1 // SPDX-License-Identifier: GPL-2.0
3 // Register map access API
5 // Copyright 2011 Wolfson Microelectronics plc
9 #include <linux/device.h>
10 #include <linux/slab.h>
11 #include <linux/export.h>
12 #include <linux/mutex.h>
13 #include <linux/err.h>
14 #include <linux/property.h>
15 #include <linux/rbtree.h>
16 #include <linux/sched.h>
17 #include <linux/delay.h>
18 #include <linux/log2.h>
19 #include <linux/hwspinlock.h>
20 #include <asm/unaligned.h>
22 #define CREATE_TRACE_POINTS
28 * Sometimes for failures during very early init the trace
29 * infrastructure isn't available early enough to be used. For this
30 * sort of problem defining LOG_DEVICE will add printks for basic
31 * register I/O on a specific device.
36 static inline bool regmap_should_log(struct regmap *map)
38 return (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0);
41 static inline bool regmap_should_log(struct regmap *map) { return false; }
45 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
46 unsigned int mask, unsigned int val,
47 bool *change, bool force_write);
49 static int _regmap_bus_reg_read(void *context, unsigned int reg,
51 static int _regmap_bus_read(void *context, unsigned int reg,
53 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
55 static int _regmap_bus_reg_write(void *context, unsigned int reg,
57 static int _regmap_bus_raw_write(void *context, unsigned int reg,
60 bool regmap_reg_in_ranges(unsigned int reg,
61 const struct regmap_range *ranges,
64 const struct regmap_range *r;
67 for (i = 0, r = ranges; i < nranges; i++, r++)
68 if (regmap_reg_in_range(reg, r))
72 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
74 bool regmap_check_range_table(struct regmap *map, unsigned int reg,
75 const struct regmap_access_table *table)
77 /* Check "no ranges" first */
78 if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
81 /* In case zero "yes ranges" are supplied, any reg is OK */
82 if (!table->n_yes_ranges)
85 return regmap_reg_in_ranges(reg, table->yes_ranges,
88 EXPORT_SYMBOL_GPL(regmap_check_range_table);
90 bool regmap_writeable(struct regmap *map, unsigned int reg)
92 if (map->max_register && reg > map->max_register)
95 if (map->writeable_reg)
96 return map->writeable_reg(map->dev, reg);
99 return regmap_check_range_table(map, reg, map->wr_table);
104 bool regmap_cached(struct regmap *map, unsigned int reg)
109 if (map->cache_type == REGCACHE_NONE)
115 if (map->max_register && reg > map->max_register)
118 map->lock(map->lock_arg);
119 ret = regcache_read(map, reg, &val);
120 map->unlock(map->lock_arg);
127 bool regmap_readable(struct regmap *map, unsigned int reg)
132 if (map->max_register && reg > map->max_register)
135 if (map->format.format_write)
138 if (map->readable_reg)
139 return map->readable_reg(map->dev, reg);
142 return regmap_check_range_table(map, reg, map->rd_table);
147 bool regmap_volatile(struct regmap *map, unsigned int reg)
149 if (!map->format.format_write && !regmap_readable(map, reg))
152 if (map->volatile_reg)
153 return map->volatile_reg(map->dev, reg);
155 if (map->volatile_table)
156 return regmap_check_range_table(map, reg, map->volatile_table);
164 bool regmap_precious(struct regmap *map, unsigned int reg)
166 if (!regmap_readable(map, reg))
169 if (map->precious_reg)
170 return map->precious_reg(map->dev, reg);
172 if (map->precious_table)
173 return regmap_check_range_table(map, reg, map->precious_table);
178 bool regmap_writeable_noinc(struct regmap *map, unsigned int reg)
180 if (map->writeable_noinc_reg)
181 return map->writeable_noinc_reg(map->dev, reg);
183 if (map->wr_noinc_table)
184 return regmap_check_range_table(map, reg, map->wr_noinc_table);
189 bool regmap_readable_noinc(struct regmap *map, unsigned int reg)
191 if (map->readable_noinc_reg)
192 return map->readable_noinc_reg(map->dev, reg);
194 if (map->rd_noinc_table)
195 return regmap_check_range_table(map, reg, map->rd_noinc_table);
200 static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
205 for (i = 0; i < num; i++)
206 if (!regmap_volatile(map, reg + regmap_get_offset(map, i)))
212 static void regmap_format_12_20_write(struct regmap *map,
213 unsigned int reg, unsigned int val)
215 u8 *out = map->work_buf;
218 out[1] = (reg << 4) | (val >> 16);
224 static void regmap_format_2_6_write(struct regmap *map,
225 unsigned int reg, unsigned int val)
227 u8 *out = map->work_buf;
229 *out = (reg << 6) | val;
232 static void regmap_format_4_12_write(struct regmap *map,
233 unsigned int reg, unsigned int val)
235 __be16 *out = map->work_buf;
236 *out = cpu_to_be16((reg << 12) | val);
239 static void regmap_format_7_9_write(struct regmap *map,
240 unsigned int reg, unsigned int val)
242 __be16 *out = map->work_buf;
243 *out = cpu_to_be16((reg << 9) | val);
246 static void regmap_format_7_17_write(struct regmap *map,
247 unsigned int reg, unsigned int val)
249 u8 *out = map->work_buf;
253 out[0] = (val >> 16) | (reg << 1);
256 static void regmap_format_10_14_write(struct regmap *map,
257 unsigned int reg, unsigned int val)
259 u8 *out = map->work_buf;
262 out[1] = (val >> 8) | (reg << 6);
266 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
273 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
275 put_unaligned_be16(val << shift, buf);
278 static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
280 put_unaligned_le16(val << shift, buf);
283 static void regmap_format_16_native(void *buf, unsigned int val,
286 u16 v = val << shift;
288 memcpy(buf, &v, sizeof(v));
291 static void regmap_format_24_be(void *buf, unsigned int val, unsigned int shift)
293 put_unaligned_be24(val << shift, buf);
296 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
298 put_unaligned_be32(val << shift, buf);
301 static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
303 put_unaligned_le32(val << shift, buf);
306 static void regmap_format_32_native(void *buf, unsigned int val,
309 u32 v = val << shift;
311 memcpy(buf, &v, sizeof(v));
314 static void regmap_parse_inplace_noop(void *buf)
318 static unsigned int regmap_parse_8(const void *buf)
325 static unsigned int regmap_parse_16_be(const void *buf)
327 return get_unaligned_be16(buf);
330 static unsigned int regmap_parse_16_le(const void *buf)
332 return get_unaligned_le16(buf);
335 static void regmap_parse_16_be_inplace(void *buf)
337 u16 v = get_unaligned_be16(buf);
339 memcpy(buf, &v, sizeof(v));
342 static void regmap_parse_16_le_inplace(void *buf)
344 u16 v = get_unaligned_le16(buf);
346 memcpy(buf, &v, sizeof(v));
349 static unsigned int regmap_parse_16_native(const void *buf)
353 memcpy(&v, buf, sizeof(v));
357 static unsigned int regmap_parse_24_be(const void *buf)
359 return get_unaligned_be24(buf);
362 static unsigned int regmap_parse_32_be(const void *buf)
364 return get_unaligned_be32(buf);
367 static unsigned int regmap_parse_32_le(const void *buf)
369 return get_unaligned_le32(buf);
372 static void regmap_parse_32_be_inplace(void *buf)
374 u32 v = get_unaligned_be32(buf);
376 memcpy(buf, &v, sizeof(v));
379 static void regmap_parse_32_le_inplace(void *buf)
381 u32 v = get_unaligned_le32(buf);
383 memcpy(buf, &v, sizeof(v));
386 static unsigned int regmap_parse_32_native(const void *buf)
390 memcpy(&v, buf, sizeof(v));
394 static void regmap_lock_hwlock(void *__map)
396 struct regmap *map = __map;
398 hwspin_lock_timeout(map->hwlock, UINT_MAX);
401 static void regmap_lock_hwlock_irq(void *__map)
403 struct regmap *map = __map;
405 hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
408 static void regmap_lock_hwlock_irqsave(void *__map)
410 struct regmap *map = __map;
412 hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
413 &map->spinlock_flags);
416 static void regmap_unlock_hwlock(void *__map)
418 struct regmap *map = __map;
420 hwspin_unlock(map->hwlock);
423 static void regmap_unlock_hwlock_irq(void *__map)
425 struct regmap *map = __map;
427 hwspin_unlock_irq(map->hwlock);
430 static void regmap_unlock_hwlock_irqrestore(void *__map)
432 struct regmap *map = __map;
434 hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
437 static void regmap_lock_unlock_none(void *__map)
442 static void regmap_lock_mutex(void *__map)
444 struct regmap *map = __map;
445 mutex_lock(&map->mutex);
448 static void regmap_unlock_mutex(void *__map)
450 struct regmap *map = __map;
451 mutex_unlock(&map->mutex);
454 static void regmap_lock_spinlock(void *__map)
455 __acquires(&map->spinlock)
457 struct regmap *map = __map;
460 spin_lock_irqsave(&map->spinlock, flags);
461 map->spinlock_flags = flags;
464 static void regmap_unlock_spinlock(void *__map)
465 __releases(&map->spinlock)
467 struct regmap *map = __map;
468 spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
471 static void regmap_lock_raw_spinlock(void *__map)
472 __acquires(&map->raw_spinlock)
474 struct regmap *map = __map;
477 raw_spin_lock_irqsave(&map->raw_spinlock, flags);
478 map->raw_spinlock_flags = flags;
481 static void regmap_unlock_raw_spinlock(void *__map)
482 __releases(&map->raw_spinlock)
484 struct regmap *map = __map;
485 raw_spin_unlock_irqrestore(&map->raw_spinlock, map->raw_spinlock_flags);
488 static void dev_get_regmap_release(struct device *dev, void *res)
491 * We don't actually have anything to do here; the goal here
492 * is not to manage the regmap but to provide a simple way to
493 * get the regmap back given a struct device.
497 static bool _regmap_range_add(struct regmap *map,
498 struct regmap_range_node *data)
500 struct rb_root *root = &map->range_tree;
501 struct rb_node **new = &(root->rb_node), *parent = NULL;
504 struct regmap_range_node *this =
505 rb_entry(*new, struct regmap_range_node, node);
508 if (data->range_max < this->range_min)
509 new = &((*new)->rb_left);
510 else if (data->range_min > this->range_max)
511 new = &((*new)->rb_right);
516 rb_link_node(&data->node, parent, new);
517 rb_insert_color(&data->node, root);
522 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
525 struct rb_node *node = map->range_tree.rb_node;
528 struct regmap_range_node *this =
529 rb_entry(node, struct regmap_range_node, node);
531 if (reg < this->range_min)
532 node = node->rb_left;
533 else if (reg > this->range_max)
534 node = node->rb_right;
542 static void regmap_range_exit(struct regmap *map)
544 struct rb_node *next;
545 struct regmap_range_node *range_node;
547 next = rb_first(&map->range_tree);
549 range_node = rb_entry(next, struct regmap_range_node, node);
550 next = rb_next(&range_node->node);
551 rb_erase(&range_node->node, &map->range_tree);
555 kfree(map->selector_work_buf);
558 static int regmap_set_name(struct regmap *map, const struct regmap_config *config)
561 const char *name = kstrdup_const(config->name, GFP_KERNEL);
566 kfree_const(map->name);
573 int regmap_attach_dev(struct device *dev, struct regmap *map,
574 const struct regmap_config *config)
581 ret = regmap_set_name(map, config);
585 regmap_debugfs_exit(map);
586 regmap_debugfs_init(map);
588 /* Add a devres resource for dev_get_regmap() */
589 m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
591 regmap_debugfs_exit(map);
599 EXPORT_SYMBOL_GPL(regmap_attach_dev);
601 static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
602 const struct regmap_config *config)
604 enum regmap_endian endian;
606 /* Retrieve the endianness specification from the regmap config */
607 endian = config->reg_format_endian;
609 /* If the regmap config specified a non-default value, use that */
610 if (endian != REGMAP_ENDIAN_DEFAULT)
613 /* Retrieve the endianness specification from the bus config */
614 if (bus && bus->reg_format_endian_default)
615 endian = bus->reg_format_endian_default;
617 /* If the bus specified a non-default value, use that */
618 if (endian != REGMAP_ENDIAN_DEFAULT)
621 /* Use this if no other value was found */
622 return REGMAP_ENDIAN_BIG;
625 enum regmap_endian regmap_get_val_endian(struct device *dev,
626 const struct regmap_bus *bus,
627 const struct regmap_config *config)
629 struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
630 enum regmap_endian endian;
632 /* Retrieve the endianness specification from the regmap config */
633 endian = config->val_format_endian;
635 /* If the regmap config specified a non-default value, use that */
636 if (endian != REGMAP_ENDIAN_DEFAULT)
639 /* If the firmware node exist try to get endianness from it */
640 if (fwnode_property_read_bool(fwnode, "big-endian"))
641 endian = REGMAP_ENDIAN_BIG;
642 else if (fwnode_property_read_bool(fwnode, "little-endian"))
643 endian = REGMAP_ENDIAN_LITTLE;
644 else if (fwnode_property_read_bool(fwnode, "native-endian"))
645 endian = REGMAP_ENDIAN_NATIVE;
647 /* If the endianness was specified in fwnode, use that */
648 if (endian != REGMAP_ENDIAN_DEFAULT)
651 /* Retrieve the endianness specification from the bus config */
652 if (bus && bus->val_format_endian_default)
653 endian = bus->val_format_endian_default;
655 /* If the bus specified a non-default value, use that */
656 if (endian != REGMAP_ENDIAN_DEFAULT)
659 /* Use this if no other value was found */
660 return REGMAP_ENDIAN_BIG;
662 EXPORT_SYMBOL_GPL(regmap_get_val_endian);
664 struct regmap *__regmap_init(struct device *dev,
665 const struct regmap_bus *bus,
667 const struct regmap_config *config,
668 struct lock_class_key *lock_key,
669 const char *lock_name)
673 enum regmap_endian reg_endian, val_endian;
679 map = kzalloc(sizeof(*map), GFP_KERNEL);
685 ret = regmap_set_name(map, config);
689 ret = -EINVAL; /* Later error paths rely on this */
691 if (config->disable_locking) {
692 map->lock = map->unlock = regmap_lock_unlock_none;
693 map->can_sleep = config->can_sleep;
694 regmap_debugfs_disable(map);
695 } else if (config->lock && config->unlock) {
696 map->lock = config->lock;
697 map->unlock = config->unlock;
698 map->lock_arg = config->lock_arg;
699 map->can_sleep = config->can_sleep;
700 } else if (config->use_hwlock) {
701 map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
707 switch (config->hwlock_mode) {
708 case HWLOCK_IRQSTATE:
709 map->lock = regmap_lock_hwlock_irqsave;
710 map->unlock = regmap_unlock_hwlock_irqrestore;
713 map->lock = regmap_lock_hwlock_irq;
714 map->unlock = regmap_unlock_hwlock_irq;
717 map->lock = regmap_lock_hwlock;
718 map->unlock = regmap_unlock_hwlock;
724 if ((bus && bus->fast_io) ||
726 if (config->use_raw_spinlock) {
727 raw_spin_lock_init(&map->raw_spinlock);
728 map->lock = regmap_lock_raw_spinlock;
729 map->unlock = regmap_unlock_raw_spinlock;
730 lockdep_set_class_and_name(&map->raw_spinlock,
731 lock_key, lock_name);
733 spin_lock_init(&map->spinlock);
734 map->lock = regmap_lock_spinlock;
735 map->unlock = regmap_unlock_spinlock;
736 lockdep_set_class_and_name(&map->spinlock,
737 lock_key, lock_name);
740 mutex_init(&map->mutex);
741 map->lock = regmap_lock_mutex;
742 map->unlock = regmap_unlock_mutex;
743 map->can_sleep = true;
744 lockdep_set_class_and_name(&map->mutex,
745 lock_key, lock_name);
751 * When we write in fast-paths with regmap_bulk_write() don't allocate
752 * scratch buffers with sleeping allocations.
754 if ((bus && bus->fast_io) || config->fast_io)
755 map->alloc_flags = GFP_ATOMIC;
757 map->alloc_flags = GFP_KERNEL;
759 map->reg_base = config->reg_base;
761 map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
762 map->format.pad_bytes = config->pad_bits / 8;
763 map->format.reg_shift = config->reg_shift;
764 map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
765 map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
766 config->val_bits + config->pad_bits, 8);
767 map->reg_shift = config->pad_bits % 8;
768 if (config->reg_stride)
769 map->reg_stride = config->reg_stride;
772 if (is_power_of_2(map->reg_stride))
773 map->reg_stride_order = ilog2(map->reg_stride);
775 map->reg_stride_order = -1;
776 map->use_single_read = config->use_single_read || !(config->read || (bus && bus->read));
777 map->use_single_write = config->use_single_write || !(config->write || (bus && bus->write));
778 map->can_multi_write = config->can_multi_write && (config->write || (bus && bus->write));
780 map->max_raw_read = bus->max_raw_read;
781 map->max_raw_write = bus->max_raw_write;
782 } else if (config->max_raw_read && config->max_raw_write) {
783 map->max_raw_read = config->max_raw_read;
784 map->max_raw_write = config->max_raw_write;
788 map->bus_context = bus_context;
789 map->max_register = config->max_register;
790 map->wr_table = config->wr_table;
791 map->rd_table = config->rd_table;
792 map->volatile_table = config->volatile_table;
793 map->precious_table = config->precious_table;
794 map->wr_noinc_table = config->wr_noinc_table;
795 map->rd_noinc_table = config->rd_noinc_table;
796 map->writeable_reg = config->writeable_reg;
797 map->readable_reg = config->readable_reg;
798 map->volatile_reg = config->volatile_reg;
799 map->precious_reg = config->precious_reg;
800 map->writeable_noinc_reg = config->writeable_noinc_reg;
801 map->readable_noinc_reg = config->readable_noinc_reg;
802 map->cache_type = config->cache_type;
804 spin_lock_init(&map->async_lock);
805 INIT_LIST_HEAD(&map->async_list);
806 INIT_LIST_HEAD(&map->async_free);
807 init_waitqueue_head(&map->async_waitq);
809 if (config->read_flag_mask ||
810 config->write_flag_mask ||
811 config->zero_flag_mask) {
812 map->read_flag_mask = config->read_flag_mask;
813 map->write_flag_mask = config->write_flag_mask;
815 map->read_flag_mask = bus->read_flag_mask;
818 if (config && config->read && config->write) {
819 map->reg_read = _regmap_bus_read;
820 if (config->reg_update_bits)
821 map->reg_update_bits = config->reg_update_bits;
823 /* Bulk read/write */
824 map->read = config->read;
825 map->write = config->write;
827 reg_endian = REGMAP_ENDIAN_NATIVE;
828 val_endian = REGMAP_ENDIAN_NATIVE;
830 map->reg_read = config->reg_read;
831 map->reg_write = config->reg_write;
832 map->reg_update_bits = config->reg_update_bits;
834 map->defer_caching = false;
835 goto skip_format_initialization;
836 } else if (!bus->read || !bus->write) {
837 map->reg_read = _regmap_bus_reg_read;
838 map->reg_write = _regmap_bus_reg_write;
839 map->reg_update_bits = bus->reg_update_bits;
841 map->defer_caching = false;
842 goto skip_format_initialization;
844 map->reg_read = _regmap_bus_read;
845 map->reg_update_bits = bus->reg_update_bits;
846 /* Bulk read/write */
847 map->read = bus->read;
848 map->write = bus->write;
850 reg_endian = regmap_get_reg_endian(bus, config);
851 val_endian = regmap_get_val_endian(dev, bus, config);
854 switch (config->reg_bits + map->reg_shift) {
856 switch (config->val_bits) {
858 map->format.format_write = regmap_format_2_6_write;
866 switch (config->val_bits) {
868 map->format.format_write = regmap_format_4_12_write;
876 switch (config->val_bits) {
878 map->format.format_write = regmap_format_7_9_write;
881 map->format.format_write = regmap_format_7_17_write;
889 switch (config->val_bits) {
891 map->format.format_write = regmap_format_10_14_write;
899 switch (config->val_bits) {
901 map->format.format_write = regmap_format_12_20_write;
909 map->format.format_reg = regmap_format_8;
913 switch (reg_endian) {
914 case REGMAP_ENDIAN_BIG:
915 map->format.format_reg = regmap_format_16_be;
917 case REGMAP_ENDIAN_LITTLE:
918 map->format.format_reg = regmap_format_16_le;
920 case REGMAP_ENDIAN_NATIVE:
921 map->format.format_reg = regmap_format_16_native;
929 switch (reg_endian) {
930 case REGMAP_ENDIAN_BIG:
931 map->format.format_reg = regmap_format_24_be;
939 switch (reg_endian) {
940 case REGMAP_ENDIAN_BIG:
941 map->format.format_reg = regmap_format_32_be;
943 case REGMAP_ENDIAN_LITTLE:
944 map->format.format_reg = regmap_format_32_le;
946 case REGMAP_ENDIAN_NATIVE:
947 map->format.format_reg = regmap_format_32_native;
958 if (val_endian == REGMAP_ENDIAN_NATIVE)
959 map->format.parse_inplace = regmap_parse_inplace_noop;
961 switch (config->val_bits) {
963 map->format.format_val = regmap_format_8;
964 map->format.parse_val = regmap_parse_8;
965 map->format.parse_inplace = regmap_parse_inplace_noop;
968 switch (val_endian) {
969 case REGMAP_ENDIAN_BIG:
970 map->format.format_val = regmap_format_16_be;
971 map->format.parse_val = regmap_parse_16_be;
972 map->format.parse_inplace = regmap_parse_16_be_inplace;
974 case REGMAP_ENDIAN_LITTLE:
975 map->format.format_val = regmap_format_16_le;
976 map->format.parse_val = regmap_parse_16_le;
977 map->format.parse_inplace = regmap_parse_16_le_inplace;
979 case REGMAP_ENDIAN_NATIVE:
980 map->format.format_val = regmap_format_16_native;
981 map->format.parse_val = regmap_parse_16_native;
988 switch (val_endian) {
989 case REGMAP_ENDIAN_BIG:
990 map->format.format_val = regmap_format_24_be;
991 map->format.parse_val = regmap_parse_24_be;
998 switch (val_endian) {
999 case REGMAP_ENDIAN_BIG:
1000 map->format.format_val = regmap_format_32_be;
1001 map->format.parse_val = regmap_parse_32_be;
1002 map->format.parse_inplace = regmap_parse_32_be_inplace;
1004 case REGMAP_ENDIAN_LITTLE:
1005 map->format.format_val = regmap_format_32_le;
1006 map->format.parse_val = regmap_parse_32_le;
1007 map->format.parse_inplace = regmap_parse_32_le_inplace;
1009 case REGMAP_ENDIAN_NATIVE:
1010 map->format.format_val = regmap_format_32_native;
1011 map->format.parse_val = regmap_parse_32_native;
1019 if (map->format.format_write) {
1020 if ((reg_endian != REGMAP_ENDIAN_BIG) ||
1021 (val_endian != REGMAP_ENDIAN_BIG))
1023 map->use_single_write = true;
1026 if (!map->format.format_write &&
1027 !(map->format.format_reg && map->format.format_val))
1030 map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
1031 if (map->work_buf == NULL) {
1036 if (map->format.format_write) {
1037 map->defer_caching = false;
1038 map->reg_write = _regmap_bus_formatted_write;
1039 } else if (map->format.format_val) {
1040 map->defer_caching = true;
1041 map->reg_write = _regmap_bus_raw_write;
1044 skip_format_initialization:
1046 map->range_tree = RB_ROOT;
1047 for (i = 0; i < config->num_ranges; i++) {
1048 const struct regmap_range_cfg *range_cfg = &config->ranges[i];
1049 struct regmap_range_node *new;
1052 if (range_cfg->range_max < range_cfg->range_min) {
1053 dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
1054 range_cfg->range_max, range_cfg->range_min);
1058 if (range_cfg->range_max > map->max_register) {
1059 dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
1060 range_cfg->range_max, map->max_register);
1064 if (range_cfg->selector_reg > map->max_register) {
1066 "Invalid range %d: selector out of map\n", i);
1070 if (range_cfg->window_len == 0) {
1071 dev_err(map->dev, "Invalid range %d: window_len 0\n",
1076 /* Make sure, that this register range has no selector
1077 or data window within its boundary */
1078 for (j = 0; j < config->num_ranges; j++) {
1079 unsigned int sel_reg = config->ranges[j].selector_reg;
1080 unsigned int win_min = config->ranges[j].window_start;
1081 unsigned int win_max = win_min +
1082 config->ranges[j].window_len - 1;
1084 /* Allow data window inside its own virtual range */
1088 if (range_cfg->range_min <= sel_reg &&
1089 sel_reg <= range_cfg->range_max) {
1091 "Range %d: selector for %d in window\n",
1096 if (!(win_max < range_cfg->range_min ||
1097 win_min > range_cfg->range_max)) {
1099 "Range %d: window for %d in window\n",
1105 new = kzalloc(sizeof(*new), GFP_KERNEL);
1112 new->name = range_cfg->name;
1113 new->range_min = range_cfg->range_min;
1114 new->range_max = range_cfg->range_max;
1115 new->selector_reg = range_cfg->selector_reg;
1116 new->selector_mask = range_cfg->selector_mask;
1117 new->selector_shift = range_cfg->selector_shift;
1118 new->window_start = range_cfg->window_start;
1119 new->window_len = range_cfg->window_len;
1121 if (!_regmap_range_add(map, new)) {
1122 dev_err(map->dev, "Failed to add range %d\n", i);
1127 if (map->selector_work_buf == NULL) {
1128 map->selector_work_buf =
1129 kzalloc(map->format.buf_size, GFP_KERNEL);
1130 if (map->selector_work_buf == NULL) {
1137 ret = regcache_init(map, config);
1142 ret = regmap_attach_dev(dev, map, config);
1146 regmap_debugfs_init(map);
1154 regmap_range_exit(map);
1155 kfree(map->work_buf);
1158 hwspin_lock_free(map->hwlock);
1160 kfree_const(map->name);
1164 return ERR_PTR(ret);
1166 EXPORT_SYMBOL_GPL(__regmap_init);
1168 static void devm_regmap_release(struct device *dev, void *res)
1170 regmap_exit(*(struct regmap **)res);
1173 struct regmap *__devm_regmap_init(struct device *dev,
1174 const struct regmap_bus *bus,
1176 const struct regmap_config *config,
1177 struct lock_class_key *lock_key,
1178 const char *lock_name)
1180 struct regmap **ptr, *regmap;
1182 ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1184 return ERR_PTR(-ENOMEM);
1186 regmap = __regmap_init(dev, bus, bus_context, config,
1187 lock_key, lock_name);
1188 if (!IS_ERR(regmap)) {
1190 devres_add(dev, ptr);
1197 EXPORT_SYMBOL_GPL(__devm_regmap_init);
1199 static void regmap_field_init(struct regmap_field *rm_field,
1200 struct regmap *regmap, struct reg_field reg_field)
1202 rm_field->regmap = regmap;
1203 rm_field->reg = reg_field.reg;
1204 rm_field->shift = reg_field.lsb;
1205 rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1207 WARN_ONCE(rm_field->mask == 0, "invalid empty mask defined\n");
1209 rm_field->id_size = reg_field.id_size;
1210 rm_field->id_offset = reg_field.id_offset;
1214 * devm_regmap_field_alloc() - Allocate and initialise a register field.
1216 * @dev: Device that will be interacted with
1217 * @regmap: regmap bank in which this register field is located.
1218 * @reg_field: Register field with in the bank.
1220 * The return value will be an ERR_PTR() on error or a valid pointer
1221 * to a struct regmap_field. The regmap_field will be automatically freed
1222 * by the device management code.
1224 struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1225 struct regmap *regmap, struct reg_field reg_field)
1227 struct regmap_field *rm_field = devm_kzalloc(dev,
1228 sizeof(*rm_field), GFP_KERNEL);
1230 return ERR_PTR(-ENOMEM);
1232 regmap_field_init(rm_field, regmap, reg_field);
1237 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1241 * regmap_field_bulk_alloc() - Allocate and initialise a bulk register field.
1243 * @regmap: regmap bank in which this register field is located.
1244 * @rm_field: regmap register fields within the bank.
1245 * @reg_field: Register fields within the bank.
1246 * @num_fields: Number of register fields.
1248 * The return value will be an -ENOMEM on error or zero for success.
1249 * Newly allocated regmap_fields should be freed by calling
1250 * regmap_field_bulk_free()
1252 int regmap_field_bulk_alloc(struct regmap *regmap,
1253 struct regmap_field **rm_field,
1254 const struct reg_field *reg_field,
1257 struct regmap_field *rf;
1260 rf = kcalloc(num_fields, sizeof(*rf), GFP_KERNEL);
1264 for (i = 0; i < num_fields; i++) {
1265 regmap_field_init(&rf[i], regmap, reg_field[i]);
1266 rm_field[i] = &rf[i];
1271 EXPORT_SYMBOL_GPL(regmap_field_bulk_alloc);
1274 * devm_regmap_field_bulk_alloc() - Allocate and initialise a bulk register
1277 * @dev: Device that will be interacted with
1278 * @regmap: regmap bank in which this register field is located.
1279 * @rm_field: regmap register fields within the bank.
1280 * @reg_field: Register fields within the bank.
1281 * @num_fields: Number of register fields.
1283 * The return value will be an -ENOMEM on error or zero for success.
1284 * Newly allocated regmap_fields will be automatically freed by the
1285 * device management code.
1287 int devm_regmap_field_bulk_alloc(struct device *dev,
1288 struct regmap *regmap,
1289 struct regmap_field **rm_field,
1290 const struct reg_field *reg_field,
1293 struct regmap_field *rf;
1296 rf = devm_kcalloc(dev, num_fields, sizeof(*rf), GFP_KERNEL);
1300 for (i = 0; i < num_fields; i++) {
1301 regmap_field_init(&rf[i], regmap, reg_field[i]);
1302 rm_field[i] = &rf[i];
1307 EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_alloc);
1310 * regmap_field_bulk_free() - Free register field allocated using
1311 * regmap_field_bulk_alloc.
1313 * @field: regmap fields which should be freed.
1315 void regmap_field_bulk_free(struct regmap_field *field)
1319 EXPORT_SYMBOL_GPL(regmap_field_bulk_free);
1322 * devm_regmap_field_bulk_free() - Free a bulk register field allocated using
1323 * devm_regmap_field_bulk_alloc.
1325 * @dev: Device that will be interacted with
1326 * @field: regmap field which should be freed.
1328 * Free register field allocated using devm_regmap_field_bulk_alloc(). Usually
1329 * drivers need not call this function, as the memory allocated via devm
1330 * will be freed as per device-driver life-cycle.
1332 void devm_regmap_field_bulk_free(struct device *dev,
1333 struct regmap_field *field)
1335 devm_kfree(dev, field);
1337 EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_free);
1340 * devm_regmap_field_free() - Free a register field allocated using
1341 * devm_regmap_field_alloc.
1343 * @dev: Device that will be interacted with
1344 * @field: regmap field which should be freed.
1346 * Free register field allocated using devm_regmap_field_alloc(). Usually
1347 * drivers need not call this function, as the memory allocated via devm
1348 * will be freed as per device-driver life-cyle.
1350 void devm_regmap_field_free(struct device *dev,
1351 struct regmap_field *field)
1353 devm_kfree(dev, field);
1355 EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1358 * regmap_field_alloc() - Allocate and initialise a register field.
1360 * @regmap: regmap bank in which this register field is located.
1361 * @reg_field: Register field with in the bank.
1363 * The return value will be an ERR_PTR() on error or a valid pointer
1364 * to a struct regmap_field. The regmap_field should be freed by the
1365 * user once its finished working with it using regmap_field_free().
1367 struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1368 struct reg_field reg_field)
1370 struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1373 return ERR_PTR(-ENOMEM);
1375 regmap_field_init(rm_field, regmap, reg_field);
1379 EXPORT_SYMBOL_GPL(regmap_field_alloc);
1382 * regmap_field_free() - Free register field allocated using
1383 * regmap_field_alloc.
1385 * @field: regmap field which should be freed.
1387 void regmap_field_free(struct regmap_field *field)
1391 EXPORT_SYMBOL_GPL(regmap_field_free);
1394 * regmap_reinit_cache() - Reinitialise the current register cache
1396 * @map: Register map to operate on.
1397 * @config: New configuration. Only the cache data will be used.
1399 * Discard any existing register cache for the map and initialize a
1400 * new cache. This can be used to restore the cache to defaults or to
1401 * update the cache configuration to reflect runtime discovery of the
1404 * No explicit locking is done here, the user needs to ensure that
1405 * this function will not race with other calls to regmap.
1407 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1412 regmap_debugfs_exit(map);
1414 map->max_register = config->max_register;
1415 map->writeable_reg = config->writeable_reg;
1416 map->readable_reg = config->readable_reg;
1417 map->volatile_reg = config->volatile_reg;
1418 map->precious_reg = config->precious_reg;
1419 map->writeable_noinc_reg = config->writeable_noinc_reg;
1420 map->readable_noinc_reg = config->readable_noinc_reg;
1421 map->cache_type = config->cache_type;
1423 ret = regmap_set_name(map, config);
1427 regmap_debugfs_init(map);
1429 map->cache_bypass = false;
1430 map->cache_only = false;
1432 return regcache_init(map, config);
1434 EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1437 * regmap_exit() - Free a previously allocated register map
1439 * @map: Register map to operate on.
1441 void regmap_exit(struct regmap *map)
1443 struct regmap_async *async;
1446 regmap_debugfs_exit(map);
1447 regmap_range_exit(map);
1448 if (map->bus && map->bus->free_context)
1449 map->bus->free_context(map->bus_context);
1450 kfree(map->work_buf);
1451 while (!list_empty(&map->async_free)) {
1452 async = list_first_entry_or_null(&map->async_free,
1453 struct regmap_async,
1455 list_del(&async->list);
1456 kfree(async->work_buf);
1460 hwspin_lock_free(map->hwlock);
1461 if (map->lock == regmap_lock_mutex)
1462 mutex_destroy(&map->mutex);
1463 kfree_const(map->name);
1465 if (map->bus && map->bus->free_on_exit)
1469 EXPORT_SYMBOL_GPL(regmap_exit);
1471 static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1473 struct regmap **r = res;
1479 /* If the user didn't specify a name match any */
1481 return !strcmp((*r)->name, data);
1487 * dev_get_regmap() - Obtain the regmap (if any) for a device
1489 * @dev: Device to retrieve the map for
1490 * @name: Optional name for the register map, usually NULL.
1492 * Returns the regmap for the device if one is present, or NULL. If
1493 * name is specified then it must match the name specified when
1494 * registering the device, if it is NULL then the first regmap found
1495 * will be used. Devices with multiple register maps are very rare,
1496 * generic code should normally not need to specify a name.
1498 struct regmap *dev_get_regmap(struct device *dev, const char *name)
1500 struct regmap **r = devres_find(dev, dev_get_regmap_release,
1501 dev_get_regmap_match, (void *)name);
1507 EXPORT_SYMBOL_GPL(dev_get_regmap);
1510 * regmap_get_device() - Obtain the device from a regmap
1512 * @map: Register map to operate on.
1514 * Returns the underlying device that the regmap has been created for.
1516 struct device *regmap_get_device(struct regmap *map)
1520 EXPORT_SYMBOL_GPL(regmap_get_device);
1522 static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1523 struct regmap_range_node *range,
1524 unsigned int val_num)
1526 void *orig_work_buf;
1527 unsigned int win_offset;
1528 unsigned int win_page;
1532 win_offset = (*reg - range->range_min) % range->window_len;
1533 win_page = (*reg - range->range_min) / range->window_len;
1536 /* Bulk write shouldn't cross range boundary */
1537 if (*reg + val_num - 1 > range->range_max)
1540 /* ... or single page boundary */
1541 if (val_num > range->window_len - win_offset)
1545 /* It is possible to have selector register inside data window.
1546 In that case, selector register is located on every page and
1547 it needs no page switching, when accessed alone. */
1549 range->window_start + win_offset != range->selector_reg) {
1550 /* Use separate work_buf during page switching */
1551 orig_work_buf = map->work_buf;
1552 map->work_buf = map->selector_work_buf;
1554 ret = _regmap_update_bits(map, range->selector_reg,
1555 range->selector_mask,
1556 win_page << range->selector_shift,
1559 map->work_buf = orig_work_buf;
1565 *reg = range->window_start + win_offset;
1570 static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1576 if (!mask || !map->work_buf)
1579 buf = map->work_buf;
1581 for (i = 0; i < max_bytes; i++)
1582 buf[i] |= (mask >> (8 * i)) & 0xff;
1585 static unsigned int regmap_reg_addr(struct regmap *map, unsigned int reg)
1587 reg += map->reg_base;
1589 if (map->format.reg_shift > 0)
1590 reg >>= map->format.reg_shift;
1591 else if (map->format.reg_shift < 0)
1592 reg <<= -(map->format.reg_shift);
1597 static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg,
1598 const void *val, size_t val_len, bool noinc)
1600 struct regmap_range_node *range;
1601 unsigned long flags;
1602 void *work_val = map->work_buf + map->format.reg_bytes +
1603 map->format.pad_bytes;
1605 int ret = -ENOTSUPP;
1609 /* Check for unwritable or noinc registers in range
1612 if (!regmap_writeable_noinc(map, reg)) {
1613 for (i = 0; i < val_len / map->format.val_bytes; i++) {
1614 unsigned int element =
1615 reg + regmap_get_offset(map, i);
1616 if (!regmap_writeable(map, element) ||
1617 regmap_writeable_noinc(map, element))
1622 if (!map->cache_bypass && map->format.parse_val) {
1624 int val_bytes = map->format.val_bytes;
1625 for (i = 0; i < val_len / val_bytes; i++) {
1626 ival = map->format.parse_val(val + (i * val_bytes));
1627 ret = regcache_write(map,
1628 reg + regmap_get_offset(map, i),
1632 "Error in caching of register: %x ret: %d\n",
1633 reg + regmap_get_offset(map, i), ret);
1637 if (map->cache_only) {
1638 map->cache_dirty = true;
1643 range = _regmap_range_lookup(map, reg);
1645 int val_num = val_len / map->format.val_bytes;
1646 int win_offset = (reg - range->range_min) % range->window_len;
1647 int win_residue = range->window_len - win_offset;
1649 /* If the write goes beyond the end of the window split it */
1650 while (val_num > win_residue) {
1651 dev_dbg(map->dev, "Writing window %d/%zu\n",
1652 win_residue, val_len / map->format.val_bytes);
1653 ret = _regmap_raw_write_impl(map, reg, val,
1655 map->format.val_bytes, noinc);
1660 val_num -= win_residue;
1661 val += win_residue * map->format.val_bytes;
1662 val_len -= win_residue * map->format.val_bytes;
1664 win_offset = (reg - range->range_min) %
1666 win_residue = range->window_len - win_offset;
1669 ret = _regmap_select_page(map, ®, range, noinc ? 1 : val_num);
1674 reg = regmap_reg_addr(map, reg);
1675 map->format.format_reg(map->work_buf, reg, map->reg_shift);
1676 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1677 map->write_flag_mask);
1680 * Essentially all I/O mechanisms will be faster with a single
1681 * buffer to write. Since register syncs often generate raw
1682 * writes of single registers optimise that case.
1684 if (val != work_val && val_len == map->format.val_bytes) {
1685 memcpy(work_val, val, map->format.val_bytes);
1689 if (map->async && map->bus && map->bus->async_write) {
1690 struct regmap_async *async;
1692 trace_regmap_async_write_start(map, reg, val_len);
1694 spin_lock_irqsave(&map->async_lock, flags);
1695 async = list_first_entry_or_null(&map->async_free,
1696 struct regmap_async,
1699 list_del(&async->list);
1700 spin_unlock_irqrestore(&map->async_lock, flags);
1703 async = map->bus->async_alloc();
1707 async->work_buf = kzalloc(map->format.buf_size,
1708 GFP_KERNEL | GFP_DMA);
1709 if (!async->work_buf) {
1717 /* If the caller supplied the value we can use it safely. */
1718 memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1719 map->format.reg_bytes + map->format.val_bytes);
1721 spin_lock_irqsave(&map->async_lock, flags);
1722 list_add_tail(&async->list, &map->async_list);
1723 spin_unlock_irqrestore(&map->async_lock, flags);
1725 if (val != work_val)
1726 ret = map->bus->async_write(map->bus_context,
1728 map->format.reg_bytes +
1729 map->format.pad_bytes,
1730 val, val_len, async);
1732 ret = map->bus->async_write(map->bus_context,
1734 map->format.reg_bytes +
1735 map->format.pad_bytes +
1736 val_len, NULL, 0, async);
1739 dev_err(map->dev, "Failed to schedule write: %d\n",
1742 spin_lock_irqsave(&map->async_lock, flags);
1743 list_move(&async->list, &map->async_free);
1744 spin_unlock_irqrestore(&map->async_lock, flags);
1750 trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1752 /* If we're doing a single register write we can probably just
1753 * send the work_buf directly, otherwise try to do a gather
1756 if (val == work_val)
1757 ret = map->write(map->bus_context, map->work_buf,
1758 map->format.reg_bytes +
1759 map->format.pad_bytes +
1761 else if (map->bus && map->bus->gather_write)
1762 ret = map->bus->gather_write(map->bus_context, map->work_buf,
1763 map->format.reg_bytes +
1764 map->format.pad_bytes,
1769 /* If that didn't work fall back on linearising by hand. */
1770 if (ret == -ENOTSUPP) {
1771 len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1772 buf = kzalloc(len, GFP_KERNEL);
1776 memcpy(buf, map->work_buf, map->format.reg_bytes);
1777 memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1779 ret = map->write(map->bus_context, buf, len);
1782 } else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1783 /* regcache_drop_region() takes lock that we already have,
1784 * thus call map->cache_ops->drop() directly
1786 if (map->cache_ops && map->cache_ops->drop)
1787 map->cache_ops->drop(map, reg, reg + 1);
1790 trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1796 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1798 * @map: Map to check.
1800 bool regmap_can_raw_write(struct regmap *map)
1802 return map->write && map->format.format_val && map->format.format_reg;
1804 EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1807 * regmap_get_raw_read_max - Get the maximum size we can read
1809 * @map: Map to check.
1811 size_t regmap_get_raw_read_max(struct regmap *map)
1813 return map->max_raw_read;
1815 EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1818 * regmap_get_raw_write_max - Get the maximum size we can read
1820 * @map: Map to check.
1822 size_t regmap_get_raw_write_max(struct regmap *map)
1824 return map->max_raw_write;
1826 EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1828 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1832 struct regmap_range_node *range;
1833 struct regmap *map = context;
1835 WARN_ON(!map->format.format_write);
1837 range = _regmap_range_lookup(map, reg);
1839 ret = _regmap_select_page(map, ®, range, 1);
1844 reg = regmap_reg_addr(map, reg);
1845 map->format.format_write(map, reg, val);
1847 trace_regmap_hw_write_start(map, reg, 1);
1849 ret = map->write(map->bus_context, map->work_buf, map->format.buf_size);
1851 trace_regmap_hw_write_done(map, reg, 1);
1856 static int _regmap_bus_reg_write(void *context, unsigned int reg,
1859 struct regmap *map = context;
1860 struct regmap_range_node *range;
1863 range = _regmap_range_lookup(map, reg);
1865 ret = _regmap_select_page(map, ®, range, 1);
1870 reg = regmap_reg_addr(map, reg);
1871 return map->bus->reg_write(map->bus_context, reg, val);
1874 static int _regmap_bus_raw_write(void *context, unsigned int reg,
1877 struct regmap *map = context;
1879 WARN_ON(!map->format.format_val);
1881 map->format.format_val(map->work_buf + map->format.reg_bytes
1882 + map->format.pad_bytes, val, 0);
1883 return _regmap_raw_write_impl(map, reg,
1885 map->format.reg_bytes +
1886 map->format.pad_bytes,
1887 map->format.val_bytes,
1891 static inline void *_regmap_map_get_context(struct regmap *map)
1893 return (map->bus || (!map->bus && map->read)) ? map : map->bus_context;
1896 int _regmap_write(struct regmap *map, unsigned int reg,
1900 void *context = _regmap_map_get_context(map);
1902 if (!regmap_writeable(map, reg))
1905 if (!map->cache_bypass && !map->defer_caching) {
1906 ret = regcache_write(map, reg, val);
1909 if (map->cache_only) {
1910 map->cache_dirty = true;
1915 ret = map->reg_write(context, reg, val);
1917 if (regmap_should_log(map))
1918 dev_info(map->dev, "%x <= %x\n", reg, val);
1920 trace_regmap_reg_write(map, reg, val);
1927 * regmap_write() - Write a value to a single register
1929 * @map: Register map to write to
1930 * @reg: Register to write to
1931 * @val: Value to be written
1933 * A value of zero will be returned on success, a negative errno will
1934 * be returned in error cases.
1936 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1940 if (!IS_ALIGNED(reg, map->reg_stride))
1943 map->lock(map->lock_arg);
1945 ret = _regmap_write(map, reg, val);
1947 map->unlock(map->lock_arg);
1951 EXPORT_SYMBOL_GPL(regmap_write);
1954 * regmap_write_async() - Write a value to a single register asynchronously
1956 * @map: Register map to write to
1957 * @reg: Register to write to
1958 * @val: Value to be written
1960 * A value of zero will be returned on success, a negative errno will
1961 * be returned in error cases.
1963 int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1967 if (!IS_ALIGNED(reg, map->reg_stride))
1970 map->lock(map->lock_arg);
1974 ret = _regmap_write(map, reg, val);
1978 map->unlock(map->lock_arg);
1982 EXPORT_SYMBOL_GPL(regmap_write_async);
1984 int _regmap_raw_write(struct regmap *map, unsigned int reg,
1985 const void *val, size_t val_len, bool noinc)
1987 size_t val_bytes = map->format.val_bytes;
1988 size_t val_count = val_len / val_bytes;
1989 size_t chunk_count, chunk_bytes;
1990 size_t chunk_regs = val_count;
1996 if (map->use_single_write)
1998 else if (map->max_raw_write && val_len > map->max_raw_write)
1999 chunk_regs = map->max_raw_write / val_bytes;
2001 chunk_count = val_count / chunk_regs;
2002 chunk_bytes = chunk_regs * val_bytes;
2004 /* Write as many bytes as possible with chunk_size */
2005 for (i = 0; i < chunk_count; i++) {
2006 ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes, noinc);
2010 reg += regmap_get_offset(map, chunk_regs);
2012 val_len -= chunk_bytes;
2015 /* Write remaining bytes */
2017 ret = _regmap_raw_write_impl(map, reg, val, val_len, noinc);
2023 * regmap_raw_write() - Write raw values to one or more registers
2025 * @map: Register map to write to
2026 * @reg: Initial register to write to
2027 * @val: Block of data to be written, laid out for direct transmission to the
2029 * @val_len: Length of data pointed to by val.
2031 * This function is intended to be used for things like firmware
2032 * download where a large block of data needs to be transferred to the
2033 * device. No formatting will be done on the data provided.
2035 * A value of zero will be returned on success, a negative errno will
2036 * be returned in error cases.
2038 int regmap_raw_write(struct regmap *map, unsigned int reg,
2039 const void *val, size_t val_len)
2043 if (!regmap_can_raw_write(map))
2045 if (val_len % map->format.val_bytes)
2048 map->lock(map->lock_arg);
2050 ret = _regmap_raw_write(map, reg, val, val_len, false);
2052 map->unlock(map->lock_arg);
2056 EXPORT_SYMBOL_GPL(regmap_raw_write);
2058 static int regmap_noinc_readwrite(struct regmap *map, unsigned int reg,
2059 void *val, unsigned int val_len, bool write)
2061 size_t val_bytes = map->format.val_bytes;
2062 size_t val_count = val_len / val_bytes;
2063 unsigned int lastval;
2070 switch (val_bytes) {
2074 lastval = (unsigned int)u8p[val_count - 1];
2079 lastval = (unsigned int)u16p[val_count - 1];
2084 lastval = (unsigned int)u32p[val_count - 1];
2091 * Update the cache with the last value we write, the rest is just
2092 * gone down in the hardware FIFO. We can't cache FIFOs. This makes
2093 * sure a single read from the cache will work.
2096 if (!map->cache_bypass && !map->defer_caching) {
2097 ret = regcache_write(map, reg, lastval);
2100 if (map->cache_only) {
2101 map->cache_dirty = true;
2105 ret = map->bus->reg_noinc_write(map->bus_context, reg, val, val_count);
2107 ret = map->bus->reg_noinc_read(map->bus_context, reg, val, val_count);
2110 if (!ret && regmap_should_log(map)) {
2111 dev_info(map->dev, "%x %s [", reg, write ? "<=" : "=>");
2112 for (i = 0; i < val_count; i++) {
2113 switch (val_bytes) {
2115 pr_cont("%x", u8p[i]);
2118 pr_cont("%x", u16p[i]);
2121 pr_cont("%x", u32p[i]);
2126 if (i == (val_count - 1))
2137 * regmap_noinc_write(): Write data from a register without incrementing the
2140 * @map: Register map to write to
2141 * @reg: Register to write to
2142 * @val: Pointer to data buffer
2143 * @val_len: Length of output buffer in bytes.
2145 * The regmap API usually assumes that bulk bus write operations will write a
2146 * range of registers. Some devices have certain registers for which a write
2147 * operation can write to an internal FIFO.
2149 * The target register must be volatile but registers after it can be
2150 * completely unrelated cacheable registers.
2152 * This will attempt multiple writes as required to write val_len bytes.
2154 * A value of zero will be returned on success, a negative errno will be
2155 * returned in error cases.
2157 int regmap_noinc_write(struct regmap *map, unsigned int reg,
2158 const void *val, size_t val_len)
2163 if (!map->write && !(map->bus && map->bus->reg_noinc_write))
2165 if (val_len % map->format.val_bytes)
2167 if (!IS_ALIGNED(reg, map->reg_stride))
2172 map->lock(map->lock_arg);
2174 if (!regmap_volatile(map, reg) || !regmap_writeable_noinc(map, reg)) {
2180 * Use the accelerated operation if we can. The val drops the const
2181 * typing in order to facilitate code reuse in regmap_noinc_readwrite().
2183 if (map->bus->reg_noinc_write) {
2184 ret = regmap_noinc_readwrite(map, reg, (void *)val, val_len, true);
2189 if (map->max_raw_write && map->max_raw_write < val_len)
2190 write_len = map->max_raw_write;
2192 write_len = val_len;
2193 ret = _regmap_raw_write(map, reg, val, write_len, true);
2196 val = ((u8 *)val) + write_len;
2197 val_len -= write_len;
2201 map->unlock(map->lock_arg);
2204 EXPORT_SYMBOL_GPL(regmap_noinc_write);
2207 * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
2210 * @field: Register field to write to
2211 * @mask: Bitmask to change
2212 * @val: Value to be written
2213 * @change: Boolean indicating if a write was done
2214 * @async: Boolean indicating asynchronously
2215 * @force: Boolean indicating use force update
2217 * Perform a read/modify/write cycle on the register field with change,
2218 * async, force option.
2220 * A value of zero will be returned on success, a negative errno will
2221 * be returned in error cases.
2223 int regmap_field_update_bits_base(struct regmap_field *field,
2224 unsigned int mask, unsigned int val,
2225 bool *change, bool async, bool force)
2227 mask = (mask << field->shift) & field->mask;
2229 return regmap_update_bits_base(field->regmap, field->reg,
2230 mask, val << field->shift,
2231 change, async, force);
2233 EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
2236 * regmap_field_test_bits() - Check if all specified bits are set in a
2239 * @field: Register field to operate on
2240 * @bits: Bits to test
2242 * Returns -1 if the underlying regmap_field_read() fails, 0 if at least one of the
2243 * tested bits is not set and 1 if all tested bits are set.
2245 int regmap_field_test_bits(struct regmap_field *field, unsigned int bits)
2247 unsigned int val, ret;
2249 ret = regmap_field_read(field, &val);
2253 return (val & bits) == bits;
2255 EXPORT_SYMBOL_GPL(regmap_field_test_bits);
2258 * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
2259 * register field with port ID
2261 * @field: Register field to write to
2263 * @mask: Bitmask to change
2264 * @val: Value to be written
2265 * @change: Boolean indicating if a write was done
2266 * @async: Boolean indicating asynchronously
2267 * @force: Boolean indicating use force update
2269 * A value of zero will be returned on success, a negative errno will
2270 * be returned in error cases.
2272 int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id,
2273 unsigned int mask, unsigned int val,
2274 bool *change, bool async, bool force)
2276 if (id >= field->id_size)
2279 mask = (mask << field->shift) & field->mask;
2281 return regmap_update_bits_base(field->regmap,
2282 field->reg + (field->id_offset * id),
2283 mask, val << field->shift,
2284 change, async, force);
2286 EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
2289 * regmap_bulk_write() - Write multiple registers to the device
2291 * @map: Register map to write to
2292 * @reg: First register to be write from
2293 * @val: Block of data to be written, in native register size for device
2294 * @val_count: Number of registers to write
2296 * This function is intended to be used for writing a large block of
2297 * data to the device either in single transfer or multiple transfer.
2299 * A value of zero will be returned on success, a negative errno will
2300 * be returned in error cases.
2302 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
2306 size_t val_bytes = map->format.val_bytes;
2308 if (!IS_ALIGNED(reg, map->reg_stride))
2312 * Some devices don't support bulk write, for them we have a series of
2313 * single write operations.
2315 if (!map->write || !map->format.parse_inplace) {
2316 map->lock(map->lock_arg);
2317 for (i = 0; i < val_count; i++) {
2320 switch (val_bytes) {
2322 ival = *(u8 *)(val + (i * val_bytes));
2325 ival = *(u16 *)(val + (i * val_bytes));
2328 ival = *(u32 *)(val + (i * val_bytes));
2335 ret = _regmap_write(map,
2336 reg + regmap_get_offset(map, i),
2342 map->unlock(map->lock_arg);
2346 wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
2350 for (i = 0; i < val_count * val_bytes; i += val_bytes)
2351 map->format.parse_inplace(wval + i);
2353 ret = regmap_raw_write(map, reg, wval, val_bytes * val_count);
2359 trace_regmap_bulk_write(map, reg, val, val_bytes * val_count);
2363 EXPORT_SYMBOL_GPL(regmap_bulk_write);
2366 * _regmap_raw_multi_reg_write()
2368 * the (register,newvalue) pairs in regs have not been formatted, but
2369 * they are all in the same page and have been changed to being page
2370 * relative. The page register has been written if that was necessary.
2372 static int _regmap_raw_multi_reg_write(struct regmap *map,
2373 const struct reg_sequence *regs,
2380 size_t val_bytes = map->format.val_bytes;
2381 size_t reg_bytes = map->format.reg_bytes;
2382 size_t pad_bytes = map->format.pad_bytes;
2383 size_t pair_size = reg_bytes + pad_bytes + val_bytes;
2384 size_t len = pair_size * num_regs;
2389 buf = kzalloc(len, GFP_KERNEL);
2393 /* We have to linearise by hand. */
2397 for (i = 0; i < num_regs; i++) {
2398 unsigned int reg = regs[i].reg;
2399 unsigned int val = regs[i].def;
2400 trace_regmap_hw_write_start(map, reg, 1);
2401 reg = regmap_reg_addr(map, reg);
2402 map->format.format_reg(u8, reg, map->reg_shift);
2403 u8 += reg_bytes + pad_bytes;
2404 map->format.format_val(u8, val, 0);
2408 *u8 |= map->write_flag_mask;
2410 ret = map->write(map->bus_context, buf, len);
2414 for (i = 0; i < num_regs; i++) {
2415 int reg = regs[i].reg;
2416 trace_regmap_hw_write_done(map, reg, 1);
2421 static unsigned int _regmap_register_page(struct regmap *map,
2423 struct regmap_range_node *range)
2425 unsigned int win_page = (reg - range->range_min) / range->window_len;
2430 static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2431 struct reg_sequence *regs,
2436 struct reg_sequence *base;
2437 unsigned int this_page = 0;
2438 unsigned int page_change = 0;
2440 * the set of registers are not neccessarily in order, but
2441 * since the order of write must be preserved this algorithm
2442 * chops the set each time the page changes. This also applies
2443 * if there is a delay required at any point in the sequence.
2446 for (i = 0, n = 0; i < num_regs; i++, n++) {
2447 unsigned int reg = regs[i].reg;
2448 struct regmap_range_node *range;
2450 range = _regmap_range_lookup(map, reg);
2452 unsigned int win_page = _regmap_register_page(map, reg,
2456 this_page = win_page;
2457 if (win_page != this_page) {
2458 this_page = win_page;
2463 /* If we have both a page change and a delay make sure to
2464 * write the regs and apply the delay before we change the
2468 if (page_change || regs[i].delay_us) {
2470 /* For situations where the first write requires
2471 * a delay we need to make sure we don't call
2472 * raw_multi_reg_write with n=0
2473 * This can't occur with page breaks as we
2474 * never write on the first iteration
2476 if (regs[i].delay_us && i == 0)
2479 ret = _regmap_raw_multi_reg_write(map, base, n);
2483 if (regs[i].delay_us) {
2485 fsleep(regs[i].delay_us);
2487 udelay(regs[i].delay_us);
2494 ret = _regmap_select_page(map,
2507 return _regmap_raw_multi_reg_write(map, base, n);
2511 static int _regmap_multi_reg_write(struct regmap *map,
2512 const struct reg_sequence *regs,
2518 if (!map->can_multi_write) {
2519 for (i = 0; i < num_regs; i++) {
2520 ret = _regmap_write(map, regs[i].reg, regs[i].def);
2524 if (regs[i].delay_us) {
2526 fsleep(regs[i].delay_us);
2528 udelay(regs[i].delay_us);
2534 if (!map->format.parse_inplace)
2537 if (map->writeable_reg)
2538 for (i = 0; i < num_regs; i++) {
2539 int reg = regs[i].reg;
2540 if (!map->writeable_reg(map->dev, reg))
2542 if (!IS_ALIGNED(reg, map->reg_stride))
2546 if (!map->cache_bypass) {
2547 for (i = 0; i < num_regs; i++) {
2548 unsigned int val = regs[i].def;
2549 unsigned int reg = regs[i].reg;
2550 ret = regcache_write(map, reg, val);
2553 "Error in caching of register: %x ret: %d\n",
2558 if (map->cache_only) {
2559 map->cache_dirty = true;
2566 for (i = 0; i < num_regs; i++) {
2567 unsigned int reg = regs[i].reg;
2568 struct regmap_range_node *range;
2570 /* Coalesce all the writes between a page break or a delay
2573 range = _regmap_range_lookup(map, reg);
2574 if (range || regs[i].delay_us) {
2575 size_t len = sizeof(struct reg_sequence)*num_regs;
2576 struct reg_sequence *base = kmemdup(regs, len,
2580 ret = _regmap_range_multi_paged_reg_write(map, base,
2587 return _regmap_raw_multi_reg_write(map, regs, num_regs);
2591 * regmap_multi_reg_write() - Write multiple registers to the device
2593 * @map: Register map to write to
2594 * @regs: Array of structures containing register,value to be written
2595 * @num_regs: Number of registers to write
2597 * Write multiple registers to the device where the set of register, value
2598 * pairs are supplied in any order, possibly not all in a single range.
2600 * The 'normal' block write mode will send ultimately send data on the
2601 * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2602 * addressed. However, this alternative block multi write mode will send
2603 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2604 * must of course support the mode.
2606 * A value of zero will be returned on success, a negative errno will be
2607 * returned in error cases.
2609 int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2614 map->lock(map->lock_arg);
2616 ret = _regmap_multi_reg_write(map, regs, num_regs);
2618 map->unlock(map->lock_arg);
2622 EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2625 * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2626 * device but not the cache
2628 * @map: Register map to write to
2629 * @regs: Array of structures containing register,value to be written
2630 * @num_regs: Number of registers to write
2632 * Write multiple registers to the device but not the cache where the set
2633 * of register are supplied in any order.
2635 * This function is intended to be used for writing a large block of data
2636 * atomically to the device in single transfer for those I2C client devices
2637 * that implement this alternative block write mode.
2639 * A value of zero will be returned on success, a negative errno will
2640 * be returned in error cases.
2642 int regmap_multi_reg_write_bypassed(struct regmap *map,
2643 const struct reg_sequence *regs,
2649 map->lock(map->lock_arg);
2651 bypass = map->cache_bypass;
2652 map->cache_bypass = true;
2654 ret = _regmap_multi_reg_write(map, regs, num_regs);
2656 map->cache_bypass = bypass;
2658 map->unlock(map->lock_arg);
2662 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2665 * regmap_raw_write_async() - Write raw values to one or more registers
2668 * @map: Register map to write to
2669 * @reg: Initial register to write to
2670 * @val: Block of data to be written, laid out for direct transmission to the
2671 * device. Must be valid until regmap_async_complete() is called.
2672 * @val_len: Length of data pointed to by val.
2674 * This function is intended to be used for things like firmware
2675 * download where a large block of data needs to be transferred to the
2676 * device. No formatting will be done on the data provided.
2678 * If supported by the underlying bus the write will be scheduled
2679 * asynchronously, helping maximise I/O speed on higher speed buses
2680 * like SPI. regmap_async_complete() can be called to ensure that all
2681 * asynchrnous writes have been completed.
2683 * A value of zero will be returned on success, a negative errno will
2684 * be returned in error cases.
2686 int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2687 const void *val, size_t val_len)
2691 if (val_len % map->format.val_bytes)
2693 if (!IS_ALIGNED(reg, map->reg_stride))
2696 map->lock(map->lock_arg);
2700 ret = _regmap_raw_write(map, reg, val, val_len, false);
2704 map->unlock(map->lock_arg);
2708 EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2710 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2711 unsigned int val_len, bool noinc)
2713 struct regmap_range_node *range;
2719 range = _regmap_range_lookup(map, reg);
2721 ret = _regmap_select_page(map, ®, range,
2722 noinc ? 1 : val_len / map->format.val_bytes);
2727 reg = regmap_reg_addr(map, reg);
2728 map->format.format_reg(map->work_buf, reg, map->reg_shift);
2729 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2730 map->read_flag_mask);
2731 trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2733 ret = map->read(map->bus_context, map->work_buf,
2734 map->format.reg_bytes + map->format.pad_bytes,
2737 trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2742 static int _regmap_bus_reg_read(void *context, unsigned int reg,
2745 struct regmap *map = context;
2746 struct regmap_range_node *range;
2749 range = _regmap_range_lookup(map, reg);
2751 ret = _regmap_select_page(map, ®, range, 1);
2756 reg = regmap_reg_addr(map, reg);
2757 return map->bus->reg_read(map->bus_context, reg, val);
2760 static int _regmap_bus_read(void *context, unsigned int reg,
2764 struct regmap *map = context;
2765 void *work_val = map->work_buf + map->format.reg_bytes +
2766 map->format.pad_bytes;
2768 if (!map->format.parse_val)
2771 ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes, false);
2773 *val = map->format.parse_val(work_val);
2778 static int _regmap_read(struct regmap *map, unsigned int reg,
2782 void *context = _regmap_map_get_context(map);
2784 if (!map->cache_bypass) {
2785 ret = regcache_read(map, reg, val);
2790 if (map->cache_only)
2793 if (!regmap_readable(map, reg))
2796 ret = map->reg_read(context, reg, val);
2798 if (regmap_should_log(map))
2799 dev_info(map->dev, "%x => %x\n", reg, *val);
2801 trace_regmap_reg_read(map, reg, *val);
2803 if (!map->cache_bypass)
2804 regcache_write(map, reg, *val);
2811 * regmap_read() - Read a value from a single register
2813 * @map: Register map to read from
2814 * @reg: Register to be read from
2815 * @val: Pointer to store read value
2817 * A value of zero will be returned on success, a negative errno will
2818 * be returned in error cases.
2820 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2824 if (!IS_ALIGNED(reg, map->reg_stride))
2827 map->lock(map->lock_arg);
2829 ret = _regmap_read(map, reg, val);
2831 map->unlock(map->lock_arg);
2835 EXPORT_SYMBOL_GPL(regmap_read);
2838 * regmap_raw_read() - Read raw data from the device
2840 * @map: Register map to read from
2841 * @reg: First register to be read from
2842 * @val: Pointer to store read value
2843 * @val_len: Size of data to read
2845 * A value of zero will be returned on success, a negative errno will
2846 * be returned in error cases.
2848 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2851 size_t val_bytes = map->format.val_bytes;
2852 size_t val_count = val_len / val_bytes;
2856 if (val_len % map->format.val_bytes)
2858 if (!IS_ALIGNED(reg, map->reg_stride))
2863 map->lock(map->lock_arg);
2865 if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2866 map->cache_type == REGCACHE_NONE) {
2867 size_t chunk_count, chunk_bytes;
2868 size_t chunk_regs = val_count;
2870 if (!map->cache_bypass && map->cache_only) {
2880 if (map->use_single_read)
2882 else if (map->max_raw_read && val_len > map->max_raw_read)
2883 chunk_regs = map->max_raw_read / val_bytes;
2885 chunk_count = val_count / chunk_regs;
2886 chunk_bytes = chunk_regs * val_bytes;
2888 /* Read bytes that fit into whole chunks */
2889 for (i = 0; i < chunk_count; i++) {
2890 ret = _regmap_raw_read(map, reg, val, chunk_bytes, false);
2894 reg += regmap_get_offset(map, chunk_regs);
2896 val_len -= chunk_bytes;
2899 /* Read remaining bytes */
2901 ret = _regmap_raw_read(map, reg, val, val_len, false);
2906 /* Otherwise go word by word for the cache; should be low
2907 * cost as we expect to hit the cache.
2909 for (i = 0; i < val_count; i++) {
2910 ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2915 map->format.format_val(val + (i * val_bytes), v, 0);
2920 map->unlock(map->lock_arg);
2924 EXPORT_SYMBOL_GPL(regmap_raw_read);
2927 * regmap_noinc_read(): Read data from a register without incrementing the
2930 * @map: Register map to read from
2931 * @reg: Register to read from
2932 * @val: Pointer to data buffer
2933 * @val_len: Length of output buffer in bytes.
2935 * The regmap API usually assumes that bulk read operations will read a
2936 * range of registers. Some devices have certain registers for which a read
2937 * operation read will read from an internal FIFO.
2939 * The target register must be volatile but registers after it can be
2940 * completely unrelated cacheable registers.
2942 * This will attempt multiple reads as required to read val_len bytes.
2944 * A value of zero will be returned on success, a negative errno will be
2945 * returned in error cases.
2947 int regmap_noinc_read(struct regmap *map, unsigned int reg,
2948 void *val, size_t val_len)
2956 if (val_len % map->format.val_bytes)
2958 if (!IS_ALIGNED(reg, map->reg_stride))
2963 map->lock(map->lock_arg);
2965 if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) {
2971 * We have not defined the FIFO semantics for cache, as the
2972 * cache is just one value deep. Should we return the last
2973 * written value? Just avoid this by always reading the FIFO
2974 * even when using cache. Cache only will not work.
2976 if (!map->cache_bypass && map->cache_only) {
2981 /* Use the accelerated operation if we can */
2982 if (map->bus->reg_noinc_read) {
2983 ret = regmap_noinc_readwrite(map, reg, val, val_len, false);
2988 if (map->max_raw_read && map->max_raw_read < val_len)
2989 read_len = map->max_raw_read;
2992 ret = _regmap_raw_read(map, reg, val, read_len, true);
2995 val = ((u8 *)val) + read_len;
2996 val_len -= read_len;
3000 map->unlock(map->lock_arg);
3003 EXPORT_SYMBOL_GPL(regmap_noinc_read);
3006 * regmap_field_read(): Read a value to a single register field
3008 * @field: Register field to read from
3009 * @val: Pointer to store read value
3011 * A value of zero will be returned on success, a negative errno will
3012 * be returned in error cases.
3014 int regmap_field_read(struct regmap_field *field, unsigned int *val)
3017 unsigned int reg_val;
3018 ret = regmap_read(field->regmap, field->reg, ®_val);
3022 reg_val &= field->mask;
3023 reg_val >>= field->shift;
3028 EXPORT_SYMBOL_GPL(regmap_field_read);
3031 * regmap_fields_read() - Read a value to a single register field with port ID
3033 * @field: Register field to read from
3035 * @val: Pointer to store read value
3037 * A value of zero will be returned on success, a negative errno will
3038 * be returned in error cases.
3040 int regmap_fields_read(struct regmap_field *field, unsigned int id,
3044 unsigned int reg_val;
3046 if (id >= field->id_size)
3049 ret = regmap_read(field->regmap,
3050 field->reg + (field->id_offset * id),
3055 reg_val &= field->mask;
3056 reg_val >>= field->shift;
3061 EXPORT_SYMBOL_GPL(regmap_fields_read);
3064 * regmap_bulk_read() - Read multiple registers from the device
3066 * @map: Register map to read from
3067 * @reg: First register to be read from
3068 * @val: Pointer to store read value, in native register size for device
3069 * @val_count: Number of registers to read
3071 * A value of zero will be returned on success, a negative errno will
3072 * be returned in error cases.
3074 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
3078 size_t val_bytes = map->format.val_bytes;
3079 bool vol = regmap_volatile_range(map, reg, val_count);
3081 if (!IS_ALIGNED(reg, map->reg_stride))
3086 if (map->read && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
3087 ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
3091 for (i = 0; i < val_count * val_bytes; i += val_bytes)
3092 map->format.parse_inplace(val + i);
3098 map->lock(map->lock_arg);
3100 for (i = 0; i < val_count; i++) {
3103 ret = _regmap_read(map, reg + regmap_get_offset(map, i),
3108 switch (map->format.val_bytes) {
3125 map->unlock(map->lock_arg);
3129 trace_regmap_bulk_read(map, reg, val, val_bytes * val_count);
3133 EXPORT_SYMBOL_GPL(regmap_bulk_read);
3135 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
3136 unsigned int mask, unsigned int val,
3137 bool *change, bool force_write)
3140 unsigned int tmp, orig;
3145 if (regmap_volatile(map, reg) && map->reg_update_bits) {
3146 reg = regmap_reg_addr(map, reg);
3147 ret = map->reg_update_bits(map->bus_context, reg, mask, val);
3148 if (ret == 0 && change)
3151 ret = _regmap_read(map, reg, &orig);
3158 if (force_write || (tmp != orig) || map->force_write_field) {
3159 ret = _regmap_write(map, reg, tmp);
3160 if (ret == 0 && change)
3169 * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
3171 * @map: Register map to update
3172 * @reg: Register to update
3173 * @mask: Bitmask to change
3174 * @val: New value for bitmask
3175 * @change: Boolean indicating if a write was done
3176 * @async: Boolean indicating asynchronously
3177 * @force: Boolean indicating use force update
3179 * Perform a read/modify/write cycle on a register map with change, async, force
3184 * With most buses the read must be done synchronously so this is most useful
3185 * for devices with a cache which do not need to interact with the hardware to
3186 * determine the current register value.
3188 * Returns zero for success, a negative number on error.
3190 int regmap_update_bits_base(struct regmap *map, unsigned int reg,
3191 unsigned int mask, unsigned int val,
3192 bool *change, bool async, bool force)
3196 map->lock(map->lock_arg);
3200 ret = _regmap_update_bits(map, reg, mask, val, change, force);
3204 map->unlock(map->lock_arg);
3208 EXPORT_SYMBOL_GPL(regmap_update_bits_base);
3211 * regmap_test_bits() - Check if all specified bits are set in a register.
3213 * @map: Register map to operate on
3214 * @reg: Register to read from
3215 * @bits: Bits to test
3217 * Returns 0 if at least one of the tested bits is not set, 1 if all tested
3218 * bits are set and a negative error number if the underlying regmap_read()
3221 int regmap_test_bits(struct regmap *map, unsigned int reg, unsigned int bits)
3223 unsigned int val, ret;
3225 ret = regmap_read(map, reg, &val);
3229 return (val & bits) == bits;
3231 EXPORT_SYMBOL_GPL(regmap_test_bits);
3233 void regmap_async_complete_cb(struct regmap_async *async, int ret)
3235 struct regmap *map = async->map;
3238 trace_regmap_async_io_complete(map);
3240 spin_lock(&map->async_lock);
3241 list_move(&async->list, &map->async_free);
3242 wake = list_empty(&map->async_list);
3245 map->async_ret = ret;
3247 spin_unlock(&map->async_lock);
3250 wake_up(&map->async_waitq);
3252 EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
3254 static int regmap_async_is_done(struct regmap *map)
3256 unsigned long flags;
3259 spin_lock_irqsave(&map->async_lock, flags);
3260 ret = list_empty(&map->async_list);
3261 spin_unlock_irqrestore(&map->async_lock, flags);
3267 * regmap_async_complete - Ensure all asynchronous I/O has completed.
3269 * @map: Map to operate on.
3271 * Blocks until any pending asynchronous I/O has completed. Returns
3272 * an error code for any failed I/O operations.
3274 int regmap_async_complete(struct regmap *map)
3276 unsigned long flags;
3279 /* Nothing to do with no async support */
3280 if (!map->bus || !map->bus->async_write)
3283 trace_regmap_async_complete_start(map);
3285 wait_event(map->async_waitq, regmap_async_is_done(map));
3287 spin_lock_irqsave(&map->async_lock, flags);
3288 ret = map->async_ret;
3290 spin_unlock_irqrestore(&map->async_lock, flags);
3292 trace_regmap_async_complete_done(map);
3296 EXPORT_SYMBOL_GPL(regmap_async_complete);
3299 * regmap_register_patch - Register and apply register updates to be applied
3300 * on device initialistion
3302 * @map: Register map to apply updates to.
3303 * @regs: Values to update.
3304 * @num_regs: Number of entries in regs.
3306 * Register a set of register updates to be applied to the device
3307 * whenever the device registers are synchronised with the cache and
3308 * apply them immediately. Typically this is used to apply
3309 * corrections to be applied to the device defaults on startup, such
3310 * as the updates some vendors provide to undocumented registers.
3312 * The caller must ensure that this function cannot be called
3313 * concurrently with either itself or regcache_sync().
3315 int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
3318 struct reg_sequence *p;
3322 if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
3326 p = krealloc(map->patch,
3327 sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
3330 memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
3332 map->patch_regs += num_regs;
3337 map->lock(map->lock_arg);
3339 bypass = map->cache_bypass;
3341 map->cache_bypass = true;
3344 ret = _regmap_multi_reg_write(map, regs, num_regs);
3347 map->cache_bypass = bypass;
3349 map->unlock(map->lock_arg);
3351 regmap_async_complete(map);
3355 EXPORT_SYMBOL_GPL(regmap_register_patch);
3358 * regmap_get_val_bytes() - Report the size of a register value
3360 * @map: Register map to operate on.
3362 * Report the size of a register value, mainly intended to for use by
3363 * generic infrastructure built on top of regmap.
3365 int regmap_get_val_bytes(struct regmap *map)
3367 if (map->format.format_write)
3370 return map->format.val_bytes;
3372 EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
3375 * regmap_get_max_register() - Report the max register value
3377 * @map: Register map to operate on.
3379 * Report the max register value, mainly intended to for use by
3380 * generic infrastructure built on top of regmap.
3382 int regmap_get_max_register(struct regmap *map)
3384 return map->max_register ? map->max_register : -EINVAL;
3386 EXPORT_SYMBOL_GPL(regmap_get_max_register);
3389 * regmap_get_reg_stride() - Report the register address stride
3391 * @map: Register map to operate on.
3393 * Report the register address stride, mainly intended to for use by
3394 * generic infrastructure built on top of regmap.
3396 int regmap_get_reg_stride(struct regmap *map)
3398 return map->reg_stride;
3400 EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
3403 * regmap_might_sleep() - Returns whether a regmap access might sleep.
3405 * @map: Register map to operate on.
3407 * Returns true if an access to the register might sleep, else false.
3409 bool regmap_might_sleep(struct regmap *map)
3411 return map->can_sleep;
3413 EXPORT_SYMBOL_GPL(regmap_might_sleep);
3415 int regmap_parse_val(struct regmap *map, const void *buf,
3418 if (!map->format.parse_val)
3421 *val = map->format.parse_val(buf);
3425 EXPORT_SYMBOL_GPL(regmap_parse_val);
3427 static int __init regmap_initcall(void)
3429 regmap_debugfs_initcall();
3433 postcore_initcall(regmap_initcall);