2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
7 * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io
9 * This software is available to you under a choice of one of two
10 * licenses. You may choose to be licensed under the terms of the GNU
11 * General Public License (GPL) Version 2, available from the file
12 * COPYING in the main directory of this source tree, or the
13 * OpenIB.org BSD license below:
15 * Redistribution and use in source and binary forms, with or
16 * without modification, are permitted provided that the following
19 * - Redistributions of source code must retain the above
20 * copyright notice, this list of conditions and the following
23 * - Redistributions in binary form must reproduce the above
24 * copyright notice, this list of conditions and the following
25 * disclaimer in the documentation and/or other materials
26 * provided with the distribution.
28 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
29 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
30 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
31 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
32 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
33 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
34 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
38 #include <linux/sched/signal.h>
39 #include <linux/module.h>
40 #include <crypto/aead.h>
42 #include <net/strparser.h>
45 #define MAX_IV_SIZE TLS_CIPHER_AES_GCM_128_IV_SIZE
47 static int __skb_nsg(struct sk_buff *skb, int offset, int len,
48 unsigned int recursion_level)
50 int start = skb_headlen(skb);
51 int i, chunk = start - offset;
52 struct sk_buff *frag_iter;
55 if (unlikely(recursion_level >= 24))
68 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
71 WARN_ON(start > offset + len);
73 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
87 if (unlikely(skb_has_frag_list(skb))) {
88 skb_walk_frags(skb, frag_iter) {
91 WARN_ON(start > offset + len);
93 end = start + frag_iter->len;
98 ret = __skb_nsg(frag_iter, offset - start, chunk,
100 if (unlikely(ret < 0))
115 /* Return the number of scatterlist elements required to completely map the
116 * skb, or -EMSGSIZE if the recursion depth is exceeded.
118 static int skb_nsg(struct sk_buff *skb, int offset, int len)
120 return __skb_nsg(skb, offset, len, 0);
123 static int padding_length(struct tls_sw_context_rx *ctx,
124 struct tls_context *tls_ctx, struct sk_buff *skb)
126 struct strp_msg *rxm = strp_msg(skb);
129 /* Determine zero-padding length */
130 if (tls_ctx->prot_info.version == TLS_1_3_VERSION) {
131 char content_type = 0;
135 while (content_type == 0) {
136 if (back > rxm->full_len)
138 err = skb_copy_bits(skb,
139 rxm->offset + rxm->full_len - back,
146 ctx->control = content_type;
151 static void tls_decrypt_done(struct crypto_async_request *req, int err)
153 struct aead_request *aead_req = (struct aead_request *)req;
154 struct scatterlist *sgout = aead_req->dst;
155 struct scatterlist *sgin = aead_req->src;
156 struct tls_sw_context_rx *ctx;
157 struct tls_context *tls_ctx;
158 struct tls_prot_info *prot;
159 struct scatterlist *sg;
164 skb = (struct sk_buff *)req->data;
165 tls_ctx = tls_get_ctx(skb->sk);
166 ctx = tls_sw_ctx_rx(tls_ctx);
167 prot = &tls_ctx->prot_info;
169 /* Propagate if there was an err */
171 ctx->async_wait.err = err;
172 tls_err_abort(skb->sk, err);
174 struct strp_msg *rxm = strp_msg(skb);
175 rxm->full_len -= padding_length(ctx, tls_ctx, skb);
176 rxm->offset += prot->prepend_size;
177 rxm->full_len -= prot->overhead_size;
180 /* After using skb->sk to propagate sk through crypto async callback
181 * we need to NULL it again.
186 /* Free the destination pages if skb was not decrypted inplace */
188 /* Skip the first S/G entry as it points to AAD */
189 for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) {
192 put_page(sg_page(sg));
198 pending = atomic_dec_return(&ctx->decrypt_pending);
200 if (!pending && READ_ONCE(ctx->async_notify))
201 complete(&ctx->async_wait.completion);
204 static int tls_do_decryption(struct sock *sk,
206 struct scatterlist *sgin,
207 struct scatterlist *sgout,
210 struct aead_request *aead_req,
213 struct tls_context *tls_ctx = tls_get_ctx(sk);
214 struct tls_prot_info *prot = &tls_ctx->prot_info;
215 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
218 aead_request_set_tfm(aead_req, ctx->aead_recv);
219 aead_request_set_ad(aead_req, prot->aad_size);
220 aead_request_set_crypt(aead_req, sgin, sgout,
221 data_len + prot->tag_size,
225 /* Using skb->sk to push sk through to crypto async callback
226 * handler. This allows propagating errors up to the socket
227 * if needed. It _must_ be cleared in the async handler
228 * before kfree_skb is called. We _know_ skb->sk is NULL
229 * because it is a clone from strparser.
232 aead_request_set_callback(aead_req,
233 CRYPTO_TFM_REQ_MAY_BACKLOG,
234 tls_decrypt_done, skb);
235 atomic_inc(&ctx->decrypt_pending);
237 aead_request_set_callback(aead_req,
238 CRYPTO_TFM_REQ_MAY_BACKLOG,
239 crypto_req_done, &ctx->async_wait);
242 ret = crypto_aead_decrypt(aead_req);
243 if (ret == -EINPROGRESS) {
247 ret = crypto_wait_req(ret, &ctx->async_wait);
251 atomic_dec(&ctx->decrypt_pending);
256 static void tls_trim_both_msgs(struct sock *sk, int target_size)
258 struct tls_context *tls_ctx = tls_get_ctx(sk);
259 struct tls_prot_info *prot = &tls_ctx->prot_info;
260 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
261 struct tls_rec *rec = ctx->open_rec;
263 sk_msg_trim(sk, &rec->msg_plaintext, target_size);
265 target_size += prot->overhead_size;
266 sk_msg_trim(sk, &rec->msg_encrypted, target_size);
269 static int tls_alloc_encrypted_msg(struct sock *sk, int len)
271 struct tls_context *tls_ctx = tls_get_ctx(sk);
272 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
273 struct tls_rec *rec = ctx->open_rec;
274 struct sk_msg *msg_en = &rec->msg_encrypted;
276 return sk_msg_alloc(sk, msg_en, len, 0);
279 static int tls_clone_plaintext_msg(struct sock *sk, int required)
281 struct tls_context *tls_ctx = tls_get_ctx(sk);
282 struct tls_prot_info *prot = &tls_ctx->prot_info;
283 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
284 struct tls_rec *rec = ctx->open_rec;
285 struct sk_msg *msg_pl = &rec->msg_plaintext;
286 struct sk_msg *msg_en = &rec->msg_encrypted;
289 /* We add page references worth len bytes from encrypted sg
290 * at the end of plaintext sg. It is guaranteed that msg_en
291 * has enough required room (ensured by caller).
293 len = required - msg_pl->sg.size;
295 /* Skip initial bytes in msg_en's data to be able to use
296 * same offset of both plain and encrypted data.
298 skip = prot->prepend_size + msg_pl->sg.size;
300 return sk_msg_clone(sk, msg_pl, msg_en, skip, len);
303 static struct tls_rec *tls_get_rec(struct sock *sk)
305 struct tls_context *tls_ctx = tls_get_ctx(sk);
306 struct tls_prot_info *prot = &tls_ctx->prot_info;
307 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
308 struct sk_msg *msg_pl, *msg_en;
312 mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send);
314 rec = kzalloc(mem_size, sk->sk_allocation);
318 msg_pl = &rec->msg_plaintext;
319 msg_en = &rec->msg_encrypted;
324 sg_init_table(rec->sg_aead_in, 2);
325 sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size);
326 sg_unmark_end(&rec->sg_aead_in[1]);
328 sg_init_table(rec->sg_aead_out, 2);
329 sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size);
330 sg_unmark_end(&rec->sg_aead_out[1]);
335 static void tls_free_rec(struct sock *sk, struct tls_rec *rec)
337 sk_msg_free(sk, &rec->msg_encrypted);
338 sk_msg_free(sk, &rec->msg_plaintext);
342 static void tls_free_open_rec(struct sock *sk)
344 struct tls_context *tls_ctx = tls_get_ctx(sk);
345 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
346 struct tls_rec *rec = ctx->open_rec;
349 tls_free_rec(sk, rec);
350 ctx->open_rec = NULL;
354 int tls_tx_records(struct sock *sk, int flags)
356 struct tls_context *tls_ctx = tls_get_ctx(sk);
357 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
358 struct tls_rec *rec, *tmp;
359 struct sk_msg *msg_en;
360 int tx_flags, rc = 0;
362 if (tls_is_partially_sent_record(tls_ctx)) {
363 rec = list_first_entry(&ctx->tx_list,
364 struct tls_rec, list);
367 tx_flags = rec->tx_flags;
371 rc = tls_push_partial_record(sk, tls_ctx, tx_flags);
375 /* Full record has been transmitted.
376 * Remove the head of tx_list
378 list_del(&rec->list);
379 sk_msg_free(sk, &rec->msg_plaintext);
383 /* Tx all ready records */
384 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
385 if (READ_ONCE(rec->tx_ready)) {
387 tx_flags = rec->tx_flags;
391 msg_en = &rec->msg_encrypted;
392 rc = tls_push_sg(sk, tls_ctx,
393 &msg_en->sg.data[msg_en->sg.curr],
398 list_del(&rec->list);
399 sk_msg_free(sk, &rec->msg_plaintext);
407 if (rc < 0 && rc != -EAGAIN)
408 tls_err_abort(sk, EBADMSG);
413 static void tls_encrypt_done(struct crypto_async_request *req, int err)
415 struct aead_request *aead_req = (struct aead_request *)req;
416 struct sock *sk = req->data;
417 struct tls_context *tls_ctx = tls_get_ctx(sk);
418 struct tls_prot_info *prot = &tls_ctx->prot_info;
419 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
420 struct scatterlist *sge;
421 struct sk_msg *msg_en;
426 rec = container_of(aead_req, struct tls_rec, aead_req);
427 msg_en = &rec->msg_encrypted;
429 sge = sk_msg_elem(msg_en, msg_en->sg.curr);
430 sge->offset -= prot->prepend_size;
431 sge->length += prot->prepend_size;
433 /* Check if error is previously set on socket */
434 if (err || sk->sk_err) {
437 /* If err is already set on socket, return the same code */
439 ctx->async_wait.err = sk->sk_err;
441 ctx->async_wait.err = err;
442 tls_err_abort(sk, err);
447 struct tls_rec *first_rec;
449 /* Mark the record as ready for transmission */
450 smp_store_mb(rec->tx_ready, true);
452 /* If received record is at head of tx_list, schedule tx */
453 first_rec = list_first_entry(&ctx->tx_list,
454 struct tls_rec, list);
455 if (rec == first_rec)
459 pending = atomic_dec_return(&ctx->encrypt_pending);
461 if (!pending && READ_ONCE(ctx->async_notify))
462 complete(&ctx->async_wait.completion);
467 /* Schedule the transmission */
468 if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
469 schedule_delayed_work(&ctx->tx_work.work, 1);
472 static int tls_do_encryption(struct sock *sk,
473 struct tls_context *tls_ctx,
474 struct tls_sw_context_tx *ctx,
475 struct aead_request *aead_req,
476 size_t data_len, u32 start)
478 struct tls_prot_info *prot = &tls_ctx->prot_info;
479 struct tls_rec *rec = ctx->open_rec;
480 struct sk_msg *msg_en = &rec->msg_encrypted;
481 struct scatterlist *sge = sk_msg_elem(msg_en, start);
484 memcpy(rec->iv_data, tls_ctx->tx.iv, sizeof(rec->iv_data));
485 xor_iv_with_seq(prot->version, rec->iv_data,
486 tls_ctx->tx.rec_seq);
488 sge->offset += prot->prepend_size;
489 sge->length -= prot->prepend_size;
491 msg_en->sg.curr = start;
493 aead_request_set_tfm(aead_req, ctx->aead_send);
494 aead_request_set_ad(aead_req, prot->aad_size);
495 aead_request_set_crypt(aead_req, rec->sg_aead_in,
497 data_len, rec->iv_data);
499 aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
500 tls_encrypt_done, sk);
502 /* Add the record in tx_list */
503 list_add_tail((struct list_head *)&rec->list, &ctx->tx_list);
504 atomic_inc(&ctx->encrypt_pending);
506 rc = crypto_aead_encrypt(aead_req);
507 if (!rc || rc != -EINPROGRESS) {
508 atomic_dec(&ctx->encrypt_pending);
509 sge->offset -= prot->prepend_size;
510 sge->length += prot->prepend_size;
514 WRITE_ONCE(rec->tx_ready, true);
515 } else if (rc != -EINPROGRESS) {
516 list_del(&rec->list);
520 /* Unhook the record from context if encryption is not failure */
521 ctx->open_rec = NULL;
522 tls_advance_record_sn(sk, &tls_ctx->tx, prot->version);
526 static int tls_split_open_record(struct sock *sk, struct tls_rec *from,
527 struct tls_rec **to, struct sk_msg *msg_opl,
528 struct sk_msg *msg_oen, u32 split_point,
529 u32 tx_overhead_size, u32 *orig_end)
531 u32 i, j, bytes = 0, apply = msg_opl->apply_bytes;
532 struct scatterlist *sge, *osge, *nsge;
533 u32 orig_size = msg_opl->sg.size;
534 struct scatterlist tmp = { };
535 struct sk_msg *msg_npl;
539 new = tls_get_rec(sk);
542 ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size +
543 tx_overhead_size, 0);
545 tls_free_rec(sk, new);
549 *orig_end = msg_opl->sg.end;
550 i = msg_opl->sg.start;
551 sge = sk_msg_elem(msg_opl, i);
552 while (apply && sge->length) {
553 if (sge->length > apply) {
554 u32 len = sge->length - apply;
556 get_page(sg_page(sge));
557 sg_set_page(&tmp, sg_page(sge), len,
558 sge->offset + apply);
563 apply -= sge->length;
564 bytes += sge->length;
567 sk_msg_iter_var_next(i);
568 if (i == msg_opl->sg.end)
570 sge = sk_msg_elem(msg_opl, i);
574 msg_opl->sg.curr = i;
575 msg_opl->sg.copybreak = 0;
576 msg_opl->apply_bytes = 0;
577 msg_opl->sg.size = bytes;
579 msg_npl = &new->msg_plaintext;
580 msg_npl->apply_bytes = apply;
581 msg_npl->sg.size = orig_size - bytes;
583 j = msg_npl->sg.start;
584 nsge = sk_msg_elem(msg_npl, j);
586 memcpy(nsge, &tmp, sizeof(*nsge));
587 sk_msg_iter_var_next(j);
588 nsge = sk_msg_elem(msg_npl, j);
591 osge = sk_msg_elem(msg_opl, i);
592 while (osge->length) {
593 memcpy(nsge, osge, sizeof(*nsge));
595 sk_msg_iter_var_next(i);
596 sk_msg_iter_var_next(j);
599 osge = sk_msg_elem(msg_opl, i);
600 nsge = sk_msg_elem(msg_npl, j);
604 msg_npl->sg.curr = j;
605 msg_npl->sg.copybreak = 0;
611 static void tls_merge_open_record(struct sock *sk, struct tls_rec *to,
612 struct tls_rec *from, u32 orig_end)
614 struct sk_msg *msg_npl = &from->msg_plaintext;
615 struct sk_msg *msg_opl = &to->msg_plaintext;
616 struct scatterlist *osge, *nsge;
620 sk_msg_iter_var_prev(i);
621 j = msg_npl->sg.start;
623 osge = sk_msg_elem(msg_opl, i);
624 nsge = sk_msg_elem(msg_npl, j);
626 if (sg_page(osge) == sg_page(nsge) &&
627 osge->offset + osge->length == nsge->offset) {
628 osge->length += nsge->length;
629 put_page(sg_page(nsge));
632 msg_opl->sg.end = orig_end;
633 msg_opl->sg.curr = orig_end;
634 msg_opl->sg.copybreak = 0;
635 msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size;
636 msg_opl->sg.size += msg_npl->sg.size;
638 sk_msg_free(sk, &to->msg_encrypted);
639 sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted);
644 static int tls_push_record(struct sock *sk, int flags,
645 unsigned char record_type)
647 struct tls_context *tls_ctx = tls_get_ctx(sk);
648 struct tls_prot_info *prot = &tls_ctx->prot_info;
649 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
650 struct tls_rec *rec = ctx->open_rec, *tmp = NULL;
651 u32 i, split_point, uninitialized_var(orig_end);
652 struct sk_msg *msg_pl, *msg_en;
653 struct aead_request *req;
660 msg_pl = &rec->msg_plaintext;
661 msg_en = &rec->msg_encrypted;
663 split_point = msg_pl->apply_bytes;
664 split = split_point && split_point < msg_pl->sg.size;
666 rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en,
667 split_point, prot->overhead_size,
671 sk_msg_trim(sk, msg_en, msg_pl->sg.size +
672 prot->overhead_size);
675 rec->tx_flags = flags;
676 req = &rec->aead_req;
679 sk_msg_iter_var_prev(i);
681 rec->content_type = record_type;
682 if (prot->version == TLS_1_3_VERSION) {
683 /* Add content type to end of message. No padding added */
684 sg_set_buf(&rec->sg_content_type, &rec->content_type, 1);
685 sg_mark_end(&rec->sg_content_type);
686 sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1,
687 &rec->sg_content_type);
689 sg_mark_end(sk_msg_elem(msg_pl, i));
692 i = msg_pl->sg.start;
693 sg_chain(rec->sg_aead_in, 2, rec->inplace_crypto ?
694 &msg_en->sg.data[i] : &msg_pl->sg.data[i]);
697 sk_msg_iter_var_prev(i);
698 sg_mark_end(sk_msg_elem(msg_en, i));
700 i = msg_en->sg.start;
701 sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]);
703 tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size,
704 tls_ctx->tx.rec_seq, prot->rec_seq_size,
705 record_type, prot->version);
707 tls_fill_prepend(tls_ctx,
708 page_address(sg_page(&msg_en->sg.data[i])) +
709 msg_en->sg.data[i].offset,
710 msg_pl->sg.size + prot->tail_size,
711 record_type, prot->version);
713 tls_ctx->pending_open_record_frags = false;
715 rc = tls_do_encryption(sk, tls_ctx, ctx, req,
716 msg_pl->sg.size + prot->tail_size, i);
718 if (rc != -EINPROGRESS) {
719 tls_err_abort(sk, EBADMSG);
721 tls_ctx->pending_open_record_frags = true;
722 tls_merge_open_record(sk, rec, tmp, orig_end);
725 ctx->async_capable = 1;
728 msg_pl = &tmp->msg_plaintext;
729 msg_en = &tmp->msg_encrypted;
730 sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size);
731 tls_ctx->pending_open_record_frags = true;
735 return tls_tx_records(sk, flags);
738 static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk,
739 bool full_record, u8 record_type,
740 size_t *copied, int flags)
742 struct tls_context *tls_ctx = tls_get_ctx(sk);
743 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
744 struct sk_msg msg_redir = { };
745 struct sk_psock *psock;
746 struct sock *sk_redir;
752 policy = !(flags & MSG_SENDPAGE_NOPOLICY);
753 psock = sk_psock_get(sk);
754 if (!psock || !policy)
755 return tls_push_record(sk, flags, record_type);
757 enospc = sk_msg_full(msg);
758 if (psock->eval == __SK_NONE) {
759 delta = msg->sg.size;
760 psock->eval = sk_psock_msg_verdict(sk, psock, msg);
761 if (delta < msg->sg.size)
762 delta -= msg->sg.size;
766 if (msg->cork_bytes && msg->cork_bytes > msg->sg.size &&
767 !enospc && !full_record) {
773 if (msg->apply_bytes && msg->apply_bytes < send)
774 send = msg->apply_bytes;
776 switch (psock->eval) {
778 err = tls_push_record(sk, flags, record_type);
780 *copied -= sk_msg_free(sk, msg);
781 tls_free_open_rec(sk);
786 sk_redir = psock->sk_redir;
787 memcpy(&msg_redir, msg, sizeof(*msg));
788 if (msg->apply_bytes < send)
789 msg->apply_bytes = 0;
791 msg->apply_bytes -= send;
792 sk_msg_return_zero(sk, msg, send);
793 msg->sg.size -= send;
795 err = tcp_bpf_sendmsg_redir(sk_redir, &msg_redir, send, flags);
798 *copied -= sk_msg_free_nocharge(sk, &msg_redir);
801 if (msg->sg.size == 0)
802 tls_free_open_rec(sk);
806 sk_msg_free_partial(sk, msg, send);
807 if (msg->apply_bytes < send)
808 msg->apply_bytes = 0;
810 msg->apply_bytes -= send;
811 if (msg->sg.size == 0)
812 tls_free_open_rec(sk);
813 *copied -= (send + delta);
818 bool reset_eval = !ctx->open_rec;
822 msg = &rec->msg_plaintext;
823 if (!msg->apply_bytes)
827 psock->eval = __SK_NONE;
828 if (psock->sk_redir) {
829 sock_put(psock->sk_redir);
830 psock->sk_redir = NULL;
837 sk_psock_put(sk, psock);
841 static int tls_sw_push_pending_record(struct sock *sk, int flags)
843 struct tls_context *tls_ctx = tls_get_ctx(sk);
844 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
845 struct tls_rec *rec = ctx->open_rec;
846 struct sk_msg *msg_pl;
852 msg_pl = &rec->msg_plaintext;
853 copied = msg_pl->sg.size;
857 return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA,
861 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
863 long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
864 struct tls_context *tls_ctx = tls_get_ctx(sk);
865 struct tls_prot_info *prot = &tls_ctx->prot_info;
866 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
867 bool async_capable = ctx->async_capable;
868 unsigned char record_type = TLS_RECORD_TYPE_DATA;
869 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
870 bool eor = !(msg->msg_flags & MSG_MORE);
871 size_t try_to_copy, copied = 0;
872 struct sk_msg *msg_pl, *msg_en;
882 if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL))
887 /* Wait till there is any pending write on socket */
888 if (unlikely(sk->sk_write_pending)) {
889 ret = wait_on_pending_writer(sk, &timeo);
894 if (unlikely(msg->msg_controllen)) {
895 ret = tls_proccess_cmsg(sk, msg, &record_type);
897 if (ret == -EINPROGRESS)
899 else if (ret != -EAGAIN)
904 while (msg_data_left(msg)) {
913 rec = ctx->open_rec = tls_get_rec(sk);
919 msg_pl = &rec->msg_plaintext;
920 msg_en = &rec->msg_encrypted;
922 orig_size = msg_pl->sg.size;
924 try_to_copy = msg_data_left(msg);
925 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
926 if (try_to_copy >= record_room) {
927 try_to_copy = record_room;
931 required_size = msg_pl->sg.size + try_to_copy +
934 if (!sk_stream_memory_free(sk))
935 goto wait_for_sndbuf;
938 ret = tls_alloc_encrypted_msg(sk, required_size);
941 goto wait_for_memory;
943 /* Adjust try_to_copy according to the amount that was
944 * actually allocated. The difference is due
945 * to max sg elements limit
947 try_to_copy -= required_size - msg_en->sg.size;
951 if (!is_kvec && (full_record || eor) && !async_capable) {
952 u32 first = msg_pl->sg.end;
954 ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter,
955 msg_pl, try_to_copy);
957 goto fallback_to_reg_send;
959 rec->inplace_crypto = 0;
962 copied += try_to_copy;
964 sk_msg_sg_copy_set(msg_pl, first);
965 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
966 record_type, &copied,
969 if (ret == -EINPROGRESS)
971 else if (ret == -ENOMEM)
972 goto wait_for_memory;
973 else if (ret == -ENOSPC)
975 else if (ret != -EAGAIN)
980 copied -= try_to_copy;
981 sk_msg_sg_copy_clear(msg_pl, first);
982 iov_iter_revert(&msg->msg_iter,
983 msg_pl->sg.size - orig_size);
984 fallback_to_reg_send:
985 sk_msg_trim(sk, msg_pl, orig_size);
988 required_size = msg_pl->sg.size + try_to_copy;
990 ret = tls_clone_plaintext_msg(sk, required_size);
995 /* Adjust try_to_copy according to the amount that was
996 * actually allocated. The difference is due
997 * to max sg elements limit
999 try_to_copy -= required_size - msg_pl->sg.size;
1001 sk_msg_trim(sk, msg_en,
1002 msg_pl->sg.size + prot->overhead_size);
1006 ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter,
1007 msg_pl, try_to_copy);
1012 /* Open records defined only if successfully copied, otherwise
1013 * we would trim the sg but not reset the open record frags.
1015 tls_ctx->pending_open_record_frags = true;
1016 copied += try_to_copy;
1017 if (full_record || eor) {
1018 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1019 record_type, &copied,
1022 if (ret == -EINPROGRESS)
1024 else if (ret == -ENOMEM)
1025 goto wait_for_memory;
1026 else if (ret != -EAGAIN) {
1037 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1039 ret = sk_stream_wait_memory(sk, &timeo);
1042 tls_trim_both_msgs(sk, orig_size);
1046 if (msg_en->sg.size < required_size)
1047 goto alloc_encrypted;
1052 } else if (num_zc) {
1053 /* Wait for pending encryptions to get completed */
1054 smp_store_mb(ctx->async_notify, true);
1056 if (atomic_read(&ctx->encrypt_pending))
1057 crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1059 reinit_completion(&ctx->async_wait.completion);
1061 WRITE_ONCE(ctx->async_notify, false);
1063 if (ctx->async_wait.err) {
1064 ret = ctx->async_wait.err;
1069 /* Transmit if any encryptions have completed */
1070 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1071 cancel_delayed_work(&ctx->tx_work.work);
1072 tls_tx_records(sk, msg->msg_flags);
1076 ret = sk_stream_error(sk, msg->msg_flags, ret);
1079 return copied ? copied : ret;
1082 static int tls_sw_do_sendpage(struct sock *sk, struct page *page,
1083 int offset, size_t size, int flags)
1085 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1086 struct tls_context *tls_ctx = tls_get_ctx(sk);
1087 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1088 struct tls_prot_info *prot = &tls_ctx->prot_info;
1089 unsigned char record_type = TLS_RECORD_TYPE_DATA;
1090 struct sk_msg *msg_pl;
1091 struct tls_rec *rec;
1099 eor = !(flags & (MSG_MORE | MSG_SENDPAGE_NOTLAST));
1100 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1102 /* Wait till there is any pending write on socket */
1103 if (unlikely(sk->sk_write_pending)) {
1104 ret = wait_on_pending_writer(sk, &timeo);
1109 /* Call the sk_stream functions to manage the sndbuf mem. */
1111 size_t copy, required_size;
1119 rec = ctx->open_rec;
1121 rec = ctx->open_rec = tls_get_rec(sk);
1127 msg_pl = &rec->msg_plaintext;
1129 full_record = false;
1130 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
1133 if (copy >= record_room) {
1138 required_size = msg_pl->sg.size + copy + prot->overhead_size;
1140 if (!sk_stream_memory_free(sk))
1141 goto wait_for_sndbuf;
1143 ret = tls_alloc_encrypted_msg(sk, required_size);
1146 goto wait_for_memory;
1148 /* Adjust copy according to the amount that was
1149 * actually allocated. The difference is due
1150 * to max sg elements limit
1152 copy -= required_size - msg_pl->sg.size;
1156 sk_msg_page_add(msg_pl, page, copy, offset);
1157 sk_mem_charge(sk, copy);
1163 tls_ctx->pending_open_record_frags = true;
1164 if (full_record || eor || sk_msg_full(msg_pl)) {
1165 rec->inplace_crypto = 0;
1166 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1167 record_type, &copied, flags);
1169 if (ret == -EINPROGRESS)
1171 else if (ret == -ENOMEM)
1172 goto wait_for_memory;
1173 else if (ret != -EAGAIN) {
1182 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1184 ret = sk_stream_wait_memory(sk, &timeo);
1186 tls_trim_both_msgs(sk, msg_pl->sg.size);
1194 /* Transmit if any encryptions have completed */
1195 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1196 cancel_delayed_work(&ctx->tx_work.work);
1197 tls_tx_records(sk, flags);
1201 ret = sk_stream_error(sk, flags, ret);
1202 return copied ? copied : ret;
1205 int tls_sw_sendpage(struct sock *sk, struct page *page,
1206 int offset, size_t size, int flags)
1210 if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1211 MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY))
1215 ret = tls_sw_do_sendpage(sk, page, offset, size, flags);
1220 static struct sk_buff *tls_wait_data(struct sock *sk, struct sk_psock *psock,
1221 int flags, long timeo, int *err)
1223 struct tls_context *tls_ctx = tls_get_ctx(sk);
1224 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1225 struct sk_buff *skb;
1226 DEFINE_WAIT_FUNC(wait, woken_wake_function);
1228 while (!(skb = ctx->recv_pkt) && sk_psock_queue_empty(psock)) {
1230 *err = sock_error(sk);
1234 if (sk->sk_shutdown & RCV_SHUTDOWN)
1237 if (sock_flag(sk, SOCK_DONE))
1240 if ((flags & MSG_DONTWAIT) || !timeo) {
1245 add_wait_queue(sk_sleep(sk), &wait);
1246 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1247 sk_wait_event(sk, &timeo,
1248 ctx->recv_pkt != skb ||
1249 !sk_psock_queue_empty(psock),
1251 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1252 remove_wait_queue(sk_sleep(sk), &wait);
1254 /* Handle signals */
1255 if (signal_pending(current)) {
1256 *err = sock_intr_errno(timeo);
1264 static int tls_setup_from_iter(struct sock *sk, struct iov_iter *from,
1265 int length, int *pages_used,
1266 unsigned int *size_used,
1267 struct scatterlist *to,
1270 int rc = 0, i = 0, num_elem = *pages_used, maxpages;
1271 struct page *pages[MAX_SKB_FRAGS];
1272 unsigned int size = *size_used;
1273 ssize_t copied, use;
1276 while (length > 0) {
1278 maxpages = to_max_pages - num_elem;
1279 if (maxpages == 0) {
1283 copied = iov_iter_get_pages(from, pages,
1291 iov_iter_advance(from, copied);
1296 use = min_t(int, copied, PAGE_SIZE - offset);
1298 sg_set_page(&to[num_elem],
1299 pages[i], use, offset);
1300 sg_unmark_end(&to[num_elem]);
1301 /* We do not uncharge memory from this API */
1310 /* Mark the end in the last sg entry if newly added */
1311 if (num_elem > *pages_used)
1312 sg_mark_end(&to[num_elem - 1]);
1315 iov_iter_revert(from, size - *size_used);
1317 *pages_used = num_elem;
1322 /* This function decrypts the input skb into either out_iov or in out_sg
1323 * or in skb buffers itself. The input parameter 'zc' indicates if
1324 * zero-copy mode needs to be tried or not. With zero-copy mode, either
1325 * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are
1326 * NULL, then the decryption happens inside skb buffers itself, i.e.
1327 * zero-copy gets disabled and 'zc' is updated.
1330 static int decrypt_internal(struct sock *sk, struct sk_buff *skb,
1331 struct iov_iter *out_iov,
1332 struct scatterlist *out_sg,
1333 int *chunk, bool *zc, bool async)
1335 struct tls_context *tls_ctx = tls_get_ctx(sk);
1336 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1337 struct tls_prot_info *prot = &tls_ctx->prot_info;
1338 struct strp_msg *rxm = strp_msg(skb);
1339 int n_sgin, n_sgout, nsg, mem_size, aead_size, err, pages = 0;
1340 struct aead_request *aead_req;
1341 struct sk_buff *unused;
1342 u8 *aad, *iv, *mem = NULL;
1343 struct scatterlist *sgin = NULL;
1344 struct scatterlist *sgout = NULL;
1345 const int data_len = rxm->full_len - prot->overhead_size +
1348 if (*zc && (out_iov || out_sg)) {
1350 n_sgout = iov_iter_npages(out_iov, INT_MAX) + 1;
1352 n_sgout = sg_nents(out_sg);
1353 n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size,
1354 rxm->full_len - prot->prepend_size);
1358 n_sgin = skb_cow_data(skb, 0, &unused);
1364 /* Increment to accommodate AAD */
1365 n_sgin = n_sgin + 1;
1367 nsg = n_sgin + n_sgout;
1369 aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv);
1370 mem_size = aead_size + (nsg * sizeof(struct scatterlist));
1371 mem_size = mem_size + prot->aad_size;
1372 mem_size = mem_size + crypto_aead_ivsize(ctx->aead_recv);
1374 /* Allocate a single block of memory which contains
1375 * aead_req || sgin[] || sgout[] || aad || iv.
1376 * This order achieves correct alignment for aead_req, sgin, sgout.
1378 mem = kmalloc(mem_size, sk->sk_allocation);
1382 /* Segment the allocated memory */
1383 aead_req = (struct aead_request *)mem;
1384 sgin = (struct scatterlist *)(mem + aead_size);
1385 sgout = sgin + n_sgin;
1386 aad = (u8 *)(sgout + n_sgout);
1387 iv = aad + prot->aad_size;
1390 err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE,
1391 iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
1397 if (prot->version == TLS_1_3_VERSION)
1398 memcpy(iv, tls_ctx->rx.iv, crypto_aead_ivsize(ctx->aead_recv));
1400 memcpy(iv, tls_ctx->rx.iv, TLS_CIPHER_AES_GCM_128_SALT_SIZE);
1402 xor_iv_with_seq(prot->version, iv, tls_ctx->rx.rec_seq);
1405 tls_make_aad(aad, rxm->full_len - prot->overhead_size +
1407 tls_ctx->rx.rec_seq, prot->rec_seq_size,
1408 ctx->control, prot->version);
1411 sg_init_table(sgin, n_sgin);
1412 sg_set_buf(&sgin[0], aad, prot->aad_size);
1413 err = skb_to_sgvec(skb, &sgin[1],
1414 rxm->offset + prot->prepend_size,
1415 rxm->full_len - prot->prepend_size);
1423 sg_init_table(sgout, n_sgout);
1424 sg_set_buf(&sgout[0], aad, prot->aad_size);
1427 err = tls_setup_from_iter(sk, out_iov, data_len,
1428 &pages, chunk, &sgout[1],
1431 goto fallback_to_reg_recv;
1432 } else if (out_sg) {
1433 memcpy(sgout, out_sg, n_sgout * sizeof(*sgout));
1435 goto fallback_to_reg_recv;
1438 fallback_to_reg_recv:
1445 /* Prepare and submit AEAD request */
1446 err = tls_do_decryption(sk, skb, sgin, sgout, iv,
1447 data_len, aead_req, async);
1448 if (err == -EINPROGRESS)
1451 /* Release the pages in case iov was mapped to pages */
1452 for (; pages > 0; pages--)
1453 put_page(sg_page(&sgout[pages]));
1459 static int decrypt_skb_update(struct sock *sk, struct sk_buff *skb,
1460 struct iov_iter *dest, int *chunk, bool *zc,
1463 struct tls_context *tls_ctx = tls_get_ctx(sk);
1464 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1465 struct tls_prot_info *prot = &tls_ctx->prot_info;
1466 int version = prot->version;
1467 struct strp_msg *rxm = strp_msg(skb);
1470 #ifdef CONFIG_TLS_DEVICE
1471 err = tls_device_decrypted(sk, skb);
1475 if (!ctx->decrypted) {
1476 err = decrypt_internal(sk, skb, dest, NULL, chunk, zc, async);
1478 if (err == -EINPROGRESS)
1479 tls_advance_record_sn(sk, &tls_ctx->rx,
1485 rxm->full_len -= padding_length(ctx, tls_ctx, skb);
1487 rxm->offset += prot->prepend_size;
1488 rxm->full_len -= prot->overhead_size;
1489 tls_advance_record_sn(sk, &tls_ctx->rx, version);
1490 ctx->decrypted = true;
1491 ctx->saved_data_ready(sk);
1499 int decrypt_skb(struct sock *sk, struct sk_buff *skb,
1500 struct scatterlist *sgout)
1505 return decrypt_internal(sk, skb, NULL, sgout, &chunk, &zc, false);
1508 static bool tls_sw_advance_skb(struct sock *sk, struct sk_buff *skb,
1511 struct tls_context *tls_ctx = tls_get_ctx(sk);
1512 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1515 struct strp_msg *rxm = strp_msg(skb);
1517 if (len < rxm->full_len) {
1519 rxm->full_len -= len;
1525 /* Finished with message */
1526 ctx->recv_pkt = NULL;
1527 __strp_unpause(&ctx->strp);
1532 /* This function traverses the rx_list in tls receive context to copies the
1533 * decrypted data records into the buffer provided by caller zero copy is not
1534 * true. Further, the records are removed from the rx_list if it is not a peek
1535 * case and the record has been consumed completely.
1537 static int process_rx_list(struct tls_sw_context_rx *ctx,
1544 struct sk_buff *skb = skb_peek(&ctx->rx_list);
1547 while (skip && skb) {
1548 struct strp_msg *rxm = strp_msg(skb);
1550 if (skip < rxm->full_len)
1553 skip = skip - rxm->full_len;
1554 skb = skb_peek_next(skb, &ctx->rx_list);
1557 while (len && skb) {
1558 struct sk_buff *next_skb;
1559 struct strp_msg *rxm = strp_msg(skb);
1560 int chunk = min_t(unsigned int, rxm->full_len - skip, len);
1562 if (!zc || (rxm->full_len - skip) > len) {
1563 int err = skb_copy_datagram_msg(skb, rxm->offset + skip,
1570 copied = copied + chunk;
1572 /* Consume the data from record if it is non-peek case*/
1574 rxm->offset = rxm->offset + chunk;
1575 rxm->full_len = rxm->full_len - chunk;
1577 /* Return if there is unconsumed data in the record */
1578 if (rxm->full_len - skip)
1582 /* The remaining skip-bytes must lie in 1st record in rx_list.
1583 * So from the 2nd record, 'skip' should be 0.
1588 msg->msg_flags |= MSG_EOR;
1590 next_skb = skb_peek_next(skb, &ctx->rx_list);
1593 skb_unlink(skb, &ctx->rx_list);
1603 int tls_sw_recvmsg(struct sock *sk,
1610 struct tls_context *tls_ctx = tls_get_ctx(sk);
1611 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1612 struct tls_prot_info *prot = &tls_ctx->prot_info;
1613 struct sk_psock *psock;
1614 unsigned char control = 0;
1615 ssize_t decrypted = 0;
1616 struct strp_msg *rxm;
1617 struct sk_buff *skb;
1620 int target, err = 0;
1622 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
1623 bool is_peek = flags & MSG_PEEK;
1628 if (unlikely(flags & MSG_ERRQUEUE))
1629 return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR);
1631 psock = sk_psock_get(sk);
1634 /* Process pending decrypted records. It must be non-zero-copy */
1635 err = process_rx_list(ctx, msg, 0, len, false, is_peek);
1637 tls_err_abort(sk, err);
1645 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1646 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1652 bool retain_skb = false;
1658 skb = tls_wait_data(sk, psock, flags, timeo, &err);
1661 int ret = __tcp_bpf_recvmsg(sk, psock,
1673 rxm = strp_msg(skb);
1675 to_decrypt = rxm->full_len - prot->overhead_size;
1677 if (to_decrypt <= len && !is_kvec && !is_peek &&
1678 ctx->control == TLS_RECORD_TYPE_DATA &&
1679 prot->version != TLS_1_3_VERSION)
1682 /* Do not use async mode if record is non-data */
1683 if (ctx->control == TLS_RECORD_TYPE_DATA)
1684 async = ctx->async_capable;
1688 err = decrypt_skb_update(sk, skb, &msg->msg_iter,
1689 &chunk, &zc, async);
1690 if (err < 0 && err != -EINPROGRESS) {
1691 tls_err_abort(sk, EBADMSG);
1695 if (err == -EINPROGRESS)
1701 cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1702 sizeof(ctx->control), &ctx->control);
1704 control = ctx->control;
1705 if (ctx->control != TLS_RECORD_TYPE_DATA) {
1706 if (cerr || msg->msg_flags & MSG_CTRUNC) {
1711 } else if (control != ctx->control) {
1716 goto pick_next_record;
1719 if (rxm->full_len > len) {
1723 chunk = rxm->full_len;
1726 err = skb_copy_datagram_msg(skb, rxm->offset,
1732 rxm->offset = rxm->offset + chunk;
1733 rxm->full_len = rxm->full_len - chunk;
1744 /* For async or peek case, queue the current skb */
1745 if (async || is_peek || retain_skb) {
1746 skb_queue_tail(&ctx->rx_list, skb);
1750 if (tls_sw_advance_skb(sk, skb, chunk)) {
1751 /* Return full control message to
1752 * userspace before trying to parse
1753 * another message type
1755 msg->msg_flags |= MSG_EOR;
1756 if (ctx->control != TLS_RECORD_TYPE_DATA)
1762 /* If we have a new message from strparser, continue now. */
1763 if (decrypted >= target && !ctx->recv_pkt)
1769 /* Wait for all previously submitted records to be decrypted */
1770 smp_store_mb(ctx->async_notify, true);
1771 if (atomic_read(&ctx->decrypt_pending)) {
1772 err = crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1774 /* one of async decrypt failed */
1775 tls_err_abort(sk, err);
1781 reinit_completion(&ctx->async_wait.completion);
1783 WRITE_ONCE(ctx->async_notify, false);
1785 /* Drain records from the rx_list & copy if required */
1786 if (is_peek || is_kvec)
1787 err = process_rx_list(ctx, msg, copied,
1788 decrypted, false, is_peek);
1790 err = process_rx_list(ctx, msg, 0,
1791 decrypted, true, is_peek);
1793 tls_err_abort(sk, err);
1798 WARN_ON(decrypted != err);
1801 copied += decrypted;
1806 sk_psock_put(sk, psock);
1807 return copied ? : err;
1810 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos,
1811 struct pipe_inode_info *pipe,
1812 size_t len, unsigned int flags)
1814 struct tls_context *tls_ctx = tls_get_ctx(sock->sk);
1815 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1816 struct strp_msg *rxm = NULL;
1817 struct sock *sk = sock->sk;
1818 struct sk_buff *skb;
1827 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1829 skb = tls_wait_data(sk, NULL, flags, timeo, &err);
1831 goto splice_read_end;
1833 if (!ctx->decrypted) {
1834 err = decrypt_skb_update(sk, skb, NULL, &chunk, &zc, false);
1836 /* splice does not support reading control messages */
1837 if (ctx->control != TLS_RECORD_TYPE_DATA) {
1839 goto splice_read_end;
1843 tls_err_abort(sk, EBADMSG);
1844 goto splice_read_end;
1846 ctx->decrypted = true;
1848 rxm = strp_msg(skb);
1850 chunk = min_t(unsigned int, rxm->full_len, len);
1851 copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags);
1853 goto splice_read_end;
1855 if (likely(!(flags & MSG_PEEK)))
1856 tls_sw_advance_skb(sk, skb, copied);
1860 return copied ? : err;
1863 bool tls_sw_stream_read(const struct sock *sk)
1865 struct tls_context *tls_ctx = tls_get_ctx(sk);
1866 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1867 bool ingress_empty = true;
1868 struct sk_psock *psock;
1871 psock = sk_psock(sk);
1873 ingress_empty = list_empty(&psock->ingress_msg);
1876 return !ingress_empty || ctx->recv_pkt;
1879 static int tls_read_size(struct strparser *strp, struct sk_buff *skb)
1881 struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
1882 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1883 struct tls_prot_info *prot = &tls_ctx->prot_info;
1884 char header[TLS_HEADER_SIZE + MAX_IV_SIZE];
1885 struct strp_msg *rxm = strp_msg(skb);
1886 size_t cipher_overhead;
1887 size_t data_len = 0;
1890 /* Verify that we have a full TLS header, or wait for more data */
1891 if (rxm->offset + prot->prepend_size > skb->len)
1894 /* Sanity-check size of on-stack buffer. */
1895 if (WARN_ON(prot->prepend_size > sizeof(header))) {
1900 /* Linearize header to local buffer */
1901 ret = skb_copy_bits(skb, rxm->offset, header, prot->prepend_size);
1906 ctx->control = header[0];
1908 data_len = ((header[4] & 0xFF) | (header[3] << 8));
1910 cipher_overhead = prot->tag_size;
1911 if (prot->version != TLS_1_3_VERSION)
1912 cipher_overhead += prot->iv_size;
1914 if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead +
1919 if (data_len < cipher_overhead) {
1924 /* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */
1925 if (header[1] != TLS_1_2_VERSION_MINOR ||
1926 header[2] != TLS_1_2_VERSION_MAJOR) {
1930 #ifdef CONFIG_TLS_DEVICE
1931 handle_device_resync(strp->sk, TCP_SKB_CB(skb)->seq + rxm->offset,
1932 *(u64*)tls_ctx->rx.rec_seq);
1934 return data_len + TLS_HEADER_SIZE;
1937 tls_err_abort(strp->sk, ret);
1942 static void tls_queue(struct strparser *strp, struct sk_buff *skb)
1944 struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
1945 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1947 ctx->decrypted = false;
1949 ctx->recv_pkt = skb;
1952 ctx->saved_data_ready(strp->sk);
1955 static void tls_data_ready(struct sock *sk)
1957 struct tls_context *tls_ctx = tls_get_ctx(sk);
1958 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1959 struct sk_psock *psock;
1961 strp_data_ready(&ctx->strp);
1963 psock = sk_psock_get(sk);
1964 if (psock && !list_empty(&psock->ingress_msg)) {
1965 ctx->saved_data_ready(sk);
1966 sk_psock_put(sk, psock);
1970 void tls_sw_free_resources_tx(struct sock *sk)
1972 struct tls_context *tls_ctx = tls_get_ctx(sk);
1973 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1974 struct tls_rec *rec, *tmp;
1976 /* Wait for any pending async encryptions to complete */
1977 smp_store_mb(ctx->async_notify, true);
1978 if (atomic_read(&ctx->encrypt_pending))
1979 crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1982 cancel_delayed_work_sync(&ctx->tx_work.work);
1985 /* Tx whatever records we can transmit and abandon the rest */
1986 tls_tx_records(sk, -1);
1988 /* Free up un-sent records in tx_list. First, free
1989 * the partially sent record if any at head of tx_list.
1991 if (tls_ctx->partially_sent_record) {
1992 struct scatterlist *sg = tls_ctx->partially_sent_record;
1995 put_page(sg_page(sg));
1996 sk_mem_uncharge(sk, sg->length);
2003 tls_ctx->partially_sent_record = NULL;
2005 rec = list_first_entry(&ctx->tx_list,
2006 struct tls_rec, list);
2007 list_del(&rec->list);
2008 sk_msg_free(sk, &rec->msg_plaintext);
2012 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
2013 list_del(&rec->list);
2014 sk_msg_free(sk, &rec->msg_encrypted);
2015 sk_msg_free(sk, &rec->msg_plaintext);
2019 crypto_free_aead(ctx->aead_send);
2020 tls_free_open_rec(sk);
2025 void tls_sw_release_resources_rx(struct sock *sk)
2027 struct tls_context *tls_ctx = tls_get_ctx(sk);
2028 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2030 if (ctx->aead_recv) {
2031 kfree_skb(ctx->recv_pkt);
2032 ctx->recv_pkt = NULL;
2033 skb_queue_purge(&ctx->rx_list);
2034 crypto_free_aead(ctx->aead_recv);
2035 strp_stop(&ctx->strp);
2036 write_lock_bh(&sk->sk_callback_lock);
2037 sk->sk_data_ready = ctx->saved_data_ready;
2038 write_unlock_bh(&sk->sk_callback_lock);
2040 strp_done(&ctx->strp);
2045 void tls_sw_free_resources_rx(struct sock *sk)
2047 struct tls_context *tls_ctx = tls_get_ctx(sk);
2048 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2050 tls_sw_release_resources_rx(sk);
2055 /* The work handler to transmitt the encrypted records in tx_list */
2056 static void tx_work_handler(struct work_struct *work)
2058 struct delayed_work *delayed_work = to_delayed_work(work);
2059 struct tx_work *tx_work = container_of(delayed_work,
2060 struct tx_work, work);
2061 struct sock *sk = tx_work->sk;
2062 struct tls_context *tls_ctx = tls_get_ctx(sk);
2063 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2065 if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
2069 tls_tx_records(sk, -1);
2073 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx)
2075 struct tls_context *tls_ctx = tls_get_ctx(sk);
2076 struct tls_prot_info *prot = &tls_ctx->prot_info;
2077 struct tls_crypto_info *crypto_info;
2078 struct tls12_crypto_info_aes_gcm_128 *gcm_128_info;
2079 struct tls12_crypto_info_aes_gcm_256 *gcm_256_info;
2080 struct tls_sw_context_tx *sw_ctx_tx = NULL;
2081 struct tls_sw_context_rx *sw_ctx_rx = NULL;
2082 struct cipher_context *cctx;
2083 struct crypto_aead **aead;
2084 struct strp_callbacks cb;
2085 u16 nonce_size, tag_size, iv_size, rec_seq_size;
2086 struct crypto_tfm *tfm;
2087 char *iv, *rec_seq, *key, *salt;
2097 if (!ctx->priv_ctx_tx) {
2098 sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL);
2103 ctx->priv_ctx_tx = sw_ctx_tx;
2106 (struct tls_sw_context_tx *)ctx->priv_ctx_tx;
2109 if (!ctx->priv_ctx_rx) {
2110 sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL);
2115 ctx->priv_ctx_rx = sw_ctx_rx;
2118 (struct tls_sw_context_rx *)ctx->priv_ctx_rx;
2123 crypto_init_wait(&sw_ctx_tx->async_wait);
2124 crypto_info = &ctx->crypto_send.info;
2126 aead = &sw_ctx_tx->aead_send;
2127 INIT_LIST_HEAD(&sw_ctx_tx->tx_list);
2128 INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler);
2129 sw_ctx_tx->tx_work.sk = sk;
2131 crypto_init_wait(&sw_ctx_rx->async_wait);
2132 crypto_info = &ctx->crypto_recv.info;
2134 skb_queue_head_init(&sw_ctx_rx->rx_list);
2135 aead = &sw_ctx_rx->aead_recv;
2138 switch (crypto_info->cipher_type) {
2139 case TLS_CIPHER_AES_GCM_128: {
2140 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2141 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
2142 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2143 iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv;
2144 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
2146 ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq;
2148 (struct tls12_crypto_info_aes_gcm_128 *)crypto_info;
2149 keysize = TLS_CIPHER_AES_GCM_128_KEY_SIZE;
2150 key = gcm_128_info->key;
2151 salt = gcm_128_info->salt;
2154 case TLS_CIPHER_AES_GCM_256: {
2155 nonce_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2156 tag_size = TLS_CIPHER_AES_GCM_256_TAG_SIZE;
2157 iv_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2158 iv = ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->iv;
2159 rec_seq_size = TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE;
2161 ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->rec_seq;
2163 (struct tls12_crypto_info_aes_gcm_256 *)crypto_info;
2164 keysize = TLS_CIPHER_AES_GCM_256_KEY_SIZE;
2165 key = gcm_256_info->key;
2166 salt = gcm_256_info->salt;
2174 /* Sanity-check the IV size for stack allocations. */
2175 if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE) {
2180 if (crypto_info->version == TLS_1_3_VERSION) {
2182 prot->aad_size = TLS_HEADER_SIZE;
2183 prot->tail_size = 1;
2185 prot->aad_size = TLS_AAD_SPACE_SIZE;
2186 prot->tail_size = 0;
2189 prot->version = crypto_info->version;
2190 prot->cipher_type = crypto_info->cipher_type;
2191 prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
2192 prot->tag_size = tag_size;
2193 prot->overhead_size = prot->prepend_size +
2194 prot->tag_size + prot->tail_size;
2195 prot->iv_size = iv_size;
2196 cctx->iv = kmalloc(iv_size + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
2202 /* Note: 128 & 256 bit salt are the same size */
2203 memcpy(cctx->iv, salt, TLS_CIPHER_AES_GCM_128_SALT_SIZE);
2204 memcpy(cctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv, iv_size);
2205 prot->rec_seq_size = rec_seq_size;
2206 cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
2207 if (!cctx->rec_seq) {
2213 *aead = crypto_alloc_aead("gcm(aes)", 0, 0);
2214 if (IS_ERR(*aead)) {
2215 rc = PTR_ERR(*aead);
2221 ctx->push_pending_record = tls_sw_push_pending_record;
2223 rc = crypto_aead_setkey(*aead, key, keysize);
2228 rc = crypto_aead_setauthsize(*aead, prot->tag_size);
2233 tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv);
2235 if (crypto_info->version == TLS_1_3_VERSION)
2236 sw_ctx_rx->async_capable = false;
2238 sw_ctx_rx->async_capable =
2239 tfm->__crt_alg->cra_flags & CRYPTO_ALG_ASYNC;
2241 /* Set up strparser */
2242 memset(&cb, 0, sizeof(cb));
2243 cb.rcv_msg = tls_queue;
2244 cb.parse_msg = tls_read_size;
2246 strp_init(&sw_ctx_rx->strp, sk, &cb);
2248 write_lock_bh(&sk->sk_callback_lock);
2249 sw_ctx_rx->saved_data_ready = sk->sk_data_ready;
2250 sk->sk_data_ready = tls_data_ready;
2251 write_unlock_bh(&sk->sk_callback_lock);
2253 strp_check_rcv(&sw_ctx_rx->strp);
2259 crypto_free_aead(*aead);
2262 kfree(cctx->rec_seq);
2263 cctx->rec_seq = NULL;
2269 kfree(ctx->priv_ctx_tx);
2270 ctx->priv_ctx_tx = NULL;
2272 kfree(ctx->priv_ctx_rx);
2273 ctx->priv_ctx_rx = NULL;