1 // SPDX-License-Identifier: GPL-2.0-only
3 * Simple NUMA memory policy for the Linux kernel.
5 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
6 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
8 * NUMA policy allows the user to give hints in which node(s) memory should
11 * Support four policies per VMA and per process:
13 * The VMA policy has priority over the process policy for a page fault.
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
22 * bind Only allocate memory on a specific set of nodes,
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
28 * preferred Try a specific node first before normal fallback.
29 * As a special case NUMA_NO_NODE here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
34 * preferred many Try a set of nodes first before normal fallback. This is
35 * similar to preferred without the special case.
37 * default Allocate on the local node first, or when on a VMA
38 * use the process policy. This is what Linux always did
39 * in a NUMA aware kernel and still does by, ahem, default.
41 * The process policy is applied for most non interrupt memory allocations
42 * in that process' context. Interrupts ignore the policies and always
43 * try to allocate on the local CPU. The VMA policy is only applied for memory
44 * allocations for a VMA in the VM.
46 * Currently there are a few corner cases in swapping where the policy
47 * is not applied, but the majority should be handled. When process policy
48 * is used it is not remembered over swap outs/swap ins.
50 * Only the highest zone in the zone hierarchy gets policied. Allocations
51 * requesting a lower zone just use default policy. This implies that
52 * on systems with highmem kernel lowmem allocation don't get policied.
53 * Same with GFP_DMA allocations.
55 * For shmem/tmpfs shared memory the policy is shared between
56 * all users and remembered even when nobody has memory mapped.
60 fix mmap readahead to honour policy and enable policy for any page cache
62 statistics for bigpages
63 global policy for page cache? currently it uses process policy. Requires
65 handle mremap for shared memory (currently ignored for the policy)
67 make bind policy root only? It can trigger oom much faster and the
68 kernel is not always grateful with that.
71 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
73 #include <linux/mempolicy.h>
74 #include <linux/pagewalk.h>
75 #include <linux/highmem.h>
76 #include <linux/hugetlb.h>
77 #include <linux/kernel.h>
78 #include <linux/sched.h>
79 #include <linux/sched/mm.h>
80 #include <linux/sched/numa_balancing.h>
81 #include <linux/sched/task.h>
82 #include <linux/nodemask.h>
83 #include <linux/cpuset.h>
84 #include <linux/slab.h>
85 #include <linux/string.h>
86 #include <linux/export.h>
87 #include <linux/nsproxy.h>
88 #include <linux/interrupt.h>
89 #include <linux/init.h>
90 #include <linux/compat.h>
91 #include <linux/ptrace.h>
92 #include <linux/swap.h>
93 #include <linux/seq_file.h>
94 #include <linux/proc_fs.h>
95 #include <linux/migrate.h>
96 #include <linux/ksm.h>
97 #include <linux/rmap.h>
98 #include <linux/security.h>
99 #include <linux/syscalls.h>
100 #include <linux/ctype.h>
101 #include <linux/mm_inline.h>
102 #include <linux/mmu_notifier.h>
103 #include <linux/printk.h>
104 #include <linux/swapops.h>
106 #include <asm/tlbflush.h>
108 #include <linux/uaccess.h>
110 #include "internal.h"
113 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
114 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
115 #define MPOL_MF_WRLOCK (MPOL_MF_INTERNAL << 2) /* Write-lock walked vmas */
117 static struct kmem_cache *policy_cache;
118 static struct kmem_cache *sn_cache;
120 /* Highest zone. An specific allocation for a zone below that is not
122 enum zone_type policy_zone = 0;
125 * run-time system-wide default policy => local allocation
127 static struct mempolicy default_policy = {
128 .refcnt = ATOMIC_INIT(1), /* never free it */
132 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
135 * numa_nearest_node - Find nearest node by state
136 * @node: Node id to start the search
137 * @state: State to filter the search
139 * Lookup the closest node by distance if @nid is not in state.
141 * Return: this @node if it is in state, otherwise the closest node by distance
143 int numa_nearest_node(int node, unsigned int state)
145 int min_dist = INT_MAX, dist, n, min_node;
147 if (state >= NR_NODE_STATES)
150 if (node == NUMA_NO_NODE || node_state(node, state))
154 for_each_node_state(n, state) {
155 dist = node_distance(node, n);
156 if (dist < min_dist) {
164 EXPORT_SYMBOL_GPL(numa_nearest_node);
166 struct mempolicy *get_task_policy(struct task_struct *p)
168 struct mempolicy *pol = p->mempolicy;
174 node = numa_node_id();
175 if (node != NUMA_NO_NODE) {
176 pol = &preferred_node_policy[node];
177 /* preferred_node_policy is not initialised early in boot */
182 return &default_policy;
185 static const struct mempolicy_operations {
186 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
187 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
188 } mpol_ops[MPOL_MAX];
190 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
192 return pol->flags & MPOL_MODE_FLAGS;
195 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
196 const nodemask_t *rel)
199 nodes_fold(tmp, *orig, nodes_weight(*rel));
200 nodes_onto(*ret, tmp, *rel);
203 static int mpol_new_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
205 if (nodes_empty(*nodes))
211 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
213 if (nodes_empty(*nodes))
216 nodes_clear(pol->nodes);
217 node_set(first_node(*nodes), pol->nodes);
222 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
223 * any, for the new policy. mpol_new() has already validated the nodes
224 * parameter with respect to the policy mode and flags.
226 * Must be called holding task's alloc_lock to protect task's mems_allowed
227 * and mempolicy. May also be called holding the mmap_lock for write.
229 static int mpol_set_nodemask(struct mempolicy *pol,
230 const nodemask_t *nodes, struct nodemask_scratch *nsc)
235 * Default (pol==NULL) resp. local memory policies are not a
236 * subject of any remapping. They also do not need any special
239 if (!pol || pol->mode == MPOL_LOCAL)
243 nodes_and(nsc->mask1,
244 cpuset_current_mems_allowed, node_states[N_MEMORY]);
248 if (pol->flags & MPOL_F_RELATIVE_NODES)
249 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
251 nodes_and(nsc->mask2, *nodes, nsc->mask1);
253 if (mpol_store_user_nodemask(pol))
254 pol->w.user_nodemask = *nodes;
256 pol->w.cpuset_mems_allowed = cpuset_current_mems_allowed;
258 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
263 * This function just creates a new policy, does some check and simple
264 * initialization. You must invoke mpol_set_nodemask() to set nodes.
266 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
269 struct mempolicy *policy;
271 if (mode == MPOL_DEFAULT) {
272 if (nodes && !nodes_empty(*nodes))
273 return ERR_PTR(-EINVAL);
279 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
280 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
281 * All other modes require a valid pointer to a non-empty nodemask.
283 if (mode == MPOL_PREFERRED) {
284 if (nodes_empty(*nodes)) {
285 if (((flags & MPOL_F_STATIC_NODES) ||
286 (flags & MPOL_F_RELATIVE_NODES)))
287 return ERR_PTR(-EINVAL);
291 } else if (mode == MPOL_LOCAL) {
292 if (!nodes_empty(*nodes) ||
293 (flags & MPOL_F_STATIC_NODES) ||
294 (flags & MPOL_F_RELATIVE_NODES))
295 return ERR_PTR(-EINVAL);
296 } else if (nodes_empty(*nodes))
297 return ERR_PTR(-EINVAL);
299 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
301 return ERR_PTR(-ENOMEM);
302 atomic_set(&policy->refcnt, 1);
304 policy->flags = flags;
305 policy->home_node = NUMA_NO_NODE;
310 /* Slow path of a mpol destructor. */
311 void __mpol_put(struct mempolicy *pol)
313 if (!atomic_dec_and_test(&pol->refcnt))
315 kmem_cache_free(policy_cache, pol);
318 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
322 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
326 if (pol->flags & MPOL_F_STATIC_NODES)
327 nodes_and(tmp, pol->w.user_nodemask, *nodes);
328 else if (pol->flags & MPOL_F_RELATIVE_NODES)
329 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
331 nodes_remap(tmp, pol->nodes, pol->w.cpuset_mems_allowed,
333 pol->w.cpuset_mems_allowed = *nodes;
336 if (nodes_empty(tmp))
342 static void mpol_rebind_preferred(struct mempolicy *pol,
343 const nodemask_t *nodes)
345 pol->w.cpuset_mems_allowed = *nodes;
349 * mpol_rebind_policy - Migrate a policy to a different set of nodes
351 * Per-vma policies are protected by mmap_lock. Allocations using per-task
352 * policies are protected by task->mems_allowed_seq to prevent a premature
353 * OOM/allocation failure due to parallel nodemask modification.
355 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
357 if (!pol || pol->mode == MPOL_LOCAL)
359 if (!mpol_store_user_nodemask(pol) &&
360 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
363 mpol_ops[pol->mode].rebind(pol, newmask);
367 * Wrapper for mpol_rebind_policy() that just requires task
368 * pointer, and updates task mempolicy.
370 * Called with task's alloc_lock held.
372 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
374 mpol_rebind_policy(tsk->mempolicy, new);
378 * Rebind each vma in mm to new nodemask.
380 * Call holding a reference to mm. Takes mm->mmap_lock during call.
382 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
384 struct vm_area_struct *vma;
385 VMA_ITERATOR(vmi, mm, 0);
388 for_each_vma(vmi, vma) {
389 vma_start_write(vma);
390 mpol_rebind_policy(vma->vm_policy, new);
392 mmap_write_unlock(mm);
395 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
397 .rebind = mpol_rebind_default,
399 [MPOL_INTERLEAVE] = {
400 .create = mpol_new_nodemask,
401 .rebind = mpol_rebind_nodemask,
404 .create = mpol_new_preferred,
405 .rebind = mpol_rebind_preferred,
408 .create = mpol_new_nodemask,
409 .rebind = mpol_rebind_nodemask,
412 .rebind = mpol_rebind_default,
414 [MPOL_PREFERRED_MANY] = {
415 .create = mpol_new_nodemask,
416 .rebind = mpol_rebind_preferred,
420 static bool migrate_folio_add(struct folio *folio, struct list_head *foliolist,
421 unsigned long flags);
422 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *pol,
423 pgoff_t ilx, int *nid);
425 static bool strictly_unmovable(unsigned long flags)
428 * STRICT without MOVE flags lets do_mbind() fail immediately with -EIO
429 * if any misplaced page is found.
431 return (flags & (MPOL_MF_STRICT | MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) ==
435 struct migration_mpol { /* for alloc_migration_target_by_mpol() */
436 struct mempolicy *pol;
441 struct list_head *pagelist;
446 struct vm_area_struct *first;
447 struct folio *large; /* note last large folio encountered */
448 long nr_failed; /* could not be isolated at this time */
452 * Check if the folio's nid is in qp->nmask.
454 * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
455 * in the invert of qp->nmask.
457 static inline bool queue_folio_required(struct folio *folio,
458 struct queue_pages *qp)
460 int nid = folio_nid(folio);
461 unsigned long flags = qp->flags;
463 return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
466 static void queue_folios_pmd(pmd_t *pmd, struct mm_walk *walk)
469 struct queue_pages *qp = walk->private;
471 if (unlikely(is_pmd_migration_entry(*pmd))) {
475 folio = pfn_folio(pmd_pfn(*pmd));
476 if (is_huge_zero_page(&folio->page)) {
477 walk->action = ACTION_CONTINUE;
480 if (!queue_folio_required(folio, qp))
482 if (!(qp->flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) ||
483 !vma_migratable(walk->vma) ||
484 !migrate_folio_add(folio, qp->pagelist, qp->flags))
489 * Scan through folios, checking if they satisfy the required conditions,
490 * moving them from LRU to local pagelist for migration if they do (or not).
492 * queue_folios_pte_range() has two possible return values:
493 * 0 - continue walking to scan for more, even if an existing folio on the
494 * wrong node could not be isolated and queued for migration.
495 * -EIO - only MPOL_MF_STRICT was specified, without MPOL_MF_MOVE or ..._ALL,
496 * and an existing folio was on a node that does not follow the policy.
498 static int queue_folios_pte_range(pmd_t *pmd, unsigned long addr,
499 unsigned long end, struct mm_walk *walk)
501 struct vm_area_struct *vma = walk->vma;
503 struct queue_pages *qp = walk->private;
504 unsigned long flags = qp->flags;
505 pte_t *pte, *mapped_pte;
509 ptl = pmd_trans_huge_lock(pmd, vma);
511 queue_folios_pmd(pmd, walk);
516 mapped_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
518 walk->action = ACTION_AGAIN;
521 for (; addr != end; pte++, addr += PAGE_SIZE) {
522 ptent = ptep_get(pte);
525 if (!pte_present(ptent)) {
526 if (is_migration_entry(pte_to_swp_entry(ptent)))
530 folio = vm_normal_folio(vma, addr, ptent);
531 if (!folio || folio_is_zone_device(folio))
534 * vm_normal_folio() filters out zero pages, but there might
535 * still be reserved folios to skip, perhaps in a VDSO.
537 if (folio_test_reserved(folio))
539 if (!queue_folio_required(folio, qp))
541 if (folio_test_large(folio)) {
543 * A large folio can only be isolated from LRU once,
544 * but may be mapped by many PTEs (and Copy-On-Write may
545 * intersperse PTEs of other, order 0, folios). This is
546 * a common case, so don't mistake it for failure (but
547 * there can be other cases of multi-mapped pages which
548 * this quick check does not help to filter out - and a
549 * search of the pagelist might grow to be prohibitive).
551 * migrate_pages(&pagelist) returns nr_failed folios, so
552 * check "large" now so that queue_pages_range() returns
553 * a comparable nr_failed folios. This does imply that
554 * if folio could not be isolated for some racy reason
555 * at its first PTE, later PTEs will not give it another
556 * chance of isolation; but keeps the accounting simple.
558 if (folio == qp->large)
562 if (!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) ||
563 !vma_migratable(vma) ||
564 !migrate_folio_add(folio, qp->pagelist, flags)) {
566 if (strictly_unmovable(flags))
570 pte_unmap_unlock(mapped_pte, ptl);
573 if (qp->nr_failed && strictly_unmovable(flags))
578 static int queue_folios_hugetlb(pte_t *pte, unsigned long hmask,
579 unsigned long addr, unsigned long end,
580 struct mm_walk *walk)
582 #ifdef CONFIG_HUGETLB_PAGE
583 struct queue_pages *qp = walk->private;
584 unsigned long flags = qp->flags;
589 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
590 entry = huge_ptep_get(pte);
591 if (!pte_present(entry)) {
592 if (unlikely(is_hugetlb_entry_migration(entry)))
596 folio = pfn_folio(pte_pfn(entry));
597 if (!queue_folio_required(folio, qp))
599 if (!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) ||
600 !vma_migratable(walk->vma)) {
605 * Unless MPOL_MF_MOVE_ALL, we try to avoid migrating a shared folio.
606 * Choosing not to migrate a shared folio is not counted as a failure.
608 * To check if the folio is shared, ideally we want to make sure
609 * every page is mapped to the same process. Doing that is very
610 * expensive, so check the estimated sharers of the folio instead.
612 if ((flags & MPOL_MF_MOVE_ALL) ||
613 (folio_estimated_sharers(folio) == 1 && !hugetlb_pmd_shared(pte)))
614 if (!isolate_hugetlb(folio, qp->pagelist))
618 if (qp->nr_failed && strictly_unmovable(flags))
624 #ifdef CONFIG_NUMA_BALANCING
626 * This is used to mark a range of virtual addresses to be inaccessible.
627 * These are later cleared by a NUMA hinting fault. Depending on these
628 * faults, pages may be migrated for better NUMA placement.
630 * This is assuming that NUMA faults are handled using PROT_NONE. If
631 * an architecture makes a different choice, it will need further
632 * changes to the core.
634 unsigned long change_prot_numa(struct vm_area_struct *vma,
635 unsigned long addr, unsigned long end)
637 struct mmu_gather tlb;
640 tlb_gather_mmu(&tlb, vma->vm_mm);
642 nr_updated = change_protection(&tlb, vma, addr, end, MM_CP_PROT_NUMA);
644 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
646 tlb_finish_mmu(&tlb);
650 #endif /* CONFIG_NUMA_BALANCING */
652 static int queue_pages_test_walk(unsigned long start, unsigned long end,
653 struct mm_walk *walk)
655 struct vm_area_struct *next, *vma = walk->vma;
656 struct queue_pages *qp = walk->private;
657 unsigned long endvma = vma->vm_end;
658 unsigned long flags = qp->flags;
660 /* range check first */
661 VM_BUG_ON_VMA(!range_in_vma(vma, start, end), vma);
665 if (!(flags & MPOL_MF_DISCONTIG_OK) &&
666 (qp->start < vma->vm_start))
667 /* hole at head side of range */
670 next = find_vma(vma->vm_mm, vma->vm_end);
671 if (!(flags & MPOL_MF_DISCONTIG_OK) &&
672 ((vma->vm_end < qp->end) &&
673 (!next || vma->vm_end < next->vm_start)))
674 /* hole at middle or tail of range */
678 * Need check MPOL_MF_STRICT to return -EIO if possible
679 * regardless of vma_migratable
681 if (!vma_migratable(vma) &&
682 !(flags & MPOL_MF_STRICT))
689 * Check page nodes, and queue pages to move, in the current vma.
690 * But if no moving, and no strict checking, the scan can be skipped.
692 if (flags & (MPOL_MF_STRICT | MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
697 static const struct mm_walk_ops queue_pages_walk_ops = {
698 .hugetlb_entry = queue_folios_hugetlb,
699 .pmd_entry = queue_folios_pte_range,
700 .test_walk = queue_pages_test_walk,
701 .walk_lock = PGWALK_RDLOCK,
704 static const struct mm_walk_ops queue_pages_lock_vma_walk_ops = {
705 .hugetlb_entry = queue_folios_hugetlb,
706 .pmd_entry = queue_folios_pte_range,
707 .test_walk = queue_pages_test_walk,
708 .walk_lock = PGWALK_WRLOCK,
712 * Walk through page tables and collect pages to be migrated.
714 * If pages found in a given range are not on the required set of @nodes,
715 * and migration is allowed, they are isolated and queued to @pagelist.
717 * queue_pages_range() may return:
718 * 0 - all pages already on the right node, or successfully queued for moving
719 * (or neither strict checking nor moving requested: only range checking).
720 * >0 - this number of misplaced folios could not be queued for moving
721 * (a hugetlbfs page or a transparent huge page being counted as 1).
722 * -EIO - a misplaced page found, when MPOL_MF_STRICT specified without MOVEs.
723 * -EFAULT - a hole in the memory range, when MPOL_MF_DISCONTIG_OK unspecified.
726 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
727 nodemask_t *nodes, unsigned long flags,
728 struct list_head *pagelist)
731 struct queue_pages qp = {
732 .pagelist = pagelist,
739 const struct mm_walk_ops *ops = (flags & MPOL_MF_WRLOCK) ?
740 &queue_pages_lock_vma_walk_ops : &queue_pages_walk_ops;
742 err = walk_page_range(mm, start, end, ops, &qp);
745 /* whole range in hole */
748 return err ? : qp.nr_failed;
752 * Apply policy to a single VMA
753 * This must be called with the mmap_lock held for writing.
755 static int vma_replace_policy(struct vm_area_struct *vma,
756 struct mempolicy *pol)
759 struct mempolicy *old;
760 struct mempolicy *new;
762 vma_assert_write_locked(vma);
768 if (vma->vm_ops && vma->vm_ops->set_policy) {
769 err = vma->vm_ops->set_policy(vma, new);
774 old = vma->vm_policy;
775 vma->vm_policy = new; /* protected by mmap_lock */
784 /* Split or merge the VMA (if required) and apply the new policy */
785 static int mbind_range(struct vma_iterator *vmi, struct vm_area_struct *vma,
786 struct vm_area_struct **prev, unsigned long start,
787 unsigned long end, struct mempolicy *new_pol)
789 unsigned long vmstart, vmend;
791 vmend = min(end, vma->vm_end);
792 if (start > vma->vm_start) {
796 vmstart = vma->vm_start;
799 if (mpol_equal(vma->vm_policy, new_pol)) {
804 vma = vma_modify_policy(vmi, *prev, vma, vmstart, vmend, new_pol);
809 return vma_replace_policy(vma, new_pol);
812 /* Set the process memory policy */
813 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
816 struct mempolicy *new, *old;
817 NODEMASK_SCRATCH(scratch);
823 new = mpol_new(mode, flags, nodes);
830 ret = mpol_set_nodemask(new, nodes, scratch);
832 task_unlock(current);
837 old = current->mempolicy;
838 current->mempolicy = new;
839 if (new && new->mode == MPOL_INTERLEAVE)
840 current->il_prev = MAX_NUMNODES-1;
841 task_unlock(current);
845 NODEMASK_SCRATCH_FREE(scratch);
850 * Return nodemask for policy for get_mempolicy() query
852 * Called with task's alloc_lock held
854 static void get_policy_nodemask(struct mempolicy *pol, nodemask_t *nodes)
857 if (pol == &default_policy)
862 case MPOL_INTERLEAVE:
864 case MPOL_PREFERRED_MANY:
868 /* return empty node mask for local allocation */
875 static int lookup_node(struct mm_struct *mm, unsigned long addr)
877 struct page *p = NULL;
880 ret = get_user_pages_fast(addr & PAGE_MASK, 1, 0, &p);
882 ret = page_to_nid(p);
888 /* Retrieve NUMA policy */
889 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
890 unsigned long addr, unsigned long flags)
893 struct mm_struct *mm = current->mm;
894 struct vm_area_struct *vma = NULL;
895 struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL;
898 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
901 if (flags & MPOL_F_MEMS_ALLOWED) {
902 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
904 *policy = 0; /* just so it's initialized */
906 *nmask = cpuset_current_mems_allowed;
907 task_unlock(current);
911 if (flags & MPOL_F_ADDR) {
912 pgoff_t ilx; /* ignored here */
914 * Do NOT fall back to task policy if the
915 * vma/shared policy at addr is NULL. We
916 * want to return MPOL_DEFAULT in this case.
919 vma = vma_lookup(mm, addr);
921 mmap_read_unlock(mm);
924 pol = __get_vma_policy(vma, addr, &ilx);
929 pol = &default_policy; /* indicates default behavior */
931 if (flags & MPOL_F_NODE) {
932 if (flags & MPOL_F_ADDR) {
934 * Take a refcount on the mpol, because we are about to
935 * drop the mmap_lock, after which only "pol" remains
936 * valid, "vma" is stale.
941 mmap_read_unlock(mm);
942 err = lookup_node(mm, addr);
946 } else if (pol == current->mempolicy &&
947 pol->mode == MPOL_INTERLEAVE) {
948 *policy = next_node_in(current->il_prev, pol->nodes);
954 *policy = pol == &default_policy ? MPOL_DEFAULT :
957 * Internal mempolicy flags must be masked off before exposing
958 * the policy to userspace.
960 *policy |= (pol->flags & MPOL_MODE_FLAGS);
965 if (mpol_store_user_nodemask(pol)) {
966 *nmask = pol->w.user_nodemask;
969 get_policy_nodemask(pol, nmask);
970 task_unlock(current);
977 mmap_read_unlock(mm);
979 mpol_put(pol_refcount);
983 #ifdef CONFIG_MIGRATION
984 static bool migrate_folio_add(struct folio *folio, struct list_head *foliolist,
988 * Unless MPOL_MF_MOVE_ALL, we try to avoid migrating a shared folio.
989 * Choosing not to migrate a shared folio is not counted as a failure.
991 * To check if the folio is shared, ideally we want to make sure
992 * every page is mapped to the same process. Doing that is very
993 * expensive, so check the estimated sharers of the folio instead.
995 if ((flags & MPOL_MF_MOVE_ALL) || folio_estimated_sharers(folio) == 1) {
996 if (folio_isolate_lru(folio)) {
997 list_add_tail(&folio->lru, foliolist);
998 node_stat_mod_folio(folio,
999 NR_ISOLATED_ANON + folio_is_file_lru(folio),
1000 folio_nr_pages(folio));
1003 * Non-movable folio may reach here. And, there may be
1004 * temporary off LRU folios or non-LRU movable folios.
1005 * Treat them as unmovable folios since they can't be
1006 * isolated, so they can't be moved at the moment.
1015 * Migrate pages from one node to a target node.
1016 * Returns error or the number of pages not migrated.
1018 static long migrate_to_node(struct mm_struct *mm, int source, int dest,
1022 struct vm_area_struct *vma;
1023 LIST_HEAD(pagelist);
1026 struct migration_target_control mtc = {
1028 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1032 node_set(source, nmask);
1034 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1037 vma = find_vma(mm, 0);
1040 * This does not migrate the range, but isolates all pages that
1041 * need migration. Between passing in the full user address
1042 * space range and MPOL_MF_DISCONTIG_OK, this call cannot fail,
1043 * but passes back the count of pages which could not be isolated.
1045 nr_failed = queue_pages_range(mm, vma->vm_start, mm->task_size, &nmask,
1046 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1047 mmap_read_unlock(mm);
1049 if (!list_empty(&pagelist)) {
1050 err = migrate_pages(&pagelist, alloc_migration_target, NULL,
1051 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
1053 putback_movable_pages(&pagelist);
1062 * Move pages between the two nodesets so as to preserve the physical
1063 * layout as much as possible.
1065 * Returns the number of page that could not be moved.
1067 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1068 const nodemask_t *to, int flags)
1074 lru_cache_disable();
1077 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1078 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
1079 * bit in 'tmp', and return that <source, dest> pair for migration.
1080 * The pair of nodemasks 'to' and 'from' define the map.
1082 * If no pair of bits is found that way, fallback to picking some
1083 * pair of 'source' and 'dest' bits that are not the same. If the
1084 * 'source' and 'dest' bits are the same, this represents a node
1085 * that will be migrating to itself, so no pages need move.
1087 * If no bits are left in 'tmp', or if all remaining bits left
1088 * in 'tmp' correspond to the same bit in 'to', return false
1089 * (nothing left to migrate).
1091 * This lets us pick a pair of nodes to migrate between, such that
1092 * if possible the dest node is not already occupied by some other
1093 * source node, minimizing the risk of overloading the memory on a
1094 * node that would happen if we migrated incoming memory to a node
1095 * before migrating outgoing memory source that same node.
1097 * A single scan of tmp is sufficient. As we go, we remember the
1098 * most recent <s, d> pair that moved (s != d). If we find a pair
1099 * that not only moved, but what's better, moved to an empty slot
1100 * (d is not set in tmp), then we break out then, with that pair.
1101 * Otherwise when we finish scanning from_tmp, we at least have the
1102 * most recent <s, d> pair that moved. If we get all the way through
1103 * the scan of tmp without finding any node that moved, much less
1104 * moved to an empty node, then there is nothing left worth migrating.
1108 while (!nodes_empty(tmp)) {
1110 int source = NUMA_NO_NODE;
1113 for_each_node_mask(s, tmp) {
1116 * do_migrate_pages() tries to maintain the relative
1117 * node relationship of the pages established between
1118 * threads and memory areas.
1120 * However if the number of source nodes is not equal to
1121 * the number of destination nodes we can not preserve
1122 * this node relative relationship. In that case, skip
1123 * copying memory from a node that is in the destination
1126 * Example: [2,3,4] -> [3,4,5] moves everything.
1127 * [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1130 if ((nodes_weight(*from) != nodes_weight(*to)) &&
1131 (node_isset(s, *to)))
1134 d = node_remap(s, *from, *to);
1138 source = s; /* Node moved. Memorize */
1141 /* dest not in remaining from nodes? */
1142 if (!node_isset(dest, tmp))
1145 if (source == NUMA_NO_NODE)
1148 node_clear(source, tmp);
1149 err = migrate_to_node(mm, source, dest, flags);
1159 return (nr_failed < INT_MAX) ? nr_failed : INT_MAX;
1163 * Allocate a new folio for page migration, according to NUMA mempolicy.
1165 static struct folio *alloc_migration_target_by_mpol(struct folio *src,
1166 unsigned long private)
1168 struct migration_mpol *mmpol = (struct migration_mpol *)private;
1169 struct mempolicy *pol = mmpol->pol;
1170 pgoff_t ilx = mmpol->ilx;
1173 int nid = numa_node_id();
1176 order = folio_order(src);
1177 ilx += src->index >> order;
1179 if (folio_test_hugetlb(src)) {
1180 nodemask_t *nodemask;
1183 h = folio_hstate(src);
1184 gfp = htlb_alloc_mask(h);
1185 nodemask = policy_nodemask(gfp, pol, ilx, &nid);
1186 return alloc_hugetlb_folio_nodemask(h, nid, nodemask, gfp);
1189 if (folio_test_large(src))
1190 gfp = GFP_TRANSHUGE;
1192 gfp = GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL | __GFP_COMP;
1194 page = alloc_pages_mpol(gfp, order, pol, ilx, nid);
1195 return page_rmappable_folio(page);
1199 static bool migrate_folio_add(struct folio *folio, struct list_head *foliolist,
1200 unsigned long flags)
1205 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1206 const nodemask_t *to, int flags)
1211 static struct folio *alloc_migration_target_by_mpol(struct folio *src,
1212 unsigned long private)
1218 static long do_mbind(unsigned long start, unsigned long len,
1219 unsigned short mode, unsigned short mode_flags,
1220 nodemask_t *nmask, unsigned long flags)
1222 struct mm_struct *mm = current->mm;
1223 struct vm_area_struct *vma, *prev;
1224 struct vma_iterator vmi;
1225 struct migration_mpol mmpol;
1226 struct mempolicy *new;
1230 LIST_HEAD(pagelist);
1232 if (flags & ~(unsigned long)MPOL_MF_VALID)
1234 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1237 if (start & ~PAGE_MASK)
1240 if (mode == MPOL_DEFAULT)
1241 flags &= ~MPOL_MF_STRICT;
1243 len = PAGE_ALIGN(len);
1251 new = mpol_new(mode, mode_flags, nmask);
1253 return PTR_ERR(new);
1256 * If we are using the default policy then operation
1257 * on discontinuous address spaces is okay after all
1260 flags |= MPOL_MF_DISCONTIG_OK;
1262 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1263 lru_cache_disable();
1265 NODEMASK_SCRATCH(scratch);
1267 mmap_write_lock(mm);
1268 err = mpol_set_nodemask(new, nmask, scratch);
1270 mmap_write_unlock(mm);
1273 NODEMASK_SCRATCH_FREE(scratch);
1279 * Lock the VMAs before scanning for pages to migrate,
1280 * to ensure we don't miss a concurrently inserted page.
1282 nr_failed = queue_pages_range(mm, start, end, nmask,
1283 flags | MPOL_MF_INVERT | MPOL_MF_WRLOCK, &pagelist);
1285 if (nr_failed < 0) {
1289 vma_iter_init(&vmi, mm, start);
1290 prev = vma_prev(&vmi);
1291 for_each_vma_range(vmi, vma, end) {
1292 err = mbind_range(&vmi, vma, &prev, start, end, new);
1298 if (!err && !list_empty(&pagelist)) {
1299 /* Convert MPOL_DEFAULT's NULL to task or default policy */
1301 new = get_task_policy(current);
1308 * In the interleaved case, attempt to allocate on exactly the
1309 * targeted nodes, for the first VMA to be migrated; for later
1310 * VMAs, the nodes will still be interleaved from the targeted
1311 * nodemask, but one by one may be selected differently.
1313 if (new->mode == MPOL_INTERLEAVE) {
1316 unsigned long addr = -EFAULT;
1318 list_for_each_entry(page, &pagelist, lru) {
1322 if (!list_entry_is_head(page, &pagelist, lru)) {
1323 vma_iter_init(&vmi, mm, start);
1324 for_each_vma_range(vmi, vma, end) {
1325 addr = page_address_in_vma(page, vma);
1326 if (addr != -EFAULT)
1330 if (addr != -EFAULT) {
1331 order = compound_order(page);
1332 /* We already know the pol, but not the ilx */
1333 mpol_cond_put(get_vma_policy(vma, addr, order,
1335 /* Set base from which to increment by index */
1336 mmpol.ilx -= page->index >> order;
1341 mmap_write_unlock(mm);
1343 if (!err && !list_empty(&pagelist)) {
1344 nr_failed |= migrate_pages(&pagelist,
1345 alloc_migration_target_by_mpol, NULL,
1346 (unsigned long)&mmpol, MIGRATE_SYNC,
1347 MR_MEMPOLICY_MBIND, NULL);
1350 if (nr_failed && (flags & MPOL_MF_STRICT))
1352 if (!list_empty(&pagelist))
1353 putback_movable_pages(&pagelist);
1356 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1362 * User space interface with variable sized bitmaps for nodelists.
1364 static int get_bitmap(unsigned long *mask, const unsigned long __user *nmask,
1365 unsigned long maxnode)
1367 unsigned long nlongs = BITS_TO_LONGS(maxnode);
1370 if (in_compat_syscall())
1371 ret = compat_get_bitmap(mask,
1372 (const compat_ulong_t __user *)nmask,
1375 ret = copy_from_user(mask, nmask,
1376 nlongs * sizeof(unsigned long));
1381 if (maxnode % BITS_PER_LONG)
1382 mask[nlongs - 1] &= (1UL << (maxnode % BITS_PER_LONG)) - 1;
1387 /* Copy a node mask from user space. */
1388 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1389 unsigned long maxnode)
1392 nodes_clear(*nodes);
1393 if (maxnode == 0 || !nmask)
1395 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1399 * When the user specified more nodes than supported just check
1400 * if the non supported part is all zero, one word at a time,
1401 * starting at the end.
1403 while (maxnode > MAX_NUMNODES) {
1404 unsigned long bits = min_t(unsigned long, maxnode, BITS_PER_LONG);
1407 if (get_bitmap(&t, &nmask[(maxnode - 1) / BITS_PER_LONG], bits))
1410 if (maxnode - bits >= MAX_NUMNODES) {
1413 maxnode = MAX_NUMNODES;
1414 t &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
1420 return get_bitmap(nodes_addr(*nodes), nmask, maxnode);
1423 /* Copy a kernel node mask to user space */
1424 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1427 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1428 unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long);
1429 bool compat = in_compat_syscall();
1432 nbytes = BITS_TO_COMPAT_LONGS(nr_node_ids) * sizeof(compat_long_t);
1434 if (copy > nbytes) {
1435 if (copy > PAGE_SIZE)
1437 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1440 maxnode = nr_node_ids;
1444 return compat_put_bitmap((compat_ulong_t __user *)mask,
1445 nodes_addr(*nodes), maxnode);
1447 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1450 /* Basic parameter sanity check used by both mbind() and set_mempolicy() */
1451 static inline int sanitize_mpol_flags(int *mode, unsigned short *flags)
1453 *flags = *mode & MPOL_MODE_FLAGS;
1454 *mode &= ~MPOL_MODE_FLAGS;
1456 if ((unsigned int)(*mode) >= MPOL_MAX)
1458 if ((*flags & MPOL_F_STATIC_NODES) && (*flags & MPOL_F_RELATIVE_NODES))
1460 if (*flags & MPOL_F_NUMA_BALANCING) {
1461 if (*mode != MPOL_BIND)
1463 *flags |= (MPOL_F_MOF | MPOL_F_MORON);
1468 static long kernel_mbind(unsigned long start, unsigned long len,
1469 unsigned long mode, const unsigned long __user *nmask,
1470 unsigned long maxnode, unsigned int flags)
1472 unsigned short mode_flags;
1477 start = untagged_addr(start);
1478 err = sanitize_mpol_flags(&lmode, &mode_flags);
1482 err = get_nodes(&nodes, nmask, maxnode);
1486 return do_mbind(start, len, lmode, mode_flags, &nodes, flags);
1489 SYSCALL_DEFINE4(set_mempolicy_home_node, unsigned long, start, unsigned long, len,
1490 unsigned long, home_node, unsigned long, flags)
1492 struct mm_struct *mm = current->mm;
1493 struct vm_area_struct *vma, *prev;
1494 struct mempolicy *new, *old;
1497 VMA_ITERATOR(vmi, mm, start);
1499 start = untagged_addr(start);
1500 if (start & ~PAGE_MASK)
1503 * flags is used for future extension if any.
1509 * Check home_node is online to avoid accessing uninitialized
1512 if (home_node >= MAX_NUMNODES || !node_online(home_node))
1515 len = PAGE_ALIGN(len);
1522 mmap_write_lock(mm);
1523 prev = vma_prev(&vmi);
1524 for_each_vma_range(vmi, vma, end) {
1526 * If any vma in the range got policy other than MPOL_BIND
1527 * or MPOL_PREFERRED_MANY we return error. We don't reset
1528 * the home node for vmas we already updated before.
1530 old = vma_policy(vma);
1535 if (old->mode != MPOL_BIND && old->mode != MPOL_PREFERRED_MANY) {
1539 new = mpol_dup(old);
1545 vma_start_write(vma);
1546 new->home_node = home_node;
1547 err = mbind_range(&vmi, vma, &prev, start, end, new);
1552 mmap_write_unlock(mm);
1556 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1557 unsigned long, mode, const unsigned long __user *, nmask,
1558 unsigned long, maxnode, unsigned int, flags)
1560 return kernel_mbind(start, len, mode, nmask, maxnode, flags);
1563 /* Set the process memory policy */
1564 static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask,
1565 unsigned long maxnode)
1567 unsigned short mode_flags;
1572 err = sanitize_mpol_flags(&lmode, &mode_flags);
1576 err = get_nodes(&nodes, nmask, maxnode);
1580 return do_set_mempolicy(lmode, mode_flags, &nodes);
1583 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1584 unsigned long, maxnode)
1586 return kernel_set_mempolicy(mode, nmask, maxnode);
1589 static int kernel_migrate_pages(pid_t pid, unsigned long maxnode,
1590 const unsigned long __user *old_nodes,
1591 const unsigned long __user *new_nodes)
1593 struct mm_struct *mm = NULL;
1594 struct task_struct *task;
1595 nodemask_t task_nodes;
1599 NODEMASK_SCRATCH(scratch);
1604 old = &scratch->mask1;
1605 new = &scratch->mask2;
1607 err = get_nodes(old, old_nodes, maxnode);
1611 err = get_nodes(new, new_nodes, maxnode);
1615 /* Find the mm_struct */
1617 task = pid ? find_task_by_vpid(pid) : current;
1623 get_task_struct(task);
1628 * Check if this process has the right to modify the specified process.
1629 * Use the regular "ptrace_may_access()" checks.
1631 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1638 task_nodes = cpuset_mems_allowed(task);
1639 /* Is the user allowed to access the target nodes? */
1640 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1645 task_nodes = cpuset_mems_allowed(current);
1646 nodes_and(*new, *new, task_nodes);
1647 if (nodes_empty(*new))
1650 err = security_task_movememory(task);
1654 mm = get_task_mm(task);
1655 put_task_struct(task);
1662 err = do_migrate_pages(mm, old, new,
1663 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1667 NODEMASK_SCRATCH_FREE(scratch);
1672 put_task_struct(task);
1676 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1677 const unsigned long __user *, old_nodes,
1678 const unsigned long __user *, new_nodes)
1680 return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes);
1683 /* Retrieve NUMA policy */
1684 static int kernel_get_mempolicy(int __user *policy,
1685 unsigned long __user *nmask,
1686 unsigned long maxnode,
1688 unsigned long flags)
1694 if (nmask != NULL && maxnode < nr_node_ids)
1697 addr = untagged_addr(addr);
1699 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1704 if (policy && put_user(pval, policy))
1708 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1713 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1714 unsigned long __user *, nmask, unsigned long, maxnode,
1715 unsigned long, addr, unsigned long, flags)
1717 return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags);
1720 bool vma_migratable(struct vm_area_struct *vma)
1722 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1726 * DAX device mappings require predictable access latency, so avoid
1727 * incurring periodic faults.
1729 if (vma_is_dax(vma))
1732 if (is_vm_hugetlb_page(vma) &&
1733 !hugepage_migration_supported(hstate_vma(vma)))
1737 * Migration allocates pages in the highest zone. If we cannot
1738 * do so then migration (at least from node to node) is not
1742 gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping))
1748 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1749 unsigned long addr, pgoff_t *ilx)
1752 return (vma->vm_ops && vma->vm_ops->get_policy) ?
1753 vma->vm_ops->get_policy(vma, addr, ilx) : vma->vm_policy;
1757 * get_vma_policy(@vma, @addr, @order, @ilx)
1758 * @vma: virtual memory area whose policy is sought
1759 * @addr: address in @vma for shared policy lookup
1760 * @order: 0, or appropriate huge_page_order for interleaving
1761 * @ilx: interleave index (output), for use only when MPOL_INTERLEAVE
1763 * Returns effective policy for a VMA at specified address.
1764 * Falls back to current->mempolicy or system default policy, as necessary.
1765 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1766 * count--added by the get_policy() vm_op, as appropriate--to protect against
1767 * freeing by another task. It is the caller's responsibility to free the
1768 * extra reference for shared policies.
1770 struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1771 unsigned long addr, int order, pgoff_t *ilx)
1773 struct mempolicy *pol;
1775 pol = __get_vma_policy(vma, addr, ilx);
1777 pol = get_task_policy(current);
1778 if (pol->mode == MPOL_INTERLEAVE) {
1779 *ilx += vma->vm_pgoff >> order;
1780 *ilx += (addr - vma->vm_start) >> (PAGE_SHIFT + order);
1785 bool vma_policy_mof(struct vm_area_struct *vma)
1787 struct mempolicy *pol;
1789 if (vma->vm_ops && vma->vm_ops->get_policy) {
1791 pgoff_t ilx; /* ignored here */
1793 pol = vma->vm_ops->get_policy(vma, vma->vm_start, &ilx);
1794 if (pol && (pol->flags & MPOL_F_MOF))
1801 pol = vma->vm_policy;
1803 pol = get_task_policy(current);
1805 return pol->flags & MPOL_F_MOF;
1808 bool apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1810 enum zone_type dynamic_policy_zone = policy_zone;
1812 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1815 * if policy->nodes has movable memory only,
1816 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1818 * policy->nodes is intersect with node_states[N_MEMORY].
1819 * so if the following test fails, it implies
1820 * policy->nodes has movable memory only.
1822 if (!nodes_intersects(policy->nodes, node_states[N_HIGH_MEMORY]))
1823 dynamic_policy_zone = ZONE_MOVABLE;
1825 return zone >= dynamic_policy_zone;
1828 /* Do dynamic interleaving for a process */
1829 static unsigned int interleave_nodes(struct mempolicy *policy)
1833 nid = next_node_in(current->il_prev, policy->nodes);
1834 if (nid < MAX_NUMNODES)
1835 current->il_prev = nid;
1840 * Depending on the memory policy provide a node from which to allocate the
1843 unsigned int mempolicy_slab_node(void)
1845 struct mempolicy *policy;
1846 int node = numa_mem_id();
1851 policy = current->mempolicy;
1855 switch (policy->mode) {
1856 case MPOL_PREFERRED:
1857 return first_node(policy->nodes);
1859 case MPOL_INTERLEAVE:
1860 return interleave_nodes(policy);
1863 case MPOL_PREFERRED_MANY:
1868 * Follow bind policy behavior and start allocation at the
1871 struct zonelist *zonelist;
1872 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1873 zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1874 z = first_zones_zonelist(zonelist, highest_zoneidx,
1876 return z->zone ? zone_to_nid(z->zone) : node;
1887 * Do static interleaving for interleave index @ilx. Returns the ilx'th
1888 * node in pol->nodes (starting from ilx=0), wrapping around if ilx
1889 * exceeds the number of present nodes.
1891 static unsigned int interleave_nid(struct mempolicy *pol, pgoff_t ilx)
1893 nodemask_t nodemask = pol->nodes;
1894 unsigned int target, nnodes;
1898 * The barrier will stabilize the nodemask in a register or on
1899 * the stack so that it will stop changing under the code.
1901 * Between first_node() and next_node(), pol->nodes could be changed
1902 * by other threads. So we put pol->nodes in a local stack.
1906 nnodes = nodes_weight(nodemask);
1908 return numa_node_id();
1909 target = ilx % nnodes;
1910 nid = first_node(nodemask);
1911 for (i = 0; i < target; i++)
1912 nid = next_node(nid, nodemask);
1917 * Return a nodemask representing a mempolicy for filtering nodes for
1918 * page allocation, together with preferred node id (or the input node id).
1920 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *pol,
1921 pgoff_t ilx, int *nid)
1923 nodemask_t *nodemask = NULL;
1925 switch (pol->mode) {
1926 case MPOL_PREFERRED:
1927 /* Override input node id */
1928 *nid = first_node(pol->nodes);
1930 case MPOL_PREFERRED_MANY:
1931 nodemask = &pol->nodes;
1932 if (pol->home_node != NUMA_NO_NODE)
1933 *nid = pol->home_node;
1936 /* Restrict to nodemask (but not on lower zones) */
1937 if (apply_policy_zone(pol, gfp_zone(gfp)) &&
1938 cpuset_nodemask_valid_mems_allowed(&pol->nodes))
1939 nodemask = &pol->nodes;
1940 if (pol->home_node != NUMA_NO_NODE)
1941 *nid = pol->home_node;
1943 * __GFP_THISNODE shouldn't even be used with the bind policy
1944 * because we might easily break the expectation to stay on the
1945 * requested node and not break the policy.
1947 WARN_ON_ONCE(gfp & __GFP_THISNODE);
1949 case MPOL_INTERLEAVE:
1950 /* Override input node id */
1951 *nid = (ilx == NO_INTERLEAVE_INDEX) ?
1952 interleave_nodes(pol) : interleave_nid(pol, ilx);
1959 #ifdef CONFIG_HUGETLBFS
1961 * huge_node(@vma, @addr, @gfp_flags, @mpol)
1962 * @vma: virtual memory area whose policy is sought
1963 * @addr: address in @vma for shared policy lookup and interleave policy
1964 * @gfp_flags: for requested zone
1965 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
1966 * @nodemask: pointer to nodemask pointer for 'bind' and 'prefer-many' policy
1968 * Returns a nid suitable for a huge page allocation and a pointer
1969 * to the struct mempolicy for conditional unref after allocation.
1970 * If the effective policy is 'bind' or 'prefer-many', returns a pointer
1971 * to the mempolicy's @nodemask for filtering the zonelist.
1973 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
1974 struct mempolicy **mpol, nodemask_t **nodemask)
1979 nid = numa_node_id();
1980 *mpol = get_vma_policy(vma, addr, hstate_vma(vma)->order, &ilx);
1981 *nodemask = policy_nodemask(gfp_flags, *mpol, ilx, &nid);
1986 * init_nodemask_of_mempolicy
1988 * If the current task's mempolicy is "default" [NULL], return 'false'
1989 * to indicate default policy. Otherwise, extract the policy nodemask
1990 * for 'bind' or 'interleave' policy into the argument nodemask, or
1991 * initialize the argument nodemask to contain the single node for
1992 * 'preferred' or 'local' policy and return 'true' to indicate presence
1993 * of non-default mempolicy.
1995 * We don't bother with reference counting the mempolicy [mpol_get/put]
1996 * because the current task is examining it's own mempolicy and a task's
1997 * mempolicy is only ever changed by the task itself.
1999 * N.B., it is the caller's responsibility to free a returned nodemask.
2001 bool init_nodemask_of_mempolicy(nodemask_t *mask)
2003 struct mempolicy *mempolicy;
2005 if (!(mask && current->mempolicy))
2009 mempolicy = current->mempolicy;
2010 switch (mempolicy->mode) {
2011 case MPOL_PREFERRED:
2012 case MPOL_PREFERRED_MANY:
2014 case MPOL_INTERLEAVE:
2015 *mask = mempolicy->nodes;
2019 init_nodemask_of_node(mask, numa_node_id());
2025 task_unlock(current);
2032 * mempolicy_in_oom_domain
2034 * If tsk's mempolicy is "bind", check for intersection between mask and
2035 * the policy nodemask. Otherwise, return true for all other policies
2036 * including "interleave", as a tsk with "interleave" policy may have
2037 * memory allocated from all nodes in system.
2039 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
2041 bool mempolicy_in_oom_domain(struct task_struct *tsk,
2042 const nodemask_t *mask)
2044 struct mempolicy *mempolicy;
2051 mempolicy = tsk->mempolicy;
2052 if (mempolicy && mempolicy->mode == MPOL_BIND)
2053 ret = nodes_intersects(mempolicy->nodes, *mask);
2059 static struct page *alloc_pages_preferred_many(gfp_t gfp, unsigned int order,
2060 int nid, nodemask_t *nodemask)
2063 gfp_t preferred_gfp;
2066 * This is a two pass approach. The first pass will only try the
2067 * preferred nodes but skip the direct reclaim and allow the
2068 * allocation to fail, while the second pass will try all the
2071 preferred_gfp = gfp | __GFP_NOWARN;
2072 preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2073 page = __alloc_pages(preferred_gfp, order, nid, nodemask);
2075 page = __alloc_pages(gfp, order, nid, NULL);
2081 * alloc_pages_mpol - Allocate pages according to NUMA mempolicy.
2083 * @order: Order of the page allocation.
2084 * @pol: Pointer to the NUMA mempolicy.
2085 * @ilx: Index for interleave mempolicy (also distinguishes alloc_pages()).
2086 * @nid: Preferred node (usually numa_node_id() but @mpol may override it).
2088 * Return: The page on success or NULL if allocation fails.
2090 struct page *alloc_pages_mpol(gfp_t gfp, unsigned int order,
2091 struct mempolicy *pol, pgoff_t ilx, int nid)
2093 nodemask_t *nodemask;
2096 nodemask = policy_nodemask(gfp, pol, ilx, &nid);
2098 if (pol->mode == MPOL_PREFERRED_MANY)
2099 return alloc_pages_preferred_many(gfp, order, nid, nodemask);
2101 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
2102 /* filter "hugepage" allocation, unless from alloc_pages() */
2103 order == HPAGE_PMD_ORDER && ilx != NO_INTERLEAVE_INDEX) {
2105 * For hugepage allocation and non-interleave policy which
2106 * allows the current node (or other explicitly preferred
2107 * node) we only try to allocate from the current/preferred
2108 * node and don't fall back to other nodes, as the cost of
2109 * remote accesses would likely offset THP benefits.
2111 * If the policy is interleave or does not allow the current
2112 * node in its nodemask, we allocate the standard way.
2114 if (pol->mode != MPOL_INTERLEAVE &&
2115 (!nodemask || node_isset(nid, *nodemask))) {
2117 * First, try to allocate THP only on local node, but
2118 * don't reclaim unnecessarily, just compact.
2120 page = __alloc_pages_node(nid,
2121 gfp | __GFP_THISNODE | __GFP_NORETRY, order);
2122 if (page || !(gfp & __GFP_DIRECT_RECLAIM))
2125 * If hugepage allocations are configured to always
2126 * synchronous compact or the vma has been madvised
2127 * to prefer hugepage backing, retry allowing remote
2128 * memory with both reclaim and compact as well.
2133 page = __alloc_pages(gfp, order, nid, nodemask);
2135 if (unlikely(pol->mode == MPOL_INTERLEAVE) && page) {
2136 /* skip NUMA_INTERLEAVE_HIT update if numa stats is disabled */
2137 if (static_branch_likely(&vm_numa_stat_key) &&
2138 page_to_nid(page) == nid) {
2140 __count_numa_event(page_zone(page), NUMA_INTERLEAVE_HIT);
2149 * vma_alloc_folio - Allocate a folio for a VMA.
2151 * @order: Order of the folio.
2152 * @vma: Pointer to VMA.
2153 * @addr: Virtual address of the allocation. Must be inside @vma.
2154 * @hugepage: Unused (was: For hugepages try only preferred node if possible).
2156 * Allocate a folio for a specific address in @vma, using the appropriate
2157 * NUMA policy. The caller must hold the mmap_lock of the mm_struct of the
2158 * VMA to prevent it from going away. Should be used for all allocations
2159 * for folios that will be mapped into user space, excepting hugetlbfs, and
2160 * excepting where direct use of alloc_pages_mpol() is more appropriate.
2162 * Return: The folio on success or NULL if allocation fails.
2164 struct folio *vma_alloc_folio(gfp_t gfp, int order, struct vm_area_struct *vma,
2165 unsigned long addr, bool hugepage)
2167 struct mempolicy *pol;
2171 pol = get_vma_policy(vma, addr, order, &ilx);
2172 page = alloc_pages_mpol(gfp | __GFP_COMP, order,
2173 pol, ilx, numa_node_id());
2175 return page_rmappable_folio(page);
2177 EXPORT_SYMBOL(vma_alloc_folio);
2180 * alloc_pages - Allocate pages.
2182 * @order: Power of two of number of pages to allocate.
2184 * Allocate 1 << @order contiguous pages. The physical address of the
2185 * first page is naturally aligned (eg an order-3 allocation will be aligned
2186 * to a multiple of 8 * PAGE_SIZE bytes). The NUMA policy of the current
2187 * process is honoured when in process context.
2189 * Context: Can be called from any context, providing the appropriate GFP
2191 * Return: The page on success or NULL if allocation fails.
2193 struct page *alloc_pages(gfp_t gfp, unsigned int order)
2195 struct mempolicy *pol = &default_policy;
2198 * No reference counting needed for current->mempolicy
2199 * nor system default_policy
2201 if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2202 pol = get_task_policy(current);
2204 return alloc_pages_mpol(gfp, order,
2205 pol, NO_INTERLEAVE_INDEX, numa_node_id());
2207 EXPORT_SYMBOL(alloc_pages);
2209 struct folio *folio_alloc(gfp_t gfp, unsigned int order)
2211 return page_rmappable_folio(alloc_pages(gfp | __GFP_COMP, order));
2213 EXPORT_SYMBOL(folio_alloc);
2215 static unsigned long alloc_pages_bulk_array_interleave(gfp_t gfp,
2216 struct mempolicy *pol, unsigned long nr_pages,
2217 struct page **page_array)
2220 unsigned long nr_pages_per_node;
2223 unsigned long nr_allocated;
2224 unsigned long total_allocated = 0;
2226 nodes = nodes_weight(pol->nodes);
2227 nr_pages_per_node = nr_pages / nodes;
2228 delta = nr_pages - nodes * nr_pages_per_node;
2230 for (i = 0; i < nodes; i++) {
2232 nr_allocated = __alloc_pages_bulk(gfp,
2233 interleave_nodes(pol), NULL,
2234 nr_pages_per_node + 1, NULL,
2238 nr_allocated = __alloc_pages_bulk(gfp,
2239 interleave_nodes(pol), NULL,
2240 nr_pages_per_node, NULL, page_array);
2243 page_array += nr_allocated;
2244 total_allocated += nr_allocated;
2247 return total_allocated;
2250 static unsigned long alloc_pages_bulk_array_preferred_many(gfp_t gfp, int nid,
2251 struct mempolicy *pol, unsigned long nr_pages,
2252 struct page **page_array)
2254 gfp_t preferred_gfp;
2255 unsigned long nr_allocated = 0;
2257 preferred_gfp = gfp | __GFP_NOWARN;
2258 preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2260 nr_allocated = __alloc_pages_bulk(preferred_gfp, nid, &pol->nodes,
2261 nr_pages, NULL, page_array);
2263 if (nr_allocated < nr_pages)
2264 nr_allocated += __alloc_pages_bulk(gfp, numa_node_id(), NULL,
2265 nr_pages - nr_allocated, NULL,
2266 page_array + nr_allocated);
2267 return nr_allocated;
2270 /* alloc pages bulk and mempolicy should be considered at the
2271 * same time in some situation such as vmalloc.
2273 * It can accelerate memory allocation especially interleaving
2276 unsigned long alloc_pages_bulk_array_mempolicy(gfp_t gfp,
2277 unsigned long nr_pages, struct page **page_array)
2279 struct mempolicy *pol = &default_policy;
2280 nodemask_t *nodemask;
2283 if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2284 pol = get_task_policy(current);
2286 if (pol->mode == MPOL_INTERLEAVE)
2287 return alloc_pages_bulk_array_interleave(gfp, pol,
2288 nr_pages, page_array);
2290 if (pol->mode == MPOL_PREFERRED_MANY)
2291 return alloc_pages_bulk_array_preferred_many(gfp,
2292 numa_node_id(), pol, nr_pages, page_array);
2294 nid = numa_node_id();
2295 nodemask = policy_nodemask(gfp, pol, NO_INTERLEAVE_INDEX, &nid);
2296 return __alloc_pages_bulk(gfp, nid, nodemask,
2297 nr_pages, NULL, page_array);
2300 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2302 struct mempolicy *pol = mpol_dup(src->vm_policy);
2305 return PTR_ERR(pol);
2306 dst->vm_policy = pol;
2311 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2312 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2313 * with the mems_allowed returned by cpuset_mems_allowed(). This
2314 * keeps mempolicies cpuset relative after its cpuset moves. See
2315 * further kernel/cpuset.c update_nodemask().
2317 * current's mempolicy may be rebinded by the other task(the task that changes
2318 * cpuset's mems), so we needn't do rebind work for current task.
2321 /* Slow path of a mempolicy duplicate */
2322 struct mempolicy *__mpol_dup(struct mempolicy *old)
2324 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2327 return ERR_PTR(-ENOMEM);
2329 /* task's mempolicy is protected by alloc_lock */
2330 if (old == current->mempolicy) {
2333 task_unlock(current);
2337 if (current_cpuset_is_being_rebound()) {
2338 nodemask_t mems = cpuset_mems_allowed(current);
2339 mpol_rebind_policy(new, &mems);
2341 atomic_set(&new->refcnt, 1);
2345 /* Slow path of a mempolicy comparison */
2346 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2350 if (a->mode != b->mode)
2352 if (a->flags != b->flags)
2354 if (a->home_node != b->home_node)
2356 if (mpol_store_user_nodemask(a))
2357 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2362 case MPOL_INTERLEAVE:
2363 case MPOL_PREFERRED:
2364 case MPOL_PREFERRED_MANY:
2365 return !!nodes_equal(a->nodes, b->nodes);
2375 * Shared memory backing store policy support.
2377 * Remember policies even when nobody has shared memory mapped.
2378 * The policies are kept in Red-Black tree linked from the inode.
2379 * They are protected by the sp->lock rwlock, which should be held
2380 * for any accesses to the tree.
2384 * lookup first element intersecting start-end. Caller holds sp->lock for
2385 * reading or for writing
2387 static struct sp_node *sp_lookup(struct shared_policy *sp,
2388 pgoff_t start, pgoff_t end)
2390 struct rb_node *n = sp->root.rb_node;
2393 struct sp_node *p = rb_entry(n, struct sp_node, nd);
2395 if (start >= p->end)
2397 else if (end <= p->start)
2405 struct sp_node *w = NULL;
2406 struct rb_node *prev = rb_prev(n);
2409 w = rb_entry(prev, struct sp_node, nd);
2410 if (w->end <= start)
2414 return rb_entry(n, struct sp_node, nd);
2418 * Insert a new shared policy into the list. Caller holds sp->lock for
2421 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2423 struct rb_node **p = &sp->root.rb_node;
2424 struct rb_node *parent = NULL;
2429 nd = rb_entry(parent, struct sp_node, nd);
2430 if (new->start < nd->start)
2432 else if (new->end > nd->end)
2433 p = &(*p)->rb_right;
2437 rb_link_node(&new->nd, parent, p);
2438 rb_insert_color(&new->nd, &sp->root);
2441 /* Find shared policy intersecting idx */
2442 struct mempolicy *mpol_shared_policy_lookup(struct shared_policy *sp,
2445 struct mempolicy *pol = NULL;
2448 if (!sp->root.rb_node)
2450 read_lock(&sp->lock);
2451 sn = sp_lookup(sp, idx, idx+1);
2453 mpol_get(sn->policy);
2456 read_unlock(&sp->lock);
2460 static void sp_free(struct sp_node *n)
2462 mpol_put(n->policy);
2463 kmem_cache_free(sn_cache, n);
2467 * mpol_misplaced - check whether current folio node is valid in policy
2469 * @folio: folio to be checked
2470 * @vma: vm area where folio mapped
2471 * @addr: virtual address in @vma for shared policy lookup and interleave policy
2473 * Lookup current policy node id for vma,addr and "compare to" folio's
2474 * node id. Policy determination "mimics" alloc_page_vma().
2475 * Called from fault path where we know the vma and faulting address.
2477 * Return: NUMA_NO_NODE if the page is in a node that is valid for this
2478 * policy, or a suitable node ID to allocate a replacement folio from.
2480 int mpol_misplaced(struct folio *folio, struct vm_area_struct *vma,
2483 struct mempolicy *pol;
2486 int curnid = folio_nid(folio);
2487 int thiscpu = raw_smp_processor_id();
2488 int thisnid = cpu_to_node(thiscpu);
2489 int polnid = NUMA_NO_NODE;
2490 int ret = NUMA_NO_NODE;
2492 pol = get_vma_policy(vma, addr, folio_order(folio), &ilx);
2493 if (!(pol->flags & MPOL_F_MOF))
2496 switch (pol->mode) {
2497 case MPOL_INTERLEAVE:
2498 polnid = interleave_nid(pol, ilx);
2501 case MPOL_PREFERRED:
2502 if (node_isset(curnid, pol->nodes))
2504 polnid = first_node(pol->nodes);
2508 polnid = numa_node_id();
2512 /* Optimize placement among multiple nodes via NUMA balancing */
2513 if (pol->flags & MPOL_F_MORON) {
2514 if (node_isset(thisnid, pol->nodes))
2520 case MPOL_PREFERRED_MANY:
2522 * use current page if in policy nodemask,
2523 * else select nearest allowed node, if any.
2524 * If no allowed nodes, use current [!misplaced].
2526 if (node_isset(curnid, pol->nodes))
2528 z = first_zones_zonelist(
2529 node_zonelist(numa_node_id(), GFP_HIGHUSER),
2530 gfp_zone(GFP_HIGHUSER),
2532 polnid = zone_to_nid(z->zone);
2539 /* Migrate the folio towards the node whose CPU is referencing it */
2540 if (pol->flags & MPOL_F_MORON) {
2543 if (!should_numa_migrate_memory(current, folio, curnid,
2548 if (curnid != polnid)
2557 * Drop the (possibly final) reference to task->mempolicy. It needs to be
2558 * dropped after task->mempolicy is set to NULL so that any allocation done as
2559 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2562 void mpol_put_task_policy(struct task_struct *task)
2564 struct mempolicy *pol;
2567 pol = task->mempolicy;
2568 task->mempolicy = NULL;
2573 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2575 rb_erase(&n->nd, &sp->root);
2579 static void sp_node_init(struct sp_node *node, unsigned long start,
2580 unsigned long end, struct mempolicy *pol)
2582 node->start = start;
2587 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2588 struct mempolicy *pol)
2591 struct mempolicy *newpol;
2593 n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2597 newpol = mpol_dup(pol);
2598 if (IS_ERR(newpol)) {
2599 kmem_cache_free(sn_cache, n);
2602 newpol->flags |= MPOL_F_SHARED;
2603 sp_node_init(n, start, end, newpol);
2608 /* Replace a policy range. */
2609 static int shared_policy_replace(struct shared_policy *sp, pgoff_t start,
2610 pgoff_t end, struct sp_node *new)
2613 struct sp_node *n_new = NULL;
2614 struct mempolicy *mpol_new = NULL;
2618 write_lock(&sp->lock);
2619 n = sp_lookup(sp, start, end);
2620 /* Take care of old policies in the same range. */
2621 while (n && n->start < end) {
2622 struct rb_node *next = rb_next(&n->nd);
2623 if (n->start >= start) {
2629 /* Old policy spanning whole new range. */
2634 *mpol_new = *n->policy;
2635 atomic_set(&mpol_new->refcnt, 1);
2636 sp_node_init(n_new, end, n->end, mpol_new);
2638 sp_insert(sp, n_new);
2647 n = rb_entry(next, struct sp_node, nd);
2651 write_unlock(&sp->lock);
2658 kmem_cache_free(sn_cache, n_new);
2663 write_unlock(&sp->lock);
2665 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2668 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2671 atomic_set(&mpol_new->refcnt, 1);
2676 * mpol_shared_policy_init - initialize shared policy for inode
2677 * @sp: pointer to inode shared policy
2678 * @mpol: struct mempolicy to install
2680 * Install non-NULL @mpol in inode's shared policy rb-tree.
2681 * On entry, the current task has a reference on a non-NULL @mpol.
2682 * This must be released on exit.
2683 * This is called at get_inode() calls and we can use GFP_KERNEL.
2685 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2689 sp->root = RB_ROOT; /* empty tree == default mempolicy */
2690 rwlock_init(&sp->lock);
2694 struct mempolicy *npol;
2695 NODEMASK_SCRATCH(scratch);
2700 /* contextualize the tmpfs mount point mempolicy to this file */
2701 npol = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2703 goto free_scratch; /* no valid nodemask intersection */
2706 ret = mpol_set_nodemask(npol, &mpol->w.user_nodemask, scratch);
2707 task_unlock(current);
2711 /* alloc node covering entire file; adds ref to file's npol */
2712 sn = sp_alloc(0, MAX_LFS_FILESIZE >> PAGE_SHIFT, npol);
2716 mpol_put(npol); /* drop initial ref on file's npol */
2718 NODEMASK_SCRATCH_FREE(scratch);
2720 mpol_put(mpol); /* drop our incoming ref on sb mpol */
2724 int mpol_set_shared_policy(struct shared_policy *sp,
2725 struct vm_area_struct *vma, struct mempolicy *pol)
2728 struct sp_node *new = NULL;
2729 unsigned long sz = vma_pages(vma);
2732 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, pol);
2736 err = shared_policy_replace(sp, vma->vm_pgoff, vma->vm_pgoff + sz, new);
2742 /* Free a backing policy store on inode delete. */
2743 void mpol_free_shared_policy(struct shared_policy *sp)
2746 struct rb_node *next;
2748 if (!sp->root.rb_node)
2750 write_lock(&sp->lock);
2751 next = rb_first(&sp->root);
2753 n = rb_entry(next, struct sp_node, nd);
2754 next = rb_next(&n->nd);
2757 write_unlock(&sp->lock);
2760 #ifdef CONFIG_NUMA_BALANCING
2761 static int __initdata numabalancing_override;
2763 static void __init check_numabalancing_enable(void)
2765 bool numabalancing_default = false;
2767 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2768 numabalancing_default = true;
2770 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2771 if (numabalancing_override)
2772 set_numabalancing_state(numabalancing_override == 1);
2774 if (num_online_nodes() > 1 && !numabalancing_override) {
2775 pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2776 numabalancing_default ? "Enabling" : "Disabling");
2777 set_numabalancing_state(numabalancing_default);
2781 static int __init setup_numabalancing(char *str)
2787 if (!strcmp(str, "enable")) {
2788 numabalancing_override = 1;
2790 } else if (!strcmp(str, "disable")) {
2791 numabalancing_override = -1;
2796 pr_warn("Unable to parse numa_balancing=\n");
2800 __setup("numa_balancing=", setup_numabalancing);
2802 static inline void __init check_numabalancing_enable(void)
2805 #endif /* CONFIG_NUMA_BALANCING */
2807 void __init numa_policy_init(void)
2809 nodemask_t interleave_nodes;
2810 unsigned long largest = 0;
2811 int nid, prefer = 0;
2813 policy_cache = kmem_cache_create("numa_policy",
2814 sizeof(struct mempolicy),
2815 0, SLAB_PANIC, NULL);
2817 sn_cache = kmem_cache_create("shared_policy_node",
2818 sizeof(struct sp_node),
2819 0, SLAB_PANIC, NULL);
2821 for_each_node(nid) {
2822 preferred_node_policy[nid] = (struct mempolicy) {
2823 .refcnt = ATOMIC_INIT(1),
2824 .mode = MPOL_PREFERRED,
2825 .flags = MPOL_F_MOF | MPOL_F_MORON,
2826 .nodes = nodemask_of_node(nid),
2831 * Set interleaving policy for system init. Interleaving is only
2832 * enabled across suitably sized nodes (default is >= 16MB), or
2833 * fall back to the largest node if they're all smaller.
2835 nodes_clear(interleave_nodes);
2836 for_each_node_state(nid, N_MEMORY) {
2837 unsigned long total_pages = node_present_pages(nid);
2839 /* Preserve the largest node */
2840 if (largest < total_pages) {
2841 largest = total_pages;
2845 /* Interleave this node? */
2846 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2847 node_set(nid, interleave_nodes);
2850 /* All too small, use the largest */
2851 if (unlikely(nodes_empty(interleave_nodes)))
2852 node_set(prefer, interleave_nodes);
2854 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2855 pr_err("%s: interleaving failed\n", __func__);
2857 check_numabalancing_enable();
2860 /* Reset policy of current process to default */
2861 void numa_default_policy(void)
2863 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2867 * Parse and format mempolicy from/to strings
2869 static const char * const policy_modes[] =
2871 [MPOL_DEFAULT] = "default",
2872 [MPOL_PREFERRED] = "prefer",
2873 [MPOL_BIND] = "bind",
2874 [MPOL_INTERLEAVE] = "interleave",
2875 [MPOL_LOCAL] = "local",
2876 [MPOL_PREFERRED_MANY] = "prefer (many)",
2881 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2882 * @str: string containing mempolicy to parse
2883 * @mpol: pointer to struct mempolicy pointer, returned on success.
2886 * <mode>[=<flags>][:<nodelist>]
2888 * Return: %0 on success, else %1
2890 int mpol_parse_str(char *str, struct mempolicy **mpol)
2892 struct mempolicy *new = NULL;
2893 unsigned short mode_flags;
2895 char *nodelist = strchr(str, ':');
2896 char *flags = strchr(str, '=');
2900 *flags++ = '\0'; /* terminate mode string */
2903 /* NUL-terminate mode or flags string */
2905 if (nodelist_parse(nodelist, nodes))
2907 if (!nodes_subset(nodes, node_states[N_MEMORY]))
2912 mode = match_string(policy_modes, MPOL_MAX, str);
2917 case MPOL_PREFERRED:
2919 * Insist on a nodelist of one node only, although later
2920 * we use first_node(nodes) to grab a single node, so here
2921 * nodelist (or nodes) cannot be empty.
2924 char *rest = nodelist;
2925 while (isdigit(*rest))
2929 if (nodes_empty(nodes))
2933 case MPOL_INTERLEAVE:
2935 * Default to online nodes with memory if no nodelist
2938 nodes = node_states[N_MEMORY];
2942 * Don't allow a nodelist; mpol_new() checks flags
2949 * Insist on a empty nodelist
2954 case MPOL_PREFERRED_MANY:
2957 * Insist on a nodelist
2966 * Currently, we only support two mutually exclusive
2969 if (!strcmp(flags, "static"))
2970 mode_flags |= MPOL_F_STATIC_NODES;
2971 else if (!strcmp(flags, "relative"))
2972 mode_flags |= MPOL_F_RELATIVE_NODES;
2977 new = mpol_new(mode, mode_flags, &nodes);
2982 * Save nodes for mpol_to_str() to show the tmpfs mount options
2983 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2985 if (mode != MPOL_PREFERRED) {
2987 } else if (nodelist) {
2988 nodes_clear(new->nodes);
2989 node_set(first_node(nodes), new->nodes);
2991 new->mode = MPOL_LOCAL;
2995 * Save nodes for contextualization: this will be used to "clone"
2996 * the mempolicy in a specific context [cpuset] at a later time.
2998 new->w.user_nodemask = nodes;
3003 /* Restore string for error message */
3012 #endif /* CONFIG_TMPFS */
3015 * mpol_to_str - format a mempolicy structure for printing
3016 * @buffer: to contain formatted mempolicy string
3017 * @maxlen: length of @buffer
3018 * @pol: pointer to mempolicy to be formatted
3020 * Convert @pol into a string. If @buffer is too short, truncate the string.
3021 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
3022 * longest flag, "relative", and to display at least a few node ids.
3024 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
3027 nodemask_t nodes = NODE_MASK_NONE;
3028 unsigned short mode = MPOL_DEFAULT;
3029 unsigned short flags = 0;
3031 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
3040 case MPOL_PREFERRED:
3041 case MPOL_PREFERRED_MANY:
3043 case MPOL_INTERLEAVE:
3048 snprintf(p, maxlen, "unknown");
3052 p += snprintf(p, maxlen, "%s", policy_modes[mode]);
3054 if (flags & MPOL_MODE_FLAGS) {
3055 p += snprintf(p, buffer + maxlen - p, "=");
3058 * Currently, the only defined flags are mutually exclusive
3060 if (flags & MPOL_F_STATIC_NODES)
3061 p += snprintf(p, buffer + maxlen - p, "static");
3062 else if (flags & MPOL_F_RELATIVE_NODES)
3063 p += snprintf(p, buffer + maxlen - p, "relative");
3066 if (!nodes_empty(nodes))
3067 p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
3068 nodemask_pr_args(&nodes));