1 // SPDX-License-Identifier: GPL-2.0
3 * TI SN65DSI83,84,85 driver
7 * = 1x Single-link DSI ~ 1x Single-link LVDS
9 * - Single-link LVDS mode tested
11 * = 1x Single-link DSI ~ 2x Single-link or 1x Dual-link LVDS
13 * - Dual-link LVDS mode tested
14 * - 2x Single-link LVDS mode unsupported
15 * (should be easy to add by someone who has the HW)
17 * = 2x Single-link or 1x Dual-link DSI ~ 2x Single-link or 1x Dual-link LVDS
19 * (should be easy to add by someone who has the HW)
23 * Based on previous work of:
28 #include <linux/bits.h>
29 #include <linux/clk.h>
30 #include <linux/gpio/consumer.h>
31 #include <linux/i2c.h>
32 #include <linux/media-bus-format.h>
33 #include <linux/module.h>
35 #include <linux/of_graph.h>
36 #include <linux/regmap.h>
37 #include <linux/regulator/consumer.h>
39 #include <drm/drm_atomic_helper.h>
40 #include <drm/drm_bridge.h>
41 #include <drm/drm_mipi_dsi.h>
42 #include <drm/drm_of.h>
43 #include <drm/drm_panel.h>
44 #include <drm/drm_print.h>
45 #include <drm/drm_probe_helper.h>
48 #define REG_ID(n) (0x00 + (n))
49 /* Reset and clock registers */
50 #define REG_RC_RESET 0x09
51 #define REG_RC_RESET_SOFT_RESET BIT(0)
52 #define REG_RC_LVDS_PLL 0x0a
53 #define REG_RC_LVDS_PLL_PLL_EN_STAT BIT(7)
54 #define REG_RC_LVDS_PLL_LVDS_CLK_RANGE(n) (((n) & 0x7) << 1)
55 #define REG_RC_LVDS_PLL_HS_CLK_SRC_DPHY BIT(0)
56 #define REG_RC_DSI_CLK 0x0b
57 #define REG_RC_DSI_CLK_DSI_CLK_DIVIDER(n) (((n) & 0x1f) << 3)
58 #define REG_RC_DSI_CLK_REFCLK_MULTIPLIER(n) ((n) & 0x3)
59 #define REG_RC_PLL_EN 0x0d
60 #define REG_RC_PLL_EN_PLL_EN BIT(0)
62 #define REG_DSI_LANE 0x10
63 #define REG_DSI_LANE_LEFT_RIGHT_PIXELS BIT(7) /* DSI85-only */
64 #define REG_DSI_LANE_DSI_CHANNEL_MODE_DUAL 0 /* DSI85-only */
65 #define REG_DSI_LANE_DSI_CHANNEL_MODE_2SINGLE BIT(6) /* DSI85-only */
66 #define REG_DSI_LANE_DSI_CHANNEL_MODE_SINGLE BIT(5)
67 #define REG_DSI_LANE_CHA_DSI_LANES(n) (((n) & 0x3) << 3)
68 #define REG_DSI_LANE_CHB_DSI_LANES(n) (((n) & 0x3) << 1)
69 #define REG_DSI_LANE_SOT_ERR_TOL_DIS BIT(0)
70 #define REG_DSI_EQ 0x11
71 #define REG_DSI_EQ_CHA_DSI_DATA_EQ(n) (((n) & 0x3) << 6)
72 #define REG_DSI_EQ_CHA_DSI_CLK_EQ(n) (((n) & 0x3) << 2)
73 #define REG_DSI_CLK 0x12
74 #define REG_DSI_CLK_CHA_DSI_CLK_RANGE(n) ((n) & 0xff)
76 #define REG_LVDS_FMT 0x18
77 #define REG_LVDS_FMT_DE_NEG_POLARITY BIT(7)
78 #define REG_LVDS_FMT_HS_NEG_POLARITY BIT(6)
79 #define REG_LVDS_FMT_VS_NEG_POLARITY BIT(5)
80 #define REG_LVDS_FMT_LVDS_LINK_CFG BIT(4) /* 0:AB 1:A-only */
81 #define REG_LVDS_FMT_CHA_24BPP_MODE BIT(3)
82 #define REG_LVDS_FMT_CHB_24BPP_MODE BIT(2)
83 #define REG_LVDS_FMT_CHA_24BPP_FORMAT1 BIT(1)
84 #define REG_LVDS_FMT_CHB_24BPP_FORMAT1 BIT(0)
85 #define REG_LVDS_VCOM 0x19
86 #define REG_LVDS_VCOM_CHA_LVDS_VOCM BIT(6)
87 #define REG_LVDS_VCOM_CHB_LVDS_VOCM BIT(4)
88 #define REG_LVDS_VCOM_CHA_LVDS_VOD_SWING(n) (((n) & 0x3) << 2)
89 #define REG_LVDS_VCOM_CHB_LVDS_VOD_SWING(n) ((n) & 0x3)
90 #define REG_LVDS_LANE 0x1a
91 #define REG_LVDS_LANE_EVEN_ODD_SWAP BIT(6)
92 #define REG_LVDS_LANE_CHA_REVERSE_LVDS BIT(5)
93 #define REG_LVDS_LANE_CHB_REVERSE_LVDS BIT(4)
94 #define REG_LVDS_LANE_CHA_LVDS_TERM BIT(1)
95 #define REG_LVDS_LANE_CHB_LVDS_TERM BIT(0)
96 #define REG_LVDS_CM 0x1b
97 #define REG_LVDS_CM_CHA_LVDS_CM_ADJUST(n) (((n) & 0x3) << 4)
98 #define REG_LVDS_CM_CHB_LVDS_CM_ADJUST(n) ((n) & 0x3)
100 #define REG_VID_CHA_ACTIVE_LINE_LENGTH_LOW 0x20
101 #define REG_VID_CHA_ACTIVE_LINE_LENGTH_HIGH 0x21
102 #define REG_VID_CHA_VERTICAL_DISPLAY_SIZE_LOW 0x24
103 #define REG_VID_CHA_VERTICAL_DISPLAY_SIZE_HIGH 0x25
104 #define REG_VID_CHA_SYNC_DELAY_LOW 0x28
105 #define REG_VID_CHA_SYNC_DELAY_HIGH 0x29
106 #define REG_VID_CHA_HSYNC_PULSE_WIDTH_LOW 0x2c
107 #define REG_VID_CHA_HSYNC_PULSE_WIDTH_HIGH 0x2d
108 #define REG_VID_CHA_VSYNC_PULSE_WIDTH_LOW 0x30
109 #define REG_VID_CHA_VSYNC_PULSE_WIDTH_HIGH 0x31
110 #define REG_VID_CHA_HORIZONTAL_BACK_PORCH 0x34
111 #define REG_VID_CHA_VERTICAL_BACK_PORCH 0x36
112 #define REG_VID_CHA_HORIZONTAL_FRONT_PORCH 0x38
113 #define REG_VID_CHA_VERTICAL_FRONT_PORCH 0x3a
114 #define REG_VID_CHA_TEST_PATTERN 0x3c
116 #define REG_IRQ_GLOBAL 0xe0
117 #define REG_IRQ_GLOBAL_IRQ_EN BIT(0)
118 #define REG_IRQ_EN 0xe1
119 #define REG_IRQ_EN_CHA_SYNCH_ERR_EN BIT(7)
120 #define REG_IRQ_EN_CHA_CRC_ERR_EN BIT(6)
121 #define REG_IRQ_EN_CHA_UNC_ECC_ERR_EN BIT(5)
122 #define REG_IRQ_EN_CHA_COR_ECC_ERR_EN BIT(4)
123 #define REG_IRQ_EN_CHA_LLP_ERR_EN BIT(3)
124 #define REG_IRQ_EN_CHA_SOT_BIT_ERR_EN BIT(2)
125 #define REG_IRQ_EN_CHA_PLL_UNLOCK_EN BIT(0)
126 #define REG_IRQ_STAT 0xe5
127 #define REG_IRQ_STAT_CHA_SYNCH_ERR BIT(7)
128 #define REG_IRQ_STAT_CHA_CRC_ERR BIT(6)
129 #define REG_IRQ_STAT_CHA_UNC_ECC_ERR BIT(5)
130 #define REG_IRQ_STAT_CHA_COR_ECC_ERR BIT(4)
131 #define REG_IRQ_STAT_CHA_LLP_ERR BIT(3)
132 #define REG_IRQ_STAT_CHA_SOT_BIT_ERR BIT(2)
133 #define REG_IRQ_STAT_CHA_PLL_UNLOCK BIT(0)
135 enum sn65dsi83_model {
141 struct drm_bridge bridge;
143 struct regmap *regmap;
144 struct mipi_dsi_device *dsi;
145 struct drm_bridge *panel_bridge;
146 struct gpio_desc *enable_gpio;
147 struct regulator *vcc;
149 bool lvds_dual_link_even_odd_swap;
152 static const struct regmap_range sn65dsi83_readable_ranges[] = {
153 regmap_reg_range(REG_ID(0), REG_ID(8)),
154 regmap_reg_range(REG_RC_LVDS_PLL, REG_RC_DSI_CLK),
155 regmap_reg_range(REG_RC_PLL_EN, REG_RC_PLL_EN),
156 regmap_reg_range(REG_DSI_LANE, REG_DSI_CLK),
157 regmap_reg_range(REG_LVDS_FMT, REG_LVDS_CM),
158 regmap_reg_range(REG_VID_CHA_ACTIVE_LINE_LENGTH_LOW,
159 REG_VID_CHA_ACTIVE_LINE_LENGTH_HIGH),
160 regmap_reg_range(REG_VID_CHA_VERTICAL_DISPLAY_SIZE_LOW,
161 REG_VID_CHA_VERTICAL_DISPLAY_SIZE_HIGH),
162 regmap_reg_range(REG_VID_CHA_SYNC_DELAY_LOW,
163 REG_VID_CHA_SYNC_DELAY_HIGH),
164 regmap_reg_range(REG_VID_CHA_HSYNC_PULSE_WIDTH_LOW,
165 REG_VID_CHA_HSYNC_PULSE_WIDTH_HIGH),
166 regmap_reg_range(REG_VID_CHA_VSYNC_PULSE_WIDTH_LOW,
167 REG_VID_CHA_VSYNC_PULSE_WIDTH_HIGH),
168 regmap_reg_range(REG_VID_CHA_HORIZONTAL_BACK_PORCH,
169 REG_VID_CHA_HORIZONTAL_BACK_PORCH),
170 regmap_reg_range(REG_VID_CHA_VERTICAL_BACK_PORCH,
171 REG_VID_CHA_VERTICAL_BACK_PORCH),
172 regmap_reg_range(REG_VID_CHA_HORIZONTAL_FRONT_PORCH,
173 REG_VID_CHA_HORIZONTAL_FRONT_PORCH),
174 regmap_reg_range(REG_VID_CHA_VERTICAL_FRONT_PORCH,
175 REG_VID_CHA_VERTICAL_FRONT_PORCH),
176 regmap_reg_range(REG_VID_CHA_TEST_PATTERN, REG_VID_CHA_TEST_PATTERN),
177 regmap_reg_range(REG_IRQ_GLOBAL, REG_IRQ_EN),
178 regmap_reg_range(REG_IRQ_STAT, REG_IRQ_STAT),
181 static const struct regmap_access_table sn65dsi83_readable_table = {
182 .yes_ranges = sn65dsi83_readable_ranges,
183 .n_yes_ranges = ARRAY_SIZE(sn65dsi83_readable_ranges),
186 static const struct regmap_range sn65dsi83_writeable_ranges[] = {
187 regmap_reg_range(REG_RC_RESET, REG_RC_DSI_CLK),
188 regmap_reg_range(REG_RC_PLL_EN, REG_RC_PLL_EN),
189 regmap_reg_range(REG_DSI_LANE, REG_DSI_CLK),
190 regmap_reg_range(REG_LVDS_FMT, REG_LVDS_CM),
191 regmap_reg_range(REG_VID_CHA_ACTIVE_LINE_LENGTH_LOW,
192 REG_VID_CHA_ACTIVE_LINE_LENGTH_HIGH),
193 regmap_reg_range(REG_VID_CHA_VERTICAL_DISPLAY_SIZE_LOW,
194 REG_VID_CHA_VERTICAL_DISPLAY_SIZE_HIGH),
195 regmap_reg_range(REG_VID_CHA_SYNC_DELAY_LOW,
196 REG_VID_CHA_SYNC_DELAY_HIGH),
197 regmap_reg_range(REG_VID_CHA_HSYNC_PULSE_WIDTH_LOW,
198 REG_VID_CHA_HSYNC_PULSE_WIDTH_HIGH),
199 regmap_reg_range(REG_VID_CHA_VSYNC_PULSE_WIDTH_LOW,
200 REG_VID_CHA_VSYNC_PULSE_WIDTH_HIGH),
201 regmap_reg_range(REG_VID_CHA_HORIZONTAL_BACK_PORCH,
202 REG_VID_CHA_HORIZONTAL_BACK_PORCH),
203 regmap_reg_range(REG_VID_CHA_VERTICAL_BACK_PORCH,
204 REG_VID_CHA_VERTICAL_BACK_PORCH),
205 regmap_reg_range(REG_VID_CHA_HORIZONTAL_FRONT_PORCH,
206 REG_VID_CHA_HORIZONTAL_FRONT_PORCH),
207 regmap_reg_range(REG_VID_CHA_VERTICAL_FRONT_PORCH,
208 REG_VID_CHA_VERTICAL_FRONT_PORCH),
209 regmap_reg_range(REG_VID_CHA_TEST_PATTERN, REG_VID_CHA_TEST_PATTERN),
210 regmap_reg_range(REG_IRQ_GLOBAL, REG_IRQ_EN),
211 regmap_reg_range(REG_IRQ_STAT, REG_IRQ_STAT),
214 static const struct regmap_access_table sn65dsi83_writeable_table = {
215 .yes_ranges = sn65dsi83_writeable_ranges,
216 .n_yes_ranges = ARRAY_SIZE(sn65dsi83_writeable_ranges),
219 static const struct regmap_range sn65dsi83_volatile_ranges[] = {
220 regmap_reg_range(REG_RC_RESET, REG_RC_RESET),
221 regmap_reg_range(REG_RC_LVDS_PLL, REG_RC_LVDS_PLL),
222 regmap_reg_range(REG_IRQ_STAT, REG_IRQ_STAT),
225 static const struct regmap_access_table sn65dsi83_volatile_table = {
226 .yes_ranges = sn65dsi83_volatile_ranges,
227 .n_yes_ranges = ARRAY_SIZE(sn65dsi83_volatile_ranges),
230 static const struct regmap_config sn65dsi83_regmap_config = {
233 .rd_table = &sn65dsi83_readable_table,
234 .wr_table = &sn65dsi83_writeable_table,
235 .volatile_table = &sn65dsi83_volatile_table,
236 .cache_type = REGCACHE_MAPLE,
237 .max_register = REG_IRQ_STAT,
240 static struct sn65dsi83 *bridge_to_sn65dsi83(struct drm_bridge *bridge)
242 return container_of(bridge, struct sn65dsi83, bridge);
245 static int sn65dsi83_attach(struct drm_bridge *bridge,
246 enum drm_bridge_attach_flags flags)
248 struct sn65dsi83 *ctx = bridge_to_sn65dsi83(bridge);
250 return drm_bridge_attach(bridge->encoder, ctx->panel_bridge,
251 &ctx->bridge, flags);
254 static void sn65dsi83_detach(struct drm_bridge *bridge)
256 struct sn65dsi83 *ctx = bridge_to_sn65dsi83(bridge);
264 static u8 sn65dsi83_get_lvds_range(struct sn65dsi83 *ctx,
265 const struct drm_display_mode *mode)
268 * The encoding of the LVDS_CLK_RANGE is as follows:
269 * 000 - 25 MHz <= LVDS_CLK < 37.5 MHz
270 * 001 - 37.5 MHz <= LVDS_CLK < 62.5 MHz
271 * 010 - 62.5 MHz <= LVDS_CLK < 87.5 MHz
272 * 011 - 87.5 MHz <= LVDS_CLK < 112.5 MHz
273 * 100 - 112.5 MHz <= LVDS_CLK < 137.5 MHz
274 * 101 - 137.5 MHz <= LVDS_CLK <= 154 MHz
275 * which is a range of 12.5MHz..162.5MHz in 50MHz steps, except that
276 * the ends of the ranges are clamped to the supported range. Since
277 * sn65dsi83_mode_valid() already filters the valid modes and limits
278 * the clock to 25..154 MHz, the range calculation can be simplified
281 int mode_clock = mode->clock;
283 if (ctx->lvds_dual_link)
286 return (mode_clock - 12500) / 25000;
289 static u8 sn65dsi83_get_dsi_range(struct sn65dsi83 *ctx,
290 const struct drm_display_mode *mode)
293 * The encoding of the CHA_DSI_CLK_RANGE is as follows:
294 * 0x00 through 0x07 - Reserved
295 * 0x08 - 40 <= DSI_CLK < 45 MHz
296 * 0x09 - 45 <= DSI_CLK < 50 MHz
298 * 0x63 - 495 <= DSI_CLK < 500 MHz
300 * 0x65 through 0xFF - Reserved
301 * which is DSI clock in 5 MHz steps, clamped to 40..500 MHz.
302 * The DSI clock are calculated as:
303 * DSI_CLK = mode clock * bpp / dsi_data_lanes / 2
304 * the 2 is there because the bus is DDR.
306 return DIV_ROUND_UP(clamp((unsigned int)mode->clock *
307 mipi_dsi_pixel_format_to_bpp(ctx->dsi->format) /
308 ctx->dsi->lanes / 2, 40000U, 500000U), 5000U);
311 static u8 sn65dsi83_get_dsi_div(struct sn65dsi83 *ctx)
313 /* The divider is (DSI_CLK / LVDS_CLK) - 1, which really is: */
314 unsigned int dsi_div = mipi_dsi_pixel_format_to_bpp(ctx->dsi->format);
316 dsi_div /= ctx->dsi->lanes;
318 if (!ctx->lvds_dual_link)
324 static void sn65dsi83_atomic_pre_enable(struct drm_bridge *bridge,
325 struct drm_bridge_state *old_bridge_state)
327 struct sn65dsi83 *ctx = bridge_to_sn65dsi83(bridge);
328 struct drm_atomic_state *state = old_bridge_state->base.state;
329 const struct drm_bridge_state *bridge_state;
330 const struct drm_crtc_state *crtc_state;
331 const struct drm_display_mode *mode;
332 struct drm_connector *connector;
333 struct drm_crtc *crtc;
334 bool lvds_format_24bpp;
335 bool lvds_format_jeida;
341 ret = regulator_enable(ctx->vcc);
343 dev_err(ctx->dev, "Failed to enable vcc: %d\n", ret);
348 gpiod_set_value_cansleep(ctx->enable_gpio, 1);
349 usleep_range(10000, 11000);
351 /* Get the LVDS format from the bridge state. */
352 bridge_state = drm_atomic_get_new_bridge_state(state, bridge);
354 switch (bridge_state->output_bus_cfg.format) {
355 case MEDIA_BUS_FMT_RGB666_1X7X3_SPWG:
356 lvds_format_24bpp = false;
357 lvds_format_jeida = true;
359 case MEDIA_BUS_FMT_RGB888_1X7X4_JEIDA:
360 lvds_format_24bpp = true;
361 lvds_format_jeida = true;
363 case MEDIA_BUS_FMT_RGB888_1X7X4_SPWG:
364 lvds_format_24bpp = true;
365 lvds_format_jeida = false;
369 * Some bridges still don't set the correct
370 * LVDS bus pixel format, use SPWG24 default
371 * format until those are fixed.
373 lvds_format_24bpp = true;
374 lvds_format_jeida = false;
376 "Unsupported LVDS bus format 0x%04x, please check output bridge driver. Falling back to SPWG24.\n",
377 bridge_state->output_bus_cfg.format);
382 * Retrieve the CRTC adjusted mode. This requires a little dance to go
383 * from the bridge to the encoder, to the connector and to the CRTC.
385 connector = drm_atomic_get_new_connector_for_encoder(state,
387 crtc = drm_atomic_get_new_connector_state(state, connector)->crtc;
388 crtc_state = drm_atomic_get_new_crtc_state(state, crtc);
389 mode = &crtc_state->adjusted_mode;
391 /* Clear reset, disable PLL */
392 regmap_write(ctx->regmap, REG_RC_RESET, 0x00);
393 regmap_write(ctx->regmap, REG_RC_PLL_EN, 0x00);
395 /* Reference clock derived from DSI link clock. */
396 regmap_write(ctx->regmap, REG_RC_LVDS_PLL,
397 REG_RC_LVDS_PLL_LVDS_CLK_RANGE(sn65dsi83_get_lvds_range(ctx, mode)) |
398 REG_RC_LVDS_PLL_HS_CLK_SRC_DPHY);
399 regmap_write(ctx->regmap, REG_DSI_CLK,
400 REG_DSI_CLK_CHA_DSI_CLK_RANGE(sn65dsi83_get_dsi_range(ctx, mode)));
401 regmap_write(ctx->regmap, REG_RC_DSI_CLK,
402 REG_RC_DSI_CLK_DSI_CLK_DIVIDER(sn65dsi83_get_dsi_div(ctx)));
404 /* Set number of DSI lanes and LVDS link config. */
405 regmap_write(ctx->regmap, REG_DSI_LANE,
406 REG_DSI_LANE_DSI_CHANNEL_MODE_SINGLE |
407 REG_DSI_LANE_CHA_DSI_LANES(~(ctx->dsi->lanes - 1)) |
408 /* CHB is DSI85-only, set to default on DSI83/DSI84 */
409 REG_DSI_LANE_CHB_DSI_LANES(3));
410 /* No equalization. */
411 regmap_write(ctx->regmap, REG_DSI_EQ, 0x00);
413 /* Set up sync signal polarity. */
414 val = (mode->flags & DRM_MODE_FLAG_NHSYNC ?
415 REG_LVDS_FMT_HS_NEG_POLARITY : 0) |
416 (mode->flags & DRM_MODE_FLAG_NVSYNC ?
417 REG_LVDS_FMT_VS_NEG_POLARITY : 0);
419 /* Set up bits-per-pixel, 18bpp or 24bpp. */
420 if (lvds_format_24bpp) {
421 val |= REG_LVDS_FMT_CHA_24BPP_MODE;
422 if (ctx->lvds_dual_link)
423 val |= REG_LVDS_FMT_CHB_24BPP_MODE;
426 /* Set up LVDS format, JEIDA/Format 1 or SPWG/Format 2 */
427 if (lvds_format_jeida) {
428 val |= REG_LVDS_FMT_CHA_24BPP_FORMAT1;
429 if (ctx->lvds_dual_link)
430 val |= REG_LVDS_FMT_CHB_24BPP_FORMAT1;
433 /* Set up LVDS output config (DSI84,DSI85) */
434 if (!ctx->lvds_dual_link)
435 val |= REG_LVDS_FMT_LVDS_LINK_CFG;
437 regmap_write(ctx->regmap, REG_LVDS_FMT, val);
438 regmap_write(ctx->regmap, REG_LVDS_VCOM, 0x05);
439 regmap_write(ctx->regmap, REG_LVDS_LANE,
440 (ctx->lvds_dual_link_even_odd_swap ?
441 REG_LVDS_LANE_EVEN_ODD_SWAP : 0) |
442 REG_LVDS_LANE_CHA_LVDS_TERM |
443 REG_LVDS_LANE_CHB_LVDS_TERM);
444 regmap_write(ctx->regmap, REG_LVDS_CM, 0x00);
446 le16val = cpu_to_le16(mode->hdisplay);
447 regmap_bulk_write(ctx->regmap, REG_VID_CHA_ACTIVE_LINE_LENGTH_LOW,
449 le16val = cpu_to_le16(mode->vdisplay);
450 regmap_bulk_write(ctx->regmap, REG_VID_CHA_VERTICAL_DISPLAY_SIZE_LOW,
452 /* 32 + 1 pixel clock to ensure proper operation */
453 le16val = cpu_to_le16(32 + 1);
454 regmap_bulk_write(ctx->regmap, REG_VID_CHA_SYNC_DELAY_LOW, &le16val, 2);
455 le16val = cpu_to_le16(mode->hsync_end - mode->hsync_start);
456 regmap_bulk_write(ctx->regmap, REG_VID_CHA_HSYNC_PULSE_WIDTH_LOW,
458 le16val = cpu_to_le16(mode->vsync_end - mode->vsync_start);
459 regmap_bulk_write(ctx->regmap, REG_VID_CHA_VSYNC_PULSE_WIDTH_LOW,
461 regmap_write(ctx->regmap, REG_VID_CHA_HORIZONTAL_BACK_PORCH,
462 mode->htotal - mode->hsync_end);
463 regmap_write(ctx->regmap, REG_VID_CHA_VERTICAL_BACK_PORCH,
464 mode->vtotal - mode->vsync_end);
465 regmap_write(ctx->regmap, REG_VID_CHA_HORIZONTAL_FRONT_PORCH,
466 mode->hsync_start - mode->hdisplay);
467 regmap_write(ctx->regmap, REG_VID_CHA_VERTICAL_FRONT_PORCH,
468 mode->vsync_start - mode->vdisplay);
469 regmap_write(ctx->regmap, REG_VID_CHA_TEST_PATTERN, 0x00);
472 regmap_write(ctx->regmap, REG_RC_PLL_EN, REG_RC_PLL_EN_PLL_EN);
473 usleep_range(3000, 4000);
474 ret = regmap_read_poll_timeout(ctx->regmap, REG_RC_LVDS_PLL, pval,
475 pval & REG_RC_LVDS_PLL_PLL_EN_STAT,
478 dev_err(ctx->dev, "failed to lock PLL, ret=%i\n", ret);
479 /* On failure, disable PLL again and exit. */
480 regmap_write(ctx->regmap, REG_RC_PLL_EN, 0x00);
481 regulator_disable(ctx->vcc);
485 /* Trigger reset after CSR register update. */
486 regmap_write(ctx->regmap, REG_RC_RESET, REG_RC_RESET_SOFT_RESET);
488 /* Wait for 10ms after soft reset as specified in datasheet */
489 usleep_range(10000, 12000);
492 static void sn65dsi83_atomic_enable(struct drm_bridge *bridge,
493 struct drm_bridge_state *old_bridge_state)
495 struct sn65dsi83 *ctx = bridge_to_sn65dsi83(bridge);
498 /* Clear all errors that got asserted during initialization. */
499 regmap_read(ctx->regmap, REG_IRQ_STAT, &pval);
500 regmap_write(ctx->regmap, REG_IRQ_STAT, pval);
502 /* Wait for 1ms and check for errors in status register */
503 usleep_range(1000, 1100);
504 regmap_read(ctx->regmap, REG_IRQ_STAT, &pval);
506 dev_err(ctx->dev, "Unexpected link status 0x%02x\n", pval);
509 static void sn65dsi83_atomic_disable(struct drm_bridge *bridge,
510 struct drm_bridge_state *old_bridge_state)
512 struct sn65dsi83 *ctx = bridge_to_sn65dsi83(bridge);
515 /* Put the chip in reset, pull EN line low, and assure 10ms reset low timing. */
516 gpiod_set_value_cansleep(ctx->enable_gpio, 0);
517 usleep_range(10000, 11000);
519 ret = regulator_disable(ctx->vcc);
521 dev_err(ctx->dev, "Failed to disable vcc: %d\n", ret);
523 regcache_mark_dirty(ctx->regmap);
526 static enum drm_mode_status
527 sn65dsi83_mode_valid(struct drm_bridge *bridge,
528 const struct drm_display_info *info,
529 const struct drm_display_mode *mode)
531 /* LVDS output clock range 25..154 MHz */
532 if (mode->clock < 25000)
533 return MODE_CLOCK_LOW;
534 if (mode->clock > 154000)
535 return MODE_CLOCK_HIGH;
540 #define MAX_INPUT_SEL_FORMATS 1
543 sn65dsi83_atomic_get_input_bus_fmts(struct drm_bridge *bridge,
544 struct drm_bridge_state *bridge_state,
545 struct drm_crtc_state *crtc_state,
546 struct drm_connector_state *conn_state,
548 unsigned int *num_input_fmts)
554 input_fmts = kcalloc(MAX_INPUT_SEL_FORMATS, sizeof(*input_fmts),
559 /* This is the DSI-end bus format */
560 input_fmts[0] = MEDIA_BUS_FMT_RGB888_1X24;
566 static const struct drm_bridge_funcs sn65dsi83_funcs = {
567 .attach = sn65dsi83_attach,
568 .detach = sn65dsi83_detach,
569 .atomic_enable = sn65dsi83_atomic_enable,
570 .atomic_pre_enable = sn65dsi83_atomic_pre_enable,
571 .atomic_disable = sn65dsi83_atomic_disable,
572 .mode_valid = sn65dsi83_mode_valid,
574 .atomic_duplicate_state = drm_atomic_helper_bridge_duplicate_state,
575 .atomic_destroy_state = drm_atomic_helper_bridge_destroy_state,
576 .atomic_reset = drm_atomic_helper_bridge_reset,
577 .atomic_get_input_bus_fmts = sn65dsi83_atomic_get_input_bus_fmts,
580 static int sn65dsi83_parse_dt(struct sn65dsi83 *ctx, enum sn65dsi83_model model)
582 struct drm_bridge *panel_bridge;
583 struct device *dev = ctx->dev;
585 ctx->lvds_dual_link = false;
586 ctx->lvds_dual_link_even_odd_swap = false;
587 if (model != MODEL_SN65DSI83) {
588 struct device_node *port2, *port3;
591 port2 = of_graph_get_port_by_id(dev->of_node, 2);
592 port3 = of_graph_get_port_by_id(dev->of_node, 3);
593 dual_link = drm_of_lvds_get_dual_link_pixel_order(port2, port3);
597 if (dual_link == DRM_LVDS_DUAL_LINK_ODD_EVEN_PIXELS) {
598 ctx->lvds_dual_link = true;
599 /* Odd pixels to LVDS Channel A, even pixels to B */
600 ctx->lvds_dual_link_even_odd_swap = false;
601 } else if (dual_link == DRM_LVDS_DUAL_LINK_EVEN_ODD_PIXELS) {
602 ctx->lvds_dual_link = true;
603 /* Even pixels to LVDS Channel A, odd pixels to B */
604 ctx->lvds_dual_link_even_odd_swap = true;
608 panel_bridge = devm_drm_of_get_bridge(dev, dev->of_node, 2, 0);
609 if (IS_ERR(panel_bridge))
610 return PTR_ERR(panel_bridge);
612 ctx->panel_bridge = panel_bridge;
614 ctx->vcc = devm_regulator_get(dev, "vcc");
615 if (IS_ERR(ctx->vcc))
616 return dev_err_probe(dev, PTR_ERR(ctx->vcc),
617 "Failed to get supply 'vcc'\n");
622 static int sn65dsi83_host_attach(struct sn65dsi83 *ctx)
624 struct device *dev = ctx->dev;
625 struct device_node *host_node;
626 struct device_node *endpoint;
627 struct mipi_dsi_device *dsi;
628 struct mipi_dsi_host *host;
629 const struct mipi_dsi_device_info info = {
636 endpoint = of_graph_get_endpoint_by_regs(dev->of_node, 0, -1);
637 dsi_lanes = drm_of_get_data_lanes_count(endpoint, 1, 4);
638 host_node = of_graph_get_remote_port_parent(endpoint);
639 host = of_find_mipi_dsi_host_by_node(host_node);
640 of_node_put(host_node);
641 of_node_put(endpoint);
644 return -EPROBE_DEFER;
649 dsi = devm_mipi_dsi_device_register_full(dev, host, &info);
651 return dev_err_probe(dev, PTR_ERR(dsi),
652 "failed to create dsi device\n");
656 dsi->lanes = dsi_lanes;
657 dsi->format = MIPI_DSI_FMT_RGB888;
658 dsi->mode_flags = MIPI_DSI_MODE_VIDEO | MIPI_DSI_MODE_VIDEO_BURST |
659 MIPI_DSI_MODE_VIDEO_NO_HFP | MIPI_DSI_MODE_VIDEO_NO_HBP |
660 MIPI_DSI_MODE_VIDEO_NO_HSA | MIPI_DSI_MODE_NO_EOT_PACKET;
662 ret = devm_mipi_dsi_attach(dev, dsi);
664 dev_err(dev, "failed to attach dsi to host: %d\n", ret);
671 static int sn65dsi83_probe(struct i2c_client *client)
673 const struct i2c_device_id *id = i2c_client_get_device_id(client);
674 struct device *dev = &client->dev;
675 enum sn65dsi83_model model;
676 struct sn65dsi83 *ctx;
679 ctx = devm_kzalloc(dev, sizeof(*ctx), GFP_KERNEL);
686 model = (enum sn65dsi83_model)(uintptr_t)
687 of_device_get_match_data(dev);
689 model = id->driver_data;
692 /* Put the chip in reset, pull EN line low, and assure 10ms reset low timing. */
693 ctx->enable_gpio = devm_gpiod_get_optional(ctx->dev, "enable",
695 if (IS_ERR(ctx->enable_gpio))
696 return dev_err_probe(dev, PTR_ERR(ctx->enable_gpio), "failed to get enable GPIO\n");
698 usleep_range(10000, 11000);
700 ret = sn65dsi83_parse_dt(ctx, model);
704 ctx->regmap = devm_regmap_init_i2c(client, &sn65dsi83_regmap_config);
705 if (IS_ERR(ctx->regmap))
706 return dev_err_probe(dev, PTR_ERR(ctx->regmap), "failed to get regmap\n");
708 dev_set_drvdata(dev, ctx);
709 i2c_set_clientdata(client, ctx);
711 ctx->bridge.funcs = &sn65dsi83_funcs;
712 ctx->bridge.of_node = dev->of_node;
713 ctx->bridge.pre_enable_prev_first = true;
714 drm_bridge_add(&ctx->bridge);
716 ret = sn65dsi83_host_attach(ctx);
718 dev_err_probe(dev, ret, "failed to attach DSI host\n");
719 goto err_remove_bridge;
725 drm_bridge_remove(&ctx->bridge);
729 static void sn65dsi83_remove(struct i2c_client *client)
731 struct sn65dsi83 *ctx = i2c_get_clientdata(client);
733 drm_bridge_remove(&ctx->bridge);
736 static struct i2c_device_id sn65dsi83_id[] = {
737 { "ti,sn65dsi83", MODEL_SN65DSI83 },
738 { "ti,sn65dsi84", MODEL_SN65DSI84 },
741 MODULE_DEVICE_TABLE(i2c, sn65dsi83_id);
743 static const struct of_device_id sn65dsi83_match_table[] = {
744 { .compatible = "ti,sn65dsi83", .data = (void *)MODEL_SN65DSI83 },
745 { .compatible = "ti,sn65dsi84", .data = (void *)MODEL_SN65DSI84 },
748 MODULE_DEVICE_TABLE(of, sn65dsi83_match_table);
750 static struct i2c_driver sn65dsi83_driver = {
751 .probe = sn65dsi83_probe,
752 .remove = sn65dsi83_remove,
753 .id_table = sn65dsi83_id,
756 .of_match_table = sn65dsi83_match_table,
759 module_i2c_driver(sn65dsi83_driver);
762 MODULE_DESCRIPTION("TI SN65DSI83 DSI to LVDS bridge driver");
763 MODULE_LICENSE("GPL v2");