1 // SPDX-License-Identifier: GPL-2.0
3 * Microchip KSZ8XXX series switch driver
5 * It supports the following switches:
6 * - KSZ8863, KSZ8873 aka KSZ88X3
7 * - KSZ8895, KSZ8864 aka KSZ8895 family
8 * - KSZ8794, KSZ8795, KSZ8765 aka KSZ87XX
9 * Note that it does NOT support:
10 * - KSZ8563, KSZ8567 - see KSZ9477 driver
12 * Copyright (C) 2017 Microchip Technology Inc.
16 #include <linux/bitfield.h>
17 #include <linux/delay.h>
18 #include <linux/export.h>
19 #include <linux/gpio.h>
20 #include <linux/if_vlan.h>
21 #include <linux/kernel.h>
22 #include <linux/module.h>
23 #include <linux/platform_data/microchip-ksz.h>
24 #include <linux/phy.h>
25 #include <linux/etherdevice.h>
26 #include <linux/if_bridge.h>
27 #include <linux/micrel_phy.h>
29 #include <net/switchdev.h>
30 #include <linux/phylink.h>
32 #include "ksz_common.h"
36 static void ksz_cfg(struct ksz_device *dev, u32 addr, u8 bits, bool set)
38 regmap_update_bits(ksz_regmap_8(dev), addr, bits, set ? bits : 0);
41 static void ksz_port_cfg(struct ksz_device *dev, int port, int offset, u8 bits,
44 regmap_update_bits(ksz_regmap_8(dev), PORT_CTRL_ADDR(port, offset),
45 bits, set ? bits : 0);
49 * ksz8_ind_write8 - EEE/ACL/PME indirect register write
50 * @dev: The device structure.
51 * @table: Function & table select, register 110.
52 * @addr: Indirect access control, register 111.
53 * @data: The data to be written.
55 * This function performs an indirect register write for EEE, ACL or
56 * PME switch functionalities. Both 8-bit registers 110 and 111 are
57 * written at once with ksz_write16, using the serial multiple write
60 * Return: 0 on success, or an error code on failure.
62 static int ksz8_ind_write8(struct ksz_device *dev, u8 table, u16 addr, u8 data)
68 regs = dev->info->regs;
70 mutex_lock(&dev->alu_mutex);
72 ctrl_addr = IND_ACC_TABLE(table) | addr;
73 ret = ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
75 ret = ksz_write8(dev, regs[REG_IND_BYTE], data);
77 mutex_unlock(&dev->alu_mutex);
83 * ksz8_ind_read8 - EEE/ACL/PME indirect register read
84 * @dev: The device structure.
85 * @table: Function & table select, register 110.
86 * @addr: Indirect access control, register 111.
87 * @val: The value read.
89 * This function performs an indirect register read for EEE, ACL or
90 * PME switch functionalities. Both 8-bit registers 110 and 111 are
91 * written at once with ksz_write16, using the serial multiple write
94 * Return: 0 on success, or an error code on failure.
96 static int ksz8_ind_read8(struct ksz_device *dev, u8 table, u16 addr, u8 *val)
102 regs = dev->info->regs;
104 mutex_lock(&dev->alu_mutex);
106 ctrl_addr = IND_ACC_TABLE(table | TABLE_READ) | addr;
107 ret = ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
109 ret = ksz_read8(dev, regs[REG_IND_BYTE], val);
111 mutex_unlock(&dev->alu_mutex);
116 int ksz8_pme_write8(struct ksz_device *dev, u32 reg, u8 value)
118 return ksz8_ind_write8(dev, (u8)(reg >> 8), (u8)(reg), value);
121 int ksz8_pme_pread8(struct ksz_device *dev, int port, int offset, u8 *data)
123 u8 table = (u8)(offset >> 8 | (port + 1));
125 return ksz8_ind_read8(dev, table, (u8)(offset), data);
128 int ksz8_pme_pwrite8(struct ksz_device *dev, int port, int offset, u8 data)
130 u8 table = (u8)(offset >> 8 | (port + 1));
132 return ksz8_ind_write8(dev, table, (u8)(offset), data);
135 int ksz8_reset_switch(struct ksz_device *dev)
137 if (ksz_is_ksz88x3(dev)) {
139 ksz_cfg(dev, KSZ8863_REG_SW_RESET,
140 KSZ8863_GLOBAL_SOFTWARE_RESET | KSZ8863_PCS_RESET, true);
141 ksz_cfg(dev, KSZ8863_REG_SW_RESET,
142 KSZ8863_GLOBAL_SOFTWARE_RESET | KSZ8863_PCS_RESET, false);
145 ksz_write8(dev, REG_POWER_MANAGEMENT_1,
146 SW_SOFTWARE_POWER_DOWN << SW_POWER_MANAGEMENT_MODE_S);
147 ksz_write8(dev, REG_POWER_MANAGEMENT_1, 0);
153 static int ksz8863_change_mtu(struct ksz_device *dev, int frame_size)
157 if (frame_size <= KSZ8_LEGAL_PACKET_SIZE)
158 ctrl2 |= KSZ8863_LEGAL_PACKET_ENABLE;
159 else if (frame_size > KSZ8863_NORMAL_PACKET_SIZE)
160 ctrl2 |= KSZ8863_HUGE_PACKET_ENABLE;
162 return ksz_rmw8(dev, REG_SW_CTRL_2, KSZ8863_LEGAL_PACKET_ENABLE |
163 KSZ8863_HUGE_PACKET_ENABLE, ctrl2);
166 static int ksz8795_change_mtu(struct ksz_device *dev, int frame_size)
168 u8 ctrl1 = 0, ctrl2 = 0;
171 if (frame_size > KSZ8_LEGAL_PACKET_SIZE)
172 ctrl2 |= SW_LEGAL_PACKET_DISABLE;
173 if (frame_size > KSZ8863_NORMAL_PACKET_SIZE)
174 ctrl1 |= SW_HUGE_PACKET;
176 ret = ksz_rmw8(dev, REG_SW_CTRL_1, SW_HUGE_PACKET, ctrl1);
180 return ksz_rmw8(dev, REG_SW_CTRL_2, SW_LEGAL_PACKET_DISABLE, ctrl2);
183 int ksz8_change_mtu(struct ksz_device *dev, int port, int mtu)
187 if (!dsa_is_cpu_port(dev->ds, port))
190 frame_size = mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
192 switch (dev->chip_id) {
193 case KSZ8795_CHIP_ID:
194 case KSZ8794_CHIP_ID:
195 case KSZ8765_CHIP_ID:
196 return ksz8795_change_mtu(dev, frame_size);
197 case KSZ88X3_CHIP_ID:
198 case KSZ8864_CHIP_ID:
199 case KSZ8895_CHIP_ID:
200 return ksz8863_change_mtu(dev, frame_size);
206 static int ksz8_port_queue_split(struct ksz_device *dev, int port, int queues)
214 if (ksz_is_ksz88x3(dev)) {
215 mask_4q = KSZ8873_PORT_4QUEUE_SPLIT_EN;
216 mask_2q = KSZ8873_PORT_2QUEUE_SPLIT_EN;
217 reg_4q = REG_PORT_CTRL_0;
218 reg_2q = REG_PORT_CTRL_2;
220 /* KSZ8795 family switches have Weighted Fair Queueing (WFQ)
221 * enabled by default. Enable it for KSZ8873 family switches
222 * too. Default value for KSZ8873 family is strict priority,
223 * which should be enabled by using TC_SETUP_QDISC_ETS, not
226 ret = ksz_rmw8(dev, REG_SW_CTRL_3, WEIGHTED_FAIR_QUEUE_ENABLE,
227 WEIGHTED_FAIR_QUEUE_ENABLE);
231 mask_4q = KSZ8795_PORT_4QUEUE_SPLIT_EN;
232 mask_2q = KSZ8795_PORT_2QUEUE_SPLIT_EN;
233 reg_4q = REG_PORT_CTRL_13;
234 reg_2q = REG_PORT_CTRL_0;
236 /* TODO: this is legacy from initial KSZ8795 driver, should be
237 * moved to appropriate place in the future.
239 ret = ksz_rmw8(dev, REG_SW_CTRL_19,
240 SW_OUT_RATE_LIMIT_QUEUE_BASED,
241 SW_OUT_RATE_LIMIT_QUEUE_BASED);
248 else if (queues == 2)
251 ret = ksz_prmw8(dev, port, reg_4q, mask_4q, data_4q);
255 return ksz_prmw8(dev, port, reg_2q, mask_2q, data_2q);
258 int ksz8_all_queues_split(struct ksz_device *dev, int queues)
260 struct dsa_switch *ds = dev->ds;
261 const struct dsa_port *dp;
263 dsa_switch_for_each_port(dp, ds) {
264 int ret = ksz8_port_queue_split(dev, dp->index, queues);
273 void ksz8_r_mib_cnt(struct ksz_device *dev, int port, u16 addr, u64 *cnt)
282 masks = dev->info->masks;
283 regs = dev->info->regs;
285 ctrl_addr = addr + dev->info->reg_mib_cnt * port;
286 ctrl_addr |= IND_ACC_TABLE(TABLE_MIB | TABLE_READ);
288 mutex_lock(&dev->alu_mutex);
289 ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
291 /* It is almost guaranteed to always read the valid bit because of
294 for (loop = 2; loop > 0; loop--) {
295 ksz_read8(dev, regs[REG_IND_MIB_CHECK], &check);
297 if (check & masks[MIB_COUNTER_VALID]) {
298 ksz_read32(dev, regs[REG_IND_DATA_LO], &data);
299 if (check & masks[MIB_COUNTER_OVERFLOW])
300 *cnt += MIB_COUNTER_VALUE + 1;
301 *cnt += data & MIB_COUNTER_VALUE;
305 mutex_unlock(&dev->alu_mutex);
308 static void ksz8795_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
309 u64 *dropped, u64 *cnt)
318 masks = dev->info->masks;
319 regs = dev->info->regs;
321 addr -= dev->info->reg_mib_cnt;
322 ctrl_addr = (KSZ8795_MIB_TOTAL_RX_1 - KSZ8795_MIB_TOTAL_RX_0) * port;
323 ctrl_addr += addr + KSZ8795_MIB_TOTAL_RX_0;
324 ctrl_addr |= IND_ACC_TABLE(TABLE_MIB | TABLE_READ);
326 mutex_lock(&dev->alu_mutex);
327 ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
329 /* It is almost guaranteed to always read the valid bit because of
332 for (loop = 2; loop > 0; loop--) {
333 ksz_read8(dev, regs[REG_IND_MIB_CHECK], &check);
335 if (check & masks[MIB_COUNTER_VALID]) {
336 ksz_read32(dev, regs[REG_IND_DATA_LO], &data);
340 total = check & MIB_TOTAL_BYTES_H;
344 if (check & masks[MIB_COUNTER_OVERFLOW]) {
345 total = MIB_TOTAL_BYTES_H + 1;
350 if (check & masks[MIB_COUNTER_OVERFLOW])
351 *cnt += MIB_PACKET_DROPPED + 1;
352 *cnt += data & MIB_PACKET_DROPPED;
357 mutex_unlock(&dev->alu_mutex);
360 static void ksz8863_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
361 u64 *dropped, u64 *cnt)
363 u32 *last = (u32 *)dropped;
369 regs = dev->info->regs;
371 addr -= dev->info->reg_mib_cnt;
372 ctrl_addr = addr ? KSZ8863_MIB_PACKET_DROPPED_TX_0 :
373 KSZ8863_MIB_PACKET_DROPPED_RX_0;
375 ctrl_addr |= IND_ACC_TABLE(TABLE_MIB | TABLE_READ);
377 mutex_lock(&dev->alu_mutex);
378 ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
379 ksz_read32(dev, regs[REG_IND_DATA_LO], &data);
380 mutex_unlock(&dev->alu_mutex);
382 data &= MIB_PACKET_DROPPED;
387 data += MIB_PACKET_DROPPED + 1;
393 void ksz8_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
394 u64 *dropped, u64 *cnt)
397 ksz8863_r_mib_pkt(dev, port, addr, dropped, cnt);
399 ksz8795_r_mib_pkt(dev, port, addr, dropped, cnt);
402 void ksz8_freeze_mib(struct ksz_device *dev, int port, bool freeze)
407 /* enable the port for flush/freeze function */
409 ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), true);
410 ksz_cfg(dev, REG_SW_CTRL_6, SW_MIB_COUNTER_FREEZE, freeze);
412 /* disable the port after freeze is done */
414 ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), false);
417 void ksz8_port_init_cnt(struct ksz_device *dev, int port)
419 struct ksz_port_mib *mib = &dev->ports[port].mib;
422 /* For KSZ8795 family. */
423 if (ksz_is_ksz87xx(dev)) {
424 /* flush all enabled port MIB counters */
425 ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), true);
426 ksz_cfg(dev, REG_SW_CTRL_6, SW_MIB_COUNTER_FLUSH, true);
427 ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), false);
432 /* Some ports may not have MIB counters before SWITCH_COUNTER_NUM. */
433 while (mib->cnt_ptr < dev->info->reg_mib_cnt) {
434 dev->dev_ops->r_mib_cnt(dev, port, mib->cnt_ptr,
435 &mib->counters[mib->cnt_ptr]);
439 /* last one in storage */
440 dropped = &mib->counters[dev->info->mib_cnt];
442 /* Some ports may not have MIB counters after SWITCH_COUNTER_NUM. */
443 while (mib->cnt_ptr < dev->info->mib_cnt) {
444 dev->dev_ops->r_mib_pkt(dev, port, mib->cnt_ptr,
445 dropped, &mib->counters[mib->cnt_ptr]);
450 static int ksz8_r_table(struct ksz_device *dev, int table, u16 addr, u64 *data)
456 regs = dev->info->regs;
458 ctrl_addr = IND_ACC_TABLE(table | TABLE_READ) | addr;
460 mutex_lock(&dev->alu_mutex);
461 ret = ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
465 ret = ksz_read64(dev, regs[REG_IND_DATA_HI], data);
467 mutex_unlock(&dev->alu_mutex);
472 static int ksz8_w_table(struct ksz_device *dev, int table, u16 addr, u64 data)
478 regs = dev->info->regs;
480 ctrl_addr = IND_ACC_TABLE(table) | addr;
482 mutex_lock(&dev->alu_mutex);
483 ret = ksz_write64(dev, regs[REG_IND_DATA_HI], data);
487 ret = ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
489 mutex_unlock(&dev->alu_mutex);
494 static int ksz8_valid_dyn_entry(struct ksz_device *dev, u8 *data)
501 masks = dev->info->masks;
502 regs = dev->info->regs;
505 ret = ksz_read8(dev, regs[REG_IND_DATA_CHECK], data);
510 } while ((*data & masks[DYNAMIC_MAC_TABLE_NOT_READY]) && timeout);
512 /* Entry is not ready for accessing. */
513 if (*data & masks[DYNAMIC_MAC_TABLE_NOT_READY])
516 /* Entry is ready for accessing. */
517 return ksz_read8(dev, regs[REG_IND_DATA_8], data);
520 static int ksz8_r_dyn_mac_table(struct ksz_device *dev, u16 addr, u8 *mac_addr,
521 u8 *fid, u8 *src_port, u16 *entries)
523 u32 data_hi, data_lo;
533 shifts = dev->info->shifts;
534 masks = dev->info->masks;
535 regs = dev->info->regs;
537 ctrl_addr = IND_ACC_TABLE(TABLE_DYNAMIC_MAC | TABLE_READ) | addr;
539 mutex_lock(&dev->alu_mutex);
540 ret = ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
544 ret = ksz8_valid_dyn_entry(dev, &data);
548 if (data & masks[DYNAMIC_MAC_TABLE_MAC_EMPTY]) {
553 ret = ksz_read64(dev, regs[REG_IND_DATA_HI], &buf);
557 data_hi = (u32)(buf >> 32);
560 /* Check out how many valid entry in the table. */
561 cnt = data & masks[DYNAMIC_MAC_TABLE_ENTRIES_H];
562 cnt <<= shifts[DYNAMIC_MAC_ENTRIES_H];
563 cnt |= (data_hi & masks[DYNAMIC_MAC_TABLE_ENTRIES]) >>
564 shifts[DYNAMIC_MAC_ENTRIES];
567 *fid = (data_hi & masks[DYNAMIC_MAC_TABLE_FID]) >>
568 shifts[DYNAMIC_MAC_FID];
569 *src_port = (data_hi & masks[DYNAMIC_MAC_TABLE_SRC_PORT]) >>
570 shifts[DYNAMIC_MAC_SRC_PORT];
572 mac_addr[5] = (u8)data_lo;
573 mac_addr[4] = (u8)(data_lo >> 8);
574 mac_addr[3] = (u8)(data_lo >> 16);
575 mac_addr[2] = (u8)(data_lo >> 24);
577 mac_addr[1] = (u8)data_hi;
578 mac_addr[0] = (u8)(data_hi >> 8);
581 mutex_unlock(&dev->alu_mutex);
586 static int ksz8_r_sta_mac_table(struct ksz_device *dev, u16 addr,
587 struct alu_struct *alu, bool *valid)
589 u32 data_hi, data_lo;
595 shifts = dev->info->shifts;
596 masks = dev->info->masks;
598 ret = ksz8_r_table(dev, TABLE_STATIC_MAC, addr, &data);
602 data_hi = data >> 32;
605 if (!(data_hi & (masks[STATIC_MAC_TABLE_VALID] |
606 masks[STATIC_MAC_TABLE_OVERRIDE]))) {
611 alu->mac[5] = (u8)data_lo;
612 alu->mac[4] = (u8)(data_lo >> 8);
613 alu->mac[3] = (u8)(data_lo >> 16);
614 alu->mac[2] = (u8)(data_lo >> 24);
615 alu->mac[1] = (u8)data_hi;
616 alu->mac[0] = (u8)(data_hi >> 8);
618 (data_hi & masks[STATIC_MAC_TABLE_FWD_PORTS]) >>
619 shifts[STATIC_MAC_FWD_PORTS];
620 alu->is_override = (data_hi & masks[STATIC_MAC_TABLE_OVERRIDE]) ? 1 : 0;
622 /* KSZ8795/KSZ8895 family switches have STATIC_MAC_TABLE_USE_FID and
623 * STATIC_MAC_TABLE_FID definitions off by 1 when doing read on the
624 * static MAC table compared to doing write.
626 if (ksz_is_ksz87xx(dev) || ksz_is_8895_family(dev))
628 alu->is_static = true;
629 alu->is_use_fid = (data_hi & masks[STATIC_MAC_TABLE_USE_FID]) ? 1 : 0;
630 alu->fid = (data_hi & masks[STATIC_MAC_TABLE_FID]) >>
631 shifts[STATIC_MAC_FID];
638 static int ksz8_w_sta_mac_table(struct ksz_device *dev, u16 addr,
639 struct alu_struct *alu)
641 u32 data_hi, data_lo;
646 shifts = dev->info->shifts;
647 masks = dev->info->masks;
649 data_lo = ((u32)alu->mac[2] << 24) |
650 ((u32)alu->mac[3] << 16) |
651 ((u32)alu->mac[4] << 8) | alu->mac[5];
652 data_hi = ((u32)alu->mac[0] << 8) | alu->mac[1];
653 data_hi |= (u32)alu->port_forward << shifts[STATIC_MAC_FWD_PORTS];
655 if (alu->is_override)
656 data_hi |= masks[STATIC_MAC_TABLE_OVERRIDE];
657 if (alu->is_use_fid) {
658 data_hi |= masks[STATIC_MAC_TABLE_USE_FID];
659 data_hi |= (u32)alu->fid << shifts[STATIC_MAC_FID];
662 data_hi |= masks[STATIC_MAC_TABLE_VALID];
664 data_hi &= ~masks[STATIC_MAC_TABLE_OVERRIDE];
666 data = (u64)data_hi << 32 | data_lo;
668 return ksz8_w_table(dev, TABLE_STATIC_MAC, addr, data);
671 static void ksz8_from_vlan(struct ksz_device *dev, u32 vlan, u8 *fid,
672 u8 *member, u8 *valid)
677 shifts = dev->info->shifts;
678 masks = dev->info->masks;
680 *fid = vlan & masks[VLAN_TABLE_FID];
681 *member = (vlan & masks[VLAN_TABLE_MEMBERSHIP]) >>
682 shifts[VLAN_TABLE_MEMBERSHIP_S];
683 *valid = !!(vlan & masks[VLAN_TABLE_VALID]);
686 static void ksz8_to_vlan(struct ksz_device *dev, u8 fid, u8 member, u8 valid,
692 shifts = dev->info->shifts;
693 masks = dev->info->masks;
696 *vlan |= (u16)member << shifts[VLAN_TABLE_MEMBERSHIP_S];
698 *vlan |= masks[VLAN_TABLE_VALID];
701 static void ksz8_r_vlan_entries(struct ksz_device *dev, u16 addr)
707 shifts = dev->info->shifts;
709 ksz8_r_table(dev, TABLE_VLAN, addr, &data);
711 for (i = 0; i < 4; i++) {
712 dev->vlan_cache[addr + i].table[0] = (u16)data;
713 data >>= shifts[VLAN_TABLE];
717 static void ksz8_r_vlan_table(struct ksz_device *dev, u16 vid, u16 *vlan)
727 ksz8_r_table(dev, TABLE_VLAN, addr, &buf);
731 static void ksz8_w_vlan_table(struct ksz_device *dev, u16 vid, u16 vlan)
741 ksz8_r_table(dev, TABLE_VLAN, addr, &buf);
743 dev->vlan_cache[vid].table[0] = vlan;
744 ksz8_w_table(dev, TABLE_VLAN, addr, buf);
748 * ksz879x_get_loopback - KSZ879x specific function to get loopback
749 * configuration status for a specific port
750 * @dev: Pointer to the device structure
751 * @port: Port number to query
752 * @val: Pointer to store the result
754 * This function reads the SMI registers to determine whether loopback mode
755 * is enabled for a specific port.
757 * Return: 0 on success, error code on failure.
759 static int ksz879x_get_loopback(struct ksz_device *dev, u16 port,
765 ret = ksz_pread8(dev, port, REG_PORT_STATUS_3, &stat3);
769 if (stat3 & PORT_PHY_LOOPBACK)
770 *val |= BMCR_LOOPBACK;
776 * ksz879x_set_loopback - KSZ879x specific function to set loopback mode for
778 * @dev: Pointer to the device structure.
779 * @port: Port number to modify.
780 * @val: Value indicating whether to enable or disable loopback mode.
782 * This function translates loopback bit of the BMCR register into the
783 * corresponding hardware register bit value and writes it to the SMI interface.
785 * Return: 0 on success, error code on failure.
787 static int ksz879x_set_loopback(struct ksz_device *dev, u16 port, u16 val)
791 if (val & BMCR_LOOPBACK)
792 stat3 |= PORT_PHY_LOOPBACK;
794 return ksz_prmw8(dev, port, REG_PORT_STATUS_3, PORT_PHY_LOOPBACK,
799 * ksz8_r_phy_ctrl - Translates and reads from the SMI interface to a MIIM PHY
800 * Control register (Reg. 31).
801 * @dev: The KSZ device instance.
802 * @port: The port number to be read.
803 * @val: The value read from the SMI interface.
805 * This function reads the SMI interface and translates the hardware register
806 * bit values into their corresponding control settings for a MIIM PHY Control
809 * Return: 0 on success, error code on failure.
811 static int ksz8_r_phy_ctrl(struct ksz_device *dev, int port, u16 *val)
813 const u16 *regs = dev->info->regs;
819 ret = ksz_pread8(dev, port, regs[P_LINK_STATUS], ®_val);
823 if (reg_val & PORT_MDIX_STATUS)
824 *val |= KSZ886X_CTRL_MDIX_STAT;
826 ret = ksz_pread8(dev, port, REG_PORT_LINK_MD_CTRL, ®_val);
830 if (reg_val & PORT_FORCE_LINK)
831 *val |= KSZ886X_CTRL_FORCE_LINK;
833 if (reg_val & PORT_POWER_SAVING)
834 *val |= KSZ886X_CTRL_PWRSAVE;
836 if (reg_val & PORT_PHY_REMOTE_LOOPBACK)
837 *val |= KSZ886X_CTRL_REMOTE_LOOPBACK;
843 * ksz8_r_phy_bmcr - Translates and reads from the SMI interface to a MIIM PHY
844 * Basic mode control register (Reg. 0).
845 * @dev: The KSZ device instance.
846 * @port: The port number to be read.
847 * @val: The value read from the SMI interface.
849 * This function reads the SMI interface and translates the hardware register
850 * bit values into their corresponding control settings for a MIIM PHY Basic
851 * mode control register.
853 * MIIM Bit Mapping Comparison between KSZ8794 and KSZ8873
854 * -------------------------------------------------------------------
855 * MIIM Bit | KSZ8794 Reg/Bit | KSZ8873 Reg/Bit
856 * ----------------------------+-----------------------------+----------------
857 * Bit 15 - Soft Reset | 0xF/4 | Not supported
858 * Bit 14 - Loopback | 0xD/0 (MAC), 0xF/7 (PHY) ~ 0xD/0 (PHY)
859 * Bit 13 - Force 100 | 0xC/6 = 0xC/6
860 * Bit 12 - AN Enable | 0xC/7 (reverse logic) ~ 0xC/7
861 * Bit 11 - Power Down | 0xD/3 = 0xD/3
862 * Bit 10 - PHY Isolate | 0xF/5 | Not supported
863 * Bit 9 - Restart AN | 0xD/5 = 0xD/5
864 * Bit 8 - Force Full-Duplex | 0xC/5 = 0xC/5
865 * Bit 7 - Collision Test/Res. | Not supported | Not supported
866 * Bit 6 - Reserved | Not supported | Not supported
867 * Bit 5 - Hp_mdix | 0x9/7 ~ 0xF/7
868 * Bit 4 - Force MDI | 0xD/1 = 0xD/1
869 * Bit 3 - Disable MDIX | 0xD/2 = 0xD/2
870 * Bit 2 - Disable Far-End F. | ???? | 0xD/4
871 * Bit 1 - Disable Transmit | 0xD/6 = 0xD/6
872 * Bit 0 - Disable LED | 0xD/7 = 0xD/7
873 * -------------------------------------------------------------------
875 * Return: 0 on success, error code on failure.
877 static int ksz8_r_phy_bmcr(struct ksz_device *dev, u16 port, u16 *val)
879 const u16 *regs = dev->info->regs;
880 u8 restart, speed, ctrl;
885 ret = ksz_pread8(dev, port, regs[P_NEG_RESTART_CTRL], &restart);
889 ret = ksz_pread8(dev, port, regs[P_SPEED_STATUS], &speed);
893 ret = ksz_pread8(dev, port, regs[P_FORCE_CTRL], &ctrl);
897 if (ctrl & PORT_FORCE_100_MBIT)
898 *val |= BMCR_SPEED100;
900 if (ksz_is_ksz88x3(dev)) {
901 if (restart & KSZ8873_PORT_PHY_LOOPBACK)
902 *val |= BMCR_LOOPBACK;
904 if ((ctrl & PORT_AUTO_NEG_ENABLE))
905 *val |= BMCR_ANENABLE;
907 ret = ksz879x_get_loopback(dev, port, val);
911 if (!(ctrl & PORT_AUTO_NEG_DISABLE))
912 *val |= BMCR_ANENABLE;
915 if (restart & PORT_POWER_DOWN)
918 if (restart & PORT_AUTO_NEG_RESTART)
919 *val |= BMCR_ANRESTART;
921 if (ctrl & PORT_FORCE_FULL_DUPLEX)
922 *val |= BMCR_FULLDPLX;
924 if (speed & PORT_HP_MDIX)
925 *val |= KSZ886X_BMCR_HP_MDIX;
927 if (restart & PORT_FORCE_MDIX)
928 *val |= KSZ886X_BMCR_FORCE_MDI;
930 if (restart & PORT_AUTO_MDIX_DISABLE)
931 *val |= KSZ886X_BMCR_DISABLE_AUTO_MDIX;
933 if (restart & PORT_TX_DISABLE)
934 *val |= KSZ886X_BMCR_DISABLE_TRANSMIT;
936 if (restart & PORT_LED_OFF)
937 *val |= KSZ886X_BMCR_DISABLE_LED;
942 int ksz8_r_phy(struct ksz_device *dev, u16 phy, u16 reg, u16 *val)
944 u8 ctrl, link, val1, val2;
945 int processed = true;
951 regs = dev->info->regs;
955 ret = ksz8_r_phy_bmcr(dev, p, &data);
960 ret = ksz_pread8(dev, p, regs[P_LINK_STATUS], &link);
964 data = BMSR_100FULL |
969 if (link & PORT_AUTO_NEG_COMPLETE)
970 data |= BMSR_ANEGCOMPLETE;
971 if (link & PORT_STAT_LINK_GOOD)
972 data |= BMSR_LSTATUS;
975 data = KSZ8795_ID_HI;
978 if (ksz_is_ksz88x3(dev))
979 data = KSZ8863_ID_LO;
981 data = KSZ8795_ID_LO;
984 ret = ksz_pread8(dev, p, regs[P_LOCAL_CTRL], &ctrl);
988 data = ADVERTISE_CSMA;
989 if (ctrl & PORT_AUTO_NEG_SYM_PAUSE)
990 data |= ADVERTISE_PAUSE_CAP;
991 if (ctrl & PORT_AUTO_NEG_100BTX_FD)
992 data |= ADVERTISE_100FULL;
993 if (ctrl & PORT_AUTO_NEG_100BTX)
994 data |= ADVERTISE_100HALF;
995 if (ctrl & PORT_AUTO_NEG_10BT_FD)
996 data |= ADVERTISE_10FULL;
997 if (ctrl & PORT_AUTO_NEG_10BT)
998 data |= ADVERTISE_10HALF;
1001 ret = ksz_pread8(dev, p, regs[P_REMOTE_STATUS], &link);
1006 if (link & PORT_REMOTE_SYM_PAUSE)
1007 data |= LPA_PAUSE_CAP;
1008 if (link & PORT_REMOTE_100BTX_FD)
1009 data |= LPA_100FULL;
1010 if (link & PORT_REMOTE_100BTX)
1011 data |= LPA_100HALF;
1012 if (link & PORT_REMOTE_10BT_FD)
1014 if (link & PORT_REMOTE_10BT)
1016 if (data & ~LPA_SLCT)
1019 case PHY_REG_LINK_MD:
1020 ret = ksz_pread8(dev, p, REG_PORT_LINK_MD_CTRL, &val1);
1024 ret = ksz_pread8(dev, p, REG_PORT_LINK_MD_RESULT, &val2);
1028 if (val1 & PORT_START_CABLE_DIAG)
1029 data |= PHY_START_CABLE_DIAG;
1031 if (val1 & PORT_CABLE_10M_SHORT)
1032 data |= PHY_CABLE_10M_SHORT;
1034 data |= FIELD_PREP(PHY_CABLE_DIAG_RESULT_M,
1035 FIELD_GET(PORT_CABLE_DIAG_RESULT_M, val1));
1037 data |= FIELD_PREP(PHY_CABLE_FAULT_COUNTER_M,
1038 (FIELD_GET(PORT_CABLE_FAULT_COUNTER_H, val1) << 8) |
1039 FIELD_GET(PORT_CABLE_FAULT_COUNTER_L, val2));
1041 case PHY_REG_PHY_CTRL:
1042 ret = ksz8_r_phy_ctrl(dev, p, &data);
1058 * ksz8_w_phy_ctrl - Translates and writes to the SMI interface from a MIIM PHY
1059 * Control register (Reg. 31).
1060 * @dev: The KSZ device instance.
1061 * @port: The port number to be configured.
1062 * @val: The register value to be written.
1064 * This function translates control settings from a MIIM PHY Control register
1065 * into their corresponding hardware register bit values for the SMI
1068 * Return: 0 on success, error code on failure.
1070 static int ksz8_w_phy_ctrl(struct ksz_device *dev, int port, u16 val)
1075 if (val & KSZ886X_CTRL_FORCE_LINK)
1076 reg_val |= PORT_FORCE_LINK;
1078 if (val & KSZ886X_CTRL_PWRSAVE)
1079 reg_val |= PORT_POWER_SAVING;
1081 if (val & KSZ886X_CTRL_REMOTE_LOOPBACK)
1082 reg_val |= PORT_PHY_REMOTE_LOOPBACK;
1084 ret = ksz_prmw8(dev, port, REG_PORT_LINK_MD_CTRL, PORT_FORCE_LINK |
1085 PORT_POWER_SAVING | PORT_PHY_REMOTE_LOOPBACK, reg_val);
1090 * ksz8_w_phy_bmcr - Translates and writes to the SMI interface from a MIIM PHY
1091 * Basic mode control register (Reg. 0).
1092 * @dev: The KSZ device instance.
1093 * @port: The port number to be configured.
1094 * @val: The register value to be written.
1096 * This function translates control settings from a MIIM PHY Basic mode control
1097 * register into their corresponding hardware register bit values for the SMI
1100 * MIIM Bit Mapping Comparison between KSZ8794 and KSZ8873
1101 * -------------------------------------------------------------------
1102 * MIIM Bit | KSZ8794 Reg/Bit | KSZ8873 Reg/Bit
1103 * ----------------------------+-----------------------------+----------------
1104 * Bit 15 - Soft Reset | 0xF/4 | Not supported
1105 * Bit 14 - Loopback | 0xD/0 (MAC), 0xF/7 (PHY) ~ 0xD/0 (PHY)
1106 * Bit 13 - Force 100 | 0xC/6 = 0xC/6
1107 * Bit 12 - AN Enable | 0xC/7 (reverse logic) ~ 0xC/7
1108 * Bit 11 - Power Down | 0xD/3 = 0xD/3
1109 * Bit 10 - PHY Isolate | 0xF/5 | Not supported
1110 * Bit 9 - Restart AN | 0xD/5 = 0xD/5
1111 * Bit 8 - Force Full-Duplex | 0xC/5 = 0xC/5
1112 * Bit 7 - Collision Test/Res. | Not supported | Not supported
1113 * Bit 6 - Reserved | Not supported | Not supported
1114 * Bit 5 - Hp_mdix | 0x9/7 ~ 0xF/7
1115 * Bit 4 - Force MDI | 0xD/1 = 0xD/1
1116 * Bit 3 - Disable MDIX | 0xD/2 = 0xD/2
1117 * Bit 2 - Disable Far-End F. | ???? | 0xD/4
1118 * Bit 1 - Disable Transmit | 0xD/6 = 0xD/6
1119 * Bit 0 - Disable LED | 0xD/7 = 0xD/7
1120 * -------------------------------------------------------------------
1122 * Return: 0 on success, error code on failure.
1124 static int ksz8_w_phy_bmcr(struct ksz_device *dev, u16 port, u16 val)
1126 u8 restart, speed, ctrl, restart_mask;
1127 const u16 *regs = dev->info->regs;
1130 /* Do not support PHY reset function. */
1131 if (val & BMCR_RESET)
1135 if (val & KSZ886X_BMCR_HP_MDIX)
1136 speed |= PORT_HP_MDIX;
1138 ret = ksz_prmw8(dev, port, regs[P_SPEED_STATUS], PORT_HP_MDIX, speed);
1143 if (ksz_is_ksz88x3(dev)) {
1144 if ((val & BMCR_ANENABLE))
1145 ctrl |= PORT_AUTO_NEG_ENABLE;
1147 if (!(val & BMCR_ANENABLE))
1148 ctrl |= PORT_AUTO_NEG_DISABLE;
1150 /* Fiber port does not support auto-negotiation. */
1151 if (dev->ports[port].fiber)
1152 ctrl |= PORT_AUTO_NEG_DISABLE;
1155 if (val & BMCR_SPEED100)
1156 ctrl |= PORT_FORCE_100_MBIT;
1158 if (val & BMCR_FULLDPLX)
1159 ctrl |= PORT_FORCE_FULL_DUPLEX;
1161 ret = ksz_prmw8(dev, port, regs[P_FORCE_CTRL], PORT_FORCE_100_MBIT |
1162 /* PORT_AUTO_NEG_ENABLE and PORT_AUTO_NEG_DISABLE are the same
1165 PORT_FORCE_FULL_DUPLEX | PORT_AUTO_NEG_ENABLE, ctrl);
1170 restart_mask = PORT_LED_OFF | PORT_TX_DISABLE | PORT_AUTO_NEG_RESTART |
1171 PORT_POWER_DOWN | PORT_AUTO_MDIX_DISABLE | PORT_FORCE_MDIX;
1173 if (val & KSZ886X_BMCR_DISABLE_LED)
1174 restart |= PORT_LED_OFF;
1176 if (val & KSZ886X_BMCR_DISABLE_TRANSMIT)
1177 restart |= PORT_TX_DISABLE;
1179 if (val & BMCR_ANRESTART)
1180 restart |= PORT_AUTO_NEG_RESTART;
1182 if (val & BMCR_PDOWN)
1183 restart |= PORT_POWER_DOWN;
1185 if (val & KSZ886X_BMCR_DISABLE_AUTO_MDIX)
1186 restart |= PORT_AUTO_MDIX_DISABLE;
1188 if (val & KSZ886X_BMCR_FORCE_MDI)
1189 restart |= PORT_FORCE_MDIX;
1191 if (ksz_is_ksz88x3(dev)) {
1192 restart_mask |= KSZ8873_PORT_PHY_LOOPBACK;
1194 if (val & BMCR_LOOPBACK)
1195 restart |= KSZ8873_PORT_PHY_LOOPBACK;
1197 ret = ksz879x_set_loopback(dev, port, val);
1202 return ksz_prmw8(dev, port, regs[P_NEG_RESTART_CTRL], restart_mask,
1206 int ksz8_w_phy(struct ksz_device *dev, u16 phy, u16 reg, u16 val)
1213 regs = dev->info->regs;
1217 ret = ksz8_w_phy_bmcr(dev, p, val);
1222 ret = ksz_pread8(dev, p, regs[P_LOCAL_CTRL], &ctrl);
1227 data &= ~(PORT_AUTO_NEG_SYM_PAUSE |
1228 PORT_AUTO_NEG_100BTX_FD |
1229 PORT_AUTO_NEG_100BTX |
1230 PORT_AUTO_NEG_10BT_FD |
1231 PORT_AUTO_NEG_10BT);
1232 if (val & ADVERTISE_PAUSE_CAP)
1233 data |= PORT_AUTO_NEG_SYM_PAUSE;
1234 if (val & ADVERTISE_100FULL)
1235 data |= PORT_AUTO_NEG_100BTX_FD;
1236 if (val & ADVERTISE_100HALF)
1237 data |= PORT_AUTO_NEG_100BTX;
1238 if (val & ADVERTISE_10FULL)
1239 data |= PORT_AUTO_NEG_10BT_FD;
1240 if (val & ADVERTISE_10HALF)
1241 data |= PORT_AUTO_NEG_10BT;
1244 ret = ksz_pwrite8(dev, p, regs[P_LOCAL_CTRL], data);
1249 case PHY_REG_LINK_MD:
1250 if (val & PHY_START_CABLE_DIAG)
1251 ksz_port_cfg(dev, p, REG_PORT_LINK_MD_CTRL, PORT_START_CABLE_DIAG, true);
1254 case PHY_REG_PHY_CTRL:
1255 ret = ksz8_w_phy_ctrl(dev, p, val);
1266 void ksz8_cfg_port_member(struct ksz_device *dev, int port, u8 member)
1270 ksz_pread8(dev, port, P_MIRROR_CTRL, &data);
1271 data &= ~PORT_VLAN_MEMBERSHIP;
1272 data |= (member & dev->port_mask);
1273 ksz_pwrite8(dev, port, P_MIRROR_CTRL, data);
1276 void ksz8_flush_dyn_mac_table(struct ksz_device *dev, int port)
1278 u8 learn[DSA_MAX_PORTS];
1279 int first, index, cnt;
1282 regs = dev->info->regs;
1284 if ((uint)port < dev->info->port_cnt) {
1288 /* Flush all ports. */
1290 cnt = dev->info->port_cnt;
1292 for (index = first; index < cnt; index++) {
1293 ksz_pread8(dev, index, regs[P_STP_CTRL], &learn[index]);
1294 if (!(learn[index] & PORT_LEARN_DISABLE))
1295 ksz_pwrite8(dev, index, regs[P_STP_CTRL],
1296 learn[index] | PORT_LEARN_DISABLE);
1298 ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_DYN_MAC_TABLE, true);
1299 for (index = first; index < cnt; index++) {
1300 if (!(learn[index] & PORT_LEARN_DISABLE))
1301 ksz_pwrite8(dev, index, regs[P_STP_CTRL], learn[index]);
1305 int ksz8_fdb_dump(struct ksz_device *dev, int port,
1306 dsa_fdb_dump_cb_t *cb, void *data)
1313 for (i = 0; i < KSZ8_DYN_MAC_ENTRIES; i++) {
1314 ret = ksz8_r_dyn_mac_table(dev, i, mac, &fid, &src_port,
1322 if (port == src_port) {
1323 ret = cb(mac, fid, false, data);
1332 static int ksz8_add_sta_mac(struct ksz_device *dev, int port,
1333 const unsigned char *addr, u16 vid)
1335 struct alu_struct alu;
1339 alu.port_forward = 0;
1340 for (index = 0; index < dev->info->num_statics; index++) {
1343 ret = ksz8_r_sta_mac_table(dev, index, &alu, &valid);
1347 /* Remember the first empty entry. */
1353 if (!memcmp(alu.mac, addr, ETH_ALEN) && alu.fid == vid)
1357 /* no available entry */
1358 if (index == dev->info->num_statics && !empty)
1362 if (index == dev->info->num_statics) {
1364 memset(&alu, 0, sizeof(alu));
1365 memcpy(alu.mac, addr, ETH_ALEN);
1366 alu.is_static = true;
1368 alu.port_forward |= BIT(port);
1370 alu.is_use_fid = true;
1372 /* Need a way to map VID to FID. */
1376 return ksz8_w_sta_mac_table(dev, index, &alu);
1379 static int ksz8_del_sta_mac(struct ksz_device *dev, int port,
1380 const unsigned char *addr, u16 vid)
1382 struct alu_struct alu;
1385 for (index = 0; index < dev->info->num_statics; index++) {
1388 ret = ksz8_r_sta_mac_table(dev, index, &alu, &valid);
1394 if (!memcmp(alu.mac, addr, ETH_ALEN) && alu.fid == vid)
1398 /* no available entry */
1399 if (index == dev->info->num_statics)
1403 alu.port_forward &= ~BIT(port);
1404 if (!alu.port_forward)
1405 alu.is_static = false;
1407 return ksz8_w_sta_mac_table(dev, index, &alu);
1410 int ksz8_mdb_add(struct ksz_device *dev, int port,
1411 const struct switchdev_obj_port_mdb *mdb, struct dsa_db db)
1413 return ksz8_add_sta_mac(dev, port, mdb->addr, mdb->vid);
1416 int ksz8_mdb_del(struct ksz_device *dev, int port,
1417 const struct switchdev_obj_port_mdb *mdb, struct dsa_db db)
1419 return ksz8_del_sta_mac(dev, port, mdb->addr, mdb->vid);
1422 int ksz8_fdb_add(struct ksz_device *dev, int port, const unsigned char *addr,
1423 u16 vid, struct dsa_db db)
1425 return ksz8_add_sta_mac(dev, port, addr, vid);
1428 int ksz8_fdb_del(struct ksz_device *dev, int port, const unsigned char *addr,
1429 u16 vid, struct dsa_db db)
1431 return ksz8_del_sta_mac(dev, port, addr, vid);
1434 int ksz8_port_vlan_filtering(struct ksz_device *dev, int port, bool flag,
1435 struct netlink_ext_ack *extack)
1437 if (ksz_is_ksz88x3(dev))
1440 /* Discard packets with VID not enabled on the switch */
1441 ksz_cfg(dev, S_MIRROR_CTRL, SW_VLAN_ENABLE, flag);
1443 /* Discard packets with VID not enabled on the ingress port */
1444 for (port = 0; port < dev->phy_port_cnt; ++port)
1445 ksz_port_cfg(dev, port, REG_PORT_CTRL_2, PORT_INGRESS_FILTER,
1451 static void ksz8_port_enable_pvid(struct ksz_device *dev, int port, bool state)
1453 if (ksz_is_ksz88x3(dev)) {
1454 ksz_cfg(dev, REG_SW_INSERT_SRC_PVID,
1455 0x03 << (4 - 2 * port), state);
1457 ksz_pwrite8(dev, port, REG_PORT_CTRL_12, state ? 0x0f : 0x00);
1461 int ksz8_port_vlan_add(struct ksz_device *dev, int port,
1462 const struct switchdev_obj_port_vlan *vlan,
1463 struct netlink_ext_ack *extack)
1465 bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1466 struct ksz_port *p = &dev->ports[port];
1467 u16 data, new_pvid = 0;
1468 u8 fid, member, valid;
1470 if (ksz_is_ksz88x3(dev))
1473 /* If a VLAN is added with untagged flag different from the
1474 * port's Remove Tag flag, we need to change the latter.
1475 * Ignore VID 0, which is always untagged.
1476 * Ignore CPU port, which will always be tagged.
1478 if (untagged != p->remove_tag && vlan->vid != 0 &&
1479 port != dev->cpu_port) {
1482 /* Reject attempts to add a VLAN that requires the
1483 * Remove Tag flag to be changed, unless there are no
1484 * other VLANs currently configured.
1486 for (vid = 1; vid < dev->info->num_vlans; ++vid) {
1487 /* Skip the VID we are going to add or reconfigure */
1488 if (vid == vlan->vid)
1491 ksz8_from_vlan(dev, dev->vlan_cache[vid].table[0],
1492 &fid, &member, &valid);
1493 if (valid && (member & BIT(port)))
1497 ksz_port_cfg(dev, port, P_TAG_CTRL, PORT_REMOVE_TAG, untagged);
1498 p->remove_tag = untagged;
1501 ksz8_r_vlan_table(dev, vlan->vid, &data);
1502 ksz8_from_vlan(dev, data, &fid, &member, &valid);
1504 /* First time to setup the VLAN entry. */
1506 /* Need to find a way to map VID to FID. */
1510 member |= BIT(port);
1512 ksz8_to_vlan(dev, fid, member, valid, &data);
1513 ksz8_w_vlan_table(dev, vlan->vid, data);
1516 if (vlan->flags & BRIDGE_VLAN_INFO_PVID)
1517 new_pvid = vlan->vid;
1522 ksz_pread16(dev, port, REG_PORT_CTRL_VID, &vid);
1523 vid &= ~VLAN_VID_MASK;
1525 ksz_pwrite16(dev, port, REG_PORT_CTRL_VID, vid);
1527 ksz8_port_enable_pvid(dev, port, true);
1533 int ksz8_port_vlan_del(struct ksz_device *dev, int port,
1534 const struct switchdev_obj_port_vlan *vlan)
1537 u8 fid, member, valid;
1539 if (ksz_is_ksz88x3(dev))
1542 ksz_pread16(dev, port, REG_PORT_CTRL_VID, &pvid);
1543 pvid = pvid & 0xFFF;
1545 ksz8_r_vlan_table(dev, vlan->vid, &data);
1546 ksz8_from_vlan(dev, data, &fid, &member, &valid);
1548 member &= ~BIT(port);
1550 /* Invalidate the entry if no more member. */
1556 ksz8_to_vlan(dev, fid, member, valid, &data);
1557 ksz8_w_vlan_table(dev, vlan->vid, data);
1559 if (pvid == vlan->vid)
1560 ksz8_port_enable_pvid(dev, port, false);
1565 int ksz8_port_mirror_add(struct ksz_device *dev, int port,
1566 struct dsa_mall_mirror_tc_entry *mirror,
1567 bool ingress, struct netlink_ext_ack *extack)
1570 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, true);
1571 dev->mirror_rx |= BIT(port);
1573 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, true);
1574 dev->mirror_tx |= BIT(port);
1577 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_SNIFFER, false);
1579 /* configure mirror port */
1580 if (dev->mirror_rx || dev->mirror_tx)
1581 ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
1582 PORT_MIRROR_SNIFFER, true);
1587 void ksz8_port_mirror_del(struct ksz_device *dev, int port,
1588 struct dsa_mall_mirror_tc_entry *mirror)
1592 if (mirror->ingress) {
1593 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, false);
1594 dev->mirror_rx &= ~BIT(port);
1596 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, false);
1597 dev->mirror_tx &= ~BIT(port);
1600 ksz_pread8(dev, port, P_MIRROR_CTRL, &data);
1602 if (!dev->mirror_rx && !dev->mirror_tx)
1603 ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
1604 PORT_MIRROR_SNIFFER, false);
1607 static void ksz8795_cpu_interface_select(struct ksz_device *dev, int port)
1609 struct ksz_port *p = &dev->ports[port];
1611 if (!ksz_is_ksz87xx(dev))
1614 if (!p->interface && dev->compat_interface) {
1616 "Using legacy switch \"phy-mode\" property, because it is missing on port %d node. "
1617 "Please update your device tree.\n",
1619 p->interface = dev->compat_interface;
1623 void ksz8_port_setup(struct ksz_device *dev, int port, bool cpu_port)
1625 const u16 *regs = dev->info->regs;
1626 struct dsa_switch *ds = dev->ds;
1631 masks = dev->info->masks;
1633 /* enable broadcast storm limit */
1634 ksz_port_cfg(dev, port, P_BCAST_STORM_CTRL, PORT_BROADCAST_STORM, true);
1636 /* For KSZ88x3 enable only one queue by default, otherwise we won't
1637 * be able to get rid of PCP prios on Port 2.
1639 if (ksz_is_ksz88x3(dev))
1642 queues = dev->info->num_tx_queues;
1644 ksz8_port_queue_split(dev, port, queues);
1646 /* replace priority */
1647 ksz_port_cfg(dev, port, P_802_1P_CTRL,
1648 masks[PORT_802_1P_REMAPPING], false);
1651 member = dsa_user_ports(ds);
1653 member = BIT(dsa_upstream_port(ds, port));
1655 ksz8_cfg_port_member(dev, port, member);
1657 /* Disable all WoL options by default. Otherwise
1658 * ksz_switch_macaddr_get/put logic will not work properly.
1659 * CPU port 4 has no WoL functionality.
1661 if (ksz_is_ksz87xx(dev) && !cpu_port)
1662 ksz8_pme_pwrite8(dev, port, regs[REG_PORT_PME_CTRL], 0);
1665 static void ksz88x3_config_rmii_clk(struct ksz_device *dev)
1667 struct dsa_port *cpu_dp = dsa_to_port(dev->ds, dev->cpu_port);
1668 bool rmii_clk_internal;
1670 if (!ksz_is_ksz88x3(dev))
1673 rmii_clk_internal = of_property_read_bool(cpu_dp->dn,
1674 "microchip,rmii-clk-internal");
1676 ksz_cfg(dev, KSZ88X3_REG_FVID_AND_HOST_MODE,
1677 KSZ88X3_PORT3_RMII_CLK_INTERNAL, rmii_clk_internal);
1680 void ksz8_config_cpu_port(struct dsa_switch *ds)
1682 struct ksz_device *dev = ds->priv;
1689 masks = dev->info->masks;
1690 regs = dev->info->regs;
1692 ksz_cfg(dev, regs[S_TAIL_TAG_CTRL], masks[SW_TAIL_TAG_ENABLE], true);
1694 ksz8_port_setup(dev, dev->cpu_port, true);
1696 ksz8795_cpu_interface_select(dev, dev->cpu_port);
1697 ksz88x3_config_rmii_clk(dev);
1699 for (i = 0; i < dev->phy_port_cnt; i++) {
1700 ksz_port_stp_state_set(ds, i, BR_STATE_DISABLED);
1702 for (i = 0; i < dev->phy_port_cnt; i++) {
1705 /* For KSZ8795 family. */
1706 if (ksz_is_ksz87xx(dev)) {
1707 ksz_pread8(dev, i, regs[P_REMOTE_STATUS], &remote);
1708 if (remote & KSZ8_PORT_FIBER_MODE)
1712 ksz_port_cfg(dev, i, regs[P_STP_CTRL],
1713 PORT_FORCE_FLOW_CTRL, true);
1715 ksz_port_cfg(dev, i, regs[P_STP_CTRL],
1716 PORT_FORCE_FLOW_CTRL, false);
1721 * ksz8_phy_port_link_up - Configures ports with integrated PHYs
1722 * @dev: The KSZ device instance.
1723 * @port: The port number to configure.
1724 * @duplex: The desired duplex mode.
1725 * @tx_pause: If true, enables transmit pause.
1726 * @rx_pause: If true, enables receive pause.
1729 * The function configures flow control settings for a given port based on the
1730 * desired settings and current duplex mode.
1732 * According to the KSZ8873 datasheet, the PORT_FORCE_FLOW_CTRL bit in the
1733 * Port Control 2 register (0x1A for Port 1, 0x22 for Port 2, 0x32 for Port 3)
1734 * determines how flow control is handled on the port:
1735 * "1 = will always enable full-duplex flow control on the port, regardless
1737 * 0 = full-duplex flow control is enabled based on AN result."
1739 * This means that the flow control behavior depends on the state of this bit:
1740 * - If PORT_FORCE_FLOW_CTRL is set to 1, the switch will ignore AN results and
1741 * force flow control on the port.
1742 * - If PORT_FORCE_FLOW_CTRL is set to 0, the switch will enable or disable
1743 * flow control based on the AN results.
1745 * However, there is a potential limitation in this configuration. It is
1746 * currently not possible to force disable flow control on a port if we still
1747 * advertise pause support. While such a configuration is not currently
1748 * supported by Linux, and may not make practical sense, it's important to be
1749 * aware of this limitation when working with the KSZ8873 and similar devices.
1751 static void ksz8_phy_port_link_up(struct ksz_device *dev, int port, int duplex,
1752 bool tx_pause, bool rx_pause)
1754 const u16 *regs = dev->info->regs;
1757 /* The KSZ8795 switch differs from the KSZ8873 by supporting
1758 * asymmetric pause control. However, since a single bit is used to
1759 * control both RX and TX pause, we can't enforce asymmetric pause
1760 * control - both TX and RX pause will be either enabled or disabled
1763 * If auto-negotiation is enabled, we usually allow the flow control to
1764 * be determined by the auto-negotiation process based on the
1765 * capabilities of both link partners. However, for KSZ8873, the
1766 * PORT_FORCE_FLOW_CTRL bit may be set by the hardware bootstrap,
1767 * ignoring the auto-negotiation result. Thus, even in auto-negotiation
1768 * mode, we need to ensure that the PORT_FORCE_FLOW_CTRL bit is
1771 * In the absence of pause auto-negotiation, we will enforce symmetric
1772 * pause control for both variants of switches - KSZ8873 and KSZ8795.
1774 * Autoneg Pause Autoneg rx,tx PORT_FORCE_FLOW_CTRL
1776 * 0 1 x 0 (flow control probably disabled)
1777 * x 0 1 1 (flow control force enabled)
1778 * 1 0 0 0 (flow control still depends on
1779 * aneg result due to hardware)
1780 * 0 0 0 0 (flow control probably disabled)
1782 if (dev->ports[port].manual_flow && tx_pause)
1783 sctrl |= PORT_FORCE_FLOW_CTRL;
1785 ksz_prmw8(dev, port, regs[P_STP_CTRL], PORT_FORCE_FLOW_CTRL, sctrl);
1789 * ksz8_cpu_port_link_up - Configures the CPU port of the switch.
1790 * @dev: The KSZ device instance.
1791 * @speed: The desired link speed.
1792 * @duplex: The desired duplex mode.
1793 * @tx_pause: If true, enables transmit pause.
1794 * @rx_pause: If true, enables receive pause.
1797 * The function configures flow control and speed settings for the CPU
1798 * port of the switch based on the desired settings, current duplex mode, and
1801 static void ksz8_cpu_port_link_up(struct ksz_device *dev, int speed, int duplex,
1802 bool tx_pause, bool rx_pause)
1804 const u16 *regs = dev->info->regs;
1807 /* SW_FLOW_CTRL, SW_HALF_DUPLEX, and SW_10_MBIT bits are bootstrappable
1808 * at least on KSZ8873. They can have different values depending on your
1811 if (tx_pause || rx_pause)
1812 ctrl |= SW_FLOW_CTRL;
1814 if (duplex == DUPLEX_HALF)
1815 ctrl |= SW_HALF_DUPLEX;
1817 /* This hardware only supports SPEED_10 and SPEED_100. For SPEED_10
1818 * we need to set the SW_10_MBIT bit. Otherwise, we can leave it 0.
1820 if (speed == SPEED_10)
1823 ksz_rmw8(dev, regs[S_BROADCAST_CTRL], SW_HALF_DUPLEX | SW_FLOW_CTRL |
1827 void ksz8_phylink_mac_link_up(struct phylink_config *config,
1828 struct phy_device *phydev, unsigned int mode,
1829 phy_interface_t interface, int speed, int duplex,
1830 bool tx_pause, bool rx_pause)
1832 struct dsa_port *dp = dsa_phylink_to_port(config);
1833 struct ksz_device *dev = dp->ds->priv;
1834 int port = dp->index;
1836 /* If the port is the CPU port, apply special handling. Only the CPU
1837 * port is configured via global registers.
1839 if (dev->cpu_port == port)
1840 ksz8_cpu_port_link_up(dev, speed, duplex, tx_pause, rx_pause);
1841 else if (dev->info->internal_phy[port])
1842 ksz8_phy_port_link_up(dev, port, duplex, tx_pause, rx_pause);
1845 static int ksz8_handle_global_errata(struct dsa_switch *ds)
1847 struct ksz_device *dev = ds->priv;
1850 /* KSZ87xx Errata DS80000687C.
1851 * Module 2: Link drops with some EEE link partners.
1852 * An issue with the EEE next page exchange between the
1853 * KSZ879x/KSZ877x/KSZ876x and some EEE link partners may result in
1854 * the link dropping.
1856 if (dev->info->ksz87xx_eee_link_erratum)
1857 ret = ksz8_ind_write8(dev, TABLE_EEE, REG_IND_EEE_GLOB2_HI, 0);
1862 int ksz8_enable_stp_addr(struct ksz_device *dev)
1864 struct alu_struct alu;
1866 /* Setup STP address for STP operation. */
1867 memset(&alu, 0, sizeof(alu));
1868 ether_addr_copy(alu.mac, eth_stp_addr);
1869 alu.is_static = true;
1870 alu.is_override = true;
1871 alu.port_forward = dev->info->cpu_ports;
1873 return ksz8_w_sta_mac_table(dev, 0, &alu);
1876 int ksz8_setup(struct dsa_switch *ds)
1878 struct ksz_device *dev = ds->priv;
1879 const u16 *regs = dev->info->regs;
1882 ds->mtu_enforcement_ingress = true;
1884 /* We rely on software untagging on the CPU port, so that we
1885 * can support both tagged and untagged VLANs
1887 ds->untag_bridge_pvid = true;
1889 /* VLAN filtering is partly controlled by the global VLAN
1892 ds->vlan_filtering_is_global = true;
1894 /* Enable automatic fast aging when link changed detected. */
1895 ksz_cfg(dev, S_LINK_AGING_CTRL, SW_LINK_AUTO_AGING, true);
1897 /* Enable aggressive back off algorithm in half duplex mode. */
1898 regmap_update_bits(ksz_regmap_8(dev), REG_SW_CTRL_1,
1899 SW_AGGR_BACKOFF, SW_AGGR_BACKOFF);
1902 * Make sure unicast VLAN boundary is set as default and
1903 * enable no excessive collision drop.
1905 regmap_update_bits(ksz_regmap_8(dev), REG_SW_CTRL_2,
1906 UNICAST_VLAN_BOUNDARY | NO_EXC_COLLISION_DROP,
1907 UNICAST_VLAN_BOUNDARY | NO_EXC_COLLISION_DROP);
1909 ksz_cfg(dev, S_REPLACE_VID_CTRL, SW_REPLACE_VID, false);
1911 ksz_cfg(dev, S_MIRROR_CTRL, SW_MIRROR_RX_TX, false);
1913 if (!ksz_is_ksz88x3(dev))
1914 ksz_cfg(dev, REG_SW_CTRL_19, SW_INS_TAG_ENABLE, true);
1916 for (i = 0; i < (dev->info->num_vlans / 4); i++)
1917 ksz8_r_vlan_entries(dev, i);
1919 /* Make sure PME (WoL) is not enabled. If requested, it will
1920 * be enabled by ksz_wol_pre_shutdown(). Otherwise, some PMICs
1921 * do not like PME events changes before shutdown. PME only
1922 * available on KSZ87xx family.
1924 if (ksz_is_ksz87xx(dev)) {
1925 ret = ksz8_pme_write8(dev, regs[REG_SW_PME_CTRL], 0);
1927 ret = ksz_rmw8(dev, REG_INT_ENABLE, INT_PME, 0);
1931 return ksz8_handle_global_errata(ds);
1936 void ksz8_get_caps(struct ksz_device *dev, int port,
1937 struct phylink_config *config)
1939 config->mac_capabilities = MAC_10 | MAC_100;
1941 /* Silicon Errata Sheet (DS80000830A):
1942 * "Port 1 does not respond to received flow control PAUSE frames"
1943 * So, disable Pause support on "Port 1" (port == 0) for all ksz88x3
1946 if (!ksz_is_ksz88x3(dev) || port)
1947 config->mac_capabilities |= MAC_SYM_PAUSE;
1949 /* Asym pause is not supported on KSZ8863 and KSZ8873 */
1950 if (!ksz_is_ksz88x3(dev))
1951 config->mac_capabilities |= MAC_ASYM_PAUSE;
1954 u32 ksz8_get_port_addr(int port, int offset)
1956 return PORT_CTRL_ADDR(port, offset);
1959 int ksz8_switch_init(struct ksz_device *dev)
1961 dev->cpu_port = fls(dev->info->cpu_ports) - 1;
1962 dev->phy_port_cnt = dev->info->port_cnt - 1;
1963 dev->port_mask = (BIT(dev->phy_port_cnt) - 1) | dev->info->cpu_ports;
1968 void ksz8_switch_exit(struct ksz_device *dev)
1970 ksz8_reset_switch(dev);
1974 MODULE_DESCRIPTION("Microchip KSZ8795 Series Switch DSA Driver");
1975 MODULE_LICENSE("GPL");