1 // SPDX-License-Identifier: GPL-2.0+
3 * Copyright (C) 2017 Oracle. All Rights Reserved.
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_trans.h"
15 #include "xfs_btree.h"
16 #include "xfs_rmap_btree.h"
17 #include "xfs_trace.h"
19 #include "xfs_alloc.h"
21 #include <linux/fsmap.h>
22 #include "xfs_fsmap.h"
23 #include "xfs_refcount.h"
24 #include "xfs_refcount_btree.h"
25 #include "xfs_alloc_btree.h"
26 #include "xfs_rtalloc.h"
29 /* Convert an xfs_fsmap to an fsmap. */
31 xfs_fsmap_from_internal(
33 struct xfs_fsmap *src)
35 dest->fmr_device = src->fmr_device;
36 dest->fmr_flags = src->fmr_flags;
37 dest->fmr_physical = BBTOB(src->fmr_physical);
38 dest->fmr_owner = src->fmr_owner;
39 dest->fmr_offset = BBTOB(src->fmr_offset);
40 dest->fmr_length = BBTOB(src->fmr_length);
41 dest->fmr_reserved[0] = 0;
42 dest->fmr_reserved[1] = 0;
43 dest->fmr_reserved[2] = 0;
46 /* Convert an fsmap to an xfs_fsmap. */
48 xfs_fsmap_to_internal(
49 struct xfs_fsmap *dest,
52 dest->fmr_device = src->fmr_device;
53 dest->fmr_flags = src->fmr_flags;
54 dest->fmr_physical = BTOBBT(src->fmr_physical);
55 dest->fmr_owner = src->fmr_owner;
56 dest->fmr_offset = BTOBBT(src->fmr_offset);
57 dest->fmr_length = BTOBBT(src->fmr_length);
60 /* Convert an fsmap owner into an rmapbt owner. */
62 xfs_fsmap_owner_to_rmap(
63 struct xfs_rmap_irec *dest,
64 const struct xfs_fsmap *src)
66 if (!(src->fmr_flags & FMR_OF_SPECIAL_OWNER)) {
67 dest->rm_owner = src->fmr_owner;
71 switch (src->fmr_owner) {
72 case 0: /* "lowest owner id possible" */
73 case -1ULL: /* "highest owner id possible" */
76 case XFS_FMR_OWN_FREE:
77 dest->rm_owner = XFS_RMAP_OWN_NULL;
79 case XFS_FMR_OWN_UNKNOWN:
80 dest->rm_owner = XFS_RMAP_OWN_UNKNOWN;
83 dest->rm_owner = XFS_RMAP_OWN_FS;
86 dest->rm_owner = XFS_RMAP_OWN_LOG;
89 dest->rm_owner = XFS_RMAP_OWN_AG;
91 case XFS_FMR_OWN_INOBT:
92 dest->rm_owner = XFS_RMAP_OWN_INOBT;
94 case XFS_FMR_OWN_INODES:
95 dest->rm_owner = XFS_RMAP_OWN_INODES;
97 case XFS_FMR_OWN_REFC:
98 dest->rm_owner = XFS_RMAP_OWN_REFC;
100 case XFS_FMR_OWN_COW:
101 dest->rm_owner = XFS_RMAP_OWN_COW;
103 case XFS_FMR_OWN_DEFECTIVE: /* not implemented */
111 /* Convert an rmapbt owner into an fsmap owner. */
113 xfs_fsmap_owner_from_rmap(
114 struct xfs_fsmap *dest,
115 const struct xfs_rmap_irec *src)
118 if (!XFS_RMAP_NON_INODE_OWNER(src->rm_owner)) {
119 dest->fmr_owner = src->rm_owner;
122 dest->fmr_flags |= FMR_OF_SPECIAL_OWNER;
124 switch (src->rm_owner) {
125 case XFS_RMAP_OWN_FS:
126 dest->fmr_owner = XFS_FMR_OWN_FS;
128 case XFS_RMAP_OWN_LOG:
129 dest->fmr_owner = XFS_FMR_OWN_LOG;
131 case XFS_RMAP_OWN_AG:
132 dest->fmr_owner = XFS_FMR_OWN_AG;
134 case XFS_RMAP_OWN_INOBT:
135 dest->fmr_owner = XFS_FMR_OWN_INOBT;
137 case XFS_RMAP_OWN_INODES:
138 dest->fmr_owner = XFS_FMR_OWN_INODES;
140 case XFS_RMAP_OWN_REFC:
141 dest->fmr_owner = XFS_FMR_OWN_REFC;
143 case XFS_RMAP_OWN_COW:
144 dest->fmr_owner = XFS_FMR_OWN_COW;
146 case XFS_RMAP_OWN_NULL: /* "free" */
147 dest->fmr_owner = XFS_FMR_OWN_FREE;
151 return -EFSCORRUPTED;
156 /* getfsmap query state */
157 struct xfs_getfsmap_info {
158 struct xfs_fsmap_head *head;
159 struct fsmap *fsmap_recs; /* mapping records */
160 struct xfs_buf *agf_bp; /* AGF, for refcount queries */
161 struct xfs_perag *pag; /* AG info, if applicable */
162 xfs_daddr_t next_daddr; /* next daddr we expect */
163 /* daddr of low fsmap key when we're using the rtbitmap */
164 xfs_daddr_t low_daddr;
165 u64 missing_owner; /* owner of holes */
166 u32 dev; /* device id */
168 * Low rmap key for the query. If low.rm_blockcount is nonzero, this
169 * is the second (or later) call to retrieve the recordset in pieces.
170 * xfs_getfsmap_rec_before_start will compare all records retrieved
171 * by the rmapbt query to filter out any records that start before
174 struct xfs_rmap_irec low;
175 struct xfs_rmap_irec high; /* high rmap key */
176 bool last; /* last extent? */
179 /* Associate a device with a getfsmap handler. */
180 struct xfs_getfsmap_dev {
182 int (*fn)(struct xfs_trans *tp,
183 const struct xfs_fsmap *keys,
184 struct xfs_getfsmap_info *info);
187 /* Compare two getfsmap device handlers. */
189 xfs_getfsmap_dev_compare(
193 const struct xfs_getfsmap_dev *d1 = p1;
194 const struct xfs_getfsmap_dev *d2 = p2;
196 return d1->dev - d2->dev;
199 /* Decide if this mapping is shared. */
201 xfs_getfsmap_is_shared(
202 struct xfs_trans *tp,
203 struct xfs_getfsmap_info *info,
204 const struct xfs_rmap_irec *rec,
207 struct xfs_mount *mp = tp->t_mountp;
208 struct xfs_btree_cur *cur;
214 if (!xfs_has_reflink(mp))
216 /* rt files will have no perag structure */
220 /* Are there any shared blocks here? */
222 cur = xfs_refcountbt_init_cursor(mp, tp, info->agf_bp, info->pag);
224 error = xfs_refcount_find_shared(cur, rec->rm_startblock,
225 rec->rm_blockcount, &fbno, &flen, false);
227 xfs_btree_del_cursor(cur, error);
237 struct xfs_mount *mp,
238 struct xfs_fsmap *xfm,
239 struct xfs_getfsmap_info *info)
243 trace_xfs_getfsmap_mapping(mp, xfm);
245 rec = &info->fsmap_recs[info->head->fmh_entries++];
246 xfs_fsmap_from_internal(rec, xfm);
250 xfs_getfsmap_rec_before_start(
251 struct xfs_getfsmap_info *info,
252 const struct xfs_rmap_irec *rec,
253 xfs_daddr_t rec_daddr)
255 if (info->low_daddr != -1ULL)
256 return rec_daddr < info->low_daddr;
257 if (info->low.rm_blockcount)
258 return xfs_rmap_compare(rec, &info->low) < 0;
263 * Format a reverse mapping for getfsmap, having translated rm_startblock
264 * into the appropriate daddr units. Pass in a nonzero @len_daddr if the
265 * length could be larger than rm_blockcount in struct xfs_rmap_irec.
269 struct xfs_trans *tp,
270 struct xfs_getfsmap_info *info,
271 const struct xfs_rmap_irec *rec,
272 xfs_daddr_t rec_daddr,
273 xfs_daddr_t len_daddr)
275 struct xfs_fsmap fmr;
276 struct xfs_mount *mp = tp->t_mountp;
280 if (fatal_signal_pending(current))
284 len_daddr = XFS_FSB_TO_BB(mp, rec->rm_blockcount);
287 * Filter out records that start before our startpoint, if the
288 * caller requested that.
290 if (xfs_getfsmap_rec_before_start(info, rec, rec_daddr)) {
291 rec_daddr += len_daddr;
292 if (info->next_daddr < rec_daddr)
293 info->next_daddr = rec_daddr;
297 /* Are we just counting mappings? */
298 if (info->head->fmh_count == 0) {
299 if (info->head->fmh_entries == UINT_MAX)
302 if (rec_daddr > info->next_daddr)
303 info->head->fmh_entries++;
308 info->head->fmh_entries++;
310 rec_daddr += len_daddr;
311 if (info->next_daddr < rec_daddr)
312 info->next_daddr = rec_daddr;
317 * If the record starts past the last physical block we saw,
318 * then we've found a gap. Report the gap as being owned by
319 * whatever the caller specified is the missing owner.
321 if (rec_daddr > info->next_daddr) {
322 if (info->head->fmh_entries >= info->head->fmh_count)
325 fmr.fmr_device = info->dev;
326 fmr.fmr_physical = info->next_daddr;
327 fmr.fmr_owner = info->missing_owner;
329 fmr.fmr_length = rec_daddr - info->next_daddr;
330 fmr.fmr_flags = FMR_OF_SPECIAL_OWNER;
331 xfs_getfsmap_format(mp, &fmr, info);
337 /* Fill out the extent we found */
338 if (info->head->fmh_entries >= info->head->fmh_count)
341 trace_xfs_fsmap_mapping(mp, info->dev,
342 info->pag ? info->pag->pag_agno : NULLAGNUMBER, rec);
344 fmr.fmr_device = info->dev;
345 fmr.fmr_physical = rec_daddr;
346 error = xfs_fsmap_owner_from_rmap(&fmr, rec);
349 fmr.fmr_offset = XFS_FSB_TO_BB(mp, rec->rm_offset);
350 fmr.fmr_length = len_daddr;
351 if (rec->rm_flags & XFS_RMAP_UNWRITTEN)
352 fmr.fmr_flags |= FMR_OF_PREALLOC;
353 if (rec->rm_flags & XFS_RMAP_ATTR_FORK)
354 fmr.fmr_flags |= FMR_OF_ATTR_FORK;
355 if (rec->rm_flags & XFS_RMAP_BMBT_BLOCK)
356 fmr.fmr_flags |= FMR_OF_EXTENT_MAP;
357 if (fmr.fmr_flags == 0) {
358 error = xfs_getfsmap_is_shared(tp, info, rec, &shared);
362 fmr.fmr_flags |= FMR_OF_SHARED;
365 xfs_getfsmap_format(mp, &fmr, info);
367 rec_daddr += len_daddr;
368 if (info->next_daddr < rec_daddr)
369 info->next_daddr = rec_daddr;
373 /* Transform a rmapbt irec into a fsmap */
375 xfs_getfsmap_datadev_helper(
376 struct xfs_btree_cur *cur,
377 const struct xfs_rmap_irec *rec,
380 struct xfs_mount *mp = cur->bc_mp;
381 struct xfs_getfsmap_info *info = priv;
383 xfs_daddr_t rec_daddr;
385 fsb = XFS_AGB_TO_FSB(mp, cur->bc_ag.pag->pag_agno, rec->rm_startblock);
386 rec_daddr = XFS_FSB_TO_DADDR(mp, fsb);
388 return xfs_getfsmap_helper(cur->bc_tp, info, rec, rec_daddr, 0);
391 /* Transform a bnobt irec into a fsmap */
393 xfs_getfsmap_datadev_bnobt_helper(
394 struct xfs_btree_cur *cur,
395 const struct xfs_alloc_rec_incore *rec,
398 struct xfs_mount *mp = cur->bc_mp;
399 struct xfs_getfsmap_info *info = priv;
400 struct xfs_rmap_irec irec;
401 xfs_daddr_t rec_daddr;
403 rec_daddr = XFS_AGB_TO_DADDR(mp, cur->bc_ag.pag->pag_agno,
406 irec.rm_startblock = rec->ar_startblock;
407 irec.rm_blockcount = rec->ar_blockcount;
408 irec.rm_owner = XFS_RMAP_OWN_NULL; /* "free" */
412 return xfs_getfsmap_helper(cur->bc_tp, info, &irec, rec_daddr, 0);
415 /* Set rmap flags based on the getfsmap flags */
417 xfs_getfsmap_set_irec_flags(
418 struct xfs_rmap_irec *irec,
419 const struct xfs_fsmap *fmr)
422 if (fmr->fmr_flags & FMR_OF_ATTR_FORK)
423 irec->rm_flags |= XFS_RMAP_ATTR_FORK;
424 if (fmr->fmr_flags & FMR_OF_EXTENT_MAP)
425 irec->rm_flags |= XFS_RMAP_BMBT_BLOCK;
426 if (fmr->fmr_flags & FMR_OF_PREALLOC)
427 irec->rm_flags |= XFS_RMAP_UNWRITTEN;
430 /* Execute a getfsmap query against the log device. */
433 struct xfs_trans *tp,
434 const struct xfs_fsmap *keys,
435 struct xfs_getfsmap_info *info)
437 struct xfs_mount *mp = tp->t_mountp;
438 struct xfs_rmap_irec rmap;
439 xfs_daddr_t rec_daddr, len_daddr;
440 xfs_fsblock_t start_fsb, end_fsb;
443 eofs = XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
444 if (keys[0].fmr_physical >= eofs)
446 start_fsb = XFS_BB_TO_FSBT(mp,
447 keys[0].fmr_physical + keys[0].fmr_length);
448 end_fsb = XFS_BB_TO_FSB(mp, min(eofs - 1, keys[1].fmr_physical));
450 /* Adjust the low key if we are continuing from where we left off. */
451 if (keys[0].fmr_length > 0)
452 info->low_daddr = XFS_FSB_TO_BB(mp, start_fsb);
454 trace_xfs_fsmap_low_key_linear(mp, info->dev, start_fsb);
455 trace_xfs_fsmap_high_key_linear(mp, info->dev, end_fsb);
460 /* Fabricate an rmap entry for the external log device. */
461 rmap.rm_startblock = 0;
462 rmap.rm_blockcount = mp->m_sb.sb_logblocks;
463 rmap.rm_owner = XFS_RMAP_OWN_LOG;
467 rec_daddr = XFS_FSB_TO_BB(mp, rmap.rm_startblock);
468 len_daddr = XFS_FSB_TO_BB(mp, rmap.rm_blockcount);
469 return xfs_getfsmap_helper(tp, info, &rmap, rec_daddr, len_daddr);
473 /* Transform a rtbitmap "record" into a fsmap */
475 xfs_getfsmap_rtdev_rtbitmap_helper(
476 struct xfs_mount *mp,
477 struct xfs_trans *tp,
478 const struct xfs_rtalloc_rec *rec,
481 struct xfs_getfsmap_info *info = priv;
482 struct xfs_rmap_irec irec;
484 xfs_daddr_t rec_daddr, len_daddr;
486 rtbno = rec->ar_startext * mp->m_sb.sb_rextsize;
487 rec_daddr = XFS_FSB_TO_BB(mp, rtbno);
488 irec.rm_startblock = rtbno;
490 rtbno = rec->ar_extcount * mp->m_sb.sb_rextsize;
491 len_daddr = XFS_FSB_TO_BB(mp, rtbno);
492 irec.rm_blockcount = rtbno;
494 irec.rm_owner = XFS_RMAP_OWN_NULL; /* "free" */
498 return xfs_getfsmap_helper(tp, info, &irec, rec_daddr, len_daddr);
501 /* Execute a getfsmap query against the realtime device rtbitmap. */
503 xfs_getfsmap_rtdev_rtbitmap(
504 struct xfs_trans *tp,
505 const struct xfs_fsmap *keys,
506 struct xfs_getfsmap_info *info)
509 struct xfs_rtalloc_rec alow = { 0 };
510 struct xfs_rtalloc_rec ahigh = { 0 };
511 struct xfs_mount *mp = tp->t_mountp;
512 xfs_rtblock_t start_rtb;
513 xfs_rtblock_t end_rtb;
517 eofs = XFS_FSB_TO_BB(mp, mp->m_sb.sb_rextents * mp->m_sb.sb_rextsize);
518 if (keys[0].fmr_physical >= eofs)
520 start_rtb = XFS_BB_TO_FSBT(mp,
521 keys[0].fmr_physical + keys[0].fmr_length);
522 end_rtb = XFS_BB_TO_FSB(mp, min(eofs - 1, keys[1].fmr_physical));
524 info->missing_owner = XFS_FMR_OWN_UNKNOWN;
526 /* Adjust the low key if we are continuing from where we left off. */
527 if (keys[0].fmr_length > 0) {
528 info->low_daddr = XFS_FSB_TO_BB(mp, start_rtb);
529 if (info->low_daddr >= eofs)
533 trace_xfs_fsmap_low_key_linear(mp, info->dev, start_rtb);
534 trace_xfs_fsmap_high_key_linear(mp, info->dev, end_rtb);
536 xfs_ilock(mp->m_rbmip, XFS_ILOCK_SHARED | XFS_ILOCK_RTBITMAP);
539 * Set up query parameters to return free rtextents covering the range
542 alow.ar_startext = start_rtb;
543 ahigh.ar_startext = end_rtb;
544 do_div(alow.ar_startext, mp->m_sb.sb_rextsize);
545 if (do_div(ahigh.ar_startext, mp->m_sb.sb_rextsize))
547 error = xfs_rtalloc_query_range(mp, tp, &alow, &ahigh,
548 xfs_getfsmap_rtdev_rtbitmap_helper, info);
553 * Report any gaps at the end of the rtbitmap by simulating a null
554 * rmap starting at the block after the end of the query range.
557 ahigh.ar_startext = min(mp->m_sb.sb_rextents, ahigh.ar_startext);
559 error = xfs_getfsmap_rtdev_rtbitmap_helper(mp, tp, &ahigh, info);
563 xfs_iunlock(mp->m_rbmip, XFS_ILOCK_SHARED | XFS_ILOCK_RTBITMAP);
566 #endif /* CONFIG_XFS_RT */
568 /* Execute a getfsmap query against the regular data device. */
570 __xfs_getfsmap_datadev(
571 struct xfs_trans *tp,
572 const struct xfs_fsmap *keys,
573 struct xfs_getfsmap_info *info,
574 int (*query_fn)(struct xfs_trans *,
575 struct xfs_getfsmap_info *,
576 struct xfs_btree_cur **,
580 struct xfs_mount *mp = tp->t_mountp;
581 struct xfs_perag *pag;
582 struct xfs_btree_cur *bt_cur = NULL;
583 xfs_fsblock_t start_fsb;
584 xfs_fsblock_t end_fsb;
585 xfs_agnumber_t start_ag;
586 xfs_agnumber_t end_ag;
590 eofs = XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
591 if (keys[0].fmr_physical >= eofs)
593 start_fsb = XFS_DADDR_TO_FSB(mp, keys[0].fmr_physical);
594 end_fsb = XFS_DADDR_TO_FSB(mp, min(eofs - 1, keys[1].fmr_physical));
597 * Convert the fsmap low/high keys to AG based keys. Initialize
598 * low to the fsmap low key and max out the high key to the end
601 info->low.rm_startblock = XFS_FSB_TO_AGBNO(mp, start_fsb);
602 info->low.rm_offset = XFS_BB_TO_FSBT(mp, keys[0].fmr_offset);
603 error = xfs_fsmap_owner_to_rmap(&info->low, &keys[0]);
606 info->low.rm_blockcount = XFS_BB_TO_FSBT(mp, keys[0].fmr_length);
607 xfs_getfsmap_set_irec_flags(&info->low, &keys[0]);
609 /* Adjust the low key if we are continuing from where we left off. */
610 if (info->low.rm_blockcount == 0) {
612 } else if (XFS_RMAP_NON_INODE_OWNER(info->low.rm_owner) ||
613 (info->low.rm_flags & (XFS_RMAP_ATTR_FORK |
614 XFS_RMAP_BMBT_BLOCK |
615 XFS_RMAP_UNWRITTEN))) {
616 info->low.rm_startblock += info->low.rm_blockcount;
617 info->low.rm_owner = 0;
618 info->low.rm_offset = 0;
620 start_fsb += info->low.rm_blockcount;
621 if (XFS_FSB_TO_DADDR(mp, start_fsb) >= eofs)
624 info->low.rm_offset += info->low.rm_blockcount;
627 info->high.rm_startblock = -1U;
628 info->high.rm_owner = ULLONG_MAX;
629 info->high.rm_offset = ULLONG_MAX;
630 info->high.rm_blockcount = 0;
631 info->high.rm_flags = XFS_RMAP_KEY_FLAGS | XFS_RMAP_REC_FLAGS;
633 start_ag = XFS_FSB_TO_AGNO(mp, start_fsb);
634 end_ag = XFS_FSB_TO_AGNO(mp, end_fsb);
636 for_each_perag_range(mp, start_ag, end_ag, pag) {
638 * Set the AG high key from the fsmap high key if this
639 * is the last AG that we're querying.
642 if (pag->pag_agno == end_ag) {
643 info->high.rm_startblock = XFS_FSB_TO_AGBNO(mp,
645 info->high.rm_offset = XFS_BB_TO_FSBT(mp,
647 error = xfs_fsmap_owner_to_rmap(&info->high, &keys[1]);
650 xfs_getfsmap_set_irec_flags(&info->high, &keys[1]);
654 xfs_btree_del_cursor(bt_cur, XFS_BTREE_NOERROR);
656 xfs_trans_brelse(tp, info->agf_bp);
660 error = xfs_alloc_read_agf(pag, tp, 0, &info->agf_bp);
664 trace_xfs_fsmap_low_key(mp, info->dev, pag->pag_agno,
666 trace_xfs_fsmap_high_key(mp, info->dev, pag->pag_agno,
669 error = query_fn(tp, info, &bt_cur, priv);
674 * Set the AG low key to the start of the AG prior to
675 * moving on to the next AG.
677 if (pag->pag_agno == start_ag)
678 memset(&info->low, 0, sizeof(info->low));
681 * If this is the last AG, report any gap at the end of it
682 * before we drop the reference to the perag when the loop
685 if (pag->pag_agno == end_ag) {
687 error = query_fn(tp, info, &bt_cur, priv);
695 xfs_btree_del_cursor(bt_cur, error < 0 ? XFS_BTREE_ERROR :
698 xfs_trans_brelse(tp, info->agf_bp);
702 xfs_perag_rele(info->pag);
705 /* loop termination case */
712 /* Actually query the rmap btree. */
714 xfs_getfsmap_datadev_rmapbt_query(
715 struct xfs_trans *tp,
716 struct xfs_getfsmap_info *info,
717 struct xfs_btree_cur **curpp,
720 /* Report any gap at the end of the last AG. */
722 return xfs_getfsmap_datadev_helper(*curpp, &info->high, info);
724 /* Allocate cursor for this AG and query_range it. */
725 *curpp = xfs_rmapbt_init_cursor(tp->t_mountp, tp, info->agf_bp,
727 return xfs_rmap_query_range(*curpp, &info->low, &info->high,
728 xfs_getfsmap_datadev_helper, info);
731 /* Execute a getfsmap query against the regular data device rmapbt. */
733 xfs_getfsmap_datadev_rmapbt(
734 struct xfs_trans *tp,
735 const struct xfs_fsmap *keys,
736 struct xfs_getfsmap_info *info)
738 info->missing_owner = XFS_FMR_OWN_FREE;
739 return __xfs_getfsmap_datadev(tp, keys, info,
740 xfs_getfsmap_datadev_rmapbt_query, NULL);
743 /* Actually query the bno btree. */
745 xfs_getfsmap_datadev_bnobt_query(
746 struct xfs_trans *tp,
747 struct xfs_getfsmap_info *info,
748 struct xfs_btree_cur **curpp,
751 struct xfs_alloc_rec_incore *key = priv;
753 /* Report any gap at the end of the last AG. */
755 return xfs_getfsmap_datadev_bnobt_helper(*curpp, &key[1], info);
757 /* Allocate cursor for this AG and query_range it. */
758 *curpp = xfs_allocbt_init_cursor(tp->t_mountp, tp, info->agf_bp,
759 info->pag, XFS_BTNUM_BNO);
760 key->ar_startblock = info->low.rm_startblock;
761 key[1].ar_startblock = info->high.rm_startblock;
762 return xfs_alloc_query_range(*curpp, key, &key[1],
763 xfs_getfsmap_datadev_bnobt_helper, info);
766 /* Execute a getfsmap query against the regular data device's bnobt. */
768 xfs_getfsmap_datadev_bnobt(
769 struct xfs_trans *tp,
770 const struct xfs_fsmap *keys,
771 struct xfs_getfsmap_info *info)
773 struct xfs_alloc_rec_incore akeys[2];
775 memset(akeys, 0, sizeof(akeys));
776 info->missing_owner = XFS_FMR_OWN_UNKNOWN;
777 return __xfs_getfsmap_datadev(tp, keys, info,
778 xfs_getfsmap_datadev_bnobt_query, &akeys[0]);
781 /* Do we recognize the device? */
783 xfs_getfsmap_is_valid_device(
784 struct xfs_mount *mp,
785 struct xfs_fsmap *fm)
787 if (fm->fmr_device == 0 || fm->fmr_device == UINT_MAX ||
788 fm->fmr_device == new_encode_dev(mp->m_ddev_targp->bt_dev))
790 if (mp->m_logdev_targp &&
791 fm->fmr_device == new_encode_dev(mp->m_logdev_targp->bt_dev))
793 if (mp->m_rtdev_targp &&
794 fm->fmr_device == new_encode_dev(mp->m_rtdev_targp->bt_dev))
799 /* Ensure that the low key is less than the high key. */
801 xfs_getfsmap_check_keys(
802 struct xfs_fsmap *low_key,
803 struct xfs_fsmap *high_key)
805 if (low_key->fmr_flags & (FMR_OF_SPECIAL_OWNER | FMR_OF_EXTENT_MAP)) {
806 if (low_key->fmr_offset)
809 if (high_key->fmr_flags != -1U &&
810 (high_key->fmr_flags & (FMR_OF_SPECIAL_OWNER |
811 FMR_OF_EXTENT_MAP))) {
812 if (high_key->fmr_offset && high_key->fmr_offset != -1ULL)
815 if (high_key->fmr_length && high_key->fmr_length != -1ULL)
818 if (low_key->fmr_device > high_key->fmr_device)
820 if (low_key->fmr_device < high_key->fmr_device)
823 if (low_key->fmr_physical > high_key->fmr_physical)
825 if (low_key->fmr_physical < high_key->fmr_physical)
828 if (low_key->fmr_owner > high_key->fmr_owner)
830 if (low_key->fmr_owner < high_key->fmr_owner)
833 if (low_key->fmr_offset > high_key->fmr_offset)
835 if (low_key->fmr_offset < high_key->fmr_offset)
842 * There are only two devices if we didn't configure RT devices at build time.
845 #define XFS_GETFSMAP_DEVS 3
847 #define XFS_GETFSMAP_DEVS 2
848 #endif /* CONFIG_XFS_RT */
851 * Get filesystem's extents as described in head, and format for output. Fills
852 * in the supplied records array until there are no more reverse mappings to
853 * return or head.fmh_entries == head.fmh_count. In the second case, this
854 * function returns -ECANCELED to indicate that more records would have been
859 * There are multiple levels of keys and counters at work here:
860 * xfs_fsmap_head.fmh_keys -- low and high fsmap keys passed in;
861 * these reflect fs-wide sector addrs.
862 * dkeys -- fmh_keys used to query each device;
863 * these are fmh_keys but w/ the low key
864 * bumped up by fmr_length.
865 * xfs_getfsmap_info.next_daddr -- next disk addr we expect to see; this
866 * is how we detect gaps in the fsmap
867 records and report them.
868 * xfs_getfsmap_info.low/high -- per-AG low/high keys computed from
869 * dkeys; used to query the metadata.
873 struct xfs_mount *mp,
874 struct xfs_fsmap_head *head,
875 struct fsmap *fsmap_recs)
877 struct xfs_trans *tp = NULL;
878 struct xfs_fsmap dkeys[2]; /* per-dev keys */
879 struct xfs_getfsmap_dev handlers[XFS_GETFSMAP_DEVS];
880 struct xfs_getfsmap_info info = { NULL };
885 if (head->fmh_iflags & ~FMH_IF_VALID)
887 if (!xfs_getfsmap_is_valid_device(mp, &head->fmh_keys[0]) ||
888 !xfs_getfsmap_is_valid_device(mp, &head->fmh_keys[1]))
890 if (!xfs_getfsmap_check_keys(&head->fmh_keys[0], &head->fmh_keys[1]))
893 use_rmap = xfs_has_rmapbt(mp) &&
894 has_capability_noaudit(current, CAP_SYS_ADMIN);
895 head->fmh_entries = 0;
897 /* Set up our device handlers. */
898 memset(handlers, 0, sizeof(handlers));
899 handlers[0].dev = new_encode_dev(mp->m_ddev_targp->bt_dev);
901 handlers[0].fn = xfs_getfsmap_datadev_rmapbt;
903 handlers[0].fn = xfs_getfsmap_datadev_bnobt;
904 if (mp->m_logdev_targp != mp->m_ddev_targp) {
905 handlers[1].dev = new_encode_dev(mp->m_logdev_targp->bt_dev);
906 handlers[1].fn = xfs_getfsmap_logdev;
909 if (mp->m_rtdev_targp) {
910 handlers[2].dev = new_encode_dev(mp->m_rtdev_targp->bt_dev);
911 handlers[2].fn = xfs_getfsmap_rtdev_rtbitmap;
913 #endif /* CONFIG_XFS_RT */
915 xfs_sort(handlers, XFS_GETFSMAP_DEVS, sizeof(struct xfs_getfsmap_dev),
916 xfs_getfsmap_dev_compare);
919 * To continue where we left off, we allow userspace to use the
920 * last mapping from a previous call as the low key of the next.
921 * This is identified by a non-zero length in the low key. We
922 * have to increment the low key in this scenario to ensure we
923 * don't return the same mapping again, and instead return the
926 * If the low key mapping refers to file data, the same physical
927 * blocks could be mapped to several other files/offsets.
928 * According to rmapbt record ordering, the minimal next
929 * possible record for the block range is the next starting
930 * offset in the same inode. Therefore, each fsmap backend bumps
931 * the file offset to continue the search appropriately. For
932 * all other low key mapping types (attr blocks, metadata), each
933 * fsmap backend bumps the physical offset as there can be no
934 * other mapping for the same physical block range.
936 dkeys[0] = head->fmh_keys[0];
937 memset(&dkeys[1], 0xFF, sizeof(struct xfs_fsmap));
939 info.next_daddr = head->fmh_keys[0].fmr_physical +
940 head->fmh_keys[0].fmr_length;
941 info.fsmap_recs = fsmap_recs;
944 /* For each device we support... */
945 for (i = 0; i < XFS_GETFSMAP_DEVS; i++) {
946 /* Is this device within the range the user asked for? */
949 if (head->fmh_keys[0].fmr_device > handlers[i].dev)
951 if (head->fmh_keys[1].fmr_device < handlers[i].dev)
955 * If this device number matches the high key, we have
956 * to pass the high key to the handler to limit the
957 * query results. If the device number exceeds the
958 * low key, zero out the low key so that we get
959 * everything from the beginning.
961 if (handlers[i].dev == head->fmh_keys[1].fmr_device)
962 dkeys[1] = head->fmh_keys[1];
963 if (handlers[i].dev > head->fmh_keys[0].fmr_device)
964 memset(&dkeys[0], 0, sizeof(struct xfs_fsmap));
967 * Grab an empty transaction so that we can use its recursive
968 * buffer locking abilities to detect cycles in the rmapbt
969 * without deadlocking.
971 error = xfs_trans_alloc_empty(mp, &tp);
975 info.dev = handlers[i].dev;
978 info.low_daddr = -1ULL;
979 info.low.rm_blockcount = 0;
980 error = handlers[i].fn(tp, dkeys, &info);
983 xfs_trans_cancel(tp);
989 xfs_trans_cancel(tp);
990 head->fmh_oflags = FMH_OF_DEV_T;