
7457  *  resembles the first-half of the igc_resume routine.
7458  **/
7459 static pci_ers_result_t igc_io_slot_reset(struct pci_dev *pdev)
7460 {
7461         struct net_device *netdev = pci_get_drvdata(pdev);
7462         struct igc_adapter *adapter = netdev_priv(netdev);
7463         struct igc_hw *hw = &adapter->hw;
7464         pci_ers_result_t result;
7465
7466         if (pci_enable_device_mem(pdev)) {
7467                 netdev_err(netdev, "Could not re-enable PCI device after reset\n");
7468                 result = PCI_ERS_RESULT_DISCONNECT;
7469         } else {
7470                 pci_set_master(pdev);
7471                 pci_restore_state(pdev);
7472                 pci_save_state(pdev);
7473
7474                 pci_enable_wake(pdev, PCI_D3hot, 0);
7475                 pci_enable_wake(pdev, PCI_D3cold, 0);
7476
7477                 /* In case of PCI error, adapter loses its HW address
7478                  * so we should re-assign it here.
7479                  */
7480                 hw->hw_addr = adapter->io_addr;
7481
7482                 igc_reset(adapter);
7483                 wr32(IGC_WUS, ~0);
7484                 result = PCI_ERS_RESULT_RECOVERED;
7485         }
7486
7487         return result;
7488 }
7489
7490 /**
7491  *  igc_io_resume - called when traffic can start to flow again.
7492  *  @pdev: Pointer to PCI device
7493  *
7494  *  This callback is called when the error recovery driver tells us that
7495  *  its OK to resume normal operation. Implementation resembles the
7496  *  second-half of the igc_resume routine.
7497  */
7498 static void igc_io_resume(struct pci_dev *pdev)
7499 {
7500         struct net_device *netdev = pci_get_drvdata(pdev);
7501         struct igc_adapter *adapter = netdev_priv(netdev);
7502
7503         rtnl_lock();
7504         if (netif_running(netdev)) {
7505                 if (igc_open(netdev)) {
7506                         rtnl_unlock();
7507                         netdev_err(netdev, "igc_open failed after reset\n");
7508                         return;
7509                 }
7510         }
7511
7512         netif_device_attach(netdev);
7513
7514         /* let the f/w know that the h/w is now under the control of the
7515          * driver.
7516          */
7517         igc_get_hw_control(adapter);
7518         rtnl_unlock();
7519 }
7520
7521 static const struct pci_error_handlers igc_err_handler = {
7522         .error_detected = igc_io_error_detected,
7523         .slot_reset = igc_io_slot_reset,
7524         .resume = igc_io_resume,
7525 };
7526
7527 static _DEFINE_DEV_PM_OPS(igc_pm_ops, igc_suspend, igc_resume,
7528                           igc_runtime_suspend, igc_runtime_resume,
7529                           igc_runtime_idle);
7530
7531 static struct pci_driver igc_driver = {
7532         .name     = igc_driver_name,
7533         .id_table = igc_pci_tbl,
7534         .probe    = igc_probe,
7535         .remove   = igc_remove,
7536         .driver.pm = pm_ptr(&igc_pm_ops),
7537         .shutdown = igc_shutdown,
7538         .err_handler = &igc_err_handler,
7539 };
7540
7541 /**
7542  * igc_reinit_queues - return error
7543  * @adapter: pointer to adapter structure
7544  */
7545 int igc_reinit_queues(struct igc_adapter *adapter)
7546 {
7547         struct net_device *netdev = adapter->netdev;
7548         int err = 0;
7549
7550         if (netif_running(netdev))
7551                 igc_close(netdev);
7552
7553         igc_reset_interrupt_capability(adapter);
7554
7555         if (igc_init_interrupt_scheme(adapter, true)) {
7556                 netdev_err(netdev, "Unable to allocate memory for queues\n");
7557                 return -ENOMEM;
7558         }
7559
7560         if (netif_running(netdev))
7561                 err = igc_open(netdev);
7562
7563         return err;
7564 }
7565
7566 /**
7567  * igc_get_hw_dev - return device
7568  * @hw: pointer to hardware structure
7569  *
7570  * used by hardware layer to print debugging information
7571  */
7572 struct net_device *igc_get_hw_dev(struct igc_hw *hw)
7573 {
7574         struct igc_adapter *adapter = hw->back;
7575
7576         return adapter->netdev;
7577 }
7578
7579 static void igc_disable_rx_ring_hw(struct igc_ring *ring)
7580 {
7581         struct igc_hw *hw = &ring->q_vector->adapter->hw;
7582         u8 idx = ring->reg_idx;
7583         u32 rxdctl;
7584
7585         rxdctl = rd32(IGC_RXDCTL(idx));
7586         rxdctl &= ~IGC_RXDCTL_QUEUE_ENABLE;
7587         rxdctl |= IGC_RXDCTL_SWFLUSH;
7588         wr32(IGC_RXDCTL(idx), rxdctl);
7589 }
7590
7591 void igc_disable_rx_ring(struct igc_ring *ring)
7592 {
7593         igc_disable_rx_ring_hw(ring);
7594         igc_clean_rx_ring(ring);
7595 }
7596
7597 void igc_enable_rx_ring(struct igc_ring *ring)
7598 {
7599         struct igc_adapter *adapter = ring->q_vector->adapter;
7600
7601         igc_configure_rx_ring(adapter, ring);
7602
7603         if (ring->xsk_pool)
7604                 igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring));
7605         else
7606                 igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
7607 }
7608
7609 void igc_disable_tx_ring(struct igc_ring *ring)
7610 {
7611         igc_disable_tx_ring_hw(ring);
7612         igc_clean_tx_ring(ring);
7613 }
7614
7615 void igc_enable_tx_ring(struct igc_ring *ring)
7616 {
7617         struct igc_adapter *adapter = ring->q_vector->adapter;
7618
7619         igc_configure_tx_ring(adapter, ring);
7620 }
7621
7622 /**
7623  * igc_init_module - Driver Registration Routine
7624  *
7625  * igc_init_module is the first routine called when the driver is
7626  * loaded. All it does is register with the PCI subsystem.
7627  */
7628 static int __init igc_init_module(void)
7629 {
7630         int ret;
7631
7632         pr_info("%s\n", igc_driver_string);
7633         pr_info("%s\n", igc_copyright);
7634
7635         ret = pci_register_driver(&igc_driver);
7636         return ret;
7637 }
7638
7639 module_init(igc_init_module);
7640
7641 /**
7642  * igc_exit_module - Driver Exit Cleanup Routine
7643  *
7644  * igc_exit_module is called just before the driver is removed
7645  * from memory.
7646  */
7647 static void __exit igc_exit_module(void)
7648 {
7649         pci_unregister_driver(&igc_driver);
7650 }
7651
7652 module_exit(igc_exit_module);
7653 /* igc_main.c */
This page took 0.50646 seconds and 4 git commands to generate.