1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
4 * Copyright IBM Corporation, 2007
7 * Copyright 2007 OpenVZ SWsoft Inc
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
24 * Per memcg lru locking
25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi
28 #include <linux/page_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/pagewalk.h>
32 #include <linux/sched/mm.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/hugetlb.h>
35 #include <linux/pagemap.h>
36 #include <linux/vm_event_item.h>
37 #include <linux/smp.h>
38 #include <linux/page-flags.h>
39 #include <linux/backing-dev.h>
40 #include <linux/bit_spinlock.h>
41 #include <linux/rcupdate.h>
42 #include <linux/limits.h>
43 #include <linux/export.h>
44 #include <linux/mutex.h>
45 #include <linux/rbtree.h>
46 #include <linux/slab.h>
47 #include <linux/swap.h>
48 #include <linux/swapops.h>
49 #include <linux/spinlock.h>
50 #include <linux/eventfd.h>
51 #include <linux/poll.h>
52 #include <linux/sort.h>
54 #include <linux/seq_file.h>
55 #include <linux/vmpressure.h>
56 #include <linux/memremap.h>
57 #include <linux/mm_inline.h>
58 #include <linux/swap_cgroup.h>
59 #include <linux/cpu.h>
60 #include <linux/oom.h>
61 #include <linux/lockdep.h>
62 #include <linux/file.h>
63 #include <linux/resume_user_mode.h>
64 #include <linux/psi.h>
65 #include <linux/seq_buf.h>
66 #include <linux/sched/isolation.h>
67 #include <linux/kmemleak.h>
74 #include <linux/uaccess.h>
76 #include <trace/events/vmscan.h>
78 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
79 EXPORT_SYMBOL(memory_cgrp_subsys);
81 struct mem_cgroup *root_mem_cgroup __read_mostly;
83 /* Active memory cgroup to use from an interrupt context */
84 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
85 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
87 /* Socket memory accounting disabled? */
88 static bool cgroup_memory_nosocket __ro_after_init;
90 /* Kernel memory accounting disabled? */
91 static bool cgroup_memory_nokmem __ro_after_init;
93 /* BPF memory accounting disabled? */
94 static bool cgroup_memory_nobpf __ro_after_init;
96 #ifdef CONFIG_CGROUP_WRITEBACK
97 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
100 /* Whether legacy memory+swap accounting is active */
101 static bool do_memsw_account(void)
103 return !cgroup_subsys_on_dfl(memory_cgrp_subsys);
106 #define THRESHOLDS_EVENTS_TARGET 128
107 #define SOFTLIMIT_EVENTS_TARGET 1024
110 * Cgroups above their limits are maintained in a RB-Tree, independent of
111 * their hierarchy representation
114 struct mem_cgroup_tree_per_node {
115 struct rb_root rb_root;
116 struct rb_node *rb_rightmost;
120 struct mem_cgroup_tree {
121 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
124 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
127 struct mem_cgroup_eventfd_list {
128 struct list_head list;
129 struct eventfd_ctx *eventfd;
133 * cgroup_event represents events which userspace want to receive.
135 struct mem_cgroup_event {
137 * memcg which the event belongs to.
139 struct mem_cgroup *memcg;
141 * eventfd to signal userspace about the event.
143 struct eventfd_ctx *eventfd;
145 * Each of these stored in a list by the cgroup.
147 struct list_head list;
149 * register_event() callback will be used to add new userspace
150 * waiter for changes related to this event. Use eventfd_signal()
151 * on eventfd to send notification to userspace.
153 int (*register_event)(struct mem_cgroup *memcg,
154 struct eventfd_ctx *eventfd, const char *args);
156 * unregister_event() callback will be called when userspace closes
157 * the eventfd or on cgroup removing. This callback must be set,
158 * if you want provide notification functionality.
160 void (*unregister_event)(struct mem_cgroup *memcg,
161 struct eventfd_ctx *eventfd);
163 * All fields below needed to unregister event when
164 * userspace closes eventfd.
167 wait_queue_head_t *wqh;
168 wait_queue_entry_t wait;
169 struct work_struct remove;
172 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
173 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
175 /* Stuffs for move charges at task migration. */
177 * Types of charges to be moved.
179 #define MOVE_ANON 0x1U
180 #define MOVE_FILE 0x2U
181 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
183 /* "mc" and its members are protected by cgroup_mutex */
184 static struct move_charge_struct {
185 spinlock_t lock; /* for from, to */
186 struct mm_struct *mm;
187 struct mem_cgroup *from;
188 struct mem_cgroup *to;
190 unsigned long precharge;
191 unsigned long moved_charge;
192 unsigned long moved_swap;
193 struct task_struct *moving_task; /* a task moving charges */
194 wait_queue_head_t waitq; /* a waitq for other context */
196 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
197 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
201 * Maximum loops in mem_cgroup_soft_reclaim(), used for soft
202 * limit reclaim to prevent infinite loops, if they ever occur.
204 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
205 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
207 /* for encoding cft->private value on file */
215 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
216 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
217 #define MEMFILE_ATTR(val) ((val) & 0xffff)
220 * Iteration constructs for visiting all cgroups (under a tree). If
221 * loops are exited prematurely (break), mem_cgroup_iter_break() must
222 * be used for reference counting.
224 #define for_each_mem_cgroup_tree(iter, root) \
225 for (iter = mem_cgroup_iter(root, NULL, NULL); \
227 iter = mem_cgroup_iter(root, iter, NULL))
229 #define for_each_mem_cgroup(iter) \
230 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
232 iter = mem_cgroup_iter(NULL, iter, NULL))
234 static inline bool task_is_dying(void)
236 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
237 (current->flags & PF_EXITING);
240 /* Some nice accessors for the vmpressure. */
241 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
244 memcg = root_mem_cgroup;
245 return &memcg->vmpressure;
248 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
250 return container_of(vmpr, struct mem_cgroup, vmpressure);
253 #define CURRENT_OBJCG_UPDATE_BIT 0
254 #define CURRENT_OBJCG_UPDATE_FLAG (1UL << CURRENT_OBJCG_UPDATE_BIT)
256 #ifdef CONFIG_MEMCG_KMEM
257 static DEFINE_SPINLOCK(objcg_lock);
259 bool mem_cgroup_kmem_disabled(void)
261 return cgroup_memory_nokmem;
264 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
265 unsigned int nr_pages);
267 static void obj_cgroup_release(struct percpu_ref *ref)
269 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
270 unsigned int nr_bytes;
271 unsigned int nr_pages;
275 * At this point all allocated objects are freed, and
276 * objcg->nr_charged_bytes can't have an arbitrary byte value.
277 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
279 * The following sequence can lead to it:
280 * 1) CPU0: objcg == stock->cached_objcg
281 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
282 * PAGE_SIZE bytes are charged
283 * 3) CPU1: a process from another memcg is allocating something,
284 * the stock if flushed,
285 * objcg->nr_charged_bytes = PAGE_SIZE - 92
286 * 5) CPU0: we do release this object,
287 * 92 bytes are added to stock->nr_bytes
288 * 6) CPU0: stock is flushed,
289 * 92 bytes are added to objcg->nr_charged_bytes
291 * In the result, nr_charged_bytes == PAGE_SIZE.
292 * This page will be uncharged in obj_cgroup_release().
294 nr_bytes = atomic_read(&objcg->nr_charged_bytes);
295 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
296 nr_pages = nr_bytes >> PAGE_SHIFT;
299 obj_cgroup_uncharge_pages(objcg, nr_pages);
301 spin_lock_irqsave(&objcg_lock, flags);
302 list_del(&objcg->list);
303 spin_unlock_irqrestore(&objcg_lock, flags);
305 percpu_ref_exit(ref);
306 kfree_rcu(objcg, rcu);
309 static struct obj_cgroup *obj_cgroup_alloc(void)
311 struct obj_cgroup *objcg;
314 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
318 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
324 INIT_LIST_HEAD(&objcg->list);
328 static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
329 struct mem_cgroup *parent)
331 struct obj_cgroup *objcg, *iter;
333 objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
335 spin_lock_irq(&objcg_lock);
337 /* 1) Ready to reparent active objcg. */
338 list_add(&objcg->list, &memcg->objcg_list);
339 /* 2) Reparent active objcg and already reparented objcgs to parent. */
340 list_for_each_entry(iter, &memcg->objcg_list, list)
341 WRITE_ONCE(iter->memcg, parent);
342 /* 3) Move already reparented objcgs to the parent's list */
343 list_splice(&memcg->objcg_list, &parent->objcg_list);
345 spin_unlock_irq(&objcg_lock);
347 percpu_ref_kill(&objcg->refcnt);
351 * A lot of the calls to the cache allocation functions are expected to be
352 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
353 * conditional to this static branch, we'll have to allow modules that does
354 * kmem_cache_alloc and the such to see this symbol as well
356 DEFINE_STATIC_KEY_FALSE(memcg_kmem_online_key);
357 EXPORT_SYMBOL(memcg_kmem_online_key);
359 DEFINE_STATIC_KEY_FALSE(memcg_bpf_enabled_key);
360 EXPORT_SYMBOL(memcg_bpf_enabled_key);
364 * mem_cgroup_css_from_folio - css of the memcg associated with a folio
365 * @folio: folio of interest
367 * If memcg is bound to the default hierarchy, css of the memcg associated
368 * with @folio is returned. The returned css remains associated with @folio
369 * until it is released.
371 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
374 struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio)
376 struct mem_cgroup *memcg = folio_memcg(folio);
378 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
379 memcg = root_mem_cgroup;
385 * page_cgroup_ino - return inode number of the memcg a page is charged to
388 * Look up the closest online ancestor of the memory cgroup @page is charged to
389 * and return its inode number or 0 if @page is not charged to any cgroup. It
390 * is safe to call this function without holding a reference to @page.
392 * Note, this function is inherently racy, because there is nothing to prevent
393 * the cgroup inode from getting torn down and potentially reallocated a moment
394 * after page_cgroup_ino() returns, so it only should be used by callers that
395 * do not care (such as procfs interfaces).
397 ino_t page_cgroup_ino(struct page *page)
399 struct mem_cgroup *memcg;
400 unsigned long ino = 0;
403 /* page_folio() is racy here, but the entire function is racy anyway */
404 memcg = folio_memcg_check(page_folio(page));
406 while (memcg && !(memcg->css.flags & CSS_ONLINE))
407 memcg = parent_mem_cgroup(memcg);
409 ino = cgroup_ino(memcg->css.cgroup);
414 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
415 struct mem_cgroup_tree_per_node *mctz,
416 unsigned long new_usage_in_excess)
418 struct rb_node **p = &mctz->rb_root.rb_node;
419 struct rb_node *parent = NULL;
420 struct mem_cgroup_per_node *mz_node;
421 bool rightmost = true;
426 mz->usage_in_excess = new_usage_in_excess;
427 if (!mz->usage_in_excess)
431 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
433 if (mz->usage_in_excess < mz_node->usage_in_excess) {
442 mctz->rb_rightmost = &mz->tree_node;
444 rb_link_node(&mz->tree_node, parent, p);
445 rb_insert_color(&mz->tree_node, &mctz->rb_root);
449 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
450 struct mem_cgroup_tree_per_node *mctz)
455 if (&mz->tree_node == mctz->rb_rightmost)
456 mctz->rb_rightmost = rb_prev(&mz->tree_node);
458 rb_erase(&mz->tree_node, &mctz->rb_root);
462 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
463 struct mem_cgroup_tree_per_node *mctz)
467 spin_lock_irqsave(&mctz->lock, flags);
468 __mem_cgroup_remove_exceeded(mz, mctz);
469 spin_unlock_irqrestore(&mctz->lock, flags);
472 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
474 unsigned long nr_pages = page_counter_read(&memcg->memory);
475 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
476 unsigned long excess = 0;
478 if (nr_pages > soft_limit)
479 excess = nr_pages - soft_limit;
484 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, int nid)
486 unsigned long excess;
487 struct mem_cgroup_per_node *mz;
488 struct mem_cgroup_tree_per_node *mctz;
490 if (lru_gen_enabled()) {
491 if (soft_limit_excess(memcg))
492 lru_gen_soft_reclaim(memcg, nid);
496 mctz = soft_limit_tree.rb_tree_per_node[nid];
500 * Necessary to update all ancestors when hierarchy is used.
501 * because their event counter is not touched.
503 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
504 mz = memcg->nodeinfo[nid];
505 excess = soft_limit_excess(memcg);
507 * We have to update the tree if mz is on RB-tree or
508 * mem is over its softlimit.
510 if (excess || mz->on_tree) {
513 spin_lock_irqsave(&mctz->lock, flags);
514 /* if on-tree, remove it */
516 __mem_cgroup_remove_exceeded(mz, mctz);
518 * Insert again. mz->usage_in_excess will be updated.
519 * If excess is 0, no tree ops.
521 __mem_cgroup_insert_exceeded(mz, mctz, excess);
522 spin_unlock_irqrestore(&mctz->lock, flags);
527 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
529 struct mem_cgroup_tree_per_node *mctz;
530 struct mem_cgroup_per_node *mz;
534 mz = memcg->nodeinfo[nid];
535 mctz = soft_limit_tree.rb_tree_per_node[nid];
537 mem_cgroup_remove_exceeded(mz, mctz);
541 static struct mem_cgroup_per_node *
542 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
544 struct mem_cgroup_per_node *mz;
548 if (!mctz->rb_rightmost)
549 goto done; /* Nothing to reclaim from */
551 mz = rb_entry(mctz->rb_rightmost,
552 struct mem_cgroup_per_node, tree_node);
554 * Remove the node now but someone else can add it back,
555 * we will to add it back at the end of reclaim to its correct
556 * position in the tree.
558 __mem_cgroup_remove_exceeded(mz, mctz);
559 if (!soft_limit_excess(mz->memcg) ||
560 !css_tryget(&mz->memcg->css))
566 static struct mem_cgroup_per_node *
567 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
569 struct mem_cgroup_per_node *mz;
571 spin_lock_irq(&mctz->lock);
572 mz = __mem_cgroup_largest_soft_limit_node(mctz);
573 spin_unlock_irq(&mctz->lock);
577 /* Subset of vm_event_item to report for memcg event stats */
578 static const unsigned int memcg_vm_event_stat[] = {
594 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
599 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
607 #define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat)
608 static int mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly;
610 static void init_memcg_events(void)
614 for (i = 0; i < NR_MEMCG_EVENTS; ++i)
615 mem_cgroup_events_index[memcg_vm_event_stat[i]] = i + 1;
618 static inline int memcg_events_index(enum vm_event_item idx)
620 return mem_cgroup_events_index[idx] - 1;
623 struct memcg_vmstats_percpu {
624 /* Local (CPU and cgroup) page state & events */
625 long state[MEMCG_NR_STAT];
626 unsigned long events[NR_MEMCG_EVENTS];
628 /* Delta calculation for lockless upward propagation */
629 long state_prev[MEMCG_NR_STAT];
630 unsigned long events_prev[NR_MEMCG_EVENTS];
632 /* Cgroup1: threshold notifications & softlimit tree updates */
633 unsigned long nr_page_events;
634 unsigned long targets[MEM_CGROUP_NTARGETS];
636 /* Stats updates since the last flush */
637 unsigned int stats_updates;
640 struct memcg_vmstats {
641 /* Aggregated (CPU and subtree) page state & events */
642 long state[MEMCG_NR_STAT];
643 unsigned long events[NR_MEMCG_EVENTS];
645 /* Non-hierarchical (CPU aggregated) page state & events */
646 long state_local[MEMCG_NR_STAT];
647 unsigned long events_local[NR_MEMCG_EVENTS];
649 /* Pending child counts during tree propagation */
650 long state_pending[MEMCG_NR_STAT];
651 unsigned long events_pending[NR_MEMCG_EVENTS];
653 /* Stats updates since the last flush */
654 atomic64_t stats_updates;
658 * memcg and lruvec stats flushing
660 * Many codepaths leading to stats update or read are performance sensitive and
661 * adding stats flushing in such codepaths is not desirable. So, to optimize the
662 * flushing the kernel does:
664 * 1) Periodically and asynchronously flush the stats every 2 seconds to not let
665 * rstat update tree grow unbounded.
667 * 2) Flush the stats synchronously on reader side only when there are more than
668 * (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization
669 * will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but
670 * only for 2 seconds due to (1).
672 static void flush_memcg_stats_dwork(struct work_struct *w);
673 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
674 static u64 flush_last_time;
676 #define FLUSH_TIME (2UL*HZ)
679 * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can
680 * not rely on this as part of an acquired spinlock_t lock. These functions are
681 * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion
684 static void memcg_stats_lock(void)
686 preempt_disable_nested();
687 VM_WARN_ON_IRQS_ENABLED();
690 static void __memcg_stats_lock(void)
692 preempt_disable_nested();
695 static void memcg_stats_unlock(void)
697 preempt_enable_nested();
701 static bool memcg_should_flush_stats(struct mem_cgroup *memcg)
703 return atomic64_read(&memcg->vmstats->stats_updates) >
704 MEMCG_CHARGE_BATCH * num_online_cpus();
707 static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val)
709 int cpu = smp_processor_id();
715 cgroup_rstat_updated(memcg->css.cgroup, cpu);
717 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
718 x = __this_cpu_add_return(memcg->vmstats_percpu->stats_updates,
721 if (x < MEMCG_CHARGE_BATCH)
725 * If @memcg is already flush-able, increasing stats_updates is
726 * redundant. Avoid the overhead of the atomic update.
728 if (!memcg_should_flush_stats(memcg))
729 atomic64_add(x, &memcg->vmstats->stats_updates);
730 __this_cpu_write(memcg->vmstats_percpu->stats_updates, 0);
734 static void do_flush_stats(struct mem_cgroup *memcg)
736 if (mem_cgroup_is_root(memcg))
737 WRITE_ONCE(flush_last_time, jiffies_64);
739 cgroup_rstat_flush(memcg->css.cgroup);
743 * mem_cgroup_flush_stats - flush the stats of a memory cgroup subtree
744 * @memcg: root of the subtree to flush
746 * Flushing is serialized by the underlying global rstat lock. There is also a
747 * minimum amount of work to be done even if there are no stat updates to flush.
748 * Hence, we only flush the stats if the updates delta exceeds a threshold. This
749 * avoids unnecessary work and contention on the underlying lock.
751 void mem_cgroup_flush_stats(struct mem_cgroup *memcg)
753 if (mem_cgroup_disabled())
757 memcg = root_mem_cgroup;
759 if (memcg_should_flush_stats(memcg))
760 do_flush_stats(memcg);
763 void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg)
765 /* Only flush if the periodic flusher is one full cycle late */
766 if (time_after64(jiffies_64, READ_ONCE(flush_last_time) + 2*FLUSH_TIME))
767 mem_cgroup_flush_stats(memcg);
770 static void flush_memcg_stats_dwork(struct work_struct *w)
773 * Deliberately ignore memcg_should_flush_stats() here so that flushing
774 * in latency-sensitive paths is as cheap as possible.
776 do_flush_stats(root_mem_cgroup);
777 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME);
780 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
782 long x = READ_ONCE(memcg->vmstats->state[idx]);
790 static int memcg_page_state_unit(int item);
793 * Normalize the value passed into memcg_rstat_updated() to be in pages. Round
794 * up non-zero sub-page updates to 1 page as zero page updates are ignored.
796 static int memcg_state_val_in_pages(int idx, int val)
798 int unit = memcg_page_state_unit(idx);
800 if (!val || unit == PAGE_SIZE)
803 return max(val * unit / PAGE_SIZE, 1UL);
807 * __mod_memcg_state - update cgroup memory statistics
808 * @memcg: the memory cgroup
809 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
810 * @val: delta to add to the counter, can be negative
812 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
814 if (mem_cgroup_disabled())
817 __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
818 memcg_rstat_updated(memcg, memcg_state_val_in_pages(idx, val));
821 /* idx can be of type enum memcg_stat_item or node_stat_item. */
822 static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
824 long x = READ_ONCE(memcg->vmstats->state_local[idx]);
833 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
836 struct mem_cgroup_per_node *pn;
837 struct mem_cgroup *memcg;
839 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
843 * The caller from rmap relies on disabled preemption because they never
844 * update their counter from in-interrupt context. For these two
845 * counters we check that the update is never performed from an
846 * interrupt context while other caller need to have disabled interrupt.
848 __memcg_stats_lock();
849 if (IS_ENABLED(CONFIG_DEBUG_VM)) {
854 case NR_SHMEM_PMDMAPPED:
855 case NR_FILE_PMDMAPPED:
856 WARN_ON_ONCE(!in_task());
859 VM_WARN_ON_IRQS_ENABLED();
864 __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
867 __this_cpu_add(pn->lruvec_stats_percpu->state[idx], val);
869 memcg_rstat_updated(memcg, memcg_state_val_in_pages(idx, val));
870 memcg_stats_unlock();
874 * __mod_lruvec_state - update lruvec memory statistics
875 * @lruvec: the lruvec
876 * @idx: the stat item
877 * @val: delta to add to the counter, can be negative
879 * The lruvec is the intersection of the NUMA node and a cgroup. This
880 * function updates the all three counters that are affected by a
881 * change of state at this level: per-node, per-cgroup, per-lruvec.
883 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
887 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
889 /* Update memcg and lruvec */
890 if (!mem_cgroup_disabled())
891 __mod_memcg_lruvec_state(lruvec, idx, val);
894 void __lruvec_stat_mod_folio(struct folio *folio, enum node_stat_item idx,
897 struct mem_cgroup *memcg;
898 pg_data_t *pgdat = folio_pgdat(folio);
899 struct lruvec *lruvec;
902 memcg = folio_memcg(folio);
903 /* Untracked pages have no memcg, no lruvec. Update only the node */
906 __mod_node_page_state(pgdat, idx, val);
910 lruvec = mem_cgroup_lruvec(memcg, pgdat);
911 __mod_lruvec_state(lruvec, idx, val);
914 EXPORT_SYMBOL(__lruvec_stat_mod_folio);
916 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
918 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
919 struct mem_cgroup *memcg;
920 struct lruvec *lruvec;
923 memcg = mem_cgroup_from_slab_obj(p);
926 * Untracked pages have no memcg, no lruvec. Update only the
927 * node. If we reparent the slab objects to the root memcg,
928 * when we free the slab object, we need to update the per-memcg
929 * vmstats to keep it correct for the root memcg.
932 __mod_node_page_state(pgdat, idx, val);
934 lruvec = mem_cgroup_lruvec(memcg, pgdat);
935 __mod_lruvec_state(lruvec, idx, val);
941 * __count_memcg_events - account VM events in a cgroup
942 * @memcg: the memory cgroup
943 * @idx: the event item
944 * @count: the number of events that occurred
946 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
949 int index = memcg_events_index(idx);
951 if (mem_cgroup_disabled() || index < 0)
955 __this_cpu_add(memcg->vmstats_percpu->events[index], count);
956 memcg_rstat_updated(memcg, count);
957 memcg_stats_unlock();
960 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
962 int index = memcg_events_index(event);
966 return READ_ONCE(memcg->vmstats->events[index]);
969 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
971 int index = memcg_events_index(event);
976 return READ_ONCE(memcg->vmstats->events_local[index]);
979 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
982 /* pagein of a big page is an event. So, ignore page size */
984 __count_memcg_events(memcg, PGPGIN, 1);
986 __count_memcg_events(memcg, PGPGOUT, 1);
987 nr_pages = -nr_pages; /* for event */
990 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
993 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
994 enum mem_cgroup_events_target target)
996 unsigned long val, next;
998 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
999 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
1000 /* from time_after() in jiffies.h */
1001 if ((long)(next - val) < 0) {
1003 case MEM_CGROUP_TARGET_THRESH:
1004 next = val + THRESHOLDS_EVENTS_TARGET;
1006 case MEM_CGROUP_TARGET_SOFTLIMIT:
1007 next = val + SOFTLIMIT_EVENTS_TARGET;
1012 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
1019 * Check events in order.
1022 static void memcg_check_events(struct mem_cgroup *memcg, int nid)
1024 if (IS_ENABLED(CONFIG_PREEMPT_RT))
1027 /* threshold event is triggered in finer grain than soft limit */
1028 if (unlikely(mem_cgroup_event_ratelimit(memcg,
1029 MEM_CGROUP_TARGET_THRESH))) {
1032 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1033 MEM_CGROUP_TARGET_SOFTLIMIT);
1034 mem_cgroup_threshold(memcg);
1035 if (unlikely(do_softlimit))
1036 mem_cgroup_update_tree(memcg, nid);
1040 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1043 * mm_update_next_owner() may clear mm->owner to NULL
1044 * if it races with swapoff, page migration, etc.
1045 * So this can be called with p == NULL.
1050 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1052 EXPORT_SYMBOL(mem_cgroup_from_task);
1054 static __always_inline struct mem_cgroup *active_memcg(void)
1057 return this_cpu_read(int_active_memcg);
1059 return current->active_memcg;
1063 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
1064 * @mm: mm from which memcg should be extracted. It can be NULL.
1066 * Obtain a reference on mm->memcg and returns it if successful. If mm
1067 * is NULL, then the memcg is chosen as follows:
1068 * 1) The active memcg, if set.
1069 * 2) current->mm->memcg, if available
1071 * If mem_cgroup is disabled, NULL is returned.
1073 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1075 struct mem_cgroup *memcg;
1077 if (mem_cgroup_disabled())
1081 * Page cache insertions can happen without an
1082 * actual mm context, e.g. during disk probing
1083 * on boot, loopback IO, acct() writes etc.
1085 * No need to css_get on root memcg as the reference
1086 * counting is disabled on the root level in the
1087 * cgroup core. See CSS_NO_REF.
1089 if (unlikely(!mm)) {
1090 memcg = active_memcg();
1091 if (unlikely(memcg)) {
1092 /* remote memcg must hold a ref */
1093 css_get(&memcg->css);
1098 return root_mem_cgroup;
1103 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1104 if (unlikely(!memcg))
1105 memcg = root_mem_cgroup;
1106 } while (!css_tryget(&memcg->css));
1110 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
1113 * get_mem_cgroup_from_current - Obtain a reference on current task's memcg.
1115 struct mem_cgroup *get_mem_cgroup_from_current(void)
1117 struct mem_cgroup *memcg;
1119 if (mem_cgroup_disabled())
1124 memcg = mem_cgroup_from_task(current);
1125 if (!css_tryget(&memcg->css)) {
1134 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1135 * @root: hierarchy root
1136 * @prev: previously returned memcg, NULL on first invocation
1137 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1139 * Returns references to children of the hierarchy below @root, or
1140 * @root itself, or %NULL after a full round-trip.
1142 * Caller must pass the return value in @prev on subsequent
1143 * invocations for reference counting, or use mem_cgroup_iter_break()
1144 * to cancel a hierarchy walk before the round-trip is complete.
1146 * Reclaimers can specify a node in @reclaim to divide up the memcgs
1147 * in the hierarchy among all concurrent reclaimers operating on the
1150 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1151 struct mem_cgroup *prev,
1152 struct mem_cgroup_reclaim_cookie *reclaim)
1154 struct mem_cgroup_reclaim_iter *iter;
1155 struct cgroup_subsys_state *css = NULL;
1156 struct mem_cgroup *memcg = NULL;
1157 struct mem_cgroup *pos = NULL;
1159 if (mem_cgroup_disabled())
1163 root = root_mem_cgroup;
1168 struct mem_cgroup_per_node *mz;
1170 mz = root->nodeinfo[reclaim->pgdat->node_id];
1174 * On start, join the current reclaim iteration cycle.
1175 * Exit when a concurrent walker completes it.
1178 reclaim->generation = iter->generation;
1179 else if (reclaim->generation != iter->generation)
1183 pos = READ_ONCE(iter->position);
1184 if (!pos || css_tryget(&pos->css))
1187 * css reference reached zero, so iter->position will
1188 * be cleared by ->css_released. However, we should not
1189 * rely on this happening soon, because ->css_released
1190 * is called from a work queue, and by busy-waiting we
1191 * might block it. So we clear iter->position right
1194 (void)cmpxchg(&iter->position, pos, NULL);
1204 css = css_next_descendant_pre(css, &root->css);
1207 * Reclaimers share the hierarchy walk, and a
1208 * new one might jump in right at the end of
1209 * the hierarchy - make sure they see at least
1210 * one group and restart from the beginning.
1218 * Verify the css and acquire a reference. The root
1219 * is provided by the caller, so we know it's alive
1220 * and kicking, and don't take an extra reference.
1222 if (css == &root->css || css_tryget(css)) {
1223 memcg = mem_cgroup_from_css(css);
1230 * The position could have already been updated by a competing
1231 * thread, so check that the value hasn't changed since we read
1232 * it to avoid reclaiming from the same cgroup twice.
1234 (void)cmpxchg(&iter->position, pos, memcg);
1245 if (prev && prev != root)
1246 css_put(&prev->css);
1252 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1253 * @root: hierarchy root
1254 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1256 void mem_cgroup_iter_break(struct mem_cgroup *root,
1257 struct mem_cgroup *prev)
1260 root = root_mem_cgroup;
1261 if (prev && prev != root)
1262 css_put(&prev->css);
1265 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1266 struct mem_cgroup *dead_memcg)
1268 struct mem_cgroup_reclaim_iter *iter;
1269 struct mem_cgroup_per_node *mz;
1272 for_each_node(nid) {
1273 mz = from->nodeinfo[nid];
1275 cmpxchg(&iter->position, dead_memcg, NULL);
1279 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1281 struct mem_cgroup *memcg = dead_memcg;
1282 struct mem_cgroup *last;
1285 __invalidate_reclaim_iterators(memcg, dead_memcg);
1287 } while ((memcg = parent_mem_cgroup(memcg)));
1290 * When cgroup1 non-hierarchy mode is used,
1291 * parent_mem_cgroup() does not walk all the way up to the
1292 * cgroup root (root_mem_cgroup). So we have to handle
1293 * dead_memcg from cgroup root separately.
1295 if (!mem_cgroup_is_root(last))
1296 __invalidate_reclaim_iterators(root_mem_cgroup,
1301 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1302 * @memcg: hierarchy root
1303 * @fn: function to call for each task
1304 * @arg: argument passed to @fn
1306 * This function iterates over tasks attached to @memcg or to any of its
1307 * descendants and calls @fn for each task. If @fn returns a non-zero
1308 * value, the function breaks the iteration loop. Otherwise, it will iterate
1309 * over all tasks and return 0.
1311 * This function must not be called for the root memory cgroup.
1313 void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1314 int (*fn)(struct task_struct *, void *), void *arg)
1316 struct mem_cgroup *iter;
1319 BUG_ON(mem_cgroup_is_root(memcg));
1321 for_each_mem_cgroup_tree(iter, memcg) {
1322 struct css_task_iter it;
1323 struct task_struct *task;
1325 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1326 while (!ret && (task = css_task_iter_next(&it)))
1327 ret = fn(task, arg);
1328 css_task_iter_end(&it);
1330 mem_cgroup_iter_break(memcg, iter);
1336 #ifdef CONFIG_DEBUG_VM
1337 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1339 struct mem_cgroup *memcg;
1341 if (mem_cgroup_disabled())
1344 memcg = folio_memcg(folio);
1347 VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio);
1349 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio);
1354 * folio_lruvec_lock - Lock the lruvec for a folio.
1355 * @folio: Pointer to the folio.
1357 * These functions are safe to use under any of the following conditions:
1359 * - folio_test_lru false
1360 * - folio_memcg_lock()
1361 * - folio frozen (refcount of 0)
1363 * Return: The lruvec this folio is on with its lock held.
1365 struct lruvec *folio_lruvec_lock(struct folio *folio)
1367 struct lruvec *lruvec = folio_lruvec(folio);
1369 spin_lock(&lruvec->lru_lock);
1370 lruvec_memcg_debug(lruvec, folio);
1376 * folio_lruvec_lock_irq - Lock the lruvec for a folio.
1377 * @folio: Pointer to the folio.
1379 * These functions are safe to use under any of the following conditions:
1381 * - folio_test_lru false
1382 * - folio_memcg_lock()
1383 * - folio frozen (refcount of 0)
1385 * Return: The lruvec this folio is on with its lock held and interrupts
1388 struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1390 struct lruvec *lruvec = folio_lruvec(folio);
1392 spin_lock_irq(&lruvec->lru_lock);
1393 lruvec_memcg_debug(lruvec, folio);
1399 * folio_lruvec_lock_irqsave - Lock the lruvec for a folio.
1400 * @folio: Pointer to the folio.
1401 * @flags: Pointer to irqsave flags.
1403 * These functions are safe to use under any of the following conditions:
1405 * - folio_test_lru false
1406 * - folio_memcg_lock()
1407 * - folio frozen (refcount of 0)
1409 * Return: The lruvec this folio is on with its lock held and interrupts
1412 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1413 unsigned long *flags)
1415 struct lruvec *lruvec = folio_lruvec(folio);
1417 spin_lock_irqsave(&lruvec->lru_lock, *flags);
1418 lruvec_memcg_debug(lruvec, folio);
1424 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1425 * @lruvec: mem_cgroup per zone lru vector
1426 * @lru: index of lru list the page is sitting on
1427 * @zid: zone id of the accounted pages
1428 * @nr_pages: positive when adding or negative when removing
1430 * This function must be called under lru_lock, just before a page is added
1431 * to or just after a page is removed from an lru list.
1433 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1434 int zid, int nr_pages)
1436 struct mem_cgroup_per_node *mz;
1437 unsigned long *lru_size;
1440 if (mem_cgroup_disabled())
1443 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1444 lru_size = &mz->lru_zone_size[zid][lru];
1447 *lru_size += nr_pages;
1450 if (WARN_ONCE(size < 0,
1451 "%s(%p, %d, %d): lru_size %ld\n",
1452 __func__, lruvec, lru, nr_pages, size)) {
1458 *lru_size += nr_pages;
1462 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1463 * @memcg: the memory cgroup
1465 * Returns the maximum amount of memory @mem can be charged with, in
1468 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1470 unsigned long margin = 0;
1471 unsigned long count;
1472 unsigned long limit;
1474 count = page_counter_read(&memcg->memory);
1475 limit = READ_ONCE(memcg->memory.max);
1477 margin = limit - count;
1479 if (do_memsw_account()) {
1480 count = page_counter_read(&memcg->memsw);
1481 limit = READ_ONCE(memcg->memsw.max);
1483 margin = min(margin, limit - count);
1492 * A routine for checking "mem" is under move_account() or not.
1494 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1495 * moving cgroups. This is for waiting at high-memory pressure
1498 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1500 struct mem_cgroup *from;
1501 struct mem_cgroup *to;
1504 * Unlike task_move routines, we access mc.to, mc.from not under
1505 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1507 spin_lock(&mc.lock);
1513 ret = mem_cgroup_is_descendant(from, memcg) ||
1514 mem_cgroup_is_descendant(to, memcg);
1516 spin_unlock(&mc.lock);
1520 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1522 if (mc.moving_task && current != mc.moving_task) {
1523 if (mem_cgroup_under_move(memcg)) {
1525 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1526 /* moving charge context might have finished. */
1529 finish_wait(&mc.waitq, &wait);
1536 struct memory_stat {
1541 static const struct memory_stat memory_stats[] = {
1542 { "anon", NR_ANON_MAPPED },
1543 { "file", NR_FILE_PAGES },
1544 { "kernel", MEMCG_KMEM },
1545 { "kernel_stack", NR_KERNEL_STACK_KB },
1546 { "pagetables", NR_PAGETABLE },
1547 { "sec_pagetables", NR_SECONDARY_PAGETABLE },
1548 { "percpu", MEMCG_PERCPU_B },
1549 { "sock", MEMCG_SOCK },
1550 { "vmalloc", MEMCG_VMALLOC },
1551 { "shmem", NR_SHMEM },
1552 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
1553 { "zswap", MEMCG_ZSWAP_B },
1554 { "zswapped", MEMCG_ZSWAPPED },
1556 { "file_mapped", NR_FILE_MAPPED },
1557 { "file_dirty", NR_FILE_DIRTY },
1558 { "file_writeback", NR_WRITEBACK },
1560 { "swapcached", NR_SWAPCACHE },
1562 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1563 { "anon_thp", NR_ANON_THPS },
1564 { "file_thp", NR_FILE_THPS },
1565 { "shmem_thp", NR_SHMEM_THPS },
1567 { "inactive_anon", NR_INACTIVE_ANON },
1568 { "active_anon", NR_ACTIVE_ANON },
1569 { "inactive_file", NR_INACTIVE_FILE },
1570 { "active_file", NR_ACTIVE_FILE },
1571 { "unevictable", NR_UNEVICTABLE },
1572 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B },
1573 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B },
1575 /* The memory events */
1576 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON },
1577 { "workingset_refault_file", WORKINGSET_REFAULT_FILE },
1578 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON },
1579 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE },
1580 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON },
1581 { "workingset_restore_file", WORKINGSET_RESTORE_FILE },
1582 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM },
1585 /* The actual unit of the state item, not the same as the output unit */
1586 static int memcg_page_state_unit(int item)
1589 case MEMCG_PERCPU_B:
1591 case NR_SLAB_RECLAIMABLE_B:
1592 case NR_SLAB_UNRECLAIMABLE_B:
1594 case NR_KERNEL_STACK_KB:
1601 /* Translate stat items to the correct unit for memory.stat output */
1602 static int memcg_page_state_output_unit(int item)
1605 * Workingset state is actually in pages, but we export it to userspace
1606 * as a scalar count of events, so special case it here.
1609 case WORKINGSET_REFAULT_ANON:
1610 case WORKINGSET_REFAULT_FILE:
1611 case WORKINGSET_ACTIVATE_ANON:
1612 case WORKINGSET_ACTIVATE_FILE:
1613 case WORKINGSET_RESTORE_ANON:
1614 case WORKINGSET_RESTORE_FILE:
1615 case WORKINGSET_NODERECLAIM:
1618 return memcg_page_state_unit(item);
1622 static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1625 return memcg_page_state(memcg, item) *
1626 memcg_page_state_output_unit(item);
1629 static inline unsigned long memcg_page_state_local_output(
1630 struct mem_cgroup *memcg, int item)
1632 return memcg_page_state_local(memcg, item) *
1633 memcg_page_state_output_unit(item);
1636 static void memcg_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1641 * Provide statistics on the state of the memory subsystem as
1642 * well as cumulative event counters that show past behavior.
1644 * This list is ordered following a combination of these gradients:
1645 * 1) generic big picture -> specifics and details
1646 * 2) reflecting userspace activity -> reflecting kernel heuristics
1648 * Current memory state:
1650 mem_cgroup_flush_stats(memcg);
1652 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1655 size = memcg_page_state_output(memcg, memory_stats[i].idx);
1656 seq_buf_printf(s, "%s %llu\n", memory_stats[i].name, size);
1658 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1659 size += memcg_page_state_output(memcg,
1660 NR_SLAB_RECLAIMABLE_B);
1661 seq_buf_printf(s, "slab %llu\n", size);
1665 /* Accumulated memory events */
1666 seq_buf_printf(s, "pgscan %lu\n",
1667 memcg_events(memcg, PGSCAN_KSWAPD) +
1668 memcg_events(memcg, PGSCAN_DIRECT) +
1669 memcg_events(memcg, PGSCAN_KHUGEPAGED));
1670 seq_buf_printf(s, "pgsteal %lu\n",
1671 memcg_events(memcg, PGSTEAL_KSWAPD) +
1672 memcg_events(memcg, PGSTEAL_DIRECT) +
1673 memcg_events(memcg, PGSTEAL_KHUGEPAGED));
1675 for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) {
1676 if (memcg_vm_event_stat[i] == PGPGIN ||
1677 memcg_vm_event_stat[i] == PGPGOUT)
1680 seq_buf_printf(s, "%s %lu\n",
1681 vm_event_name(memcg_vm_event_stat[i]),
1682 memcg_events(memcg, memcg_vm_event_stat[i]));
1685 /* The above should easily fit into one page */
1686 WARN_ON_ONCE(seq_buf_has_overflowed(s));
1689 static void memcg1_stat_format(struct mem_cgroup *memcg, struct seq_buf *s);
1691 static void memory_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1693 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1694 memcg_stat_format(memcg, s);
1696 memcg1_stat_format(memcg, s);
1697 WARN_ON_ONCE(seq_buf_has_overflowed(s));
1701 * mem_cgroup_print_oom_context: Print OOM information relevant to
1702 * memory controller.
1703 * @memcg: The memory cgroup that went over limit
1704 * @p: Task that is going to be killed
1706 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1709 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1714 pr_cont(",oom_memcg=");
1715 pr_cont_cgroup_path(memcg->css.cgroup);
1717 pr_cont(",global_oom");
1719 pr_cont(",task_memcg=");
1720 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1726 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1727 * memory controller.
1728 * @memcg: The memory cgroup that went over limit
1730 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1732 /* Use static buffer, for the caller is holding oom_lock. */
1733 static char buf[PAGE_SIZE];
1736 lockdep_assert_held(&oom_lock);
1738 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1739 K((u64)page_counter_read(&memcg->memory)),
1740 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1741 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1742 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1743 K((u64)page_counter_read(&memcg->swap)),
1744 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1746 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1747 K((u64)page_counter_read(&memcg->memsw)),
1748 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1749 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1750 K((u64)page_counter_read(&memcg->kmem)),
1751 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1754 pr_info("Memory cgroup stats for ");
1755 pr_cont_cgroup_path(memcg->css.cgroup);
1757 seq_buf_init(&s, buf, sizeof(buf));
1758 memory_stat_format(memcg, &s);
1759 seq_buf_do_printk(&s, KERN_INFO);
1763 * Return the memory (and swap, if configured) limit for a memcg.
1765 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1767 unsigned long max = READ_ONCE(memcg->memory.max);
1769 if (do_memsw_account()) {
1770 if (mem_cgroup_swappiness(memcg)) {
1771 /* Calculate swap excess capacity from memsw limit */
1772 unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1774 max += min(swap, (unsigned long)total_swap_pages);
1777 if (mem_cgroup_swappiness(memcg))
1778 max += min(READ_ONCE(memcg->swap.max),
1779 (unsigned long)total_swap_pages);
1784 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1786 return page_counter_read(&memcg->memory);
1789 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1792 struct oom_control oc = {
1796 .gfp_mask = gfp_mask,
1801 if (mutex_lock_killable(&oom_lock))
1804 if (mem_cgroup_margin(memcg) >= (1 << order))
1808 * A few threads which were not waiting at mutex_lock_killable() can
1809 * fail to bail out. Therefore, check again after holding oom_lock.
1811 ret = task_is_dying() || out_of_memory(&oc);
1814 mutex_unlock(&oom_lock);
1818 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1821 unsigned long *total_scanned)
1823 struct mem_cgroup *victim = NULL;
1826 unsigned long excess;
1827 unsigned long nr_scanned;
1828 struct mem_cgroup_reclaim_cookie reclaim = {
1832 excess = soft_limit_excess(root_memcg);
1835 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1840 * If we have not been able to reclaim
1841 * anything, it might because there are
1842 * no reclaimable pages under this hierarchy
1847 * We want to do more targeted reclaim.
1848 * excess >> 2 is not to excessive so as to
1849 * reclaim too much, nor too less that we keep
1850 * coming back to reclaim from this cgroup
1852 if (total >= (excess >> 2) ||
1853 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1858 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1859 pgdat, &nr_scanned);
1860 *total_scanned += nr_scanned;
1861 if (!soft_limit_excess(root_memcg))
1864 mem_cgroup_iter_break(root_memcg, victim);
1868 #ifdef CONFIG_LOCKDEP
1869 static struct lockdep_map memcg_oom_lock_dep_map = {
1870 .name = "memcg_oom_lock",
1874 static DEFINE_SPINLOCK(memcg_oom_lock);
1877 * Check OOM-Killer is already running under our hierarchy.
1878 * If someone is running, return false.
1880 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1882 struct mem_cgroup *iter, *failed = NULL;
1884 spin_lock(&memcg_oom_lock);
1886 for_each_mem_cgroup_tree(iter, memcg) {
1887 if (iter->oom_lock) {
1889 * this subtree of our hierarchy is already locked
1890 * so we cannot give a lock.
1893 mem_cgroup_iter_break(memcg, iter);
1896 iter->oom_lock = true;
1901 * OK, we failed to lock the whole subtree so we have
1902 * to clean up what we set up to the failing subtree
1904 for_each_mem_cgroup_tree(iter, memcg) {
1905 if (iter == failed) {
1906 mem_cgroup_iter_break(memcg, iter);
1909 iter->oom_lock = false;
1912 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1914 spin_unlock(&memcg_oom_lock);
1919 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1921 struct mem_cgroup *iter;
1923 spin_lock(&memcg_oom_lock);
1924 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1925 for_each_mem_cgroup_tree(iter, memcg)
1926 iter->oom_lock = false;
1927 spin_unlock(&memcg_oom_lock);
1930 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1932 struct mem_cgroup *iter;
1934 spin_lock(&memcg_oom_lock);
1935 for_each_mem_cgroup_tree(iter, memcg)
1937 spin_unlock(&memcg_oom_lock);
1940 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1942 struct mem_cgroup *iter;
1945 * Be careful about under_oom underflows because a child memcg
1946 * could have been added after mem_cgroup_mark_under_oom.
1948 spin_lock(&memcg_oom_lock);
1949 for_each_mem_cgroup_tree(iter, memcg)
1950 if (iter->under_oom > 0)
1952 spin_unlock(&memcg_oom_lock);
1955 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1957 struct oom_wait_info {
1958 struct mem_cgroup *memcg;
1959 wait_queue_entry_t wait;
1962 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1963 unsigned mode, int sync, void *arg)
1965 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1966 struct mem_cgroup *oom_wait_memcg;
1967 struct oom_wait_info *oom_wait_info;
1969 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1970 oom_wait_memcg = oom_wait_info->memcg;
1972 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1973 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1975 return autoremove_wake_function(wait, mode, sync, arg);
1978 static void memcg_oom_recover(struct mem_cgroup *memcg)
1981 * For the following lockless ->under_oom test, the only required
1982 * guarantee is that it must see the state asserted by an OOM when
1983 * this function is called as a result of userland actions
1984 * triggered by the notification of the OOM. This is trivially
1985 * achieved by invoking mem_cgroup_mark_under_oom() before
1986 * triggering notification.
1988 if (memcg && memcg->under_oom)
1989 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1993 * Returns true if successfully killed one or more processes. Though in some
1994 * corner cases it can return true even without killing any process.
1996 static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
2000 if (order > PAGE_ALLOC_COSTLY_ORDER)
2003 memcg_memory_event(memcg, MEMCG_OOM);
2006 * We are in the middle of the charge context here, so we
2007 * don't want to block when potentially sitting on a callstack
2008 * that holds all kinds of filesystem and mm locks.
2010 * cgroup1 allows disabling the OOM killer and waiting for outside
2011 * handling until the charge can succeed; remember the context and put
2012 * the task to sleep at the end of the page fault when all locks are
2015 * On the other hand, in-kernel OOM killer allows for an async victim
2016 * memory reclaim (oom_reaper) and that means that we are not solely
2017 * relying on the oom victim to make a forward progress and we can
2018 * invoke the oom killer here.
2020 * Please note that mem_cgroup_out_of_memory might fail to find a
2021 * victim and then we have to bail out from the charge path.
2023 if (READ_ONCE(memcg->oom_kill_disable)) {
2024 if (current->in_user_fault) {
2025 css_get(&memcg->css);
2026 current->memcg_in_oom = memcg;
2027 current->memcg_oom_gfp_mask = mask;
2028 current->memcg_oom_order = order;
2033 mem_cgroup_mark_under_oom(memcg);
2035 locked = mem_cgroup_oom_trylock(memcg);
2038 mem_cgroup_oom_notify(memcg);
2040 mem_cgroup_unmark_under_oom(memcg);
2041 ret = mem_cgroup_out_of_memory(memcg, mask, order);
2044 mem_cgroup_oom_unlock(memcg);
2050 * mem_cgroup_oom_synchronize - complete memcg OOM handling
2051 * @handle: actually kill/wait or just clean up the OOM state
2053 * This has to be called at the end of a page fault if the memcg OOM
2054 * handler was enabled.
2056 * Memcg supports userspace OOM handling where failed allocations must
2057 * sleep on a waitqueue until the userspace task resolves the
2058 * situation. Sleeping directly in the charge context with all kinds
2059 * of locks held is not a good idea, instead we remember an OOM state
2060 * in the task and mem_cgroup_oom_synchronize() has to be called at
2061 * the end of the page fault to complete the OOM handling.
2063 * Returns %true if an ongoing memcg OOM situation was detected and
2064 * completed, %false otherwise.
2066 bool mem_cgroup_oom_synchronize(bool handle)
2068 struct mem_cgroup *memcg = current->memcg_in_oom;
2069 struct oom_wait_info owait;
2072 /* OOM is global, do not handle */
2079 owait.memcg = memcg;
2080 owait.wait.flags = 0;
2081 owait.wait.func = memcg_oom_wake_function;
2082 owait.wait.private = current;
2083 INIT_LIST_HEAD(&owait.wait.entry);
2085 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2086 mem_cgroup_mark_under_oom(memcg);
2088 locked = mem_cgroup_oom_trylock(memcg);
2091 mem_cgroup_oom_notify(memcg);
2094 mem_cgroup_unmark_under_oom(memcg);
2095 finish_wait(&memcg_oom_waitq, &owait.wait);
2098 mem_cgroup_oom_unlock(memcg);
2100 current->memcg_in_oom = NULL;
2101 css_put(&memcg->css);
2106 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2107 * @victim: task to be killed by the OOM killer
2108 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2110 * Returns a pointer to a memory cgroup, which has to be cleaned up
2111 * by killing all belonging OOM-killable tasks.
2113 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2115 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2116 struct mem_cgroup *oom_domain)
2118 struct mem_cgroup *oom_group = NULL;
2119 struct mem_cgroup *memcg;
2121 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2125 oom_domain = root_mem_cgroup;
2129 memcg = mem_cgroup_from_task(victim);
2130 if (mem_cgroup_is_root(memcg))
2134 * If the victim task has been asynchronously moved to a different
2135 * memory cgroup, we might end up killing tasks outside oom_domain.
2136 * In this case it's better to ignore memory.group.oom.
2138 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
2142 * Traverse the memory cgroup hierarchy from the victim task's
2143 * cgroup up to the OOMing cgroup (or root) to find the
2144 * highest-level memory cgroup with oom.group set.
2146 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2147 if (READ_ONCE(memcg->oom_group))
2150 if (memcg == oom_domain)
2155 css_get(&oom_group->css);
2162 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2164 pr_info("Tasks in ");
2165 pr_cont_cgroup_path(memcg->css.cgroup);
2166 pr_cont(" are going to be killed due to memory.oom.group set\n");
2170 * folio_memcg_lock - Bind a folio to its memcg.
2171 * @folio: The folio.
2173 * This function prevents unlocked LRU folios from being moved to
2176 * It ensures lifetime of the bound memcg. The caller is responsible
2177 * for the lifetime of the folio.
2179 void folio_memcg_lock(struct folio *folio)
2181 struct mem_cgroup *memcg;
2182 unsigned long flags;
2185 * The RCU lock is held throughout the transaction. The fast
2186 * path can get away without acquiring the memcg->move_lock
2187 * because page moving starts with an RCU grace period.
2191 if (mem_cgroup_disabled())
2194 memcg = folio_memcg(folio);
2195 if (unlikely(!memcg))
2198 #ifdef CONFIG_PROVE_LOCKING
2199 local_irq_save(flags);
2200 might_lock(&memcg->move_lock);
2201 local_irq_restore(flags);
2204 if (atomic_read(&memcg->moving_account) <= 0)
2207 spin_lock_irqsave(&memcg->move_lock, flags);
2208 if (memcg != folio_memcg(folio)) {
2209 spin_unlock_irqrestore(&memcg->move_lock, flags);
2214 * When charge migration first begins, we can have multiple
2215 * critical sections holding the fast-path RCU lock and one
2216 * holding the slowpath move_lock. Track the task who has the
2217 * move_lock for folio_memcg_unlock().
2219 memcg->move_lock_task = current;
2220 memcg->move_lock_flags = flags;
2223 static void __folio_memcg_unlock(struct mem_cgroup *memcg)
2225 if (memcg && memcg->move_lock_task == current) {
2226 unsigned long flags = memcg->move_lock_flags;
2228 memcg->move_lock_task = NULL;
2229 memcg->move_lock_flags = 0;
2231 spin_unlock_irqrestore(&memcg->move_lock, flags);
2238 * folio_memcg_unlock - Release the binding between a folio and its memcg.
2239 * @folio: The folio.
2241 * This releases the binding created by folio_memcg_lock(). This does
2242 * not change the accounting of this folio to its memcg, but it does
2243 * permit others to change it.
2245 void folio_memcg_unlock(struct folio *folio)
2247 __folio_memcg_unlock(folio_memcg(folio));
2250 struct memcg_stock_pcp {
2251 local_lock_t stock_lock;
2252 struct mem_cgroup *cached; /* this never be root cgroup */
2253 unsigned int nr_pages;
2255 #ifdef CONFIG_MEMCG_KMEM
2256 struct obj_cgroup *cached_objcg;
2257 struct pglist_data *cached_pgdat;
2258 unsigned int nr_bytes;
2259 int nr_slab_reclaimable_b;
2260 int nr_slab_unreclaimable_b;
2263 struct work_struct work;
2264 unsigned long flags;
2265 #define FLUSHING_CACHED_CHARGE 0
2267 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = {
2268 .stock_lock = INIT_LOCAL_LOCK(stock_lock),
2270 static DEFINE_MUTEX(percpu_charge_mutex);
2272 #ifdef CONFIG_MEMCG_KMEM
2273 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock);
2274 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2275 struct mem_cgroup *root_memcg);
2276 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages);
2279 static inline struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
2283 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2284 struct mem_cgroup *root_memcg)
2288 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
2294 * consume_stock: Try to consume stocked charge on this cpu.
2295 * @memcg: memcg to consume from.
2296 * @nr_pages: how many pages to charge.
2298 * The charges will only happen if @memcg matches the current cpu's memcg
2299 * stock, and at least @nr_pages are available in that stock. Failure to
2300 * service an allocation will refill the stock.
2302 * returns true if successful, false otherwise.
2304 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2306 struct memcg_stock_pcp *stock;
2307 unsigned long flags;
2310 if (nr_pages > MEMCG_CHARGE_BATCH)
2313 local_lock_irqsave(&memcg_stock.stock_lock, flags);
2315 stock = this_cpu_ptr(&memcg_stock);
2316 if (memcg == READ_ONCE(stock->cached) && stock->nr_pages >= nr_pages) {
2317 stock->nr_pages -= nr_pages;
2321 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2327 * Returns stocks cached in percpu and reset cached information.
2329 static void drain_stock(struct memcg_stock_pcp *stock)
2331 struct mem_cgroup *old = READ_ONCE(stock->cached);
2336 if (stock->nr_pages) {
2337 page_counter_uncharge(&old->memory, stock->nr_pages);
2338 if (do_memsw_account())
2339 page_counter_uncharge(&old->memsw, stock->nr_pages);
2340 stock->nr_pages = 0;
2344 WRITE_ONCE(stock->cached, NULL);
2347 static void drain_local_stock(struct work_struct *dummy)
2349 struct memcg_stock_pcp *stock;
2350 struct obj_cgroup *old = NULL;
2351 unsigned long flags;
2354 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs.
2355 * drain_stock races is that we always operate on local CPU stock
2356 * here with IRQ disabled
2358 local_lock_irqsave(&memcg_stock.stock_lock, flags);
2360 stock = this_cpu_ptr(&memcg_stock);
2361 old = drain_obj_stock(stock);
2363 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2365 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2367 obj_cgroup_put(old);
2371 * Cache charges(val) to local per_cpu area.
2372 * This will be consumed by consume_stock() function, later.
2374 static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2376 struct memcg_stock_pcp *stock;
2378 stock = this_cpu_ptr(&memcg_stock);
2379 if (READ_ONCE(stock->cached) != memcg) { /* reset if necessary */
2381 css_get(&memcg->css);
2382 WRITE_ONCE(stock->cached, memcg);
2384 stock->nr_pages += nr_pages;
2386 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2390 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2392 unsigned long flags;
2394 local_lock_irqsave(&memcg_stock.stock_lock, flags);
2395 __refill_stock(memcg, nr_pages);
2396 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2400 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2401 * of the hierarchy under it.
2403 static void drain_all_stock(struct mem_cgroup *root_memcg)
2407 /* If someone's already draining, avoid adding running more workers. */
2408 if (!mutex_trylock(&percpu_charge_mutex))
2411 * Notify other cpus that system-wide "drain" is running
2412 * We do not care about races with the cpu hotplug because cpu down
2413 * as well as workers from this path always operate on the local
2414 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2417 curcpu = smp_processor_id();
2418 for_each_online_cpu(cpu) {
2419 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2420 struct mem_cgroup *memcg;
2424 memcg = READ_ONCE(stock->cached);
2425 if (memcg && stock->nr_pages &&
2426 mem_cgroup_is_descendant(memcg, root_memcg))
2428 else if (obj_stock_flush_required(stock, root_memcg))
2433 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2435 drain_local_stock(&stock->work);
2436 else if (!cpu_is_isolated(cpu))
2437 schedule_work_on(cpu, &stock->work);
2441 mutex_unlock(&percpu_charge_mutex);
2444 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2446 struct memcg_stock_pcp *stock;
2448 stock = &per_cpu(memcg_stock, cpu);
2454 static unsigned long reclaim_high(struct mem_cgroup *memcg,
2455 unsigned int nr_pages,
2458 unsigned long nr_reclaimed = 0;
2461 unsigned long pflags;
2463 if (page_counter_read(&memcg->memory) <=
2464 READ_ONCE(memcg->memory.high))
2467 memcg_memory_event(memcg, MEMCG_HIGH);
2469 psi_memstall_enter(&pflags);
2470 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2472 MEMCG_RECLAIM_MAY_SWAP);
2473 psi_memstall_leave(&pflags);
2474 } while ((memcg = parent_mem_cgroup(memcg)) &&
2475 !mem_cgroup_is_root(memcg));
2477 return nr_reclaimed;
2480 static void high_work_func(struct work_struct *work)
2482 struct mem_cgroup *memcg;
2484 memcg = container_of(work, struct mem_cgroup, high_work);
2485 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2489 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2490 * enough to still cause a significant slowdown in most cases, while still
2491 * allowing diagnostics and tracing to proceed without becoming stuck.
2493 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2496 * When calculating the delay, we use these either side of the exponentiation to
2497 * maintain precision and scale to a reasonable number of jiffies (see the table
2500 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2501 * overage ratio to a delay.
2502 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2503 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2504 * to produce a reasonable delay curve.
2506 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2507 * reasonable delay curve compared to precision-adjusted overage, not
2508 * penalising heavily at first, but still making sure that growth beyond the
2509 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2510 * example, with a high of 100 megabytes:
2512 * +-------+------------------------+
2513 * | usage | time to allocate in ms |
2514 * +-------+------------------------+
2536 * +-------+------------------------+
2538 #define MEMCG_DELAY_PRECISION_SHIFT 20
2539 #define MEMCG_DELAY_SCALING_SHIFT 14
2541 static u64 calculate_overage(unsigned long usage, unsigned long high)
2549 * Prevent division by 0 in overage calculation by acting as if
2550 * it was a threshold of 1 page
2552 high = max(high, 1UL);
2554 overage = usage - high;
2555 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2556 return div64_u64(overage, high);
2559 static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2561 u64 overage, max_overage = 0;
2564 overage = calculate_overage(page_counter_read(&memcg->memory),
2565 READ_ONCE(memcg->memory.high));
2566 max_overage = max(overage, max_overage);
2567 } while ((memcg = parent_mem_cgroup(memcg)) &&
2568 !mem_cgroup_is_root(memcg));
2573 static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2575 u64 overage, max_overage = 0;
2578 overage = calculate_overage(page_counter_read(&memcg->swap),
2579 READ_ONCE(memcg->swap.high));
2581 memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2582 max_overage = max(overage, max_overage);
2583 } while ((memcg = parent_mem_cgroup(memcg)) &&
2584 !mem_cgroup_is_root(memcg));
2590 * Get the number of jiffies that we should penalise a mischievous cgroup which
2591 * is exceeding its memory.high by checking both it and its ancestors.
2593 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2594 unsigned int nr_pages,
2597 unsigned long penalty_jiffies;
2603 * We use overage compared to memory.high to calculate the number of
2604 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2605 * fairly lenient on small overages, and increasingly harsh when the
2606 * memcg in question makes it clear that it has no intention of stopping
2607 * its crazy behaviour, so we exponentially increase the delay based on
2610 penalty_jiffies = max_overage * max_overage * HZ;
2611 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2612 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2615 * Factor in the task's own contribution to the overage, such that four
2616 * N-sized allocations are throttled approximately the same as one
2617 * 4N-sized allocation.
2619 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2620 * larger the current charge patch is than that.
2622 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2626 * Scheduled by try_charge() to be executed from the userland return path
2627 * and reclaims memory over the high limit.
2629 void mem_cgroup_handle_over_high(gfp_t gfp_mask)
2631 unsigned long penalty_jiffies;
2632 unsigned long pflags;
2633 unsigned long nr_reclaimed;
2634 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2635 int nr_retries = MAX_RECLAIM_RETRIES;
2636 struct mem_cgroup *memcg;
2637 bool in_retry = false;
2639 if (likely(!nr_pages))
2642 memcg = get_mem_cgroup_from_mm(current->mm);
2643 current->memcg_nr_pages_over_high = 0;
2647 * The allocating task should reclaim at least the batch size, but for
2648 * subsequent retries we only want to do what's necessary to prevent oom
2649 * or breaching resource isolation.
2651 * This is distinct from memory.max or page allocator behaviour because
2652 * memory.high is currently batched, whereas memory.max and the page
2653 * allocator run every time an allocation is made.
2655 nr_reclaimed = reclaim_high(memcg,
2656 in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2660 * memory.high is breached and reclaim is unable to keep up. Throttle
2661 * allocators proactively to slow down excessive growth.
2663 penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2664 mem_find_max_overage(memcg));
2666 penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2667 swap_find_max_overage(memcg));
2670 * Clamp the max delay per usermode return so as to still keep the
2671 * application moving forwards and also permit diagnostics, albeit
2674 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2677 * Don't sleep if the amount of jiffies this memcg owes us is so low
2678 * that it's not even worth doing, in an attempt to be nice to those who
2679 * go only a small amount over their memory.high value and maybe haven't
2680 * been aggressively reclaimed enough yet.
2682 if (penalty_jiffies <= HZ / 100)
2686 * If reclaim is making forward progress but we're still over
2687 * memory.high, we want to encourage that rather than doing allocator
2690 if (nr_reclaimed || nr_retries--) {
2696 * If we exit early, we're guaranteed to die (since
2697 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2698 * need to account for any ill-begotten jiffies to pay them off later.
2700 psi_memstall_enter(&pflags);
2701 schedule_timeout_killable(penalty_jiffies);
2702 psi_memstall_leave(&pflags);
2705 css_put(&memcg->css);
2708 static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2709 unsigned int nr_pages)
2711 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2712 int nr_retries = MAX_RECLAIM_RETRIES;
2713 struct mem_cgroup *mem_over_limit;
2714 struct page_counter *counter;
2715 unsigned long nr_reclaimed;
2716 bool passed_oom = false;
2717 unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP;
2718 bool drained = false;
2719 bool raised_max_event = false;
2720 unsigned long pflags;
2723 if (consume_stock(memcg, nr_pages))
2726 if (!do_memsw_account() ||
2727 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2728 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2730 if (do_memsw_account())
2731 page_counter_uncharge(&memcg->memsw, batch);
2732 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2734 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2735 reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP;
2738 if (batch > nr_pages) {
2744 * Prevent unbounded recursion when reclaim operations need to
2745 * allocate memory. This might exceed the limits temporarily,
2746 * but we prefer facilitating memory reclaim and getting back
2747 * under the limit over triggering OOM kills in these cases.
2749 if (unlikely(current->flags & PF_MEMALLOC))
2752 if (unlikely(task_in_memcg_oom(current)))
2755 if (!gfpflags_allow_blocking(gfp_mask))
2758 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2759 raised_max_event = true;
2761 psi_memstall_enter(&pflags);
2762 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2763 gfp_mask, reclaim_options);
2764 psi_memstall_leave(&pflags);
2766 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2770 drain_all_stock(mem_over_limit);
2775 if (gfp_mask & __GFP_NORETRY)
2778 * Even though the limit is exceeded at this point, reclaim
2779 * may have been able to free some pages. Retry the charge
2780 * before killing the task.
2782 * Only for regular pages, though: huge pages are rather
2783 * unlikely to succeed so close to the limit, and we fall back
2784 * to regular pages anyway in case of failure.
2786 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2789 * At task move, charge accounts can be doubly counted. So, it's
2790 * better to wait until the end of task_move if something is going on.
2792 if (mem_cgroup_wait_acct_move(mem_over_limit))
2798 if (gfp_mask & __GFP_RETRY_MAYFAIL)
2801 /* Avoid endless loop for tasks bypassed by the oom killer */
2802 if (passed_oom && task_is_dying())
2806 * keep retrying as long as the memcg oom killer is able to make
2807 * a forward progress or bypass the charge if the oom killer
2808 * couldn't make any progress.
2810 if (mem_cgroup_oom(mem_over_limit, gfp_mask,
2811 get_order(nr_pages * PAGE_SIZE))) {
2813 nr_retries = MAX_RECLAIM_RETRIES;
2818 * Memcg doesn't have a dedicated reserve for atomic
2819 * allocations. But like the global atomic pool, we need to
2820 * put the burden of reclaim on regular allocation requests
2821 * and let these go through as privileged allocations.
2823 if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH)))
2827 * If the allocation has to be enforced, don't forget to raise
2828 * a MEMCG_MAX event.
2830 if (!raised_max_event)
2831 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2834 * The allocation either can't fail or will lead to more memory
2835 * being freed very soon. Allow memory usage go over the limit
2836 * temporarily by force charging it.
2838 page_counter_charge(&memcg->memory, nr_pages);
2839 if (do_memsw_account())
2840 page_counter_charge(&memcg->memsw, nr_pages);
2845 if (batch > nr_pages)
2846 refill_stock(memcg, batch - nr_pages);
2849 * If the hierarchy is above the normal consumption range, schedule
2850 * reclaim on returning to userland. We can perform reclaim here
2851 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2852 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2853 * not recorded as it most likely matches current's and won't
2854 * change in the meantime. As high limit is checked again before
2855 * reclaim, the cost of mismatch is negligible.
2858 bool mem_high, swap_high;
2860 mem_high = page_counter_read(&memcg->memory) >
2861 READ_ONCE(memcg->memory.high);
2862 swap_high = page_counter_read(&memcg->swap) >
2863 READ_ONCE(memcg->swap.high);
2865 /* Don't bother a random interrupted task */
2868 schedule_work(&memcg->high_work);
2874 if (mem_high || swap_high) {
2876 * The allocating tasks in this cgroup will need to do
2877 * reclaim or be throttled to prevent further growth
2878 * of the memory or swap footprints.
2880 * Target some best-effort fairness between the tasks,
2881 * and distribute reclaim work and delay penalties
2882 * based on how much each task is actually allocating.
2884 current->memcg_nr_pages_over_high += batch;
2885 set_notify_resume(current);
2888 } while ((memcg = parent_mem_cgroup(memcg)));
2890 if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH &&
2891 !(current->flags & PF_MEMALLOC) &&
2892 gfpflags_allow_blocking(gfp_mask)) {
2893 mem_cgroup_handle_over_high(gfp_mask);
2898 static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2899 unsigned int nr_pages)
2901 if (mem_cgroup_is_root(memcg))
2904 return try_charge_memcg(memcg, gfp_mask, nr_pages);
2908 * mem_cgroup_cancel_charge() - cancel an uncommitted try_charge() call.
2909 * @memcg: memcg previously charged.
2910 * @nr_pages: number of pages previously charged.
2912 void mem_cgroup_cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2914 if (mem_cgroup_is_root(memcg))
2917 page_counter_uncharge(&memcg->memory, nr_pages);
2918 if (do_memsw_account())
2919 page_counter_uncharge(&memcg->memsw, nr_pages);
2922 static void commit_charge(struct folio *folio, struct mem_cgroup *memcg)
2924 VM_BUG_ON_FOLIO(folio_memcg(folio), folio);
2926 * Any of the following ensures page's memcg stability:
2930 * - folio_memcg_lock()
2931 * - exclusive reference
2932 * - mem_cgroup_trylock_pages()
2934 folio->memcg_data = (unsigned long)memcg;
2938 * mem_cgroup_commit_charge - commit a previously successful try_charge().
2939 * @folio: folio to commit the charge to.
2940 * @memcg: memcg previously charged.
2942 void mem_cgroup_commit_charge(struct folio *folio, struct mem_cgroup *memcg)
2944 css_get(&memcg->css);
2945 commit_charge(folio, memcg);
2947 local_irq_disable();
2948 mem_cgroup_charge_statistics(memcg, folio_nr_pages(folio));
2949 memcg_check_events(memcg, folio_nid(folio));
2953 #ifdef CONFIG_MEMCG_KMEM
2955 * The allocated objcg pointers array is not accounted directly.
2956 * Moreover, it should not come from DMA buffer and is not readily
2957 * reclaimable. So those GFP bits should be masked off.
2959 #define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | \
2960 __GFP_ACCOUNT | __GFP_NOFAIL)
2963 * mod_objcg_mlstate() may be called with irq enabled, so
2964 * mod_memcg_lruvec_state() should be used.
2966 static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
2967 struct pglist_data *pgdat,
2968 enum node_stat_item idx, int nr)
2970 struct mem_cgroup *memcg;
2971 struct lruvec *lruvec;
2974 memcg = obj_cgroup_memcg(objcg);
2975 lruvec = mem_cgroup_lruvec(memcg, pgdat);
2976 mod_memcg_lruvec_state(lruvec, idx, nr);
2980 int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s,
2981 gfp_t gfp, bool new_slab)
2983 unsigned int objects = objs_per_slab(s, slab);
2984 unsigned long memcg_data;
2987 gfp &= ~OBJCGS_CLEAR_MASK;
2988 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2993 memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
2996 * If the slab is brand new and nobody can yet access its
2997 * memcg_data, no synchronization is required and memcg_data can
2998 * be simply assigned.
3000 slab->memcg_data = memcg_data;
3001 } else if (cmpxchg(&slab->memcg_data, 0, memcg_data)) {
3003 * If the slab is already in use, somebody can allocate and
3004 * assign obj_cgroups in parallel. In this case the existing
3005 * objcg vector should be reused.
3011 kmemleak_not_leak(vec);
3015 static __always_inline
3016 struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p)
3019 * Slab objects are accounted individually, not per-page.
3020 * Memcg membership data for each individual object is saved in
3023 if (folio_test_slab(folio)) {
3024 struct obj_cgroup **objcgs;
3028 slab = folio_slab(folio);
3029 objcgs = slab_objcgs(slab);
3033 off = obj_to_index(slab->slab_cache, slab, p);
3035 return obj_cgroup_memcg(objcgs[off]);
3041 * folio_memcg_check() is used here, because in theory we can encounter
3042 * a folio where the slab flag has been cleared already, but
3043 * slab->memcg_data has not been freed yet
3044 * folio_memcg_check() will guarantee that a proper memory
3045 * cgroup pointer or NULL will be returned.
3047 return folio_memcg_check(folio);
3051 * Returns a pointer to the memory cgroup to which the kernel object is charged.
3053 * A passed kernel object can be a slab object, vmalloc object or a generic
3054 * kernel page, so different mechanisms for getting the memory cgroup pointer
3057 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
3058 * can not know for sure how the kernel object is implemented.
3059 * mem_cgroup_from_obj() can be safely used in such cases.
3061 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
3062 * cgroup_mutex, etc.
3064 struct mem_cgroup *mem_cgroup_from_obj(void *p)
3066 struct folio *folio;
3068 if (mem_cgroup_disabled())
3071 if (unlikely(is_vmalloc_addr(p)))
3072 folio = page_folio(vmalloc_to_page(p));
3074 folio = virt_to_folio(p);
3076 return mem_cgroup_from_obj_folio(folio, p);
3080 * Returns a pointer to the memory cgroup to which the kernel object is charged.
3081 * Similar to mem_cgroup_from_obj(), but faster and not suitable for objects,
3082 * allocated using vmalloc().
3084 * A passed kernel object must be a slab object or a generic kernel page.
3086 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
3087 * cgroup_mutex, etc.
3089 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
3091 if (mem_cgroup_disabled())
3094 return mem_cgroup_from_obj_folio(virt_to_folio(p), p);
3097 static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg)
3099 struct obj_cgroup *objcg = NULL;
3101 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
3102 objcg = rcu_dereference(memcg->objcg);
3103 if (likely(objcg && obj_cgroup_tryget(objcg)))
3110 static struct obj_cgroup *current_objcg_update(void)
3112 struct mem_cgroup *memcg;
3113 struct obj_cgroup *old, *objcg = NULL;
3116 /* Atomically drop the update bit. */
3117 old = xchg(¤t->objcg, NULL);
3119 old = (struct obj_cgroup *)
3120 ((unsigned long)old & ~CURRENT_OBJCG_UPDATE_FLAG);
3122 obj_cgroup_put(old);
3127 /* If new objcg is NULL, no reason for the second atomic update. */
3128 if (!current->mm || (current->flags & PF_KTHREAD))
3132 * Release the objcg pointer from the previous iteration,
3133 * if try_cmpxcg() below fails.
3135 if (unlikely(objcg)) {
3136 obj_cgroup_put(objcg);
3141 * Obtain the new objcg pointer. The current task can be
3142 * asynchronously moved to another memcg and the previous
3143 * memcg can be offlined. So let's get the memcg pointer
3144 * and try get a reference to objcg under a rcu read lock.
3148 memcg = mem_cgroup_from_task(current);
3149 objcg = __get_obj_cgroup_from_memcg(memcg);
3153 * Try set up a new objcg pointer atomically. If it
3154 * fails, it means the update flag was set concurrently, so
3155 * the whole procedure should be repeated.
3157 } while (!try_cmpxchg(¤t->objcg, &old, objcg));
3162 __always_inline struct obj_cgroup *current_obj_cgroup(void)
3164 struct mem_cgroup *memcg;
3165 struct obj_cgroup *objcg;
3168 memcg = current->active_memcg;
3169 if (unlikely(memcg))
3172 objcg = READ_ONCE(current->objcg);
3173 if (unlikely((unsigned long)objcg & CURRENT_OBJCG_UPDATE_FLAG))
3174 objcg = current_objcg_update();
3176 * Objcg reference is kept by the task, so it's safe
3177 * to use the objcg by the current task.
3182 memcg = this_cpu_read(int_active_memcg);
3183 if (unlikely(memcg))
3190 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
3192 * Memcg pointer is protected by scope (see set_active_memcg())
3193 * and is pinning the corresponding objcg, so objcg can't go
3194 * away and can be used within the scope without any additional
3197 objcg = rcu_dereference_check(memcg->objcg, 1);
3205 struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio)
3207 struct obj_cgroup *objcg;
3209 if (!memcg_kmem_online())
3212 if (folio_memcg_kmem(folio)) {
3213 objcg = __folio_objcg(folio);
3214 obj_cgroup_get(objcg);
3216 struct mem_cgroup *memcg;
3219 memcg = __folio_memcg(folio);
3221 objcg = __get_obj_cgroup_from_memcg(memcg);
3229 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
3231 mod_memcg_state(memcg, MEMCG_KMEM, nr_pages);
3232 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
3234 page_counter_charge(&memcg->kmem, nr_pages);
3236 page_counter_uncharge(&memcg->kmem, -nr_pages);
3242 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
3243 * @objcg: object cgroup to uncharge
3244 * @nr_pages: number of pages to uncharge
3246 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
3247 unsigned int nr_pages)
3249 struct mem_cgroup *memcg;
3251 memcg = get_mem_cgroup_from_objcg(objcg);
3253 memcg_account_kmem(memcg, -nr_pages);
3254 refill_stock(memcg, nr_pages);
3256 css_put(&memcg->css);
3260 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
3261 * @objcg: object cgroup to charge
3262 * @gfp: reclaim mode
3263 * @nr_pages: number of pages to charge
3265 * Returns 0 on success, an error code on failure.
3267 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
3268 unsigned int nr_pages)
3270 struct mem_cgroup *memcg;
3273 memcg = get_mem_cgroup_from_objcg(objcg);
3275 ret = try_charge_memcg(memcg, gfp, nr_pages);
3279 memcg_account_kmem(memcg, nr_pages);
3281 css_put(&memcg->css);
3287 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3288 * @page: page to charge
3289 * @gfp: reclaim mode
3290 * @order: allocation order
3292 * Returns 0 on success, an error code on failure.
3294 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3296 struct obj_cgroup *objcg;
3299 objcg = current_obj_cgroup();
3301 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
3303 obj_cgroup_get(objcg);
3304 page->memcg_data = (unsigned long)objcg |
3313 * __memcg_kmem_uncharge_page: uncharge a kmem page
3314 * @page: page to uncharge
3315 * @order: allocation order
3317 void __memcg_kmem_uncharge_page(struct page *page, int order)
3319 struct folio *folio = page_folio(page);
3320 struct obj_cgroup *objcg;
3321 unsigned int nr_pages = 1 << order;
3323 if (!folio_memcg_kmem(folio))
3326 objcg = __folio_objcg(folio);
3327 obj_cgroup_uncharge_pages(objcg, nr_pages);
3328 folio->memcg_data = 0;
3329 obj_cgroup_put(objcg);
3332 void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
3333 enum node_stat_item idx, int nr)
3335 struct memcg_stock_pcp *stock;
3336 struct obj_cgroup *old = NULL;
3337 unsigned long flags;
3340 local_lock_irqsave(&memcg_stock.stock_lock, flags);
3341 stock = this_cpu_ptr(&memcg_stock);
3344 * Save vmstat data in stock and skip vmstat array update unless
3345 * accumulating over a page of vmstat data or when pgdat or idx
3348 if (READ_ONCE(stock->cached_objcg) != objcg) {
3349 old = drain_obj_stock(stock);
3350 obj_cgroup_get(objcg);
3351 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3352 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3353 WRITE_ONCE(stock->cached_objcg, objcg);
3354 stock->cached_pgdat = pgdat;
3355 } else if (stock->cached_pgdat != pgdat) {
3356 /* Flush the existing cached vmstat data */
3357 struct pglist_data *oldpg = stock->cached_pgdat;
3359 if (stock->nr_slab_reclaimable_b) {
3360 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
3361 stock->nr_slab_reclaimable_b);
3362 stock->nr_slab_reclaimable_b = 0;
3364 if (stock->nr_slab_unreclaimable_b) {
3365 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
3366 stock->nr_slab_unreclaimable_b);
3367 stock->nr_slab_unreclaimable_b = 0;
3369 stock->cached_pgdat = pgdat;
3372 bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
3373 : &stock->nr_slab_unreclaimable_b;
3375 * Even for large object >= PAGE_SIZE, the vmstat data will still be
3376 * cached locally at least once before pushing it out.
3383 if (abs(*bytes) > PAGE_SIZE) {
3391 mod_objcg_mlstate(objcg, pgdat, idx, nr);
3393 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3395 obj_cgroup_put(old);
3398 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3400 struct memcg_stock_pcp *stock;
3401 unsigned long flags;
3404 local_lock_irqsave(&memcg_stock.stock_lock, flags);
3406 stock = this_cpu_ptr(&memcg_stock);
3407 if (objcg == READ_ONCE(stock->cached_objcg) && stock->nr_bytes >= nr_bytes) {
3408 stock->nr_bytes -= nr_bytes;
3412 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3417 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
3419 struct obj_cgroup *old = READ_ONCE(stock->cached_objcg);
3424 if (stock->nr_bytes) {
3425 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3426 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3429 struct mem_cgroup *memcg;
3431 memcg = get_mem_cgroup_from_objcg(old);
3433 memcg_account_kmem(memcg, -nr_pages);
3434 __refill_stock(memcg, nr_pages);
3436 css_put(&memcg->css);
3440 * The leftover is flushed to the centralized per-memcg value.
3441 * On the next attempt to refill obj stock it will be moved
3442 * to a per-cpu stock (probably, on an other CPU), see
3443 * refill_obj_stock().
3445 * How often it's flushed is a trade-off between the memory
3446 * limit enforcement accuracy and potential CPU contention,
3447 * so it might be changed in the future.
3449 atomic_add(nr_bytes, &old->nr_charged_bytes);
3450 stock->nr_bytes = 0;
3454 * Flush the vmstat data in current stock
3456 if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
3457 if (stock->nr_slab_reclaimable_b) {
3458 mod_objcg_mlstate(old, stock->cached_pgdat,
3459 NR_SLAB_RECLAIMABLE_B,
3460 stock->nr_slab_reclaimable_b);
3461 stock->nr_slab_reclaimable_b = 0;
3463 if (stock->nr_slab_unreclaimable_b) {
3464 mod_objcg_mlstate(old, stock->cached_pgdat,
3465 NR_SLAB_UNRECLAIMABLE_B,
3466 stock->nr_slab_unreclaimable_b);
3467 stock->nr_slab_unreclaimable_b = 0;
3469 stock->cached_pgdat = NULL;
3472 WRITE_ONCE(stock->cached_objcg, NULL);
3474 * The `old' objects needs to be released by the caller via
3475 * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock.
3480 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3481 struct mem_cgroup *root_memcg)
3483 struct obj_cgroup *objcg = READ_ONCE(stock->cached_objcg);
3484 struct mem_cgroup *memcg;
3487 memcg = obj_cgroup_memcg(objcg);
3488 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3495 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3496 bool allow_uncharge)
3498 struct memcg_stock_pcp *stock;
3499 struct obj_cgroup *old = NULL;
3500 unsigned long flags;
3501 unsigned int nr_pages = 0;
3503 local_lock_irqsave(&memcg_stock.stock_lock, flags);
3505 stock = this_cpu_ptr(&memcg_stock);
3506 if (READ_ONCE(stock->cached_objcg) != objcg) { /* reset if necessary */
3507 old = drain_obj_stock(stock);
3508 obj_cgroup_get(objcg);
3509 WRITE_ONCE(stock->cached_objcg, objcg);
3510 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3511 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3512 allow_uncharge = true; /* Allow uncharge when objcg changes */
3514 stock->nr_bytes += nr_bytes;
3516 if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3517 nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3518 stock->nr_bytes &= (PAGE_SIZE - 1);
3521 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3523 obj_cgroup_put(old);
3526 obj_cgroup_uncharge_pages(objcg, nr_pages);
3529 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3531 unsigned int nr_pages, nr_bytes;
3534 if (consume_obj_stock(objcg, size))
3538 * In theory, objcg->nr_charged_bytes can have enough
3539 * pre-charged bytes to satisfy the allocation. However,
3540 * flushing objcg->nr_charged_bytes requires two atomic
3541 * operations, and objcg->nr_charged_bytes can't be big.
3542 * The shared objcg->nr_charged_bytes can also become a
3543 * performance bottleneck if all tasks of the same memcg are
3544 * trying to update it. So it's better to ignore it and try
3545 * grab some new pages. The stock's nr_bytes will be flushed to
3546 * objcg->nr_charged_bytes later on when objcg changes.
3548 * The stock's nr_bytes may contain enough pre-charged bytes
3549 * to allow one less page from being charged, but we can't rely
3550 * on the pre-charged bytes not being changed outside of
3551 * consume_obj_stock() or refill_obj_stock(). So ignore those
3552 * pre-charged bytes as well when charging pages. To avoid a
3553 * page uncharge right after a page charge, we set the
3554 * allow_uncharge flag to false when calling refill_obj_stock()
3555 * to temporarily allow the pre-charged bytes to exceed the page
3556 * size limit. The maximum reachable value of the pre-charged
3557 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3560 nr_pages = size >> PAGE_SHIFT;
3561 nr_bytes = size & (PAGE_SIZE - 1);
3566 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
3567 if (!ret && nr_bytes)
3568 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
3573 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3575 refill_obj_stock(objcg, size, true);
3578 #endif /* CONFIG_MEMCG_KMEM */
3581 * Because page_memcg(head) is not set on tails, set it now.
3583 void split_page_memcg(struct page *head, unsigned int nr)
3585 struct folio *folio = page_folio(head);
3586 struct mem_cgroup *memcg = folio_memcg(folio);
3589 if (mem_cgroup_disabled() || !memcg)
3592 for (i = 1; i < nr; i++)
3593 folio_page(folio, i)->memcg_data = folio->memcg_data;
3595 if (folio_memcg_kmem(folio))
3596 obj_cgroup_get_many(__folio_objcg(folio), nr - 1);
3598 css_get_many(&memcg->css, nr - 1);
3603 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3604 * @entry: swap entry to be moved
3605 * @from: mem_cgroup which the entry is moved from
3606 * @to: mem_cgroup which the entry is moved to
3608 * It succeeds only when the swap_cgroup's record for this entry is the same
3609 * as the mem_cgroup's id of @from.
3611 * Returns 0 on success, -EINVAL on failure.
3613 * The caller must have charged to @to, IOW, called page_counter_charge() about
3614 * both res and memsw, and called css_get().
3616 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3617 struct mem_cgroup *from, struct mem_cgroup *to)
3619 unsigned short old_id, new_id;
3621 old_id = mem_cgroup_id(from);
3622 new_id = mem_cgroup_id(to);
3624 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3625 mod_memcg_state(from, MEMCG_SWAP, -1);
3626 mod_memcg_state(to, MEMCG_SWAP, 1);
3632 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3633 struct mem_cgroup *from, struct mem_cgroup *to)
3639 static DEFINE_MUTEX(memcg_max_mutex);
3641 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3642 unsigned long max, bool memsw)
3644 bool enlarge = false;
3645 bool drained = false;
3647 bool limits_invariant;
3648 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3651 if (signal_pending(current)) {
3656 mutex_lock(&memcg_max_mutex);
3658 * Make sure that the new limit (memsw or memory limit) doesn't
3659 * break our basic invariant rule memory.max <= memsw.max.
3661 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3662 max <= memcg->memsw.max;
3663 if (!limits_invariant) {
3664 mutex_unlock(&memcg_max_mutex);
3668 if (max > counter->max)
3670 ret = page_counter_set_max(counter, max);
3671 mutex_unlock(&memcg_max_mutex);
3677 drain_all_stock(memcg);
3682 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
3683 memsw ? 0 : MEMCG_RECLAIM_MAY_SWAP)) {
3689 if (!ret && enlarge)
3690 memcg_oom_recover(memcg);
3695 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3697 unsigned long *total_scanned)
3699 unsigned long nr_reclaimed = 0;
3700 struct mem_cgroup_per_node *mz, *next_mz = NULL;
3701 unsigned long reclaimed;
3703 struct mem_cgroup_tree_per_node *mctz;
3704 unsigned long excess;
3706 if (lru_gen_enabled())
3712 mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id];
3715 * Do not even bother to check the largest node if the root
3716 * is empty. Do it lockless to prevent lock bouncing. Races
3717 * are acceptable as soft limit is best effort anyway.
3719 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3723 * This loop can run a while, specially if mem_cgroup's continuously
3724 * keep exceeding their soft limit and putting the system under
3731 mz = mem_cgroup_largest_soft_limit_node(mctz);
3735 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3736 gfp_mask, total_scanned);
3737 nr_reclaimed += reclaimed;
3738 spin_lock_irq(&mctz->lock);
3741 * If we failed to reclaim anything from this memory cgroup
3742 * it is time to move on to the next cgroup
3746 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3748 excess = soft_limit_excess(mz->memcg);
3750 * One school of thought says that we should not add
3751 * back the node to the tree if reclaim returns 0.
3752 * But our reclaim could return 0, simply because due
3753 * to priority we are exposing a smaller subset of
3754 * memory to reclaim from. Consider this as a longer
3757 /* If excess == 0, no tree ops */
3758 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3759 spin_unlock_irq(&mctz->lock);
3760 css_put(&mz->memcg->css);
3763 * Could not reclaim anything and there are no more
3764 * mem cgroups to try or we seem to be looping without
3765 * reclaiming anything.
3767 if (!nr_reclaimed &&
3769 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3771 } while (!nr_reclaimed);
3773 css_put(&next_mz->memcg->css);
3774 return nr_reclaimed;
3778 * Reclaims as many pages from the given memcg as possible.
3780 * Caller is responsible for holding css reference for memcg.
3782 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3784 int nr_retries = MAX_RECLAIM_RETRIES;
3786 /* we call try-to-free pages for make this cgroup empty */
3787 lru_add_drain_all();
3789 drain_all_stock(memcg);
3791 /* try to free all pages in this cgroup */
3792 while (nr_retries && page_counter_read(&memcg->memory)) {
3793 if (signal_pending(current))
3796 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
3797 MEMCG_RECLAIM_MAY_SWAP))
3804 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3805 char *buf, size_t nbytes,
3808 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3810 if (mem_cgroup_is_root(memcg))
3812 return mem_cgroup_force_empty(memcg) ?: nbytes;
3815 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3821 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3822 struct cftype *cft, u64 val)
3827 pr_warn_once("Non-hierarchical mode is deprecated. "
3829 "depend on this functionality.\n");
3834 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3838 if (mem_cgroup_is_root(memcg)) {
3840 * Approximate root's usage from global state. This isn't
3841 * perfect, but the root usage was always an approximation.
3843 val = global_node_page_state(NR_FILE_PAGES) +
3844 global_node_page_state(NR_ANON_MAPPED);
3846 val += total_swap_pages - get_nr_swap_pages();
3849 val = page_counter_read(&memcg->memory);
3851 val = page_counter_read(&memcg->memsw);
3864 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3867 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3868 struct page_counter *counter;
3870 switch (MEMFILE_TYPE(cft->private)) {
3872 counter = &memcg->memory;
3875 counter = &memcg->memsw;
3878 counter = &memcg->kmem;
3881 counter = &memcg->tcpmem;
3887 switch (MEMFILE_ATTR(cft->private)) {
3889 if (counter == &memcg->memory)
3890 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3891 if (counter == &memcg->memsw)
3892 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3893 return (u64)page_counter_read(counter) * PAGE_SIZE;
3895 return (u64)counter->max * PAGE_SIZE;
3897 return (u64)counter->watermark * PAGE_SIZE;
3899 return counter->failcnt;
3900 case RES_SOFT_LIMIT:
3901 return (u64)READ_ONCE(memcg->soft_limit) * PAGE_SIZE;
3908 * This function doesn't do anything useful. Its only job is to provide a read
3909 * handler for a file so that cgroup_file_mode() will add read permissions.
3911 static int mem_cgroup_dummy_seq_show(__always_unused struct seq_file *m,
3912 __always_unused void *v)
3917 #ifdef CONFIG_MEMCG_KMEM
3918 static int memcg_online_kmem(struct mem_cgroup *memcg)
3920 struct obj_cgroup *objcg;
3922 if (mem_cgroup_kmem_disabled())
3925 if (unlikely(mem_cgroup_is_root(memcg)))
3928 objcg = obj_cgroup_alloc();
3932 objcg->memcg = memcg;
3933 rcu_assign_pointer(memcg->objcg, objcg);
3934 obj_cgroup_get(objcg);
3935 memcg->orig_objcg = objcg;
3937 static_branch_enable(&memcg_kmem_online_key);
3939 memcg->kmemcg_id = memcg->id.id;
3944 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3946 struct mem_cgroup *parent;
3948 if (mem_cgroup_kmem_disabled())
3951 if (unlikely(mem_cgroup_is_root(memcg)))
3954 parent = parent_mem_cgroup(memcg);
3956 parent = root_mem_cgroup;
3958 memcg_reparent_objcgs(memcg, parent);
3961 * After we have finished memcg_reparent_objcgs(), all list_lrus
3962 * corresponding to this cgroup are guaranteed to remain empty.
3963 * The ordering is imposed by list_lru_node->lock taken by
3964 * memcg_reparent_list_lrus().
3966 memcg_reparent_list_lrus(memcg, parent);
3969 static int memcg_online_kmem(struct mem_cgroup *memcg)
3973 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3976 #endif /* CONFIG_MEMCG_KMEM */
3978 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3982 mutex_lock(&memcg_max_mutex);
3984 ret = page_counter_set_max(&memcg->tcpmem, max);
3988 if (!memcg->tcpmem_active) {
3990 * The active flag needs to be written after the static_key
3991 * update. This is what guarantees that the socket activation
3992 * function is the last one to run. See mem_cgroup_sk_alloc()
3993 * for details, and note that we don't mark any socket as
3994 * belonging to this memcg until that flag is up.
3996 * We need to do this, because static_keys will span multiple
3997 * sites, but we can't control their order. If we mark a socket
3998 * as accounted, but the accounting functions are not patched in
3999 * yet, we'll lose accounting.
4001 * We never race with the readers in mem_cgroup_sk_alloc(),
4002 * because when this value change, the code to process it is not
4005 static_branch_inc(&memcg_sockets_enabled_key);
4006 memcg->tcpmem_active = true;
4009 mutex_unlock(&memcg_max_mutex);
4014 * The user of this function is...
4017 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
4018 char *buf, size_t nbytes, loff_t off)
4020 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4021 unsigned long nr_pages;
4024 buf = strstrip(buf);
4025 ret = page_counter_memparse(buf, "-1", &nr_pages);
4029 switch (MEMFILE_ATTR(of_cft(of)->private)) {
4031 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
4035 switch (MEMFILE_TYPE(of_cft(of)->private)) {
4037 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
4040 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
4043 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
4044 "Writing any value to this file has no effect. "
4046 "depend on this functionality.\n");
4050 ret = memcg_update_tcp_max(memcg, nr_pages);
4054 case RES_SOFT_LIMIT:
4055 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
4058 WRITE_ONCE(memcg->soft_limit, nr_pages);
4063 return ret ?: nbytes;
4066 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
4067 size_t nbytes, loff_t off)
4069 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4070 struct page_counter *counter;
4072 switch (MEMFILE_TYPE(of_cft(of)->private)) {
4074 counter = &memcg->memory;
4077 counter = &memcg->memsw;
4080 counter = &memcg->kmem;
4083 counter = &memcg->tcpmem;
4089 switch (MEMFILE_ATTR(of_cft(of)->private)) {
4091 page_counter_reset_watermark(counter);
4094 counter->failcnt = 0;
4103 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
4106 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
4110 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
4111 struct cftype *cft, u64 val)
4113 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4115 pr_warn_once("Cgroup memory moving (move_charge_at_immigrate) is deprecated. "
4117 "depend on this functionality.\n");
4119 if (val & ~MOVE_MASK)
4123 * No kind of locking is needed in here, because ->can_attach() will
4124 * check this value once in the beginning of the process, and then carry
4125 * on with stale data. This means that changes to this value will only
4126 * affect task migrations starting after the change.
4128 memcg->move_charge_at_immigrate = val;
4132 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
4133 struct cftype *cft, u64 val)
4141 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
4142 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
4143 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
4145 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
4146 int nid, unsigned int lru_mask, bool tree)
4148 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
4149 unsigned long nr = 0;
4152 VM_BUG_ON((unsigned)nid >= nr_node_ids);
4155 if (!(BIT(lru) & lru_mask))
4158 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
4160 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
4165 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
4166 unsigned int lru_mask,
4169 unsigned long nr = 0;
4173 if (!(BIT(lru) & lru_mask))
4176 nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
4178 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
4183 static int memcg_numa_stat_show(struct seq_file *m, void *v)
4187 unsigned int lru_mask;
4190 static const struct numa_stat stats[] = {
4191 { "total", LRU_ALL },
4192 { "file", LRU_ALL_FILE },
4193 { "anon", LRU_ALL_ANON },
4194 { "unevictable", BIT(LRU_UNEVICTABLE) },
4196 const struct numa_stat *stat;
4198 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4200 mem_cgroup_flush_stats(memcg);
4202 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4203 seq_printf(m, "%s=%lu", stat->name,
4204 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4206 for_each_node_state(nid, N_MEMORY)
4207 seq_printf(m, " N%d=%lu", nid,
4208 mem_cgroup_node_nr_lru_pages(memcg, nid,
4209 stat->lru_mask, false));
4213 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4215 seq_printf(m, "hierarchical_%s=%lu", stat->name,
4216 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4218 for_each_node_state(nid, N_MEMORY)
4219 seq_printf(m, " N%d=%lu", nid,
4220 mem_cgroup_node_nr_lru_pages(memcg, nid,
4221 stat->lru_mask, true));
4227 #endif /* CONFIG_NUMA */
4229 static const unsigned int memcg1_stats[] = {
4232 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4239 WORKINGSET_REFAULT_ANON,
4240 WORKINGSET_REFAULT_FILE,
4247 static const char *const memcg1_stat_names[] = {
4250 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4257 "workingset_refault_anon",
4258 "workingset_refault_file",
4265 /* Universal VM events cgroup1 shows, original sort order */
4266 static const unsigned int memcg1_events[] = {
4273 static void memcg1_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
4275 unsigned long memory, memsw;
4276 struct mem_cgroup *mi;
4279 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
4281 mem_cgroup_flush_stats(memcg);
4283 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4286 nr = memcg_page_state_local_output(memcg, memcg1_stats[i]);
4287 seq_buf_printf(s, "%s %lu\n", memcg1_stat_names[i], nr);
4290 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4291 seq_buf_printf(s, "%s %lu\n", vm_event_name(memcg1_events[i]),
4292 memcg_events_local(memcg, memcg1_events[i]));
4294 for (i = 0; i < NR_LRU_LISTS; i++)
4295 seq_buf_printf(s, "%s %lu\n", lru_list_name(i),
4296 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4299 /* Hierarchical information */
4300 memory = memsw = PAGE_COUNTER_MAX;
4301 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4302 memory = min(memory, READ_ONCE(mi->memory.max));
4303 memsw = min(memsw, READ_ONCE(mi->memsw.max));
4305 seq_buf_printf(s, "hierarchical_memory_limit %llu\n",
4306 (u64)memory * PAGE_SIZE);
4307 seq_buf_printf(s, "hierarchical_memsw_limit %llu\n",
4308 (u64)memsw * PAGE_SIZE);
4310 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4313 nr = memcg_page_state_output(memcg, memcg1_stats[i]);
4314 seq_buf_printf(s, "total_%s %llu\n", memcg1_stat_names[i],
4318 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4319 seq_buf_printf(s, "total_%s %llu\n",
4320 vm_event_name(memcg1_events[i]),
4321 (u64)memcg_events(memcg, memcg1_events[i]));
4323 for (i = 0; i < NR_LRU_LISTS; i++)
4324 seq_buf_printf(s, "total_%s %llu\n", lru_list_name(i),
4325 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4328 #ifdef CONFIG_DEBUG_VM
4331 struct mem_cgroup_per_node *mz;
4332 unsigned long anon_cost = 0;
4333 unsigned long file_cost = 0;
4335 for_each_online_pgdat(pgdat) {
4336 mz = memcg->nodeinfo[pgdat->node_id];
4338 anon_cost += mz->lruvec.anon_cost;
4339 file_cost += mz->lruvec.file_cost;
4341 seq_buf_printf(s, "anon_cost %lu\n", anon_cost);
4342 seq_buf_printf(s, "file_cost %lu\n", file_cost);
4347 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4350 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4352 return mem_cgroup_swappiness(memcg);
4355 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4356 struct cftype *cft, u64 val)
4358 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4363 if (!mem_cgroup_is_root(memcg))
4364 WRITE_ONCE(memcg->swappiness, val);
4366 WRITE_ONCE(vm_swappiness, val);
4371 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4373 struct mem_cgroup_threshold_ary *t;
4374 unsigned long usage;
4379 t = rcu_dereference(memcg->thresholds.primary);
4381 t = rcu_dereference(memcg->memsw_thresholds.primary);
4386 usage = mem_cgroup_usage(memcg, swap);
4389 * current_threshold points to threshold just below or equal to usage.
4390 * If it's not true, a threshold was crossed after last
4391 * call of __mem_cgroup_threshold().
4393 i = t->current_threshold;
4396 * Iterate backward over array of thresholds starting from
4397 * current_threshold and check if a threshold is crossed.
4398 * If none of thresholds below usage is crossed, we read
4399 * only one element of the array here.
4401 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4402 eventfd_signal(t->entries[i].eventfd);
4404 /* i = current_threshold + 1 */
4408 * Iterate forward over array of thresholds starting from
4409 * current_threshold+1 and check if a threshold is crossed.
4410 * If none of thresholds above usage is crossed, we read
4411 * only one element of the array here.
4413 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4414 eventfd_signal(t->entries[i].eventfd);
4416 /* Update current_threshold */
4417 t->current_threshold = i - 1;
4422 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4425 __mem_cgroup_threshold(memcg, false);
4426 if (do_memsw_account())
4427 __mem_cgroup_threshold(memcg, true);
4429 memcg = parent_mem_cgroup(memcg);
4433 static int compare_thresholds(const void *a, const void *b)
4435 const struct mem_cgroup_threshold *_a = a;
4436 const struct mem_cgroup_threshold *_b = b;
4438 if (_a->threshold > _b->threshold)
4441 if (_a->threshold < _b->threshold)
4447 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4449 struct mem_cgroup_eventfd_list *ev;
4451 spin_lock(&memcg_oom_lock);
4453 list_for_each_entry(ev, &memcg->oom_notify, list)
4454 eventfd_signal(ev->eventfd);
4456 spin_unlock(&memcg_oom_lock);
4460 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4462 struct mem_cgroup *iter;
4464 for_each_mem_cgroup_tree(iter, memcg)
4465 mem_cgroup_oom_notify_cb(iter);
4468 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4469 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4471 struct mem_cgroup_thresholds *thresholds;
4472 struct mem_cgroup_threshold_ary *new;
4473 unsigned long threshold;
4474 unsigned long usage;
4477 ret = page_counter_memparse(args, "-1", &threshold);
4481 mutex_lock(&memcg->thresholds_lock);
4484 thresholds = &memcg->thresholds;
4485 usage = mem_cgroup_usage(memcg, false);
4486 } else if (type == _MEMSWAP) {
4487 thresholds = &memcg->memsw_thresholds;
4488 usage = mem_cgroup_usage(memcg, true);
4492 /* Check if a threshold crossed before adding a new one */
4493 if (thresholds->primary)
4494 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4496 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4498 /* Allocate memory for new array of thresholds */
4499 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4506 /* Copy thresholds (if any) to new array */
4507 if (thresholds->primary)
4508 memcpy(new->entries, thresholds->primary->entries,
4509 flex_array_size(new, entries, size - 1));
4511 /* Add new threshold */
4512 new->entries[size - 1].eventfd = eventfd;
4513 new->entries[size - 1].threshold = threshold;
4515 /* Sort thresholds. Registering of new threshold isn't time-critical */
4516 sort(new->entries, size, sizeof(*new->entries),
4517 compare_thresholds, NULL);
4519 /* Find current threshold */
4520 new->current_threshold = -1;
4521 for (i = 0; i < size; i++) {
4522 if (new->entries[i].threshold <= usage) {
4524 * new->current_threshold will not be used until
4525 * rcu_assign_pointer(), so it's safe to increment
4528 ++new->current_threshold;
4533 /* Free old spare buffer and save old primary buffer as spare */
4534 kfree(thresholds->spare);
4535 thresholds->spare = thresholds->primary;
4537 rcu_assign_pointer(thresholds->primary, new);
4539 /* To be sure that nobody uses thresholds */
4543 mutex_unlock(&memcg->thresholds_lock);
4548 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4549 struct eventfd_ctx *eventfd, const char *args)
4551 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4554 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4555 struct eventfd_ctx *eventfd, const char *args)
4557 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4560 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4561 struct eventfd_ctx *eventfd, enum res_type type)
4563 struct mem_cgroup_thresholds *thresholds;
4564 struct mem_cgroup_threshold_ary *new;
4565 unsigned long usage;
4566 int i, j, size, entries;
4568 mutex_lock(&memcg->thresholds_lock);
4571 thresholds = &memcg->thresholds;
4572 usage = mem_cgroup_usage(memcg, false);
4573 } else if (type == _MEMSWAP) {
4574 thresholds = &memcg->memsw_thresholds;
4575 usage = mem_cgroup_usage(memcg, true);
4579 if (!thresholds->primary)
4582 /* Check if a threshold crossed before removing */
4583 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4585 /* Calculate new number of threshold */
4587 for (i = 0; i < thresholds->primary->size; i++) {
4588 if (thresholds->primary->entries[i].eventfd != eventfd)
4594 new = thresholds->spare;
4596 /* If no items related to eventfd have been cleared, nothing to do */
4600 /* Set thresholds array to NULL if we don't have thresholds */
4609 /* Copy thresholds and find current threshold */
4610 new->current_threshold = -1;
4611 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4612 if (thresholds->primary->entries[i].eventfd == eventfd)
4615 new->entries[j] = thresholds->primary->entries[i];
4616 if (new->entries[j].threshold <= usage) {
4618 * new->current_threshold will not be used
4619 * until rcu_assign_pointer(), so it's safe to increment
4622 ++new->current_threshold;
4628 /* Swap primary and spare array */
4629 thresholds->spare = thresholds->primary;
4631 rcu_assign_pointer(thresholds->primary, new);
4633 /* To be sure that nobody uses thresholds */
4636 /* If all events are unregistered, free the spare array */
4638 kfree(thresholds->spare);
4639 thresholds->spare = NULL;
4642 mutex_unlock(&memcg->thresholds_lock);
4645 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4646 struct eventfd_ctx *eventfd)
4648 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4651 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4652 struct eventfd_ctx *eventfd)
4654 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4657 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4658 struct eventfd_ctx *eventfd, const char *args)
4660 struct mem_cgroup_eventfd_list *event;
4662 event = kmalloc(sizeof(*event), GFP_KERNEL);
4666 spin_lock(&memcg_oom_lock);
4668 event->eventfd = eventfd;
4669 list_add(&event->list, &memcg->oom_notify);
4671 /* already in OOM ? */
4672 if (memcg->under_oom)
4673 eventfd_signal(eventfd);
4674 spin_unlock(&memcg_oom_lock);
4679 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4680 struct eventfd_ctx *eventfd)
4682 struct mem_cgroup_eventfd_list *ev, *tmp;
4684 spin_lock(&memcg_oom_lock);
4686 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4687 if (ev->eventfd == eventfd) {
4688 list_del(&ev->list);
4693 spin_unlock(&memcg_oom_lock);
4696 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4698 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4700 seq_printf(sf, "oom_kill_disable %d\n", READ_ONCE(memcg->oom_kill_disable));
4701 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4702 seq_printf(sf, "oom_kill %lu\n",
4703 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4707 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4708 struct cftype *cft, u64 val)
4710 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4712 /* cannot set to root cgroup and only 0 and 1 are allowed */
4713 if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
4716 WRITE_ONCE(memcg->oom_kill_disable, val);
4718 memcg_oom_recover(memcg);
4723 #ifdef CONFIG_CGROUP_WRITEBACK
4725 #include <trace/events/writeback.h>
4727 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4729 return wb_domain_init(&memcg->cgwb_domain, gfp);
4732 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4734 wb_domain_exit(&memcg->cgwb_domain);
4737 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4739 wb_domain_size_changed(&memcg->cgwb_domain);
4742 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4744 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4746 if (!memcg->css.parent)
4749 return &memcg->cgwb_domain;
4753 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4754 * @wb: bdi_writeback in question
4755 * @pfilepages: out parameter for number of file pages
4756 * @pheadroom: out parameter for number of allocatable pages according to memcg
4757 * @pdirty: out parameter for number of dirty pages
4758 * @pwriteback: out parameter for number of pages under writeback
4760 * Determine the numbers of file, headroom, dirty, and writeback pages in
4761 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4762 * is a bit more involved.
4764 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4765 * headroom is calculated as the lowest headroom of itself and the
4766 * ancestors. Note that this doesn't consider the actual amount of
4767 * available memory in the system. The caller should further cap
4768 * *@pheadroom accordingly.
4770 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4771 unsigned long *pheadroom, unsigned long *pdirty,
4772 unsigned long *pwriteback)
4774 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4775 struct mem_cgroup *parent;
4777 mem_cgroup_flush_stats(memcg);
4779 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
4780 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
4781 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
4782 memcg_page_state(memcg, NR_ACTIVE_FILE);
4784 *pheadroom = PAGE_COUNTER_MAX;
4785 while ((parent = parent_mem_cgroup(memcg))) {
4786 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4787 READ_ONCE(memcg->memory.high));
4788 unsigned long used = page_counter_read(&memcg->memory);
4790 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4796 * Foreign dirty flushing
4798 * There's an inherent mismatch between memcg and writeback. The former
4799 * tracks ownership per-page while the latter per-inode. This was a
4800 * deliberate design decision because honoring per-page ownership in the
4801 * writeback path is complicated, may lead to higher CPU and IO overheads
4802 * and deemed unnecessary given that write-sharing an inode across
4803 * different cgroups isn't a common use-case.
4805 * Combined with inode majority-writer ownership switching, this works well
4806 * enough in most cases but there are some pathological cases. For
4807 * example, let's say there are two cgroups A and B which keep writing to
4808 * different but confined parts of the same inode. B owns the inode and
4809 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4810 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4811 * triggering background writeback. A will be slowed down without a way to
4812 * make writeback of the dirty pages happen.
4814 * Conditions like the above can lead to a cgroup getting repeatedly and
4815 * severely throttled after making some progress after each
4816 * dirty_expire_interval while the underlying IO device is almost
4819 * Solving this problem completely requires matching the ownership tracking
4820 * granularities between memcg and writeback in either direction. However,
4821 * the more egregious behaviors can be avoided by simply remembering the
4822 * most recent foreign dirtying events and initiating remote flushes on
4823 * them when local writeback isn't enough to keep the memory clean enough.
4825 * The following two functions implement such mechanism. When a foreign
4826 * page - a page whose memcg and writeback ownerships don't match - is
4827 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4828 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4829 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4830 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4831 * foreign bdi_writebacks which haven't expired. Both the numbers of
4832 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4833 * limited to MEMCG_CGWB_FRN_CNT.
4835 * The mechanism only remembers IDs and doesn't hold any object references.
4836 * As being wrong occasionally doesn't matter, updates and accesses to the
4837 * records are lockless and racy.
4839 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
4840 struct bdi_writeback *wb)
4842 struct mem_cgroup *memcg = folio_memcg(folio);
4843 struct memcg_cgwb_frn *frn;
4844 u64 now = get_jiffies_64();
4845 u64 oldest_at = now;
4849 trace_track_foreign_dirty(folio, wb);
4852 * Pick the slot to use. If there is already a slot for @wb, keep
4853 * using it. If not replace the oldest one which isn't being
4856 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4857 frn = &memcg->cgwb_frn[i];
4858 if (frn->bdi_id == wb->bdi->id &&
4859 frn->memcg_id == wb->memcg_css->id)
4861 if (time_before64(frn->at, oldest_at) &&
4862 atomic_read(&frn->done.cnt) == 1) {
4864 oldest_at = frn->at;
4868 if (i < MEMCG_CGWB_FRN_CNT) {
4870 * Re-using an existing one. Update timestamp lazily to
4871 * avoid making the cacheline hot. We want them to be
4872 * reasonably up-to-date and significantly shorter than
4873 * dirty_expire_interval as that's what expires the record.
4874 * Use the shorter of 1s and dirty_expire_interval / 8.
4876 unsigned long update_intv =
4877 min_t(unsigned long, HZ,
4878 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4880 if (time_before64(frn->at, now - update_intv))
4882 } else if (oldest >= 0) {
4883 /* replace the oldest free one */
4884 frn = &memcg->cgwb_frn[oldest];
4885 frn->bdi_id = wb->bdi->id;
4886 frn->memcg_id = wb->memcg_css->id;
4891 /* issue foreign writeback flushes for recorded foreign dirtying events */
4892 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4894 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4895 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4896 u64 now = jiffies_64;
4899 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4900 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4903 * If the record is older than dirty_expire_interval,
4904 * writeback on it has already started. No need to kick it
4905 * off again. Also, don't start a new one if there's
4906 * already one in flight.
4908 if (time_after64(frn->at, now - intv) &&
4909 atomic_read(&frn->done.cnt) == 1) {
4911 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4912 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
4913 WB_REASON_FOREIGN_FLUSH,
4919 #else /* CONFIG_CGROUP_WRITEBACK */
4921 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4926 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4930 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4934 #endif /* CONFIG_CGROUP_WRITEBACK */
4937 * DO NOT USE IN NEW FILES.
4939 * "cgroup.event_control" implementation.
4941 * This is way over-engineered. It tries to support fully configurable
4942 * events for each user. Such level of flexibility is completely
4943 * unnecessary especially in the light of the planned unified hierarchy.
4945 * Please deprecate this and replace with something simpler if at all
4950 * Unregister event and free resources.
4952 * Gets called from workqueue.
4954 static void memcg_event_remove(struct work_struct *work)
4956 struct mem_cgroup_event *event =
4957 container_of(work, struct mem_cgroup_event, remove);
4958 struct mem_cgroup *memcg = event->memcg;
4960 remove_wait_queue(event->wqh, &event->wait);
4962 event->unregister_event(memcg, event->eventfd);
4964 /* Notify userspace the event is going away. */
4965 eventfd_signal(event->eventfd);
4967 eventfd_ctx_put(event->eventfd);
4969 css_put(&memcg->css);
4973 * Gets called on EPOLLHUP on eventfd when user closes it.
4975 * Called with wqh->lock held and interrupts disabled.
4977 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4978 int sync, void *key)
4980 struct mem_cgroup_event *event =
4981 container_of(wait, struct mem_cgroup_event, wait);
4982 struct mem_cgroup *memcg = event->memcg;
4983 __poll_t flags = key_to_poll(key);
4985 if (flags & EPOLLHUP) {
4987 * If the event has been detached at cgroup removal, we
4988 * can simply return knowing the other side will cleanup
4991 * We can't race against event freeing since the other
4992 * side will require wqh->lock via remove_wait_queue(),
4995 spin_lock(&memcg->event_list_lock);
4996 if (!list_empty(&event->list)) {
4997 list_del_init(&event->list);
4999 * We are in atomic context, but cgroup_event_remove()
5000 * may sleep, so we have to call it in workqueue.
5002 schedule_work(&event->remove);
5004 spin_unlock(&memcg->event_list_lock);
5010 static void memcg_event_ptable_queue_proc(struct file *file,
5011 wait_queue_head_t *wqh, poll_table *pt)
5013 struct mem_cgroup_event *event =
5014 container_of(pt, struct mem_cgroup_event, pt);
5017 add_wait_queue(wqh, &event->wait);
5021 * DO NOT USE IN NEW FILES.
5023 * Parse input and register new cgroup event handler.
5025 * Input must be in format '<event_fd> <control_fd> <args>'.
5026 * Interpretation of args is defined by control file implementation.
5028 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
5029 char *buf, size_t nbytes, loff_t off)
5031 struct cgroup_subsys_state *css = of_css(of);
5032 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5033 struct mem_cgroup_event *event;
5034 struct cgroup_subsys_state *cfile_css;
5035 unsigned int efd, cfd;
5038 struct dentry *cdentry;
5043 if (IS_ENABLED(CONFIG_PREEMPT_RT))
5046 buf = strstrip(buf);
5048 efd = simple_strtoul(buf, &endp, 10);
5053 cfd = simple_strtoul(buf, &endp, 10);
5054 if ((*endp != ' ') && (*endp != '\0'))
5058 event = kzalloc(sizeof(*event), GFP_KERNEL);
5062 event->memcg = memcg;
5063 INIT_LIST_HEAD(&event->list);
5064 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
5065 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
5066 INIT_WORK(&event->remove, memcg_event_remove);
5074 event->eventfd = eventfd_ctx_fileget(efile.file);
5075 if (IS_ERR(event->eventfd)) {
5076 ret = PTR_ERR(event->eventfd);
5083 goto out_put_eventfd;
5086 /* the process need read permission on control file */
5087 /* AV: shouldn't we check that it's been opened for read instead? */
5088 ret = file_permission(cfile.file, MAY_READ);
5093 * The control file must be a regular cgroup1 file. As a regular cgroup
5094 * file can't be renamed, it's safe to access its name afterwards.
5096 cdentry = cfile.file->f_path.dentry;
5097 if (cdentry->d_sb->s_type != &cgroup_fs_type || !d_is_reg(cdentry)) {
5103 * Determine the event callbacks and set them in @event. This used
5104 * to be done via struct cftype but cgroup core no longer knows
5105 * about these events. The following is crude but the whole thing
5106 * is for compatibility anyway.
5108 * DO NOT ADD NEW FILES.
5110 name = cdentry->d_name.name;
5112 if (!strcmp(name, "memory.usage_in_bytes")) {
5113 event->register_event = mem_cgroup_usage_register_event;
5114 event->unregister_event = mem_cgroup_usage_unregister_event;
5115 } else if (!strcmp(name, "memory.oom_control")) {
5116 event->register_event = mem_cgroup_oom_register_event;
5117 event->unregister_event = mem_cgroup_oom_unregister_event;
5118 } else if (!strcmp(name, "memory.pressure_level")) {
5119 event->register_event = vmpressure_register_event;
5120 event->unregister_event = vmpressure_unregister_event;
5121 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
5122 event->register_event = memsw_cgroup_usage_register_event;
5123 event->unregister_event = memsw_cgroup_usage_unregister_event;
5130 * Verify @cfile should belong to @css. Also, remaining events are
5131 * automatically removed on cgroup destruction but the removal is
5132 * asynchronous, so take an extra ref on @css.
5134 cfile_css = css_tryget_online_from_dir(cdentry->d_parent,
5135 &memory_cgrp_subsys);
5137 if (IS_ERR(cfile_css))
5139 if (cfile_css != css) {
5144 ret = event->register_event(memcg, event->eventfd, buf);
5148 vfs_poll(efile.file, &event->pt);
5150 spin_lock_irq(&memcg->event_list_lock);
5151 list_add(&event->list, &memcg->event_list);
5152 spin_unlock_irq(&memcg->event_list_lock);
5164 eventfd_ctx_put(event->eventfd);
5173 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_SLUB_DEBUG)
5174 static int mem_cgroup_slab_show(struct seq_file *m, void *p)
5178 * Please, take a look at tools/cgroup/memcg_slabinfo.py .
5184 static int memory_stat_show(struct seq_file *m, void *v);
5186 static struct cftype mem_cgroup_legacy_files[] = {
5188 .name = "usage_in_bytes",
5189 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5190 .read_u64 = mem_cgroup_read_u64,
5193 .name = "max_usage_in_bytes",
5194 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5195 .write = mem_cgroup_reset,
5196 .read_u64 = mem_cgroup_read_u64,
5199 .name = "limit_in_bytes",
5200 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5201 .write = mem_cgroup_write,
5202 .read_u64 = mem_cgroup_read_u64,
5205 .name = "soft_limit_in_bytes",
5206 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5207 .write = mem_cgroup_write,
5208 .read_u64 = mem_cgroup_read_u64,
5212 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5213 .write = mem_cgroup_reset,
5214 .read_u64 = mem_cgroup_read_u64,
5218 .seq_show = memory_stat_show,
5221 .name = "force_empty",
5222 .write = mem_cgroup_force_empty_write,
5225 .name = "use_hierarchy",
5226 .write_u64 = mem_cgroup_hierarchy_write,
5227 .read_u64 = mem_cgroup_hierarchy_read,
5230 .name = "cgroup.event_control", /* XXX: for compat */
5231 .write = memcg_write_event_control,
5232 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
5235 .name = "swappiness",
5236 .read_u64 = mem_cgroup_swappiness_read,
5237 .write_u64 = mem_cgroup_swappiness_write,
5240 .name = "move_charge_at_immigrate",
5241 .read_u64 = mem_cgroup_move_charge_read,
5242 .write_u64 = mem_cgroup_move_charge_write,
5245 .name = "oom_control",
5246 .seq_show = mem_cgroup_oom_control_read,
5247 .write_u64 = mem_cgroup_oom_control_write,
5250 .name = "pressure_level",
5251 .seq_show = mem_cgroup_dummy_seq_show,
5255 .name = "numa_stat",
5256 .seq_show = memcg_numa_stat_show,
5260 .name = "kmem.limit_in_bytes",
5261 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5262 .write = mem_cgroup_write,
5263 .read_u64 = mem_cgroup_read_u64,
5266 .name = "kmem.usage_in_bytes",
5267 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5268 .read_u64 = mem_cgroup_read_u64,
5271 .name = "kmem.failcnt",
5272 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5273 .write = mem_cgroup_reset,
5274 .read_u64 = mem_cgroup_read_u64,
5277 .name = "kmem.max_usage_in_bytes",
5278 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5279 .write = mem_cgroup_reset,
5280 .read_u64 = mem_cgroup_read_u64,
5282 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_SLUB_DEBUG)
5284 .name = "kmem.slabinfo",
5285 .seq_show = mem_cgroup_slab_show,
5289 .name = "kmem.tcp.limit_in_bytes",
5290 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5291 .write = mem_cgroup_write,
5292 .read_u64 = mem_cgroup_read_u64,
5295 .name = "kmem.tcp.usage_in_bytes",
5296 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5297 .read_u64 = mem_cgroup_read_u64,
5300 .name = "kmem.tcp.failcnt",
5301 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5302 .write = mem_cgroup_reset,
5303 .read_u64 = mem_cgroup_read_u64,
5306 .name = "kmem.tcp.max_usage_in_bytes",
5307 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5308 .write = mem_cgroup_reset,
5309 .read_u64 = mem_cgroup_read_u64,
5311 { }, /* terminate */
5315 * Private memory cgroup IDR
5317 * Swap-out records and page cache shadow entries need to store memcg
5318 * references in constrained space, so we maintain an ID space that is
5319 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5320 * memory-controlled cgroups to 64k.
5322 * However, there usually are many references to the offline CSS after
5323 * the cgroup has been destroyed, such as page cache or reclaimable
5324 * slab objects, that don't need to hang on to the ID. We want to keep
5325 * those dead CSS from occupying IDs, or we might quickly exhaust the
5326 * relatively small ID space and prevent the creation of new cgroups
5327 * even when there are much fewer than 64k cgroups - possibly none.
5329 * Maintain a private 16-bit ID space for memcg, and allow the ID to
5330 * be freed and recycled when it's no longer needed, which is usually
5331 * when the CSS is offlined.
5333 * The only exception to that are records of swapped out tmpfs/shmem
5334 * pages that need to be attributed to live ancestors on swapin. But
5335 * those references are manageable from userspace.
5338 #define MEM_CGROUP_ID_MAX ((1UL << MEM_CGROUP_ID_SHIFT) - 1)
5339 static DEFINE_IDR(mem_cgroup_idr);
5341 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5343 if (memcg->id.id > 0) {
5344 idr_remove(&mem_cgroup_idr, memcg->id.id);
5349 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5352 refcount_add(n, &memcg->id.ref);
5355 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5357 if (refcount_sub_and_test(n, &memcg->id.ref)) {
5358 mem_cgroup_id_remove(memcg);
5360 /* Memcg ID pins CSS */
5361 css_put(&memcg->css);
5365 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5367 mem_cgroup_id_put_many(memcg, 1);
5371 * mem_cgroup_from_id - look up a memcg from a memcg id
5372 * @id: the memcg id to look up
5374 * Caller must hold rcu_read_lock().
5376 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5378 WARN_ON_ONCE(!rcu_read_lock_held());
5379 return idr_find(&mem_cgroup_idr, id);
5382 #ifdef CONFIG_SHRINKER_DEBUG
5383 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
5385 struct cgroup *cgrp;
5386 struct cgroup_subsys_state *css;
5387 struct mem_cgroup *memcg;
5389 cgrp = cgroup_get_from_id(ino);
5391 return ERR_CAST(cgrp);
5393 css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys);
5395 memcg = container_of(css, struct mem_cgroup, css);
5397 memcg = ERR_PTR(-ENOENT);
5405 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5407 struct mem_cgroup_per_node *pn;
5409 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node);
5413 pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
5414 GFP_KERNEL_ACCOUNT);
5415 if (!pn->lruvec_stats_percpu) {
5420 lruvec_init(&pn->lruvec);
5423 memcg->nodeinfo[node] = pn;
5427 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5429 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5434 free_percpu(pn->lruvec_stats_percpu);
5438 static void __mem_cgroup_free(struct mem_cgroup *memcg)
5442 if (memcg->orig_objcg)
5443 obj_cgroup_put(memcg->orig_objcg);
5446 free_mem_cgroup_per_node_info(memcg, node);
5447 kfree(memcg->vmstats);
5448 free_percpu(memcg->vmstats_percpu);
5452 static void mem_cgroup_free(struct mem_cgroup *memcg)
5454 lru_gen_exit_memcg(memcg);
5455 memcg_wb_domain_exit(memcg);
5456 __mem_cgroup_free(memcg);
5459 static struct mem_cgroup *mem_cgroup_alloc(void)
5461 struct mem_cgroup *memcg;
5463 int __maybe_unused i;
5464 long error = -ENOMEM;
5466 memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL);
5468 return ERR_PTR(error);
5470 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5471 1, MEM_CGROUP_ID_MAX + 1, GFP_KERNEL);
5472 if (memcg->id.id < 0) {
5473 error = memcg->id.id;
5477 memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats), GFP_KERNEL);
5478 if (!memcg->vmstats)
5481 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5482 GFP_KERNEL_ACCOUNT);
5483 if (!memcg->vmstats_percpu)
5487 if (alloc_mem_cgroup_per_node_info(memcg, node))
5490 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5493 INIT_WORK(&memcg->high_work, high_work_func);
5494 INIT_LIST_HEAD(&memcg->oom_notify);
5495 mutex_init(&memcg->thresholds_lock);
5496 spin_lock_init(&memcg->move_lock);
5497 vmpressure_init(&memcg->vmpressure);
5498 INIT_LIST_HEAD(&memcg->event_list);
5499 spin_lock_init(&memcg->event_list_lock);
5500 memcg->socket_pressure = jiffies;
5501 #ifdef CONFIG_MEMCG_KMEM
5502 memcg->kmemcg_id = -1;
5503 INIT_LIST_HEAD(&memcg->objcg_list);
5505 #ifdef CONFIG_CGROUP_WRITEBACK
5506 INIT_LIST_HEAD(&memcg->cgwb_list);
5507 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5508 memcg->cgwb_frn[i].done =
5509 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5511 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5512 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5513 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5514 memcg->deferred_split_queue.split_queue_len = 0;
5516 lru_gen_init_memcg(memcg);
5519 mem_cgroup_id_remove(memcg);
5520 __mem_cgroup_free(memcg);
5521 return ERR_PTR(error);
5524 static struct cgroup_subsys_state * __ref
5525 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5527 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5528 struct mem_cgroup *memcg, *old_memcg;
5530 old_memcg = set_active_memcg(parent);
5531 memcg = mem_cgroup_alloc();
5532 set_active_memcg(old_memcg);
5534 return ERR_CAST(memcg);
5536 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5537 WRITE_ONCE(memcg->soft_limit, PAGE_COUNTER_MAX);
5538 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
5539 memcg->zswap_max = PAGE_COUNTER_MAX;
5540 WRITE_ONCE(memcg->zswap_writeback,
5541 !parent || READ_ONCE(parent->zswap_writeback));
5543 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5545 WRITE_ONCE(memcg->swappiness, mem_cgroup_swappiness(parent));
5546 WRITE_ONCE(memcg->oom_kill_disable, READ_ONCE(parent->oom_kill_disable));
5548 page_counter_init(&memcg->memory, &parent->memory);
5549 page_counter_init(&memcg->swap, &parent->swap);
5550 page_counter_init(&memcg->kmem, &parent->kmem);
5551 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5553 init_memcg_events();
5554 page_counter_init(&memcg->memory, NULL);
5555 page_counter_init(&memcg->swap, NULL);
5556 page_counter_init(&memcg->kmem, NULL);
5557 page_counter_init(&memcg->tcpmem, NULL);
5559 root_mem_cgroup = memcg;
5563 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5564 static_branch_inc(&memcg_sockets_enabled_key);
5566 #if defined(CONFIG_MEMCG_KMEM)
5567 if (!cgroup_memory_nobpf)
5568 static_branch_inc(&memcg_bpf_enabled_key);
5574 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5576 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5578 if (memcg_online_kmem(memcg))
5582 * A memcg must be visible for expand_shrinker_info()
5583 * by the time the maps are allocated. So, we allocate maps
5584 * here, when for_each_mem_cgroup() can't skip it.
5586 if (alloc_shrinker_info(memcg))
5589 if (unlikely(mem_cgroup_is_root(memcg)))
5590 queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
5592 lru_gen_online_memcg(memcg);
5594 /* Online state pins memcg ID, memcg ID pins CSS */
5595 refcount_set(&memcg->id.ref, 1);
5599 * Ensure mem_cgroup_from_id() works once we're fully online.
5601 * We could do this earlier and require callers to filter with
5602 * css_tryget_online(). But right now there are no users that
5603 * need earlier access, and the workingset code relies on the
5604 * cgroup tree linkage (mem_cgroup_get_nr_swap_pages()). So
5605 * publish it here at the end of onlining. This matches the
5606 * regular ID destruction during offlining.
5608 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5612 memcg_offline_kmem(memcg);
5614 mem_cgroup_id_remove(memcg);
5618 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5620 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5621 struct mem_cgroup_event *event, *tmp;
5624 * Unregister events and notify userspace.
5625 * Notify userspace about cgroup removing only after rmdir of cgroup
5626 * directory to avoid race between userspace and kernelspace.
5628 spin_lock_irq(&memcg->event_list_lock);
5629 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5630 list_del_init(&event->list);
5631 schedule_work(&event->remove);
5633 spin_unlock_irq(&memcg->event_list_lock);
5635 page_counter_set_min(&memcg->memory, 0);
5636 page_counter_set_low(&memcg->memory, 0);
5638 zswap_memcg_offline_cleanup(memcg);
5640 memcg_offline_kmem(memcg);
5641 reparent_shrinker_deferred(memcg);
5642 wb_memcg_offline(memcg);
5643 lru_gen_offline_memcg(memcg);
5645 drain_all_stock(memcg);
5647 mem_cgroup_id_put(memcg);
5650 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5652 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5654 invalidate_reclaim_iterators(memcg);
5655 lru_gen_release_memcg(memcg);
5658 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5660 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5661 int __maybe_unused i;
5663 #ifdef CONFIG_CGROUP_WRITEBACK
5664 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5665 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5667 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5668 static_branch_dec(&memcg_sockets_enabled_key);
5670 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5671 static_branch_dec(&memcg_sockets_enabled_key);
5673 #if defined(CONFIG_MEMCG_KMEM)
5674 if (!cgroup_memory_nobpf)
5675 static_branch_dec(&memcg_bpf_enabled_key);
5678 vmpressure_cleanup(&memcg->vmpressure);
5679 cancel_work_sync(&memcg->high_work);
5680 mem_cgroup_remove_from_trees(memcg);
5681 free_shrinker_info(memcg);
5682 mem_cgroup_free(memcg);
5686 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5687 * @css: the target css
5689 * Reset the states of the mem_cgroup associated with @css. This is
5690 * invoked when the userland requests disabling on the default hierarchy
5691 * but the memcg is pinned through dependency. The memcg should stop
5692 * applying policies and should revert to the vanilla state as it may be
5693 * made visible again.
5695 * The current implementation only resets the essential configurations.
5696 * This needs to be expanded to cover all the visible parts.
5698 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5700 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5702 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5703 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5704 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5705 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5706 page_counter_set_min(&memcg->memory, 0);
5707 page_counter_set_low(&memcg->memory, 0);
5708 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5709 WRITE_ONCE(memcg->soft_limit, PAGE_COUNTER_MAX);
5710 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5711 memcg_wb_domain_size_changed(memcg);
5714 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
5716 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5717 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5718 struct memcg_vmstats_percpu *statc;
5719 long delta, delta_cpu, v;
5722 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5724 for (i = 0; i < MEMCG_NR_STAT; i++) {
5726 * Collect the aggregated propagation counts of groups
5727 * below us. We're in a per-cpu loop here and this is
5728 * a global counter, so the first cycle will get them.
5730 delta = memcg->vmstats->state_pending[i];
5732 memcg->vmstats->state_pending[i] = 0;
5734 /* Add CPU changes on this level since the last flush */
5736 v = READ_ONCE(statc->state[i]);
5737 if (v != statc->state_prev[i]) {
5738 delta_cpu = v - statc->state_prev[i];
5740 statc->state_prev[i] = v;
5743 /* Aggregate counts on this level and propagate upwards */
5745 memcg->vmstats->state_local[i] += delta_cpu;
5748 memcg->vmstats->state[i] += delta;
5750 parent->vmstats->state_pending[i] += delta;
5754 for (i = 0; i < NR_MEMCG_EVENTS; i++) {
5755 delta = memcg->vmstats->events_pending[i];
5757 memcg->vmstats->events_pending[i] = 0;
5760 v = READ_ONCE(statc->events[i]);
5761 if (v != statc->events_prev[i]) {
5762 delta_cpu = v - statc->events_prev[i];
5764 statc->events_prev[i] = v;
5768 memcg->vmstats->events_local[i] += delta_cpu;
5771 memcg->vmstats->events[i] += delta;
5773 parent->vmstats->events_pending[i] += delta;
5777 for_each_node_state(nid, N_MEMORY) {
5778 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
5779 struct mem_cgroup_per_node *ppn = NULL;
5780 struct lruvec_stats_percpu *lstatc;
5783 ppn = parent->nodeinfo[nid];
5785 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
5787 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
5788 delta = pn->lruvec_stats.state_pending[i];
5790 pn->lruvec_stats.state_pending[i] = 0;
5793 v = READ_ONCE(lstatc->state[i]);
5794 if (v != lstatc->state_prev[i]) {
5795 delta_cpu = v - lstatc->state_prev[i];
5797 lstatc->state_prev[i] = v;
5801 pn->lruvec_stats.state_local[i] += delta_cpu;
5804 pn->lruvec_stats.state[i] += delta;
5806 ppn->lruvec_stats.state_pending[i] += delta;
5810 statc->stats_updates = 0;
5811 /* We are in a per-cpu loop here, only do the atomic write once */
5812 if (atomic64_read(&memcg->vmstats->stats_updates))
5813 atomic64_set(&memcg->vmstats->stats_updates, 0);
5817 /* Handlers for move charge at task migration. */
5818 static int mem_cgroup_do_precharge(unsigned long count)
5822 /* Try a single bulk charge without reclaim first, kswapd may wake */
5823 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5825 mc.precharge += count;
5829 /* Try charges one by one with reclaim, but do not retry */
5831 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5845 enum mc_target_type {
5852 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5853 unsigned long addr, pte_t ptent)
5855 struct page *page = vm_normal_page(vma, addr, ptent);
5859 if (PageAnon(page)) {
5860 if (!(mc.flags & MOVE_ANON))
5863 if (!(mc.flags & MOVE_FILE))
5871 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5872 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5873 pte_t ptent, swp_entry_t *entry)
5875 struct page *page = NULL;
5876 swp_entry_t ent = pte_to_swp_entry(ptent);
5878 if (!(mc.flags & MOVE_ANON))
5882 * Handle device private pages that are not accessible by the CPU, but
5883 * stored as special swap entries in the page table.
5885 if (is_device_private_entry(ent)) {
5886 page = pfn_swap_entry_to_page(ent);
5887 if (!get_page_unless_zero(page))
5892 if (non_swap_entry(ent))
5896 * Because swap_cache_get_folio() updates some statistics counter,
5897 * we call find_get_page() with swapper_space directly.
5899 page = find_get_page(swap_address_space(ent), swp_offset(ent));
5900 entry->val = ent.val;
5905 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5906 pte_t ptent, swp_entry_t *entry)
5912 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5913 unsigned long addr, pte_t ptent)
5915 unsigned long index;
5916 struct folio *folio;
5918 if (!vma->vm_file) /* anonymous vma */
5920 if (!(mc.flags & MOVE_FILE))
5923 /* folio is moved even if it's not RSS of this task(page-faulted). */
5924 /* shmem/tmpfs may report page out on swap: account for that too. */
5925 index = linear_page_index(vma, addr);
5926 folio = filemap_get_incore_folio(vma->vm_file->f_mapping, index);
5929 return folio_file_page(folio, index);
5933 * mem_cgroup_move_account - move account of the page
5935 * @compound: charge the page as compound or small page
5936 * @from: mem_cgroup which the page is moved from.
5937 * @to: mem_cgroup which the page is moved to. @from != @to.
5939 * The page must be locked and not on the LRU.
5941 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5944 static int mem_cgroup_move_account(struct page *page,
5946 struct mem_cgroup *from,
5947 struct mem_cgroup *to)
5949 struct folio *folio = page_folio(page);
5950 struct lruvec *from_vec, *to_vec;
5951 struct pglist_data *pgdat;
5952 unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1;
5955 VM_BUG_ON(from == to);
5956 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
5957 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
5958 VM_BUG_ON(compound && !folio_test_large(folio));
5961 if (folio_memcg(folio) != from)
5964 pgdat = folio_pgdat(folio);
5965 from_vec = mem_cgroup_lruvec(from, pgdat);
5966 to_vec = mem_cgroup_lruvec(to, pgdat);
5968 folio_memcg_lock(folio);
5970 if (folio_test_anon(folio)) {
5971 if (folio_mapped(folio)) {
5972 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5973 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5974 if (folio_test_pmd_mappable(folio)) {
5975 __mod_lruvec_state(from_vec, NR_ANON_THPS,
5977 __mod_lruvec_state(to_vec, NR_ANON_THPS,
5982 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5983 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5985 if (folio_test_swapbacked(folio)) {
5986 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5987 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5990 if (folio_mapped(folio)) {
5991 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5992 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5995 if (folio_test_dirty(folio)) {
5996 struct address_space *mapping = folio_mapping(folio);
5998 if (mapping_can_writeback(mapping)) {
5999 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
6001 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
6008 if (folio_test_swapcache(folio)) {
6009 __mod_lruvec_state(from_vec, NR_SWAPCACHE, -nr_pages);
6010 __mod_lruvec_state(to_vec, NR_SWAPCACHE, nr_pages);
6013 if (folio_test_writeback(folio)) {
6014 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
6015 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
6019 * All state has been migrated, let's switch to the new memcg.
6021 * It is safe to change page's memcg here because the page
6022 * is referenced, charged, isolated, and locked: we can't race
6023 * with (un)charging, migration, LRU putback, or anything else
6024 * that would rely on a stable page's memory cgroup.
6026 * Note that folio_memcg_lock is a memcg lock, not a page lock,
6027 * to save space. As soon as we switch page's memory cgroup to a
6028 * new memcg that isn't locked, the above state can change
6029 * concurrently again. Make sure we're truly done with it.
6034 css_put(&from->css);
6036 folio->memcg_data = (unsigned long)to;
6038 __folio_memcg_unlock(from);
6041 nid = folio_nid(folio);
6043 local_irq_disable();
6044 mem_cgroup_charge_statistics(to, nr_pages);
6045 memcg_check_events(to, nid);
6046 mem_cgroup_charge_statistics(from, -nr_pages);
6047 memcg_check_events(from, nid);
6054 * get_mctgt_type - get target type of moving charge
6055 * @vma: the vma the pte to be checked belongs
6056 * @addr: the address corresponding to the pte to be checked
6057 * @ptent: the pte to be checked
6058 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6060 * Context: Called with pte lock held.
6062 * * MC_TARGET_NONE - If the pte is not a target for move charge.
6063 * * MC_TARGET_PAGE - If the page corresponding to this pte is a target for
6064 * move charge. If @target is not NULL, the page is stored in target->page
6065 * with extra refcnt taken (Caller should release it).
6066 * * MC_TARGET_SWAP - If the swap entry corresponding to this pte is a
6067 * target for charge migration. If @target is not NULL, the entry is
6068 * stored in target->ent.
6069 * * MC_TARGET_DEVICE - Like MC_TARGET_PAGE but page is device memory and
6070 * thus not on the lru. For now such page is charged like a regular page
6071 * would be as it is just special memory taking the place of a regular page.
6072 * See Documentations/vm/hmm.txt and include/linux/hmm.h
6074 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
6075 unsigned long addr, pte_t ptent, union mc_target *target)
6077 struct page *page = NULL;
6078 enum mc_target_type ret = MC_TARGET_NONE;
6079 swp_entry_t ent = { .val = 0 };
6081 if (pte_present(ptent))
6082 page = mc_handle_present_pte(vma, addr, ptent);
6083 else if (pte_none_mostly(ptent))
6085 * PTE markers should be treated as a none pte here, separated
6086 * from other swap handling below.
6088 page = mc_handle_file_pte(vma, addr, ptent);
6089 else if (is_swap_pte(ptent))
6090 page = mc_handle_swap_pte(vma, ptent, &ent);
6092 if (target && page) {
6093 if (!trylock_page(page)) {
6098 * page_mapped() must be stable during the move. This
6099 * pte is locked, so if it's present, the page cannot
6100 * become unmapped. If it isn't, we have only partial
6101 * control over the mapped state: the page lock will
6102 * prevent new faults against pagecache and swapcache,
6103 * so an unmapped page cannot become mapped. However,
6104 * if the page is already mapped elsewhere, it can
6105 * unmap, and there is nothing we can do about it.
6106 * Alas, skip moving the page in this case.
6108 if (!pte_present(ptent) && page_mapped(page)) {
6115 if (!page && !ent.val)
6119 * Do only loose check w/o serialization.
6120 * mem_cgroup_move_account() checks the page is valid or
6121 * not under LRU exclusion.
6123 if (page_memcg(page) == mc.from) {
6124 ret = MC_TARGET_PAGE;
6125 if (is_device_private_page(page) ||
6126 is_device_coherent_page(page))
6127 ret = MC_TARGET_DEVICE;
6129 target->page = page;
6131 if (!ret || !target) {
6138 * There is a swap entry and a page doesn't exist or isn't charged.
6139 * But we cannot move a tail-page in a THP.
6141 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
6142 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
6143 ret = MC_TARGET_SWAP;
6150 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6152 * We don't consider PMD mapped swapping or file mapped pages because THP does
6153 * not support them for now.
6154 * Caller should make sure that pmd_trans_huge(pmd) is true.
6156 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6157 unsigned long addr, pmd_t pmd, union mc_target *target)
6159 struct page *page = NULL;
6160 enum mc_target_type ret = MC_TARGET_NONE;
6162 if (unlikely(is_swap_pmd(pmd))) {
6163 VM_BUG_ON(thp_migration_supported() &&
6164 !is_pmd_migration_entry(pmd));
6167 page = pmd_page(pmd);
6168 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
6169 if (!(mc.flags & MOVE_ANON))
6171 if (page_memcg(page) == mc.from) {
6172 ret = MC_TARGET_PAGE;
6175 if (!trylock_page(page)) {
6177 return MC_TARGET_NONE;
6179 target->page = page;
6185 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6186 unsigned long addr, pmd_t pmd, union mc_target *target)
6188 return MC_TARGET_NONE;
6192 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6193 unsigned long addr, unsigned long end,
6194 struct mm_walk *walk)
6196 struct vm_area_struct *vma = walk->vma;
6200 ptl = pmd_trans_huge_lock(pmd, vma);
6203 * Note their can not be MC_TARGET_DEVICE for now as we do not
6204 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
6205 * this might change.
6207 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6208 mc.precharge += HPAGE_PMD_NR;
6213 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6216 for (; addr != end; pte++, addr += PAGE_SIZE)
6217 if (get_mctgt_type(vma, addr, ptep_get(pte), NULL))
6218 mc.precharge++; /* increment precharge temporarily */
6219 pte_unmap_unlock(pte - 1, ptl);
6225 static const struct mm_walk_ops precharge_walk_ops = {
6226 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6227 .walk_lock = PGWALK_RDLOCK,
6230 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6232 unsigned long precharge;
6235 walk_page_range(mm, 0, ULONG_MAX, &precharge_walk_ops, NULL);
6236 mmap_read_unlock(mm);
6238 precharge = mc.precharge;
6244 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6246 unsigned long precharge = mem_cgroup_count_precharge(mm);
6248 VM_BUG_ON(mc.moving_task);
6249 mc.moving_task = current;
6250 return mem_cgroup_do_precharge(precharge);
6253 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6254 static void __mem_cgroup_clear_mc(void)
6256 struct mem_cgroup *from = mc.from;
6257 struct mem_cgroup *to = mc.to;
6259 /* we must uncharge all the leftover precharges from mc.to */
6261 mem_cgroup_cancel_charge(mc.to, mc.precharge);
6265 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6266 * we must uncharge here.
6268 if (mc.moved_charge) {
6269 mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6270 mc.moved_charge = 0;
6272 /* we must fixup refcnts and charges */
6273 if (mc.moved_swap) {
6274 /* uncharge swap account from the old cgroup */
6275 if (!mem_cgroup_is_root(mc.from))
6276 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
6278 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
6281 * we charged both to->memory and to->memsw, so we
6282 * should uncharge to->memory.
6284 if (!mem_cgroup_is_root(mc.to))
6285 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
6289 memcg_oom_recover(from);
6290 memcg_oom_recover(to);
6291 wake_up_all(&mc.waitq);
6294 static void mem_cgroup_clear_mc(void)
6296 struct mm_struct *mm = mc.mm;
6299 * we must clear moving_task before waking up waiters at the end of
6302 mc.moving_task = NULL;
6303 __mem_cgroup_clear_mc();
6304 spin_lock(&mc.lock);
6308 spin_unlock(&mc.lock);
6313 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6315 struct cgroup_subsys_state *css;
6316 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
6317 struct mem_cgroup *from;
6318 struct task_struct *leader, *p;
6319 struct mm_struct *mm;
6320 unsigned long move_flags;
6323 /* charge immigration isn't supported on the default hierarchy */
6324 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6328 * Multi-process migrations only happen on the default hierarchy
6329 * where charge immigration is not used. Perform charge
6330 * immigration if @tset contains a leader and whine if there are
6334 cgroup_taskset_for_each_leader(leader, css, tset) {
6337 memcg = mem_cgroup_from_css(css);
6343 * We are now committed to this value whatever it is. Changes in this
6344 * tunable will only affect upcoming migrations, not the current one.
6345 * So we need to save it, and keep it going.
6347 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
6351 from = mem_cgroup_from_task(p);
6353 VM_BUG_ON(from == memcg);
6355 mm = get_task_mm(p);
6358 /* We move charges only when we move a owner of the mm */
6359 if (mm->owner == p) {
6362 VM_BUG_ON(mc.precharge);
6363 VM_BUG_ON(mc.moved_charge);
6364 VM_BUG_ON(mc.moved_swap);
6366 spin_lock(&mc.lock);
6370 mc.flags = move_flags;
6371 spin_unlock(&mc.lock);
6372 /* We set mc.moving_task later */
6374 ret = mem_cgroup_precharge_mc(mm);
6376 mem_cgroup_clear_mc();
6383 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6386 mem_cgroup_clear_mc();
6389 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6390 unsigned long addr, unsigned long end,
6391 struct mm_walk *walk)
6394 struct vm_area_struct *vma = walk->vma;
6397 enum mc_target_type target_type;
6398 union mc_target target;
6401 ptl = pmd_trans_huge_lock(pmd, vma);
6403 if (mc.precharge < HPAGE_PMD_NR) {
6407 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6408 if (target_type == MC_TARGET_PAGE) {
6410 if (isolate_lru_page(page)) {
6411 if (!mem_cgroup_move_account(page, true,
6413 mc.precharge -= HPAGE_PMD_NR;
6414 mc.moved_charge += HPAGE_PMD_NR;
6416 putback_lru_page(page);
6420 } else if (target_type == MC_TARGET_DEVICE) {
6422 if (!mem_cgroup_move_account(page, true,
6424 mc.precharge -= HPAGE_PMD_NR;
6425 mc.moved_charge += HPAGE_PMD_NR;
6435 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6438 for (; addr != end; addr += PAGE_SIZE) {
6439 pte_t ptent = ptep_get(pte++);
6440 bool device = false;
6446 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6447 case MC_TARGET_DEVICE:
6450 case MC_TARGET_PAGE:
6453 * We can have a part of the split pmd here. Moving it
6454 * can be done but it would be too convoluted so simply
6455 * ignore such a partial THP and keep it in original
6456 * memcg. There should be somebody mapping the head.
6458 if (PageTransCompound(page))
6460 if (!device && !isolate_lru_page(page))
6462 if (!mem_cgroup_move_account(page, false,
6465 /* we uncharge from mc.from later. */
6469 putback_lru_page(page);
6470 put: /* get_mctgt_type() gets & locks the page */
6474 case MC_TARGET_SWAP:
6476 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6478 mem_cgroup_id_get_many(mc.to, 1);
6479 /* we fixup other refcnts and charges later. */
6487 pte_unmap_unlock(pte - 1, ptl);
6492 * We have consumed all precharges we got in can_attach().
6493 * We try charge one by one, but don't do any additional
6494 * charges to mc.to if we have failed in charge once in attach()
6497 ret = mem_cgroup_do_precharge(1);
6505 static const struct mm_walk_ops charge_walk_ops = {
6506 .pmd_entry = mem_cgroup_move_charge_pte_range,
6507 .walk_lock = PGWALK_RDLOCK,
6510 static void mem_cgroup_move_charge(void)
6512 lru_add_drain_all();
6514 * Signal folio_memcg_lock() to take the memcg's move_lock
6515 * while we're moving its pages to another memcg. Then wait
6516 * for already started RCU-only updates to finish.
6518 atomic_inc(&mc.from->moving_account);
6521 if (unlikely(!mmap_read_trylock(mc.mm))) {
6523 * Someone who are holding the mmap_lock might be waiting in
6524 * waitq. So we cancel all extra charges, wake up all waiters,
6525 * and retry. Because we cancel precharges, we might not be able
6526 * to move enough charges, but moving charge is a best-effort
6527 * feature anyway, so it wouldn't be a big problem.
6529 __mem_cgroup_clear_mc();
6534 * When we have consumed all precharges and failed in doing
6535 * additional charge, the page walk just aborts.
6537 walk_page_range(mc.mm, 0, ULONG_MAX, &charge_walk_ops, NULL);
6538 mmap_read_unlock(mc.mm);
6539 atomic_dec(&mc.from->moving_account);
6542 static void mem_cgroup_move_task(void)
6545 mem_cgroup_move_charge();
6546 mem_cgroup_clear_mc();
6550 #else /* !CONFIG_MMU */
6551 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6555 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6558 static void mem_cgroup_move_task(void)
6563 #ifdef CONFIG_MEMCG_KMEM
6564 static void mem_cgroup_fork(struct task_struct *task)
6567 * Set the update flag to cause task->objcg to be initialized lazily
6568 * on the first allocation. It can be done without any synchronization
6569 * because it's always performed on the current task, so does
6570 * current_objcg_update().
6572 task->objcg = (struct obj_cgroup *)CURRENT_OBJCG_UPDATE_FLAG;
6575 static void mem_cgroup_exit(struct task_struct *task)
6577 struct obj_cgroup *objcg = task->objcg;
6579 objcg = (struct obj_cgroup *)
6580 ((unsigned long)objcg & ~CURRENT_OBJCG_UPDATE_FLAG);
6582 obj_cgroup_put(objcg);
6585 * Some kernel allocations can happen after this point,
6586 * but let's ignore them. It can be done without any synchronization
6587 * because it's always performed on the current task, so does
6588 * current_objcg_update().
6594 #ifdef CONFIG_LRU_GEN
6595 static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset)
6597 struct task_struct *task;
6598 struct cgroup_subsys_state *css;
6600 /* find the first leader if there is any */
6601 cgroup_taskset_for_each_leader(task, css, tset)
6608 if (task->mm && READ_ONCE(task->mm->owner) == task)
6609 lru_gen_migrate_mm(task->mm);
6613 static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset) {}
6614 #endif /* CONFIG_LRU_GEN */
6616 #ifdef CONFIG_MEMCG_KMEM
6617 static void mem_cgroup_kmem_attach(struct cgroup_taskset *tset)
6619 struct task_struct *task;
6620 struct cgroup_subsys_state *css;
6622 cgroup_taskset_for_each(task, css, tset) {
6623 /* atomically set the update bit */
6624 set_bit(CURRENT_OBJCG_UPDATE_BIT, (unsigned long *)&task->objcg);
6628 static void mem_cgroup_kmem_attach(struct cgroup_taskset *tset) {}
6629 #endif /* CONFIG_MEMCG_KMEM */
6631 #if defined(CONFIG_LRU_GEN) || defined(CONFIG_MEMCG_KMEM)
6632 static void mem_cgroup_attach(struct cgroup_taskset *tset)
6634 mem_cgroup_lru_gen_attach(tset);
6635 mem_cgroup_kmem_attach(tset);
6639 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6641 if (value == PAGE_COUNTER_MAX)
6642 seq_puts(m, "max\n");
6644 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6649 static u64 memory_current_read(struct cgroup_subsys_state *css,
6652 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6654 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6657 static u64 memory_peak_read(struct cgroup_subsys_state *css,
6660 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6662 return (u64)memcg->memory.watermark * PAGE_SIZE;
6665 static int memory_min_show(struct seq_file *m, void *v)
6667 return seq_puts_memcg_tunable(m,
6668 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6671 static ssize_t memory_min_write(struct kernfs_open_file *of,
6672 char *buf, size_t nbytes, loff_t off)
6674 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6678 buf = strstrip(buf);
6679 err = page_counter_memparse(buf, "max", &min);
6683 page_counter_set_min(&memcg->memory, min);
6688 static int memory_low_show(struct seq_file *m, void *v)
6690 return seq_puts_memcg_tunable(m,
6691 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6694 static ssize_t memory_low_write(struct kernfs_open_file *of,
6695 char *buf, size_t nbytes, loff_t off)
6697 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6701 buf = strstrip(buf);
6702 err = page_counter_memparse(buf, "max", &low);
6706 page_counter_set_low(&memcg->memory, low);
6711 static int memory_high_show(struct seq_file *m, void *v)
6713 return seq_puts_memcg_tunable(m,
6714 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6717 static ssize_t memory_high_write(struct kernfs_open_file *of,
6718 char *buf, size_t nbytes, loff_t off)
6720 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6721 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6722 bool drained = false;
6726 buf = strstrip(buf);
6727 err = page_counter_memparse(buf, "max", &high);
6731 page_counter_set_high(&memcg->memory, high);
6734 unsigned long nr_pages = page_counter_read(&memcg->memory);
6735 unsigned long reclaimed;
6737 if (nr_pages <= high)
6740 if (signal_pending(current))
6744 drain_all_stock(memcg);
6749 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6750 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP);
6752 if (!reclaimed && !nr_retries--)
6756 memcg_wb_domain_size_changed(memcg);
6760 static int memory_max_show(struct seq_file *m, void *v)
6762 return seq_puts_memcg_tunable(m,
6763 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6766 static ssize_t memory_max_write(struct kernfs_open_file *of,
6767 char *buf, size_t nbytes, loff_t off)
6769 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6770 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6771 bool drained = false;
6775 buf = strstrip(buf);
6776 err = page_counter_memparse(buf, "max", &max);
6780 xchg(&memcg->memory.max, max);
6783 unsigned long nr_pages = page_counter_read(&memcg->memory);
6785 if (nr_pages <= max)
6788 if (signal_pending(current))
6792 drain_all_stock(memcg);
6798 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6799 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP))
6804 memcg_memory_event(memcg, MEMCG_OOM);
6805 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6809 memcg_wb_domain_size_changed(memcg);
6814 * Note: don't forget to update the 'samples/cgroup/memcg_event_listener'
6815 * if any new events become available.
6817 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6819 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6820 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6821 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6822 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6823 seq_printf(m, "oom_kill %lu\n",
6824 atomic_long_read(&events[MEMCG_OOM_KILL]));
6825 seq_printf(m, "oom_group_kill %lu\n",
6826 atomic_long_read(&events[MEMCG_OOM_GROUP_KILL]));
6829 static int memory_events_show(struct seq_file *m, void *v)
6831 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6833 __memory_events_show(m, memcg->memory_events);
6837 static int memory_events_local_show(struct seq_file *m, void *v)
6839 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6841 __memory_events_show(m, memcg->memory_events_local);
6845 static int memory_stat_show(struct seq_file *m, void *v)
6847 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6848 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
6853 seq_buf_init(&s, buf, PAGE_SIZE);
6854 memory_stat_format(memcg, &s);
6861 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
6864 return lruvec_page_state(lruvec, item) *
6865 memcg_page_state_output_unit(item);
6868 static int memory_numa_stat_show(struct seq_file *m, void *v)
6871 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6873 mem_cgroup_flush_stats(memcg);
6875 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6878 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6881 seq_printf(m, "%s", memory_stats[i].name);
6882 for_each_node_state(nid, N_MEMORY) {
6884 struct lruvec *lruvec;
6886 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6887 size = lruvec_page_state_output(lruvec,
6888 memory_stats[i].idx);
6889 seq_printf(m, " N%d=%llu", nid, size);
6898 static int memory_oom_group_show(struct seq_file *m, void *v)
6900 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6902 seq_printf(m, "%d\n", READ_ONCE(memcg->oom_group));
6907 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6908 char *buf, size_t nbytes, loff_t off)
6910 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6913 buf = strstrip(buf);
6917 ret = kstrtoint(buf, 0, &oom_group);
6921 if (oom_group != 0 && oom_group != 1)
6924 WRITE_ONCE(memcg->oom_group, oom_group);
6929 static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf,
6930 size_t nbytes, loff_t off)
6932 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6933 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6934 unsigned long nr_to_reclaim, nr_reclaimed = 0;
6935 unsigned int reclaim_options;
6938 buf = strstrip(buf);
6939 err = page_counter_memparse(buf, "", &nr_to_reclaim);
6943 reclaim_options = MEMCG_RECLAIM_MAY_SWAP | MEMCG_RECLAIM_PROACTIVE;
6944 while (nr_reclaimed < nr_to_reclaim) {
6945 unsigned long reclaimed;
6947 if (signal_pending(current))
6951 * This is the final attempt, drain percpu lru caches in the
6952 * hope of introducing more evictable pages for
6953 * try_to_free_mem_cgroup_pages().
6956 lru_add_drain_all();
6958 reclaimed = try_to_free_mem_cgroup_pages(memcg,
6959 min(nr_to_reclaim - nr_reclaimed, SWAP_CLUSTER_MAX),
6960 GFP_KERNEL, reclaim_options);
6962 if (!reclaimed && !nr_retries--)
6965 nr_reclaimed += reclaimed;
6971 static struct cftype memory_files[] = {
6974 .flags = CFTYPE_NOT_ON_ROOT,
6975 .read_u64 = memory_current_read,
6979 .flags = CFTYPE_NOT_ON_ROOT,
6980 .read_u64 = memory_peak_read,
6984 .flags = CFTYPE_NOT_ON_ROOT,
6985 .seq_show = memory_min_show,
6986 .write = memory_min_write,
6990 .flags = CFTYPE_NOT_ON_ROOT,
6991 .seq_show = memory_low_show,
6992 .write = memory_low_write,
6996 .flags = CFTYPE_NOT_ON_ROOT,
6997 .seq_show = memory_high_show,
6998 .write = memory_high_write,
7002 .flags = CFTYPE_NOT_ON_ROOT,
7003 .seq_show = memory_max_show,
7004 .write = memory_max_write,
7008 .flags = CFTYPE_NOT_ON_ROOT,
7009 .file_offset = offsetof(struct mem_cgroup, events_file),
7010 .seq_show = memory_events_show,
7013 .name = "events.local",
7014 .flags = CFTYPE_NOT_ON_ROOT,
7015 .file_offset = offsetof(struct mem_cgroup, events_local_file),
7016 .seq_show = memory_events_local_show,
7020 .seq_show = memory_stat_show,
7024 .name = "numa_stat",
7025 .seq_show = memory_numa_stat_show,
7029 .name = "oom.group",
7030 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
7031 .seq_show = memory_oom_group_show,
7032 .write = memory_oom_group_write,
7036 .flags = CFTYPE_NS_DELEGATABLE,
7037 .write = memory_reclaim,
7042 struct cgroup_subsys memory_cgrp_subsys = {
7043 .css_alloc = mem_cgroup_css_alloc,
7044 .css_online = mem_cgroup_css_online,
7045 .css_offline = mem_cgroup_css_offline,
7046 .css_released = mem_cgroup_css_released,
7047 .css_free = mem_cgroup_css_free,
7048 .css_reset = mem_cgroup_css_reset,
7049 .css_rstat_flush = mem_cgroup_css_rstat_flush,
7050 .can_attach = mem_cgroup_can_attach,
7051 #if defined(CONFIG_LRU_GEN) || defined(CONFIG_MEMCG_KMEM)
7052 .attach = mem_cgroup_attach,
7054 .cancel_attach = mem_cgroup_cancel_attach,
7055 .post_attach = mem_cgroup_move_task,
7056 #ifdef CONFIG_MEMCG_KMEM
7057 .fork = mem_cgroup_fork,
7058 .exit = mem_cgroup_exit,
7060 .dfl_cftypes = memory_files,
7061 .legacy_cftypes = mem_cgroup_legacy_files,
7066 * This function calculates an individual cgroup's effective
7067 * protection which is derived from its own memory.min/low, its
7068 * parent's and siblings' settings, as well as the actual memory
7069 * distribution in the tree.
7071 * The following rules apply to the effective protection values:
7073 * 1. At the first level of reclaim, effective protection is equal to
7074 * the declared protection in memory.min and memory.low.
7076 * 2. To enable safe delegation of the protection configuration, at
7077 * subsequent levels the effective protection is capped to the
7078 * parent's effective protection.
7080 * 3. To make complex and dynamic subtrees easier to configure, the
7081 * user is allowed to overcommit the declared protection at a given
7082 * level. If that is the case, the parent's effective protection is
7083 * distributed to the children in proportion to how much protection
7084 * they have declared and how much of it they are utilizing.
7086 * This makes distribution proportional, but also work-conserving:
7087 * if one cgroup claims much more protection than it uses memory,
7088 * the unused remainder is available to its siblings.
7090 * 4. Conversely, when the declared protection is undercommitted at a
7091 * given level, the distribution of the larger parental protection
7092 * budget is NOT proportional. A cgroup's protection from a sibling
7093 * is capped to its own memory.min/low setting.
7095 * 5. However, to allow protecting recursive subtrees from each other
7096 * without having to declare each individual cgroup's fixed share
7097 * of the ancestor's claim to protection, any unutilized -
7098 * "floating" - protection from up the tree is distributed in
7099 * proportion to each cgroup's *usage*. This makes the protection
7100 * neutral wrt sibling cgroups and lets them compete freely over
7101 * the shared parental protection budget, but it protects the
7102 * subtree as a whole from neighboring subtrees.
7104 * Note that 4. and 5. are not in conflict: 4. is about protecting
7105 * against immediate siblings whereas 5. is about protecting against
7106 * neighboring subtrees.
7108 static unsigned long effective_protection(unsigned long usage,
7109 unsigned long parent_usage,
7110 unsigned long setting,
7111 unsigned long parent_effective,
7112 unsigned long siblings_protected)
7114 unsigned long protected;
7117 protected = min(usage, setting);
7119 * If all cgroups at this level combined claim and use more
7120 * protection than what the parent affords them, distribute
7121 * shares in proportion to utilization.
7123 * We are using actual utilization rather than the statically
7124 * claimed protection in order to be work-conserving: claimed
7125 * but unused protection is available to siblings that would
7126 * otherwise get a smaller chunk than what they claimed.
7128 if (siblings_protected > parent_effective)
7129 return protected * parent_effective / siblings_protected;
7132 * Ok, utilized protection of all children is within what the
7133 * parent affords them, so we know whatever this child claims
7134 * and utilizes is effectively protected.
7136 * If there is unprotected usage beyond this value, reclaim
7137 * will apply pressure in proportion to that amount.
7139 * If there is unutilized protection, the cgroup will be fully
7140 * shielded from reclaim, but we do return a smaller value for
7141 * protection than what the group could enjoy in theory. This
7142 * is okay. With the overcommit distribution above, effective
7143 * protection is always dependent on how memory is actually
7144 * consumed among the siblings anyway.
7149 * If the children aren't claiming (all of) the protection
7150 * afforded to them by the parent, distribute the remainder in
7151 * proportion to the (unprotected) memory of each cgroup. That
7152 * way, cgroups that aren't explicitly prioritized wrt each
7153 * other compete freely over the allowance, but they are
7154 * collectively protected from neighboring trees.
7156 * We're using unprotected memory for the weight so that if
7157 * some cgroups DO claim explicit protection, we don't protect
7158 * the same bytes twice.
7160 * Check both usage and parent_usage against the respective
7161 * protected values. One should imply the other, but they
7162 * aren't read atomically - make sure the division is sane.
7164 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
7166 if (parent_effective > siblings_protected &&
7167 parent_usage > siblings_protected &&
7168 usage > protected) {
7169 unsigned long unclaimed;
7171 unclaimed = parent_effective - siblings_protected;
7172 unclaimed *= usage - protected;
7173 unclaimed /= parent_usage - siblings_protected;
7182 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
7183 * @root: the top ancestor of the sub-tree being checked
7184 * @memcg: the memory cgroup to check
7186 * WARNING: This function is not stateless! It can only be used as part
7187 * of a top-down tree iteration, not for isolated queries.
7189 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
7190 struct mem_cgroup *memcg)
7192 unsigned long usage, parent_usage;
7193 struct mem_cgroup *parent;
7195 if (mem_cgroup_disabled())
7199 root = root_mem_cgroup;
7202 * Effective values of the reclaim targets are ignored so they
7203 * can be stale. Have a look at mem_cgroup_protection for more
7205 * TODO: calculation should be more robust so that we do not need
7206 * that special casing.
7211 usage = page_counter_read(&memcg->memory);
7215 parent = parent_mem_cgroup(memcg);
7217 if (parent == root) {
7218 memcg->memory.emin = READ_ONCE(memcg->memory.min);
7219 memcg->memory.elow = READ_ONCE(memcg->memory.low);
7223 parent_usage = page_counter_read(&parent->memory);
7225 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
7226 READ_ONCE(memcg->memory.min),
7227 READ_ONCE(parent->memory.emin),
7228 atomic_long_read(&parent->memory.children_min_usage)));
7230 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
7231 READ_ONCE(memcg->memory.low),
7232 READ_ONCE(parent->memory.elow),
7233 atomic_long_read(&parent->memory.children_low_usage)));
7236 static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg,
7241 ret = try_charge(memcg, gfp, folio_nr_pages(folio));
7245 mem_cgroup_commit_charge(folio, memcg);
7250 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp)
7252 struct mem_cgroup *memcg;
7255 memcg = get_mem_cgroup_from_mm(mm);
7256 ret = charge_memcg(folio, memcg, gfp);
7257 css_put(&memcg->css);
7263 * mem_cgroup_hugetlb_try_charge - try to charge the memcg for a hugetlb folio
7264 * @memcg: memcg to charge.
7265 * @gfp: reclaim mode.
7266 * @nr_pages: number of pages to charge.
7268 * This function is called when allocating a huge page folio to determine if
7269 * the memcg has the capacity for it. It does not commit the charge yet,
7270 * as the hugetlb folio itself has not been obtained from the hugetlb pool.
7272 * Once we have obtained the hugetlb folio, we can call
7273 * mem_cgroup_commit_charge() to commit the charge. If we fail to obtain the
7274 * folio, we should instead call mem_cgroup_cancel_charge() to undo the effect
7277 * Returns 0 on success. Otherwise, an error code is returned.
7279 int mem_cgroup_hugetlb_try_charge(struct mem_cgroup *memcg, gfp_t gfp,
7283 * If hugetlb memcg charging is not enabled, do not fail hugetlb allocation,
7284 * but do not attempt to commit charge later (or cancel on error) either.
7286 if (mem_cgroup_disabled() || !memcg ||
7287 !cgroup_subsys_on_dfl(memory_cgrp_subsys) ||
7288 !(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING))
7291 if (try_charge(memcg, gfp, nr_pages))
7298 * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin.
7299 * @folio: folio to charge.
7300 * @mm: mm context of the victim
7301 * @gfp: reclaim mode
7302 * @entry: swap entry for which the folio is allocated
7304 * This function charges a folio allocated for swapin. Please call this before
7305 * adding the folio to the swapcache.
7307 * Returns 0 on success. Otherwise, an error code is returned.
7309 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
7310 gfp_t gfp, swp_entry_t entry)
7312 struct mem_cgroup *memcg;
7316 if (mem_cgroup_disabled())
7319 id = lookup_swap_cgroup_id(entry);
7321 memcg = mem_cgroup_from_id(id);
7322 if (!memcg || !css_tryget_online(&memcg->css))
7323 memcg = get_mem_cgroup_from_mm(mm);
7326 ret = charge_memcg(folio, memcg, gfp);
7328 css_put(&memcg->css);
7333 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
7334 * @entry: swap entry for which the page is charged
7336 * Call this function after successfully adding the charged page to swapcache.
7338 * Note: This function assumes the page for which swap slot is being uncharged
7341 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
7344 * Cgroup1's unified memory+swap counter has been charged with the
7345 * new swapcache page, finish the transfer by uncharging the swap
7346 * slot. The swap slot would also get uncharged when it dies, but
7347 * it can stick around indefinitely and we'd count the page twice
7350 * Cgroup2 has separate resource counters for memory and swap,
7351 * so this is a non-issue here. Memory and swap charge lifetimes
7352 * correspond 1:1 to page and swap slot lifetimes: we charge the
7353 * page to memory here, and uncharge swap when the slot is freed.
7355 if (!mem_cgroup_disabled() && do_memsw_account()) {
7357 * The swap entry might not get freed for a long time,
7358 * let's not wait for it. The page already received a
7359 * memory+swap charge, drop the swap entry duplicate.
7361 mem_cgroup_uncharge_swap(entry, 1);
7365 struct uncharge_gather {
7366 struct mem_cgroup *memcg;
7367 unsigned long nr_memory;
7368 unsigned long pgpgout;
7369 unsigned long nr_kmem;
7373 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
7375 memset(ug, 0, sizeof(*ug));
7378 static void uncharge_batch(const struct uncharge_gather *ug)
7380 unsigned long flags;
7382 if (ug->nr_memory) {
7383 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
7384 if (do_memsw_account())
7385 page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
7387 memcg_account_kmem(ug->memcg, -ug->nr_kmem);
7388 memcg_oom_recover(ug->memcg);
7391 local_irq_save(flags);
7392 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
7393 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
7394 memcg_check_events(ug->memcg, ug->nid);
7395 local_irq_restore(flags);
7397 /* drop reference from uncharge_folio */
7398 css_put(&ug->memcg->css);
7401 static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug)
7404 struct mem_cgroup *memcg;
7405 struct obj_cgroup *objcg;
7407 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
7410 * Nobody should be changing or seriously looking at
7411 * folio memcg or objcg at this point, we have fully
7412 * exclusive access to the folio.
7414 if (folio_memcg_kmem(folio)) {
7415 objcg = __folio_objcg(folio);
7417 * This get matches the put at the end of the function and
7418 * kmem pages do not hold memcg references anymore.
7420 memcg = get_mem_cgroup_from_objcg(objcg);
7422 memcg = __folio_memcg(folio);
7428 if (ug->memcg != memcg) {
7431 uncharge_gather_clear(ug);
7434 ug->nid = folio_nid(folio);
7436 /* pairs with css_put in uncharge_batch */
7437 css_get(&memcg->css);
7440 nr_pages = folio_nr_pages(folio);
7442 if (folio_memcg_kmem(folio)) {
7443 ug->nr_memory += nr_pages;
7444 ug->nr_kmem += nr_pages;
7446 folio->memcg_data = 0;
7447 obj_cgroup_put(objcg);
7449 /* LRU pages aren't accounted at the root level */
7450 if (!mem_cgroup_is_root(memcg))
7451 ug->nr_memory += nr_pages;
7454 folio->memcg_data = 0;
7457 css_put(&memcg->css);
7460 void __mem_cgroup_uncharge(struct folio *folio)
7462 struct uncharge_gather ug;
7464 /* Don't touch folio->lru of any random page, pre-check: */
7465 if (!folio_memcg(folio))
7468 uncharge_gather_clear(&ug);
7469 uncharge_folio(folio, &ug);
7470 uncharge_batch(&ug);
7474 * __mem_cgroup_uncharge_list - uncharge a list of page
7475 * @page_list: list of pages to uncharge
7477 * Uncharge a list of pages previously charged with
7478 * __mem_cgroup_charge().
7480 void __mem_cgroup_uncharge_list(struct list_head *page_list)
7482 struct uncharge_gather ug;
7483 struct folio *folio;
7485 uncharge_gather_clear(&ug);
7486 list_for_each_entry(folio, page_list, lru)
7487 uncharge_folio(folio, &ug);
7489 uncharge_batch(&ug);
7493 * mem_cgroup_replace_folio - Charge a folio's replacement.
7494 * @old: Currently circulating folio.
7495 * @new: Replacement folio.
7497 * Charge @new as a replacement folio for @old. @old will
7498 * be uncharged upon free. This is only used by the page cache
7499 * (in replace_page_cache_folio()).
7501 * Both folios must be locked, @new->mapping must be set up.
7503 void mem_cgroup_replace_folio(struct folio *old, struct folio *new)
7505 struct mem_cgroup *memcg;
7506 long nr_pages = folio_nr_pages(new);
7507 unsigned long flags;
7509 VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
7510 VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
7511 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
7512 VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new);
7514 if (mem_cgroup_disabled())
7517 /* Page cache replacement: new folio already charged? */
7518 if (folio_memcg(new))
7521 memcg = folio_memcg(old);
7522 VM_WARN_ON_ONCE_FOLIO(!memcg, old);
7526 /* Force-charge the new page. The old one will be freed soon */
7527 if (!mem_cgroup_is_root(memcg)) {
7528 page_counter_charge(&memcg->memory, nr_pages);
7529 if (do_memsw_account())
7530 page_counter_charge(&memcg->memsw, nr_pages);
7533 css_get(&memcg->css);
7534 commit_charge(new, memcg);
7536 local_irq_save(flags);
7537 mem_cgroup_charge_statistics(memcg, nr_pages);
7538 memcg_check_events(memcg, folio_nid(new));
7539 local_irq_restore(flags);
7543 * mem_cgroup_migrate - Transfer the memcg data from the old to the new folio.
7544 * @old: Currently circulating folio.
7545 * @new: Replacement folio.
7547 * Transfer the memcg data from the old folio to the new folio for migration.
7548 * The old folio's data info will be cleared. Note that the memory counters
7549 * will remain unchanged throughout the process.
7551 * Both folios must be locked, @new->mapping must be set up.
7553 void mem_cgroup_migrate(struct folio *old, struct folio *new)
7555 struct mem_cgroup *memcg;
7557 VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
7558 VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
7559 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
7560 VM_BUG_ON_FOLIO(folio_nr_pages(old) != folio_nr_pages(new), new);
7562 if (mem_cgroup_disabled())
7565 memcg = folio_memcg(old);
7567 * Note that it is normal to see !memcg for a hugetlb folio.
7568 * For e.g, itt could have been allocated when memory_hugetlb_accounting
7571 VM_WARN_ON_ONCE_FOLIO(!folio_test_hugetlb(old) && !memcg, old);
7575 /* Transfer the charge and the css ref */
7576 commit_charge(new, memcg);
7578 * If the old folio is a large folio and is in the split queue, it needs
7579 * to be removed from the split queue now, in case getting an incorrect
7580 * split queue in destroy_large_folio() after the memcg of the old folio
7583 * In addition, the old folio is about to be freed after migration, so
7584 * removing from the split queue a bit earlier seems reasonable.
7586 if (folio_test_large(old) && folio_test_large_rmappable(old))
7587 folio_undo_large_rmappable(old);
7588 old->memcg_data = 0;
7591 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
7592 EXPORT_SYMBOL(memcg_sockets_enabled_key);
7594 void mem_cgroup_sk_alloc(struct sock *sk)
7596 struct mem_cgroup *memcg;
7598 if (!mem_cgroup_sockets_enabled)
7601 /* Do not associate the sock with unrelated interrupted task's memcg. */
7606 memcg = mem_cgroup_from_task(current);
7607 if (mem_cgroup_is_root(memcg))
7609 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
7611 if (css_tryget(&memcg->css))
7612 sk->sk_memcg = memcg;
7617 void mem_cgroup_sk_free(struct sock *sk)
7620 css_put(&sk->sk_memcg->css);
7624 * mem_cgroup_charge_skmem - charge socket memory
7625 * @memcg: memcg to charge
7626 * @nr_pages: number of pages to charge
7627 * @gfp_mask: reclaim mode
7629 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
7630 * @memcg's configured limit, %false if it doesn't.
7632 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
7635 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7636 struct page_counter *fail;
7638 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7639 memcg->tcpmem_pressure = 0;
7642 memcg->tcpmem_pressure = 1;
7643 if (gfp_mask & __GFP_NOFAIL) {
7644 page_counter_charge(&memcg->tcpmem, nr_pages);
7650 if (try_charge(memcg, gfp_mask, nr_pages) == 0) {
7651 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7659 * mem_cgroup_uncharge_skmem - uncharge socket memory
7660 * @memcg: memcg to uncharge
7661 * @nr_pages: number of pages to uncharge
7663 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7665 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7666 page_counter_uncharge(&memcg->tcpmem, nr_pages);
7670 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7672 refill_stock(memcg, nr_pages);
7675 static int __init cgroup_memory(char *s)
7679 while ((token = strsep(&s, ",")) != NULL) {
7682 if (!strcmp(token, "nosocket"))
7683 cgroup_memory_nosocket = true;
7684 if (!strcmp(token, "nokmem"))
7685 cgroup_memory_nokmem = true;
7686 if (!strcmp(token, "nobpf"))
7687 cgroup_memory_nobpf = true;
7691 __setup("cgroup.memory=", cgroup_memory);
7694 * subsys_initcall() for memory controller.
7696 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7697 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7698 * basically everything that doesn't depend on a specific mem_cgroup structure
7699 * should be initialized from here.
7701 static int __init mem_cgroup_init(void)
7706 * Currently s32 type (can refer to struct batched_lruvec_stat) is
7707 * used for per-memcg-per-cpu caching of per-node statistics. In order
7708 * to work fine, we should make sure that the overfill threshold can't
7709 * exceed S32_MAX / PAGE_SIZE.
7711 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
7713 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7714 memcg_hotplug_cpu_dead);
7716 for_each_possible_cpu(cpu)
7717 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7720 for_each_node(node) {
7721 struct mem_cgroup_tree_per_node *rtpn;
7723 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, node);
7725 rtpn->rb_root = RB_ROOT;
7726 rtpn->rb_rightmost = NULL;
7727 spin_lock_init(&rtpn->lock);
7728 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7733 subsys_initcall(mem_cgroup_init);
7736 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7738 while (!refcount_inc_not_zero(&memcg->id.ref)) {
7740 * The root cgroup cannot be destroyed, so it's refcount must
7743 if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) {
7747 memcg = parent_mem_cgroup(memcg);
7749 memcg = root_mem_cgroup;
7755 * mem_cgroup_swapout - transfer a memsw charge to swap
7756 * @folio: folio whose memsw charge to transfer
7757 * @entry: swap entry to move the charge to
7759 * Transfer the memsw charge of @folio to @entry.
7761 void mem_cgroup_swapout(struct folio *folio, swp_entry_t entry)
7763 struct mem_cgroup *memcg, *swap_memcg;
7764 unsigned int nr_entries;
7765 unsigned short oldid;
7767 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
7768 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
7770 if (mem_cgroup_disabled())
7773 if (!do_memsw_account())
7776 memcg = folio_memcg(folio);
7778 VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
7783 * In case the memcg owning these pages has been offlined and doesn't
7784 * have an ID allocated to it anymore, charge the closest online
7785 * ancestor for the swap instead and transfer the memory+swap charge.
7787 swap_memcg = mem_cgroup_id_get_online(memcg);
7788 nr_entries = folio_nr_pages(folio);
7789 /* Get references for the tail pages, too */
7791 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7792 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7794 VM_BUG_ON_FOLIO(oldid, folio);
7795 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7797 folio->memcg_data = 0;
7799 if (!mem_cgroup_is_root(memcg))
7800 page_counter_uncharge(&memcg->memory, nr_entries);
7802 if (memcg != swap_memcg) {
7803 if (!mem_cgroup_is_root(swap_memcg))
7804 page_counter_charge(&swap_memcg->memsw, nr_entries);
7805 page_counter_uncharge(&memcg->memsw, nr_entries);
7809 * Interrupts should be disabled here because the caller holds the
7810 * i_pages lock which is taken with interrupts-off. It is
7811 * important here to have the interrupts disabled because it is the
7812 * only synchronisation we have for updating the per-CPU variables.
7815 mem_cgroup_charge_statistics(memcg, -nr_entries);
7816 memcg_stats_unlock();
7817 memcg_check_events(memcg, folio_nid(folio));
7819 css_put(&memcg->css);
7823 * __mem_cgroup_try_charge_swap - try charging swap space for a folio
7824 * @folio: folio being added to swap
7825 * @entry: swap entry to charge
7827 * Try to charge @folio's memcg for the swap space at @entry.
7829 * Returns 0 on success, -ENOMEM on failure.
7831 int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry)
7833 unsigned int nr_pages = folio_nr_pages(folio);
7834 struct page_counter *counter;
7835 struct mem_cgroup *memcg;
7836 unsigned short oldid;
7838 if (do_memsw_account())
7841 memcg = folio_memcg(folio);
7843 VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
7848 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7852 memcg = mem_cgroup_id_get_online(memcg);
7854 if (!mem_cgroup_is_root(memcg) &&
7855 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7856 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7857 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7858 mem_cgroup_id_put(memcg);
7862 /* Get references for the tail pages, too */
7864 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7865 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7866 VM_BUG_ON_FOLIO(oldid, folio);
7867 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7873 * __mem_cgroup_uncharge_swap - uncharge swap space
7874 * @entry: swap entry to uncharge
7875 * @nr_pages: the amount of swap space to uncharge
7877 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7879 struct mem_cgroup *memcg;
7882 id = swap_cgroup_record(entry, 0, nr_pages);
7884 memcg = mem_cgroup_from_id(id);
7886 if (!mem_cgroup_is_root(memcg)) {
7887 if (do_memsw_account())
7888 page_counter_uncharge(&memcg->memsw, nr_pages);
7890 page_counter_uncharge(&memcg->swap, nr_pages);
7892 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7893 mem_cgroup_id_put_many(memcg, nr_pages);
7898 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7900 long nr_swap_pages = get_nr_swap_pages();
7902 if (mem_cgroup_disabled() || do_memsw_account())
7903 return nr_swap_pages;
7904 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg))
7905 nr_swap_pages = min_t(long, nr_swap_pages,
7906 READ_ONCE(memcg->swap.max) -
7907 page_counter_read(&memcg->swap));
7908 return nr_swap_pages;
7911 bool mem_cgroup_swap_full(struct folio *folio)
7913 struct mem_cgroup *memcg;
7915 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
7919 if (do_memsw_account())
7922 memcg = folio_memcg(folio);
7926 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
7927 unsigned long usage = page_counter_read(&memcg->swap);
7929 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7930 usage * 2 >= READ_ONCE(memcg->swap.max))
7937 static int __init setup_swap_account(char *s)
7939 pr_warn_once("The swapaccount= commandline option is deprecated. "
7941 "depend on this functionality.\n");
7944 __setup("swapaccount=", setup_swap_account);
7946 static u64 swap_current_read(struct cgroup_subsys_state *css,
7949 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7951 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7954 static u64 swap_peak_read(struct cgroup_subsys_state *css,
7957 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7959 return (u64)memcg->swap.watermark * PAGE_SIZE;
7962 static int swap_high_show(struct seq_file *m, void *v)
7964 return seq_puts_memcg_tunable(m,
7965 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7968 static ssize_t swap_high_write(struct kernfs_open_file *of,
7969 char *buf, size_t nbytes, loff_t off)
7971 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7975 buf = strstrip(buf);
7976 err = page_counter_memparse(buf, "max", &high);
7980 page_counter_set_high(&memcg->swap, high);
7985 static int swap_max_show(struct seq_file *m, void *v)
7987 return seq_puts_memcg_tunable(m,
7988 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7991 static ssize_t swap_max_write(struct kernfs_open_file *of,
7992 char *buf, size_t nbytes, loff_t off)
7994 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7998 buf = strstrip(buf);
7999 err = page_counter_memparse(buf, "max", &max);
8003 xchg(&memcg->swap.max, max);
8008 static int swap_events_show(struct seq_file *m, void *v)
8010 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
8012 seq_printf(m, "high %lu\n",
8013 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
8014 seq_printf(m, "max %lu\n",
8015 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
8016 seq_printf(m, "fail %lu\n",
8017 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
8022 static struct cftype swap_files[] = {
8024 .name = "swap.current",
8025 .flags = CFTYPE_NOT_ON_ROOT,
8026 .read_u64 = swap_current_read,
8029 .name = "swap.high",
8030 .flags = CFTYPE_NOT_ON_ROOT,
8031 .seq_show = swap_high_show,
8032 .write = swap_high_write,
8036 .flags = CFTYPE_NOT_ON_ROOT,
8037 .seq_show = swap_max_show,
8038 .write = swap_max_write,
8041 .name = "swap.peak",
8042 .flags = CFTYPE_NOT_ON_ROOT,
8043 .read_u64 = swap_peak_read,
8046 .name = "swap.events",
8047 .flags = CFTYPE_NOT_ON_ROOT,
8048 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
8049 .seq_show = swap_events_show,
8054 static struct cftype memsw_files[] = {
8056 .name = "memsw.usage_in_bytes",
8057 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
8058 .read_u64 = mem_cgroup_read_u64,
8061 .name = "memsw.max_usage_in_bytes",
8062 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
8063 .write = mem_cgroup_reset,
8064 .read_u64 = mem_cgroup_read_u64,
8067 .name = "memsw.limit_in_bytes",
8068 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
8069 .write = mem_cgroup_write,
8070 .read_u64 = mem_cgroup_read_u64,
8073 .name = "memsw.failcnt",
8074 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
8075 .write = mem_cgroup_reset,
8076 .read_u64 = mem_cgroup_read_u64,
8078 { }, /* terminate */
8081 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
8083 * obj_cgroup_may_zswap - check if this cgroup can zswap
8084 * @objcg: the object cgroup
8086 * Check if the hierarchical zswap limit has been reached.
8088 * This doesn't check for specific headroom, and it is not atomic
8089 * either. But with zswap, the size of the allocation is only known
8090 * once compression has occurred, and this optimistic pre-check avoids
8091 * spending cycles on compression when there is already no room left
8092 * or zswap is disabled altogether somewhere in the hierarchy.
8094 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
8096 struct mem_cgroup *memcg, *original_memcg;
8099 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
8102 original_memcg = get_mem_cgroup_from_objcg(objcg);
8103 for (memcg = original_memcg; !mem_cgroup_is_root(memcg);
8104 memcg = parent_mem_cgroup(memcg)) {
8105 unsigned long max = READ_ONCE(memcg->zswap_max);
8106 unsigned long pages;
8108 if (max == PAGE_COUNTER_MAX)
8116 * mem_cgroup_flush_stats() ignores small changes. Use
8117 * do_flush_stats() directly to get accurate stats for charging.
8119 do_flush_stats(memcg);
8120 pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE;
8126 mem_cgroup_put(original_memcg);
8131 * obj_cgroup_charge_zswap - charge compression backend memory
8132 * @objcg: the object cgroup
8133 * @size: size of compressed object
8135 * This forces the charge after obj_cgroup_may_zswap() allowed
8136 * compression and storage in zwap for this cgroup to go ahead.
8138 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size)
8140 struct mem_cgroup *memcg;
8142 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
8145 VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC));
8147 /* PF_MEMALLOC context, charging must succeed */
8148 if (obj_cgroup_charge(objcg, GFP_KERNEL, size))
8152 memcg = obj_cgroup_memcg(objcg);
8153 mod_memcg_state(memcg, MEMCG_ZSWAP_B, size);
8154 mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1);
8159 * obj_cgroup_uncharge_zswap - uncharge compression backend memory
8160 * @objcg: the object cgroup
8161 * @size: size of compressed object
8163 * Uncharges zswap memory on page in.
8165 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size)
8167 struct mem_cgroup *memcg;
8169 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
8172 obj_cgroup_uncharge(objcg, size);
8175 memcg = obj_cgroup_memcg(objcg);
8176 mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size);
8177 mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1);
8181 bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg)
8183 /* if zswap is disabled, do not block pages going to the swapping device */
8184 return !is_zswap_enabled() || !memcg || READ_ONCE(memcg->zswap_writeback);
8187 static u64 zswap_current_read(struct cgroup_subsys_state *css,
8190 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
8192 mem_cgroup_flush_stats(memcg);
8193 return memcg_page_state(memcg, MEMCG_ZSWAP_B);
8196 static int zswap_max_show(struct seq_file *m, void *v)
8198 return seq_puts_memcg_tunable(m,
8199 READ_ONCE(mem_cgroup_from_seq(m)->zswap_max));
8202 static ssize_t zswap_max_write(struct kernfs_open_file *of,
8203 char *buf, size_t nbytes, loff_t off)
8205 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
8209 buf = strstrip(buf);
8210 err = page_counter_memparse(buf, "max", &max);
8214 xchg(&memcg->zswap_max, max);
8219 static int zswap_writeback_show(struct seq_file *m, void *v)
8221 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
8223 seq_printf(m, "%d\n", READ_ONCE(memcg->zswap_writeback));
8227 static ssize_t zswap_writeback_write(struct kernfs_open_file *of,
8228 char *buf, size_t nbytes, loff_t off)
8230 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
8231 int zswap_writeback;
8232 ssize_t parse_ret = kstrtoint(strstrip(buf), 0, &zswap_writeback);
8237 if (zswap_writeback != 0 && zswap_writeback != 1)
8240 WRITE_ONCE(memcg->zswap_writeback, zswap_writeback);
8244 static struct cftype zswap_files[] = {
8246 .name = "zswap.current",
8247 .flags = CFTYPE_NOT_ON_ROOT,
8248 .read_u64 = zswap_current_read,
8251 .name = "zswap.max",
8252 .flags = CFTYPE_NOT_ON_ROOT,
8253 .seq_show = zswap_max_show,
8254 .write = zswap_max_write,
8257 .name = "zswap.writeback",
8258 .seq_show = zswap_writeback_show,
8259 .write = zswap_writeback_write,
8263 #endif /* CONFIG_MEMCG_KMEM && CONFIG_ZSWAP */
8265 static int __init mem_cgroup_swap_init(void)
8267 if (mem_cgroup_disabled())
8270 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
8271 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
8272 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
8273 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files));
8277 subsys_initcall(mem_cgroup_swap_init);
8279 #endif /* CONFIG_SWAP */