1 // SPDX-License-Identifier: GPL-2.0
3 // Register map access API
5 // Copyright 2011 Wolfson Microelectronics plc
9 #include <linux/device.h>
10 #include <linux/slab.h>
11 #include <linux/export.h>
12 #include <linux/mutex.h>
13 #include <linux/err.h>
14 #include <linux/property.h>
15 #include <linux/rbtree.h>
16 #include <linux/sched.h>
17 #include <linux/delay.h>
18 #include <linux/log2.h>
19 #include <linux/hwspinlock.h>
20 #include <asm/unaligned.h>
22 #define CREATE_TRACE_POINTS
28 * Sometimes for failures during very early init the trace
29 * infrastructure isn't available early enough to be used. For this
30 * sort of problem defining LOG_DEVICE will add printks for basic
31 * register I/O on a specific device.
36 static inline bool regmap_should_log(struct regmap *map)
38 return (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0);
41 static inline bool regmap_should_log(struct regmap *map) { return false; }
45 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
46 unsigned int mask, unsigned int val,
47 bool *change, bool force_write);
49 static int _regmap_bus_reg_read(void *context, unsigned int reg,
51 static int _regmap_bus_read(void *context, unsigned int reg,
53 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
55 static int _regmap_bus_reg_write(void *context, unsigned int reg,
57 static int _regmap_bus_raw_write(void *context, unsigned int reg,
60 bool regmap_reg_in_ranges(unsigned int reg,
61 const struct regmap_range *ranges,
64 const struct regmap_range *r;
67 for (i = 0, r = ranges; i < nranges; i++, r++)
68 if (regmap_reg_in_range(reg, r))
72 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
74 bool regmap_check_range_table(struct regmap *map, unsigned int reg,
75 const struct regmap_access_table *table)
77 /* Check "no ranges" first */
78 if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
81 /* In case zero "yes ranges" are supplied, any reg is OK */
82 if (!table->n_yes_ranges)
85 return regmap_reg_in_ranges(reg, table->yes_ranges,
88 EXPORT_SYMBOL_GPL(regmap_check_range_table);
90 bool regmap_writeable(struct regmap *map, unsigned int reg)
92 if (map->max_register && reg > map->max_register)
95 if (map->writeable_reg)
96 return map->writeable_reg(map->dev, reg);
99 return regmap_check_range_table(map, reg, map->wr_table);
104 bool regmap_cached(struct regmap *map, unsigned int reg)
109 if (map->cache_type == REGCACHE_NONE)
115 if (map->max_register && reg > map->max_register)
118 map->lock(map->lock_arg);
119 ret = regcache_read(map, reg, &val);
120 map->unlock(map->lock_arg);
127 bool regmap_readable(struct regmap *map, unsigned int reg)
132 if (map->max_register && reg > map->max_register)
135 if (map->format.format_write)
138 if (map->readable_reg)
139 return map->readable_reg(map->dev, reg);
142 return regmap_check_range_table(map, reg, map->rd_table);
147 bool regmap_volatile(struct regmap *map, unsigned int reg)
149 if (!map->format.format_write && !regmap_readable(map, reg))
152 if (map->volatile_reg)
153 return map->volatile_reg(map->dev, reg);
155 if (map->volatile_table)
156 return regmap_check_range_table(map, reg, map->volatile_table);
164 bool regmap_precious(struct regmap *map, unsigned int reg)
166 if (!regmap_readable(map, reg))
169 if (map->precious_reg)
170 return map->precious_reg(map->dev, reg);
172 if (map->precious_table)
173 return regmap_check_range_table(map, reg, map->precious_table);
178 bool regmap_writeable_noinc(struct regmap *map, unsigned int reg)
180 if (map->writeable_noinc_reg)
181 return map->writeable_noinc_reg(map->dev, reg);
183 if (map->wr_noinc_table)
184 return regmap_check_range_table(map, reg, map->wr_noinc_table);
189 bool regmap_readable_noinc(struct regmap *map, unsigned int reg)
191 if (map->readable_noinc_reg)
192 return map->readable_noinc_reg(map->dev, reg);
194 if (map->rd_noinc_table)
195 return regmap_check_range_table(map, reg, map->rd_noinc_table);
200 static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
205 for (i = 0; i < num; i++)
206 if (!regmap_volatile(map, reg + regmap_get_offset(map, i)))
212 static void regmap_format_12_20_write(struct regmap *map,
213 unsigned int reg, unsigned int val)
215 u8 *out = map->work_buf;
218 out[1] = (reg << 4) | (val >> 16);
224 static void regmap_format_2_6_write(struct regmap *map,
225 unsigned int reg, unsigned int val)
227 u8 *out = map->work_buf;
229 *out = (reg << 6) | val;
232 static void regmap_format_4_12_write(struct regmap *map,
233 unsigned int reg, unsigned int val)
235 __be16 *out = map->work_buf;
236 *out = cpu_to_be16((reg << 12) | val);
239 static void regmap_format_7_9_write(struct regmap *map,
240 unsigned int reg, unsigned int val)
242 __be16 *out = map->work_buf;
243 *out = cpu_to_be16((reg << 9) | val);
246 static void regmap_format_7_17_write(struct regmap *map,
247 unsigned int reg, unsigned int val)
249 u8 *out = map->work_buf;
253 out[0] = (val >> 16) | (reg << 1);
256 static void regmap_format_10_14_write(struct regmap *map,
257 unsigned int reg, unsigned int val)
259 u8 *out = map->work_buf;
262 out[1] = (val >> 8) | (reg << 6);
266 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
273 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
275 put_unaligned_be16(val << shift, buf);
278 static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
280 put_unaligned_le16(val << shift, buf);
283 static void regmap_format_16_native(void *buf, unsigned int val,
286 u16 v = val << shift;
288 memcpy(buf, &v, sizeof(v));
291 static void regmap_format_24_be(void *buf, unsigned int val, unsigned int shift)
293 put_unaligned_be24(val << shift, buf);
296 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
298 put_unaligned_be32(val << shift, buf);
301 static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
303 put_unaligned_le32(val << shift, buf);
306 static void regmap_format_32_native(void *buf, unsigned int val,
309 u32 v = val << shift;
311 memcpy(buf, &v, sizeof(v));
315 static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
317 put_unaligned_be64((u64) val << shift, buf);
320 static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
322 put_unaligned_le64((u64) val << shift, buf);
325 static void regmap_format_64_native(void *buf, unsigned int val,
328 u64 v = (u64) val << shift;
330 memcpy(buf, &v, sizeof(v));
334 static void regmap_parse_inplace_noop(void *buf)
338 static unsigned int regmap_parse_8(const void *buf)
345 static unsigned int regmap_parse_16_be(const void *buf)
347 return get_unaligned_be16(buf);
350 static unsigned int regmap_parse_16_le(const void *buf)
352 return get_unaligned_le16(buf);
355 static void regmap_parse_16_be_inplace(void *buf)
357 u16 v = get_unaligned_be16(buf);
359 memcpy(buf, &v, sizeof(v));
362 static void regmap_parse_16_le_inplace(void *buf)
364 u16 v = get_unaligned_le16(buf);
366 memcpy(buf, &v, sizeof(v));
369 static unsigned int regmap_parse_16_native(const void *buf)
373 memcpy(&v, buf, sizeof(v));
377 static unsigned int regmap_parse_24_be(const void *buf)
379 return get_unaligned_be24(buf);
382 static unsigned int regmap_parse_32_be(const void *buf)
384 return get_unaligned_be32(buf);
387 static unsigned int regmap_parse_32_le(const void *buf)
389 return get_unaligned_le32(buf);
392 static void regmap_parse_32_be_inplace(void *buf)
394 u32 v = get_unaligned_be32(buf);
396 memcpy(buf, &v, sizeof(v));
399 static void regmap_parse_32_le_inplace(void *buf)
401 u32 v = get_unaligned_le32(buf);
403 memcpy(buf, &v, sizeof(v));
406 static unsigned int regmap_parse_32_native(const void *buf)
410 memcpy(&v, buf, sizeof(v));
415 static unsigned int regmap_parse_64_be(const void *buf)
417 return get_unaligned_be64(buf);
420 static unsigned int regmap_parse_64_le(const void *buf)
422 return get_unaligned_le64(buf);
425 static void regmap_parse_64_be_inplace(void *buf)
427 u64 v = get_unaligned_be64(buf);
429 memcpy(buf, &v, sizeof(v));
432 static void regmap_parse_64_le_inplace(void *buf)
434 u64 v = get_unaligned_le64(buf);
436 memcpy(buf, &v, sizeof(v));
439 static unsigned int regmap_parse_64_native(const void *buf)
443 memcpy(&v, buf, sizeof(v));
448 static void regmap_lock_hwlock(void *__map)
450 struct regmap *map = __map;
452 hwspin_lock_timeout(map->hwlock, UINT_MAX);
455 static void regmap_lock_hwlock_irq(void *__map)
457 struct regmap *map = __map;
459 hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
462 static void regmap_lock_hwlock_irqsave(void *__map)
464 struct regmap *map = __map;
466 hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
467 &map->spinlock_flags);
470 static void regmap_unlock_hwlock(void *__map)
472 struct regmap *map = __map;
474 hwspin_unlock(map->hwlock);
477 static void regmap_unlock_hwlock_irq(void *__map)
479 struct regmap *map = __map;
481 hwspin_unlock_irq(map->hwlock);
484 static void regmap_unlock_hwlock_irqrestore(void *__map)
486 struct regmap *map = __map;
488 hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
491 static void regmap_lock_unlock_none(void *__map)
496 static void regmap_lock_mutex(void *__map)
498 struct regmap *map = __map;
499 mutex_lock(&map->mutex);
502 static void regmap_unlock_mutex(void *__map)
504 struct regmap *map = __map;
505 mutex_unlock(&map->mutex);
508 static void regmap_lock_spinlock(void *__map)
509 __acquires(&map->spinlock)
511 struct regmap *map = __map;
514 spin_lock_irqsave(&map->spinlock, flags);
515 map->spinlock_flags = flags;
518 static void regmap_unlock_spinlock(void *__map)
519 __releases(&map->spinlock)
521 struct regmap *map = __map;
522 spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
525 static void regmap_lock_raw_spinlock(void *__map)
526 __acquires(&map->raw_spinlock)
528 struct regmap *map = __map;
531 raw_spin_lock_irqsave(&map->raw_spinlock, flags);
532 map->raw_spinlock_flags = flags;
535 static void regmap_unlock_raw_spinlock(void *__map)
536 __releases(&map->raw_spinlock)
538 struct regmap *map = __map;
539 raw_spin_unlock_irqrestore(&map->raw_spinlock, map->raw_spinlock_flags);
542 static void dev_get_regmap_release(struct device *dev, void *res)
545 * We don't actually have anything to do here; the goal here
546 * is not to manage the regmap but to provide a simple way to
547 * get the regmap back given a struct device.
551 static bool _regmap_range_add(struct regmap *map,
552 struct regmap_range_node *data)
554 struct rb_root *root = &map->range_tree;
555 struct rb_node **new = &(root->rb_node), *parent = NULL;
558 struct regmap_range_node *this =
559 rb_entry(*new, struct regmap_range_node, node);
562 if (data->range_max < this->range_min)
563 new = &((*new)->rb_left);
564 else if (data->range_min > this->range_max)
565 new = &((*new)->rb_right);
570 rb_link_node(&data->node, parent, new);
571 rb_insert_color(&data->node, root);
576 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
579 struct rb_node *node = map->range_tree.rb_node;
582 struct regmap_range_node *this =
583 rb_entry(node, struct regmap_range_node, node);
585 if (reg < this->range_min)
586 node = node->rb_left;
587 else if (reg > this->range_max)
588 node = node->rb_right;
596 static void regmap_range_exit(struct regmap *map)
598 struct rb_node *next;
599 struct regmap_range_node *range_node;
601 next = rb_first(&map->range_tree);
603 range_node = rb_entry(next, struct regmap_range_node, node);
604 next = rb_next(&range_node->node);
605 rb_erase(&range_node->node, &map->range_tree);
609 kfree(map->selector_work_buf);
612 static int regmap_set_name(struct regmap *map, const struct regmap_config *config)
615 const char *name = kstrdup_const(config->name, GFP_KERNEL);
620 kfree_const(map->name);
627 int regmap_attach_dev(struct device *dev, struct regmap *map,
628 const struct regmap_config *config)
635 ret = regmap_set_name(map, config);
639 regmap_debugfs_exit(map);
640 regmap_debugfs_init(map);
642 /* Add a devres resource for dev_get_regmap() */
643 m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
645 regmap_debugfs_exit(map);
653 EXPORT_SYMBOL_GPL(regmap_attach_dev);
655 static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
656 const struct regmap_config *config)
658 enum regmap_endian endian;
660 /* Retrieve the endianness specification from the regmap config */
661 endian = config->reg_format_endian;
663 /* If the regmap config specified a non-default value, use that */
664 if (endian != REGMAP_ENDIAN_DEFAULT)
667 /* Retrieve the endianness specification from the bus config */
668 if (bus && bus->reg_format_endian_default)
669 endian = bus->reg_format_endian_default;
671 /* If the bus specified a non-default value, use that */
672 if (endian != REGMAP_ENDIAN_DEFAULT)
675 /* Use this if no other value was found */
676 return REGMAP_ENDIAN_BIG;
679 enum regmap_endian regmap_get_val_endian(struct device *dev,
680 const struct regmap_bus *bus,
681 const struct regmap_config *config)
683 struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
684 enum regmap_endian endian;
686 /* Retrieve the endianness specification from the regmap config */
687 endian = config->val_format_endian;
689 /* If the regmap config specified a non-default value, use that */
690 if (endian != REGMAP_ENDIAN_DEFAULT)
693 /* If the firmware node exist try to get endianness from it */
694 if (fwnode_property_read_bool(fwnode, "big-endian"))
695 endian = REGMAP_ENDIAN_BIG;
696 else if (fwnode_property_read_bool(fwnode, "little-endian"))
697 endian = REGMAP_ENDIAN_LITTLE;
698 else if (fwnode_property_read_bool(fwnode, "native-endian"))
699 endian = REGMAP_ENDIAN_NATIVE;
701 /* If the endianness was specified in fwnode, use that */
702 if (endian != REGMAP_ENDIAN_DEFAULT)
705 /* Retrieve the endianness specification from the bus config */
706 if (bus && bus->val_format_endian_default)
707 endian = bus->val_format_endian_default;
709 /* If the bus specified a non-default value, use that */
710 if (endian != REGMAP_ENDIAN_DEFAULT)
713 /* Use this if no other value was found */
714 return REGMAP_ENDIAN_BIG;
716 EXPORT_SYMBOL_GPL(regmap_get_val_endian);
718 struct regmap *__regmap_init(struct device *dev,
719 const struct regmap_bus *bus,
721 const struct regmap_config *config,
722 struct lock_class_key *lock_key,
723 const char *lock_name)
727 enum regmap_endian reg_endian, val_endian;
733 map = kzalloc(sizeof(*map), GFP_KERNEL);
739 ret = regmap_set_name(map, config);
743 ret = -EINVAL; /* Later error paths rely on this */
745 if (config->disable_locking) {
746 map->lock = map->unlock = regmap_lock_unlock_none;
747 map->can_sleep = config->can_sleep;
748 regmap_debugfs_disable(map);
749 } else if (config->lock && config->unlock) {
750 map->lock = config->lock;
751 map->unlock = config->unlock;
752 map->lock_arg = config->lock_arg;
753 map->can_sleep = config->can_sleep;
754 } else if (config->use_hwlock) {
755 map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
761 switch (config->hwlock_mode) {
762 case HWLOCK_IRQSTATE:
763 map->lock = regmap_lock_hwlock_irqsave;
764 map->unlock = regmap_unlock_hwlock_irqrestore;
767 map->lock = regmap_lock_hwlock_irq;
768 map->unlock = regmap_unlock_hwlock_irq;
771 map->lock = regmap_lock_hwlock;
772 map->unlock = regmap_unlock_hwlock;
778 if ((bus && bus->fast_io) ||
780 if (config->use_raw_spinlock) {
781 raw_spin_lock_init(&map->raw_spinlock);
782 map->lock = regmap_lock_raw_spinlock;
783 map->unlock = regmap_unlock_raw_spinlock;
784 lockdep_set_class_and_name(&map->raw_spinlock,
785 lock_key, lock_name);
787 spin_lock_init(&map->spinlock);
788 map->lock = regmap_lock_spinlock;
789 map->unlock = regmap_unlock_spinlock;
790 lockdep_set_class_and_name(&map->spinlock,
791 lock_key, lock_name);
794 mutex_init(&map->mutex);
795 map->lock = regmap_lock_mutex;
796 map->unlock = regmap_unlock_mutex;
797 map->can_sleep = true;
798 lockdep_set_class_and_name(&map->mutex,
799 lock_key, lock_name);
805 * When we write in fast-paths with regmap_bulk_write() don't allocate
806 * scratch buffers with sleeping allocations.
808 if ((bus && bus->fast_io) || config->fast_io)
809 map->alloc_flags = GFP_ATOMIC;
811 map->alloc_flags = GFP_KERNEL;
813 map->reg_base = config->reg_base;
815 map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
816 map->format.pad_bytes = config->pad_bits / 8;
817 map->format.reg_shift = config->reg_shift;
818 map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
819 map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
820 config->val_bits + config->pad_bits, 8);
821 map->reg_shift = config->pad_bits % 8;
822 if (config->reg_stride)
823 map->reg_stride = config->reg_stride;
826 if (is_power_of_2(map->reg_stride))
827 map->reg_stride_order = ilog2(map->reg_stride);
829 map->reg_stride_order = -1;
830 map->use_single_read = config->use_single_read || !(config->read || (bus && bus->read));
831 map->use_single_write = config->use_single_write || !(config->write || (bus && bus->write));
832 map->can_multi_write = config->can_multi_write && (config->write || (bus && bus->write));
834 map->max_raw_read = bus->max_raw_read;
835 map->max_raw_write = bus->max_raw_write;
836 } else if (config->max_raw_read && config->max_raw_write) {
837 map->max_raw_read = config->max_raw_read;
838 map->max_raw_write = config->max_raw_write;
842 map->bus_context = bus_context;
843 map->max_register = config->max_register;
844 map->wr_table = config->wr_table;
845 map->rd_table = config->rd_table;
846 map->volatile_table = config->volatile_table;
847 map->precious_table = config->precious_table;
848 map->wr_noinc_table = config->wr_noinc_table;
849 map->rd_noinc_table = config->rd_noinc_table;
850 map->writeable_reg = config->writeable_reg;
851 map->readable_reg = config->readable_reg;
852 map->volatile_reg = config->volatile_reg;
853 map->precious_reg = config->precious_reg;
854 map->writeable_noinc_reg = config->writeable_noinc_reg;
855 map->readable_noinc_reg = config->readable_noinc_reg;
856 map->cache_type = config->cache_type;
858 spin_lock_init(&map->async_lock);
859 INIT_LIST_HEAD(&map->async_list);
860 INIT_LIST_HEAD(&map->async_free);
861 init_waitqueue_head(&map->async_waitq);
863 if (config->read_flag_mask ||
864 config->write_flag_mask ||
865 config->zero_flag_mask) {
866 map->read_flag_mask = config->read_flag_mask;
867 map->write_flag_mask = config->write_flag_mask;
869 map->read_flag_mask = bus->read_flag_mask;
872 if (config && config->read && config->write) {
873 map->reg_read = _regmap_bus_read;
874 if (config->reg_update_bits)
875 map->reg_update_bits = config->reg_update_bits;
877 /* Bulk read/write */
878 map->read = config->read;
879 map->write = config->write;
881 reg_endian = REGMAP_ENDIAN_NATIVE;
882 val_endian = REGMAP_ENDIAN_NATIVE;
884 map->reg_read = config->reg_read;
885 map->reg_write = config->reg_write;
886 map->reg_update_bits = config->reg_update_bits;
888 map->defer_caching = false;
889 goto skip_format_initialization;
890 } else if (!bus->read || !bus->write) {
891 map->reg_read = _regmap_bus_reg_read;
892 map->reg_write = _regmap_bus_reg_write;
893 map->reg_update_bits = bus->reg_update_bits;
895 map->defer_caching = false;
896 goto skip_format_initialization;
898 map->reg_read = _regmap_bus_read;
899 map->reg_update_bits = bus->reg_update_bits;
900 /* Bulk read/write */
901 map->read = bus->read;
902 map->write = bus->write;
904 reg_endian = regmap_get_reg_endian(bus, config);
905 val_endian = regmap_get_val_endian(dev, bus, config);
908 switch (config->reg_bits + map->reg_shift) {
910 switch (config->val_bits) {
912 map->format.format_write = regmap_format_2_6_write;
920 switch (config->val_bits) {
922 map->format.format_write = regmap_format_4_12_write;
930 switch (config->val_bits) {
932 map->format.format_write = regmap_format_7_9_write;
935 map->format.format_write = regmap_format_7_17_write;
943 switch (config->val_bits) {
945 map->format.format_write = regmap_format_10_14_write;
953 switch (config->val_bits) {
955 map->format.format_write = regmap_format_12_20_write;
963 map->format.format_reg = regmap_format_8;
967 switch (reg_endian) {
968 case REGMAP_ENDIAN_BIG:
969 map->format.format_reg = regmap_format_16_be;
971 case REGMAP_ENDIAN_LITTLE:
972 map->format.format_reg = regmap_format_16_le;
974 case REGMAP_ENDIAN_NATIVE:
975 map->format.format_reg = regmap_format_16_native;
983 switch (reg_endian) {
984 case REGMAP_ENDIAN_BIG:
985 map->format.format_reg = regmap_format_24_be;
993 switch (reg_endian) {
994 case REGMAP_ENDIAN_BIG:
995 map->format.format_reg = regmap_format_32_be;
997 case REGMAP_ENDIAN_LITTLE:
998 map->format.format_reg = regmap_format_32_le;
1000 case REGMAP_ENDIAN_NATIVE:
1001 map->format.format_reg = regmap_format_32_native;
1010 switch (reg_endian) {
1011 case REGMAP_ENDIAN_BIG:
1012 map->format.format_reg = regmap_format_64_be;
1014 case REGMAP_ENDIAN_LITTLE:
1015 map->format.format_reg = regmap_format_64_le;
1017 case REGMAP_ENDIAN_NATIVE:
1018 map->format.format_reg = regmap_format_64_native;
1030 if (val_endian == REGMAP_ENDIAN_NATIVE)
1031 map->format.parse_inplace = regmap_parse_inplace_noop;
1033 switch (config->val_bits) {
1035 map->format.format_val = regmap_format_8;
1036 map->format.parse_val = regmap_parse_8;
1037 map->format.parse_inplace = regmap_parse_inplace_noop;
1040 switch (val_endian) {
1041 case REGMAP_ENDIAN_BIG:
1042 map->format.format_val = regmap_format_16_be;
1043 map->format.parse_val = regmap_parse_16_be;
1044 map->format.parse_inplace = regmap_parse_16_be_inplace;
1046 case REGMAP_ENDIAN_LITTLE:
1047 map->format.format_val = regmap_format_16_le;
1048 map->format.parse_val = regmap_parse_16_le;
1049 map->format.parse_inplace = regmap_parse_16_le_inplace;
1051 case REGMAP_ENDIAN_NATIVE:
1052 map->format.format_val = regmap_format_16_native;
1053 map->format.parse_val = regmap_parse_16_native;
1060 switch (val_endian) {
1061 case REGMAP_ENDIAN_BIG:
1062 map->format.format_val = regmap_format_24_be;
1063 map->format.parse_val = regmap_parse_24_be;
1070 switch (val_endian) {
1071 case REGMAP_ENDIAN_BIG:
1072 map->format.format_val = regmap_format_32_be;
1073 map->format.parse_val = regmap_parse_32_be;
1074 map->format.parse_inplace = regmap_parse_32_be_inplace;
1076 case REGMAP_ENDIAN_LITTLE:
1077 map->format.format_val = regmap_format_32_le;
1078 map->format.parse_val = regmap_parse_32_le;
1079 map->format.parse_inplace = regmap_parse_32_le_inplace;
1081 case REGMAP_ENDIAN_NATIVE:
1082 map->format.format_val = regmap_format_32_native;
1083 map->format.parse_val = regmap_parse_32_native;
1091 switch (val_endian) {
1092 case REGMAP_ENDIAN_BIG:
1093 map->format.format_val = regmap_format_64_be;
1094 map->format.parse_val = regmap_parse_64_be;
1095 map->format.parse_inplace = regmap_parse_64_be_inplace;
1097 case REGMAP_ENDIAN_LITTLE:
1098 map->format.format_val = regmap_format_64_le;
1099 map->format.parse_val = regmap_parse_64_le;
1100 map->format.parse_inplace = regmap_parse_64_le_inplace;
1102 case REGMAP_ENDIAN_NATIVE:
1103 map->format.format_val = regmap_format_64_native;
1104 map->format.parse_val = regmap_parse_64_native;
1113 if (map->format.format_write) {
1114 if ((reg_endian != REGMAP_ENDIAN_BIG) ||
1115 (val_endian != REGMAP_ENDIAN_BIG))
1117 map->use_single_write = true;
1120 if (!map->format.format_write &&
1121 !(map->format.format_reg && map->format.format_val))
1124 map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
1125 if (map->work_buf == NULL) {
1130 if (map->format.format_write) {
1131 map->defer_caching = false;
1132 map->reg_write = _regmap_bus_formatted_write;
1133 } else if (map->format.format_val) {
1134 map->defer_caching = true;
1135 map->reg_write = _regmap_bus_raw_write;
1138 skip_format_initialization:
1140 map->range_tree = RB_ROOT;
1141 for (i = 0; i < config->num_ranges; i++) {
1142 const struct regmap_range_cfg *range_cfg = &config->ranges[i];
1143 struct regmap_range_node *new;
1146 if (range_cfg->range_max < range_cfg->range_min) {
1147 dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
1148 range_cfg->range_max, range_cfg->range_min);
1152 if (range_cfg->range_max > map->max_register) {
1153 dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
1154 range_cfg->range_max, map->max_register);
1158 if (range_cfg->selector_reg > map->max_register) {
1160 "Invalid range %d: selector out of map\n", i);
1164 if (range_cfg->window_len == 0) {
1165 dev_err(map->dev, "Invalid range %d: window_len 0\n",
1170 /* Make sure, that this register range has no selector
1171 or data window within its boundary */
1172 for (j = 0; j < config->num_ranges; j++) {
1173 unsigned int sel_reg = config->ranges[j].selector_reg;
1174 unsigned int win_min = config->ranges[j].window_start;
1175 unsigned int win_max = win_min +
1176 config->ranges[j].window_len - 1;
1178 /* Allow data window inside its own virtual range */
1182 if (range_cfg->range_min <= sel_reg &&
1183 sel_reg <= range_cfg->range_max) {
1185 "Range %d: selector for %d in window\n",
1190 if (!(win_max < range_cfg->range_min ||
1191 win_min > range_cfg->range_max)) {
1193 "Range %d: window for %d in window\n",
1199 new = kzalloc(sizeof(*new), GFP_KERNEL);
1206 new->name = range_cfg->name;
1207 new->range_min = range_cfg->range_min;
1208 new->range_max = range_cfg->range_max;
1209 new->selector_reg = range_cfg->selector_reg;
1210 new->selector_mask = range_cfg->selector_mask;
1211 new->selector_shift = range_cfg->selector_shift;
1212 new->window_start = range_cfg->window_start;
1213 new->window_len = range_cfg->window_len;
1215 if (!_regmap_range_add(map, new)) {
1216 dev_err(map->dev, "Failed to add range %d\n", i);
1221 if (map->selector_work_buf == NULL) {
1222 map->selector_work_buf =
1223 kzalloc(map->format.buf_size, GFP_KERNEL);
1224 if (map->selector_work_buf == NULL) {
1231 ret = regcache_init(map, config);
1236 ret = regmap_attach_dev(dev, map, config);
1240 regmap_debugfs_init(map);
1248 regmap_range_exit(map);
1249 kfree(map->work_buf);
1252 hwspin_lock_free(map->hwlock);
1254 kfree_const(map->name);
1258 return ERR_PTR(ret);
1260 EXPORT_SYMBOL_GPL(__regmap_init);
1262 static void devm_regmap_release(struct device *dev, void *res)
1264 regmap_exit(*(struct regmap **)res);
1267 struct regmap *__devm_regmap_init(struct device *dev,
1268 const struct regmap_bus *bus,
1270 const struct regmap_config *config,
1271 struct lock_class_key *lock_key,
1272 const char *lock_name)
1274 struct regmap **ptr, *regmap;
1276 ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1278 return ERR_PTR(-ENOMEM);
1280 regmap = __regmap_init(dev, bus, bus_context, config,
1281 lock_key, lock_name);
1282 if (!IS_ERR(regmap)) {
1284 devres_add(dev, ptr);
1291 EXPORT_SYMBOL_GPL(__devm_regmap_init);
1293 static void regmap_field_init(struct regmap_field *rm_field,
1294 struct regmap *regmap, struct reg_field reg_field)
1296 rm_field->regmap = regmap;
1297 rm_field->reg = reg_field.reg;
1298 rm_field->shift = reg_field.lsb;
1299 rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1301 WARN_ONCE(rm_field->mask == 0, "invalid empty mask defined\n");
1303 rm_field->id_size = reg_field.id_size;
1304 rm_field->id_offset = reg_field.id_offset;
1308 * devm_regmap_field_alloc() - Allocate and initialise a register field.
1310 * @dev: Device that will be interacted with
1311 * @regmap: regmap bank in which this register field is located.
1312 * @reg_field: Register field with in the bank.
1314 * The return value will be an ERR_PTR() on error or a valid pointer
1315 * to a struct regmap_field. The regmap_field will be automatically freed
1316 * by the device management code.
1318 struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1319 struct regmap *regmap, struct reg_field reg_field)
1321 struct regmap_field *rm_field = devm_kzalloc(dev,
1322 sizeof(*rm_field), GFP_KERNEL);
1324 return ERR_PTR(-ENOMEM);
1326 regmap_field_init(rm_field, regmap, reg_field);
1331 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1335 * regmap_field_bulk_alloc() - Allocate and initialise a bulk register field.
1337 * @regmap: regmap bank in which this register field is located.
1338 * @rm_field: regmap register fields within the bank.
1339 * @reg_field: Register fields within the bank.
1340 * @num_fields: Number of register fields.
1342 * The return value will be an -ENOMEM on error or zero for success.
1343 * Newly allocated regmap_fields should be freed by calling
1344 * regmap_field_bulk_free()
1346 int regmap_field_bulk_alloc(struct regmap *regmap,
1347 struct regmap_field **rm_field,
1348 const struct reg_field *reg_field,
1351 struct regmap_field *rf;
1354 rf = kcalloc(num_fields, sizeof(*rf), GFP_KERNEL);
1358 for (i = 0; i < num_fields; i++) {
1359 regmap_field_init(&rf[i], regmap, reg_field[i]);
1360 rm_field[i] = &rf[i];
1365 EXPORT_SYMBOL_GPL(regmap_field_bulk_alloc);
1368 * devm_regmap_field_bulk_alloc() - Allocate and initialise a bulk register
1371 * @dev: Device that will be interacted with
1372 * @regmap: regmap bank in which this register field is located.
1373 * @rm_field: regmap register fields within the bank.
1374 * @reg_field: Register fields within the bank.
1375 * @num_fields: Number of register fields.
1377 * The return value will be an -ENOMEM on error or zero for success.
1378 * Newly allocated regmap_fields will be automatically freed by the
1379 * device management code.
1381 int devm_regmap_field_bulk_alloc(struct device *dev,
1382 struct regmap *regmap,
1383 struct regmap_field **rm_field,
1384 const struct reg_field *reg_field,
1387 struct regmap_field *rf;
1390 rf = devm_kcalloc(dev, num_fields, sizeof(*rf), GFP_KERNEL);
1394 for (i = 0; i < num_fields; i++) {
1395 regmap_field_init(&rf[i], regmap, reg_field[i]);
1396 rm_field[i] = &rf[i];
1401 EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_alloc);
1404 * regmap_field_bulk_free() - Free register field allocated using
1405 * regmap_field_bulk_alloc.
1407 * @field: regmap fields which should be freed.
1409 void regmap_field_bulk_free(struct regmap_field *field)
1413 EXPORT_SYMBOL_GPL(regmap_field_bulk_free);
1416 * devm_regmap_field_bulk_free() - Free a bulk register field allocated using
1417 * devm_regmap_field_bulk_alloc.
1419 * @dev: Device that will be interacted with
1420 * @field: regmap field which should be freed.
1422 * Free register field allocated using devm_regmap_field_bulk_alloc(). Usually
1423 * drivers need not call this function, as the memory allocated via devm
1424 * will be freed as per device-driver life-cycle.
1426 void devm_regmap_field_bulk_free(struct device *dev,
1427 struct regmap_field *field)
1429 devm_kfree(dev, field);
1431 EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_free);
1434 * devm_regmap_field_free() - Free a register field allocated using
1435 * devm_regmap_field_alloc.
1437 * @dev: Device that will be interacted with
1438 * @field: regmap field which should be freed.
1440 * Free register field allocated using devm_regmap_field_alloc(). Usually
1441 * drivers need not call this function, as the memory allocated via devm
1442 * will be freed as per device-driver life-cyle.
1444 void devm_regmap_field_free(struct device *dev,
1445 struct regmap_field *field)
1447 devm_kfree(dev, field);
1449 EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1452 * regmap_field_alloc() - Allocate and initialise a register field.
1454 * @regmap: regmap bank in which this register field is located.
1455 * @reg_field: Register field with in the bank.
1457 * The return value will be an ERR_PTR() on error or a valid pointer
1458 * to a struct regmap_field. The regmap_field should be freed by the
1459 * user once its finished working with it using regmap_field_free().
1461 struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1462 struct reg_field reg_field)
1464 struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1467 return ERR_PTR(-ENOMEM);
1469 regmap_field_init(rm_field, regmap, reg_field);
1473 EXPORT_SYMBOL_GPL(regmap_field_alloc);
1476 * regmap_field_free() - Free register field allocated using
1477 * regmap_field_alloc.
1479 * @field: regmap field which should be freed.
1481 void regmap_field_free(struct regmap_field *field)
1485 EXPORT_SYMBOL_GPL(regmap_field_free);
1488 * regmap_reinit_cache() - Reinitialise the current register cache
1490 * @map: Register map to operate on.
1491 * @config: New configuration. Only the cache data will be used.
1493 * Discard any existing register cache for the map and initialize a
1494 * new cache. This can be used to restore the cache to defaults or to
1495 * update the cache configuration to reflect runtime discovery of the
1498 * No explicit locking is done here, the user needs to ensure that
1499 * this function will not race with other calls to regmap.
1501 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1506 regmap_debugfs_exit(map);
1508 map->max_register = config->max_register;
1509 map->writeable_reg = config->writeable_reg;
1510 map->readable_reg = config->readable_reg;
1511 map->volatile_reg = config->volatile_reg;
1512 map->precious_reg = config->precious_reg;
1513 map->writeable_noinc_reg = config->writeable_noinc_reg;
1514 map->readable_noinc_reg = config->readable_noinc_reg;
1515 map->cache_type = config->cache_type;
1517 ret = regmap_set_name(map, config);
1521 regmap_debugfs_init(map);
1523 map->cache_bypass = false;
1524 map->cache_only = false;
1526 return regcache_init(map, config);
1528 EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1531 * regmap_exit() - Free a previously allocated register map
1533 * @map: Register map to operate on.
1535 void regmap_exit(struct regmap *map)
1537 struct regmap_async *async;
1540 regmap_debugfs_exit(map);
1541 regmap_range_exit(map);
1542 if (map->bus && map->bus->free_context)
1543 map->bus->free_context(map->bus_context);
1544 kfree(map->work_buf);
1545 while (!list_empty(&map->async_free)) {
1546 async = list_first_entry_or_null(&map->async_free,
1547 struct regmap_async,
1549 list_del(&async->list);
1550 kfree(async->work_buf);
1554 hwspin_lock_free(map->hwlock);
1555 if (map->lock == regmap_lock_mutex)
1556 mutex_destroy(&map->mutex);
1557 kfree_const(map->name);
1559 if (map->bus && map->bus->free_on_exit)
1563 EXPORT_SYMBOL_GPL(regmap_exit);
1565 static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1567 struct regmap **r = res;
1573 /* If the user didn't specify a name match any */
1575 return !strcmp((*r)->name, data);
1581 * dev_get_regmap() - Obtain the regmap (if any) for a device
1583 * @dev: Device to retrieve the map for
1584 * @name: Optional name for the register map, usually NULL.
1586 * Returns the regmap for the device if one is present, or NULL. If
1587 * name is specified then it must match the name specified when
1588 * registering the device, if it is NULL then the first regmap found
1589 * will be used. Devices with multiple register maps are very rare,
1590 * generic code should normally not need to specify a name.
1592 struct regmap *dev_get_regmap(struct device *dev, const char *name)
1594 struct regmap **r = devres_find(dev, dev_get_regmap_release,
1595 dev_get_regmap_match, (void *)name);
1601 EXPORT_SYMBOL_GPL(dev_get_regmap);
1604 * regmap_get_device() - Obtain the device from a regmap
1606 * @map: Register map to operate on.
1608 * Returns the underlying device that the regmap has been created for.
1610 struct device *regmap_get_device(struct regmap *map)
1614 EXPORT_SYMBOL_GPL(regmap_get_device);
1616 static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1617 struct regmap_range_node *range,
1618 unsigned int val_num)
1620 void *orig_work_buf;
1621 unsigned int win_offset;
1622 unsigned int win_page;
1626 win_offset = (*reg - range->range_min) % range->window_len;
1627 win_page = (*reg - range->range_min) / range->window_len;
1630 /* Bulk write shouldn't cross range boundary */
1631 if (*reg + val_num - 1 > range->range_max)
1634 /* ... or single page boundary */
1635 if (val_num > range->window_len - win_offset)
1639 /* It is possible to have selector register inside data window.
1640 In that case, selector register is located on every page and
1641 it needs no page switching, when accessed alone. */
1643 range->window_start + win_offset != range->selector_reg) {
1644 /* Use separate work_buf during page switching */
1645 orig_work_buf = map->work_buf;
1646 map->work_buf = map->selector_work_buf;
1648 ret = _regmap_update_bits(map, range->selector_reg,
1649 range->selector_mask,
1650 win_page << range->selector_shift,
1653 map->work_buf = orig_work_buf;
1659 *reg = range->window_start + win_offset;
1664 static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1670 if (!mask || !map->work_buf)
1673 buf = map->work_buf;
1675 for (i = 0; i < max_bytes; i++)
1676 buf[i] |= (mask >> (8 * i)) & 0xff;
1679 static unsigned int regmap_reg_addr(struct regmap *map, unsigned int reg)
1681 reg += map->reg_base;
1683 if (map->format.reg_shift > 0)
1684 reg >>= map->format.reg_shift;
1685 else if (map->format.reg_shift < 0)
1686 reg <<= -(map->format.reg_shift);
1691 static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg,
1692 const void *val, size_t val_len, bool noinc)
1694 struct regmap_range_node *range;
1695 unsigned long flags;
1696 void *work_val = map->work_buf + map->format.reg_bytes +
1697 map->format.pad_bytes;
1699 int ret = -ENOTSUPP;
1703 /* Check for unwritable or noinc registers in range
1706 if (!regmap_writeable_noinc(map, reg)) {
1707 for (i = 0; i < val_len / map->format.val_bytes; i++) {
1708 unsigned int element =
1709 reg + regmap_get_offset(map, i);
1710 if (!regmap_writeable(map, element) ||
1711 regmap_writeable_noinc(map, element))
1716 if (!map->cache_bypass && map->format.parse_val) {
1718 int val_bytes = map->format.val_bytes;
1719 for (i = 0; i < val_len / val_bytes; i++) {
1720 ival = map->format.parse_val(val + (i * val_bytes));
1721 ret = regcache_write(map,
1722 reg + regmap_get_offset(map, i),
1726 "Error in caching of register: %x ret: %d\n",
1727 reg + regmap_get_offset(map, i), ret);
1731 if (map->cache_only) {
1732 map->cache_dirty = true;
1737 range = _regmap_range_lookup(map, reg);
1739 int val_num = val_len / map->format.val_bytes;
1740 int win_offset = (reg - range->range_min) % range->window_len;
1741 int win_residue = range->window_len - win_offset;
1743 /* If the write goes beyond the end of the window split it */
1744 while (val_num > win_residue) {
1745 dev_dbg(map->dev, "Writing window %d/%zu\n",
1746 win_residue, val_len / map->format.val_bytes);
1747 ret = _regmap_raw_write_impl(map, reg, val,
1749 map->format.val_bytes, noinc);
1754 val_num -= win_residue;
1755 val += win_residue * map->format.val_bytes;
1756 val_len -= win_residue * map->format.val_bytes;
1758 win_offset = (reg - range->range_min) %
1760 win_residue = range->window_len - win_offset;
1763 ret = _regmap_select_page(map, ®, range, noinc ? 1 : val_num);
1768 reg = regmap_reg_addr(map, reg);
1769 map->format.format_reg(map->work_buf, reg, map->reg_shift);
1770 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1771 map->write_flag_mask);
1774 * Essentially all I/O mechanisms will be faster with a single
1775 * buffer to write. Since register syncs often generate raw
1776 * writes of single registers optimise that case.
1778 if (val != work_val && val_len == map->format.val_bytes) {
1779 memcpy(work_val, val, map->format.val_bytes);
1783 if (map->async && map->bus && map->bus->async_write) {
1784 struct regmap_async *async;
1786 trace_regmap_async_write_start(map, reg, val_len);
1788 spin_lock_irqsave(&map->async_lock, flags);
1789 async = list_first_entry_or_null(&map->async_free,
1790 struct regmap_async,
1793 list_del(&async->list);
1794 spin_unlock_irqrestore(&map->async_lock, flags);
1797 async = map->bus->async_alloc();
1801 async->work_buf = kzalloc(map->format.buf_size,
1802 GFP_KERNEL | GFP_DMA);
1803 if (!async->work_buf) {
1811 /* If the caller supplied the value we can use it safely. */
1812 memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1813 map->format.reg_bytes + map->format.val_bytes);
1815 spin_lock_irqsave(&map->async_lock, flags);
1816 list_add_tail(&async->list, &map->async_list);
1817 spin_unlock_irqrestore(&map->async_lock, flags);
1819 if (val != work_val)
1820 ret = map->bus->async_write(map->bus_context,
1822 map->format.reg_bytes +
1823 map->format.pad_bytes,
1824 val, val_len, async);
1826 ret = map->bus->async_write(map->bus_context,
1828 map->format.reg_bytes +
1829 map->format.pad_bytes +
1830 val_len, NULL, 0, async);
1833 dev_err(map->dev, "Failed to schedule write: %d\n",
1836 spin_lock_irqsave(&map->async_lock, flags);
1837 list_move(&async->list, &map->async_free);
1838 spin_unlock_irqrestore(&map->async_lock, flags);
1844 trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1846 /* If we're doing a single register write we can probably just
1847 * send the work_buf directly, otherwise try to do a gather
1850 if (val == work_val)
1851 ret = map->write(map->bus_context, map->work_buf,
1852 map->format.reg_bytes +
1853 map->format.pad_bytes +
1855 else if (map->bus && map->bus->gather_write)
1856 ret = map->bus->gather_write(map->bus_context, map->work_buf,
1857 map->format.reg_bytes +
1858 map->format.pad_bytes,
1863 /* If that didn't work fall back on linearising by hand. */
1864 if (ret == -ENOTSUPP) {
1865 len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1866 buf = kzalloc(len, GFP_KERNEL);
1870 memcpy(buf, map->work_buf, map->format.reg_bytes);
1871 memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1873 ret = map->write(map->bus_context, buf, len);
1876 } else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1877 /* regcache_drop_region() takes lock that we already have,
1878 * thus call map->cache_ops->drop() directly
1880 if (map->cache_ops && map->cache_ops->drop)
1881 map->cache_ops->drop(map, reg, reg + 1);
1884 trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1890 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1892 * @map: Map to check.
1894 bool regmap_can_raw_write(struct regmap *map)
1896 return map->write && map->format.format_val && map->format.format_reg;
1898 EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1901 * regmap_get_raw_read_max - Get the maximum size we can read
1903 * @map: Map to check.
1905 size_t regmap_get_raw_read_max(struct regmap *map)
1907 return map->max_raw_read;
1909 EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1912 * regmap_get_raw_write_max - Get the maximum size we can read
1914 * @map: Map to check.
1916 size_t regmap_get_raw_write_max(struct regmap *map)
1918 return map->max_raw_write;
1920 EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1922 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1926 struct regmap_range_node *range;
1927 struct regmap *map = context;
1929 WARN_ON(!map->format.format_write);
1931 range = _regmap_range_lookup(map, reg);
1933 ret = _regmap_select_page(map, ®, range, 1);
1938 reg = regmap_reg_addr(map, reg);
1939 map->format.format_write(map, reg, val);
1941 trace_regmap_hw_write_start(map, reg, 1);
1943 ret = map->write(map->bus_context, map->work_buf, map->format.buf_size);
1945 trace_regmap_hw_write_done(map, reg, 1);
1950 static int _regmap_bus_reg_write(void *context, unsigned int reg,
1953 struct regmap *map = context;
1954 struct regmap_range_node *range;
1957 range = _regmap_range_lookup(map, reg);
1959 ret = _regmap_select_page(map, ®, range, 1);
1964 reg = regmap_reg_addr(map, reg);
1965 return map->bus->reg_write(map->bus_context, reg, val);
1968 static int _regmap_bus_raw_write(void *context, unsigned int reg,
1971 struct regmap *map = context;
1973 WARN_ON(!map->format.format_val);
1975 map->format.format_val(map->work_buf + map->format.reg_bytes
1976 + map->format.pad_bytes, val, 0);
1977 return _regmap_raw_write_impl(map, reg,
1979 map->format.reg_bytes +
1980 map->format.pad_bytes,
1981 map->format.val_bytes,
1985 static inline void *_regmap_map_get_context(struct regmap *map)
1987 return (map->bus || (!map->bus && map->read)) ? map : map->bus_context;
1990 int _regmap_write(struct regmap *map, unsigned int reg,
1994 void *context = _regmap_map_get_context(map);
1996 if (!regmap_writeable(map, reg))
1999 if (!map->cache_bypass && !map->defer_caching) {
2000 ret = regcache_write(map, reg, val);
2003 if (map->cache_only) {
2004 map->cache_dirty = true;
2009 ret = map->reg_write(context, reg, val);
2011 if (regmap_should_log(map))
2012 dev_info(map->dev, "%x <= %x\n", reg, val);
2014 trace_regmap_reg_write(map, reg, val);
2021 * regmap_write() - Write a value to a single register
2023 * @map: Register map to write to
2024 * @reg: Register to write to
2025 * @val: Value to be written
2027 * A value of zero will be returned on success, a negative errno will
2028 * be returned in error cases.
2030 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
2034 if (!IS_ALIGNED(reg, map->reg_stride))
2037 map->lock(map->lock_arg);
2039 ret = _regmap_write(map, reg, val);
2041 map->unlock(map->lock_arg);
2045 EXPORT_SYMBOL_GPL(regmap_write);
2048 * regmap_write_async() - Write a value to a single register asynchronously
2050 * @map: Register map to write to
2051 * @reg: Register to write to
2052 * @val: Value to be written
2054 * A value of zero will be returned on success, a negative errno will
2055 * be returned in error cases.
2057 int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
2061 if (!IS_ALIGNED(reg, map->reg_stride))
2064 map->lock(map->lock_arg);
2068 ret = _regmap_write(map, reg, val);
2072 map->unlock(map->lock_arg);
2076 EXPORT_SYMBOL_GPL(regmap_write_async);
2078 int _regmap_raw_write(struct regmap *map, unsigned int reg,
2079 const void *val, size_t val_len, bool noinc)
2081 size_t val_bytes = map->format.val_bytes;
2082 size_t val_count = val_len / val_bytes;
2083 size_t chunk_count, chunk_bytes;
2084 size_t chunk_regs = val_count;
2090 if (map->use_single_write)
2092 else if (map->max_raw_write && val_len > map->max_raw_write)
2093 chunk_regs = map->max_raw_write / val_bytes;
2095 chunk_count = val_count / chunk_regs;
2096 chunk_bytes = chunk_regs * val_bytes;
2098 /* Write as many bytes as possible with chunk_size */
2099 for (i = 0; i < chunk_count; i++) {
2100 ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes, noinc);
2104 reg += regmap_get_offset(map, chunk_regs);
2106 val_len -= chunk_bytes;
2109 /* Write remaining bytes */
2111 ret = _regmap_raw_write_impl(map, reg, val, val_len, noinc);
2117 * regmap_raw_write() - Write raw values to one or more registers
2119 * @map: Register map to write to
2120 * @reg: Initial register to write to
2121 * @val: Block of data to be written, laid out for direct transmission to the
2123 * @val_len: Length of data pointed to by val.
2125 * This function is intended to be used for things like firmware
2126 * download where a large block of data needs to be transferred to the
2127 * device. No formatting will be done on the data provided.
2129 * A value of zero will be returned on success, a negative errno will
2130 * be returned in error cases.
2132 int regmap_raw_write(struct regmap *map, unsigned int reg,
2133 const void *val, size_t val_len)
2137 if (!regmap_can_raw_write(map))
2139 if (val_len % map->format.val_bytes)
2142 map->lock(map->lock_arg);
2144 ret = _regmap_raw_write(map, reg, val, val_len, false);
2146 map->unlock(map->lock_arg);
2150 EXPORT_SYMBOL_GPL(regmap_raw_write);
2152 static int regmap_noinc_readwrite(struct regmap *map, unsigned int reg,
2153 void *val, unsigned int val_len, bool write)
2155 size_t val_bytes = map->format.val_bytes;
2156 size_t val_count = val_len / val_bytes;
2157 unsigned int lastval;
2167 switch (val_bytes) {
2171 lastval = (unsigned int)u8p[val_count - 1];
2176 lastval = (unsigned int)u16p[val_count - 1];
2181 lastval = (unsigned int)u32p[val_count - 1];
2187 lastval = (unsigned int)u64p[val_count - 1];
2195 * Update the cache with the last value we write, the rest is just
2196 * gone down in the hardware FIFO. We can't cache FIFOs. This makes
2197 * sure a single read from the cache will work.
2200 if (!map->cache_bypass && !map->defer_caching) {
2201 ret = regcache_write(map, reg, lastval);
2204 if (map->cache_only) {
2205 map->cache_dirty = true;
2209 ret = map->bus->reg_noinc_write(map->bus_context, reg, val, val_count);
2211 ret = map->bus->reg_noinc_read(map->bus_context, reg, val, val_count);
2214 if (!ret && regmap_should_log(map)) {
2215 dev_info(map->dev, "%x %s [", reg, write ? "<=" : "=>");
2216 for (i = 0; i < val_count; i++) {
2217 switch (val_bytes) {
2219 pr_cont("%x", u8p[i]);
2222 pr_cont("%x", u16p[i]);
2225 pr_cont("%x", u32p[i]);
2229 pr_cont("%llx", u64p[i]);
2235 if (i == (val_count - 1))
2246 * regmap_noinc_write(): Write data from a register without incrementing the
2249 * @map: Register map to write to
2250 * @reg: Register to write to
2251 * @val: Pointer to data buffer
2252 * @val_len: Length of output buffer in bytes.
2254 * The regmap API usually assumes that bulk bus write operations will write a
2255 * range of registers. Some devices have certain registers for which a write
2256 * operation can write to an internal FIFO.
2258 * The target register must be volatile but registers after it can be
2259 * completely unrelated cacheable registers.
2261 * This will attempt multiple writes as required to write val_len bytes.
2263 * A value of zero will be returned on success, a negative errno will be
2264 * returned in error cases.
2266 int regmap_noinc_write(struct regmap *map, unsigned int reg,
2267 const void *val, size_t val_len)
2272 if (!map->write && !(map->bus && map->bus->reg_noinc_write))
2274 if (val_len % map->format.val_bytes)
2276 if (!IS_ALIGNED(reg, map->reg_stride))
2281 map->lock(map->lock_arg);
2283 if (!regmap_volatile(map, reg) || !regmap_writeable_noinc(map, reg)) {
2289 * Use the accelerated operation if we can. The val drops the const
2290 * typing in order to facilitate code reuse in regmap_noinc_readwrite().
2292 if (map->bus->reg_noinc_write) {
2293 ret = regmap_noinc_readwrite(map, reg, (void *)val, val_len, true);
2298 if (map->max_raw_write && map->max_raw_write < val_len)
2299 write_len = map->max_raw_write;
2301 write_len = val_len;
2302 ret = _regmap_raw_write(map, reg, val, write_len, true);
2305 val = ((u8 *)val) + write_len;
2306 val_len -= write_len;
2310 map->unlock(map->lock_arg);
2313 EXPORT_SYMBOL_GPL(regmap_noinc_write);
2316 * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
2319 * @field: Register field to write to
2320 * @mask: Bitmask to change
2321 * @val: Value to be written
2322 * @change: Boolean indicating if a write was done
2323 * @async: Boolean indicating asynchronously
2324 * @force: Boolean indicating use force update
2326 * Perform a read/modify/write cycle on the register field with change,
2327 * async, force option.
2329 * A value of zero will be returned on success, a negative errno will
2330 * be returned in error cases.
2332 int regmap_field_update_bits_base(struct regmap_field *field,
2333 unsigned int mask, unsigned int val,
2334 bool *change, bool async, bool force)
2336 mask = (mask << field->shift) & field->mask;
2338 return regmap_update_bits_base(field->regmap, field->reg,
2339 mask, val << field->shift,
2340 change, async, force);
2342 EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
2345 * regmap_field_test_bits() - Check if all specified bits are set in a
2348 * @field: Register field to operate on
2349 * @bits: Bits to test
2351 * Returns -1 if the underlying regmap_field_read() fails, 0 if at least one of the
2352 * tested bits is not set and 1 if all tested bits are set.
2354 int regmap_field_test_bits(struct regmap_field *field, unsigned int bits)
2356 unsigned int val, ret;
2358 ret = regmap_field_read(field, &val);
2362 return (val & bits) == bits;
2364 EXPORT_SYMBOL_GPL(regmap_field_test_bits);
2367 * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
2368 * register field with port ID
2370 * @field: Register field to write to
2372 * @mask: Bitmask to change
2373 * @val: Value to be written
2374 * @change: Boolean indicating if a write was done
2375 * @async: Boolean indicating asynchronously
2376 * @force: Boolean indicating use force update
2378 * A value of zero will be returned on success, a negative errno will
2379 * be returned in error cases.
2381 int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id,
2382 unsigned int mask, unsigned int val,
2383 bool *change, bool async, bool force)
2385 if (id >= field->id_size)
2388 mask = (mask << field->shift) & field->mask;
2390 return regmap_update_bits_base(field->regmap,
2391 field->reg + (field->id_offset * id),
2392 mask, val << field->shift,
2393 change, async, force);
2395 EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
2398 * regmap_bulk_write() - Write multiple registers to the device
2400 * @map: Register map to write to
2401 * @reg: First register to be write from
2402 * @val: Block of data to be written, in native register size for device
2403 * @val_count: Number of registers to write
2405 * This function is intended to be used for writing a large block of
2406 * data to the device either in single transfer or multiple transfer.
2408 * A value of zero will be returned on success, a negative errno will
2409 * be returned in error cases.
2411 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
2415 size_t val_bytes = map->format.val_bytes;
2417 if (!IS_ALIGNED(reg, map->reg_stride))
2421 * Some devices don't support bulk write, for them we have a series of
2422 * single write operations.
2424 if (!map->write || !map->format.parse_inplace) {
2425 map->lock(map->lock_arg);
2426 for (i = 0; i < val_count; i++) {
2429 switch (val_bytes) {
2431 ival = *(u8 *)(val + (i * val_bytes));
2434 ival = *(u16 *)(val + (i * val_bytes));
2437 ival = *(u32 *)(val + (i * val_bytes));
2441 ival = *(u64 *)(val + (i * val_bytes));
2449 ret = _regmap_write(map,
2450 reg + regmap_get_offset(map, i),
2456 map->unlock(map->lock_arg);
2460 wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
2464 for (i = 0; i < val_count * val_bytes; i += val_bytes)
2465 map->format.parse_inplace(wval + i);
2467 ret = regmap_raw_write(map, reg, wval, val_bytes * val_count);
2473 trace_regmap_bulk_write(map, reg, val, val_bytes * val_count);
2477 EXPORT_SYMBOL_GPL(regmap_bulk_write);
2480 * _regmap_raw_multi_reg_write()
2482 * the (register,newvalue) pairs in regs have not been formatted, but
2483 * they are all in the same page and have been changed to being page
2484 * relative. The page register has been written if that was necessary.
2486 static int _regmap_raw_multi_reg_write(struct regmap *map,
2487 const struct reg_sequence *regs,
2494 size_t val_bytes = map->format.val_bytes;
2495 size_t reg_bytes = map->format.reg_bytes;
2496 size_t pad_bytes = map->format.pad_bytes;
2497 size_t pair_size = reg_bytes + pad_bytes + val_bytes;
2498 size_t len = pair_size * num_regs;
2503 buf = kzalloc(len, GFP_KERNEL);
2507 /* We have to linearise by hand. */
2511 for (i = 0; i < num_regs; i++) {
2512 unsigned int reg = regs[i].reg;
2513 unsigned int val = regs[i].def;
2514 trace_regmap_hw_write_start(map, reg, 1);
2515 reg = regmap_reg_addr(map, reg);
2516 map->format.format_reg(u8, reg, map->reg_shift);
2517 u8 += reg_bytes + pad_bytes;
2518 map->format.format_val(u8, val, 0);
2522 *u8 |= map->write_flag_mask;
2524 ret = map->write(map->bus_context, buf, len);
2528 for (i = 0; i < num_regs; i++) {
2529 int reg = regs[i].reg;
2530 trace_regmap_hw_write_done(map, reg, 1);
2535 static unsigned int _regmap_register_page(struct regmap *map,
2537 struct regmap_range_node *range)
2539 unsigned int win_page = (reg - range->range_min) / range->window_len;
2544 static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2545 struct reg_sequence *regs,
2550 struct reg_sequence *base;
2551 unsigned int this_page = 0;
2552 unsigned int page_change = 0;
2554 * the set of registers are not neccessarily in order, but
2555 * since the order of write must be preserved this algorithm
2556 * chops the set each time the page changes. This also applies
2557 * if there is a delay required at any point in the sequence.
2560 for (i = 0, n = 0; i < num_regs; i++, n++) {
2561 unsigned int reg = regs[i].reg;
2562 struct regmap_range_node *range;
2564 range = _regmap_range_lookup(map, reg);
2566 unsigned int win_page = _regmap_register_page(map, reg,
2570 this_page = win_page;
2571 if (win_page != this_page) {
2572 this_page = win_page;
2577 /* If we have both a page change and a delay make sure to
2578 * write the regs and apply the delay before we change the
2582 if (page_change || regs[i].delay_us) {
2584 /* For situations where the first write requires
2585 * a delay we need to make sure we don't call
2586 * raw_multi_reg_write with n=0
2587 * This can't occur with page breaks as we
2588 * never write on the first iteration
2590 if (regs[i].delay_us && i == 0)
2593 ret = _regmap_raw_multi_reg_write(map, base, n);
2597 if (regs[i].delay_us) {
2599 fsleep(regs[i].delay_us);
2601 udelay(regs[i].delay_us);
2608 ret = _regmap_select_page(map,
2621 return _regmap_raw_multi_reg_write(map, base, n);
2625 static int _regmap_multi_reg_write(struct regmap *map,
2626 const struct reg_sequence *regs,
2632 if (!map->can_multi_write) {
2633 for (i = 0; i < num_regs; i++) {
2634 ret = _regmap_write(map, regs[i].reg, regs[i].def);
2638 if (regs[i].delay_us) {
2640 fsleep(regs[i].delay_us);
2642 udelay(regs[i].delay_us);
2648 if (!map->format.parse_inplace)
2651 if (map->writeable_reg)
2652 for (i = 0; i < num_regs; i++) {
2653 int reg = regs[i].reg;
2654 if (!map->writeable_reg(map->dev, reg))
2656 if (!IS_ALIGNED(reg, map->reg_stride))
2660 if (!map->cache_bypass) {
2661 for (i = 0; i < num_regs; i++) {
2662 unsigned int val = regs[i].def;
2663 unsigned int reg = regs[i].reg;
2664 ret = regcache_write(map, reg, val);
2667 "Error in caching of register: %x ret: %d\n",
2672 if (map->cache_only) {
2673 map->cache_dirty = true;
2680 for (i = 0; i < num_regs; i++) {
2681 unsigned int reg = regs[i].reg;
2682 struct regmap_range_node *range;
2684 /* Coalesce all the writes between a page break or a delay
2687 range = _regmap_range_lookup(map, reg);
2688 if (range || regs[i].delay_us) {
2689 size_t len = sizeof(struct reg_sequence)*num_regs;
2690 struct reg_sequence *base = kmemdup(regs, len,
2694 ret = _regmap_range_multi_paged_reg_write(map, base,
2701 return _regmap_raw_multi_reg_write(map, regs, num_regs);
2705 * regmap_multi_reg_write() - Write multiple registers to the device
2707 * @map: Register map to write to
2708 * @regs: Array of structures containing register,value to be written
2709 * @num_regs: Number of registers to write
2711 * Write multiple registers to the device where the set of register, value
2712 * pairs are supplied in any order, possibly not all in a single range.
2714 * The 'normal' block write mode will send ultimately send data on the
2715 * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2716 * addressed. However, this alternative block multi write mode will send
2717 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2718 * must of course support the mode.
2720 * A value of zero will be returned on success, a negative errno will be
2721 * returned in error cases.
2723 int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2728 map->lock(map->lock_arg);
2730 ret = _regmap_multi_reg_write(map, regs, num_regs);
2732 map->unlock(map->lock_arg);
2736 EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2739 * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2740 * device but not the cache
2742 * @map: Register map to write to
2743 * @regs: Array of structures containing register,value to be written
2744 * @num_regs: Number of registers to write
2746 * Write multiple registers to the device but not the cache where the set
2747 * of register are supplied in any order.
2749 * This function is intended to be used for writing a large block of data
2750 * atomically to the device in single transfer for those I2C client devices
2751 * that implement this alternative block write mode.
2753 * A value of zero will be returned on success, a negative errno will
2754 * be returned in error cases.
2756 int regmap_multi_reg_write_bypassed(struct regmap *map,
2757 const struct reg_sequence *regs,
2763 map->lock(map->lock_arg);
2765 bypass = map->cache_bypass;
2766 map->cache_bypass = true;
2768 ret = _regmap_multi_reg_write(map, regs, num_regs);
2770 map->cache_bypass = bypass;
2772 map->unlock(map->lock_arg);
2776 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2779 * regmap_raw_write_async() - Write raw values to one or more registers
2782 * @map: Register map to write to
2783 * @reg: Initial register to write to
2784 * @val: Block of data to be written, laid out for direct transmission to the
2785 * device. Must be valid until regmap_async_complete() is called.
2786 * @val_len: Length of data pointed to by val.
2788 * This function is intended to be used for things like firmware
2789 * download where a large block of data needs to be transferred to the
2790 * device. No formatting will be done on the data provided.
2792 * If supported by the underlying bus the write will be scheduled
2793 * asynchronously, helping maximise I/O speed on higher speed buses
2794 * like SPI. regmap_async_complete() can be called to ensure that all
2795 * asynchrnous writes have been completed.
2797 * A value of zero will be returned on success, a negative errno will
2798 * be returned in error cases.
2800 int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2801 const void *val, size_t val_len)
2805 if (val_len % map->format.val_bytes)
2807 if (!IS_ALIGNED(reg, map->reg_stride))
2810 map->lock(map->lock_arg);
2814 ret = _regmap_raw_write(map, reg, val, val_len, false);
2818 map->unlock(map->lock_arg);
2822 EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2824 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2825 unsigned int val_len, bool noinc)
2827 struct regmap_range_node *range;
2833 range = _regmap_range_lookup(map, reg);
2835 ret = _regmap_select_page(map, ®, range,
2836 noinc ? 1 : val_len / map->format.val_bytes);
2841 reg = regmap_reg_addr(map, reg);
2842 map->format.format_reg(map->work_buf, reg, map->reg_shift);
2843 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2844 map->read_flag_mask);
2845 trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2847 ret = map->read(map->bus_context, map->work_buf,
2848 map->format.reg_bytes + map->format.pad_bytes,
2851 trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2856 static int _regmap_bus_reg_read(void *context, unsigned int reg,
2859 struct regmap *map = context;
2860 struct regmap_range_node *range;
2863 range = _regmap_range_lookup(map, reg);
2865 ret = _regmap_select_page(map, ®, range, 1);
2870 reg = regmap_reg_addr(map, reg);
2871 return map->bus->reg_read(map->bus_context, reg, val);
2874 static int _regmap_bus_read(void *context, unsigned int reg,
2878 struct regmap *map = context;
2879 void *work_val = map->work_buf + map->format.reg_bytes +
2880 map->format.pad_bytes;
2882 if (!map->format.parse_val)
2885 ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes, false);
2887 *val = map->format.parse_val(work_val);
2892 static int _regmap_read(struct regmap *map, unsigned int reg,
2896 void *context = _regmap_map_get_context(map);
2898 if (!map->cache_bypass) {
2899 ret = regcache_read(map, reg, val);
2904 if (map->cache_only)
2907 if (!regmap_readable(map, reg))
2910 ret = map->reg_read(context, reg, val);
2912 if (regmap_should_log(map))
2913 dev_info(map->dev, "%x => %x\n", reg, *val);
2915 trace_regmap_reg_read(map, reg, *val);
2917 if (!map->cache_bypass)
2918 regcache_write(map, reg, *val);
2925 * regmap_read() - Read a value from a single register
2927 * @map: Register map to read from
2928 * @reg: Register to be read from
2929 * @val: Pointer to store read value
2931 * A value of zero will be returned on success, a negative errno will
2932 * be returned in error cases.
2934 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2938 if (!IS_ALIGNED(reg, map->reg_stride))
2941 map->lock(map->lock_arg);
2943 ret = _regmap_read(map, reg, val);
2945 map->unlock(map->lock_arg);
2949 EXPORT_SYMBOL_GPL(regmap_read);
2952 * regmap_raw_read() - Read raw data from the device
2954 * @map: Register map to read from
2955 * @reg: First register to be read from
2956 * @val: Pointer to store read value
2957 * @val_len: Size of data to read
2959 * A value of zero will be returned on success, a negative errno will
2960 * be returned in error cases.
2962 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2965 size_t val_bytes = map->format.val_bytes;
2966 size_t val_count = val_len / val_bytes;
2970 if (val_len % map->format.val_bytes)
2972 if (!IS_ALIGNED(reg, map->reg_stride))
2977 map->lock(map->lock_arg);
2979 if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2980 map->cache_type == REGCACHE_NONE) {
2981 size_t chunk_count, chunk_bytes;
2982 size_t chunk_regs = val_count;
2984 if (!map->cache_bypass && map->cache_only) {
2994 if (map->use_single_read)
2996 else if (map->max_raw_read && val_len > map->max_raw_read)
2997 chunk_regs = map->max_raw_read / val_bytes;
2999 chunk_count = val_count / chunk_regs;
3000 chunk_bytes = chunk_regs * val_bytes;
3002 /* Read bytes that fit into whole chunks */
3003 for (i = 0; i < chunk_count; i++) {
3004 ret = _regmap_raw_read(map, reg, val, chunk_bytes, false);
3008 reg += regmap_get_offset(map, chunk_regs);
3010 val_len -= chunk_bytes;
3013 /* Read remaining bytes */
3015 ret = _regmap_raw_read(map, reg, val, val_len, false);
3020 /* Otherwise go word by word for the cache; should be low
3021 * cost as we expect to hit the cache.
3023 for (i = 0; i < val_count; i++) {
3024 ret = _regmap_read(map, reg + regmap_get_offset(map, i),
3029 map->format.format_val(val + (i * val_bytes), v, 0);
3034 map->unlock(map->lock_arg);
3038 EXPORT_SYMBOL_GPL(regmap_raw_read);
3041 * regmap_noinc_read(): Read data from a register without incrementing the
3044 * @map: Register map to read from
3045 * @reg: Register to read from
3046 * @val: Pointer to data buffer
3047 * @val_len: Length of output buffer in bytes.
3049 * The regmap API usually assumes that bulk read operations will read a
3050 * range of registers. Some devices have certain registers for which a read
3051 * operation read will read from an internal FIFO.
3053 * The target register must be volatile but registers after it can be
3054 * completely unrelated cacheable registers.
3056 * This will attempt multiple reads as required to read val_len bytes.
3058 * A value of zero will be returned on success, a negative errno will be
3059 * returned in error cases.
3061 int regmap_noinc_read(struct regmap *map, unsigned int reg,
3062 void *val, size_t val_len)
3070 if (val_len % map->format.val_bytes)
3072 if (!IS_ALIGNED(reg, map->reg_stride))
3077 map->lock(map->lock_arg);
3079 if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) {
3085 * We have not defined the FIFO semantics for cache, as the
3086 * cache is just one value deep. Should we return the last
3087 * written value? Just avoid this by always reading the FIFO
3088 * even when using cache. Cache only will not work.
3090 if (!map->cache_bypass && map->cache_only) {
3095 /* Use the accelerated operation if we can */
3096 if (map->bus->reg_noinc_read) {
3097 ret = regmap_noinc_readwrite(map, reg, val, val_len, false);
3102 if (map->max_raw_read && map->max_raw_read < val_len)
3103 read_len = map->max_raw_read;
3106 ret = _regmap_raw_read(map, reg, val, read_len, true);
3109 val = ((u8 *)val) + read_len;
3110 val_len -= read_len;
3114 map->unlock(map->lock_arg);
3117 EXPORT_SYMBOL_GPL(regmap_noinc_read);
3120 * regmap_field_read(): Read a value to a single register field
3122 * @field: Register field to read from
3123 * @val: Pointer to store read value
3125 * A value of zero will be returned on success, a negative errno will
3126 * be returned in error cases.
3128 int regmap_field_read(struct regmap_field *field, unsigned int *val)
3131 unsigned int reg_val;
3132 ret = regmap_read(field->regmap, field->reg, ®_val);
3136 reg_val &= field->mask;
3137 reg_val >>= field->shift;
3142 EXPORT_SYMBOL_GPL(regmap_field_read);
3145 * regmap_fields_read() - Read a value to a single register field with port ID
3147 * @field: Register field to read from
3149 * @val: Pointer to store read value
3151 * A value of zero will be returned on success, a negative errno will
3152 * be returned in error cases.
3154 int regmap_fields_read(struct regmap_field *field, unsigned int id,
3158 unsigned int reg_val;
3160 if (id >= field->id_size)
3163 ret = regmap_read(field->regmap,
3164 field->reg + (field->id_offset * id),
3169 reg_val &= field->mask;
3170 reg_val >>= field->shift;
3175 EXPORT_SYMBOL_GPL(regmap_fields_read);
3178 * regmap_bulk_read() - Read multiple registers from the device
3180 * @map: Register map to read from
3181 * @reg: First register to be read from
3182 * @val: Pointer to store read value, in native register size for device
3183 * @val_count: Number of registers to read
3185 * A value of zero will be returned on success, a negative errno will
3186 * be returned in error cases.
3188 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
3192 size_t val_bytes = map->format.val_bytes;
3193 bool vol = regmap_volatile_range(map, reg, val_count);
3195 if (!IS_ALIGNED(reg, map->reg_stride))
3200 if (map->read && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
3201 ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
3205 for (i = 0; i < val_count * val_bytes; i += val_bytes)
3206 map->format.parse_inplace(val + i);
3215 map->lock(map->lock_arg);
3217 for (i = 0; i < val_count; i++) {
3220 ret = _regmap_read(map, reg + regmap_get_offset(map, i),
3225 switch (map->format.val_bytes) {
3247 map->unlock(map->lock_arg);
3251 trace_regmap_bulk_read(map, reg, val, val_bytes * val_count);
3255 EXPORT_SYMBOL_GPL(regmap_bulk_read);
3257 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
3258 unsigned int mask, unsigned int val,
3259 bool *change, bool force_write)
3262 unsigned int tmp, orig;
3267 if (regmap_volatile(map, reg) && map->reg_update_bits) {
3268 reg = regmap_reg_addr(map, reg);
3269 ret = map->reg_update_bits(map->bus_context, reg, mask, val);
3270 if (ret == 0 && change)
3273 ret = _regmap_read(map, reg, &orig);
3280 if (force_write || (tmp != orig) || map->force_write_field) {
3281 ret = _regmap_write(map, reg, tmp);
3282 if (ret == 0 && change)
3291 * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
3293 * @map: Register map to update
3294 * @reg: Register to update
3295 * @mask: Bitmask to change
3296 * @val: New value for bitmask
3297 * @change: Boolean indicating if a write was done
3298 * @async: Boolean indicating asynchronously
3299 * @force: Boolean indicating use force update
3301 * Perform a read/modify/write cycle on a register map with change, async, force
3306 * With most buses the read must be done synchronously so this is most useful
3307 * for devices with a cache which do not need to interact with the hardware to
3308 * determine the current register value.
3310 * Returns zero for success, a negative number on error.
3312 int regmap_update_bits_base(struct regmap *map, unsigned int reg,
3313 unsigned int mask, unsigned int val,
3314 bool *change, bool async, bool force)
3318 map->lock(map->lock_arg);
3322 ret = _regmap_update_bits(map, reg, mask, val, change, force);
3326 map->unlock(map->lock_arg);
3330 EXPORT_SYMBOL_GPL(regmap_update_bits_base);
3333 * regmap_test_bits() - Check if all specified bits are set in a register.
3335 * @map: Register map to operate on
3336 * @reg: Register to read from
3337 * @bits: Bits to test
3339 * Returns 0 if at least one of the tested bits is not set, 1 if all tested
3340 * bits are set and a negative error number if the underlying regmap_read()
3343 int regmap_test_bits(struct regmap *map, unsigned int reg, unsigned int bits)
3345 unsigned int val, ret;
3347 ret = regmap_read(map, reg, &val);
3351 return (val & bits) == bits;
3353 EXPORT_SYMBOL_GPL(regmap_test_bits);
3355 void regmap_async_complete_cb(struct regmap_async *async, int ret)
3357 struct regmap *map = async->map;
3360 trace_regmap_async_io_complete(map);
3362 spin_lock(&map->async_lock);
3363 list_move(&async->list, &map->async_free);
3364 wake = list_empty(&map->async_list);
3367 map->async_ret = ret;
3369 spin_unlock(&map->async_lock);
3372 wake_up(&map->async_waitq);
3374 EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
3376 static int regmap_async_is_done(struct regmap *map)
3378 unsigned long flags;
3381 spin_lock_irqsave(&map->async_lock, flags);
3382 ret = list_empty(&map->async_list);
3383 spin_unlock_irqrestore(&map->async_lock, flags);
3389 * regmap_async_complete - Ensure all asynchronous I/O has completed.
3391 * @map: Map to operate on.
3393 * Blocks until any pending asynchronous I/O has completed. Returns
3394 * an error code for any failed I/O operations.
3396 int regmap_async_complete(struct regmap *map)
3398 unsigned long flags;
3401 /* Nothing to do with no async support */
3402 if (!map->bus || !map->bus->async_write)
3405 trace_regmap_async_complete_start(map);
3407 wait_event(map->async_waitq, regmap_async_is_done(map));
3409 spin_lock_irqsave(&map->async_lock, flags);
3410 ret = map->async_ret;
3412 spin_unlock_irqrestore(&map->async_lock, flags);
3414 trace_regmap_async_complete_done(map);
3418 EXPORT_SYMBOL_GPL(regmap_async_complete);
3421 * regmap_register_patch - Register and apply register updates to be applied
3422 * on device initialistion
3424 * @map: Register map to apply updates to.
3425 * @regs: Values to update.
3426 * @num_regs: Number of entries in regs.
3428 * Register a set of register updates to be applied to the device
3429 * whenever the device registers are synchronised with the cache and
3430 * apply them immediately. Typically this is used to apply
3431 * corrections to be applied to the device defaults on startup, such
3432 * as the updates some vendors provide to undocumented registers.
3434 * The caller must ensure that this function cannot be called
3435 * concurrently with either itself or regcache_sync().
3437 int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
3440 struct reg_sequence *p;
3444 if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
3448 p = krealloc(map->patch,
3449 sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
3452 memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
3454 map->patch_regs += num_regs;
3459 map->lock(map->lock_arg);
3461 bypass = map->cache_bypass;
3463 map->cache_bypass = true;
3466 ret = _regmap_multi_reg_write(map, regs, num_regs);
3469 map->cache_bypass = bypass;
3471 map->unlock(map->lock_arg);
3473 regmap_async_complete(map);
3477 EXPORT_SYMBOL_GPL(regmap_register_patch);
3480 * regmap_get_val_bytes() - Report the size of a register value
3482 * @map: Register map to operate on.
3484 * Report the size of a register value, mainly intended to for use by
3485 * generic infrastructure built on top of regmap.
3487 int regmap_get_val_bytes(struct regmap *map)
3489 if (map->format.format_write)
3492 return map->format.val_bytes;
3494 EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
3497 * regmap_get_max_register() - Report the max register value
3499 * @map: Register map to operate on.
3501 * Report the max register value, mainly intended to for use by
3502 * generic infrastructure built on top of regmap.
3504 int regmap_get_max_register(struct regmap *map)
3506 return map->max_register ? map->max_register : -EINVAL;
3508 EXPORT_SYMBOL_GPL(regmap_get_max_register);
3511 * regmap_get_reg_stride() - Report the register address stride
3513 * @map: Register map to operate on.
3515 * Report the register address stride, mainly intended to for use by
3516 * generic infrastructure built on top of regmap.
3518 int regmap_get_reg_stride(struct regmap *map)
3520 return map->reg_stride;
3522 EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
3525 * regmap_might_sleep() - Returns whether a regmap access might sleep.
3527 * @map: Register map to operate on.
3529 * Returns true if an access to the register might sleep, else false.
3531 bool regmap_might_sleep(struct regmap *map)
3533 return map->can_sleep;
3535 EXPORT_SYMBOL_GPL(regmap_might_sleep);
3537 int regmap_parse_val(struct regmap *map, const void *buf,
3540 if (!map->format.parse_val)
3543 *val = map->format.parse_val(buf);
3547 EXPORT_SYMBOL_GPL(regmap_parse_val);
3549 static int __init regmap_initcall(void)
3551 regmap_debugfs_initcall();
3555 postcore_initcall(regmap_initcall);