6 * May be copied or modified under the terms of the GNU General Public
7 * License. See linux/COPYING for more information.
9 * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and
12 * Theory of operation:
14 * At the lowest level, there is the standard driver for the CD/DVD device,
15 * typically ide-cd.c or sr.c. This driver can handle read and write requests,
16 * but it doesn't know anything about the special restrictions that apply to
17 * packet writing. One restriction is that write requests must be aligned to
18 * packet boundaries on the physical media, and the size of a write request
19 * must be equal to the packet size. Another restriction is that a
20 * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read
21 * command, if the previous command was a write.
23 * The purpose of the packet writing driver is to hide these restrictions from
24 * higher layers, such as file systems, and present a block device that can be
25 * randomly read and written using 2kB-sized blocks.
27 * The lowest layer in the packet writing driver is the packet I/O scheduler.
28 * Its data is defined by the struct packet_iosched and includes two bio
29 * queues with pending read and write requests. These queues are processed
30 * by the pkt_iosched_process_queue() function. The write requests in this
31 * queue are already properly aligned and sized. This layer is responsible for
32 * issuing the flush cache commands and scheduling the I/O in a good order.
34 * The next layer transforms unaligned write requests to aligned writes. This
35 * transformation requires reading missing pieces of data from the underlying
36 * block device, assembling the pieces to full packets and queuing them to the
37 * packet I/O scheduler.
39 * At the top layer there is a custom make_request_fn function that forwards
40 * read requests directly to the iosched queue and puts write requests in the
41 * unaligned write queue. A kernel thread performs the necessary read
42 * gathering to convert the unaligned writes to aligned writes and then feeds
43 * them to the packet I/O scheduler.
45 *************************************************************************/
47 #include <linux/pktcdvd.h>
48 #include <linux/module.h>
49 #include <linux/types.h>
50 #include <linux/kernel.h>
51 #include <linux/kthread.h>
52 #include <linux/errno.h>
53 #include <linux/spinlock.h>
54 #include <linux/file.h>
55 #include <linux/proc_fs.h>
56 #include <linux/seq_file.h>
57 #include <linux/miscdevice.h>
58 #include <linux/freezer.h>
59 #include <linux/mutex.h>
60 #include <scsi/scsi_cmnd.h>
61 #include <scsi/scsi_ioctl.h>
62 #include <scsi/scsi.h>
63 #include <linux/debugfs.h>
64 #include <linux/device.h>
66 #include <asm/uaccess.h>
68 #define DRIVER_NAME "pktcdvd"
71 #define DPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
73 #define DPRINTK(fmt, args...)
77 #define VPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
79 #define VPRINTK(fmt, args...)
82 #define MAX_SPEED 0xffff
84 #define ZONE(sector, pd) (((sector) + (pd)->offset) & ~((pd)->settings.size - 1))
86 static struct pktcdvd_device *pkt_devs[MAX_WRITERS];
87 static struct proc_dir_entry *pkt_proc;
88 static int pktdev_major;
89 static int write_congestion_on = PKT_WRITE_CONGESTION_ON;
90 static int write_congestion_off = PKT_WRITE_CONGESTION_OFF;
91 static struct mutex ctl_mutex; /* Serialize open/close/setup/teardown */
92 static mempool_t *psd_pool;
94 static struct class *class_pktcdvd = NULL; /* /sys/class/pktcdvd */
95 static struct dentry *pkt_debugfs_root = NULL; /* /sys/kernel/debug/pktcdvd */
97 /* forward declaration */
98 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev);
99 static int pkt_remove_dev(dev_t pkt_dev);
100 static int pkt_seq_show(struct seq_file *m, void *p);
105 * create and register a pktcdvd kernel object.
107 static struct pktcdvd_kobj* pkt_kobj_create(struct pktcdvd_device *pd,
109 struct kobject* parent,
110 struct kobj_type* ktype)
112 struct pktcdvd_kobj *p;
115 p = kzalloc(sizeof(*p), GFP_KERNEL);
119 error = kobject_init_and_add(&p->kobj, ktype, parent, "%s", name);
121 kobject_put(&p->kobj);
124 kobject_uevent(&p->kobj, KOBJ_ADD);
128 * remove a pktcdvd kernel object.
130 static void pkt_kobj_remove(struct pktcdvd_kobj *p)
133 kobject_put(&p->kobj);
136 * default release function for pktcdvd kernel objects.
138 static void pkt_kobj_release(struct kobject *kobj)
140 kfree(to_pktcdvdkobj(kobj));
144 /**********************************************************
146 * sysfs interface for pktcdvd
149 **********************************************************/
151 #define DEF_ATTR(_obj,_name,_mode) \
152 static struct attribute _obj = { .name = _name, .mode = _mode }
154 /**********************************************************
155 /sys/class/pktcdvd/pktcdvd[0-7]/
158 stat/packets_finished
163 write_queue/congestion_off
164 write_queue/congestion_on
165 **********************************************************/
167 DEF_ATTR(kobj_pkt_attr_st1, "reset", 0200);
168 DEF_ATTR(kobj_pkt_attr_st2, "packets_started", 0444);
169 DEF_ATTR(kobj_pkt_attr_st3, "packets_finished", 0444);
170 DEF_ATTR(kobj_pkt_attr_st4, "kb_written", 0444);
171 DEF_ATTR(kobj_pkt_attr_st5, "kb_read", 0444);
172 DEF_ATTR(kobj_pkt_attr_st6, "kb_read_gather", 0444);
174 static struct attribute *kobj_pkt_attrs_stat[] = {
184 DEF_ATTR(kobj_pkt_attr_wq1, "size", 0444);
185 DEF_ATTR(kobj_pkt_attr_wq2, "congestion_off", 0644);
186 DEF_ATTR(kobj_pkt_attr_wq3, "congestion_on", 0644);
188 static struct attribute *kobj_pkt_attrs_wqueue[] = {
195 static ssize_t kobj_pkt_show(struct kobject *kobj,
196 struct attribute *attr, char *data)
198 struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
201 if (strcmp(attr->name, "packets_started") == 0) {
202 n = sprintf(data, "%lu\n", pd->stats.pkt_started);
204 } else if (strcmp(attr->name, "packets_finished") == 0) {
205 n = sprintf(data, "%lu\n", pd->stats.pkt_ended);
207 } else if (strcmp(attr->name, "kb_written") == 0) {
208 n = sprintf(data, "%lu\n", pd->stats.secs_w >> 1);
210 } else if (strcmp(attr->name, "kb_read") == 0) {
211 n = sprintf(data, "%lu\n", pd->stats.secs_r >> 1);
213 } else if (strcmp(attr->name, "kb_read_gather") == 0) {
214 n = sprintf(data, "%lu\n", pd->stats.secs_rg >> 1);
216 } else if (strcmp(attr->name, "size") == 0) {
217 spin_lock(&pd->lock);
218 v = pd->bio_queue_size;
219 spin_unlock(&pd->lock);
220 n = sprintf(data, "%d\n", v);
222 } else if (strcmp(attr->name, "congestion_off") == 0) {
223 spin_lock(&pd->lock);
224 v = pd->write_congestion_off;
225 spin_unlock(&pd->lock);
226 n = sprintf(data, "%d\n", v);
228 } else if (strcmp(attr->name, "congestion_on") == 0) {
229 spin_lock(&pd->lock);
230 v = pd->write_congestion_on;
231 spin_unlock(&pd->lock);
232 n = sprintf(data, "%d\n", v);
237 static void init_write_congestion_marks(int* lo, int* hi)
241 *hi = min(*hi, 1000000);
245 *lo = min(*lo, *hi - 100);
254 static ssize_t kobj_pkt_store(struct kobject *kobj,
255 struct attribute *attr,
256 const char *data, size_t len)
258 struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
261 if (strcmp(attr->name, "reset") == 0 && len > 0) {
262 pd->stats.pkt_started = 0;
263 pd->stats.pkt_ended = 0;
264 pd->stats.secs_w = 0;
265 pd->stats.secs_rg = 0;
266 pd->stats.secs_r = 0;
268 } else if (strcmp(attr->name, "congestion_off") == 0
269 && sscanf(data, "%d", &val) == 1) {
270 spin_lock(&pd->lock);
271 pd->write_congestion_off = val;
272 init_write_congestion_marks(&pd->write_congestion_off,
273 &pd->write_congestion_on);
274 spin_unlock(&pd->lock);
276 } else if (strcmp(attr->name, "congestion_on") == 0
277 && sscanf(data, "%d", &val) == 1) {
278 spin_lock(&pd->lock);
279 pd->write_congestion_on = val;
280 init_write_congestion_marks(&pd->write_congestion_off,
281 &pd->write_congestion_on);
282 spin_unlock(&pd->lock);
287 static struct sysfs_ops kobj_pkt_ops = {
288 .show = kobj_pkt_show,
289 .store = kobj_pkt_store
291 static struct kobj_type kobj_pkt_type_stat = {
292 .release = pkt_kobj_release,
293 .sysfs_ops = &kobj_pkt_ops,
294 .default_attrs = kobj_pkt_attrs_stat
296 static struct kobj_type kobj_pkt_type_wqueue = {
297 .release = pkt_kobj_release,
298 .sysfs_ops = &kobj_pkt_ops,
299 .default_attrs = kobj_pkt_attrs_wqueue
302 static void pkt_sysfs_dev_new(struct pktcdvd_device *pd)
305 pd->dev = device_create(class_pktcdvd, NULL, MKDEV(0, 0), NULL,
311 pd->kobj_stat = pkt_kobj_create(pd, "stat",
313 &kobj_pkt_type_stat);
314 pd->kobj_wqueue = pkt_kobj_create(pd, "write_queue",
316 &kobj_pkt_type_wqueue);
320 static void pkt_sysfs_dev_remove(struct pktcdvd_device *pd)
322 pkt_kobj_remove(pd->kobj_stat);
323 pkt_kobj_remove(pd->kobj_wqueue);
325 device_unregister(pd->dev);
329 /********************************************************************
332 remove unmap packet dev
333 device_map show mappings
334 *******************************************************************/
336 static void class_pktcdvd_release(struct class *cls)
340 static ssize_t class_pktcdvd_show_map(struct class *c, char *data)
344 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
345 for (idx = 0; idx < MAX_WRITERS; idx++) {
346 struct pktcdvd_device *pd = pkt_devs[idx];
349 n += sprintf(data+n, "%s %u:%u %u:%u\n",
351 MAJOR(pd->pkt_dev), MINOR(pd->pkt_dev),
352 MAJOR(pd->bdev->bd_dev),
353 MINOR(pd->bdev->bd_dev));
355 mutex_unlock(&ctl_mutex);
359 static ssize_t class_pktcdvd_store_add(struct class *c, const char *buf,
362 unsigned int major, minor;
364 if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
365 /* pkt_setup_dev() expects caller to hold reference to self */
366 if (!try_module_get(THIS_MODULE))
369 pkt_setup_dev(MKDEV(major, minor), NULL);
371 module_put(THIS_MODULE);
379 static ssize_t class_pktcdvd_store_remove(struct class *c, const char *buf,
382 unsigned int major, minor;
383 if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
384 pkt_remove_dev(MKDEV(major, minor));
390 static struct class_attribute class_pktcdvd_attrs[] = {
391 __ATTR(add, 0200, NULL, class_pktcdvd_store_add),
392 __ATTR(remove, 0200, NULL, class_pktcdvd_store_remove),
393 __ATTR(device_map, 0444, class_pktcdvd_show_map, NULL),
398 static int pkt_sysfs_init(void)
403 * create control files in sysfs
404 * /sys/class/pktcdvd/...
406 class_pktcdvd = kzalloc(sizeof(*class_pktcdvd), GFP_KERNEL);
409 class_pktcdvd->name = DRIVER_NAME;
410 class_pktcdvd->owner = THIS_MODULE;
411 class_pktcdvd->class_release = class_pktcdvd_release;
412 class_pktcdvd->class_attrs = class_pktcdvd_attrs;
413 ret = class_register(class_pktcdvd);
415 kfree(class_pktcdvd);
416 class_pktcdvd = NULL;
417 printk(DRIVER_NAME": failed to create class pktcdvd\n");
423 static void pkt_sysfs_cleanup(void)
426 class_destroy(class_pktcdvd);
427 class_pktcdvd = NULL;
430 /********************************************************************
433 /sys/kernel/debug/pktcdvd[0-7]/
436 *******************************************************************/
438 static int pkt_debugfs_seq_show(struct seq_file *m, void *p)
440 return pkt_seq_show(m, p);
443 static int pkt_debugfs_fops_open(struct inode *inode, struct file *file)
445 return single_open(file, pkt_debugfs_seq_show, inode->i_private);
448 static const struct file_operations debug_fops = {
449 .open = pkt_debugfs_fops_open,
452 .release = single_release,
453 .owner = THIS_MODULE,
456 static void pkt_debugfs_dev_new(struct pktcdvd_device *pd)
458 if (!pkt_debugfs_root)
460 pd->dfs_f_info = NULL;
461 pd->dfs_d_root = debugfs_create_dir(pd->name, pkt_debugfs_root);
462 if (IS_ERR(pd->dfs_d_root)) {
463 pd->dfs_d_root = NULL;
466 pd->dfs_f_info = debugfs_create_file("info", S_IRUGO,
467 pd->dfs_d_root, pd, &debug_fops);
468 if (IS_ERR(pd->dfs_f_info)) {
469 pd->dfs_f_info = NULL;
474 static void pkt_debugfs_dev_remove(struct pktcdvd_device *pd)
476 if (!pkt_debugfs_root)
479 debugfs_remove(pd->dfs_f_info);
480 pd->dfs_f_info = NULL;
482 debugfs_remove(pd->dfs_d_root);
483 pd->dfs_d_root = NULL;
486 static void pkt_debugfs_init(void)
488 pkt_debugfs_root = debugfs_create_dir(DRIVER_NAME, NULL);
489 if (IS_ERR(pkt_debugfs_root)) {
490 pkt_debugfs_root = NULL;
495 static void pkt_debugfs_cleanup(void)
497 if (!pkt_debugfs_root)
499 debugfs_remove(pkt_debugfs_root);
500 pkt_debugfs_root = NULL;
503 /* ----------------------------------------------------------*/
506 static void pkt_bio_finished(struct pktcdvd_device *pd)
508 BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0);
509 if (atomic_dec_and_test(&pd->cdrw.pending_bios)) {
510 VPRINTK(DRIVER_NAME": queue empty\n");
511 atomic_set(&pd->iosched.attention, 1);
512 wake_up(&pd->wqueue);
516 static void pkt_bio_destructor(struct bio *bio)
518 kfree(bio->bi_io_vec);
522 static struct bio *pkt_bio_alloc(int nr_iovecs)
524 struct bio_vec *bvl = NULL;
527 bio = kmalloc(sizeof(struct bio), GFP_KERNEL);
532 bvl = kcalloc(nr_iovecs, sizeof(struct bio_vec), GFP_KERNEL);
536 bio->bi_max_vecs = nr_iovecs;
537 bio->bi_io_vec = bvl;
538 bio->bi_destructor = pkt_bio_destructor;
549 * Allocate a packet_data struct
551 static struct packet_data *pkt_alloc_packet_data(int frames)
554 struct packet_data *pkt;
556 pkt = kzalloc(sizeof(struct packet_data), GFP_KERNEL);
560 pkt->frames = frames;
561 pkt->w_bio = pkt_bio_alloc(frames);
565 for (i = 0; i < frames / FRAMES_PER_PAGE; i++) {
566 pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
571 spin_lock_init(&pkt->lock);
572 bio_list_init(&pkt->orig_bios);
574 for (i = 0; i < frames; i++) {
575 struct bio *bio = pkt_bio_alloc(1);
578 pkt->r_bios[i] = bio;
584 for (i = 0; i < frames; i++) {
585 struct bio *bio = pkt->r_bios[i];
591 for (i = 0; i < frames / FRAMES_PER_PAGE; i++)
593 __free_page(pkt->pages[i]);
602 * Free a packet_data struct
604 static void pkt_free_packet_data(struct packet_data *pkt)
608 for (i = 0; i < pkt->frames; i++) {
609 struct bio *bio = pkt->r_bios[i];
613 for (i = 0; i < pkt->frames / FRAMES_PER_PAGE; i++)
614 __free_page(pkt->pages[i]);
619 static void pkt_shrink_pktlist(struct pktcdvd_device *pd)
621 struct packet_data *pkt, *next;
623 BUG_ON(!list_empty(&pd->cdrw.pkt_active_list));
625 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) {
626 pkt_free_packet_data(pkt);
628 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
631 static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets)
633 struct packet_data *pkt;
635 BUG_ON(!list_empty(&pd->cdrw.pkt_free_list));
637 while (nr_packets > 0) {
638 pkt = pkt_alloc_packet_data(pd->settings.size >> 2);
640 pkt_shrink_pktlist(pd);
643 pkt->id = nr_packets;
645 list_add(&pkt->list, &pd->cdrw.pkt_free_list);
651 static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node)
653 struct rb_node *n = rb_next(&node->rb_node);
656 return rb_entry(n, struct pkt_rb_node, rb_node);
659 static void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node)
661 rb_erase(&node->rb_node, &pd->bio_queue);
662 mempool_free(node, pd->rb_pool);
663 pd->bio_queue_size--;
664 BUG_ON(pd->bio_queue_size < 0);
668 * Find the first node in the pd->bio_queue rb tree with a starting sector >= s.
670 static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s)
672 struct rb_node *n = pd->bio_queue.rb_node;
673 struct rb_node *next;
674 struct pkt_rb_node *tmp;
677 BUG_ON(pd->bio_queue_size > 0);
682 tmp = rb_entry(n, struct pkt_rb_node, rb_node);
683 if (s <= tmp->bio->bi_sector)
692 if (s > tmp->bio->bi_sector) {
693 tmp = pkt_rbtree_next(tmp);
697 BUG_ON(s > tmp->bio->bi_sector);
702 * Insert a node into the pd->bio_queue rb tree.
704 static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node)
706 struct rb_node **p = &pd->bio_queue.rb_node;
707 struct rb_node *parent = NULL;
708 sector_t s = node->bio->bi_sector;
709 struct pkt_rb_node *tmp;
713 tmp = rb_entry(parent, struct pkt_rb_node, rb_node);
714 if (s < tmp->bio->bi_sector)
719 rb_link_node(&node->rb_node, parent, p);
720 rb_insert_color(&node->rb_node, &pd->bio_queue);
721 pd->bio_queue_size++;
725 * Send a packet_command to the underlying block device and
726 * wait for completion.
728 static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc)
730 struct request_queue *q = bdev_get_queue(pd->bdev);
734 rq = blk_get_request(q, (cgc->data_direction == CGC_DATA_WRITE) ?
735 WRITE : READ, __GFP_WAIT);
738 if (blk_rq_map_kern(q, rq, cgc->buffer, cgc->buflen, __GFP_WAIT))
742 rq->cmd_len = COMMAND_SIZE(cgc->cmd[0]);
743 memcpy(rq->cmd, cgc->cmd, CDROM_PACKET_SIZE);
746 rq->cmd_type = REQ_TYPE_BLOCK_PC;
747 rq->cmd_flags |= REQ_HARDBARRIER;
749 rq->cmd_flags |= REQ_QUIET;
751 blk_execute_rq(rq->q, pd->bdev->bd_disk, rq, 0);
760 * A generic sense dump / resolve mechanism should be implemented across
761 * all ATAPI + SCSI devices.
763 static void pkt_dump_sense(struct packet_command *cgc)
765 static char *info[9] = { "No sense", "Recovered error", "Not ready",
766 "Medium error", "Hardware error", "Illegal request",
767 "Unit attention", "Data protect", "Blank check" };
769 struct request_sense *sense = cgc->sense;
771 printk(DRIVER_NAME":");
772 for (i = 0; i < CDROM_PACKET_SIZE; i++)
773 printk(" %02x", cgc->cmd[i]);
777 printk("no sense\n");
781 printk("sense %02x.%02x.%02x", sense->sense_key, sense->asc, sense->ascq);
783 if (sense->sense_key > 8) {
784 printk(" (INVALID)\n");
788 printk(" (%s)\n", info[sense->sense_key]);
792 * flush the drive cache to media
794 static int pkt_flush_cache(struct pktcdvd_device *pd)
796 struct packet_command cgc;
798 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
799 cgc.cmd[0] = GPCMD_FLUSH_CACHE;
803 * the IMMED bit -- we default to not setting it, although that
804 * would allow a much faster close, this is safer
809 return pkt_generic_packet(pd, &cgc);
813 * speed is given as the normal factor, e.g. 4 for 4x
815 static noinline_for_stack int pkt_set_speed(struct pktcdvd_device *pd,
816 unsigned write_speed, unsigned read_speed)
818 struct packet_command cgc;
819 struct request_sense sense;
822 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
824 cgc.cmd[0] = GPCMD_SET_SPEED;
825 cgc.cmd[2] = (read_speed >> 8) & 0xff;
826 cgc.cmd[3] = read_speed & 0xff;
827 cgc.cmd[4] = (write_speed >> 8) & 0xff;
828 cgc.cmd[5] = write_speed & 0xff;
830 if ((ret = pkt_generic_packet(pd, &cgc)))
831 pkt_dump_sense(&cgc);
837 * Queue a bio for processing by the low-level CD device. Must be called
838 * from process context.
840 static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio)
842 spin_lock(&pd->iosched.lock);
843 if (bio_data_dir(bio) == READ)
844 bio_list_add(&pd->iosched.read_queue, bio);
846 bio_list_add(&pd->iosched.write_queue, bio);
847 spin_unlock(&pd->iosched.lock);
849 atomic_set(&pd->iosched.attention, 1);
850 wake_up(&pd->wqueue);
854 * Process the queued read/write requests. This function handles special
855 * requirements for CDRW drives:
856 * - A cache flush command must be inserted before a read request if the
857 * previous request was a write.
858 * - Switching between reading and writing is slow, so don't do it more often
860 * - Optimize for throughput at the expense of latency. This means that streaming
861 * writes will never be interrupted by a read, but if the drive has to seek
862 * before the next write, switch to reading instead if there are any pending
864 * - Set the read speed according to current usage pattern. When only reading
865 * from the device, it's best to use the highest possible read speed, but
866 * when switching often between reading and writing, it's better to have the
867 * same read and write speeds.
869 static void pkt_iosched_process_queue(struct pktcdvd_device *pd)
872 if (atomic_read(&pd->iosched.attention) == 0)
874 atomic_set(&pd->iosched.attention, 0);
878 int reads_queued, writes_queued;
880 spin_lock(&pd->iosched.lock);
881 reads_queued = !bio_list_empty(&pd->iosched.read_queue);
882 writes_queued = !bio_list_empty(&pd->iosched.write_queue);
883 spin_unlock(&pd->iosched.lock);
885 if (!reads_queued && !writes_queued)
888 if (pd->iosched.writing) {
889 int need_write_seek = 1;
890 spin_lock(&pd->iosched.lock);
891 bio = bio_list_peek(&pd->iosched.write_queue);
892 spin_unlock(&pd->iosched.lock);
893 if (bio && (bio->bi_sector == pd->iosched.last_write))
895 if (need_write_seek && reads_queued) {
896 if (atomic_read(&pd->cdrw.pending_bios) > 0) {
897 VPRINTK(DRIVER_NAME": write, waiting\n");
901 pd->iosched.writing = 0;
904 if (!reads_queued && writes_queued) {
905 if (atomic_read(&pd->cdrw.pending_bios) > 0) {
906 VPRINTK(DRIVER_NAME": read, waiting\n");
909 pd->iosched.writing = 1;
913 spin_lock(&pd->iosched.lock);
914 if (pd->iosched.writing)
915 bio = bio_list_pop(&pd->iosched.write_queue);
917 bio = bio_list_pop(&pd->iosched.read_queue);
918 spin_unlock(&pd->iosched.lock);
923 if (bio_data_dir(bio) == READ)
924 pd->iosched.successive_reads += bio->bi_size >> 10;
926 pd->iosched.successive_reads = 0;
927 pd->iosched.last_write = bio->bi_sector + bio_sectors(bio);
929 if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) {
930 if (pd->read_speed == pd->write_speed) {
931 pd->read_speed = MAX_SPEED;
932 pkt_set_speed(pd, pd->write_speed, pd->read_speed);
935 if (pd->read_speed != pd->write_speed) {
936 pd->read_speed = pd->write_speed;
937 pkt_set_speed(pd, pd->write_speed, pd->read_speed);
941 atomic_inc(&pd->cdrw.pending_bios);
942 generic_make_request(bio);
947 * Special care is needed if the underlying block device has a small
948 * max_phys_segments value.
950 static int pkt_set_segment_merging(struct pktcdvd_device *pd, struct request_queue *q)
952 if ((pd->settings.size << 9) / CD_FRAMESIZE
953 <= queue_max_segments(q)) {
955 * The cdrom device can handle one segment/frame
957 clear_bit(PACKET_MERGE_SEGS, &pd->flags);
959 } else if ((pd->settings.size << 9) / PAGE_SIZE
960 <= queue_max_segments(q)) {
962 * We can handle this case at the expense of some extra memory
963 * copies during write operations
965 set_bit(PACKET_MERGE_SEGS, &pd->flags);
968 printk(DRIVER_NAME": cdrom max_phys_segments too small\n");
974 * Copy CD_FRAMESIZE bytes from src_bio into a destination page
976 static void pkt_copy_bio_data(struct bio *src_bio, int seg, int offs, struct page *dst_page, int dst_offs)
978 unsigned int copy_size = CD_FRAMESIZE;
980 while (copy_size > 0) {
981 struct bio_vec *src_bvl = bio_iovec_idx(src_bio, seg);
982 void *vfrom = kmap_atomic(src_bvl->bv_page, KM_USER0) +
983 src_bvl->bv_offset + offs;
984 void *vto = page_address(dst_page) + dst_offs;
985 int len = min_t(int, copy_size, src_bvl->bv_len - offs);
988 memcpy(vto, vfrom, len);
989 kunmap_atomic(vfrom, KM_USER0);
999 * Copy all data for this packet to pkt->pages[], so that
1000 * a) The number of required segments for the write bio is minimized, which
1001 * is necessary for some scsi controllers.
1002 * b) The data can be used as cache to avoid read requests if we receive a
1003 * new write request for the same zone.
1005 static void pkt_make_local_copy(struct packet_data *pkt, struct bio_vec *bvec)
1009 /* Copy all data to pkt->pages[] */
1012 for (f = 0; f < pkt->frames; f++) {
1013 if (bvec[f].bv_page != pkt->pages[p]) {
1014 void *vfrom = kmap_atomic(bvec[f].bv_page, KM_USER0) + bvec[f].bv_offset;
1015 void *vto = page_address(pkt->pages[p]) + offs;
1016 memcpy(vto, vfrom, CD_FRAMESIZE);
1017 kunmap_atomic(vfrom, KM_USER0);
1018 bvec[f].bv_page = pkt->pages[p];
1019 bvec[f].bv_offset = offs;
1021 BUG_ON(bvec[f].bv_offset != offs);
1023 offs += CD_FRAMESIZE;
1024 if (offs >= PAGE_SIZE) {
1031 static void pkt_end_io_read(struct bio *bio, int err)
1033 struct packet_data *pkt = bio->bi_private;
1034 struct pktcdvd_device *pd = pkt->pd;
1037 VPRINTK("pkt_end_io_read: bio=%p sec0=%llx sec=%llx err=%d\n", bio,
1038 (unsigned long long)pkt->sector, (unsigned long long)bio->bi_sector, err);
1041 atomic_inc(&pkt->io_errors);
1042 if (atomic_dec_and_test(&pkt->io_wait)) {
1043 atomic_inc(&pkt->run_sm);
1044 wake_up(&pd->wqueue);
1046 pkt_bio_finished(pd);
1049 static void pkt_end_io_packet_write(struct bio *bio, int err)
1051 struct packet_data *pkt = bio->bi_private;
1052 struct pktcdvd_device *pd = pkt->pd;
1055 VPRINTK("pkt_end_io_packet_write: id=%d, err=%d\n", pkt->id, err);
1057 pd->stats.pkt_ended++;
1059 pkt_bio_finished(pd);
1060 atomic_dec(&pkt->io_wait);
1061 atomic_inc(&pkt->run_sm);
1062 wake_up(&pd->wqueue);
1066 * Schedule reads for the holes in a packet
1068 static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1070 int frames_read = 0;
1073 char written[PACKET_MAX_SIZE];
1075 BUG_ON(bio_list_empty(&pkt->orig_bios));
1077 atomic_set(&pkt->io_wait, 0);
1078 atomic_set(&pkt->io_errors, 0);
1081 * Figure out which frames we need to read before we can write.
1083 memset(written, 0, sizeof(written));
1084 spin_lock(&pkt->lock);
1085 bio_list_for_each(bio, &pkt->orig_bios) {
1086 int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9);
1087 int num_frames = bio->bi_size / CD_FRAMESIZE;
1088 pd->stats.secs_w += num_frames * (CD_FRAMESIZE >> 9);
1089 BUG_ON(first_frame < 0);
1090 BUG_ON(first_frame + num_frames > pkt->frames);
1091 for (f = first_frame; f < first_frame + num_frames; f++)
1094 spin_unlock(&pkt->lock);
1096 if (pkt->cache_valid) {
1097 VPRINTK("pkt_gather_data: zone %llx cached\n",
1098 (unsigned long long)pkt->sector);
1103 * Schedule reads for missing parts of the packet.
1105 for (f = 0; f < pkt->frames; f++) {
1106 struct bio_vec *vec;
1111 bio = pkt->r_bios[f];
1112 vec = bio->bi_io_vec;
1114 bio->bi_max_vecs = 1;
1115 bio->bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9);
1116 bio->bi_bdev = pd->bdev;
1117 bio->bi_end_io = pkt_end_io_read;
1118 bio->bi_private = pkt;
1119 bio->bi_io_vec = vec;
1120 bio->bi_destructor = pkt_bio_destructor;
1122 p = (f * CD_FRAMESIZE) / PAGE_SIZE;
1123 offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1124 VPRINTK("pkt_gather_data: Adding frame %d, page:%p offs:%d\n",
1125 f, pkt->pages[p], offset);
1126 if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset))
1129 atomic_inc(&pkt->io_wait);
1131 pkt_queue_bio(pd, bio);
1136 VPRINTK("pkt_gather_data: need %d frames for zone %llx\n",
1137 frames_read, (unsigned long long)pkt->sector);
1138 pd->stats.pkt_started++;
1139 pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9);
1143 * Find a packet matching zone, or the least recently used packet if
1144 * there is no match.
1146 static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone)
1148 struct packet_data *pkt;
1150 list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) {
1151 if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) {
1152 list_del_init(&pkt->list);
1153 if (pkt->sector != zone)
1154 pkt->cache_valid = 0;
1162 static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1164 if (pkt->cache_valid) {
1165 list_add(&pkt->list, &pd->cdrw.pkt_free_list);
1167 list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list);
1172 * recover a failed write, query for relocation if possible
1174 * returns 1 if recovery is possible, or 0 if not
1177 static int pkt_start_recovery(struct packet_data *pkt)
1180 * FIXME. We need help from the file system to implement
1181 * recovery handling.
1185 struct request *rq = pkt->rq;
1186 struct pktcdvd_device *pd = rq->rq_disk->private_data;
1187 struct block_device *pkt_bdev;
1188 struct super_block *sb = NULL;
1189 unsigned long old_block, new_block;
1190 sector_t new_sector;
1192 pkt_bdev = bdget(kdev_t_to_nr(pd->pkt_dev));
1194 sb = get_super(pkt_bdev);
1201 if (!sb->s_op || !sb->s_op->relocate_blocks)
1204 old_block = pkt->sector / (CD_FRAMESIZE >> 9);
1205 if (sb->s_op->relocate_blocks(sb, old_block, &new_block))
1208 new_sector = new_block * (CD_FRAMESIZE >> 9);
1209 pkt->sector = new_sector;
1211 pkt->bio->bi_sector = new_sector;
1212 pkt->bio->bi_next = NULL;
1213 pkt->bio->bi_flags = 1 << BIO_UPTODATE;
1214 pkt->bio->bi_idx = 0;
1216 BUG_ON(pkt->bio->bi_rw != (1 << BIO_RW));
1217 BUG_ON(pkt->bio->bi_vcnt != pkt->frames);
1218 BUG_ON(pkt->bio->bi_size != pkt->frames * CD_FRAMESIZE);
1219 BUG_ON(pkt->bio->bi_end_io != pkt_end_io_packet_write);
1220 BUG_ON(pkt->bio->bi_private != pkt);
1231 static inline void pkt_set_state(struct packet_data *pkt, enum packet_data_state state)
1233 #if PACKET_DEBUG > 1
1234 static const char *state_name[] = {
1235 "IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED"
1237 enum packet_data_state old_state = pkt->state;
1238 VPRINTK("pkt %2d : s=%6llx %s -> %s\n", pkt->id, (unsigned long long)pkt->sector,
1239 state_name[old_state], state_name[state]);
1245 * Scan the work queue to see if we can start a new packet.
1246 * returns non-zero if any work was done.
1248 static int pkt_handle_queue(struct pktcdvd_device *pd)
1250 struct packet_data *pkt, *p;
1251 struct bio *bio = NULL;
1252 sector_t zone = 0; /* Suppress gcc warning */
1253 struct pkt_rb_node *node, *first_node;
1257 VPRINTK("handle_queue\n");
1259 atomic_set(&pd->scan_queue, 0);
1261 if (list_empty(&pd->cdrw.pkt_free_list)) {
1262 VPRINTK("handle_queue: no pkt\n");
1267 * Try to find a zone we are not already working on.
1269 spin_lock(&pd->lock);
1270 first_node = pkt_rbtree_find(pd, pd->current_sector);
1272 n = rb_first(&pd->bio_queue);
1274 first_node = rb_entry(n, struct pkt_rb_node, rb_node);
1279 zone = ZONE(bio->bi_sector, pd);
1280 list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) {
1281 if (p->sector == zone) {
1288 node = pkt_rbtree_next(node);
1290 n = rb_first(&pd->bio_queue);
1292 node = rb_entry(n, struct pkt_rb_node, rb_node);
1294 if (node == first_node)
1297 spin_unlock(&pd->lock);
1299 VPRINTK("handle_queue: no bio\n");
1303 pkt = pkt_get_packet_data(pd, zone);
1305 pd->current_sector = zone + pd->settings.size;
1307 BUG_ON(pkt->frames != pd->settings.size >> 2);
1308 pkt->write_size = 0;
1311 * Scan work queue for bios in the same zone and link them
1314 spin_lock(&pd->lock);
1315 VPRINTK("pkt_handle_queue: looking for zone %llx\n", (unsigned long long)zone);
1316 while ((node = pkt_rbtree_find(pd, zone)) != NULL) {
1318 VPRINTK("pkt_handle_queue: found zone=%llx\n",
1319 (unsigned long long)ZONE(bio->bi_sector, pd));
1320 if (ZONE(bio->bi_sector, pd) != zone)
1322 pkt_rbtree_erase(pd, node);
1323 spin_lock(&pkt->lock);
1324 bio_list_add(&pkt->orig_bios, bio);
1325 pkt->write_size += bio->bi_size / CD_FRAMESIZE;
1326 spin_unlock(&pkt->lock);
1328 /* check write congestion marks, and if bio_queue_size is
1329 below, wake up any waiters */
1330 wakeup = (pd->write_congestion_on > 0
1331 && pd->bio_queue_size <= pd->write_congestion_off);
1332 spin_unlock(&pd->lock);
1334 clear_bdi_congested(&pd->disk->queue->backing_dev_info,
1338 pkt->sleep_time = max(PACKET_WAIT_TIME, 1);
1339 pkt_set_state(pkt, PACKET_WAITING_STATE);
1340 atomic_set(&pkt->run_sm, 1);
1342 spin_lock(&pd->cdrw.active_list_lock);
1343 list_add(&pkt->list, &pd->cdrw.pkt_active_list);
1344 spin_unlock(&pd->cdrw.active_list_lock);
1350 * Assemble a bio to write one packet and queue the bio for processing
1351 * by the underlying block device.
1353 static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt)
1358 struct bio_vec *bvec = pkt->w_bio->bi_io_vec;
1360 for (f = 0; f < pkt->frames; f++) {
1361 bvec[f].bv_page = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE];
1362 bvec[f].bv_offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1366 * Fill-in bvec with data from orig_bios.
1369 spin_lock(&pkt->lock);
1370 bio_list_for_each(bio, &pkt->orig_bios) {
1371 int segment = bio->bi_idx;
1373 int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9);
1374 int num_frames = bio->bi_size / CD_FRAMESIZE;
1375 BUG_ON(first_frame < 0);
1376 BUG_ON(first_frame + num_frames > pkt->frames);
1377 for (f = first_frame; f < first_frame + num_frames; f++) {
1378 struct bio_vec *src_bvl = bio_iovec_idx(bio, segment);
1380 while (src_offs >= src_bvl->bv_len) {
1381 src_offs -= src_bvl->bv_len;
1383 BUG_ON(segment >= bio->bi_vcnt);
1384 src_bvl = bio_iovec_idx(bio, segment);
1387 if (src_bvl->bv_len - src_offs >= CD_FRAMESIZE) {
1388 bvec[f].bv_page = src_bvl->bv_page;
1389 bvec[f].bv_offset = src_bvl->bv_offset + src_offs;
1391 pkt_copy_bio_data(bio, segment, src_offs,
1392 bvec[f].bv_page, bvec[f].bv_offset);
1394 src_offs += CD_FRAMESIZE;
1398 pkt_set_state(pkt, PACKET_WRITE_WAIT_STATE);
1399 spin_unlock(&pkt->lock);
1401 VPRINTK("pkt_start_write: Writing %d frames for zone %llx\n",
1402 frames_write, (unsigned long long)pkt->sector);
1403 BUG_ON(frames_write != pkt->write_size);
1405 if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames)) {
1406 pkt_make_local_copy(pkt, bvec);
1407 pkt->cache_valid = 1;
1409 pkt->cache_valid = 0;
1412 /* Start the write request */
1413 bio_init(pkt->w_bio);
1414 pkt->w_bio->bi_max_vecs = PACKET_MAX_SIZE;
1415 pkt->w_bio->bi_sector = pkt->sector;
1416 pkt->w_bio->bi_bdev = pd->bdev;
1417 pkt->w_bio->bi_end_io = pkt_end_io_packet_write;
1418 pkt->w_bio->bi_private = pkt;
1419 pkt->w_bio->bi_io_vec = bvec;
1420 pkt->w_bio->bi_destructor = pkt_bio_destructor;
1421 for (f = 0; f < pkt->frames; f++)
1422 if (!bio_add_page(pkt->w_bio, bvec[f].bv_page, CD_FRAMESIZE, bvec[f].bv_offset))
1424 VPRINTK(DRIVER_NAME": vcnt=%d\n", pkt->w_bio->bi_vcnt);
1426 atomic_set(&pkt->io_wait, 1);
1427 pkt->w_bio->bi_rw = WRITE;
1428 pkt_queue_bio(pd, pkt->w_bio);
1431 static void pkt_finish_packet(struct packet_data *pkt, int uptodate)
1436 pkt->cache_valid = 0;
1438 /* Finish all bios corresponding to this packet */
1439 while ((bio = bio_list_pop(&pkt->orig_bios)))
1440 bio_endio(bio, uptodate ? 0 : -EIO);
1443 static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt)
1447 VPRINTK("run_state_machine: pkt %d\n", pkt->id);
1450 switch (pkt->state) {
1451 case PACKET_WAITING_STATE:
1452 if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0))
1455 pkt->sleep_time = 0;
1456 pkt_gather_data(pd, pkt);
1457 pkt_set_state(pkt, PACKET_READ_WAIT_STATE);
1460 case PACKET_READ_WAIT_STATE:
1461 if (atomic_read(&pkt->io_wait) > 0)
1464 if (atomic_read(&pkt->io_errors) > 0) {
1465 pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1467 pkt_start_write(pd, pkt);
1471 case PACKET_WRITE_WAIT_STATE:
1472 if (atomic_read(&pkt->io_wait) > 0)
1475 if (test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags)) {
1476 pkt_set_state(pkt, PACKET_FINISHED_STATE);
1478 pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1482 case PACKET_RECOVERY_STATE:
1483 if (pkt_start_recovery(pkt)) {
1484 pkt_start_write(pd, pkt);
1486 VPRINTK("No recovery possible\n");
1487 pkt_set_state(pkt, PACKET_FINISHED_STATE);
1491 case PACKET_FINISHED_STATE:
1492 uptodate = test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags);
1493 pkt_finish_packet(pkt, uptodate);
1503 static void pkt_handle_packets(struct pktcdvd_device *pd)
1505 struct packet_data *pkt, *next;
1507 VPRINTK("pkt_handle_packets\n");
1510 * Run state machine for active packets
1512 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1513 if (atomic_read(&pkt->run_sm) > 0) {
1514 atomic_set(&pkt->run_sm, 0);
1515 pkt_run_state_machine(pd, pkt);
1520 * Move no longer active packets to the free list
1522 spin_lock(&pd->cdrw.active_list_lock);
1523 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) {
1524 if (pkt->state == PACKET_FINISHED_STATE) {
1525 list_del(&pkt->list);
1526 pkt_put_packet_data(pd, pkt);
1527 pkt_set_state(pkt, PACKET_IDLE_STATE);
1528 atomic_set(&pd->scan_queue, 1);
1531 spin_unlock(&pd->cdrw.active_list_lock);
1534 static void pkt_count_states(struct pktcdvd_device *pd, int *states)
1536 struct packet_data *pkt;
1539 for (i = 0; i < PACKET_NUM_STATES; i++)
1542 spin_lock(&pd->cdrw.active_list_lock);
1543 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1544 states[pkt->state]++;
1546 spin_unlock(&pd->cdrw.active_list_lock);
1550 * kcdrwd is woken up when writes have been queued for one of our
1551 * registered devices
1553 static int kcdrwd(void *foobar)
1555 struct pktcdvd_device *pd = foobar;
1556 struct packet_data *pkt;
1557 long min_sleep_time, residue;
1559 set_user_nice(current, -20);
1563 DECLARE_WAITQUEUE(wait, current);
1566 * Wait until there is something to do
1568 add_wait_queue(&pd->wqueue, &wait);
1570 set_current_state(TASK_INTERRUPTIBLE);
1572 /* Check if we need to run pkt_handle_queue */
1573 if (atomic_read(&pd->scan_queue) > 0)
1576 /* Check if we need to run the state machine for some packet */
1577 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1578 if (atomic_read(&pkt->run_sm) > 0)
1582 /* Check if we need to process the iosched queues */
1583 if (atomic_read(&pd->iosched.attention) != 0)
1586 /* Otherwise, go to sleep */
1587 if (PACKET_DEBUG > 1) {
1588 int states[PACKET_NUM_STATES];
1589 pkt_count_states(pd, states);
1590 VPRINTK("kcdrwd: i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
1591 states[0], states[1], states[2], states[3],
1592 states[4], states[5]);
1595 min_sleep_time = MAX_SCHEDULE_TIMEOUT;
1596 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1597 if (pkt->sleep_time && pkt->sleep_time < min_sleep_time)
1598 min_sleep_time = pkt->sleep_time;
1601 generic_unplug_device(bdev_get_queue(pd->bdev));
1603 VPRINTK("kcdrwd: sleeping\n");
1604 residue = schedule_timeout(min_sleep_time);
1605 VPRINTK("kcdrwd: wake up\n");
1607 /* make swsusp happy with our thread */
1610 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1611 if (!pkt->sleep_time)
1613 pkt->sleep_time -= min_sleep_time - residue;
1614 if (pkt->sleep_time <= 0) {
1615 pkt->sleep_time = 0;
1616 atomic_inc(&pkt->run_sm);
1620 if (kthread_should_stop())
1624 set_current_state(TASK_RUNNING);
1625 remove_wait_queue(&pd->wqueue, &wait);
1627 if (kthread_should_stop())
1631 * if pkt_handle_queue returns true, we can queue
1634 while (pkt_handle_queue(pd))
1638 * Handle packet state machine
1640 pkt_handle_packets(pd);
1643 * Handle iosched queues
1645 pkt_iosched_process_queue(pd);
1651 static void pkt_print_settings(struct pktcdvd_device *pd)
1653 printk(DRIVER_NAME": %s packets, ", pd->settings.fp ? "Fixed" : "Variable");
1654 printk("%u blocks, ", pd->settings.size >> 2);
1655 printk("Mode-%c disc\n", pd->settings.block_mode == 8 ? '1' : '2');
1658 static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control)
1660 memset(cgc->cmd, 0, sizeof(cgc->cmd));
1662 cgc->cmd[0] = GPCMD_MODE_SENSE_10;
1663 cgc->cmd[2] = page_code | (page_control << 6);
1664 cgc->cmd[7] = cgc->buflen >> 8;
1665 cgc->cmd[8] = cgc->buflen & 0xff;
1666 cgc->data_direction = CGC_DATA_READ;
1667 return pkt_generic_packet(pd, cgc);
1670 static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc)
1672 memset(cgc->cmd, 0, sizeof(cgc->cmd));
1673 memset(cgc->buffer, 0, 2);
1674 cgc->cmd[0] = GPCMD_MODE_SELECT_10;
1675 cgc->cmd[1] = 0x10; /* PF */
1676 cgc->cmd[7] = cgc->buflen >> 8;
1677 cgc->cmd[8] = cgc->buflen & 0xff;
1678 cgc->data_direction = CGC_DATA_WRITE;
1679 return pkt_generic_packet(pd, cgc);
1682 static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di)
1684 struct packet_command cgc;
1687 /* set up command and get the disc info */
1688 init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ);
1689 cgc.cmd[0] = GPCMD_READ_DISC_INFO;
1690 cgc.cmd[8] = cgc.buflen = 2;
1693 if ((ret = pkt_generic_packet(pd, &cgc)))
1696 /* not all drives have the same disc_info length, so requeue
1697 * packet with the length the drive tells us it can supply
1699 cgc.buflen = be16_to_cpu(di->disc_information_length) +
1700 sizeof(di->disc_information_length);
1702 if (cgc.buflen > sizeof(disc_information))
1703 cgc.buflen = sizeof(disc_information);
1705 cgc.cmd[8] = cgc.buflen;
1706 return pkt_generic_packet(pd, &cgc);
1709 static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti)
1711 struct packet_command cgc;
1714 init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ);
1715 cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO;
1716 cgc.cmd[1] = type & 3;
1717 cgc.cmd[4] = (track & 0xff00) >> 8;
1718 cgc.cmd[5] = track & 0xff;
1722 if ((ret = pkt_generic_packet(pd, &cgc)))
1725 cgc.buflen = be16_to_cpu(ti->track_information_length) +
1726 sizeof(ti->track_information_length);
1728 if (cgc.buflen > sizeof(track_information))
1729 cgc.buflen = sizeof(track_information);
1731 cgc.cmd[8] = cgc.buflen;
1732 return pkt_generic_packet(pd, &cgc);
1735 static noinline_for_stack int pkt_get_last_written(struct pktcdvd_device *pd,
1738 disc_information di;
1739 track_information ti;
1743 if ((ret = pkt_get_disc_info(pd, &di)))
1746 last_track = (di.last_track_msb << 8) | di.last_track_lsb;
1747 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1750 /* if this track is blank, try the previous. */
1753 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1757 /* if last recorded field is valid, return it. */
1759 *last_written = be32_to_cpu(ti.last_rec_address);
1761 /* make it up instead */
1762 *last_written = be32_to_cpu(ti.track_start) +
1763 be32_to_cpu(ti.track_size);
1765 *last_written -= (be32_to_cpu(ti.free_blocks) + 7);
1771 * write mode select package based on pd->settings
1773 static noinline_for_stack int pkt_set_write_settings(struct pktcdvd_device *pd)
1775 struct packet_command cgc;
1776 struct request_sense sense;
1777 write_param_page *wp;
1781 /* doesn't apply to DVD+RW or DVD-RAM */
1782 if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12))
1785 memset(buffer, 0, sizeof(buffer));
1786 init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ);
1788 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1789 pkt_dump_sense(&cgc);
1793 size = 2 + ((buffer[0] << 8) | (buffer[1] & 0xff));
1794 pd->mode_offset = (buffer[6] << 8) | (buffer[7] & 0xff);
1795 if (size > sizeof(buffer))
1796 size = sizeof(buffer);
1801 init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ);
1803 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1804 pkt_dump_sense(&cgc);
1809 * write page is offset header + block descriptor length
1811 wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset];
1813 wp->fp = pd->settings.fp;
1814 wp->track_mode = pd->settings.track_mode;
1815 wp->write_type = pd->settings.write_type;
1816 wp->data_block_type = pd->settings.block_mode;
1818 wp->multi_session = 0;
1820 #ifdef PACKET_USE_LS
1825 if (wp->data_block_type == PACKET_BLOCK_MODE1) {
1826 wp->session_format = 0;
1828 } else if (wp->data_block_type == PACKET_BLOCK_MODE2) {
1829 wp->session_format = 0x20;
1833 memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1);
1839 printk(DRIVER_NAME": write mode wrong %d\n", wp->data_block_type);
1842 wp->packet_size = cpu_to_be32(pd->settings.size >> 2);
1844 cgc.buflen = cgc.cmd[8] = size;
1845 if ((ret = pkt_mode_select(pd, &cgc))) {
1846 pkt_dump_sense(&cgc);
1850 pkt_print_settings(pd);
1855 * 1 -- we can write to this track, 0 -- we can't
1857 static int pkt_writable_track(struct pktcdvd_device *pd, track_information *ti)
1859 switch (pd->mmc3_profile) {
1860 case 0x1a: /* DVD+RW */
1861 case 0x12: /* DVD-RAM */
1862 /* The track is always writable on DVD+RW/DVD-RAM */
1868 if (!ti->packet || !ti->fp)
1872 * "good" settings as per Mt Fuji.
1874 if (ti->rt == 0 && ti->blank == 0)
1877 if (ti->rt == 0 && ti->blank == 1)
1880 if (ti->rt == 1 && ti->blank == 0)
1883 printk(DRIVER_NAME": bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet);
1888 * 1 -- we can write to this disc, 0 -- we can't
1890 static int pkt_writable_disc(struct pktcdvd_device *pd, disc_information *di)
1892 switch (pd->mmc3_profile) {
1893 case 0x0a: /* CD-RW */
1894 case 0xffff: /* MMC3 not supported */
1896 case 0x1a: /* DVD+RW */
1897 case 0x13: /* DVD-RW */
1898 case 0x12: /* DVD-RAM */
1901 VPRINTK(DRIVER_NAME": Wrong disc profile (%x)\n", pd->mmc3_profile);
1906 * for disc type 0xff we should probably reserve a new track.
1907 * but i'm not sure, should we leave this to user apps? probably.
1909 if (di->disc_type == 0xff) {
1910 printk(DRIVER_NAME": Unknown disc. No track?\n");
1914 if (di->disc_type != 0x20 && di->disc_type != 0) {
1915 printk(DRIVER_NAME": Wrong disc type (%x)\n", di->disc_type);
1919 if (di->erasable == 0) {
1920 printk(DRIVER_NAME": Disc not erasable\n");
1924 if (di->border_status == PACKET_SESSION_RESERVED) {
1925 printk(DRIVER_NAME": Can't write to last track (reserved)\n");
1932 static noinline_for_stack int pkt_probe_settings(struct pktcdvd_device *pd)
1934 struct packet_command cgc;
1935 unsigned char buf[12];
1936 disc_information di;
1937 track_information ti;
1940 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1941 cgc.cmd[0] = GPCMD_GET_CONFIGURATION;
1943 ret = pkt_generic_packet(pd, &cgc);
1944 pd->mmc3_profile = ret ? 0xffff : buf[6] << 8 | buf[7];
1946 memset(&di, 0, sizeof(disc_information));
1947 memset(&ti, 0, sizeof(track_information));
1949 if ((ret = pkt_get_disc_info(pd, &di))) {
1950 printk("failed get_disc\n");
1954 if (!pkt_writable_disc(pd, &di))
1957 pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR;
1959 track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */
1960 if ((ret = pkt_get_track_info(pd, track, 1, &ti))) {
1961 printk(DRIVER_NAME": failed get_track\n");
1965 if (!pkt_writable_track(pd, &ti)) {
1966 printk(DRIVER_NAME": can't write to this track\n");
1971 * we keep packet size in 512 byte units, makes it easier to
1972 * deal with request calculations.
1974 pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2;
1975 if (pd->settings.size == 0) {
1976 printk(DRIVER_NAME": detected zero packet size!\n");
1979 if (pd->settings.size > PACKET_MAX_SECTORS) {
1980 printk(DRIVER_NAME": packet size is too big\n");
1983 pd->settings.fp = ti.fp;
1984 pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1);
1987 pd->nwa = be32_to_cpu(ti.next_writable);
1988 set_bit(PACKET_NWA_VALID, &pd->flags);
1992 * in theory we could use lra on -RW media as well and just zero
1993 * blocks that haven't been written yet, but in practice that
1994 * is just a no-go. we'll use that for -R, naturally.
1997 pd->lra = be32_to_cpu(ti.last_rec_address);
1998 set_bit(PACKET_LRA_VALID, &pd->flags);
2000 pd->lra = 0xffffffff;
2001 set_bit(PACKET_LRA_VALID, &pd->flags);
2007 pd->settings.link_loss = 7;
2008 pd->settings.write_type = 0; /* packet */
2009 pd->settings.track_mode = ti.track_mode;
2012 * mode1 or mode2 disc
2014 switch (ti.data_mode) {
2016 pd->settings.block_mode = PACKET_BLOCK_MODE1;
2019 pd->settings.block_mode = PACKET_BLOCK_MODE2;
2022 printk(DRIVER_NAME": unknown data mode\n");
2029 * enable/disable write caching on drive
2031 static noinline_for_stack int pkt_write_caching(struct pktcdvd_device *pd,
2034 struct packet_command cgc;
2035 struct request_sense sense;
2036 unsigned char buf[64];
2039 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
2041 cgc.buflen = pd->mode_offset + 12;
2044 * caching mode page might not be there, so quiet this command
2048 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0)))
2051 buf[pd->mode_offset + 10] |= (!!set << 2);
2053 cgc.buflen = cgc.cmd[8] = 2 + ((buf[0] << 8) | (buf[1] & 0xff));
2054 ret = pkt_mode_select(pd, &cgc);
2056 printk(DRIVER_NAME": write caching control failed\n");
2057 pkt_dump_sense(&cgc);
2058 } else if (!ret && set)
2059 printk(DRIVER_NAME": enabled write caching on %s\n", pd->name);
2063 static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag)
2065 struct packet_command cgc;
2067 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
2068 cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL;
2069 cgc.cmd[4] = lockflag ? 1 : 0;
2070 return pkt_generic_packet(pd, &cgc);
2074 * Returns drive maximum write speed
2076 static noinline_for_stack int pkt_get_max_speed(struct pktcdvd_device *pd,
2077 unsigned *write_speed)
2079 struct packet_command cgc;
2080 struct request_sense sense;
2081 unsigned char buf[256+18];
2082 unsigned char *cap_buf;
2085 cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset];
2086 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN);
2089 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
2091 cgc.buflen = pd->mode_offset + cap_buf[1] + 2 +
2092 sizeof(struct mode_page_header);
2093 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
2095 pkt_dump_sense(&cgc);
2100 offset = 20; /* Obsoleted field, used by older drives */
2101 if (cap_buf[1] >= 28)
2102 offset = 28; /* Current write speed selected */
2103 if (cap_buf[1] >= 30) {
2104 /* If the drive reports at least one "Logical Unit Write
2105 * Speed Performance Descriptor Block", use the information
2106 * in the first block. (contains the highest speed)
2108 int num_spdb = (cap_buf[30] << 8) + cap_buf[31];
2113 *write_speed = (cap_buf[offset] << 8) | cap_buf[offset + 1];
2117 /* These tables from cdrecord - I don't have orange book */
2118 /* standard speed CD-RW (1-4x) */
2119 static char clv_to_speed[16] = {
2120 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
2121 0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2123 /* high speed CD-RW (-10x) */
2124 static char hs_clv_to_speed[16] = {
2125 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
2126 0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2128 /* ultra high speed CD-RW */
2129 static char us_clv_to_speed[16] = {
2130 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
2131 0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0
2135 * reads the maximum media speed from ATIP
2137 static noinline_for_stack int pkt_media_speed(struct pktcdvd_device *pd,
2140 struct packet_command cgc;
2141 struct request_sense sense;
2142 unsigned char buf[64];
2143 unsigned int size, st, sp;
2146 init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ);
2148 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2150 cgc.cmd[2] = 4; /* READ ATIP */
2152 ret = pkt_generic_packet(pd, &cgc);
2154 pkt_dump_sense(&cgc);
2157 size = ((unsigned int) buf[0]<<8) + buf[1] + 2;
2158 if (size > sizeof(buf))
2161 init_cdrom_command(&cgc, buf, size, CGC_DATA_READ);
2163 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2167 ret = pkt_generic_packet(pd, &cgc);
2169 pkt_dump_sense(&cgc);
2173 if (!(buf[6] & 0x40)) {
2174 printk(DRIVER_NAME": Disc type is not CD-RW\n");
2177 if (!(buf[6] & 0x4)) {
2178 printk(DRIVER_NAME": A1 values on media are not valid, maybe not CDRW?\n");
2182 st = (buf[6] >> 3) & 0x7; /* disc sub-type */
2184 sp = buf[16] & 0xf; /* max speed from ATIP A1 field */
2186 /* Info from cdrecord */
2188 case 0: /* standard speed */
2189 *speed = clv_to_speed[sp];
2191 case 1: /* high speed */
2192 *speed = hs_clv_to_speed[sp];
2194 case 2: /* ultra high speed */
2195 *speed = us_clv_to_speed[sp];
2198 printk(DRIVER_NAME": Unknown disc sub-type %d\n",st);
2202 printk(DRIVER_NAME": Max. media speed: %d\n",*speed);
2205 printk(DRIVER_NAME": Unknown speed %d for sub-type %d\n",sp,st);
2210 static noinline_for_stack int pkt_perform_opc(struct pktcdvd_device *pd)
2212 struct packet_command cgc;
2213 struct request_sense sense;
2216 VPRINTK(DRIVER_NAME": Performing OPC\n");
2218 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
2220 cgc.timeout = 60*HZ;
2221 cgc.cmd[0] = GPCMD_SEND_OPC;
2223 if ((ret = pkt_generic_packet(pd, &cgc)))
2224 pkt_dump_sense(&cgc);
2228 static int pkt_open_write(struct pktcdvd_device *pd)
2231 unsigned int write_speed, media_write_speed, read_speed;
2233 if ((ret = pkt_probe_settings(pd))) {
2234 VPRINTK(DRIVER_NAME": %s failed probe\n", pd->name);
2238 if ((ret = pkt_set_write_settings(pd))) {
2239 DPRINTK(DRIVER_NAME": %s failed saving write settings\n", pd->name);
2243 pkt_write_caching(pd, USE_WCACHING);
2245 if ((ret = pkt_get_max_speed(pd, &write_speed)))
2246 write_speed = 16 * 177;
2247 switch (pd->mmc3_profile) {
2248 case 0x13: /* DVD-RW */
2249 case 0x1a: /* DVD+RW */
2250 case 0x12: /* DVD-RAM */
2251 DPRINTK(DRIVER_NAME": write speed %ukB/s\n", write_speed);
2254 if ((ret = pkt_media_speed(pd, &media_write_speed)))
2255 media_write_speed = 16;
2256 write_speed = min(write_speed, media_write_speed * 177);
2257 DPRINTK(DRIVER_NAME": write speed %ux\n", write_speed / 176);
2260 read_speed = write_speed;
2262 if ((ret = pkt_set_speed(pd, write_speed, read_speed))) {
2263 DPRINTK(DRIVER_NAME": %s couldn't set write speed\n", pd->name);
2266 pd->write_speed = write_speed;
2267 pd->read_speed = read_speed;
2269 if ((ret = pkt_perform_opc(pd))) {
2270 DPRINTK(DRIVER_NAME": %s Optimum Power Calibration failed\n", pd->name);
2277 * called at open time.
2279 static int pkt_open_dev(struct pktcdvd_device *pd, fmode_t write)
2283 struct request_queue *q;
2286 * We need to re-open the cdrom device without O_NONBLOCK to be able
2287 * to read/write from/to it. It is already opened in O_NONBLOCK mode
2288 * so bdget() can't fail.
2290 bdget(pd->bdev->bd_dev);
2291 if ((ret = blkdev_get(pd->bdev, FMODE_READ)))
2294 if ((ret = bd_claim(pd->bdev, pd)))
2297 if ((ret = pkt_get_last_written(pd, &lba))) {
2298 printk(DRIVER_NAME": pkt_get_last_written failed\n");
2302 set_capacity(pd->disk, lba << 2);
2303 set_capacity(pd->bdev->bd_disk, lba << 2);
2304 bd_set_size(pd->bdev, (loff_t)lba << 11);
2306 q = bdev_get_queue(pd->bdev);
2308 if ((ret = pkt_open_write(pd)))
2311 * Some CDRW drives can not handle writes larger than one packet,
2312 * even if the size is a multiple of the packet size.
2314 spin_lock_irq(q->queue_lock);
2315 blk_queue_max_hw_sectors(q, pd->settings.size);
2316 spin_unlock_irq(q->queue_lock);
2317 set_bit(PACKET_WRITABLE, &pd->flags);
2319 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2320 clear_bit(PACKET_WRITABLE, &pd->flags);
2323 if ((ret = pkt_set_segment_merging(pd, q)))
2327 if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) {
2328 printk(DRIVER_NAME": not enough memory for buffers\n");
2332 printk(DRIVER_NAME": %lukB available on disc\n", lba << 1);
2338 bd_release(pd->bdev);
2340 blkdev_put(pd->bdev, FMODE_READ);
2346 * called when the device is closed. makes sure that the device flushes
2347 * the internal cache before we close.
2349 static void pkt_release_dev(struct pktcdvd_device *pd, int flush)
2351 if (flush && pkt_flush_cache(pd))
2352 DPRINTK(DRIVER_NAME": %s not flushing cache\n", pd->name);
2354 pkt_lock_door(pd, 0);
2356 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2357 bd_release(pd->bdev);
2358 blkdev_put(pd->bdev, FMODE_READ);
2360 pkt_shrink_pktlist(pd);
2363 static struct pktcdvd_device *pkt_find_dev_from_minor(int dev_minor)
2365 if (dev_minor >= MAX_WRITERS)
2367 return pkt_devs[dev_minor];
2370 static int pkt_open(struct block_device *bdev, fmode_t mode)
2372 struct pktcdvd_device *pd = NULL;
2375 VPRINTK(DRIVER_NAME": entering open\n");
2377 mutex_lock(&ctl_mutex);
2378 pd = pkt_find_dev_from_minor(MINOR(bdev->bd_dev));
2383 BUG_ON(pd->refcnt < 0);
2386 if (pd->refcnt > 1) {
2387 if ((mode & FMODE_WRITE) &&
2388 !test_bit(PACKET_WRITABLE, &pd->flags)) {
2393 ret = pkt_open_dev(pd, mode & FMODE_WRITE);
2397 * needed here as well, since ext2 (among others) may change
2398 * the blocksize at mount time
2400 set_blocksize(bdev, CD_FRAMESIZE);
2403 mutex_unlock(&ctl_mutex);
2409 VPRINTK(DRIVER_NAME": failed open (%d)\n", ret);
2410 mutex_unlock(&ctl_mutex);
2414 static int pkt_close(struct gendisk *disk, fmode_t mode)
2416 struct pktcdvd_device *pd = disk->private_data;
2419 mutex_lock(&ctl_mutex);
2421 BUG_ON(pd->refcnt < 0);
2422 if (pd->refcnt == 0) {
2423 int flush = test_bit(PACKET_WRITABLE, &pd->flags);
2424 pkt_release_dev(pd, flush);
2426 mutex_unlock(&ctl_mutex);
2431 static void pkt_end_io_read_cloned(struct bio *bio, int err)
2433 struct packet_stacked_data *psd = bio->bi_private;
2434 struct pktcdvd_device *pd = psd->pd;
2437 bio_endio(psd->bio, err);
2438 mempool_free(psd, psd_pool);
2439 pkt_bio_finished(pd);
2442 static int pkt_make_request(struct request_queue *q, struct bio *bio)
2444 struct pktcdvd_device *pd;
2445 char b[BDEVNAME_SIZE];
2447 struct packet_data *pkt;
2448 int was_empty, blocked_bio;
2449 struct pkt_rb_node *node;
2453 printk(DRIVER_NAME": %s incorrect request queue\n", bdevname(bio->bi_bdev, b));
2458 * Clone READ bios so we can have our own bi_end_io callback.
2460 if (bio_data_dir(bio) == READ) {
2461 struct bio *cloned_bio = bio_clone(bio, GFP_NOIO);
2462 struct packet_stacked_data *psd = mempool_alloc(psd_pool, GFP_NOIO);
2466 cloned_bio->bi_bdev = pd->bdev;
2467 cloned_bio->bi_private = psd;
2468 cloned_bio->bi_end_io = pkt_end_io_read_cloned;
2469 pd->stats.secs_r += bio->bi_size >> 9;
2470 pkt_queue_bio(pd, cloned_bio);
2474 if (!test_bit(PACKET_WRITABLE, &pd->flags)) {
2475 printk(DRIVER_NAME": WRITE for ro device %s (%llu)\n",
2476 pd->name, (unsigned long long)bio->bi_sector);
2480 if (!bio->bi_size || (bio->bi_size % CD_FRAMESIZE)) {
2481 printk(DRIVER_NAME": wrong bio size\n");
2485 blk_queue_bounce(q, &bio);
2487 zone = ZONE(bio->bi_sector, pd);
2488 VPRINTK("pkt_make_request: start = %6llx stop = %6llx\n",
2489 (unsigned long long)bio->bi_sector,
2490 (unsigned long long)(bio->bi_sector + bio_sectors(bio)));
2492 /* Check if we have to split the bio */
2494 struct bio_pair *bp;
2498 last_zone = ZONE(bio->bi_sector + bio_sectors(bio) - 1, pd);
2499 if (last_zone != zone) {
2500 BUG_ON(last_zone != zone + pd->settings.size);
2501 first_sectors = last_zone - bio->bi_sector;
2502 bp = bio_split(bio, first_sectors);
2504 pkt_make_request(q, &bp->bio1);
2505 pkt_make_request(q, &bp->bio2);
2506 bio_pair_release(bp);
2512 * If we find a matching packet in state WAITING or READ_WAIT, we can
2513 * just append this bio to that packet.
2515 spin_lock(&pd->cdrw.active_list_lock);
2517 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
2518 if (pkt->sector == zone) {
2519 spin_lock(&pkt->lock);
2520 if ((pkt->state == PACKET_WAITING_STATE) ||
2521 (pkt->state == PACKET_READ_WAIT_STATE)) {
2522 bio_list_add(&pkt->orig_bios, bio);
2523 pkt->write_size += bio->bi_size / CD_FRAMESIZE;
2524 if ((pkt->write_size >= pkt->frames) &&
2525 (pkt->state == PACKET_WAITING_STATE)) {
2526 atomic_inc(&pkt->run_sm);
2527 wake_up(&pd->wqueue);
2529 spin_unlock(&pkt->lock);
2530 spin_unlock(&pd->cdrw.active_list_lock);
2535 spin_unlock(&pkt->lock);
2538 spin_unlock(&pd->cdrw.active_list_lock);
2541 * Test if there is enough room left in the bio work queue
2542 * (queue size >= congestion on mark).
2543 * If not, wait till the work queue size is below the congestion off mark.
2545 spin_lock(&pd->lock);
2546 if (pd->write_congestion_on > 0
2547 && pd->bio_queue_size >= pd->write_congestion_on) {
2548 set_bdi_congested(&q->backing_dev_info, BLK_RW_ASYNC);
2550 spin_unlock(&pd->lock);
2551 congestion_wait(BLK_RW_ASYNC, HZ);
2552 spin_lock(&pd->lock);
2553 } while(pd->bio_queue_size > pd->write_congestion_off);
2555 spin_unlock(&pd->lock);
2558 * No matching packet found. Store the bio in the work queue.
2560 node = mempool_alloc(pd->rb_pool, GFP_NOIO);
2562 spin_lock(&pd->lock);
2563 BUG_ON(pd->bio_queue_size < 0);
2564 was_empty = (pd->bio_queue_size == 0);
2565 pkt_rbtree_insert(pd, node);
2566 spin_unlock(&pd->lock);
2569 * Wake up the worker thread.
2571 atomic_set(&pd->scan_queue, 1);
2573 /* This wake_up is required for correct operation */
2574 wake_up(&pd->wqueue);
2575 } else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) {
2577 * This wake up is not required for correct operation,
2578 * but improves performance in some cases.
2580 wake_up(&pd->wqueue);
2590 static int pkt_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
2591 struct bio_vec *bvec)
2593 struct pktcdvd_device *pd = q->queuedata;
2594 sector_t zone = ZONE(bmd->bi_sector, pd);
2595 int used = ((bmd->bi_sector - zone) << 9) + bmd->bi_size;
2596 int remaining = (pd->settings.size << 9) - used;
2600 * A bio <= PAGE_SIZE must be allowed. If it crosses a packet
2601 * boundary, pkt_make_request() will split the bio.
2603 remaining2 = PAGE_SIZE - bmd->bi_size;
2604 remaining = max(remaining, remaining2);
2606 BUG_ON(remaining < 0);
2610 static void pkt_init_queue(struct pktcdvd_device *pd)
2612 struct request_queue *q = pd->disk->queue;
2614 blk_queue_make_request(q, pkt_make_request);
2615 blk_queue_logical_block_size(q, CD_FRAMESIZE);
2616 blk_queue_max_hw_sectors(q, PACKET_MAX_SECTORS);
2617 blk_queue_merge_bvec(q, pkt_merge_bvec);
2621 static int pkt_seq_show(struct seq_file *m, void *p)
2623 struct pktcdvd_device *pd = m->private;
2625 char bdev_buf[BDEVNAME_SIZE];
2626 int states[PACKET_NUM_STATES];
2628 seq_printf(m, "Writer %s mapped to %s:\n", pd->name,
2629 bdevname(pd->bdev, bdev_buf));
2631 seq_printf(m, "\nSettings:\n");
2632 seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2);
2634 if (pd->settings.write_type == 0)
2638 seq_printf(m, "\twrite type:\t\t%s\n", msg);
2640 seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable");
2641 seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss);
2643 seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode);
2645 if (pd->settings.block_mode == PACKET_BLOCK_MODE1)
2647 else if (pd->settings.block_mode == PACKET_BLOCK_MODE2)
2651 seq_printf(m, "\tblock mode:\t\t%s\n", msg);
2653 seq_printf(m, "\nStatistics:\n");
2654 seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started);
2655 seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended);
2656 seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1);
2657 seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1);
2658 seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1);
2660 seq_printf(m, "\nMisc:\n");
2661 seq_printf(m, "\treference count:\t%d\n", pd->refcnt);
2662 seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags);
2663 seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed);
2664 seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed);
2665 seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset);
2666 seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset);
2668 seq_printf(m, "\nQueue state:\n");
2669 seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size);
2670 seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios));
2671 seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", (unsigned long long)pd->current_sector);
2673 pkt_count_states(pd, states);
2674 seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
2675 states[0], states[1], states[2], states[3], states[4], states[5]);
2677 seq_printf(m, "\twrite congestion marks:\toff=%d on=%d\n",
2678 pd->write_congestion_off,
2679 pd->write_congestion_on);
2683 static int pkt_seq_open(struct inode *inode, struct file *file)
2685 return single_open(file, pkt_seq_show, PDE(inode)->data);
2688 static const struct file_operations pkt_proc_fops = {
2689 .open = pkt_seq_open,
2691 .llseek = seq_lseek,
2692 .release = single_release
2695 static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev)
2699 char b[BDEVNAME_SIZE];
2700 struct block_device *bdev;
2702 if (pd->pkt_dev == dev) {
2703 printk(DRIVER_NAME": Recursive setup not allowed\n");
2706 for (i = 0; i < MAX_WRITERS; i++) {
2707 struct pktcdvd_device *pd2 = pkt_devs[i];
2710 if (pd2->bdev->bd_dev == dev) {
2711 printk(DRIVER_NAME": %s already setup\n", bdevname(pd2->bdev, b));
2714 if (pd2->pkt_dev == dev) {
2715 printk(DRIVER_NAME": Can't chain pktcdvd devices\n");
2723 ret = blkdev_get(bdev, FMODE_READ | FMODE_NDELAY);
2727 /* This is safe, since we have a reference from open(). */
2728 __module_get(THIS_MODULE);
2731 set_blocksize(bdev, CD_FRAMESIZE);
2735 atomic_set(&pd->cdrw.pending_bios, 0);
2736 pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->name);
2737 if (IS_ERR(pd->cdrw.thread)) {
2738 printk(DRIVER_NAME": can't start kernel thread\n");
2743 proc_create_data(pd->name, 0, pkt_proc, &pkt_proc_fops, pd);
2744 DPRINTK(DRIVER_NAME": writer %s mapped to %s\n", pd->name, bdevname(bdev, b));
2748 blkdev_put(bdev, FMODE_READ | FMODE_NDELAY);
2749 /* This is safe: open() is still holding a reference. */
2750 module_put(THIS_MODULE);
2754 static int pkt_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg)
2756 struct pktcdvd_device *pd = bdev->bd_disk->private_data;
2758 VPRINTK("pkt_ioctl: cmd %x, dev %d:%d\n", cmd,
2759 MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev));
2764 * The door gets locked when the device is opened, so we
2765 * have to unlock it or else the eject command fails.
2767 if (pd->refcnt == 1)
2768 pkt_lock_door(pd, 0);
2771 * forward selected CDROM ioctls to CD-ROM, for UDF
2773 case CDROMMULTISESSION:
2774 case CDROMREADTOCENTRY:
2775 case CDROM_LAST_WRITTEN:
2776 case CDROM_SEND_PACKET:
2777 case SCSI_IOCTL_SEND_COMMAND:
2778 return __blkdev_driver_ioctl(pd->bdev, mode, cmd, arg);
2781 VPRINTK(DRIVER_NAME": Unknown ioctl for %s (%x)\n", pd->name, cmd);
2788 static int pkt_media_changed(struct gendisk *disk)
2790 struct pktcdvd_device *pd = disk->private_data;
2791 struct gendisk *attached_disk;
2797 attached_disk = pd->bdev->bd_disk;
2800 return attached_disk->fops->media_changed(attached_disk);
2803 static const struct block_device_operations pktcdvd_ops = {
2804 .owner = THIS_MODULE,
2806 .release = pkt_close,
2807 .locked_ioctl = pkt_ioctl,
2808 .media_changed = pkt_media_changed,
2811 static char *pktcdvd_devnode(struct gendisk *gd, mode_t *mode)
2813 return kasprintf(GFP_KERNEL, "pktcdvd/%s", gd->disk_name);
2817 * Set up mapping from pktcdvd device to CD-ROM device.
2819 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev)
2823 struct pktcdvd_device *pd;
2824 struct gendisk *disk;
2826 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2828 for (idx = 0; idx < MAX_WRITERS; idx++)
2831 if (idx == MAX_WRITERS) {
2832 printk(DRIVER_NAME": max %d writers supported\n", MAX_WRITERS);
2837 pd = kzalloc(sizeof(struct pktcdvd_device), GFP_KERNEL);
2841 pd->rb_pool = mempool_create_kmalloc_pool(PKT_RB_POOL_SIZE,
2842 sizeof(struct pkt_rb_node));
2846 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
2847 INIT_LIST_HEAD(&pd->cdrw.pkt_active_list);
2848 spin_lock_init(&pd->cdrw.active_list_lock);
2850 spin_lock_init(&pd->lock);
2851 spin_lock_init(&pd->iosched.lock);
2852 bio_list_init(&pd->iosched.read_queue);
2853 bio_list_init(&pd->iosched.write_queue);
2854 sprintf(pd->name, DRIVER_NAME"%d", idx);
2855 init_waitqueue_head(&pd->wqueue);
2856 pd->bio_queue = RB_ROOT;
2858 pd->write_congestion_on = write_congestion_on;
2859 pd->write_congestion_off = write_congestion_off;
2861 disk = alloc_disk(1);
2865 disk->major = pktdev_major;
2866 disk->first_minor = idx;
2867 disk->fops = &pktcdvd_ops;
2868 disk->flags = GENHD_FL_REMOVABLE;
2869 strcpy(disk->disk_name, pd->name);
2870 disk->devnode = pktcdvd_devnode;
2871 disk->private_data = pd;
2872 disk->queue = blk_alloc_queue(GFP_KERNEL);
2876 pd->pkt_dev = MKDEV(pktdev_major, idx);
2877 ret = pkt_new_dev(pd, dev);
2883 pkt_sysfs_dev_new(pd);
2884 pkt_debugfs_dev_new(pd);
2888 *pkt_dev = pd->pkt_dev;
2890 mutex_unlock(&ctl_mutex);
2894 blk_cleanup_queue(disk->queue);
2899 mempool_destroy(pd->rb_pool);
2902 mutex_unlock(&ctl_mutex);
2903 printk(DRIVER_NAME": setup of pktcdvd device failed\n");
2908 * Tear down mapping from pktcdvd device to CD-ROM device.
2910 static int pkt_remove_dev(dev_t pkt_dev)
2912 struct pktcdvd_device *pd;
2916 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2918 for (idx = 0; idx < MAX_WRITERS; idx++) {
2920 if (pd && (pd->pkt_dev == pkt_dev))
2923 if (idx == MAX_WRITERS) {
2924 DPRINTK(DRIVER_NAME": dev not setup\n");
2929 if (pd->refcnt > 0) {
2933 if (!IS_ERR(pd->cdrw.thread))
2934 kthread_stop(pd->cdrw.thread);
2936 pkt_devs[idx] = NULL;
2938 pkt_debugfs_dev_remove(pd);
2939 pkt_sysfs_dev_remove(pd);
2941 blkdev_put(pd->bdev, FMODE_READ | FMODE_NDELAY);
2943 remove_proc_entry(pd->name, pkt_proc);
2944 DPRINTK(DRIVER_NAME": writer %s unmapped\n", pd->name);
2946 del_gendisk(pd->disk);
2947 blk_cleanup_queue(pd->disk->queue);
2950 mempool_destroy(pd->rb_pool);
2953 /* This is safe: open() is still holding a reference. */
2954 module_put(THIS_MODULE);
2957 mutex_unlock(&ctl_mutex);
2961 static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd)
2963 struct pktcdvd_device *pd;
2965 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2967 pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index);
2969 ctrl_cmd->dev = new_encode_dev(pd->bdev->bd_dev);
2970 ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev);
2973 ctrl_cmd->pkt_dev = 0;
2975 ctrl_cmd->num_devices = MAX_WRITERS;
2977 mutex_unlock(&ctl_mutex);
2980 static int pkt_ctl_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
2982 void __user *argp = (void __user *)arg;
2983 struct pkt_ctrl_command ctrl_cmd;
2987 if (cmd != PACKET_CTRL_CMD)
2990 if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command)))
2993 switch (ctrl_cmd.command) {
2994 case PKT_CTRL_CMD_SETUP:
2995 if (!capable(CAP_SYS_ADMIN))
2997 ret = pkt_setup_dev(new_decode_dev(ctrl_cmd.dev), &pkt_dev);
2998 ctrl_cmd.pkt_dev = new_encode_dev(pkt_dev);
3000 case PKT_CTRL_CMD_TEARDOWN:
3001 if (!capable(CAP_SYS_ADMIN))
3003 ret = pkt_remove_dev(new_decode_dev(ctrl_cmd.pkt_dev));
3005 case PKT_CTRL_CMD_STATUS:
3006 pkt_get_status(&ctrl_cmd);
3012 if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command)))
3018 static const struct file_operations pkt_ctl_fops = {
3019 .ioctl = pkt_ctl_ioctl,
3020 .owner = THIS_MODULE,
3023 static struct miscdevice pkt_misc = {
3024 .minor = MISC_DYNAMIC_MINOR,
3025 .name = DRIVER_NAME,
3026 .nodename = "pktcdvd/control",
3027 .fops = &pkt_ctl_fops
3030 static int __init pkt_init(void)
3034 mutex_init(&ctl_mutex);
3036 psd_pool = mempool_create_kmalloc_pool(PSD_POOL_SIZE,
3037 sizeof(struct packet_stacked_data));
3041 ret = register_blkdev(pktdev_major, DRIVER_NAME);
3043 printk(DRIVER_NAME": Unable to register block device\n");
3049 ret = pkt_sysfs_init();
3055 ret = misc_register(&pkt_misc);
3057 printk(DRIVER_NAME": Unable to register misc device\n");
3061 pkt_proc = proc_mkdir("driver/"DRIVER_NAME, NULL);
3066 pkt_debugfs_cleanup();
3067 pkt_sysfs_cleanup();
3069 unregister_blkdev(pktdev_major, DRIVER_NAME);
3071 mempool_destroy(psd_pool);
3075 static void __exit pkt_exit(void)
3077 remove_proc_entry("driver/"DRIVER_NAME, NULL);
3078 misc_deregister(&pkt_misc);
3080 pkt_debugfs_cleanup();
3081 pkt_sysfs_cleanup();
3083 unregister_blkdev(pktdev_major, DRIVER_NAME);
3084 mempool_destroy(psd_pool);
3087 MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives");
3089 MODULE_LICENSE("GPL");
3091 module_init(pkt_init);
3092 module_exit(pkt_exit);