1 // SPDX-License-Identifier: GPL-2.0-only
3 * Driver for DBRI sound chip found on Sparcs.
8 * Based entirely upon drivers/sbus/audio/dbri.c which is:
12 * This is the low level driver for the DBRI & MMCODEC duo used for ISDN & AUDIO
13 * on Sun SPARCStation 10, 20, LX and Voyager models.
15 * - DBRI: AT&T T5900FX Dual Basic Rates ISDN Interface. It is a 32 channel
16 * data time multiplexer with ISDN support (aka T7259)
17 * Interfaces: SBus,ISDN NT & TE, CHI, 4 bits parallel.
18 * CHI: (spelled ki) Concentration Highway Interface (AT&T or Intel bus ?).
20 * - "STP 4000SBus Dual Basic Rate ISDN (DBRI) Transceiver" from
21 * Sparc Technology Business (courtesy of Sun Support)
22 * - Data sheet of the T7903, a newer but very similar ISA bus equivalent
23 * available from the Lucent (formerly AT&T microelectronics) home
25 * - http://www.freesoft.org/Linux/DBRI/
26 * - MMCODEC: Crystal Semiconductor CS4215 16 bit Multimedia Audio Codec
27 * Interfaces: CHI, Audio In & Out, 2 bits parallel
28 * Documentation: from the Crystal Semiconductor home page.
30 * The DBRI is a 32 pipe machine, each pipe can transfer some bits between
31 * memory and a serial device (long pipes, no. 0-15) or between two serial
32 * devices (short pipes, no. 16-31), or simply send a fixed data to a serial
33 * device (short pipes).
34 * A timeslot defines the bit-offset and no. of bits read from a serial device.
35 * The timeslots are linked to 6 circular lists, one for each direction for
36 * each serial device (NT,TE,CHI). A timeslot is associated to 1 or 2 pipes
37 * (the second one is a monitor/tee pipe, valid only for serial input).
39 * The mmcodec is connected via the CHI bus and needs the data & some
40 * parameters (volume, output selection) time multiplexed in 8 byte
41 * chunks. It also has a control mode, which serves for audio format setting.
43 * Looking at the CS4215 data sheet it is easy to set up 2 or 4 codecs on
44 * the same CHI bus, so I thought perhaps it is possible to use the on-board
45 * & the speakerbox codec simultaneously, giving 2 (not very independent :-)
46 * audio devices. But the SUN HW group decided against it, at least on my
47 * LX the speakerbox connector has at least 1 pin missing and 1 wrongly
50 * I've tried to stick to the following function naming conventions:
52 * cs4215_* CS4215 codec specific stuff
53 * dbri_* DBRI high-level stuff
54 * other DBRI low-level stuff
57 #include <linux/interrupt.h>
58 #include <linux/delay.h>
59 #include <linux/irq.h>
61 #include <linux/dma-mapping.h>
62 #include <linux/gfp.h>
64 #include <sound/core.h>
65 #include <sound/pcm.h>
66 #include <sound/pcm_params.h>
67 #include <sound/info.h>
68 #include <sound/control.h>
69 #include <sound/initval.h>
72 #include <linux/of_device.h>
73 #include <linux/atomic.h>
74 #include <linux/module.h>
76 MODULE_AUTHOR("Rudolf Koenig, Brent Baccala and Martin Habets");
77 MODULE_DESCRIPTION("Sun DBRI");
78 MODULE_LICENSE("GPL");
79 MODULE_SUPPORTED_DEVICE("{{Sun,DBRI}}");
81 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */
82 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */
83 /* Enable this card */
84 static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;
86 module_param_array(index, int, NULL, 0444);
87 MODULE_PARM_DESC(index, "Index value for Sun DBRI soundcard.");
88 module_param_array(id, charp, NULL, 0444);
89 MODULE_PARM_DESC(id, "ID string for Sun DBRI soundcard.");
90 module_param_array(enable, bool, NULL, 0444);
91 MODULE_PARM_DESC(enable, "Enable Sun DBRI soundcard.");
100 #define D_DESC (1<<5)
102 static int dbri_debug;
103 module_param(dbri_debug, int, 0644);
104 MODULE_PARM_DESC(dbri_debug, "Debug value for Sun DBRI soundcard.");
107 static char *cmds[] = {
108 "WAIT", "PAUSE", "JUMP", "IIQ", "REX", "SDP", "CDP", "DTS",
109 "SSP", "CHI", "NT", "TE", "CDEC", "TEST", "CDM", "RESRV"
112 #define dprintk(a, x...) if (dbri_debug & a) printk(KERN_DEBUG x)
115 #define dprintk(a, x...) do { } while (0)
117 #endif /* DBRI_DEBUG */
119 #define DBRI_CMD(cmd, intr, value) ((cmd << 28) | \
123 /***************************************************************************
124 CS4215 specific definitions and structures
125 ****************************************************************************/
128 __u8 data[4]; /* Data mode: Time slots 5-8 */
129 __u8 ctrl[4]; /* Ctrl mode: Time slots 1-4 */
131 __u8 offset; /* Bit offset from frame sync to time slot 1 */
132 volatile __u32 status;
133 volatile __u32 version;
134 __u8 precision; /* In bits, either 8 or 16 */
135 __u8 channels; /* 1 or 2 */
142 /* Time Slot 1, Status register */
143 #define CS4215_CLB (1<<2) /* Control Latch Bit */
144 #define CS4215_OLB (1<<3) /* 1: line: 2.0V, speaker 4V */
145 /* 0: line: 2.8V, speaker 8V */
146 #define CS4215_MLB (1<<4) /* 1: Microphone: 20dB gain disabled */
147 #define CS4215_RSRVD_1 (1<<5)
149 /* Time Slot 2, Data Format Register */
150 #define CS4215_DFR_LINEAR16 0
151 #define CS4215_DFR_ULAW 1
152 #define CS4215_DFR_ALAW 2
153 #define CS4215_DFR_LINEAR8 3
154 #define CS4215_DFR_STEREO (1<<2)
160 { 8000, (1 << 4), (0 << 3) },
161 { 16000, (1 << 4), (1 << 3) },
162 { 27429, (1 << 4), (2 << 3) }, /* Actually 24428.57 */
163 { 32000, (1 << 4), (3 << 3) },
164 /* { NA, (1 << 4), (4 << 3) }, */
165 /* { NA, (1 << 4), (5 << 3) }, */
166 { 48000, (1 << 4), (6 << 3) },
167 { 9600, (1 << 4), (7 << 3) },
168 { 5512, (2 << 4), (0 << 3) }, /* Actually 5512.5 */
169 { 11025, (2 << 4), (1 << 3) },
170 { 18900, (2 << 4), (2 << 3) },
171 { 22050, (2 << 4), (3 << 3) },
172 { 37800, (2 << 4), (4 << 3) },
173 { 44100, (2 << 4), (5 << 3) },
174 { 33075, (2 << 4), (6 << 3) },
175 { 6615, (2 << 4), (7 << 3) },
179 #define CS4215_HPF (1<<7) /* High Pass Filter, 1: Enabled */
181 #define CS4215_12_MASK 0xfcbf /* Mask off reserved bits in slot 1 & 2 */
183 /* Time Slot 3, Serial Port Control register */
184 #define CS4215_XEN (1<<0) /* 0: Enable serial output */
185 #define CS4215_XCLK (1<<1) /* 1: Master mode: Generate SCLK */
186 #define CS4215_BSEL_64 (0<<2) /* Bitrate: 64 bits per frame */
187 #define CS4215_BSEL_128 (1<<2)
188 #define CS4215_BSEL_256 (2<<2)
189 #define CS4215_MCK_MAST (0<<4) /* Master clock */
190 #define CS4215_MCK_XTL1 (1<<4) /* 24.576 MHz clock source */
191 #define CS4215_MCK_XTL2 (2<<4) /* 16.9344 MHz clock source */
192 #define CS4215_MCK_CLK1 (3<<4) /* Clockin, 256 x Fs */
193 #define CS4215_MCK_CLK2 (4<<4) /* Clockin, see DFR */
195 /* Time Slot 4, Test Register */
196 #define CS4215_DAD (1<<0) /* 0:Digital-Dig loop, 1:Dig-Analog-Dig loop */
197 #define CS4215_ENL (1<<1) /* Enable Loopback Testing */
199 /* Time Slot 5, Parallel Port Register */
200 /* Read only here and the same as the in data mode */
202 /* Time Slot 6, Reserved */
204 /* Time Slot 7, Version Register */
205 #define CS4215_VERSION_MASK 0xf /* Known versions 0/C, 1/D, 2/E */
207 /* Time Slot 8, Reserved */
212 /* Time Slot 1-2: Left Channel Data, 2-3: Right Channel Data */
214 /* Time Slot 5, Output Setting */
215 #define CS4215_LO(v) v /* Left Output Attenuation 0x3f: -94.5 dB */
216 #define CS4215_LE (1<<6) /* Line Out Enable */
217 #define CS4215_HE (1<<7) /* Headphone Enable */
219 /* Time Slot 6, Output Setting */
220 #define CS4215_RO(v) v /* Right Output Attenuation 0x3f: -94.5 dB */
221 #define CS4215_SE (1<<6) /* Speaker Enable */
222 #define CS4215_ADI (1<<7) /* A/D Data Invalid: Busy in calibration */
224 /* Time Slot 7, Input Setting */
225 #define CS4215_LG(v) v /* Left Gain Setting 0xf: 22.5 dB */
226 #define CS4215_IS (1<<4) /* Input Select: 1=Microphone, 0=Line */
227 #define CS4215_OVR (1<<5) /* 1: Over range condition occurred */
228 #define CS4215_PIO0 (1<<6) /* Parallel I/O 0 */
229 #define CS4215_PIO1 (1<<7)
231 /* Time Slot 8, Input Setting */
232 #define CS4215_RG(v) v /* Right Gain Setting 0xf: 22.5 dB */
233 #define CS4215_MA(v) (v<<4) /* Monitor Path Attenuation 0xf: mute */
235 /***************************************************************************
236 DBRI specific definitions and structures
237 ****************************************************************************/
239 /* DBRI main registers */
240 #define REG0 0x00 /* Status and Control */
241 #define REG1 0x04 /* Mode and Interrupt */
242 #define REG2 0x08 /* Parallel IO */
243 #define REG3 0x0c /* Test */
244 #define REG8 0x20 /* Command Queue Pointer */
245 #define REG9 0x24 /* Interrupt Queue Pointer */
247 #define DBRI_NO_CMDS 64
248 #define DBRI_INT_BLK 64
249 #define DBRI_NO_DESCS 64
250 #define DBRI_NO_PIPES 32
251 #define DBRI_MAX_PIPE (DBRI_NO_PIPES - 1)
255 #define DBRI_NO_STREAMS 2
257 /* One transmit/receive descriptor */
258 /* When ba != 0 descriptor is used */
260 volatile __u32 word1;
261 __u32 ba; /* Transmit/Receive Buffer Address */
262 __u32 nda; /* Next Descriptor Address */
263 volatile __u32 word4;
266 /* This structure is in a DMA region where it can accessed by both
267 * the CPU and the DBRI
270 s32 cmd[DBRI_NO_CMDS]; /* Place for commands */
271 volatile s32 intr[DBRI_INT_BLK]; /* Interrupt field */
272 struct dbri_mem desc[DBRI_NO_DESCS]; /* Xmit/receive descriptors */
275 #define dbri_dma_off(member, elem) \
276 ((u32)(unsigned long) \
277 (&(((struct dbri_dma *)0)->member[elem])))
279 enum in_or_out { PIPEinput, PIPEoutput };
282 u32 sdp; /* SDP command word */
283 int nextpipe; /* Next pipe in linked list */
284 int length; /* Length of timeslot (bits) */
285 int first_desc; /* Index of first descriptor */
286 int desc; /* Index of active descriptor */
287 volatile __u32 *recv_fixed_ptr; /* Ptr to receive fixed data */
290 /* Per stream (playback or record) information */
291 struct dbri_streaminfo {
292 struct snd_pcm_substream *substream;
293 u32 dvma_buffer; /* Device view of ALSA DMA buffer */
294 int size; /* Size of DMA buffer */
295 size_t offset; /* offset in user buffer */
296 int pipe; /* Data pipe used */
297 int left_gain; /* mixer elements */
301 /* This structure holds the information for both chips (DBRI & CS4215) */
303 int regs_size, irq; /* Needed for unload */
304 struct platform_device *op; /* OF device info */
307 struct dbri_dma *dma; /* Pointer to our DMA block */
308 dma_addr_t dma_dvma; /* DBRI visible DMA address */
310 void __iomem *regs; /* dbri HW regs */
311 int dbri_irqp; /* intr queue pointer */
313 struct dbri_pipe pipes[DBRI_NO_PIPES]; /* DBRI's 32 data pipes */
314 int next_desc[DBRI_NO_DESCS]; /* Index of next desc, or -1 */
315 spinlock_t cmdlock; /* Protects cmd queue accesses */
316 s32 *cmdptr; /* Pointer to the last queued cmd */
320 struct cs4215 mm; /* mmcodec special info */
321 /* per stream (playback/record) info */
322 struct dbri_streaminfo stream_info[DBRI_NO_STREAMS];
325 #define DBRI_MAX_VOLUME 63 /* Output volume */
326 #define DBRI_MAX_GAIN 15 /* Input gain */
328 /* DBRI Reg0 - Status Control Register - defines. (Page 17) */
329 #define D_P (1<<15) /* Program command & queue pointer valid */
330 #define D_G (1<<14) /* Allow 4-Word SBus Burst */
331 #define D_S (1<<13) /* Allow 16-Word SBus Burst */
332 #define D_E (1<<12) /* Allow 8-Word SBus Burst */
333 #define D_X (1<<7) /* Sanity Timer Disable */
334 #define D_T (1<<6) /* Permit activation of the TE interface */
335 #define D_N (1<<5) /* Permit activation of the NT interface */
336 #define D_C (1<<4) /* Permit activation of the CHI interface */
337 #define D_F (1<<3) /* Force Sanity Timer Time-Out */
338 #define D_D (1<<2) /* Disable Master Mode */
339 #define D_H (1<<1) /* Halt for Analysis */
340 #define D_R (1<<0) /* Soft Reset */
342 /* DBRI Reg1 - Mode and Interrupt Register - defines. (Page 18) */
343 #define D_LITTLE_END (1<<8) /* Byte Order */
344 #define D_BIG_END (0<<8) /* Byte Order */
345 #define D_MRR (1<<4) /* Multiple Error Ack on SBus (read only) */
346 #define D_MLE (1<<3) /* Multiple Late Error on SBus (read only) */
347 #define D_LBG (1<<2) /* Lost Bus Grant on SBus (read only) */
348 #define D_MBE (1<<1) /* Burst Error on SBus (read only) */
349 #define D_IR (1<<0) /* Interrupt Indicator (read only) */
351 /* DBRI Reg2 - Parallel IO Register - defines. (Page 18) */
352 #define D_ENPIO3 (1<<7) /* Enable Pin 3 */
353 #define D_ENPIO2 (1<<6) /* Enable Pin 2 */
354 #define D_ENPIO1 (1<<5) /* Enable Pin 1 */
355 #define D_ENPIO0 (1<<4) /* Enable Pin 0 */
356 #define D_ENPIO (0xf0) /* Enable all the pins */
357 #define D_PIO3 (1<<3) /* Pin 3: 1: Data mode, 0: Ctrl mode */
358 #define D_PIO2 (1<<2) /* Pin 2: 1: Onboard PDN */
359 #define D_PIO1 (1<<1) /* Pin 1: 0: Reset */
360 #define D_PIO0 (1<<0) /* Pin 0: 1: Speakerbox PDN */
362 /* DBRI Commands (Page 20) */
363 #define D_WAIT 0x0 /* Stop execution */
364 #define D_PAUSE 0x1 /* Flush long pipes */
365 #define D_JUMP 0x2 /* New command queue */
366 #define D_IIQ 0x3 /* Initialize Interrupt Queue */
367 #define D_REX 0x4 /* Report command execution via interrupt */
368 #define D_SDP 0x5 /* Setup Data Pipe */
369 #define D_CDP 0x6 /* Continue Data Pipe (reread NULL Pointer) */
370 #define D_DTS 0x7 /* Define Time Slot */
371 #define D_SSP 0x8 /* Set short Data Pipe */
372 #define D_CHI 0x9 /* Set CHI Global Mode */
373 #define D_NT 0xa /* NT Command */
374 #define D_TE 0xb /* TE Command */
375 #define D_CDEC 0xc /* Codec setup */
376 #define D_TEST 0xd /* No comment */
377 #define D_CDM 0xe /* CHI Data mode command */
379 /* Special bits for some commands */
380 #define D_PIPE(v) ((v)<<0) /* Pipe No.: 0-15 long, 16-21 short */
382 /* Setup Data Pipe */
384 #define D_SDP_2SAME (1<<18) /* Report 2nd time in a row value received */
385 #define D_SDP_CHANGE (2<<18) /* Report any changes */
386 #define D_SDP_EVERY (3<<18) /* Report any changes */
387 #define D_SDP_EOL (1<<17) /* EOL interrupt enable */
388 #define D_SDP_IDLE (1<<16) /* HDLC idle interrupt enable */
391 #define D_SDP_MEM (0<<13) /* To/from memory */
392 #define D_SDP_HDLC (2<<13)
393 #define D_SDP_HDLC_D (3<<13) /* D Channel (prio control) */
394 #define D_SDP_SER (4<<13) /* Serial to serial */
395 #define D_SDP_FIXED (6<<13) /* Short only */
396 #define D_SDP_MODE(v) ((v)&(7<<13))
398 #define D_SDP_TO_SER (1<<12) /* Direction */
399 #define D_SDP_FROM_SER (0<<12) /* Direction */
400 #define D_SDP_MSB (1<<11) /* Bit order within Byte */
401 #define D_SDP_LSB (0<<11) /* Bit order within Byte */
402 #define D_SDP_P (1<<10) /* Pointer Valid */
403 #define D_SDP_A (1<<8) /* Abort */
404 #define D_SDP_C (1<<7) /* Clear */
406 /* Define Time Slot */
407 #define D_DTS_VI (1<<17) /* Valid Input Time-Slot Descriptor */
408 #define D_DTS_VO (1<<16) /* Valid Output Time-Slot Descriptor */
409 #define D_DTS_INS (1<<15) /* Insert Time Slot */
410 #define D_DTS_DEL (0<<15) /* Delete Time Slot */
411 #define D_DTS_PRVIN(v) ((v)<<10) /* Previous In Pipe */
412 #define D_DTS_PRVOUT(v) ((v)<<5) /* Previous Out Pipe */
414 /* Time Slot defines */
415 #define D_TS_LEN(v) ((v)<<24) /* Number of bits in this time slot */
416 #define D_TS_CYCLE(v) ((v)<<14) /* Bit Count at start of TS */
417 #define D_TS_DI (1<<13) /* Data Invert */
418 #define D_TS_1CHANNEL (0<<10) /* Single Channel / Normal mode */
419 #define D_TS_MONITOR (2<<10) /* Monitor pipe */
420 #define D_TS_NONCONTIG (3<<10) /* Non contiguous mode */
421 #define D_TS_ANCHOR (7<<10) /* Starting short pipes */
422 #define D_TS_MON(v) ((v)<<5) /* Monitor Pipe */
423 #define D_TS_NEXT(v) ((v)<<0) /* Pipe no.: 0-15 long, 16-21 short */
425 /* Concentration Highway Interface Modes */
426 #define D_CHI_CHICM(v) ((v)<<16) /* Clock mode */
427 #define D_CHI_IR (1<<15) /* Immediate Interrupt Report */
428 #define D_CHI_EN (1<<14) /* CHIL Interrupt enabled */
429 #define D_CHI_OD (1<<13) /* Open Drain Enable */
430 #define D_CHI_FE (1<<12) /* Sample CHIFS on Rising Frame Edge */
431 #define D_CHI_FD (1<<11) /* Frame Drive */
432 #define D_CHI_BPF(v) ((v)<<0) /* Bits per Frame */
434 /* NT: These are here for completeness */
435 #define D_NT_FBIT (1<<17) /* Frame Bit */
436 #define D_NT_NBF (1<<16) /* Number of bad frames to loose framing */
437 #define D_NT_IRM_IMM (1<<15) /* Interrupt Report & Mask: Immediate */
438 #define D_NT_IRM_EN (1<<14) /* Interrupt Report & Mask: Enable */
439 #define D_NT_ISNT (1<<13) /* Configure interface as NT */
440 #define D_NT_FT (1<<12) /* Fixed Timing */
441 #define D_NT_EZ (1<<11) /* Echo Channel is Zeros */
442 #define D_NT_IFA (1<<10) /* Inhibit Final Activation */
443 #define D_NT_ACT (1<<9) /* Activate Interface */
444 #define D_NT_MFE (1<<8) /* Multiframe Enable */
445 #define D_NT_RLB(v) ((v)<<5) /* Remote Loopback */
446 #define D_NT_LLB(v) ((v)<<2) /* Local Loopback */
447 #define D_NT_FACT (1<<1) /* Force Activation */
448 #define D_NT_ABV (1<<0) /* Activate Bipolar Violation */
451 #define D_CDEC_CK(v) ((v)<<24) /* Clock Select */
452 #define D_CDEC_FED(v) ((v)<<12) /* FSCOD Falling Edge Delay */
453 #define D_CDEC_RED(v) ((v)<<0) /* FSCOD Rising Edge Delay */
456 #define D_TEST_RAM(v) ((v)<<16) /* RAM Pointer */
457 #define D_TEST_SIZE(v) ((v)<<11) /* */
458 #define D_TEST_ROMONOFF 0x5 /* Toggle ROM opcode monitor on/off */
459 #define D_TEST_PROC 0x6 /* Microprocessor test */
460 #define D_TEST_SER 0x7 /* Serial-Controller test */
461 #define D_TEST_RAMREAD 0x8 /* Copy from Ram to system memory */
462 #define D_TEST_RAMWRITE 0x9 /* Copy into Ram from system memory */
463 #define D_TEST_RAMBIST 0xa /* RAM Built-In Self Test */
464 #define D_TEST_MCBIST 0xb /* Microcontroller Built-In Self Test */
465 #define D_TEST_DUMP 0xe /* ROM Dump */
468 #define D_CDM_THI (1 << 8) /* Transmit Data on CHIDR Pin */
469 #define D_CDM_RHI (1 << 7) /* Receive Data on CHIDX Pin */
470 #define D_CDM_RCE (1 << 6) /* Receive on Rising Edge of CHICK */
471 #define D_CDM_XCE (1 << 2) /* Transmit Data on Rising Edge of CHICK */
472 #define D_CDM_XEN (1 << 1) /* Transmit Highway Enable */
473 #define D_CDM_REN (1 << 0) /* Receive Highway Enable */
476 #define D_INTR_BRDY 1 /* Buffer Ready for processing */
477 #define D_INTR_MINT 2 /* Marked Interrupt in RD/TD */
478 #define D_INTR_IBEG 3 /* Flag to idle transition detected (HDLC) */
479 #define D_INTR_IEND 4 /* Idle to flag transition detected (HDLC) */
480 #define D_INTR_EOL 5 /* End of List */
481 #define D_INTR_CMDI 6 /* Command has bean read */
482 #define D_INTR_XCMP 8 /* Transmission of frame complete */
483 #define D_INTR_SBRI 9 /* BRI status change info */
484 #define D_INTR_FXDT 10 /* Fixed data change */
485 #define D_INTR_CHIL 11 /* CHI lost frame sync (channel 36 only) */
486 #define D_INTR_COLL 11 /* Unrecoverable D-Channel collision */
487 #define D_INTR_DBYT 12 /* Dropped by frame slip */
488 #define D_INTR_RBYT 13 /* Repeated by frame slip */
489 #define D_INTR_LINT 14 /* Lost Interrupt */
490 #define D_INTR_UNDR 15 /* DMA underrun */
494 #define D_INTR_CHI 36
495 #define D_INTR_CMD 38
497 #define D_INTR_GETCHAN(v) (((v) >> 24) & 0x3f)
498 #define D_INTR_GETCODE(v) (((v) >> 20) & 0xf)
499 #define D_INTR_GETCMD(v) (((v) >> 16) & 0xf)
500 #define D_INTR_GETVAL(v) ((v) & 0xffff)
501 #define D_INTR_GETRVAL(v) ((v) & 0xfffff)
503 #define D_P_0 0 /* TE receive anchor */
504 #define D_P_1 1 /* TE transmit anchor */
505 #define D_P_2 2 /* NT transmit anchor */
506 #define D_P_3 3 /* NT receive anchor */
507 #define D_P_4 4 /* CHI send data */
508 #define D_P_5 5 /* CHI receive data */
509 #define D_P_6 6 /* */
510 #define D_P_7 7 /* */
511 #define D_P_8 8 /* */
512 #define D_P_9 9 /* */
513 #define D_P_10 10 /* */
514 #define D_P_11 11 /* */
515 #define D_P_12 12 /* */
516 #define D_P_13 13 /* */
517 #define D_P_14 14 /* */
518 #define D_P_15 15 /* */
519 #define D_P_16 16 /* CHI anchor pipe */
520 #define D_P_17 17 /* CHI send */
521 #define D_P_18 18 /* CHI receive */
522 #define D_P_19 19 /* CHI receive */
523 #define D_P_20 20 /* CHI receive */
524 #define D_P_21 21 /* */
525 #define D_P_22 22 /* */
526 #define D_P_23 23 /* */
527 #define D_P_24 24 /* */
528 #define D_P_25 25 /* */
529 #define D_P_26 26 /* */
530 #define D_P_27 27 /* */
531 #define D_P_28 28 /* */
532 #define D_P_29 29 /* */
533 #define D_P_30 30 /* */
534 #define D_P_31 31 /* */
536 /* Transmit descriptor defines */
537 #define DBRI_TD_F (1 << 31) /* End of Frame */
538 #define DBRI_TD_D (1 << 30) /* Do not append CRC */
539 #define DBRI_TD_CNT(v) ((v) << 16) /* Number of valid bytes in the buffer */
540 #define DBRI_TD_B (1 << 15) /* Final interrupt */
541 #define DBRI_TD_M (1 << 14) /* Marker interrupt */
542 #define DBRI_TD_I (1 << 13) /* Transmit Idle Characters */
543 #define DBRI_TD_FCNT(v) (v) /* Flag Count */
544 #define DBRI_TD_UNR (1 << 3) /* Underrun: transmitter is out of data */
545 #define DBRI_TD_ABT (1 << 2) /* Abort: frame aborted */
546 #define DBRI_TD_TBC (1 << 0) /* Transmit buffer Complete */
547 #define DBRI_TD_STATUS(v) ((v) & 0xff) /* Transmit status */
548 /* Maximum buffer size per TD: almost 8KB */
549 #define DBRI_TD_MAXCNT ((1 << 13) - 4)
551 /* Receive descriptor defines */
552 #define DBRI_RD_F (1 << 31) /* End of Frame */
553 #define DBRI_RD_C (1 << 30) /* Completed buffer */
554 #define DBRI_RD_B (1 << 15) /* Final interrupt */
555 #define DBRI_RD_M (1 << 14) /* Marker interrupt */
556 #define DBRI_RD_BCNT(v) (v) /* Buffer size */
557 #define DBRI_RD_CRC (1 << 7) /* 0: CRC is correct */
558 #define DBRI_RD_BBC (1 << 6) /* 1: Bad Byte received */
559 #define DBRI_RD_ABT (1 << 5) /* Abort: frame aborted */
560 #define DBRI_RD_OVRN (1 << 3) /* Overrun: data lost */
561 #define DBRI_RD_STATUS(v) ((v) & 0xff) /* Receive status */
562 #define DBRI_RD_CNT(v) (((v) >> 16) & 0x1fff) /* Valid bytes in the buffer */
564 /* stream_info[] access */
565 /* Translate the ALSA direction into the array index */
566 #define DBRI_STREAMNO(substream) \
567 (substream->stream == \
568 SNDRV_PCM_STREAM_PLAYBACK ? DBRI_PLAY: DBRI_REC)
570 /* Return a pointer to dbri_streaminfo */
571 #define DBRI_STREAM(dbri, substream) \
572 &dbri->stream_info[DBRI_STREAMNO(substream)]
575 * Short data pipes transmit LSB first. The CS4215 receives MSB first. Grrr.
576 * So we have to reverse the bits. Note: not all bit lengths are supported
578 static __u32 reverse_bytes(__u32 b, int len)
582 b = ((b & 0xffff0000) >> 16) | ((b & 0x0000ffff) << 16);
584 b = ((b & 0xff00ff00) >> 8) | ((b & 0x00ff00ff) << 8);
586 b = ((b & 0xf0f0f0f0) >> 4) | ((b & 0x0f0f0f0f) << 4);
588 b = ((b & 0xcccccccc) >> 2) | ((b & 0x33333333) << 2);
590 b = ((b & 0xaaaaaaaa) >> 1) | ((b & 0x55555555) << 1);
595 printk(KERN_ERR "DBRI reverse_bytes: unsupported length\n");
602 ****************************************************************************
603 ************** DBRI initialization and command synchronization *************
604 ****************************************************************************
606 Commands are sent to the DBRI by building a list of them in memory,
607 then writing the address of the first list item to DBRI register 8.
608 The list is terminated with a WAIT command, which generates a
609 CPU interrupt to signal completion.
611 Since the DBRI can run in parallel with the CPU, several means of
612 synchronization present themselves. The method implemented here uses
613 the dbri_cmdwait() to wait for execution of batch of sent commands.
615 A circular command buffer is used here. A new command is being added
616 while another can be executed. The scheme works by adding two WAIT commands
617 after each sent batch of commands. When the next batch is prepared it is
618 added after the WAIT commands then the WAITs are replaced with single JUMP
619 command to the new batch. The the DBRI is forced to reread the last WAIT
620 command (replaced by the JUMP by then). If the DBRI is still executing
621 previous commands the request to reread the WAIT command is ignored.
623 Every time a routine wants to write commands to the DBRI, it must
624 first call dbri_cmdlock() and get pointer to a free space in
625 dbri->dma->cmd buffer. After this, the commands can be written to
626 the buffer, and dbri_cmdsend() is called with the final pointer value
627 to send them to the DBRI.
633 * Wait for the current command string to execute
635 static void dbri_cmdwait(struct snd_dbri *dbri)
637 int maxloops = MAXLOOPS;
640 /* Delay if previous commands are still being processed */
641 spin_lock_irqsave(&dbri->lock, flags);
642 while ((--maxloops) > 0 && (sbus_readl(dbri->regs + REG0) & D_P)) {
643 spin_unlock_irqrestore(&dbri->lock, flags);
644 msleep_interruptible(1);
645 spin_lock_irqsave(&dbri->lock, flags);
647 spin_unlock_irqrestore(&dbri->lock, flags);
650 printk(KERN_ERR "DBRI: Chip never completed command buffer\n");
652 dprintk(D_CMD, "Chip completed command buffer (%d)\n",
653 MAXLOOPS - maxloops - 1);
656 * Lock the command queue and return pointer to space for len cmd words
657 * It locks the cmdlock spinlock.
659 static s32 *dbri_cmdlock(struct snd_dbri *dbri, int len)
661 u32 dvma_addr = (u32)dbri->dma_dvma;
663 /* Space for 2 WAIT cmds (replaced later by 1 JUMP cmd) */
665 spin_lock(&dbri->cmdlock);
666 if (dbri->cmdptr - dbri->dma->cmd + len < DBRI_NO_CMDS - 2)
667 return dbri->cmdptr + 2;
668 else if (len < sbus_readl(dbri->regs + REG8) - dvma_addr)
669 return dbri->dma->cmd;
671 printk(KERN_ERR "DBRI: no space for commands.");
677 * Send prepared cmd string. It works by writing a JUMP cmd into
678 * the last WAIT cmd and force DBRI to reread the cmd.
679 * The JUMP cmd points to the new cmd string.
680 * It also releases the cmdlock spinlock.
682 * Lock must be held before calling this.
684 static void dbri_cmdsend(struct snd_dbri *dbri, s32 *cmd, int len)
686 u32 dvma_addr = (u32)dbri->dma_dvma;
688 static int wait_id = 0;
691 wait_id &= 0xffff; /* restrict it to a 16 bit counter. */
692 *(cmd) = DBRI_CMD(D_WAIT, 1, wait_id);
693 *(cmd+1) = DBRI_CMD(D_WAIT, 1, wait_id);
695 /* Replace the last command with JUMP */
696 addr = dvma_addr + (cmd - len - dbri->dma->cmd) * sizeof(s32);
697 *(dbri->cmdptr+1) = addr;
698 *(dbri->cmdptr) = DBRI_CMD(D_JUMP, 0, 0);
701 if (cmd > dbri->cmdptr) {
704 for (ptr = dbri->cmdptr; ptr < cmd+2; ptr++)
705 dprintk(D_CMD, "cmd: %lx:%08x\n",
706 (unsigned long)ptr, *ptr);
708 s32 *ptr = dbri->cmdptr;
710 dprintk(D_CMD, "cmd: %lx:%08x\n", (unsigned long)ptr, *ptr);
712 dprintk(D_CMD, "cmd: %lx:%08x\n", (unsigned long)ptr, *ptr);
713 for (ptr = dbri->dma->cmd; ptr < cmd+2; ptr++)
714 dprintk(D_CMD, "cmd: %lx:%08x\n",
715 (unsigned long)ptr, *ptr);
719 /* Reread the last command */
720 tmp = sbus_readl(dbri->regs + REG0);
722 sbus_writel(tmp, dbri->regs + REG0);
725 spin_unlock(&dbri->cmdlock);
728 /* Lock must be held when calling this */
729 static void dbri_reset(struct snd_dbri *dbri)
734 dprintk(D_GEN, "reset 0:%x 2:%x 8:%x 9:%x\n",
735 sbus_readl(dbri->regs + REG0),
736 sbus_readl(dbri->regs + REG2),
737 sbus_readl(dbri->regs + REG8), sbus_readl(dbri->regs + REG9));
739 sbus_writel(D_R, dbri->regs + REG0); /* Soft Reset */
740 for (i = 0; (sbus_readl(dbri->regs + REG0) & D_R) && i < 64; i++)
743 /* A brute approach - DBRI falls back to working burst size by itself
744 * On SS20 D_S does not work, so do not try so high. */
745 tmp = sbus_readl(dbri->regs + REG0);
748 sbus_writel(tmp, dbri->regs + REG0);
751 /* Lock must not be held before calling this */
752 static void dbri_initialize(struct snd_dbri *dbri)
754 u32 dvma_addr = (u32)dbri->dma_dvma;
760 spin_lock_irqsave(&dbri->lock, flags);
764 /* Initialize pipes */
765 for (n = 0; n < DBRI_NO_PIPES; n++)
766 dbri->pipes[n].desc = dbri->pipes[n].first_desc = -1;
768 spin_lock_init(&dbri->cmdlock);
770 * Initialize the interrupt ring buffer.
772 dma_addr = dvma_addr + dbri_dma_off(intr, 0);
773 dbri->dma->intr[0] = dma_addr;
776 * Set up the interrupt queue
778 spin_lock(&dbri->cmdlock);
779 cmd = dbri->cmdptr = dbri->dma->cmd;
780 *(cmd++) = DBRI_CMD(D_IIQ, 0, 0);
782 *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
784 *(cmd++) = DBRI_CMD(D_WAIT, 1, 0);
785 *(cmd++) = DBRI_CMD(D_WAIT, 1, 0);
786 dma_addr = dvma_addr + dbri_dma_off(cmd, 0);
787 sbus_writel(dma_addr, dbri->regs + REG8);
788 spin_unlock(&dbri->cmdlock);
790 spin_unlock_irqrestore(&dbri->lock, flags);
795 ****************************************************************************
796 ************************** DBRI data pipe management ***********************
797 ****************************************************************************
799 While DBRI control functions use the command and interrupt buffers, the
800 main data path takes the form of data pipes, which can be short (command
801 and interrupt driven), or long (attached to DMA buffers). These functions
802 provide a rudimentary means of setting up and managing the DBRI's pipes,
803 but the calling functions have to make sure they respect the pipes' linked
804 list ordering, among other things. The transmit and receive functions
805 here interface closely with the transmit and receive interrupt code.
808 static inline int pipe_active(struct snd_dbri *dbri, int pipe)
810 return ((pipe >= 0) && (dbri->pipes[pipe].desc != -1));
813 /* reset_pipe(dbri, pipe)
815 * Called on an in-use pipe to clear anything being transmitted or received
816 * Lock must be held before calling this.
818 static void reset_pipe(struct snd_dbri *dbri, int pipe)
824 if (pipe < 0 || pipe > DBRI_MAX_PIPE) {
825 printk(KERN_ERR "DBRI: reset_pipe called with "
826 "illegal pipe number\n");
830 sdp = dbri->pipes[pipe].sdp;
832 printk(KERN_ERR "DBRI: reset_pipe called "
833 "on uninitialized pipe\n");
837 cmd = dbri_cmdlock(dbri, 3);
838 *(cmd++) = DBRI_CMD(D_SDP, 0, sdp | D_SDP_C | D_SDP_P);
840 *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
841 dbri_cmdsend(dbri, cmd, 3);
843 desc = dbri->pipes[pipe].first_desc;
846 dbri->dma->desc[desc].ba = 0;
847 dbri->dma->desc[desc].nda = 0;
848 desc = dbri->next_desc[desc];
849 } while (desc != -1 && desc != dbri->pipes[pipe].first_desc);
851 dbri->pipes[pipe].desc = -1;
852 dbri->pipes[pipe].first_desc = -1;
856 * Lock must be held before calling this.
858 static void setup_pipe(struct snd_dbri *dbri, int pipe, int sdp)
860 if (pipe < 0 || pipe > DBRI_MAX_PIPE) {
861 printk(KERN_ERR "DBRI: setup_pipe called "
862 "with illegal pipe number\n");
866 if ((sdp & 0xf800) != sdp) {
867 printk(KERN_ERR "DBRI: setup_pipe called "
868 "with strange SDP value\n");
872 /* If this is a fixed receive pipe, arrange for an interrupt
873 * every time its data changes
875 if (D_SDP_MODE(sdp) == D_SDP_FIXED && !(sdp & D_SDP_TO_SER))
879 dbri->pipes[pipe].sdp = sdp;
880 dbri->pipes[pipe].desc = -1;
881 dbri->pipes[pipe].first_desc = -1;
883 reset_pipe(dbri, pipe);
887 * Lock must be held before calling this.
889 static void link_time_slot(struct snd_dbri *dbri, int pipe,
890 int prevpipe, int nextpipe,
891 int length, int cycle)
896 if (pipe < 0 || pipe > DBRI_MAX_PIPE
897 || prevpipe < 0 || prevpipe > DBRI_MAX_PIPE
898 || nextpipe < 0 || nextpipe > DBRI_MAX_PIPE) {
900 "DBRI: link_time_slot called with illegal pipe number\n");
904 if (dbri->pipes[pipe].sdp == 0
905 || dbri->pipes[prevpipe].sdp == 0
906 || dbri->pipes[nextpipe].sdp == 0) {
907 printk(KERN_ERR "DBRI: link_time_slot called "
908 "on uninitialized pipe\n");
912 dbri->pipes[prevpipe].nextpipe = pipe;
913 dbri->pipes[pipe].nextpipe = nextpipe;
914 dbri->pipes[pipe].length = length;
916 cmd = dbri_cmdlock(dbri, 4);
918 if (dbri->pipes[pipe].sdp & D_SDP_TO_SER) {
919 /* Deal with CHI special case:
920 * "If transmission on edges 0 or 1 is desired, then cycle n
921 * (where n = # of bit times per frame...) must be used."
922 * - DBRI data sheet, page 11
924 if (prevpipe == 16 && cycle == 0)
925 cycle = dbri->chi_bpf;
927 val = D_DTS_VO | D_DTS_INS | D_DTS_PRVOUT(prevpipe) | pipe;
928 *(cmd++) = DBRI_CMD(D_DTS, 0, val);
931 D_TS_LEN(length) | D_TS_CYCLE(cycle) | D_TS_NEXT(nextpipe);
933 val = D_DTS_VI | D_DTS_INS | D_DTS_PRVIN(prevpipe) | pipe;
934 *(cmd++) = DBRI_CMD(D_DTS, 0, val);
936 D_TS_LEN(length) | D_TS_CYCLE(cycle) | D_TS_NEXT(nextpipe);
939 *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
941 dbri_cmdsend(dbri, cmd, 4);
946 * Lock must be held before calling this.
948 static void unlink_time_slot(struct snd_dbri *dbri, int pipe,
949 enum in_or_out direction, int prevpipe,
955 if (pipe < 0 || pipe > DBRI_MAX_PIPE
956 || prevpipe < 0 || prevpipe > DBRI_MAX_PIPE
957 || nextpipe < 0 || nextpipe > DBRI_MAX_PIPE) {
959 "DBRI: unlink_time_slot called with illegal pipe number\n");
963 cmd = dbri_cmdlock(dbri, 4);
965 if (direction == PIPEinput) {
966 val = D_DTS_VI | D_DTS_DEL | D_DTS_PRVIN(prevpipe) | pipe;
967 *(cmd++) = DBRI_CMD(D_DTS, 0, val);
968 *(cmd++) = D_TS_NEXT(nextpipe);
971 val = D_DTS_VO | D_DTS_DEL | D_DTS_PRVOUT(prevpipe) | pipe;
972 *(cmd++) = DBRI_CMD(D_DTS, 0, val);
974 *(cmd++) = D_TS_NEXT(nextpipe);
976 *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
978 dbri_cmdsend(dbri, cmd, 4);
982 /* xmit_fixed() / recv_fixed()
984 * Transmit/receive data on a "fixed" pipe - i.e, one whose contents are not
985 * expected to change much, and which we don't need to buffer.
986 * The DBRI only interrupts us when the data changes (receive pipes),
987 * or only changes the data when this function is called (transmit pipes).
988 * Only short pipes (numbers 16-31) can be used in fixed data mode.
990 * These function operate on a 32-bit field, no matter how large
991 * the actual time slot is. The interrupt handler takes care of bit
992 * ordering and alignment. An 8-bit time slot will always end up
993 * in the low-order 8 bits, filled either MSB-first or LSB-first,
994 * depending on the settings passed to setup_pipe().
996 * Lock must not be held before calling it.
998 static void xmit_fixed(struct snd_dbri *dbri, int pipe, unsigned int data)
1001 unsigned long flags;
1003 if (pipe < 16 || pipe > DBRI_MAX_PIPE) {
1004 printk(KERN_ERR "DBRI: xmit_fixed: Illegal pipe number\n");
1008 if (D_SDP_MODE(dbri->pipes[pipe].sdp) == 0) {
1009 printk(KERN_ERR "DBRI: xmit_fixed: "
1010 "Uninitialized pipe %d\n", pipe);
1014 if (D_SDP_MODE(dbri->pipes[pipe].sdp) != D_SDP_FIXED) {
1015 printk(KERN_ERR "DBRI: xmit_fixed: Non-fixed pipe %d\n", pipe);
1019 if (!(dbri->pipes[pipe].sdp & D_SDP_TO_SER)) {
1020 printk(KERN_ERR "DBRI: xmit_fixed: Called on receive pipe %d\n",
1025 /* DBRI short pipes always transmit LSB first */
1027 if (dbri->pipes[pipe].sdp & D_SDP_MSB)
1028 data = reverse_bytes(data, dbri->pipes[pipe].length);
1030 cmd = dbri_cmdlock(dbri, 3);
1032 *(cmd++) = DBRI_CMD(D_SSP, 0, pipe);
1034 *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1036 spin_lock_irqsave(&dbri->lock, flags);
1037 dbri_cmdsend(dbri, cmd, 3);
1038 spin_unlock_irqrestore(&dbri->lock, flags);
1043 static void recv_fixed(struct snd_dbri *dbri, int pipe, volatile __u32 *ptr)
1045 if (pipe < 16 || pipe > DBRI_MAX_PIPE) {
1046 printk(KERN_ERR "DBRI: recv_fixed called with "
1047 "illegal pipe number\n");
1051 if (D_SDP_MODE(dbri->pipes[pipe].sdp) != D_SDP_FIXED) {
1052 printk(KERN_ERR "DBRI: recv_fixed called on "
1053 "non-fixed pipe %d\n", pipe);
1057 if (dbri->pipes[pipe].sdp & D_SDP_TO_SER) {
1058 printk(KERN_ERR "DBRI: recv_fixed called on "
1059 "transmit pipe %d\n", pipe);
1063 dbri->pipes[pipe].recv_fixed_ptr = ptr;
1068 * Setup transmit/receive data on a "long" pipe - i.e, one associated
1069 * with a DMA buffer.
1071 * Only pipe numbers 0-15 can be used in this mode.
1073 * This function takes a stream number pointing to a data buffer,
1074 * and work by building chains of descriptors which identify the
1075 * data buffers. Buffers too large for a single descriptor will
1076 * be spread across multiple descriptors.
1078 * All descriptors create a ring buffer.
1080 * Lock must be held before calling this.
1082 static int setup_descs(struct snd_dbri *dbri, int streamno, unsigned int period)
1084 struct dbri_streaminfo *info = &dbri->stream_info[streamno];
1085 u32 dvma_addr = (u32)dbri->dma_dvma;
1089 int first_desc = -1;
1092 if (info->pipe < 0 || info->pipe > 15) {
1093 printk(KERN_ERR "DBRI: setup_descs: Illegal pipe number\n");
1097 if (dbri->pipes[info->pipe].sdp == 0) {
1098 printk(KERN_ERR "DBRI: setup_descs: Uninitialized pipe %d\n",
1103 dvma_buffer = info->dvma_buffer;
1106 if (streamno == DBRI_PLAY) {
1107 if (!(dbri->pipes[info->pipe].sdp & D_SDP_TO_SER)) {
1108 printk(KERN_ERR "DBRI: setup_descs: "
1109 "Called on receive pipe %d\n", info->pipe);
1113 if (dbri->pipes[info->pipe].sdp & D_SDP_TO_SER) {
1115 "DBRI: setup_descs: Called on transmit pipe %d\n",
1119 /* Should be able to queue multiple buffers
1120 * to receive on a pipe
1122 if (pipe_active(dbri, info->pipe)) {
1123 printk(KERN_ERR "DBRI: recv_on_pipe: "
1124 "Called on active pipe %d\n", info->pipe);
1128 /* Make sure buffer size is multiple of four */
1132 /* Free descriptors if pipe has any */
1133 desc = dbri->pipes[info->pipe].first_desc;
1136 dbri->dma->desc[desc].ba = 0;
1137 dbri->dma->desc[desc].nda = 0;
1138 desc = dbri->next_desc[desc];
1139 } while (desc != -1 &&
1140 desc != dbri->pipes[info->pipe].first_desc);
1142 dbri->pipes[info->pipe].desc = -1;
1143 dbri->pipes[info->pipe].first_desc = -1;
1149 for (; desc < DBRI_NO_DESCS; desc++) {
1150 if (!dbri->dma->desc[desc].ba)
1154 if (desc == DBRI_NO_DESCS) {
1155 printk(KERN_ERR "DBRI: setup_descs: No descriptors\n");
1159 if (len > DBRI_TD_MAXCNT)
1160 mylen = DBRI_TD_MAXCNT; /* 8KB - 4 */
1167 dbri->next_desc[desc] = -1;
1168 dbri->dma->desc[desc].ba = dvma_buffer;
1169 dbri->dma->desc[desc].nda = 0;
1171 if (streamno == DBRI_PLAY) {
1172 dbri->dma->desc[desc].word1 = DBRI_TD_CNT(mylen);
1173 dbri->dma->desc[desc].word4 = 0;
1174 dbri->dma->desc[desc].word1 |= DBRI_TD_F | DBRI_TD_B;
1176 dbri->dma->desc[desc].word1 = 0;
1177 dbri->dma->desc[desc].word4 =
1178 DBRI_RD_B | DBRI_RD_BCNT(mylen);
1181 if (first_desc == -1)
1184 dbri->next_desc[last_desc] = desc;
1185 dbri->dma->desc[last_desc].nda =
1186 dvma_addr + dbri_dma_off(desc, desc);
1190 dvma_buffer += mylen;
1194 if (first_desc == -1 || last_desc == -1) {
1195 printk(KERN_ERR "DBRI: setup_descs: "
1196 " Not enough descriptors available\n");
1200 dbri->dma->desc[last_desc].nda =
1201 dvma_addr + dbri_dma_off(desc, first_desc);
1202 dbri->next_desc[last_desc] = first_desc;
1203 dbri->pipes[info->pipe].first_desc = first_desc;
1204 dbri->pipes[info->pipe].desc = first_desc;
1207 for (desc = first_desc; desc != -1;) {
1208 dprintk(D_DESC, "DESC %d: %08x %08x %08x %08x\n",
1210 dbri->dma->desc[desc].word1,
1211 dbri->dma->desc[desc].ba,
1212 dbri->dma->desc[desc].nda, dbri->dma->desc[desc].word4);
1213 desc = dbri->next_desc[desc];
1214 if (desc == first_desc)
1222 ****************************************************************************
1223 ************************** DBRI - CHI interface ****************************
1224 ****************************************************************************
1226 The CHI is a four-wire (clock, frame sync, data in, data out) time-division
1227 multiplexed serial interface which the DBRI can operate in either master
1228 (give clock/frame sync) or slave (take clock/frame sync) mode.
1232 enum master_or_slave { CHImaster, CHIslave };
1235 * Lock must not be held before calling it.
1237 static void reset_chi(struct snd_dbri *dbri,
1238 enum master_or_slave master_or_slave,
1244 /* Set CHI Anchor: Pipe 16 */
1246 cmd = dbri_cmdlock(dbri, 4);
1247 val = D_DTS_VO | D_DTS_VI | D_DTS_INS
1248 | D_DTS_PRVIN(16) | D_PIPE(16) | D_DTS_PRVOUT(16);
1249 *(cmd++) = DBRI_CMD(D_DTS, 0, val);
1250 *(cmd++) = D_TS_ANCHOR | D_TS_NEXT(16);
1251 *(cmd++) = D_TS_ANCHOR | D_TS_NEXT(16);
1252 *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1253 dbri_cmdsend(dbri, cmd, 4);
1255 dbri->pipes[16].sdp = 1;
1256 dbri->pipes[16].nextpipe = 16;
1258 cmd = dbri_cmdlock(dbri, 4);
1260 if (master_or_slave == CHIslave) {
1261 /* Setup DBRI for CHI Slave - receive clock, frame sync (FS)
1263 * CHICM = 0 (slave mode, 8 kHz frame rate)
1264 * IR = give immediate CHI status interrupt
1265 * EN = give CHI status interrupt upon change
1267 *(cmd++) = DBRI_CMD(D_CHI, 0, D_CHI_CHICM(0));
1269 /* Setup DBRI for CHI Master - generate clock, FS
1271 * BPF = bits per 8 kHz frame
1272 * 12.288 MHz / CHICM_divisor = clock rate
1273 * FD = 1 - drive CHIFS on rising edge of CHICK
1275 int clockrate = bits_per_frame * 8;
1276 int divisor = 12288 / clockrate;
1278 if (divisor > 255 || divisor * clockrate != 12288)
1279 printk(KERN_ERR "DBRI: illegal bits_per_frame "
1282 *(cmd++) = DBRI_CMD(D_CHI, 0, D_CHI_CHICM(divisor) | D_CHI_FD
1283 | D_CHI_BPF(bits_per_frame));
1286 dbri->chi_bpf = bits_per_frame;
1290 * RCE = 0 - receive on falling edge of CHICK
1291 * XCE = 1 - transmit on rising edge of CHICK
1292 * XEN = 1 - enable transmitter
1293 * REN = 1 - enable receiver
1296 *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1297 *(cmd++) = DBRI_CMD(D_CDM, 0, D_CDM_XCE | D_CDM_XEN | D_CDM_REN);
1298 *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1300 dbri_cmdsend(dbri, cmd, 4);
1304 ****************************************************************************
1305 *********************** CS4215 audio codec management **********************
1306 ****************************************************************************
1308 In the standard SPARC audio configuration, the CS4215 codec is attached
1309 to the DBRI via the CHI interface and few of the DBRI's PIO pins.
1311 * Lock must not be held before calling it.
1314 static void cs4215_setup_pipes(struct snd_dbri *dbri)
1316 unsigned long flags;
1318 spin_lock_irqsave(&dbri->lock, flags);
1321 * Pipe 4: Send timeslots 1-4 (audio data)
1322 * Pipe 20: Send timeslots 5-8 (part of ctrl data)
1323 * Pipe 6: Receive timeslots 1-4 (audio data)
1324 * Pipe 21: Receive timeslots 6-7. We can only receive 20 bits via
1325 * interrupt, and the rest of the data (slot 5 and 8) is
1326 * not relevant for us (only for doublechecking).
1329 * Pipe 17: Send timeslots 1-4 (slots 5-8 are read only)
1330 * Pipe 18: Receive timeslot 1 (clb).
1331 * Pipe 19: Receive timeslot 7 (version).
1334 setup_pipe(dbri, 4, D_SDP_MEM | D_SDP_TO_SER | D_SDP_MSB);
1335 setup_pipe(dbri, 20, D_SDP_FIXED | D_SDP_TO_SER | D_SDP_MSB);
1336 setup_pipe(dbri, 6, D_SDP_MEM | D_SDP_FROM_SER | D_SDP_MSB);
1337 setup_pipe(dbri, 21, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1339 setup_pipe(dbri, 17, D_SDP_FIXED | D_SDP_TO_SER | D_SDP_MSB);
1340 setup_pipe(dbri, 18, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1341 setup_pipe(dbri, 19, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1342 spin_unlock_irqrestore(&dbri->lock, flags);
1347 static int cs4215_init_data(struct cs4215 *mm)
1350 * No action, memory resetting only.
1352 * Data Time Slot 5-8
1353 * Speaker,Line and Headphone enable. Gain set to the half.
1356 mm->data[0] = CS4215_LO(0x20) | CS4215_HE | CS4215_LE;
1357 mm->data[1] = CS4215_RO(0x20) | CS4215_SE;
1358 mm->data[2] = CS4215_LG(0x8) | CS4215_IS | CS4215_PIO0 | CS4215_PIO1;
1359 mm->data[3] = CS4215_RG(0x8) | CS4215_MA(0xf);
1362 * Control Time Slot 1-4
1363 * 0: Default I/O voltage scale
1364 * 1: 8 bit ulaw, 8kHz, mono, high pass filter disabled
1365 * 2: Serial enable, CHI master, 128 bits per frame, clock 1
1368 mm->ctrl[0] = CS4215_RSRVD_1 | CS4215_MLB;
1369 mm->ctrl[1] = CS4215_DFR_ULAW | CS4215_FREQ[0].csval;
1370 mm->ctrl[2] = CS4215_XCLK | CS4215_BSEL_128 | CS4215_FREQ[0].xtal;
1375 mm->precision = 8; /* For ULAW */
1381 static void cs4215_setdata(struct snd_dbri *dbri, int muted)
1384 dbri->mm.data[0] |= 63;
1385 dbri->mm.data[1] |= 63;
1386 dbri->mm.data[2] &= ~15;
1387 dbri->mm.data[3] &= ~15;
1389 /* Start by setting the playback attenuation. */
1390 struct dbri_streaminfo *info = &dbri->stream_info[DBRI_PLAY];
1391 int left_gain = info->left_gain & 0x3f;
1392 int right_gain = info->right_gain & 0x3f;
1394 dbri->mm.data[0] &= ~0x3f; /* Reset the volume bits */
1395 dbri->mm.data[1] &= ~0x3f;
1396 dbri->mm.data[0] |= (DBRI_MAX_VOLUME - left_gain);
1397 dbri->mm.data[1] |= (DBRI_MAX_VOLUME - right_gain);
1399 /* Now set the recording gain. */
1400 info = &dbri->stream_info[DBRI_REC];
1401 left_gain = info->left_gain & 0xf;
1402 right_gain = info->right_gain & 0xf;
1403 dbri->mm.data[2] |= CS4215_LG(left_gain);
1404 dbri->mm.data[3] |= CS4215_RG(right_gain);
1407 xmit_fixed(dbri, 20, *(int *)dbri->mm.data);
1411 * Set the CS4215 to data mode.
1413 static void cs4215_open(struct snd_dbri *dbri)
1417 unsigned long flags;
1419 dprintk(D_MM, "cs4215_open: %d channels, %d bits\n",
1420 dbri->mm.channels, dbri->mm.precision);
1422 /* Temporarily mute outputs, and wait 1/8000 sec (125 us)
1423 * to make sure this takes. This avoids clicking noises.
1426 cs4215_setdata(dbri, 1);
1431 * Pipe 4: Send timeslots 1-4 (audio data)
1432 * Pipe 20: Send timeslots 5-8 (part of ctrl data)
1433 * Pipe 6: Receive timeslots 1-4 (audio data)
1434 * Pipe 21: Receive timeslots 6-7. We can only receive 20 bits via
1435 * interrupt, and the rest of the data (slot 5 and 8) is
1436 * not relevant for us (only for doublechecking).
1438 * Just like in control mode, the time slots are all offset by eight
1439 * bits. The CS4215, it seems, observes TSIN (the delayed signal)
1440 * even if it's the CHI master. Don't ask me...
1442 spin_lock_irqsave(&dbri->lock, flags);
1443 tmp = sbus_readl(dbri->regs + REG0);
1444 tmp &= ~(D_C); /* Disable CHI */
1445 sbus_writel(tmp, dbri->regs + REG0);
1447 /* Switch CS4215 to data mode - set PIO3 to 1 */
1448 sbus_writel(D_ENPIO | D_PIO1 | D_PIO3 |
1449 (dbri->mm.onboard ? D_PIO0 : D_PIO2), dbri->regs + REG2);
1451 reset_chi(dbri, CHIslave, 128);
1453 /* Note: this next doesn't work for 8-bit stereo, because the two
1454 * channels would be on timeslots 1 and 3, with 2 and 4 idle.
1455 * (See CS4215 datasheet Fig 15)
1457 * DBRI non-contiguous mode would be required to make this work.
1459 data_width = dbri->mm.channels * dbri->mm.precision;
1461 link_time_slot(dbri, 4, 16, 16, data_width, dbri->mm.offset);
1462 link_time_slot(dbri, 20, 4, 16, 32, dbri->mm.offset + 32);
1463 link_time_slot(dbri, 6, 16, 16, data_width, dbri->mm.offset);
1464 link_time_slot(dbri, 21, 6, 16, 16, dbri->mm.offset + 40);
1466 /* FIXME: enable CHI after _setdata? */
1467 tmp = sbus_readl(dbri->regs + REG0);
1468 tmp |= D_C; /* Enable CHI */
1469 sbus_writel(tmp, dbri->regs + REG0);
1470 spin_unlock_irqrestore(&dbri->lock, flags);
1472 cs4215_setdata(dbri, 0);
1476 * Send the control information (i.e. audio format)
1478 static int cs4215_setctrl(struct snd_dbri *dbri)
1482 unsigned long flags;
1484 /* FIXME - let the CPU do something useful during these delays */
1486 /* Temporarily mute outputs, and wait 1/8000 sec (125 us)
1487 * to make sure this takes. This avoids clicking noises.
1489 cs4215_setdata(dbri, 1);
1493 * Enable Control mode: Set DBRI's PIO3 (4215's D/~C) to 0, then wait
1494 * 12 cycles <= 12/(5512.5*64) sec = 34.01 usec
1496 val = D_ENPIO | D_PIO1 | (dbri->mm.onboard ? D_PIO0 : D_PIO2);
1497 sbus_writel(val, dbri->regs + REG2);
1498 dprintk(D_MM, "cs4215_setctrl: reg2=0x%x\n", val);
1501 /* In Control mode, the CS4215 is a slave device, so the DBRI must
1502 * operate as CHI master, supplying clocking and frame synchronization.
1504 * In Data mode, however, the CS4215 must be CHI master to insure
1505 * that its data stream is synchronous with its codec.
1507 * The upshot of all this? We start by putting the DBRI into master
1508 * mode, program the CS4215 in Control mode, then switch the CS4215
1509 * into Data mode and put the DBRI into slave mode. Various timing
1510 * requirements must be observed along the way.
1512 * Oh, and one more thing, on a SPARCStation 20 (and maybe
1513 * others?), the addressing of the CS4215's time slots is
1514 * offset by eight bits, so we add eight to all the "cycle"
1515 * values in the Define Time Slot (DTS) commands. This is
1516 * done in hardware by a TI 248 that delays the DBRI->4215
1517 * frame sync signal by eight clock cycles. Anybody know why?
1519 spin_lock_irqsave(&dbri->lock, flags);
1520 tmp = sbus_readl(dbri->regs + REG0);
1521 tmp &= ~D_C; /* Disable CHI */
1522 sbus_writel(tmp, dbri->regs + REG0);
1524 reset_chi(dbri, CHImaster, 128);
1528 * Pipe 17: Send timeslots 1-4 (slots 5-8 are read only)
1529 * Pipe 18: Receive timeslot 1 (clb).
1530 * Pipe 19: Receive timeslot 7 (version).
1533 link_time_slot(dbri, 17, 16, 16, 32, dbri->mm.offset);
1534 link_time_slot(dbri, 18, 16, 16, 8, dbri->mm.offset);
1535 link_time_slot(dbri, 19, 18, 16, 8, dbri->mm.offset + 48);
1536 spin_unlock_irqrestore(&dbri->lock, flags);
1538 /* Wait for the chip to echo back CLB (Control Latch Bit) as zero */
1539 dbri->mm.ctrl[0] &= ~CS4215_CLB;
1540 xmit_fixed(dbri, 17, *(int *)dbri->mm.ctrl);
1542 spin_lock_irqsave(&dbri->lock, flags);
1543 tmp = sbus_readl(dbri->regs + REG0);
1544 tmp |= D_C; /* Enable CHI */
1545 sbus_writel(tmp, dbri->regs + REG0);
1546 spin_unlock_irqrestore(&dbri->lock, flags);
1548 for (i = 10; ((dbri->mm.status & 0xe4) != 0x20); --i)
1549 msleep_interruptible(1);
1552 dprintk(D_MM, "CS4215 didn't respond to CLB (0x%02x)\n",
1557 /* Disable changes to our copy of the version number, as we are about
1558 * to leave control mode.
1560 recv_fixed(dbri, 19, NULL);
1562 /* Terminate CS4215 control mode - data sheet says
1563 * "Set CLB=1 and send two more frames of valid control info"
1565 dbri->mm.ctrl[0] |= CS4215_CLB;
1566 xmit_fixed(dbri, 17, *(int *)dbri->mm.ctrl);
1568 /* Two frames of control info @ 8kHz frame rate = 250 us delay */
1571 cs4215_setdata(dbri, 0);
1577 * Setup the codec with the sampling rate, audio format and number of
1579 * As part of the process we resend the settings for the data
1580 * timeslots as well.
1582 static int cs4215_prepare(struct snd_dbri *dbri, unsigned int rate,
1583 snd_pcm_format_t format, unsigned int channels)
1588 /* Lookup index for this rate */
1589 for (freq_idx = 0; CS4215_FREQ[freq_idx].freq != 0; freq_idx++) {
1590 if (CS4215_FREQ[freq_idx].freq == rate)
1593 if (CS4215_FREQ[freq_idx].freq != rate) {
1594 printk(KERN_WARNING "DBRI: Unsupported rate %d Hz\n", rate);
1599 case SNDRV_PCM_FORMAT_MU_LAW:
1600 dbri->mm.ctrl[1] = CS4215_DFR_ULAW;
1601 dbri->mm.precision = 8;
1603 case SNDRV_PCM_FORMAT_A_LAW:
1604 dbri->mm.ctrl[1] = CS4215_DFR_ALAW;
1605 dbri->mm.precision = 8;
1607 case SNDRV_PCM_FORMAT_U8:
1608 dbri->mm.ctrl[1] = CS4215_DFR_LINEAR8;
1609 dbri->mm.precision = 8;
1611 case SNDRV_PCM_FORMAT_S16_BE:
1612 dbri->mm.ctrl[1] = CS4215_DFR_LINEAR16;
1613 dbri->mm.precision = 16;
1616 printk(KERN_WARNING "DBRI: Unsupported format %d\n", format);
1620 /* Add rate parameters */
1621 dbri->mm.ctrl[1] |= CS4215_FREQ[freq_idx].csval;
1622 dbri->mm.ctrl[2] = CS4215_XCLK |
1623 CS4215_BSEL_128 | CS4215_FREQ[freq_idx].xtal;
1625 dbri->mm.channels = channels;
1627 dbri->mm.ctrl[1] |= CS4215_DFR_STEREO;
1629 ret = cs4215_setctrl(dbri);
1631 cs4215_open(dbri); /* set codec to data mode */
1639 static int cs4215_init(struct snd_dbri *dbri)
1641 u32 reg2 = sbus_readl(dbri->regs + REG2);
1642 dprintk(D_MM, "cs4215_init: reg2=0x%x\n", reg2);
1644 /* Look for the cs4215 chips */
1645 if (reg2 & D_PIO2) {
1646 dprintk(D_MM, "Onboard CS4215 detected\n");
1647 dbri->mm.onboard = 1;
1649 if (reg2 & D_PIO0) {
1650 dprintk(D_MM, "Speakerbox detected\n");
1651 dbri->mm.onboard = 0;
1653 if (reg2 & D_PIO2) {
1654 printk(KERN_INFO "DBRI: Using speakerbox / "
1655 "ignoring onboard mmcodec.\n");
1656 sbus_writel(D_ENPIO2, dbri->regs + REG2);
1660 if (!(reg2 & (D_PIO0 | D_PIO2))) {
1661 printk(KERN_ERR "DBRI: no mmcodec found.\n");
1665 cs4215_setup_pipes(dbri);
1666 cs4215_init_data(&dbri->mm);
1668 /* Enable capture of the status & version timeslots. */
1669 recv_fixed(dbri, 18, &dbri->mm.status);
1670 recv_fixed(dbri, 19, &dbri->mm.version);
1672 dbri->mm.offset = dbri->mm.onboard ? 0 : 8;
1673 if (cs4215_setctrl(dbri) == -1 || dbri->mm.version == 0xff) {
1674 dprintk(D_MM, "CS4215 failed probe at offset %d\n",
1678 dprintk(D_MM, "Found CS4215 at offset %d\n", dbri->mm.offset);
1684 ****************************************************************************
1685 *************************** DBRI interrupt handler *************************
1686 ****************************************************************************
1688 The DBRI communicates with the CPU mainly via a circular interrupt
1689 buffer. When an interrupt is signaled, the CPU walks through the
1690 buffer and calls dbri_process_one_interrupt() for each interrupt word.
1691 Complicated interrupts are handled by dedicated functions (which
1692 appear first in this file). Any pending interrupts can be serviced by
1693 calling dbri_process_interrupt_buffer(), which works even if the CPU's
1694 interrupts are disabled.
1700 * Starts transmitting the current TD's for recording/playing.
1701 * For playback, ALSA has filled the DMA memory with new data (we hope).
1703 static void xmit_descs(struct snd_dbri *dbri)
1705 struct dbri_streaminfo *info;
1708 unsigned long flags;
1712 return; /* Disabled */
1714 dvma_addr = (u32)dbri->dma_dvma;
1715 info = &dbri->stream_info[DBRI_REC];
1716 spin_lock_irqsave(&dbri->lock, flags);
1718 if (info->pipe >= 0) {
1719 first_td = dbri->pipes[info->pipe].first_desc;
1721 dprintk(D_DESC, "xmit_descs rec @ TD %d\n", first_td);
1723 /* Stream could be closed by the time we run. */
1724 if (first_td >= 0) {
1725 cmd = dbri_cmdlock(dbri, 2);
1726 *(cmd++) = DBRI_CMD(D_SDP, 0,
1727 dbri->pipes[info->pipe].sdp
1728 | D_SDP_P | D_SDP_EVERY | D_SDP_C);
1729 *(cmd++) = dvma_addr +
1730 dbri_dma_off(desc, first_td);
1731 dbri_cmdsend(dbri, cmd, 2);
1733 /* Reset our admin of the pipe. */
1734 dbri->pipes[info->pipe].desc = first_td;
1738 info = &dbri->stream_info[DBRI_PLAY];
1740 if (info->pipe >= 0) {
1741 first_td = dbri->pipes[info->pipe].first_desc;
1743 dprintk(D_DESC, "xmit_descs play @ TD %d\n", first_td);
1745 /* Stream could be closed by the time we run. */
1746 if (first_td >= 0) {
1747 cmd = dbri_cmdlock(dbri, 2);
1748 *(cmd++) = DBRI_CMD(D_SDP, 0,
1749 dbri->pipes[info->pipe].sdp
1750 | D_SDP_P | D_SDP_EVERY | D_SDP_C);
1751 *(cmd++) = dvma_addr +
1752 dbri_dma_off(desc, first_td);
1753 dbri_cmdsend(dbri, cmd, 2);
1755 /* Reset our admin of the pipe. */
1756 dbri->pipes[info->pipe].desc = first_td;
1760 spin_unlock_irqrestore(&dbri->lock, flags);
1763 /* transmission_complete_intr()
1765 * Called by main interrupt handler when DBRI signals transmission complete
1766 * on a pipe (interrupt triggered by the B bit in a transmit descriptor).
1768 * Walks through the pipe's list of transmit buffer descriptors and marks
1769 * them as available. Stops when the first descriptor is found without
1770 * TBC (Transmit Buffer Complete) set, or we've run through them all.
1772 * The DMA buffers are not released. They form a ring buffer and
1773 * they are filled by ALSA while others are transmitted by DMA.
1777 static void transmission_complete_intr(struct snd_dbri *dbri, int pipe)
1779 struct dbri_streaminfo *info = &dbri->stream_info[DBRI_PLAY];
1780 int td = dbri->pipes[pipe].desc;
1784 if (td >= DBRI_NO_DESCS) {
1785 printk(KERN_ERR "DBRI: invalid td on pipe %d\n", pipe);
1789 status = DBRI_TD_STATUS(dbri->dma->desc[td].word4);
1790 if (!(status & DBRI_TD_TBC))
1793 dprintk(D_INT, "TD %d, status 0x%02x\n", td, status);
1795 dbri->dma->desc[td].word4 = 0; /* Reset it for next time. */
1796 info->offset += DBRI_RD_CNT(dbri->dma->desc[td].word1);
1798 td = dbri->next_desc[td];
1799 dbri->pipes[pipe].desc = td;
1803 spin_unlock(&dbri->lock);
1804 snd_pcm_period_elapsed(info->substream);
1805 spin_lock(&dbri->lock);
1808 static void reception_complete_intr(struct snd_dbri *dbri, int pipe)
1810 struct dbri_streaminfo *info;
1811 int rd = dbri->pipes[pipe].desc;
1814 if (rd < 0 || rd >= DBRI_NO_DESCS) {
1815 printk(KERN_ERR "DBRI: invalid rd on pipe %d\n", pipe);
1819 dbri->pipes[pipe].desc = dbri->next_desc[rd];
1820 status = dbri->dma->desc[rd].word1;
1821 dbri->dma->desc[rd].word1 = 0; /* Reset it for next time. */
1823 info = &dbri->stream_info[DBRI_REC];
1824 info->offset += DBRI_RD_CNT(status);
1826 /* FIXME: Check status */
1828 dprintk(D_INT, "Recv RD %d, status 0x%02x, len %d\n",
1829 rd, DBRI_RD_STATUS(status), DBRI_RD_CNT(status));
1832 spin_unlock(&dbri->lock);
1833 snd_pcm_period_elapsed(info->substream);
1834 spin_lock(&dbri->lock);
1837 static void dbri_process_one_interrupt(struct snd_dbri *dbri, int x)
1839 int val = D_INTR_GETVAL(x);
1840 int channel = D_INTR_GETCHAN(x);
1841 int command = D_INTR_GETCMD(x);
1842 int code = D_INTR_GETCODE(x);
1844 int rval = D_INTR_GETRVAL(x);
1847 if (channel == D_INTR_CMD) {
1848 dprintk(D_CMD, "INTR: Command: %-5s Value:%d\n",
1849 cmds[command], val);
1851 dprintk(D_INT, "INTR: Chan:%d Code:%d Val:%#x\n",
1852 channel, code, rval);
1857 if (command != D_WAIT)
1858 printk(KERN_ERR "DBRI: Command read interrupt\n");
1861 reception_complete_intr(dbri, channel);
1865 transmission_complete_intr(dbri, channel);
1868 /* UNDR - Transmission underrun
1869 * resend SDP command with clear pipe bit (C) set
1872 /* FIXME: do something useful in case of underrun */
1873 printk(KERN_ERR "DBRI: Underrun error\n");
1877 int td = dbri->pipes[pipe].desc;
1879 dbri->dma->desc[td].word4 = 0;
1880 cmd = dbri_cmdlock(dbri, NoGetLock);
1881 *(cmd++) = DBRI_CMD(D_SDP, 0,
1882 dbri->pipes[pipe].sdp
1883 | D_SDP_P | D_SDP_C | D_SDP_2SAME);
1884 *(cmd++) = dbri->dma_dvma + dbri_dma_off(desc, td);
1885 dbri_cmdsend(dbri, cmd);
1890 /* FXDT - Fixed data change */
1891 if (dbri->pipes[channel].sdp & D_SDP_MSB)
1892 val = reverse_bytes(val, dbri->pipes[channel].length);
1894 if (dbri->pipes[channel].recv_fixed_ptr)
1895 *(dbri->pipes[channel].recv_fixed_ptr) = val;
1898 if (channel != D_INTR_CMD)
1900 "DBRI: Ignored Interrupt: %d (0x%x)\n", code, x);
1904 /* dbri_process_interrupt_buffer advances through the DBRI's interrupt
1905 * buffer until it finds a zero word (indicating nothing more to do
1906 * right now). Non-zero words require processing and are handed off
1907 * to dbri_process_one_interrupt AFTER advancing the pointer.
1909 static void dbri_process_interrupt_buffer(struct snd_dbri *dbri)
1913 while ((x = dbri->dma->intr[dbri->dbri_irqp]) != 0) {
1914 dbri->dma->intr[dbri->dbri_irqp] = 0;
1916 if (dbri->dbri_irqp == DBRI_INT_BLK)
1917 dbri->dbri_irqp = 1;
1919 dbri_process_one_interrupt(dbri, x);
1923 static irqreturn_t snd_dbri_interrupt(int irq, void *dev_id)
1925 struct snd_dbri *dbri = dev_id;
1926 static int errcnt = 0;
1931 spin_lock(&dbri->lock);
1934 * Read it, so the interrupt goes away.
1936 x = sbus_readl(dbri->regs + REG1);
1938 if (x & (D_MRR | D_MLE | D_LBG | D_MBE)) {
1943 "DBRI: Multiple Error Ack on SBus reg1=0x%x\n",
1947 "DBRI: Multiple Late Error on SBus reg1=0x%x\n",
1951 "DBRI: Lost Bus Grant on SBus reg1=0x%x\n", x);
1954 "DBRI: Burst Error on SBus reg1=0x%x\n", x);
1956 /* Some of these SBus errors cause the chip's SBus circuitry
1957 * to be disabled, so just re-enable and try to keep going.
1959 * The only one I've seen is MRR, which will be triggered
1960 * if you let a transmit pipe underrun, then try to CDP it.
1962 * If these things persist, we reset the chip.
1964 if ((++errcnt) % 10 == 0) {
1965 dprintk(D_INT, "Interrupt errors exceeded.\n");
1968 tmp = sbus_readl(dbri->regs + REG0);
1970 sbus_writel(tmp, dbri->regs + REG0);
1974 dbri_process_interrupt_buffer(dbri);
1976 spin_unlock(&dbri->lock);
1981 /****************************************************************************
1983 ****************************************************************************/
1984 static const struct snd_pcm_hardware snd_dbri_pcm_hw = {
1985 .info = SNDRV_PCM_INFO_MMAP |
1986 SNDRV_PCM_INFO_INTERLEAVED |
1987 SNDRV_PCM_INFO_BLOCK_TRANSFER |
1988 SNDRV_PCM_INFO_MMAP_VALID |
1989 SNDRV_PCM_INFO_BATCH,
1990 .formats = SNDRV_PCM_FMTBIT_MU_LAW |
1991 SNDRV_PCM_FMTBIT_A_LAW |
1992 SNDRV_PCM_FMTBIT_U8 |
1993 SNDRV_PCM_FMTBIT_S16_BE,
1994 .rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_5512,
1999 .buffer_bytes_max = 64 * 1024,
2000 .period_bytes_min = 1,
2001 .period_bytes_max = DBRI_TD_MAXCNT,
2003 .periods_max = 1024,
2006 static int snd_hw_rule_format(struct snd_pcm_hw_params *params,
2007 struct snd_pcm_hw_rule *rule)
2009 struct snd_interval *c = hw_param_interval(params,
2010 SNDRV_PCM_HW_PARAM_CHANNELS);
2011 struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
2012 struct snd_mask fmt;
2016 fmt.bits[0] &= SNDRV_PCM_FMTBIT_S16_BE;
2017 return snd_mask_refine(f, &fmt);
2022 static int snd_hw_rule_channels(struct snd_pcm_hw_params *params,
2023 struct snd_pcm_hw_rule *rule)
2025 struct snd_interval *c = hw_param_interval(params,
2026 SNDRV_PCM_HW_PARAM_CHANNELS);
2027 struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
2028 struct snd_interval ch;
2030 snd_interval_any(&ch);
2031 if (!(f->bits[0] & SNDRV_PCM_FMTBIT_S16_BE)) {
2035 return snd_interval_refine(c, &ch);
2040 static int snd_dbri_open(struct snd_pcm_substream *substream)
2042 struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2043 struct snd_pcm_runtime *runtime = substream->runtime;
2044 struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2045 unsigned long flags;
2047 dprintk(D_USR, "open audio output.\n");
2048 runtime->hw = snd_dbri_pcm_hw;
2050 spin_lock_irqsave(&dbri->lock, flags);
2051 info->substream = substream;
2053 info->dvma_buffer = 0;
2055 spin_unlock_irqrestore(&dbri->lock, flags);
2057 snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
2058 snd_hw_rule_format, NULL, SNDRV_PCM_HW_PARAM_FORMAT,
2060 snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_FORMAT,
2061 snd_hw_rule_channels, NULL,
2062 SNDRV_PCM_HW_PARAM_CHANNELS,
2070 static int snd_dbri_close(struct snd_pcm_substream *substream)
2072 struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2073 struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2075 dprintk(D_USR, "close audio output.\n");
2076 info->substream = NULL;
2082 static int snd_dbri_hw_params(struct snd_pcm_substream *substream,
2083 struct snd_pcm_hw_params *hw_params)
2085 struct snd_pcm_runtime *runtime = substream->runtime;
2086 struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2087 struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2091 /* set sampling rate, audio format and number of channels */
2092 ret = cs4215_prepare(dbri, params_rate(hw_params),
2093 params_format(hw_params),
2094 params_channels(hw_params));
2098 if ((ret = snd_pcm_lib_malloc_pages(substream,
2099 params_buffer_bytes(hw_params))) < 0) {
2100 printk(KERN_ERR "malloc_pages failed with %d\n", ret);
2104 /* hw_params can get called multiple times. Only map the DMA once.
2106 if (info->dvma_buffer == 0) {
2107 if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2108 direction = DMA_TO_DEVICE;
2110 direction = DMA_FROM_DEVICE;
2113 dma_map_single(&dbri->op->dev,
2115 params_buffer_bytes(hw_params),
2119 direction = params_buffer_bytes(hw_params);
2120 dprintk(D_USR, "hw_params: %d bytes, dvma=%x\n",
2121 direction, info->dvma_buffer);
2125 static int snd_dbri_hw_free(struct snd_pcm_substream *substream)
2127 struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2128 struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2131 dprintk(D_USR, "hw_free.\n");
2133 /* hw_free can get called multiple times. Only unmap the DMA once.
2135 if (info->dvma_buffer) {
2136 if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2137 direction = DMA_TO_DEVICE;
2139 direction = DMA_FROM_DEVICE;
2141 dma_unmap_single(&dbri->op->dev, info->dvma_buffer,
2142 substream->runtime->buffer_size, direction);
2143 info->dvma_buffer = 0;
2145 if (info->pipe != -1) {
2146 reset_pipe(dbri, info->pipe);
2150 return snd_pcm_lib_free_pages(substream);
2153 static int snd_dbri_prepare(struct snd_pcm_substream *substream)
2155 struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2156 struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2159 info->size = snd_pcm_lib_buffer_bytes(substream);
2160 if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2161 info->pipe = 4; /* Send pipe */
2163 info->pipe = 6; /* Receive pipe */
2165 spin_lock_irq(&dbri->lock);
2168 /* Setup the all the transmit/receive descriptors to cover the
2171 ret = setup_descs(dbri, DBRI_STREAMNO(substream),
2172 snd_pcm_lib_period_bytes(substream));
2174 spin_unlock_irq(&dbri->lock);
2176 dprintk(D_USR, "prepare audio output. %d bytes\n", info->size);
2180 static int snd_dbri_trigger(struct snd_pcm_substream *substream, int cmd)
2182 struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2183 struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2187 case SNDRV_PCM_TRIGGER_START:
2188 dprintk(D_USR, "start audio, period is %d bytes\n",
2189 (int)snd_pcm_lib_period_bytes(substream));
2190 /* Re-submit the TDs. */
2193 case SNDRV_PCM_TRIGGER_STOP:
2194 dprintk(D_USR, "stop audio.\n");
2195 reset_pipe(dbri, info->pipe);
2204 static snd_pcm_uframes_t snd_dbri_pointer(struct snd_pcm_substream *substream)
2206 struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2207 struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2208 snd_pcm_uframes_t ret;
2210 ret = bytes_to_frames(substream->runtime, info->offset)
2211 % substream->runtime->buffer_size;
2212 dprintk(D_USR, "I/O pointer: %ld frames of %ld.\n",
2213 ret, substream->runtime->buffer_size);
2217 static const struct snd_pcm_ops snd_dbri_ops = {
2218 .open = snd_dbri_open,
2219 .close = snd_dbri_close,
2220 .ioctl = snd_pcm_lib_ioctl,
2221 .hw_params = snd_dbri_hw_params,
2222 .hw_free = snd_dbri_hw_free,
2223 .prepare = snd_dbri_prepare,
2224 .trigger = snd_dbri_trigger,
2225 .pointer = snd_dbri_pointer,
2228 static int snd_dbri_pcm(struct snd_card *card)
2230 struct snd_pcm *pcm;
2233 if ((err = snd_pcm_new(card,
2234 /* ID */ "sun_dbri",
2236 /* playback count */ 1,
2237 /* capture count */ 1, &pcm)) < 0)
2240 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_dbri_ops);
2241 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_dbri_ops);
2243 pcm->private_data = card->private_data;
2244 pcm->info_flags = 0;
2245 strcpy(pcm->name, card->shortname);
2247 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_CONTINUOUS,
2248 snd_dma_continuous_data(GFP_KERNEL),
2249 64 * 1024, 64 * 1024);
2253 /*****************************************************************************
2255 *****************************************************************************/
2257 static int snd_cs4215_info_volume(struct snd_kcontrol *kcontrol,
2258 struct snd_ctl_elem_info *uinfo)
2260 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2262 uinfo->value.integer.min = 0;
2263 if (kcontrol->private_value == DBRI_PLAY)
2264 uinfo->value.integer.max = DBRI_MAX_VOLUME;
2266 uinfo->value.integer.max = DBRI_MAX_GAIN;
2270 static int snd_cs4215_get_volume(struct snd_kcontrol *kcontrol,
2271 struct snd_ctl_elem_value *ucontrol)
2273 struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2274 struct dbri_streaminfo *info;
2276 if (snd_BUG_ON(!dbri))
2278 info = &dbri->stream_info[kcontrol->private_value];
2280 ucontrol->value.integer.value[0] = info->left_gain;
2281 ucontrol->value.integer.value[1] = info->right_gain;
2285 static int snd_cs4215_put_volume(struct snd_kcontrol *kcontrol,
2286 struct snd_ctl_elem_value *ucontrol)
2288 struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2289 struct dbri_streaminfo *info =
2290 &dbri->stream_info[kcontrol->private_value];
2291 unsigned int vol[2];
2294 vol[0] = ucontrol->value.integer.value[0];
2295 vol[1] = ucontrol->value.integer.value[1];
2296 if (kcontrol->private_value == DBRI_PLAY) {
2297 if (vol[0] > DBRI_MAX_VOLUME || vol[1] > DBRI_MAX_VOLUME)
2300 if (vol[0] > DBRI_MAX_GAIN || vol[1] > DBRI_MAX_GAIN)
2304 if (info->left_gain != vol[0]) {
2305 info->left_gain = vol[0];
2308 if (info->right_gain != vol[1]) {
2309 info->right_gain = vol[1];
2313 /* First mute outputs, and wait 1/8000 sec (125 us)
2314 * to make sure this takes. This avoids clicking noises.
2316 cs4215_setdata(dbri, 1);
2318 cs4215_setdata(dbri, 0);
2323 static int snd_cs4215_info_single(struct snd_kcontrol *kcontrol,
2324 struct snd_ctl_elem_info *uinfo)
2326 int mask = (kcontrol->private_value >> 16) & 0xff;
2328 uinfo->type = (mask == 1) ?
2329 SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2331 uinfo->value.integer.min = 0;
2332 uinfo->value.integer.max = mask;
2336 static int snd_cs4215_get_single(struct snd_kcontrol *kcontrol,
2337 struct snd_ctl_elem_value *ucontrol)
2339 struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2340 int elem = kcontrol->private_value & 0xff;
2341 int shift = (kcontrol->private_value >> 8) & 0xff;
2342 int mask = (kcontrol->private_value >> 16) & 0xff;
2343 int invert = (kcontrol->private_value >> 24) & 1;
2345 if (snd_BUG_ON(!dbri))
2349 ucontrol->value.integer.value[0] =
2350 (dbri->mm.data[elem] >> shift) & mask;
2352 ucontrol->value.integer.value[0] =
2353 (dbri->mm.ctrl[elem - 4] >> shift) & mask;
2356 ucontrol->value.integer.value[0] =
2357 mask - ucontrol->value.integer.value[0];
2361 static int snd_cs4215_put_single(struct snd_kcontrol *kcontrol,
2362 struct snd_ctl_elem_value *ucontrol)
2364 struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2365 int elem = kcontrol->private_value & 0xff;
2366 int shift = (kcontrol->private_value >> 8) & 0xff;
2367 int mask = (kcontrol->private_value >> 16) & 0xff;
2368 int invert = (kcontrol->private_value >> 24) & 1;
2372 if (snd_BUG_ON(!dbri))
2375 val = (ucontrol->value.integer.value[0] & mask);
2381 dbri->mm.data[elem] = (dbri->mm.data[elem] &
2382 ~(mask << shift)) | val;
2383 changed = (val != dbri->mm.data[elem]);
2385 dbri->mm.ctrl[elem - 4] = (dbri->mm.ctrl[elem - 4] &
2386 ~(mask << shift)) | val;
2387 changed = (val != dbri->mm.ctrl[elem - 4]);
2390 dprintk(D_GEN, "put_single: mask=0x%x, changed=%d, "
2391 "mixer-value=%ld, mm-value=0x%x\n",
2392 mask, changed, ucontrol->value.integer.value[0],
2393 dbri->mm.data[elem & 3]);
2396 /* First mute outputs, and wait 1/8000 sec (125 us)
2397 * to make sure this takes. This avoids clicking noises.
2399 cs4215_setdata(dbri, 1);
2401 cs4215_setdata(dbri, 0);
2406 /* Entries 0-3 map to the 4 data timeslots, entries 4-7 map to the 4 control
2407 timeslots. Shift is the bit offset in the timeslot, mask defines the
2408 number of bits. invert is a boolean for use with attenuation.
2410 #define CS4215_SINGLE(xname, entry, shift, mask, invert) \
2411 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = (xname), \
2412 .info = snd_cs4215_info_single, \
2413 .get = snd_cs4215_get_single, .put = snd_cs4215_put_single, \
2414 .private_value = (entry) | ((shift) << 8) | ((mask) << 16) | \
2417 static struct snd_kcontrol_new dbri_controls[] = {
2419 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2420 .name = "Playback Volume",
2421 .info = snd_cs4215_info_volume,
2422 .get = snd_cs4215_get_volume,
2423 .put = snd_cs4215_put_volume,
2424 .private_value = DBRI_PLAY,
2426 CS4215_SINGLE("Headphone switch", 0, 7, 1, 0)
2427 CS4215_SINGLE("Line out switch", 0, 6, 1, 0)
2428 CS4215_SINGLE("Speaker switch", 1, 6, 1, 0)
2430 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2431 .name = "Capture Volume",
2432 .info = snd_cs4215_info_volume,
2433 .get = snd_cs4215_get_volume,
2434 .put = snd_cs4215_put_volume,
2435 .private_value = DBRI_REC,
2437 /* FIXME: mic/line switch */
2438 CS4215_SINGLE("Line in switch", 2, 4, 1, 0)
2439 CS4215_SINGLE("High Pass Filter switch", 5, 7, 1, 0)
2440 CS4215_SINGLE("Monitor Volume", 3, 4, 0xf, 1)
2441 CS4215_SINGLE("Mic boost", 4, 4, 1, 1)
2444 static int snd_dbri_mixer(struct snd_card *card)
2447 struct snd_dbri *dbri;
2449 if (snd_BUG_ON(!card || !card->private_data))
2451 dbri = card->private_data;
2453 strcpy(card->mixername, card->shortname);
2455 for (idx = 0; idx < ARRAY_SIZE(dbri_controls); idx++) {
2456 err = snd_ctl_add(card,
2457 snd_ctl_new1(&dbri_controls[idx], dbri));
2462 for (idx = DBRI_REC; idx < DBRI_NO_STREAMS; idx++) {
2463 dbri->stream_info[idx].left_gain = 0;
2464 dbri->stream_info[idx].right_gain = 0;
2470 /****************************************************************************
2472 ****************************************************************************/
2473 static void dbri_regs_read(struct snd_info_entry *entry,
2474 struct snd_info_buffer *buffer)
2476 struct snd_dbri *dbri = entry->private_data;
2478 snd_iprintf(buffer, "REG0: 0x%x\n", sbus_readl(dbri->regs + REG0));
2479 snd_iprintf(buffer, "REG2: 0x%x\n", sbus_readl(dbri->regs + REG2));
2480 snd_iprintf(buffer, "REG8: 0x%x\n", sbus_readl(dbri->regs + REG8));
2481 snd_iprintf(buffer, "REG9: 0x%x\n", sbus_readl(dbri->regs + REG9));
2485 static void dbri_debug_read(struct snd_info_entry *entry,
2486 struct snd_info_buffer *buffer)
2488 struct snd_dbri *dbri = entry->private_data;
2490 snd_iprintf(buffer, "debug=%d\n", dbri_debug);
2492 for (pipe = 0; pipe < 32; pipe++) {
2493 if (pipe_active(dbri, pipe)) {
2494 struct dbri_pipe *pptr = &dbri->pipes[pipe];
2496 "Pipe %d: %s SDP=0x%x desc=%d, "
2499 (pptr->sdp & D_SDP_TO_SER) ? "output" :
2501 pptr->sdp, pptr->desc,
2502 pptr->length, pptr->nextpipe);
2508 static void snd_dbri_proc(struct snd_card *card)
2510 struct snd_dbri *dbri = card->private_data;
2512 snd_card_ro_proc_new(card, "regs", dbri, dbri_regs_read);
2514 snd_card_ro_proc_new(card, "debug", dbri, dbri_debug_read);
2519 ****************************************************************************
2520 **************************** Initialization ********************************
2521 ****************************************************************************
2523 static void snd_dbri_free(struct snd_dbri *dbri);
2525 static int snd_dbri_create(struct snd_card *card,
2526 struct platform_device *op,
2529 struct snd_dbri *dbri = card->private_data;
2532 spin_lock_init(&dbri->lock);
2536 dbri->dma = dma_alloc_coherent(&op->dev, sizeof(struct dbri_dma),
2537 &dbri->dma_dvma, GFP_KERNEL);
2541 dprintk(D_GEN, "DMA Cmd Block 0x%p (%pad)\n",
2542 dbri->dma, dbri->dma_dvma);
2544 /* Map the registers into memory. */
2545 dbri->regs_size = resource_size(&op->resource[0]);
2546 dbri->regs = of_ioremap(&op->resource[0], 0,
2547 dbri->regs_size, "DBRI Registers");
2549 printk(KERN_ERR "DBRI: could not allocate registers\n");
2550 dma_free_coherent(&op->dev, sizeof(struct dbri_dma),
2551 (void *)dbri->dma, dbri->dma_dvma);
2555 err = request_irq(dbri->irq, snd_dbri_interrupt, IRQF_SHARED,
2556 "DBRI audio", dbri);
2558 printk(KERN_ERR "DBRI: Can't get irq %d\n", dbri->irq);
2559 of_iounmap(&op->resource[0], dbri->regs, dbri->regs_size);
2560 dma_free_coherent(&op->dev, sizeof(struct dbri_dma),
2561 (void *)dbri->dma, dbri->dma_dvma);
2565 /* Do low level initialization of the DBRI and CS4215 chips */
2566 dbri_initialize(dbri);
2567 err = cs4215_init(dbri);
2569 snd_dbri_free(dbri);
2576 static void snd_dbri_free(struct snd_dbri *dbri)
2578 dprintk(D_GEN, "snd_dbri_free\n");
2582 free_irq(dbri->irq, dbri);
2585 of_iounmap(&dbri->op->resource[0], dbri->regs, dbri->regs_size);
2588 dma_free_coherent(&dbri->op->dev,
2589 sizeof(struct dbri_dma),
2590 (void *)dbri->dma, dbri->dma_dvma);
2593 static int dbri_probe(struct platform_device *op)
2595 struct snd_dbri *dbri;
2596 struct resource *rp;
2597 struct snd_card *card;
2602 if (dev >= SNDRV_CARDS)
2609 irq = op->archdata.irqs[0];
2611 printk(KERN_ERR "DBRI-%d: No IRQ.\n", dev);
2615 err = snd_card_new(&op->dev, index[dev], id[dev], THIS_MODULE,
2616 sizeof(struct snd_dbri), &card);
2620 strcpy(card->driver, "DBRI");
2621 strcpy(card->shortname, "Sun DBRI");
2622 rp = &op->resource[0];
2623 sprintf(card->longname, "%s at 0x%02lx:0x%016Lx, irq %d",
2625 rp->flags & 0xffL, (unsigned long long)rp->start, irq);
2627 err = snd_dbri_create(card, op, irq, dev);
2629 snd_card_free(card);
2633 dbri = card->private_data;
2634 err = snd_dbri_pcm(card);
2638 err = snd_dbri_mixer(card);
2642 /* /proc file handling */
2643 snd_dbri_proc(card);
2644 dev_set_drvdata(&op->dev, card);
2646 err = snd_card_register(card);
2650 printk(KERN_INFO "audio%d at %p (irq %d) is DBRI(%c)+CS4215(%d)\n",
2652 dbri->irq, op->dev.of_node->name[9], dbri->mm.version);
2658 snd_dbri_free(dbri);
2659 snd_card_free(card);
2663 static int dbri_remove(struct platform_device *op)
2665 struct snd_card *card = dev_get_drvdata(&op->dev);
2667 snd_dbri_free(card->private_data);
2668 snd_card_free(card);
2673 static const struct of_device_id dbri_match[] = {
2675 .name = "SUNW,DBRIe",
2678 .name = "SUNW,DBRIf",
2683 MODULE_DEVICE_TABLE(of, dbri_match);
2685 static struct platform_driver dbri_sbus_driver = {
2688 .of_match_table = dbri_match,
2690 .probe = dbri_probe,
2691 .remove = dbri_remove,
2694 module_platform_driver(dbri_sbus_driver);