1 // SPDX-License-Identifier: GPL-2.0-only
3 * Persistent Memory Driver
5 * Copyright (c) 2014-2015, Intel Corporation.
10 #include <linux/blkdev.h>
11 #include <linux/pagemap.h>
12 #include <linux/hdreg.h>
13 #include <linux/init.h>
14 #include <linux/platform_device.h>
15 #include <linux/set_memory.h>
16 #include <linux/module.h>
17 #include <linux/moduleparam.h>
18 #include <linux/badblocks.h>
19 #include <linux/memremap.h>
20 #include <linux/vmalloc.h>
21 #include <linux/blk-mq.h>
22 #include <linux/pfn_t.h>
23 #include <linux/slab.h>
24 #include <linux/uio.h>
25 #include <linux/dax.h>
28 #include <asm/cacheflush.h>
34 static struct device *to_dev(struct pmem_device *pmem)
37 * nvdimm bus services need a 'dev' parameter, and we record the device
43 static struct nd_region *to_region(struct pmem_device *pmem)
45 return to_nd_region(to_dev(pmem)->parent);
48 static phys_addr_t pmem_to_phys(struct pmem_device *pmem, phys_addr_t offset)
50 return pmem->phys_addr + offset;
53 static sector_t to_sect(struct pmem_device *pmem, phys_addr_t offset)
55 return (offset - pmem->data_offset) >> SECTOR_SHIFT;
58 static phys_addr_t to_offset(struct pmem_device *pmem, sector_t sector)
60 return (sector << SECTOR_SHIFT) + pmem->data_offset;
63 static void pmem_mkpage_present(struct pmem_device *pmem, phys_addr_t offset,
66 phys_addr_t phys = pmem_to_phys(pmem, offset);
67 unsigned long pfn_start, pfn_end, pfn;
69 /* only pmem in the linear map supports HWPoison */
70 if (is_vmalloc_addr(pmem->virt_addr))
73 pfn_start = PHYS_PFN(phys);
74 pfn_end = pfn_start + PHYS_PFN(len);
75 for (pfn = pfn_start; pfn < pfn_end; pfn++) {
76 struct page *page = pfn_to_page(pfn);
79 * Note, no need to hold a get_dev_pagemap() reference
80 * here since we're in the driver I/O path and
81 * outstanding I/O requests pin the dev_pagemap.
83 if (test_and_clear_pmem_poison(page))
84 clear_mce_nospec(pfn);
88 static void pmem_clear_bb(struct pmem_device *pmem, sector_t sector, long blks)
92 badblocks_clear(&pmem->bb, sector, blks);
94 sysfs_notify_dirent(pmem->bb_state);
97 static long __pmem_clear_poison(struct pmem_device *pmem,
98 phys_addr_t offset, unsigned int len)
100 phys_addr_t phys = pmem_to_phys(pmem, offset);
101 long cleared = nvdimm_clear_poison(to_dev(pmem), phys, len);
104 pmem_mkpage_present(pmem, offset, cleared);
105 arch_invalidate_pmem(pmem->virt_addr + offset, len);
110 static blk_status_t pmem_clear_poison(struct pmem_device *pmem,
111 phys_addr_t offset, unsigned int len)
113 long cleared = __pmem_clear_poison(pmem, offset, len);
116 return BLK_STS_IOERR;
118 pmem_clear_bb(pmem, to_sect(pmem, offset), cleared >> SECTOR_SHIFT);
120 return BLK_STS_IOERR;
124 static void write_pmem(void *pmem_addr, struct page *page,
125 unsigned int off, unsigned int len)
131 mem = kmap_atomic(page);
132 chunk = min_t(unsigned int, len, PAGE_SIZE - off);
133 memcpy_flushcache(pmem_addr, mem + off, chunk);
142 static blk_status_t read_pmem(struct page *page, unsigned int off,
143 void *pmem_addr, unsigned int len)
150 mem = kmap_atomic(page);
151 chunk = min_t(unsigned int, len, PAGE_SIZE - off);
152 rem = copy_mc_to_kernel(mem + off, pmem_addr, chunk);
155 return BLK_STS_IOERR;
164 static blk_status_t pmem_do_read(struct pmem_device *pmem,
165 struct page *page, unsigned int page_off,
166 sector_t sector, unsigned int len)
169 phys_addr_t pmem_off = to_offset(pmem, sector);
170 void *pmem_addr = pmem->virt_addr + pmem_off;
172 if (unlikely(is_bad_pmem(&pmem->bb, sector, len)))
173 return BLK_STS_IOERR;
175 rc = read_pmem(page, page_off, pmem_addr, len);
176 flush_dcache_page(page);
180 static blk_status_t pmem_do_write(struct pmem_device *pmem,
181 struct page *page, unsigned int page_off,
182 sector_t sector, unsigned int len)
184 phys_addr_t pmem_off = to_offset(pmem, sector);
185 void *pmem_addr = pmem->virt_addr + pmem_off;
187 if (unlikely(is_bad_pmem(&pmem->bb, sector, len))) {
188 blk_status_t rc = pmem_clear_poison(pmem, pmem_off, len);
190 if (rc != BLK_STS_OK)
194 flush_dcache_page(page);
195 write_pmem(pmem_addr, page, page_off, len);
200 static void pmem_submit_bio(struct bio *bio)
207 struct bvec_iter iter;
208 struct pmem_device *pmem = bio->bi_bdev->bd_disk->private_data;
209 struct nd_region *nd_region = to_region(pmem);
211 if (bio->bi_opf & REQ_PREFLUSH)
212 ret = nvdimm_flush(nd_region, bio);
214 do_acct = blk_queue_io_stat(bio->bi_bdev->bd_disk->queue);
216 start = bio_start_io_acct(bio);
217 bio_for_each_segment(bvec, bio, iter) {
218 if (op_is_write(bio_op(bio)))
219 rc = pmem_do_write(pmem, bvec.bv_page, bvec.bv_offset,
220 iter.bi_sector, bvec.bv_len);
222 rc = pmem_do_read(pmem, bvec.bv_page, bvec.bv_offset,
223 iter.bi_sector, bvec.bv_len);
230 bio_end_io_acct(bio, start);
232 if (bio->bi_opf & REQ_FUA)
233 ret = nvdimm_flush(nd_region, bio);
236 bio->bi_status = errno_to_blk_status(ret);
241 /* see "strong" declaration in tools/testing/nvdimm/pmem-dax.c */
242 __weak long __pmem_direct_access(struct pmem_device *pmem, pgoff_t pgoff,
243 long nr_pages, enum dax_access_mode mode, void **kaddr,
246 resource_size_t offset = PFN_PHYS(pgoff) + pmem->data_offset;
247 sector_t sector = PFN_PHYS(pgoff) >> SECTOR_SHIFT;
248 unsigned int num = PFN_PHYS(nr_pages) >> SECTOR_SHIFT;
249 struct badblocks *bb = &pmem->bb;
254 *kaddr = pmem->virt_addr + offset;
256 *pfn = phys_to_pfn_t(pmem->phys_addr + offset, pmem->pfn_flags);
259 badblocks_check(bb, sector, num, &first_bad, &num_bad)) {
262 if (mode != DAX_RECOVERY_WRITE)
266 * Set the recovery stride is set to kernel page size because
267 * the underlying driver and firmware clear poison functions
268 * don't appear to handle large chunk(such as 2MiB) reliably.
270 actual_nr = PHYS_PFN(
271 PAGE_ALIGN((first_bad - sector) << SECTOR_SHIFT));
272 dev_dbg(pmem->bb.dev, "start sector(%llu), nr_pages(%ld), first_bad(%llu), actual_nr(%ld)\n",
273 sector, nr_pages, first_bad, actual_nr);
280 * If badblocks are present but not in the range, limit known good range
281 * to the requested range.
285 return PHYS_PFN(pmem->size - pmem->pfn_pad - offset);
288 static const struct block_device_operations pmem_fops = {
289 .owner = THIS_MODULE,
290 .submit_bio = pmem_submit_bio,
293 static int pmem_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
296 struct pmem_device *pmem = dax_get_private(dax_dev);
298 return blk_status_to_errno(pmem_do_write(pmem, ZERO_PAGE(0), 0,
299 PFN_PHYS(pgoff) >> SECTOR_SHIFT,
303 static long pmem_dax_direct_access(struct dax_device *dax_dev,
304 pgoff_t pgoff, long nr_pages, enum dax_access_mode mode,
305 void **kaddr, pfn_t *pfn)
307 struct pmem_device *pmem = dax_get_private(dax_dev);
309 return __pmem_direct_access(pmem, pgoff, nr_pages, mode, kaddr, pfn);
313 * The recovery write thread started out as a normal pwrite thread and
314 * when the filesystem was told about potential media error in the
315 * range, filesystem turns the normal pwrite to a dax_recovery_write.
317 * The recovery write consists of clearing media poison, clearing page
318 * HWPoison bit, reenable page-wide read-write permission, flush the
319 * caches and finally write. A competing pread thread will be held
320 * off during the recovery process since data read back might not be
321 * valid, and this is achieved by clearing the badblock records after
322 * the recovery write is complete. Competing recovery write threads
323 * are already serialized by writer lock held by dax_iomap_rw().
325 static size_t pmem_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff,
326 void *addr, size_t bytes, struct iov_iter *i)
328 struct pmem_device *pmem = dax_get_private(dax_dev);
329 size_t olen, len, off;
330 phys_addr_t pmem_off;
331 struct device *dev = pmem->bb.dev;
334 off = offset_in_page(addr);
335 len = PFN_PHYS(PFN_UP(off + bytes));
336 if (!is_bad_pmem(&pmem->bb, PFN_PHYS(pgoff) >> SECTOR_SHIFT, len))
337 return _copy_from_iter_flushcache(addr, bytes, i);
340 * Not page-aligned range cannot be recovered. This should not
341 * happen unless something else went wrong.
343 if (off || !PAGE_ALIGNED(bytes)) {
344 dev_dbg(dev, "Found poison, but addr(%p) or bytes(%#zx) not page aligned\n",
349 pmem_off = PFN_PHYS(pgoff) + pmem->data_offset;
350 cleared = __pmem_clear_poison(pmem, pmem_off, len);
351 if (cleared > 0 && cleared < len) {
352 dev_dbg(dev, "poison cleared only %ld out of %zu bytes\n",
357 dev_dbg(dev, "poison clear failed: %ld\n", cleared);
361 olen = _copy_from_iter_flushcache(addr, bytes, i);
362 pmem_clear_bb(pmem, to_sect(pmem, pmem_off), cleared >> SECTOR_SHIFT);
367 static const struct dax_operations pmem_dax_ops = {
368 .direct_access = pmem_dax_direct_access,
369 .zero_page_range = pmem_dax_zero_page_range,
370 .recovery_write = pmem_recovery_write,
373 static ssize_t write_cache_show(struct device *dev,
374 struct device_attribute *attr, char *buf)
376 struct pmem_device *pmem = dev_to_disk(dev)->private_data;
378 return sprintf(buf, "%d\n", !!dax_write_cache_enabled(pmem->dax_dev));
381 static ssize_t write_cache_store(struct device *dev,
382 struct device_attribute *attr, const char *buf, size_t len)
384 struct pmem_device *pmem = dev_to_disk(dev)->private_data;
388 rc = strtobool(buf, &write_cache);
391 dax_write_cache(pmem->dax_dev, write_cache);
394 static DEVICE_ATTR_RW(write_cache);
396 static umode_t dax_visible(struct kobject *kobj, struct attribute *a, int n)
398 #ifndef CONFIG_ARCH_HAS_PMEM_API
399 if (a == &dev_attr_write_cache.attr)
405 static struct attribute *dax_attributes[] = {
406 &dev_attr_write_cache.attr,
410 static const struct attribute_group dax_attribute_group = {
412 .attrs = dax_attributes,
413 .is_visible = dax_visible,
416 static const struct attribute_group *pmem_attribute_groups[] = {
417 &dax_attribute_group,
421 static void pmem_release_disk(void *__pmem)
423 struct pmem_device *pmem = __pmem;
425 dax_remove_host(pmem->disk);
426 kill_dax(pmem->dax_dev);
427 put_dax(pmem->dax_dev);
428 del_gendisk(pmem->disk);
430 put_disk(pmem->disk);
433 static int pmem_pagemap_memory_failure(struct dev_pagemap *pgmap,
434 unsigned long pfn, unsigned long nr_pages, int mf_flags)
436 struct pmem_device *pmem =
437 container_of(pgmap, struct pmem_device, pgmap);
438 u64 offset = PFN_PHYS(pfn) - pmem->phys_addr - pmem->data_offset;
439 u64 len = nr_pages << PAGE_SHIFT;
441 return dax_holder_notify_failure(pmem->dax_dev, offset, len, mf_flags);
444 static const struct dev_pagemap_ops fsdax_pagemap_ops = {
445 .memory_failure = pmem_pagemap_memory_failure,
448 static int pmem_attach_disk(struct device *dev,
449 struct nd_namespace_common *ndns)
451 struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev);
452 struct nd_region *nd_region = to_nd_region(dev->parent);
453 int nid = dev_to_node(dev), fua;
454 struct resource *res = &nsio->res;
455 struct range bb_range;
456 struct nd_pfn *nd_pfn = NULL;
457 struct dax_device *dax_dev;
458 struct nd_pfn_sb *pfn_sb;
459 struct pmem_device *pmem;
460 struct request_queue *q;
461 struct gendisk *disk;
465 pmem = devm_kzalloc(dev, sizeof(*pmem), GFP_KERNEL);
469 rc = devm_namespace_enable(dev, ndns, nd_info_block_reserve());
473 /* while nsio_rw_bytes is active, parse a pfn info block if present */
474 if (is_nd_pfn(dev)) {
475 nd_pfn = to_nd_pfn(dev);
476 rc = nvdimm_setup_pfn(nd_pfn, &pmem->pgmap);
481 /* we're attaching a block device, disable raw namespace access */
482 devm_namespace_disable(dev, ndns);
484 dev_set_drvdata(dev, pmem);
485 pmem->phys_addr = res->start;
486 pmem->size = resource_size(res);
487 fua = nvdimm_has_flush(nd_region);
488 if (!IS_ENABLED(CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE) || fua < 0) {
489 dev_warn(dev, "unable to guarantee persistence of writes\n");
493 if (!devm_request_mem_region(dev, res->start, resource_size(res),
494 dev_name(&ndns->dev))) {
495 dev_warn(dev, "could not reserve region %pR\n", res);
499 disk = blk_alloc_disk(nid);
505 pmem->pgmap.owner = pmem;
506 pmem->pfn_flags = PFN_DEV;
507 if (is_nd_pfn(dev)) {
508 pmem->pgmap.type = MEMORY_DEVICE_FS_DAX;
509 pmem->pgmap.ops = &fsdax_pagemap_ops;
510 addr = devm_memremap_pages(dev, &pmem->pgmap);
511 pfn_sb = nd_pfn->pfn_sb;
512 pmem->data_offset = le64_to_cpu(pfn_sb->dataoff);
513 pmem->pfn_pad = resource_size(res) -
514 range_len(&pmem->pgmap.range);
515 pmem->pfn_flags |= PFN_MAP;
516 bb_range = pmem->pgmap.range;
517 bb_range.start += pmem->data_offset;
518 } else if (pmem_should_map_pages(dev)) {
519 pmem->pgmap.range.start = res->start;
520 pmem->pgmap.range.end = res->end;
521 pmem->pgmap.nr_range = 1;
522 pmem->pgmap.type = MEMORY_DEVICE_FS_DAX;
523 pmem->pgmap.ops = &fsdax_pagemap_ops;
524 addr = devm_memremap_pages(dev, &pmem->pgmap);
525 pmem->pfn_flags |= PFN_MAP;
526 bb_range = pmem->pgmap.range;
528 addr = devm_memremap(dev, pmem->phys_addr,
529 pmem->size, ARCH_MEMREMAP_PMEM);
530 bb_range.start = res->start;
531 bb_range.end = res->end;
538 pmem->virt_addr = addr;
540 blk_queue_write_cache(q, true, fua);
541 blk_queue_physical_block_size(q, PAGE_SIZE);
542 blk_queue_logical_block_size(q, pmem_sector_size(ndns));
543 blk_queue_max_hw_sectors(q, UINT_MAX);
544 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
545 blk_queue_flag_set(QUEUE_FLAG_SYNCHRONOUS, q);
546 if (pmem->pfn_flags & PFN_MAP)
547 blk_queue_flag_set(QUEUE_FLAG_DAX, q);
549 disk->fops = &pmem_fops;
550 disk->private_data = pmem;
551 nvdimm_namespace_disk_name(ndns, disk->disk_name);
552 set_capacity(disk, (pmem->size - pmem->pfn_pad - pmem->data_offset)
554 if (devm_init_badblocks(dev, &pmem->bb))
556 nvdimm_badblocks_populate(nd_region, &pmem->bb, &bb_range);
557 disk->bb = &pmem->bb;
559 dax_dev = alloc_dax(pmem, &pmem_dax_ops);
560 if (IS_ERR(dax_dev)) {
561 rc = PTR_ERR(dax_dev);
564 set_dax_nocache(dax_dev);
565 set_dax_nomc(dax_dev);
566 if (is_nvdimm_sync(nd_region))
567 set_dax_synchronous(dax_dev);
568 rc = dax_add_host(dax_dev, disk);
570 goto out_cleanup_dax;
571 dax_write_cache(dax_dev, nvdimm_has_cache(nd_region));
572 pmem->dax_dev = dax_dev;
574 rc = device_add_disk(dev, disk, pmem_attribute_groups);
576 goto out_remove_host;
577 if (devm_add_action_or_reset(dev, pmem_release_disk, pmem))
580 nvdimm_check_and_set_ro(disk);
582 pmem->bb_state = sysfs_get_dirent(disk_to_dev(disk)->kobj.sd,
585 dev_warn(dev, "'badblocks' notification disabled\n");
589 dax_remove_host(pmem->disk);
591 kill_dax(pmem->dax_dev);
592 put_dax(pmem->dax_dev);
594 put_disk(pmem->disk);
598 static int nd_pmem_probe(struct device *dev)
601 struct nd_namespace_common *ndns;
603 ndns = nvdimm_namespace_common_probe(dev);
605 return PTR_ERR(ndns);
608 return nvdimm_namespace_attach_btt(ndns);
611 return pmem_attach_disk(dev, ndns);
613 ret = devm_namespace_enable(dev, ndns, nd_info_block_reserve());
617 ret = nd_btt_probe(dev, ndns);
622 * We have two failure conditions here, there is no
623 * info reserver block or we found a valid info reserve block
624 * but failed to initialize the pfn superblock.
626 * For the first case consider namespace as a raw pmem namespace
629 * For the latter, consider this a success and advance the namespace
632 ret = nd_pfn_probe(dev, ndns);
635 else if (ret == -EOPNOTSUPP)
638 ret = nd_dax_probe(dev, ndns);
641 else if (ret == -EOPNOTSUPP)
644 /* probe complete, attach handles namespace enabling */
645 devm_namespace_disable(dev, ndns);
647 return pmem_attach_disk(dev, ndns);
650 static void nd_pmem_remove(struct device *dev)
652 struct pmem_device *pmem = dev_get_drvdata(dev);
655 nvdimm_namespace_detach_btt(to_nd_btt(dev));
658 * Note, this assumes device_lock() context to not
659 * race nd_pmem_notify()
661 sysfs_put(pmem->bb_state);
662 pmem->bb_state = NULL;
664 nvdimm_flush(to_nd_region(dev->parent), NULL);
667 static void nd_pmem_shutdown(struct device *dev)
669 nvdimm_flush(to_nd_region(dev->parent), NULL);
672 static void pmem_revalidate_poison(struct device *dev)
674 struct nd_region *nd_region;
675 resource_size_t offset = 0, end_trunc = 0;
676 struct nd_namespace_common *ndns;
677 struct nd_namespace_io *nsio;
678 struct badblocks *bb;
680 struct kernfs_node *bb_state;
682 if (is_nd_btt(dev)) {
683 struct nd_btt *nd_btt = to_nd_btt(dev);
686 nd_region = to_nd_region(ndns->dev.parent);
687 nsio = to_nd_namespace_io(&ndns->dev);
691 struct pmem_device *pmem = dev_get_drvdata(dev);
693 nd_region = to_region(pmem);
695 bb_state = pmem->bb_state;
697 if (is_nd_pfn(dev)) {
698 struct nd_pfn *nd_pfn = to_nd_pfn(dev);
699 struct nd_pfn_sb *pfn_sb = nd_pfn->pfn_sb;
702 offset = pmem->data_offset +
703 __le32_to_cpu(pfn_sb->start_pad);
704 end_trunc = __le32_to_cpu(pfn_sb->end_trunc);
709 nsio = to_nd_namespace_io(&ndns->dev);
712 range.start = nsio->res.start + offset;
713 range.end = nsio->res.end - end_trunc;
714 nvdimm_badblocks_populate(nd_region, bb, &range);
716 sysfs_notify_dirent(bb_state);
719 static void pmem_revalidate_region(struct device *dev)
721 struct pmem_device *pmem;
723 if (is_nd_btt(dev)) {
724 struct nd_btt *nd_btt = to_nd_btt(dev);
725 struct btt *btt = nd_btt->btt;
727 nvdimm_check_and_set_ro(btt->btt_disk);
731 pmem = dev_get_drvdata(dev);
732 nvdimm_check_and_set_ro(pmem->disk);
735 static void nd_pmem_notify(struct device *dev, enum nvdimm_event event)
738 case NVDIMM_REVALIDATE_POISON:
739 pmem_revalidate_poison(dev);
741 case NVDIMM_REVALIDATE_REGION:
742 pmem_revalidate_region(dev);
745 dev_WARN_ONCE(dev, 1, "notify: unknown event: %d\n", event);
750 MODULE_ALIAS("pmem");
751 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_IO);
752 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_PMEM);
753 static struct nd_device_driver nd_pmem_driver = {
754 .probe = nd_pmem_probe,
755 .remove = nd_pmem_remove,
756 .notify = nd_pmem_notify,
757 .shutdown = nd_pmem_shutdown,
761 .type = ND_DRIVER_NAMESPACE_IO | ND_DRIVER_NAMESPACE_PMEM,
764 module_nd_driver(nd_pmem_driver);
767 MODULE_LICENSE("GPL v2");