1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_PGTABLE_H
3 #define _LINUX_PGTABLE_H
6 #include <asm/pgtable.h>
11 #include <linux/mm_types.h>
12 #include <linux/bug.h>
13 #include <linux/errno.h>
14 #include <asm-generic/pgtable_uffd.h>
16 #if 5 - defined(__PAGETABLE_P4D_FOLDED) - defined(__PAGETABLE_PUD_FOLDED) - \
17 defined(__PAGETABLE_PMD_FOLDED) != CONFIG_PGTABLE_LEVELS
18 #error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{P4D,PUD,PMD}_FOLDED
22 * On almost all architectures and configurations, 0 can be used as the
23 * upper ceiling to free_pgtables(): on many architectures it has the same
24 * effect as using TASK_SIZE. However, there is one configuration which
25 * must impose a more careful limit, to avoid freeing kernel pgtables.
27 #ifndef USER_PGTABLES_CEILING
28 #define USER_PGTABLES_CEILING 0UL
32 * This defines the first usable user address. Platforms
33 * can override its value with custom FIRST_USER_ADDRESS
34 * defined in their respective <asm/pgtable.h>.
36 #ifndef FIRST_USER_ADDRESS
37 #define FIRST_USER_ADDRESS 0UL
41 * This defines the generic helper for accessing PMD page
42 * table page. Although platforms can still override this
43 * via their respective <asm/pgtable.h>.
46 #define pmd_pgtable(pmd) pmd_page(pmd)
50 * A page table page can be thought of an array like this: pXd_t[PTRS_PER_PxD]
52 * The pXx_index() functions return the index of the entry in the page
53 * table page which would control the given virtual address
55 * As these functions may be used by the same code for different levels of
56 * the page table folding, they are always available, regardless of
57 * CONFIG_PGTABLE_LEVELS value. For the folded levels they simply return 0
58 * because in such cases PTRS_PER_PxD equals 1.
61 static inline unsigned long pte_index(unsigned long address)
63 return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
67 static inline unsigned long pmd_index(unsigned long address)
69 return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
71 #define pmd_index pmd_index
75 static inline unsigned long pud_index(unsigned long address)
77 return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1);
79 #define pud_index pud_index
83 /* Must be a compile-time constant, so implement it as a macro */
84 #define pgd_index(a) (((a) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
87 #ifndef pte_offset_kernel
88 static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address)
90 return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address);
92 #define pte_offset_kernel pte_offset_kernel
95 #if defined(CONFIG_HIGHPTE)
96 #define pte_offset_map(dir, address) \
97 ((pte_t *)kmap_atomic(pmd_page(*(dir))) + \
99 #define pte_unmap(pte) kunmap_atomic((pte))
101 #define pte_offset_map(dir, address) pte_offset_kernel((dir), (address))
102 #define pte_unmap(pte) ((void)(pte)) /* NOP */
105 /* Find an entry in the second-level page table.. */
107 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
109 return pud_pgtable(*pud) + pmd_index(address);
111 #define pmd_offset pmd_offset
115 static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address)
117 return p4d_pgtable(*p4d) + pud_index(address);
119 #define pud_offset pud_offset
122 static inline pgd_t *pgd_offset_pgd(pgd_t *pgd, unsigned long address)
124 return (pgd + pgd_index(address));
128 * a shortcut to get a pgd_t in a given mm
131 #define pgd_offset(mm, address) pgd_offset_pgd((mm)->pgd, (address))
135 * a shortcut which implies the use of the kernel's pgd, instead
139 #define pgd_offset_k(address) pgd_offset(&init_mm, (address))
143 * In many cases it is known that a virtual address is mapped at PMD or PTE
144 * level, so instead of traversing all the page table levels, we can get a
145 * pointer to the PMD entry in user or kernel page table or translate a virtual
146 * address to the pointer in the PTE in the kernel page tables with simple
149 static inline pmd_t *pmd_off(struct mm_struct *mm, unsigned long va)
151 return pmd_offset(pud_offset(p4d_offset(pgd_offset(mm, va), va), va), va);
154 static inline pmd_t *pmd_off_k(unsigned long va)
156 return pmd_offset(pud_offset(p4d_offset(pgd_offset_k(va), va), va), va);
159 static inline pte_t *virt_to_kpte(unsigned long vaddr)
161 pmd_t *pmd = pmd_off_k(vaddr);
163 return pmd_none(*pmd) ? NULL : pte_offset_kernel(pmd, vaddr);
166 #ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
167 extern int ptep_set_access_flags(struct vm_area_struct *vma,
168 unsigned long address, pte_t *ptep,
169 pte_t entry, int dirty);
172 #ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
173 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
174 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
175 unsigned long address, pmd_t *pmdp,
176 pmd_t entry, int dirty);
177 extern int pudp_set_access_flags(struct vm_area_struct *vma,
178 unsigned long address, pud_t *pudp,
179 pud_t entry, int dirty);
181 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
182 unsigned long address, pmd_t *pmdp,
183 pmd_t entry, int dirty)
188 static inline int pudp_set_access_flags(struct vm_area_struct *vma,
189 unsigned long address, pud_t *pudp,
190 pud_t entry, int dirty)
195 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
198 #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
199 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
200 unsigned long address,
208 set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
213 #ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
214 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
215 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
216 unsigned long address,
224 set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
228 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
229 unsigned long address,
235 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
238 #ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
239 int ptep_clear_flush_young(struct vm_area_struct *vma,
240 unsigned long address, pte_t *ptep);
243 #ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
244 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
245 extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
246 unsigned long address, pmd_t *pmdp);
249 * Despite relevant to THP only, this API is called from generic rmap code
250 * under PageTransHuge(), hence needs a dummy implementation for !THP
252 static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
253 unsigned long address, pmd_t *pmdp)
258 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
261 #ifndef __HAVE_ARCH_PTEP_CLEAR
262 static inline void ptep_clear(struct mm_struct *mm, unsigned long addr,
265 pte_clear(mm, addr, ptep);
269 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
270 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
271 unsigned long address,
275 pte_clear(mm, address, ptep);
280 #ifndef __HAVE_ARCH_PTEP_GET
281 static inline pte_t ptep_get(pte_t *ptep)
283 return READ_ONCE(*ptep);
287 #ifdef CONFIG_GUP_GET_PTE_LOW_HIGH
289 * WARNING: only to be used in the get_user_pages_fast() implementation.
291 * With get_user_pages_fast(), we walk down the pagetables without taking any
292 * locks. For this we would like to load the pointers atomically, but sometimes
293 * that is not possible (e.g. without expensive cmpxchg8b on x86_32 PAE). What
294 * we do have is the guarantee that a PTE will only either go from not present
295 * to present, or present to not present or both -- it will not switch to a
296 * completely different present page without a TLB flush in between; something
297 * that we are blocking by holding interrupts off.
299 * Setting ptes from not present to present goes:
301 * ptep->pte_high = h;
305 * And present to not present goes:
309 * ptep->pte_high = 0;
311 * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
312 * We load pte_high *after* loading pte_low, which ensures we don't see an older
313 * value of pte_high. *Then* we recheck pte_low, which ensures that we haven't
314 * picked up a changed pte high. We might have gotten rubbish values from
315 * pte_low and pte_high, but we are guaranteed that pte_low will not have the
316 * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
317 * operates on present ptes we're safe.
319 static inline pte_t ptep_get_lockless(pte_t *ptep)
324 pte.pte_low = ptep->pte_low;
326 pte.pte_high = ptep->pte_high;
328 } while (unlikely(pte.pte_low != ptep->pte_low));
332 #else /* CONFIG_GUP_GET_PTE_LOW_HIGH */
334 * We require that the PTE can be read atomically.
336 static inline pte_t ptep_get_lockless(pte_t *ptep)
338 return ptep_get(ptep);
340 #endif /* CONFIG_GUP_GET_PTE_LOW_HIGH */
342 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
343 #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
344 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
345 unsigned long address,
352 #endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR */
353 #ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
354 static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm,
355 unsigned long address,
363 #endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR */
364 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
366 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
367 #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
368 static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
369 unsigned long address, pmd_t *pmdp,
372 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
376 #ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL
377 static inline pud_t pudp_huge_get_and_clear_full(struct mm_struct *mm,
378 unsigned long address, pud_t *pudp,
381 return pudp_huge_get_and_clear(mm, address, pudp);
384 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
386 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
387 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
388 unsigned long address, pte_t *ptep,
392 pte = ptep_get_and_clear(mm, address, ptep);
399 * If two threads concurrently fault at the same page, the thread that
400 * won the race updates the PTE and its local TLB/Cache. The other thread
401 * gives up, simply does nothing, and continues; on architectures where
402 * software can update TLB, local TLB can be updated here to avoid next page
403 * fault. This function updates TLB only, do nothing with cache or others.
404 * It is the difference with function update_mmu_cache.
406 #ifndef __HAVE_ARCH_UPDATE_MMU_TLB
407 static inline void update_mmu_tlb(struct vm_area_struct *vma,
408 unsigned long address, pte_t *ptep)
411 #define __HAVE_ARCH_UPDATE_MMU_TLB
415 * Some architectures may be able to avoid expensive synchronization
416 * primitives when modifications are made to PTE's which are already
417 * not present, or in the process of an address space destruction.
419 #ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
420 static inline void pte_clear_not_present_full(struct mm_struct *mm,
421 unsigned long address,
425 pte_clear(mm, address, ptep);
429 #ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
430 extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
431 unsigned long address,
435 #ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
436 extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
437 unsigned long address,
439 extern pud_t pudp_huge_clear_flush(struct vm_area_struct *vma,
440 unsigned long address,
444 #ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
446 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
448 pte_t old_pte = *ptep;
449 set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
454 * On some architectures hardware does not set page access bit when accessing
455 * memory page, it is responsibility of software setting this bit. It brings
456 * out extra page fault penalty to track page access bit. For optimization page
457 * access bit can be set during all page fault flow on these arches.
458 * To be differentiate with macro pte_mkyoung, this macro is used on platforms
459 * where software maintains page access bit.
461 #ifndef pte_sw_mkyoung
462 static inline pte_t pte_sw_mkyoung(pte_t pte)
466 #define pte_sw_mkyoung pte_sw_mkyoung
469 #ifndef pte_savedwrite
470 #define pte_savedwrite pte_write
473 #ifndef pte_mk_savedwrite
474 #define pte_mk_savedwrite pte_mkwrite
477 #ifndef pte_clear_savedwrite
478 #define pte_clear_savedwrite pte_wrprotect
481 #ifndef pmd_savedwrite
482 #define pmd_savedwrite pmd_write
485 #ifndef pmd_mk_savedwrite
486 #define pmd_mk_savedwrite pmd_mkwrite
489 #ifndef pmd_clear_savedwrite
490 #define pmd_clear_savedwrite pmd_wrprotect
493 #ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
494 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
495 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
496 unsigned long address, pmd_t *pmdp)
498 pmd_t old_pmd = *pmdp;
499 set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
502 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
503 unsigned long address, pmd_t *pmdp)
507 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
509 #ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT
510 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
511 static inline void pudp_set_wrprotect(struct mm_struct *mm,
512 unsigned long address, pud_t *pudp)
514 pud_t old_pud = *pudp;
516 set_pud_at(mm, address, pudp, pud_wrprotect(old_pud));
519 static inline void pudp_set_wrprotect(struct mm_struct *mm,
520 unsigned long address, pud_t *pudp)
524 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
527 #ifndef pmdp_collapse_flush
528 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
529 extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
530 unsigned long address, pmd_t *pmdp);
532 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
533 unsigned long address,
539 #define pmdp_collapse_flush pmdp_collapse_flush
540 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
543 #ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
544 extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
548 #ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
549 extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
552 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
554 * This is an implementation of pmdp_establish() that is only suitable for an
555 * architecture that doesn't have hardware dirty/accessed bits. In this case we
556 * can't race with CPU which sets these bits and non-atomic approach is fine.
558 static inline pmd_t generic_pmdp_establish(struct vm_area_struct *vma,
559 unsigned long address, pmd_t *pmdp, pmd_t pmd)
561 pmd_t old_pmd = *pmdp;
562 set_pmd_at(vma->vm_mm, address, pmdp, pmd);
567 #ifndef __HAVE_ARCH_PMDP_INVALIDATE
568 extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
572 #ifndef __HAVE_ARCH_PTE_SAME
573 static inline int pte_same(pte_t pte_a, pte_t pte_b)
575 return pte_val(pte_a) == pte_val(pte_b);
579 #ifndef __HAVE_ARCH_PTE_UNUSED
581 * Some architectures provide facilities to virtualization guests
582 * so that they can flag allocated pages as unused. This allows the
583 * host to transparently reclaim unused pages. This function returns
584 * whether the pte's page is unused.
586 static inline int pte_unused(pte_t pte)
592 #ifndef pte_access_permitted
593 #define pte_access_permitted(pte, write) \
594 (pte_present(pte) && (!(write) || pte_write(pte)))
597 #ifndef pmd_access_permitted
598 #define pmd_access_permitted(pmd, write) \
599 (pmd_present(pmd) && (!(write) || pmd_write(pmd)))
602 #ifndef pud_access_permitted
603 #define pud_access_permitted(pud, write) \
604 (pud_present(pud) && (!(write) || pud_write(pud)))
607 #ifndef p4d_access_permitted
608 #define p4d_access_permitted(p4d, write) \
609 (p4d_present(p4d) && (!(write) || p4d_write(p4d)))
612 #ifndef pgd_access_permitted
613 #define pgd_access_permitted(pgd, write) \
614 (pgd_present(pgd) && (!(write) || pgd_write(pgd)))
617 #ifndef __HAVE_ARCH_PMD_SAME
618 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
620 return pmd_val(pmd_a) == pmd_val(pmd_b);
623 static inline int pud_same(pud_t pud_a, pud_t pud_b)
625 return pud_val(pud_a) == pud_val(pud_b);
629 #ifndef __HAVE_ARCH_P4D_SAME
630 static inline int p4d_same(p4d_t p4d_a, p4d_t p4d_b)
632 return p4d_val(p4d_a) == p4d_val(p4d_b);
636 #ifndef __HAVE_ARCH_PGD_SAME
637 static inline int pgd_same(pgd_t pgd_a, pgd_t pgd_b)
639 return pgd_val(pgd_a) == pgd_val(pgd_b);
644 * Use set_p*_safe(), and elide TLB flushing, when confident that *no*
645 * TLB flush will be required as a result of the "set". For example, use
646 * in scenarios where it is known ahead of time that the routine is
647 * setting non-present entries, or re-setting an existing entry to the
648 * same value. Otherwise, use the typical "set" helpers and flush the
651 #define set_pte_safe(ptep, pte) \
653 WARN_ON_ONCE(pte_present(*ptep) && !pte_same(*ptep, pte)); \
654 set_pte(ptep, pte); \
657 #define set_pmd_safe(pmdp, pmd) \
659 WARN_ON_ONCE(pmd_present(*pmdp) && !pmd_same(*pmdp, pmd)); \
660 set_pmd(pmdp, pmd); \
663 #define set_pud_safe(pudp, pud) \
665 WARN_ON_ONCE(pud_present(*pudp) && !pud_same(*pudp, pud)); \
666 set_pud(pudp, pud); \
669 #define set_p4d_safe(p4dp, p4d) \
671 WARN_ON_ONCE(p4d_present(*p4dp) && !p4d_same(*p4dp, p4d)); \
672 set_p4d(p4dp, p4d); \
675 #define set_pgd_safe(pgdp, pgd) \
677 WARN_ON_ONCE(pgd_present(*pgdp) && !pgd_same(*pgdp, pgd)); \
678 set_pgd(pgdp, pgd); \
681 #ifndef __HAVE_ARCH_DO_SWAP_PAGE
683 * Some architectures support metadata associated with a page. When a
684 * page is being swapped out, this metadata must be saved so it can be
685 * restored when the page is swapped back in. SPARC M7 and newer
686 * processors support an ADI (Application Data Integrity) tag for the
687 * page as metadata for the page. arch_do_swap_page() can restore this
688 * metadata when a page is swapped back in.
690 static inline void arch_do_swap_page(struct mm_struct *mm,
691 struct vm_area_struct *vma,
693 pte_t pte, pte_t oldpte)
699 #ifndef __HAVE_ARCH_UNMAP_ONE
701 * Some architectures support metadata associated with a page. When a
702 * page is being swapped out, this metadata must be saved so it can be
703 * restored when the page is swapped back in. SPARC M7 and newer
704 * processors support an ADI (Application Data Integrity) tag for the
705 * page as metadata for the page. arch_unmap_one() can save this
706 * metadata on a swap-out of a page.
708 static inline int arch_unmap_one(struct mm_struct *mm,
709 struct vm_area_struct *vma,
718 * Allow architectures to preserve additional metadata associated with
719 * swapped-out pages. The corresponding __HAVE_ARCH_SWAP_* macros and function
720 * prototypes must be defined in the arch-specific asm/pgtable.h file.
722 #ifndef __HAVE_ARCH_PREPARE_TO_SWAP
723 static inline int arch_prepare_to_swap(struct page *page)
729 #ifndef __HAVE_ARCH_SWAP_INVALIDATE
730 static inline void arch_swap_invalidate_page(int type, pgoff_t offset)
734 static inline void arch_swap_invalidate_area(int type)
739 #ifndef __HAVE_ARCH_SWAP_RESTORE
740 static inline void arch_swap_restore(swp_entry_t entry, struct page *page)
745 #ifndef __HAVE_ARCH_PGD_OFFSET_GATE
746 #define pgd_offset_gate(mm, addr) pgd_offset(mm, addr)
749 #ifndef __HAVE_ARCH_MOVE_PTE
750 #define move_pte(pte, prot, old_addr, new_addr) (pte)
753 #ifndef pte_accessible
754 # define pte_accessible(mm, pte) ((void)(pte), 1)
757 #ifndef flush_tlb_fix_spurious_fault
758 #define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address)
762 * When walking page tables, get the address of the next boundary,
763 * or the end address of the range if that comes earlier. Although no
764 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
767 #define pgd_addr_end(addr, end) \
768 ({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \
769 (__boundary - 1 < (end) - 1)? __boundary: (end); \
773 #define p4d_addr_end(addr, end) \
774 ({ unsigned long __boundary = ((addr) + P4D_SIZE) & P4D_MASK; \
775 (__boundary - 1 < (end) - 1)? __boundary: (end); \
780 #define pud_addr_end(addr, end) \
781 ({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \
782 (__boundary - 1 < (end) - 1)? __boundary: (end); \
787 #define pmd_addr_end(addr, end) \
788 ({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \
789 (__boundary - 1 < (end) - 1)? __boundary: (end); \
794 * When walking page tables, we usually want to skip any p?d_none entries;
795 * and any p?d_bad entries - reporting the error before resetting to none.
796 * Do the tests inline, but report and clear the bad entry in mm/memory.c.
798 void pgd_clear_bad(pgd_t *);
800 #ifndef __PAGETABLE_P4D_FOLDED
801 void p4d_clear_bad(p4d_t *);
803 #define p4d_clear_bad(p4d) do { } while (0)
806 #ifndef __PAGETABLE_PUD_FOLDED
807 void pud_clear_bad(pud_t *);
809 #define pud_clear_bad(p4d) do { } while (0)
812 void pmd_clear_bad(pmd_t *);
814 static inline int pgd_none_or_clear_bad(pgd_t *pgd)
818 if (unlikely(pgd_bad(*pgd))) {
825 static inline int p4d_none_or_clear_bad(p4d_t *p4d)
829 if (unlikely(p4d_bad(*p4d))) {
836 static inline int pud_none_or_clear_bad(pud_t *pud)
840 if (unlikely(pud_bad(*pud))) {
847 static inline int pmd_none_or_clear_bad(pmd_t *pmd)
851 if (unlikely(pmd_bad(*pmd))) {
858 static inline pte_t __ptep_modify_prot_start(struct vm_area_struct *vma,
863 * Get the current pte state, but zero it out to make it
864 * non-present, preventing the hardware from asynchronously
867 return ptep_get_and_clear(vma->vm_mm, addr, ptep);
870 static inline void __ptep_modify_prot_commit(struct vm_area_struct *vma,
872 pte_t *ptep, pte_t pte)
875 * The pte is non-present, so there's no hardware state to
878 set_pte_at(vma->vm_mm, addr, ptep, pte);
881 #ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
883 * Start a pte protection read-modify-write transaction, which
884 * protects against asynchronous hardware modifications to the pte.
885 * The intention is not to prevent the hardware from making pte
886 * updates, but to prevent any updates it may make from being lost.
888 * This does not protect against other software modifications of the
889 * pte; the appropriate pte lock must be held over the transaction.
891 * Note that this interface is intended to be batchable, meaning that
892 * ptep_modify_prot_commit may not actually update the pte, but merely
893 * queue the update to be done at some later time. The update must be
894 * actually committed before the pte lock is released, however.
896 static inline pte_t ptep_modify_prot_start(struct vm_area_struct *vma,
900 return __ptep_modify_prot_start(vma, addr, ptep);
904 * Commit an update to a pte, leaving any hardware-controlled bits in
905 * the PTE unmodified.
907 static inline void ptep_modify_prot_commit(struct vm_area_struct *vma,
909 pte_t *ptep, pte_t old_pte, pte_t pte)
911 __ptep_modify_prot_commit(vma, addr, ptep, pte);
913 #endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
914 #endif /* CONFIG_MMU */
917 * No-op macros that just return the current protection value. Defined here
918 * because these macros can be used even if CONFIG_MMU is not defined.
922 #define pgprot_nx(prot) (prot)
925 #ifndef pgprot_noncached
926 #define pgprot_noncached(prot) (prot)
929 #ifndef pgprot_writecombine
930 #define pgprot_writecombine pgprot_noncached
933 #ifndef pgprot_writethrough
934 #define pgprot_writethrough pgprot_noncached
937 #ifndef pgprot_device
938 #define pgprot_device pgprot_noncached
942 #define pgprot_mhp(prot) (prot)
946 #ifndef pgprot_modify
947 #define pgprot_modify pgprot_modify
948 static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
950 if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot)))
951 newprot = pgprot_noncached(newprot);
952 if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot)))
953 newprot = pgprot_writecombine(newprot);
954 if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot)))
955 newprot = pgprot_device(newprot);
959 #endif /* CONFIG_MMU */
961 #ifndef pgprot_encrypted
962 #define pgprot_encrypted(prot) (prot)
965 #ifndef pgprot_decrypted
966 #define pgprot_decrypted(prot) (prot)
970 * A facility to provide lazy MMU batching. This allows PTE updates and
971 * page invalidations to be delayed until a call to leave lazy MMU mode
972 * is issued. Some architectures may benefit from doing this, and it is
973 * beneficial for both shadow and direct mode hypervisors, which may batch
974 * the PTE updates which happen during this window. Note that using this
975 * interface requires that read hazards be removed from the code. A read
976 * hazard could result in the direct mode hypervisor case, since the actual
977 * write to the page tables may not yet have taken place, so reads though
978 * a raw PTE pointer after it has been modified are not guaranteed to be
979 * up to date. This mode can only be entered and left under the protection of
980 * the page table locks for all page tables which may be modified. In the UP
981 * case, this is required so that preemption is disabled, and in the SMP case,
982 * it must synchronize the delayed page table writes properly on other CPUs.
984 #ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
985 #define arch_enter_lazy_mmu_mode() do {} while (0)
986 #define arch_leave_lazy_mmu_mode() do {} while (0)
987 #define arch_flush_lazy_mmu_mode() do {} while (0)
991 * A facility to provide batching of the reload of page tables and
992 * other process state with the actual context switch code for
993 * paravirtualized guests. By convention, only one of the batched
994 * update (lazy) modes (CPU, MMU) should be active at any given time,
995 * entry should never be nested, and entry and exits should always be
996 * paired. This is for sanity of maintaining and reasoning about the
997 * kernel code. In this case, the exit (end of the context switch) is
998 * in architecture-specific code, and so doesn't need a generic
1001 #ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
1002 #define arch_start_context_switch(prev) do {} while (0)
1005 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
1006 #ifndef CONFIG_ARCH_ENABLE_THP_MIGRATION
1007 static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1012 static inline int pmd_swp_soft_dirty(pmd_t pmd)
1017 static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1022 #else /* !CONFIG_HAVE_ARCH_SOFT_DIRTY */
1023 static inline int pte_soft_dirty(pte_t pte)
1028 static inline int pmd_soft_dirty(pmd_t pmd)
1033 static inline pte_t pte_mksoft_dirty(pte_t pte)
1038 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
1043 static inline pte_t pte_clear_soft_dirty(pte_t pte)
1048 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
1053 static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
1058 static inline int pte_swp_soft_dirty(pte_t pte)
1063 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
1068 static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1073 static inline int pmd_swp_soft_dirty(pmd_t pmd)
1078 static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1084 #ifndef __HAVE_PFNMAP_TRACKING
1086 * Interfaces that can be used by architecture code to keep track of
1087 * memory type of pfn mappings specified by the remap_pfn_range,
1092 * track_pfn_remap is called when a _new_ pfn mapping is being established
1093 * by remap_pfn_range() for physical range indicated by pfn and size.
1095 static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1096 unsigned long pfn, unsigned long addr,
1103 * track_pfn_insert is called when a _new_ single pfn is established
1104 * by vmf_insert_pfn().
1106 static inline void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
1112 * track_pfn_copy is called when vma that is covering the pfnmap gets
1113 * copied through copy_page_range().
1115 static inline int track_pfn_copy(struct vm_area_struct *vma)
1121 * untrack_pfn is called while unmapping a pfnmap for a region.
1122 * untrack can be called for a specific region indicated by pfn and size or
1123 * can be for the entire vma (in which case pfn, size are zero).
1125 static inline void untrack_pfn(struct vm_area_struct *vma,
1126 unsigned long pfn, unsigned long size)
1131 * untrack_pfn_moved is called while mremapping a pfnmap for a new region.
1133 static inline void untrack_pfn_moved(struct vm_area_struct *vma)
1137 extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1138 unsigned long pfn, unsigned long addr,
1139 unsigned long size);
1140 extern void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
1142 extern int track_pfn_copy(struct vm_area_struct *vma);
1143 extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
1144 unsigned long size);
1145 extern void untrack_pfn_moved(struct vm_area_struct *vma);
1149 #ifdef __HAVE_COLOR_ZERO_PAGE
1150 static inline int is_zero_pfn(unsigned long pfn)
1152 extern unsigned long zero_pfn;
1153 unsigned long offset_from_zero_pfn = pfn - zero_pfn;
1154 return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
1157 #define my_zero_pfn(addr) page_to_pfn(ZERO_PAGE(addr))
1160 static inline int is_zero_pfn(unsigned long pfn)
1162 extern unsigned long zero_pfn;
1163 return pfn == zero_pfn;
1166 static inline unsigned long my_zero_pfn(unsigned long addr)
1168 extern unsigned long zero_pfn;
1173 static inline int is_zero_pfn(unsigned long pfn)
1178 static inline unsigned long my_zero_pfn(unsigned long addr)
1182 #endif /* CONFIG_MMU */
1186 #ifndef CONFIG_TRANSPARENT_HUGEPAGE
1187 static inline int pmd_trans_huge(pmd_t pmd)
1192 static inline int pmd_write(pmd_t pmd)
1197 #endif /* pmd_write */
1198 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1201 static inline int pud_write(pud_t pud)
1206 #endif /* pud_write */
1208 #if !defined(CONFIG_ARCH_HAS_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
1209 static inline int pmd_devmap(pmd_t pmd)
1213 static inline int pud_devmap(pud_t pud)
1217 static inline int pgd_devmap(pgd_t pgd)
1223 #if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \
1224 (defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
1225 !defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD))
1226 static inline int pud_trans_huge(pud_t pud)
1232 /* See pmd_none_or_trans_huge_or_clear_bad for discussion. */
1233 static inline int pud_none_or_trans_huge_or_dev_or_clear_bad(pud_t *pud)
1235 pud_t pudval = READ_ONCE(*pud);
1237 if (pud_none(pudval) || pud_trans_huge(pudval) || pud_devmap(pudval))
1239 if (unlikely(pud_bad(pudval))) {
1246 /* See pmd_trans_unstable for discussion. */
1247 static inline int pud_trans_unstable(pud_t *pud)
1249 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
1250 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1251 return pud_none_or_trans_huge_or_dev_or_clear_bad(pud);
1257 #ifndef pmd_read_atomic
1258 static inline pmd_t pmd_read_atomic(pmd_t *pmdp)
1261 * Depend on compiler for an atomic pmd read. NOTE: this is
1262 * only going to work, if the pmdval_t isn't larger than
1269 #ifndef arch_needs_pgtable_deposit
1270 #define arch_needs_pgtable_deposit() (false)
1273 * This function is meant to be used by sites walking pagetables with
1274 * the mmap_lock held in read mode to protect against MADV_DONTNEED and
1275 * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd
1276 * into a null pmd and the transhuge page fault can convert a null pmd
1277 * into an hugepmd or into a regular pmd (if the hugepage allocation
1278 * fails). While holding the mmap_lock in read mode the pmd becomes
1279 * stable and stops changing under us only if it's not null and not a
1280 * transhuge pmd. When those races occurs and this function makes a
1281 * difference vs the standard pmd_none_or_clear_bad, the result is
1282 * undefined so behaving like if the pmd was none is safe (because it
1283 * can return none anyway). The compiler level barrier() is critically
1284 * important to compute the two checks atomically on the same pmdval.
1286 * For 32bit kernels with a 64bit large pmd_t this automatically takes
1287 * care of reading the pmd atomically to avoid SMP race conditions
1288 * against pmd_populate() when the mmap_lock is hold for reading by the
1289 * caller (a special atomic read not done by "gcc" as in the generic
1290 * version above, is also needed when THP is disabled because the page
1291 * fault can populate the pmd from under us).
1293 static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd)
1295 pmd_t pmdval = pmd_read_atomic(pmd);
1297 * The barrier will stabilize the pmdval in a register or on
1298 * the stack so that it will stop changing under the code.
1300 * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE,
1301 * pmd_read_atomic is allowed to return a not atomic pmdval
1302 * (for example pointing to an hugepage that has never been
1303 * mapped in the pmd). The below checks will only care about
1304 * the low part of the pmd with 32bit PAE x86 anyway, with the
1305 * exception of pmd_none(). So the important thing is that if
1306 * the low part of the pmd is found null, the high part will
1307 * be also null or the pmd_none() check below would be
1310 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1314 * !pmd_present() checks for pmd migration entries
1316 * The complete check uses is_pmd_migration_entry() in linux/swapops.h
1317 * But using that requires moving current function and pmd_trans_unstable()
1318 * to linux/swapops.h to resolve dependency, which is too much code move.
1320 * !pmd_present() is equivalent to is_pmd_migration_entry() currently,
1321 * because !pmd_present() pages can only be under migration not swapped
1324 * pmd_none() is preserved for future condition checks on pmd migration
1325 * entries and not confusing with this function name, although it is
1326 * redundant with !pmd_present().
1328 if (pmd_none(pmdval) || pmd_trans_huge(pmdval) ||
1329 (IS_ENABLED(CONFIG_ARCH_ENABLE_THP_MIGRATION) && !pmd_present(pmdval)))
1331 if (unlikely(pmd_bad(pmdval))) {
1339 * This is a noop if Transparent Hugepage Support is not built into
1340 * the kernel. Otherwise it is equivalent to
1341 * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in
1342 * places that already verified the pmd is not none and they want to
1343 * walk ptes while holding the mmap sem in read mode (write mode don't
1344 * need this). If THP is not enabled, the pmd can't go away under the
1345 * code even if MADV_DONTNEED runs, but if THP is enabled we need to
1346 * run a pmd_trans_unstable before walking the ptes after
1347 * split_huge_pmd returns (because it may have run when the pmd become
1348 * null, but then a page fault can map in a THP and not a regular page).
1350 static inline int pmd_trans_unstable(pmd_t *pmd)
1352 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1353 return pmd_none_or_trans_huge_or_clear_bad(pmd);
1360 * the ordering of these checks is important for pmds with _page_devmap set.
1361 * if we check pmd_trans_unstable() first we will trip the bad_pmd() check
1362 * inside of pmd_none_or_trans_huge_or_clear_bad(). this will end up correctly
1363 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
1365 static inline int pmd_devmap_trans_unstable(pmd_t *pmd)
1367 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
1370 #ifndef CONFIG_NUMA_BALANCING
1372 * Technically a PTE can be PROTNONE even when not doing NUMA balancing but
1373 * the only case the kernel cares is for NUMA balancing and is only ever set
1374 * when the VMA is accessible. For PROT_NONE VMAs, the PTEs are not marked
1375 * _PAGE_PROTNONE so by default, implement the helper as "always no". It
1376 * is the responsibility of the caller to distinguish between PROT_NONE
1377 * protections and NUMA hinting fault protections.
1379 static inline int pte_protnone(pte_t pte)
1384 static inline int pmd_protnone(pmd_t pmd)
1388 #endif /* CONFIG_NUMA_BALANCING */
1390 #endif /* CONFIG_MMU */
1392 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
1394 #ifndef __PAGETABLE_P4D_FOLDED
1395 int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot);
1396 int p4d_clear_huge(p4d_t *p4d);
1398 static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1402 static inline int p4d_clear_huge(p4d_t *p4d)
1406 #endif /* !__PAGETABLE_P4D_FOLDED */
1408 int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot);
1409 int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot);
1410 int pud_clear_huge(pud_t *pud);
1411 int pmd_clear_huge(pmd_t *pmd);
1412 int p4d_free_pud_page(p4d_t *p4d, unsigned long addr);
1413 int pud_free_pmd_page(pud_t *pud, unsigned long addr);
1414 int pmd_free_pte_page(pmd_t *pmd, unsigned long addr);
1415 #else /* !CONFIG_HAVE_ARCH_HUGE_VMAP */
1416 static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1420 static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
1424 static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
1428 static inline int p4d_clear_huge(p4d_t *p4d)
1432 static inline int pud_clear_huge(pud_t *pud)
1436 static inline int pmd_clear_huge(pmd_t *pmd)
1440 static inline int p4d_free_pud_page(p4d_t *p4d, unsigned long addr)
1444 static inline int pud_free_pmd_page(pud_t *pud, unsigned long addr)
1448 static inline int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
1452 #endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */
1454 #ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
1455 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1457 * ARCHes with special requirements for evicting THP backing TLB entries can
1458 * implement this. Otherwise also, it can help optimize normal TLB flush in
1459 * THP regime. Stock flush_tlb_range() typically has optimization to nuke the
1460 * entire TLB if flush span is greater than a threshold, which will
1461 * likely be true for a single huge page. Thus a single THP flush will
1462 * invalidate the entire TLB which is not desirable.
1463 * e.g. see arch/arc: flush_pmd_tlb_range
1465 #define flush_pmd_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
1466 #define flush_pud_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
1468 #define flush_pmd_tlb_range(vma, addr, end) BUILD_BUG()
1469 #define flush_pud_tlb_range(vma, addr, end) BUILD_BUG()
1474 int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
1475 unsigned long size, pgprot_t *vma_prot);
1477 #ifndef CONFIG_X86_ESPFIX64
1478 static inline void init_espfix_bsp(void) { }
1481 extern void __init pgtable_cache_init(void);
1483 #ifndef __HAVE_ARCH_PFN_MODIFY_ALLOWED
1484 static inline bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot)
1489 static inline bool arch_has_pfn_modify_check(void)
1493 #endif /* !_HAVE_ARCH_PFN_MODIFY_ALLOWED */
1496 * Architecture PAGE_KERNEL_* fallbacks
1498 * Some architectures don't define certain PAGE_KERNEL_* flags. This is either
1499 * because they really don't support them, or the port needs to be updated to
1500 * reflect the required functionality. Below are a set of relatively safe
1501 * fallbacks, as best effort, which we can count on in lieu of the architectures
1502 * not defining them on their own yet.
1505 #ifndef PAGE_KERNEL_RO
1506 # define PAGE_KERNEL_RO PAGE_KERNEL
1509 #ifndef PAGE_KERNEL_EXEC
1510 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1514 * Page Table Modification bits for pgtbl_mod_mask.
1516 * These are used by the p?d_alloc_track*() set of functions an in the generic
1517 * vmalloc/ioremap code to track at which page-table levels entries have been
1518 * modified. Based on that the code can better decide when vmalloc and ioremap
1519 * mapping changes need to be synchronized to other page-tables in the system.
1521 #define __PGTBL_PGD_MODIFIED 0
1522 #define __PGTBL_P4D_MODIFIED 1
1523 #define __PGTBL_PUD_MODIFIED 2
1524 #define __PGTBL_PMD_MODIFIED 3
1525 #define __PGTBL_PTE_MODIFIED 4
1527 #define PGTBL_PGD_MODIFIED BIT(__PGTBL_PGD_MODIFIED)
1528 #define PGTBL_P4D_MODIFIED BIT(__PGTBL_P4D_MODIFIED)
1529 #define PGTBL_PUD_MODIFIED BIT(__PGTBL_PUD_MODIFIED)
1530 #define PGTBL_PMD_MODIFIED BIT(__PGTBL_PMD_MODIFIED)
1531 #define PGTBL_PTE_MODIFIED BIT(__PGTBL_PTE_MODIFIED)
1533 /* Page-Table Modification Mask */
1534 typedef unsigned int pgtbl_mod_mask;
1536 #endif /* !__ASSEMBLY__ */
1538 #if !defined(MAX_POSSIBLE_PHYSMEM_BITS) && !defined(CONFIG_64BIT)
1539 #ifdef CONFIG_PHYS_ADDR_T_64BIT
1541 * ZSMALLOC needs to know the highest PFN on 32-bit architectures
1542 * with physical address space extension, but falls back to
1543 * BITS_PER_LONG otherwise.
1545 #error Missing MAX_POSSIBLE_PHYSMEM_BITS definition
1547 #define MAX_POSSIBLE_PHYSMEM_BITS 32
1551 #ifndef has_transparent_hugepage
1552 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1553 #define has_transparent_hugepage() 1
1555 #define has_transparent_hugepage() 0
1560 * On some architectures it depends on the mm if the p4d/pud or pmd
1561 * layer of the page table hierarchy is folded or not.
1563 #ifndef mm_p4d_folded
1564 #define mm_p4d_folded(mm) __is_defined(__PAGETABLE_P4D_FOLDED)
1567 #ifndef mm_pud_folded
1568 #define mm_pud_folded(mm) __is_defined(__PAGETABLE_PUD_FOLDED)
1571 #ifndef mm_pmd_folded
1572 #define mm_pmd_folded(mm) __is_defined(__PAGETABLE_PMD_FOLDED)
1575 #ifndef p4d_offset_lockless
1576 #define p4d_offset_lockless(pgdp, pgd, address) p4d_offset(&(pgd), address)
1578 #ifndef pud_offset_lockless
1579 #define pud_offset_lockless(p4dp, p4d, address) pud_offset(&(p4d), address)
1581 #ifndef pmd_offset_lockless
1582 #define pmd_offset_lockless(pudp, pud, address) pmd_offset(&(pud), address)
1586 * p?d_leaf() - true if this entry is a final mapping to a physical address.
1587 * This differs from p?d_huge() by the fact that they are always available (if
1588 * the architecture supports large pages at the appropriate level) even
1589 * if CONFIG_HUGETLB_PAGE is not defined.
1590 * Only meaningful when called on a valid entry.
1593 #define pgd_leaf(x) 0
1596 #define p4d_leaf(x) 0
1599 #define pud_leaf(x) 0
1602 #define pmd_leaf(x) 0
1605 #ifndef pgd_leaf_size
1606 #define pgd_leaf_size(x) (1ULL << PGDIR_SHIFT)
1608 #ifndef p4d_leaf_size
1609 #define p4d_leaf_size(x) P4D_SIZE
1611 #ifndef pud_leaf_size
1612 #define pud_leaf_size(x) PUD_SIZE
1614 #ifndef pmd_leaf_size
1615 #define pmd_leaf_size(x) PMD_SIZE
1617 #ifndef pte_leaf_size
1618 #define pte_leaf_size(x) PAGE_SIZE
1622 * Some architectures have MMUs that are configurable or selectable at boot
1623 * time. These lead to variable PTRS_PER_x. For statically allocated arrays it
1624 * helps to have a static maximum value.
1627 #ifndef MAX_PTRS_PER_PTE
1628 #define MAX_PTRS_PER_PTE PTRS_PER_PTE
1631 #ifndef MAX_PTRS_PER_PMD
1632 #define MAX_PTRS_PER_PMD PTRS_PER_PMD
1635 #ifndef MAX_PTRS_PER_PUD
1636 #define MAX_PTRS_PER_PUD PTRS_PER_PUD
1639 #ifndef MAX_PTRS_PER_P4D
1640 #define MAX_PTRS_PER_P4D PTRS_PER_P4D
1643 #endif /* _LINUX_PGTABLE_H */